Difference between revisions of "The sandbox"
| Line 19: | Line 19: | ||
1 & 0 & 2(R_x-x_{Mx}) & (R_y-x_{My}) & 0 \\ |
1 & 0 & 2(R_x-x_{Mx}) & (R_y-x_{My}) & 0 \\ |
||
0 & 1 & 0 & (R_x-x_{Mx}) & 2(R_y-x_{My})\\ |
0 & 1 & 0 & (R_x-x_{Mx}) & 2(R_y-x_{My})\\ |
||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
k_{Mx} & 0 & 0 & 0 & 0 \\ |
|||
0 & k_{My} & 0 & 0 & 0 \\ |
|||
0 & 0 & k_{Mxx} & 0 & 0 \\ |
|||
0 & 0 & 0 & k_{Myy} & 0 \\ |
|||
0 & 0 & 0 & 0 & k_{Mxy} \\ |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
g_{Mx}-x_{Mx} \\ |
|||
g_{My}-x_{My}\\ |
|||
g_{Mxx}-x_{Mxx} \\ |
|||
g_{Myy}-x_{Myy} \\ |
|||
g_{Mxy}-x_{Mxy} \\ |
|||
\end{bmatrix} |
\end{bmatrix} |
||
</math> |
</math> |
||
Revision as of 03:34, 6 July 2009
test
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-3dB point) = \frac{1}{2\pi}(R1*R2*C1*C2)^\frac{1}{2} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w[n+1] = w[n] - K_I\sum_{j=1}^N(\frac{1}{N}x_j[n]) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} \dot u_x \\ \dot u_y \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2(R_x-x_{Mx}) & (R_y-x_{My}) & 0 \\ 0 & 1 & 0 & (R_x-x_{Mx}) & 2(R_y-x_{My})\\ \end{bmatrix} \begin{bmatrix} k_{Mx} & 0 & 0 & 0 & 0 \\ 0 & k_{My} & 0 & 0 & 0 \\ 0 & 0 & k_{Mxx} & 0 & 0 \\ 0 & 0 & 0 & k_{Myy} & 0 \\ 0 & 0 & 0 & 0 & k_{Mxy} \\ \end{bmatrix} \begin{bmatrix} g_{Mx}-x_{Mx} \\ g_{My}-x_{My}\\ g_{Mxx}-x_{Mxx} \\ g_{Myy}-x_{Myy} \\ g_{Mxy}-x_{Mxy} \\ \end{bmatrix} }
Spur Gears
Rack and Pinion
Bevel Gears
Helical Gears
Worm Drives
Planetary Gears
Ball Screw
Harmonic Drive Gears
