PIC32MX: PWM Motor Control

From Mech
Jump to navigationJump to search

Pulse Width Modulation, or PWM, is a technique used to vary the average magnitude of a signal by changing its duty cycle (the proportion of time that a signal is active or "high"). For a more in-depth introduction to PWM motor control click here.

PWM for PIC32 is discussed in more detail in the Microchip Output Compare documention.

Available Pins

The pins available for PWM are 5 input pins (OC1, OC2, OC3, OC4, and OC5) and 2 output pins (OCFA and OCFB). The output pins are for fault pin protection.

General Approach

PWM can be set up by either changing directly the special function registers or using the functions in outcompare.h (a header file included in the peripheral library (plib.h). The latter case is more straightforward and easier. This wiki describes how to use the outcompare functions. The register bits approach is described in detail in theMicrochip Output Compare documention.

There are four main functions that are used for PWM.

  void OpenOCX( config, value1, value2)
  void OpenTimerX(config, period)
  unsigned int SetDCOCXPWM(dutycycle)
  void CloseOCX();


where X is the module (1-5) or timer(2-3) that you want to use. Each of these functions are described below.

OpenOCX configures the OCX module and loads the R(value2) and RS (value1) registers with default values. The OCxR register is a read only slave duty cycle register. OCxRS is a buffer register that is written by the user to update the PWM duty cycle. At the end of a PWM period, OCxR is loaded with the contents of OCxRS. An example is shown below:

  OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);

The different configuration constants are shown below. If not specified, the default configuration is used. These constants are mutually exclusive for each category (ie you can only use one of them).

Config Constant Description
OC_ON Turns the Module ON
OC_OFF Default - Turns the Module Off
Stop-in-idle control
OC_IDLE_STOP stop in idle mode
OC_IDLE_CON Default - continue operation in idle mode
16/32 bit mode
OC_TIMER_MODE32 Use 32 bit Mode
OC_TIMER_MODE16 Default - Use 16 bit Mode
Timer select
OC_TIMER3_SRC Timer 3 is clock source
OC_TIMER2_SRC Default - Timer 2 is clock source
Operation mode select
OC_PWM_FAULT_PIN_ENABLE PWM Mode on OCx, fault pin enabled
OC_PWM_FAULT_PIN_DISABLE PWM Mode on OCx, fault pin disabled
OC_CONTINUE_PULSE Generates Continuous Output pulse on OCx Pin
OC_SINGLE_PULSE Generates Single Output pulse on OCx Pin
OC_TOGGLE_PULSE Compare toggles OCx pin
OC_HIGH_LOW Compare1 forces OCx pin Low
OC_LOW_HIGH Compare1 forces OCx pin High
OC_MODE_OFF Default - OutputCompare x Off

For the operation mode, to use PWM one of the first two constants must be used.

The output compare modules use either Timer 2 (default) or Timer 3. These must be set up using OpenTimerX function, where X is either 2 or 3. The period can be between 0 and 0xFFFF inclusive. The OC can be configured to use a 32 bit timer in which both Timer 2 and Timer 3 are used. An example is shown below:

  OpenTimer2( T2_ON | T2_PS_1_1 | T2_SOURCE_INT, 0xFFFF);

The first input sets up the timer and the second variable is the period value. The PWM period is dependent on the Period Value (PR), the Peripheral Bus Period and the pre-scalar as shown below:

PWM Period = [(PR + 1) Tpb (TMR_Prescaler_Value)]

The configuration constants are shown below for Timer 2. Replace the 2 with a 3 for Timer 3.

Config Constant Description
T2_ON Turns the Timer ON
T2_OFF Default - Turns the Timer Off
Stop-in-idle control
T2_IDLE_STOP stop in idle mode
T2_IDLE_CON Default - continue operation in idle mode
Timer gate control
T2_GATE_ON Timer Gate accumulation mode ON
T2_GATE_OFF Default - Timer Gate accumulation mode OFF
Prescale values
T2_PS_1_256 Prescaler 1:256
T2_PS_1_64 1:64
T2_PS_1_32 1:32
T2_PS_1_16 1:16
T2_PS_1_8 1:8
T2_PS_1_4 1:4
T2_PS_1_2 1:2
T2_PS_1_1 Default - 1:1
32-bit or 16-bit
T2_32BIT_MODE_ON Enable 32-bit mode
T2_32BIT_MODE_OFF Default
Sync external clock option
T2_SOURCE_EXT External clock source
T2_SOURCE_INT Internal Clock source

The duty cycle can be updated by using SetDCOCXPWM(dutycycle) where X is the module. The duty cycle gets updated on the next cycle. The duty cycle must be less than or equal to the period value register defined in Timer 2 or Timer 3. An example is shown below:

   SetDCOC1PWM(PR2 / 2);

The Output Compare module can be closed as shown below:

   CloseOC1();

Unidirectional Motor Control

This section will detail how to set up 2 simple programs and circuit to control a motor using a PIC microcontroller and PWM. The first program shows how to use a button to switch between 2 duty cycles and the second program shows how to use a timer interrupt to change the duty cycle.

Button Code

This code is based off the NU32 board and hardware profile. If a button called swUser is not defined, the button should be set up. When the button is pushed, the motor will turn off

#include "HardwareProfile.h"

int main(void)
{
	// Configure the proper PB frequency and the number of wait states
	SYSTEMConfigPerformance(SYS_FREQ);
	
	// init OC1 module
	OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
	
	// init Timer2 mode and period (PR2) (frequency of 1220 Hz)
	OpenTimer2( T2_ON | T2_PS_1_1 | T2_SOURCE_INT, 0xFFFF);
	
	while(1)
	{
		if (swUser == 0)
		{
			SetDCOC1PWM(PR2 / 2); // Turns on the motor with 50% duty cycle
		}
		else
		{
			SetDCOC1PWM(0); // Turns off the motor
		}
	}

	CloseOC1();

} //end main

Timer Interrupt Code

This code uses an interrupt with Timer 2 to update the duty cycle. The motor ramps up and down.

/** INCLUDES *******************************************************/
#include "HardwareProfile.h"

unsigned int Pwm; // variable to store calculated PWM value
unsigned int Mode = 0; // variable to determine ramp up or ramp down

int main(void)
{
	// Configure the proper PB frequency and the number of wait states
	SYSTEMConfigPerformance(SYS_FREQ);
	
	// Allow vector interrupts
 	INTEnableSystemMultiVectoredInt();
	
	// init OC1 module
	OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
	
	// init Timer2 mode and period (PR2) (frequency of 1 / 20 kHz = (3999 + 1) / 80MHz * 1
	OpenTimer2( T2_ON | T2_PS_1_1 | T2_SOURCE_INT, 0x0FA0);
	
	mT2SetIntPriority( 7); 	// set Timer2 Interrupt Priority
	mT2ClearIntFlag(); 		// clear interrupt flag
	mT2IntEnable( 1);		// enable timer2 interrupts
	
	while(1)
	{}

	CloseOC1();

}   //end main

void __ISR( _TIMER_2_VECTOR, ipl7) T2Interrupt( void)
{
	if ( Mode )
	{
		if ( Pwm <= 0xFFFF ) // ramp up mode
 		{
			Pwm ++; // If the duty cycle is not at max, increase
			SetDCOC1PWM(Pwm); // Write new duty cycle
		}
		else
		{
			Mode = 0; // PWM is at max, change mode to ramp down
		}
	} // end of ramp up
	else
	{
		if ( Pwm > 0 ) // ramp down mode
		{
			Pwm --; // If the duty cycle is not at min, increase
			SetDCOC1PWM(Pwm); // Write new duty cycle
		}
		else
		{
			Mode = 1; // PWM is at min, change mode to ramp up
		}
	} // end of ramp down
	
	// clear interrupt flag and exit
	mT2ClearIntFlag();
} // T2 Interrupt

Associated Circuitry

The Uni-Directional PWM circuit is described in Driving using a single MOSFET . The PIC32 can not supply enough current to open the gate of the MOSFET. Add a buffer between the PIC32 output compare pin and the gate of the MOSFET. A non-inverting chip works well.

Bidirectional Motor Code

/********************************************************************
Simple PWM example for bidirectional motor control with H-bridge. 
Duty cycle ramps up and down with Timer 2. 

This example uses an ISR with Timer 2. The duty cycle gets updated
each PWM cyle. Direction is determined by DIRECTION_PIN (A3 for this example).
The H-bridge is enabled with ENABLE_PIN (A2 for this example). 

Andrew Long
Northwestern University
7-30-2009

********************************************************************/

/** INCLUDES *******************************************************/
#include "HardwareProfile.h"

#define FORWARD					0
#define REVERSE					1

#define ENABLE_PIN			LATCbits.LATC1
#define DIRECTION_PIN		LATCbits.LATC2
#define MAX_DUTY               3999
 
unsigned int Pwm; // variable to store calculated PWM value
unsigned int Mode; // variable to determine ramp up or ramp down


int main(void)
{ 
	// Configure the proper PB frequency and the number of wait states
	SYSTEMConfigPerformance(SYS_FREQ);
	
	// Allow vector interrupts
	INTEnableSystemMultiVectoredInt();
	
	mInitAllLEDs();
	
	//Set Enable and Direction Pins (A2, A3) as digital outputs
	// Initialize as low
	LATC &= 0xFFF; TRISA &= 0xFFF3;
	
	DIRECTION_PIN = FORWARD;
	Pwm = 0;
	Mode = 1; 

	// init OC1 module
	OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);
	
	// init Timer2 mode and period (PR2) 20 kHz freq ( 1 / 20 kHz = (3999 + 1) / 80MHz * 1
	OpenTimer2( T2_ON | T2_PS_1_1 | T2_SOURCE_INT, MAX_DUTY);
	
	mT2SetIntPriority( 7); 	// set Timer2 Interrupt Priority
	mT2ClearIntFlag(); 		// clear interrupt flag
	mT2IntEnable( 1);		// enable timer2 interrupts
	
	ENABLE_PIN = 1; // Enable the H-bridge
	
	while(1)
	{
		
		
	}

	CloseOC1();

} //end main
 
void __ISR( _TIMER_2_VECTOR, ipl7) T2Interrupt( void)
{ 
	if ( Mode )
	{
		if ( Pwm <= MAX_DUTY ) // ramp up mode
		{
			mLED_1_On();
			mLED_2_Off();			

			Pwm ++; // If the duty cycle is not at max, increase
			
			if (DIRECTION_PIN == FORWARD)
			{
				SetDCOC1PWM(Pwm); // Write new duty cycle
			}
			else
			{
				mLED_0_On();
				//SetDCOC1PWM(Pwm);
				SetDCOC1PWM(MAX_DUTY - Pwm);
			}
		}
		else
		{
			Mode = 0; // PWM is at max, change mode to ramp down
		}
	} // end of ramp up
	else
	{
		if ( Pwm > 0 ) // ramp down mode
		{
			mLED_2_On();
			mLED_1_Off();
			Pwm --; // If the duty cycle is not at min, increase
			
			if (DIRECTION_PIN == FORWARD)
			{
				SetDCOC1PWM(Pwm); // Write new duty cycle
			}
			else
			{
				mLED_0_Off();
				//SetDCOC1PWM(Pwm);
				SetDCOC1PWM(MAX_DUTY - Pwm);
			}
		}
		else
		{
			Mode = 1; // PWM is at min, change mode to ramp up
			DIRECTION_PIN = !DIRECTION_PIN;
		}
	} // end of ramp down
	
	// clear interrupt flag and exit
	mT2ClearIntFlag();
} // T2 Interrupt