Swarm Robot Project Overview

From Mech
Jump to navigationJump to search

Overview

The Swarm Robot Project is an ongoing research project in the Laboratory for Intelligent Mechanical Systems led by Drs. Kevin Lynch and Randy Freeman. The project has had several phases throughout its years, starting with initial research in decentralized motion control, as well as in the application of semi-autonomous robots. In addition to these topics, the swarm robot project has applied research to swarm theory and consensus estimation, with numerous applications for environmental sensing. Most recently, the project has focused on adapting several aspects of the robots and related support structure from its original phase to the new direction of research. This has been done through updating the physical e-puck hardware, altering the e-puck motion control code and the vision system code, and physically setting up a new arena. The project has drawn on work done in several fields, such as theoretical research done to develop an efficient consensus estimator for the robots, writing simulation programs to test the consensus theory, as well as continuing development of an effective indoor machine/computer vision system to locate and track the robots through their formation moves, to name some of the work done.

Physically the Swarm Robot Project uses a group of eight (8) e-puck robots equipped with Xbee radios, an overhanging home-made computer vision system made, and a controlling computer with Xbee radio. Add-on's to this swarm robot system differ to from project to project, but include both hardware and software additions. Specific information about different hardware and software options can be found in each projects respective wiki entry.

Different Projects

Through the existence of the Swarm Robot Project, there have been several phases of work done, with each phase focused on a different aspect of the project. The initial phase of the project, the Swarm Consensus Estimation (The Michael Hwang) Project, drew on developing an effect consensus estimation algorithm in a decentralized robot network. The next phase, the RGB Swarm Project, focused on furthering the initial research to develop an autonomous robot network capable of received environmental information, using consensus estimation, to develop a picture of the local environment.

Swarm Consensus Estimation (The Michael Hwang) Project

Main article: Swarm Robot Project Documentation

Phasellus nisi lacus, auctor in semper id, dapibus ac nulla. Vivamus orci nisl, vehicula fermentum rhoncus sit amet, adipiscing quis nisl. Ut ut ultrices risus. Etiam scelerisque sodales justo dignissim faucibus. Aliquam ultrices dapibus accumsan. Morbi ac purus vitae lorem molestie scelerisque. Phasellus tristique augue id mi porta tincidunt blandit massa lobortis. Nam orci sapien, mollis id tempor a, cursus eu metus. Nullam vulputate hendrerit dapibus. Aliquam vel mi a neque porta facilisis quis eu arcu. Quisque posuere quam id odio pulvinar euismod. Etiam vel metus elit. Ut eu tortor est. Fusce eros justo, faucibus vel semper in, laoreet eu justo.

RGB Swarm Project

Main article: RGB Swarm Robot Project

Nullam tincidunt, tellus sit amet elementum imperdiet, nunc arcu imperdiet nisl, vitae hendrerit erat nulla eu erat. Vivamus suscipit ante quis leo volutpat mollis. Proin placerat dui id arcu fringilla aliquam. In nec felis a ligula molestie ultrices. Curabitur dapibus vulputate nulla fermentum sollicitudin. Mauris id dui neque, et ultricies ante. Maecenas ac arcu at mauris posuere ultricies at sit amet magna. Etiam eu eros nunc, non hendrerit dui. Morbi blandit dui sed orci euismod eget dignissim purus fermentum. Curabitur nunc arcu, auctor et semper eu, aliquet a odio. Nam ut leo at sapien dictum luctus eu non nibh.

Related Links

Nullam pharetra porta felis, vitae sollicitudin eros lobortis et. Nunc in nisi magna. Sed tincidunt lacus ac neque aliquet ut fermentum nisi dapibus. Aenean sodales est eu elit suscipit tempor vitae at erat. Vivamus a mauris sit amet dolor sollicitudin vulputate. In sem neque, lobortis in ultrices sit amet, commodo sit amet dolor. Nulla facilisi. Proin mattis, nulla et vehicula viverra, turpis nibh sollicitudin metus, vel rhoncus ligula metus quis velit. Nullam in rhoncus ante. Curabitur pretium sodales gravida. Maecenas dolor tortor, pretium id dapibus in, laoreet non eros. Cras et enim justo. Proin velit velit, suscipit id dapibus non, rutrum ut dolor. Nunc dictum sagittis sagittis. Vivamus congue posuere tellus ut ultricies. Mauris dapibus odio non sapien suscipit vehicula ornare enim semper. Proin eget lorem non erat tristique molestie vel at orci.