
Appendix E

Linear Algebra Review

In this review we consider linear equations of the form

Ax = b, where x ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

Such equations arise often in this textbook.
This review is a succinct sumary of some of the properties used in this

textbook. This review does not provide derivations nor give pencil-and-paper
solution methods as often found in linear algebra textbooks (for that, please con-
sult a more comprehensive reference, such as [1, 2, 3], or the relevant Wikipedia
pages). Instead, it is assumed you have software (e.g., MATLAB) that can do
calculations for you.

Important! In this review, all elements of the matrix A are real, as is
the case for all matrices you find in this book. Some results below do not
generalize to matrices whose elements are complex.

An m× n matrix A has m rows and n columns, written

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 = [a1 a2 · · · an],

where the columns of A are written as the column vectors a1, . . . , an. The
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2 E.1. Preliminaries

transpose of A exchanges the rows and columns and is written

AT =




a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn


 =




aT1
aT2
...
aTn


 .

A complex number s is written s = a + bj, and the operators Re(·) and
Im(·) extract the real and imaginary portions of a complex number, respectively.
So Re(s) = a and Im(s) = b. The magnitude of a complex number is |s| =√
a2 + b2. The Euclidean norm of a vector x = (x1, x2, . . . , xn) is written ‖x‖ =√
x21 + . . .+ x2n.

E.1 Preliminaries

The matrix A can be viewed as a linear operator A : Rn → Rm mapping n-
vectors (x) to m-vectors (b), i.e.,

Ax = b or, by elements,




a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


 =




b1
b2
...
bm


 .

In the context of the mapping A, Rn is called the domain and Rm is called the
codomain. The space of possible values Ax for all x ∈ Rn is called the range,
image, or column space of the linear mapping A. The range is the same as
the codomain if, for every b ∈ Rm, there is an x ∈ Rn such that Ax = b. The
range is sometimes called the linear span of the columns {a1, . . . , an} of A,
i.e., the set of all linear combinations of the columns, k1a1 + · · ·+ knan:

span({a1, . . . , an}) = {k1a1 + · · ·+ knan | k1, . . . , kn ∈ R}.

The matrix A deforms the space Rn, perhaps by stretching, squeezing, shear-
ing, rotating, reflecting, or even compressing to a lower-dimensional space (if
the dimension of the range is less than the dimension of the domain). Examples
of 2× 2 matrices deforming one two-dimensional space to another are shown in
Figure E.1.

The rank of a matrix, rank(A) (in MATLAB, rank(A)), is the dimension
of its range, which can be no larger than the smaller of m and n. Equivalently,
the rank is the number of linearly independent columns of A, i.e., columns
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Figure E.1: Two different A matrices mapping R2 to R2, as illustrated by the p
transformed to Ap. The origin is a fixed point of the mapping.

which cannot be written as a linear combination of the other columns. (The
number of linearly independent columns is the same as the number of linearly
independent rows.) If the rank of the matrix is maximal (equal to the minimum
of m and n), then we say the matrix is full rank. If A is not full rank, we
often say it is singular or rank deficient. If the elements of A depend on
some variable or variables θ (i.e., it can be written A(θ)), and A is full rank for
some θ and less than full rank for others, we say that A(θ) is singular at values
of θ where A(θ) is less than full rank, and θ is called a singularity if A(θ) is
singular.

The null space of a matrix, null(A) (in MATLAB, null(A)), also called
the kernel, is the space of vectors x such that Ax = 0. The dimension of the
null space is called the nullity, nullity(A). The rank-nullity theorem tells
us that rank(A) + nullity(A) = n, the number of columns of A. As an example,
a full rank 4 × 5 matrix has a rank of 4 and a nullity of 1, and the particular
4× 5 matrix

A =




1 3 −2 0 0
−2 −6 4 0 0
0 0 3 0 1
0 0 0 0 0



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4 E.2. Square Matrices

has rank(A) = 2, because three columns (e.g., a2, a3, and a4) can be written as
linear combinations of the other two (a1 and a5), e.g., a2 = 3a1, a3 = −2a1+3a5,
and since a4 is the zero vector, it is trivially a linear combination of any of
the columns with a coefficient of zero. Therefore the range of A is the space
k1a1 + k5a5 for all k1, k5 ∈ R. Since rank(A) + nullity(A) = n = 5, the null
space of A is three-dimensional. Using your favorite linear algebra software,
you would find that this three-dimensional linear subspace of R5 is spanned by
the vectors n1 = [−0.95 0.30 −0.03 0 0.09]T, n2 = [0 0 0 1 0]T, and
n3 = [0.03 −0.22 −0.31 0 0.93]T. In other words, Ax = 0 for any x which
can be expressed as x = k1n1 + k2n2 + k3n3, where each ki is a real number.

E.2 Square Matrices

In this section we consider the special case where A is square: the number of
rows equals the number of columns (m = n). In other words, both the domain
and the codomain are Rn.

A diagonal matrix is a square matrix with all elements not on the diagonal
equal to zero, i.e., aij = 0 for i 6= j. An identity matrix I is a diagonal matrix
with all elements along the diagonal equal to one. When it is helpful to specify
that the identity matrix is n× n, we can write In, e.g.,

I3 =




1 0 0
0 1 0
0 0 1


 .

As illustrated in Figure E.1, A maps Rn to Rn by stretching, squeezing,
shearing, reflecting, rotating, etc. For some nonzero vectors v, the mapping
may be particularly simple: Av is just a scaled version of v, i.e., Av = λv. For
example, if A is diagonal, then any vector aligned with an axis of the coordinate
frame (e.g., a vector along the ith coordinate axis, (0, . . . , 0, xi, 0, . . . 0)) is simply
scaled by the corresponding element aii of the diagonal matrix.

For any λ and v satisfying Av = λv, v is called an eigenvector of A and λ
is the corresponding eigenvalue (in MATLAB, [v,d]=eig(A) returns the unit
eigenvectors in v and the eigenvalues in d). In general, an eigenvalue λ is a
complex scalar a+bj ∈ C and an eigenvector v is an element of Cn, the space of
n-vectors whose elements are complex numbers. In some cases the eigenvectors
and eigenvalues are real, however (λ ∈ R, v ∈ Rn). If an eigenvector v is real,
its corresponding eigenvalue λ must also be real, since it must satisfy Av = λv.

An n × n matrix has n eigenvectors v1, . . . , vn, each with an eigenvalue
λ1, . . . , λn. Complex eigenvalues always occur in complex conjugate pairs, e.g.,
λ1 = a+ bj and λ2 = a− bj.
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]
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[
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[
1
0

]
λ1 = 3
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[
0.62
0.78
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λ2 = −2

det(A) = λ1λ2 = −6

v1 =

[
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]
λ1 = 0.6 + 0.2j
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[
0.57 − 0.08j
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]
λ2 = 0.6 − 0.2j

det(A) = λ1λ2 = 0.4
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,

,

,

,

Figure E.2: Left: This A matrix has real eigenvalues and eigenvectors, and the one-
dimensional spaces spanned by the individual eigenvectors are shown as dotted lines.
The A matrix takes any vector along these lines and simply scales it (keeping it on
the same line) by the corresponding eigenvalues, here 3 and −2. Two points on the
original ‘p,’ shown as a square and a circle, are shown mapped to their new locations
by the matrix A. Right: The eigenvalues and eigenvectors for this A matrix are not
real, so there is no real vector v ∈ R2 and real value λ such that Av = λv. There are
no axes in the plane along which points are simply scaled.

When all eigenvectors and eigenvalues of a square matrix are real (vi ∈
Rn, λi ∈ R), the eigendirections can be visualized in Rn. Figure E.2 illustrates
one A matrix where all eigenvectors and eigenvalues are real and another A
matrix for which this is not the case.

Another simple example of a matrix without real eigenvectors and eigenval-
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6 E.2. Square Matrices

ues is

A =

[
0 −1
1 0

]
, v1 =

[
0.71
−0.71j

]
, λ1 = j, v2 =

[
0.71
0.71j

]
, λ2 = −j.

This matrix rotates points in the plane by π/2 in the counterclockwise direction,
and therefore there is no real vector x ∈ R2 for which Ax is just a scaled version
of x.

The magnitudes of the eigenvalues |λi| determine how much the space is
stretched or contracted in the corresponding eigendirections. A magnitude
greater than one (|λi| > 1) indicates that vectors are stretched in the corre-
sponding eigendirection, and a magnitude less than one (|λi| < 1) indicates
that vectors are contracted in the corresponding eigendirection. Eigenvalues
play a key role in understanding the ability of feedback control laws to shrink
tracking errors to zero (see Section E.5). A rotation matrix, like that in Equa-
tion (E.2), has unit magnitude eigenvalues: vectors are neither stretched nor
contracted, simply rotated.

If each of the n eigenvalues is nonzero, then the matrix A is full rank, and
the dimension of the range is the same as the dimension of the domain (n).
If p > 0 of the n eigenvalues is zero, then the A matrix is not full rank (i.e.,
singular), and the dimension of the range of A is n− p.

The determinant of a square matrix A, det(A) (in MATLAB, det(A)), is
a polynomial function of the elements of A. (Consult any standard reference for
details.) The determinant satisfies

det(A) = λ1λ2 · · ·λn.

Thus A is full rank if and only if det(A) 6= 0. If the determinant is zero, at
least one of the eigenvalues is zero, and the matrix is not full rank. Since each
eigenvalue expresses the scaling of vectors in one of the eigendirections, the
determinant expresses whether the mapping A expands or contracts a volume
in the space Rn. In particular, a ball of volume V maps through A to an ellipsoid
of volume |det(A)|V .

The characteristic polynomial of a matrixA (in MATLAB, charpoly(A))
is p(s) = det(sI − A). The roots of this polynomial, e.g., the values of s sat-
isfying det(sI − A) = 0, are the eigenvalues of A. (To see this, consider that
an eigenvalue λ must satisfy (λI − A)v = 0 for a nonzero v, which can only be
satisfied if (λI − A) is not full rank, i.e., det(λI − A) = 0.) The characteristic
polynomial can be written in the forms

p(s) = det(sI−A) = sn+cn−1s
n−1+ · · ·+c1s+c0 = (s−λ1)(s−λ2) · · · (s−λn).
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Appendix E. Linear Algebra Review 7

Another useful property of a square matrix A is its trace, tr(A) (in MAT-
LAB, trace(A)). The trace of a square matrix is simply the sum of the elements
on its diagonal, which is equal to the sum of its eigenvalues:

tr(A) =

n∑

i=1

aii =

n∑

i=1

λi.

E.2.1 Inverse

The matrix inverse A−1 of A (in MATLAB, inv(A)) is the unique matrix
that satisfies AA−1 = A−1A = I. The matrix inverse exists only if A is full
rank (det(A) 6= 0). If the eigenvectors and eigenvalues of A are {vi} and {λi},
respectively, the eigenvectors and eigenvalues of A−1 are {vi}, {1/λi}.

The matrix inverse can be used to solve Ax = b for x, i.e., x = A−1b, but
there are more numerically accurate and computationally efficient methods for
solving such equations. For example, MATLAB’s algorithm for solving Ax = b
(the code is x = A\b) looks for faster and more accurate ways to solve the
problem based on properties of A.

E.2.2 Pseudoinverse

If A is not full rank, then the inverse does not exist, but we can still calculate the
Moore-Penrose pseudoinverse of A, denoted A† (pinv(A) in MATLAB). The
pseudoinverse has “inverse-like” properties and can be used to find solutions
or approximate solutions to Ax = b, i.e., x = A†b. The pseudoinverse A†

is equivalent to the inverse A−1 when A is invertible. The pseudoinverse can
also be calculated for non-square matrices, so the general description of the
pseudoinverse is deferred to Section E.3.

E.2.3 Symmetric Matrices

A square matrix A is symmetric if it is equal to its transpose, A = AT. A
matrix A is skew symmetric if A = −AT.

Every symmetric matrix A is diagonalizable, i.e., there exists an orthog-
onal matrix Q ∈ Rn×n and a diagonal matrix D ∈ Rn×n such that

A = QDQT.

An orthogonal matrix Q is one satisfying QTQ = QQT = I, i.e., Q−1 = QT,
and the columns of Q are unit vectors (‖ai‖ = 1, i ∈ {1, . . . , n}) and orthogonal
(aTi aj = 0, i 6= j). Equivalently, the rows of Q are orthogonal unit vectors (also
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8 E.2. Square Matrices

called orthonormal vectors). The set of n×n orthogonal matrices is called the
orthogonal group O(n), and all orthogonal matrices have a determinant of
+1 or −1. The set of orthogonal matrices with the determinant +1 is called the
special orthogonal group SO(n), also known as rotation matrices for n = 2
and n = 3. The matrix Q can always be chosen to be an element of SO(n).

For a symmetric (and therefore diagonalizable) matrix A = QDQT:

(a) Each diagonal element di ∈ R of D is an eigenvalue λi of A. Therefore all
eigenvalues of symmetric matrices are real.

(b) The ith column of Q is the real eigenvector corresponding to the eigenvalue
di; hence the eigenvectors of A are real and orthogonal. The columns of
Q represent the axes of a new coordinate frame relative to the original
coordinate frame in which the mapping A is represented. In this new
coordinate frame the linear mapping by the matrix D is equivalent to the
linear mapping represented by A in the original coordinate frame. In other
words, if A is symmetric, there exists a rotated coordinate frame in which
it would be diagonal.

A symmetric matrix A is positive definite if its eigenvalues are all pos-
itive. One consequence is the condition xTAx > 0 for all nonzero x ∈ Rn.
Positive-definite matrices have a number of important applications in robotics,
for example in evaluating the manipulability of a robot (Chapter 5) and in
representing the inertia of a rigid body or a robot (Chapter 8). Since positive-
definite matrices are symmetric, they behave like diagonal matrices in the proper
choice of coordinate frame. Figure E.3 illustrates two ellipsoid visualizations of
a positive-definite matrix.

E.2.4 Square Matrices Representing Rigid-Body Motion

Square matrices are often used in the representation of rigid-body configurations
and motion. These are discussed in more detail in Chapters 3 and 8; below is a
brief summary.

A rigid-body orientation or rotation is expressed as a rotation matrix R in
SO(3), the group of 3× 3 orthogonal matrices with determinant +1. Therefore
the inverse of a rotation matrix R is RT.

Rigid-body configurations and displacements are expressed as 4×4 matrices
in the special Euclidean group SE(3). A transformation matrix T ∈
SE(3) can be written as

T =

[
R p
0 1

]
,
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A =

[
2 0.5

0.5 1

]

v1 =

[
0.92
0.38

]
, λ1 = 2.21

v2 =

[
−0.38
0.92

]
, λ2 = 0.79

λ1

λ2

1√
λ1

1√
λ2

xTAx = 1

Ax
for unit x

A = QDQT, where Q =

[
0.92 −0.38
0.38 0.92

]
and D =

[
2.21 0
0 0.79

]

Figure E.3: Left: The positive-definite mapping A acting on the set of unit vectors x
(including four specific vectors x) generates an ellipsoid, illustrating the positive real
eigenvalues and the coordinate frame in which the mapping is diagonal. (The axes of
this coordinate frame are the eigenvectors, which are the columns of Q.) Right: The
set of vectors x on the ellipsoid xTAx = 1. The principal semi-axes of the ellipsoid
are aligned with the eigenvectors of A and have length 1/

√
λi.

where R ∈ SO(3), p ∈ R3, and the bottom row is [0 0 0 1]. The column vector
p represents a linear displacement and R is a rotation matrix. The inverse of a
transformation matrix is

T−1 =

[
RT −RTp
0 1

]
.

The column vector ω = (ω1, ω2, ω3) ∈ R3 can be expressed as the 3 × 3
skew-symmetric matrix

[ω] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,
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10 E.3. Non-square Matrices

which satisfies [ω]p = ω × p for p ∈ R3. The set of all 3 × 3 skew symmetric
matrices is denoted so(3). The vector ω ∈ R3 and its so(3) representation [ω]
are often used to represent the angular velocity of a rigid body.

The velocity of a rigid body is represented as a 6-vector twist, V = (ω, v),
where ω, v ∈ R3. This 6-vector is sometimes represented in 4 × 4 matrix form
as

[V] =

[
[ω] v
0 0

]
∈ se(3).

Note that the notation [·] is used both to turn a 3-vector into an element of
so(3) and to turn a 6-vector into an element of se(3).

The matrix [AdTab
] ∈ R6×6 can be used to change the representation of a

6-vector expressed in the frame {b} to a 6-vector expressed in the frame {a},
i.e., Va = [AdTab

]Vb, where

[AdT ] =

[
R 0

[p]R R

]
if T =

[
R p
0 1

]
.

Given a twist V1 = (ω1, v1) ∈ R6, the matrix

[adV1 ] =

[
[ω1] 0
[v1] [ω1]

]
∈ R6×6

can be used to calculate the Lie bracket of the twists V1 and V2, [adV1 ]V2, as
discussed in Chapter 8.

E.3 Non-square Matrices

A non-square matrix A ∈ Rm×n is tall if it has more rows than columns (m > n)
and fat (or wide or broad) if it has more columns than rows (n > m).

E.3.1 Pseudoinverse

A non-square matrix does not have an inverse, but if it is full rank, it can have
either a right inverse or left inverse:

• If A is tall and full rank (rank(A) = n), then there exists a left inverse
A−1L ∈ Rn×m such that A−1L A = In.

• If A is fat and full rank (rank(A) = m), then there exists a right inverse
A−1R ∈ Rn×m such that AA−1R = Im.
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The left and right inverses are not unique, but examples areA−1L = (ATA)−1AT

and A−1R = AT(AAT)−1, respectively. You can verify easily that these are in-
deed left and right inverses.

These inverses are examples of the Moore-Penrose pseudoinverse A†. The
pseudoinverse also exists for non-square matrices that are not full rank, as well
as for all square matrices (full rank or singular). The pseudoinverse A† ∈ Rn×m

of any real matrix A ∈ Rm×n satisfies the following conditions:

• AA†A = A

• A†AA† = A†

• AA† is symmetric

• A†A is symmetric

Also, (A†)† = A, and the pseudoinverse A† of an invertible square matrix A is
equal to A−1.

The pseudoinverse can be used to solve, or approximately solve, equations
of the form Ax = b. If there is an entire space of solutions x to Ax = b, then
z = A†b satisfies Az = b and ‖z‖ ≤ ‖x‖ for any x satisfying Ax = b. In other
words, z minimizes the Euclidean norm among all solutions.

In the case that no x solves Ax = b, then z = A†b satisfies the condition
that ‖Az − b‖ ≤ ‖Ax − b‖ for all x ∈ Rn. In other words, z comes as close to
solving the equation as possible, in a least-squares sense.

E.3.2 Singular Value Decomposition

The pseudoinverse can be calculated using the singular-value decomposition
(SVD). The singular-value decomposition of A ∈ Rm×n expresses it as

A = UΣV T,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n

contains all zeros other than the nonnegative singular values σii ≥ 0 on the
diagonal, which are more commonly written σi. For example, if A is a 4 × 5
matrix, then

Σ =




σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ4 0



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12 E.3. Non-square Matrices

and if it is 5× 4, then

Σ =




σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4
0 0 0 0



.

The columns of Σ are typically ordered so that σ1 ≥ σ2 ≥ σ3 . . .
In MATLAB, the command [U,S,V] = svd(A) returns the matrices U , Σ,

and V . The pseudoinverse is then calculated as

A† = V Σ†UT,

where Σ† is the pseudoinverse of Σ, which is obtained by taking the transpose
of Σ and then replacing every nonzero singular value σi by its reciprocal 1/σi.

Another application of singular-value decomposition, relevant to matrix rep-
resentations of orientation, is to project an arbitrary matrix A to the nearest
orthogonal matrix (in a least-squares sense). For example, suppose you’ve per-
formed a series of matrix multiplications of 3 × 3 rotation matrices, and the
result at the end is A. Because of numerical roundoff errors, A may have
drifted from the space of rotation matrices SO(3), which you remember is a
three-dimensional surface embedded in the nine-dimensional space defined by
the elements of A. To find the orthogonal matrix R that is closest to A (in a
least-squares sense), you could use the singular-value decomposition to express
A as

A = UΣV T.

If A is only slightly off of SO(3) due to roundoff errors, the singular values σ1,
σ2, and σ3 should all be close to one, since all singular values of a rotation
matrix are one. The closest orthogonal matrix R is obtained by setting each of
the singular values exactly to one, i.e.,

R = UIV T = UV T.

Since U and V T are both orthogonal (elements of O(3)), then UV T ∈ O(3). If
A is “close” to SO(3), then R is exactly in SO(3), the set of O(3) matrices with
determinant equal to +1. (If A is far from SO(3), then R = UV T ∈ O(3) may
have a determinant of −1, meaning that it is not in SO(3).)

The singular-value decomposition is useful in many other applications, so it
is worth understanding it a bit. The columns of U are called the left-singular
vectors of A and the columns of V are called the right-singular vectors.
The singular values, left-singular vectors, and right-singular vectors satisfy the
following conditions:
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• The nonzero singular values σi are the square roots of the nonzero eigen-
values of the symmetric matrices ATA and AAT.

• The left-singular vectors of A are the orthonormal eigenvectors of the
symmetric matrix AAT.

• The right-singular vectors of A are the orthonormal eigenvectors of the
symmetric matrix ATA.

The rank of A is equal to the number of nonzero singular values, p. The range
of A is spanned by the p columns of U corresponding to the nonzero singular
values (i.e., the first p columns of U , assuming the singular values are arranged
in decreasing order in Σ). The nullity of A is n− p, and the null space of A is
spanned by the last n− p columns of V .

As an example, choose the 4× 5 matrix

A =




1 3 −2 0 0
−2 −6 4 0 0
0 0 3 0 1
0 0 0 0 0


 .

As we saw at the end of Section E.1, this matrix has a rank of two and a nullity
of three. The singular-value decomposition of A is

U =




−0.44 −0.09 0.89 0
0.87 0.19 0.45 0
0.21 −0.98 0 0

0 0 0 1


, V =




−0.26 −0.17 −0.95 0 0.03
−0.77 −0.52 0.30 0 −0.22
0.59 −0.75 −0.03 0 −0.31

0 0 0 1 0
0.02 −0.37 0.09 0 0.93



,

Σ =




8.54 0 0 0 0
0 2.67 0 0 0
0 0 0 0 0
0 0 0 0 0


, i.e., σ1 = 8.54, σ2 = 2.67, σ3 = σ4 = 0.

There are p = 2 nonzero singular values, so rank(A) = 2 and the range is
spanned by the first two columns of A, u1 = [−0.44 0.87 0.21 0]T and
u2 = [−0.09 0.19 −0.98 0]T. The nullity of A is 5− p = 3, and the null space
is spanned by the last three columns of V , v3 = [−0.95 0.30 −0.03 0 0.09]T,
v4 = [0 0 0 1 0]T, and v5 = [0.03 −0.22 −0.31 0 0.93]T.

For i ≤ min(m,n), the matrix A ∈ Rm×n maps a vector aligned with the
right-singular unit vector vi (the ith column of V ) to a vector aligned with the
left-singular unit vector ui (the ith column of U) with an amplification factor
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14 E.3. Non-square Matrices

of σi, i.e., Avi = σiui. In the example 4× 5 A matrix above, the unit vector v1
maps through A to a vector Av1 = σu1 with a magnitude ‖Av1‖ = σ1 = 8.54,
and the unit vector v2 maps through A to a vector Av2 = σ2u2 with a magnitude
‖Av2‖ = σ2 = 2.67. The singular values σ3 and σ4 are zero, so vectors aligned
with v3 and v4 map through A to the zero vector.

The right- and left-singular vectors of a symmetric matrix A are equal, and
equal to the eigenvectors of A. Furthermore, if A is also positive definite, its
singular values are equal to its eigenvalues.

E.3.3 Ill-Conditioned Matrices

If a matrix A is full rank (all of its singular values σi are greater than zero), the
condition number is defined as

κ(A) =
σmax(A)

σmin(A)
,

the ratio of the largest and smallest singular values. If the condition number is
large, the matrix is “nearly” singular and is called ill conditioned or poorly
conditioned. Computations with ill-conditioned matrices may lead to outputs
that are highly sensitive to small changes in the inputs.

For example, consider the ill-conditioned matrix

J =

[
2 0
0 10−5

]
,

which has singular values 2 and 10−5 and the condition number κ(J) = 2×105.
The exact pseudoinverse is

J† =

[
0.5 0
0 105

]
.

Now imagine that J is the Jacobian mapping a robot arm’s joint speeds θ̇ =
(θ̇1, θ̇2) to the velocity of its end-effector v = (v1, v2), i.e., v = Jθ̇. The near-
singularity of J indicates that it is difficult to generate motion in the v2 direction.
If we calculate the commanded joint speeds θ̇com for a desired end-effector speed
vd using θ̇com = J†vd, then we will get a very large |θ̇2| if we ask (perhaps acci-
dentally) for even a small velocity component v2. This kind of large sensitivity
in the output (θ̇com) to small variations in the input (vd) is undesirable.

One approach to dealing with ill conditioning is to treat sufficiently small
singular values as zero. For example, in MATLAB, we can tell the pseudoinverse
function pinv to treat singular values below a particular tolerance as zero in
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the SVD calculation of the pseudoinverse. For the J matrix above, we can treat
singular values below 10−4 as zero using the modified pinv command:

>> Jptol = pinv(J,1e-4)

Jptol =

0.5 0

0 0

With this modified pseudoinverse Jptol, requested velocity components in the
v2 direction are ignored as unattainable instead of amplified unreasonably.

E.4 Some Matrix Identities

The matrix identities below are used in this book. You can find many more
useful identities in most linear algebra textbooks, and The Matrix Cookbook [2]
is an excellent free online reference.

(AB)C = A(BC) associativity (E.1)

(AT)−1 = (A−1)T also written as A−T (E.2)

(Ax)T = xTAT (E.3)

(AB)T = BTAT (E.4)

(ABC . . .)T = . . . CTBTAT (E.5)

(AB)−1 = B−1A−1 if A and B are invertible (E.6)

(ABC . . .)−1 = . . . C−1B−1A−1 if each matrix is invertible (E.7)

[a] = −[a]T for a ∈ R3, where [·] denotes (E.8)

the so(3) representation

[a]b = −[b]a for a, b ∈ R3 (E.9)

[a][b] = ([b][a])T for a, b ∈ R3 (E.10)

R[ω]RT = [Rω] for ω ∈ R3, R ∈ SO(3) (E.11)

E.5 Applications in Feedback Control

Because of the importance of linear algebra to control theory, and the impor-
tance of control theory to robotics, in this section we provide an example of how
some of the concepts above are used in control theory.
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16 E.5. Applications in Feedback Control

f zd
ze

z

mg

Figure E.4: The actual height of the quadrotor is z, the desired height is zd, and the
error is ze = zd−z. The upward control thrust is f and the downward force of gravity
is mg.

Suppose we are trying to control the height of a quadrotor above the ground
(Figure E.4). The actual height is z, the desired height is zd, and the error is
ze = zd− z. The quadrotor has a force mg pulling it downward and it is subject
to a linear drag force opposing its upward/downward velocity, −bż, where b > 0.
Our control is the amount of upward thrust force f from the propellers.

With these definitions, the dynamics of the quadrotor are

mz̈ + bż = f −mg = u, (E.12)

where u is the “pseudocontrol” f −mg. We will design a control law for u, then
calculate the actual control input as f = u+ mg.

A common type of feedback controller is a proportional-derivative (PD) con-
troller

u = kpze + kdże, kp, kd > 0,

where the term kpze acts like a virtual spring that tries to drive the error ze to
zero, and the term kdże acts like a virtual damper that tries to drive the rate of
change of error że to zero. Plugging this controller in for u in Equation (E.12),
we get

mz̈ + bż = kpze + kdże. (E.13)

If we are trying to stabilize the height of the quadrotor to a constant zd,
then żd = z̈d = 0. Plugging in ż = żd − że = −że and z̈ = z̈d − z̈e = −z̈e, we
can rewrite the controlled dynamics (E.13) as the controlled error dynamics

mz̈e + (b+ kd)że + kpze = 0. (E.14)

Sept 2018 add-on to Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org


Appendix E. Linear Algebra Review 17

To write the second-order differential equation (E.14) as two first-order dif-
ferential equations, we define

x1 = ze

x2 = ẋ1 = że

and get the equations

ẋ1 = x2 (E.15)

ẋ2 = −kp
m
x1 −

b+ kd
m

x2, (E.16)

where Equation (E.16) is just a restatement of the second-order controlled error
dynamics (E.14). We can write Equations (E.15) and (E.16) as the vector
equation

ẋ = Bx,

where

B =

[
0 1

−kp/m −(b+ kd)/m

]
.

If we choose m = 1 and b = 0.1 for the quadrotor, leaving the controls kp and
kd as variables, then

B =

[
0 1
−kp −kd − 0.1

]
. (E.17)

The first-order vector differential equation ẋ = Bx determines the evolution of
the error in the height, x1 = ze.

Often it is convenient to represent this error differential equation in discrete
time. For example, the controller running on the quadrotor may read its sensors
and evaluate its control law every ∆t seconds. So, instead of representing the
error dynamics as a continuous function of time ẋ(t) = Bx(t), we could represent
it at discrete times k∆t, (k + 1)∆t, (k + 2)∆t, etc. A simple discrete-time
approximation to the continuous-time error dynamics ẋ = Bx is

1

∆t

(
x((k + 1)∆t)− x(k∆t)

)
≈ Bx(k∆t).

Replacing ≈ by = and simplifying by writing k∆t as k, we get

x(k + 1) = Ax(k), where A = (I +B∆t).

For our quadrotor example, if we choose ∆t = 0.1, we have

A =

[
1 0.1

−0.1kp 0.99− 0.1kd

]
. (E.18)
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18 E.5. Applications in Feedback Control

Now that we have our controlled quadrotor’s error dynamics written in both
discrete time as x(k + 1) = Ax(k) and continuous time as ẋ = Bx, we can
apply what we have learned about eigenvalues to understand the stability of the
controlled system.

E.5.1 Discrete-Time Control

The error dynamics for a general discrete-time control system can be written

x(k + 1) = Cx(k) +Du(k), (E.19)

where x ∈ Rn, u ∈ Rm, C ∈ Rn×n, and D ∈ Rn×m. Choosing a feedback
controller u = Kx, where K ∈ Rm×n, the error dynamics become

x(k + 1) = (C +DK)x(k) = Ax(k),

and for the quadrotor, A is given in Equation (E.18).
We say that the controlled error dynamics are stable if the error vector x

converges to zero as we iteratively map it through A. The eigenvalues of A
determine whether or not the error decays to zero. If the magnitudes of all the
eigenvalues of A are less than one, then the iterated mapping contracts the error
vector to zero, and the matrix A is called convergent. One major purpose of
the controller K ∈ Rm×n is to ensure that the eigenvalues λi of A satisfy |λi| < 1
for all i. The decay of the error to zero is faster for eigenvalue magnitudes closer
to zero.

Figure E.5 shows examples of the quadrotor’s error dynamics for differ-
ent choices of kp and kd. Four different cases are shown: two stable cases
(|λ1|, |λ2| < 1), one where both eigenvalues are real and one where the eigenval-
ues are complex conjugates; and two unstable cases, one where both eigenvalues
are real with |λ1| > 1 and |λ2| < 1 (known as a “saddle”) and one where the
eigenvalues are complex conjugates with |λ1|, |λ2| > 1. Each case shows an ini-
tial circle of errors in the (x1, x2)-space and how it evolves under the iterated
mapping by A. For the cases of the real eigenvectors and eigenvalues, most ini-
tial errors converge toward the line of the eigenvector with the larger eigenvalue
magnitude. Initial errors exactly on the line of the eigenvalue with the smaller
magnitude stay on that line throughout their evolution.

Stability depends on the particular control law. Another property of the
control system (E.19), controllability, is independent of the control law. We
say the system is controllable if the controls u can eventually drive the state to
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v1

v2

stable, real eigenvectors

A =

[
1 0.1

−0.3 0.6

] stable, complex eigenvectors

A =

[
1 0.1

−0.6 0.7

]

unstable, real eigenvectors

A =

[
1 0.1

0.1 0.9

] unstable, complex eigenvectors

A =

[
1 0.1

−0.4 1.2

]

v1

v2

λ1 = 0.9, v1 = (0.71,−0.71)

λ2 = 0.7, v2 = (−0.32, 0.95)

λ1 = 0.85 + 0.19j, v1 = (−0.23 − 0.3j, 0.93)

λ2 = 0.85 − 0.19j, v1 = (−0.23 + 0.3j, 0.93)

λ1 = 1.06, v1 = (0.85, 0.53)

λ2 = 0.84, v2 = (0.53,−0.85)

λ1 = 1.1 + 0.17j, v1 = (0.22 − 0.39j, 0.89)

λ2 = 1.1 − 0.17j, v2 = (0.22 + 0.39j, 0.89)

Figure E.5: A unit circle of points x in a two-dimensional space, drawn as a bold cir-
cle, iteratively mapped through A (i.e., x, Ax, A2x, A3x, etc.). Four points are traced
through the mappings. (Top left) The eigenvalues all have less than unit magnitude,
so the mapping is stable, and the points converge to the origin. The eigenvectors
and eigenvalues are real. (Top right) Stable complex eigenvalues. (Bottom left) One
unstable and one stable real eigenvalue. (Bottom right) Unstable complex conjugate
eigenvalues.

Sept 2018 add-on to Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org


20 E.5. Applications in Feedback Control

any x ∈ Rn. Note that

x(k + 2) = Cx(k + 1) +Du(k + 1)

= C
(
Cx(k) +Du(k)

)
+Du(k + 1)

= C2x(k) + CDu(k) +Du(k + 1)

and

x(k + 3) = Cx(k + 2) +Du(k + 2)

= C3x(k) + C2Du(k) + CDu(k + 1) +Du(k + 2),

etc., and finally

x(k + n) = Cnx(k) + [D CD C2D · · · Cn−1D]




u(k + n− 1)
...

u(k + 1)
u(k)


 .

If the n× nm matrix [D CD C2D · · · Cn−1D] satisfies

rank(
[
D CD C2D · · · Cn−1D

]
) = n, (E.20)

then the n controls at times k through k + n − 1 can be used to achieve any
arbitrary x(k+n), regardless of the initial state x(k) and the drift term Cnx(k).
In other words, the system is controllable. The condition (E.20) is known as
the Kalman rank condition. If the Kalman rank condition is not satisfied,
then the system cannot be controlled to some states regardless of the number
of control applications.

E.5.2 Continuous-Time Control

The error dynamics for a general continuous-time control system can be written

ẋ = Fx+Gu, (E.21)

where x ∈ Rn, u ∈ Rm, F ∈ Rn×n, and G ∈ Rn×m. Choosing a feedback
controller u = Kx, where K ∈ Rm×n, the error dynamics become

ẋ = (F +GK)x(k) = Bx(k).

For the quadrotor, K = [kp kd] and B is given in Equation (E.17).
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Re(s)

Im(s)

λ1

λ5

λ4

λ3

λ2

λ1∆t

λ2∆t

λ3∆t

λ4∆t

λ5∆t

Figure E.6: Left: Example eigenvalues of a 5×5 matrix B illustrated in the complex
plane. The real eigenvalue λ1 and the complex conjugates λ2,3 have negative real
components, while the complex conjugates λ4,5 have positive real components. Middle:
The five eigenvalues of the 5× 5 identity matrix I are all at 1. Also shown is the unit
circle in the complex plane. Right: Zooming in near s = 1, we see the eigenvalues
of I + B∆t. The eigenvalues of B∆t are λ1∆t, λ2∆t, etc. As ∆t shrinks toward
zero, the eigenvalues 1 + λi∆t are inside the unit circle if and only if Re(λi) < 0.
In this example, the eigenvalues 1 + λi∆t for i = 1, 2, 3 are inside the unit circle for
infinitesimal ∆t > 0 but the eigenvalues for i = 4, 5 are outside the unit circle.

The solution to the error dynamics differential equation ẋ = Bx is x(t) =
eBtx(0), as described in Chapters 3 and 11. The error dynamics are stable (the
error converges to zero) if and only if the real components of all the eigenvalues of
B are negative, i.e., Re(λi) < 0 for all i. The more negative the real components,
the faster the error converges to zero.

The stability condition Re(λi) < 0 for all i can also be derived from the fact
that, for the discrete system x(k + 1) = Ax(k), the eigenvalues must all have
magnitude less than one. To use this fact, let’s approximate the differential
equation ẋ = Bx by the difference equation

1

∆t

(
x(k + 1)− x(k)

)
= Bx(k)

for arbitrarily small ∆t > 0. This equation can be rewritten as

x(k + 1) = (I +B∆t)x(k).

For stability, the matrix (I+B∆t) must be convergent for arbitrarily small ∆t >
0, i.e., all eigenvalues must be less than unit magnitude. Since the eigenvalues
of a matrix (I + B∆t) are simply the eigenvalues of B∆t plus one (the offset
contributed by the identity matrix), the eigenvalues of B∆t must have a negative
real component for any ∆t > 0, as illustrated in Figure E.6.
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Figure E.7 shows examples of the quadrotor’s error dynamics for differ-
ent choices of kp and kd. Four different cases are shown: two stable cases
(Re(λ1),Re(λ2) < 0), one where both eigenvalues are real and one where they
are complex conjugates; and two unstable cases, one where both eigenvalues
are real and greater than zero and one where they are complex conjugates with
a positive real component. Each case shows an initial circle of errors in the
(x1, x2)-space and how it evolves under the dynamics ẋ = Bx.

The system (E.21) is controllable, i.e., it can be driven to any state x ∈ Rn

in finite time, if it satisfies the Kalman rank condition

rank(
[
G FG F 2G · · · Fn−1G

]
) = n.

E.6 Glossary

broad matrix: See fat matrix.

characteristic polynomial: The characteristic polynomial p(s) of a square
matrix A is det(sI − A), and the roots of the characteristic polynomial
are the eigenvalues of A.

codomain: Viewing an m× n matrix as mapping Rn to Rm, the codomain is
Rm.

column space: See range.

condition number: The ratio of the largest and smallest singular values of a
full-rank matrix A, κ(A) = σmax(A)/σmin(A).

convergent matrix: A square matrix A is convergent if Ak converges to the
zero matrix as k goes to infinity.

determinant: The determinant of a square matrix A is a polynomial of the
elements of A satisfying det(A) = λ1λ2 . . . λn, where {λi} are eigenvalues
of A.

diagonal matrix: All non-diagonal elements aij , i 6= j, are equal to zero for a
diagonal matrix A.

diagonalizable: A square matrix A ∈ Rn×n is diagonalizable if there exists an
orthogonal matrix Q ∈ Rn×n such that A = QDQT, where D ∈ Rn×n is
a diagonal matrix.

domain: Viewing an m× n matrix as mapping Rn to Rm, the domain is Rn.

eigenvalue: A complex number λ ∈ C is an eigenvalue of A ∈ Rn×n if Av = λv,
where v is an eigenvector.

eigenvector: An eigenvector v ∈ Cn of a square matrix A ∈ Rn×n satisfies
Av = λv, where λ is an eigenvalue.
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stable, real eigenvectors

B =

[
0 1

−0.2 −1.1

] stable, complex eigenvectors

B =

[
0 1

−1.5 −1.1

]

unstable, real eigenvectors

B =

[
0 1

−0.1 0.7

] unstable, complex eigenvectors

B =

[
0 1
−2 1

]

v1

v2

v1

v2

λ1 = −0.87, v1 = (0.75,−0.66)

λ2 = −0.23, v2 = (0.97,−0.22)

λ1 = −0.55 + 1.09j, v1 = (−0.28 − 0.57j, 0.77)

λ2 = −0.55 − 1.09j, v1 = (−0.28 + 0.57j, 0.77)

λ1 = 0.5, v1 = (0.89, 0.45)

λ2 = 0.2, v2 = (0.98, 0.2)

λ1 = 0.5 + 1.32j, v1 = (0.20 − 0.54j, 0.82)

λ2 = 0.5 − 1.32j, v2 = (0.20 + 0.54j, 0.82)

Figure E.7: A unit circle of points x in a two-dimensional space, drawn as a bold
circle, evolving according to ẋ = Bx. The evolving circle is plotted at fixed time
intervals, and four points are traced as they evolve. (Top left) The eigenvalues both
have negative real components, so the differential equation is stable. The eigenvectors
and eigenvalues are real. (Top right) Stable complex eigenvalues. (Bottom left) Two
unstable real eigenvalues. (Bottom right) Unstable complex conjugate eigenvalues.
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fat matrix: A matrix A ∈ Rm×n is fat if it has more columns than rows
(n > m).

full rank: A matrix A ∈ Rm×n is full rank if its rank equals min(m,n).

identity matrix: A diagonal matrix with all elements on the diagonal equal
to one.

ill-conditioned matrix: A matrix with a large condition number.

image: See range.

inverse (of a square matrix): The inverse A−1 of a square matrix A satisfies
AA−1 = A−1A = I. The inverse exists only if A is full rank.

kernel: See null space.

left inverse: The left inverse A−1L of a matrix A satisfies A−1L A = I.

left-singular vectors: The columns of the U matrix in the singular-value de-
composition A = UΣV T.

linear span: The linear span of a set of vectors a1, a2, . . . , an is all vectors of
the form Σikiai, where each ki is a real number.

linearly independent: A vector v is linearly independent of a set of vectors
a1, . . . , an if there are no real coefficients ki satisfying v = Σikiai.

non-square matrix: A matrix A ∈ Rm×n is non-square if m 6= n.

null space: The null space of a matrix A is the space of all vectors x such that
Ax = 0.

nullity: The nullity of a matrix A is the dimension of its null space.

orthogonal group O(n): The set of all n× n orthogonal matrices.

orthogonal matrix: A square matrix whose columns are unit vectors that are
orthogonal to each other. (The rows are also unit vectors orthogonal to
each other.) The determinant of an orthogonal matrix is +1 or −1.

orthonormal vectors: Two vectors of the same dimension are orthonormal if
they are unit vectors (normal) and orthogonal (i.e., their dot product is
zero).

poorly-conditioned matrix: See ill-conditioned matrix.

positive-definite matrix: A symmetric matrix whose eigenvalues are all pos-
itive.

pseudoinverse: The pseudoinverse A† of a matrix A satisfies AA†A = A,
A†AA† = A†, AA† symmetric, and A†A symmetric.

range: For a matrix A ∈ Rm×n, the range is the space of all Ax for all x ∈ Rn.

rank: The rank of a matrix A is equal to the dimension of its range.
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rank deficient: See singular.

right inverse: The right inverse A−1R of a matrix A satisfies AA−1R = I.

right-singular vectors: The columns of the V matrix in the singular-value
decomposition A = UΣV T.

rotation matrix: An element of the special orthogonal group SO(3), repre-
senting a rigid-body orientation or rotation.

se(3): The set of all 4 × 4 real matrices with the top left 3 × 3 submatrix an
element of so(3) and the bottom row all zeros. The matrix representation
[V] of a twist V ∈ R6 is an element of se(3).

singular: A matrix A ∈ Rm×n is singular if its rank is less than the smaller of
m and n.

singular value: A singular value σi of a matrix A is the nonnegative amplifi-
cation of a unit right-singular vector vi of the matrix A when mapping it
through the matrix A, i.e., ‖Avi‖ = σi. See singular-value decomposition.

singular-value decomposition (SVD): The singular-value decomposition of
a matrix A ∈ Rm×n is A = UΣV T, where U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices and Σ ∈ Rm×n is a matrix of zeros other than the
singular values σi along the diagonal.

singularity: If a matrix A depends on a variable or variables θ, and the rank
of A(θ) is full at some values of θ but less than full at other values of θ,
the values of θ where A(θ) is less than full rank are called singularities.

skew-symmetric matrix: A matrix A is skew symmetric if A = −AT.

so(3): The set of all 3× 3 real skew-symmetric matrices. The matrix represen-
tation [ω] of an angular velocity ω ∈ R3 is an element of so(3).

special Euclidean group SE(3): The set of all 4 × 4 real matrices with the
top left 3 × 3 submatrix an element of SO(3) and the bottom row equal
to [0 0 0 1]. Elements of SE(3) are used to represent rigid-body configu-
rations and displacements.

special orthogonal group SO(3): The set of all 3×3 real orthogonal matrices
with determinant +1. Elements of SO(3) are used to represent rigid-body
orientations and rotations.

square matrix: A matrix A ∈ Rm×n is square if it has an equal number of
rows and columns (m = n).

symmetric matrix: A matrix A is symmetric if AT = A.

tall matrix: A matrix A ∈ Rm×n is tall if it has more rows than columns
(m > n).
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trace: The sum of the diagonal elements of a square matrix.

transformation matrix: An element of the special Euclidean group SE(3),
representing a rigid-body configuration or displacement.

transpose: The transpose AT of a matrix A has the columns of A as its rows.

wide matrix: See fat matrix.
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