
Northwestern University Page 1

Motor Controller on a PIC 18f4520

Author: Matthew Turpin

INTRODUCTION
 This design is intended as a cost
effective, readily available motor controller
solution capable of handling multiple
controllers from one master device in a logical,
powerful and easy to use interface.
 This solution is best suited to drive DC
brush motors at encoder rates up to and
exceeding 2 MHz. Motor positions are
measured with hardware quadrature encoding
to achieve this high rate. A built in PID
controller with adjustable gains is used to
control each motor to be flexible enough for
any choice of motor.
 All data is stored on the device in int32
format and all calculations are integer
operations, giving the controller great speed in
carrying out the tracking operations. This does
however have the limitation of discrete integer
quantities for rotational speed.
 If a desired motion is to be carried out
by multiple slaves at the same instant, data can
be programmed to all the devices of what the
motion will be and then the device will carry
out the action on the issue of a global “Go”
pulse.

HARDWARE
 The master device code is intended to
be run on a PIC 18F4520 with a 20 MHz Clock
and the slave code is intended to be run on a
PIC 18F4520 with a 40 MHz clock. These values
can be changed in the code to account for
whatever is available, but will decrease the
speed and accuracy of the response.
 Motors must have sequential
quadrature encoders used in combination with
a hardware quadrature decoder. The decoder
must have one up count pulse line and one
down count pulse line. A few example chips
that can be used for decoders are LS7083 and
LS7183. In tests, LS7183 chips lost counts and

had noisy signal and therefore the LS7083
would be recommended over the LS7183.
 The motors will need to be powered
from a separate voltage level from logic 5V. To
drive the motors in both directions with
minimal power loss, an H-Bridge will be used to
convert the digital signal to a corresponding
voltage. This can be driven from either a digital
to analogue converter or from pulse width
modulation (PWM). The later is chosen as it is
built into the PIC 18F4520.
 One PWM line is fed into an inverter
and then the original PWM and the inverted
signal are fed into the H-Bridge as inputs. This
leads to a 50% duty cycle giving no voltage to
the motor, a 0% duty cycle driving the motor
full forwards, and a 100% duty cycle driving the
motor full reverse. The PIC handles and is set
up for 10 bit PWM resolution so a duty cycle of
0 is 0%, 511 is 50%, and 1023 is 100%.

For powerful motors such as the
Pittman GM8224, an H-Bridge should be chosen
with a large maximum current. For this
example the L298N will be used. Smaller
motors with maximum current draw of 1A or
less will be able to be driven with smaller H-
Bridges.

COMMUNICATION
The master can be used in one of two

ways. The first is on its own, taking readings
from each of the slave devices and computing
the desired movement and relating that
information to each of the slave devices.

The other method is to use MATLAB
with RS232 serial communication to control the
commands the master sends.

MASTER AND SLAVE
The motor controller set up consists of

one master device and up to 16 preset slave
devices. The master device communicates with
the slaves over I2C (pronounced “I squared C”).
Up to 96 additional addresses can be used with

Motor Controller on PIC 18F4520

Northwestern University Page 2

slight modification to the slave code. Data is
requested from the master and then sent back

using I2C interrupts on the slave. This may

interfere with the current command
and current PID cycle, but will be resumed after
communication is completed.

The I2C data transfer protocol is to send
5 bytes. The first byte is the identifier and the
remaining 4 bytes are pieced together to form
one 32 bit integer. Data transfer from the slave
to the master is carried out in a similar manner,
with the exception that the data is requested
byte by byte as is required by I2C. This leads to
slightly slower read speeds than write speeds.
 Average timing for I2C communication
is 500 microseconds for read operations of 4
bytes and only 200 microseconds for write
operations of 4 bytes.

PIC C COMMANDS
 There are 2 main types of commands on
the master device: send data and request data.
Setting variables and commands to the slave
are in the format:

set_mc_command(device, desired result);

The “set” signifies the changing of a variable on
the slave device and the “mc” stands for “motor
controller”. An example command is:

set_mc_position(0x80,-39000);
mc_go();

This commands the slave with address 0x80 to
move to absolute position negative 39000
counts. Absolute position zero is defined when
the device is turned on and can be reset to zero
at any time using the command:

mc_resetpos(device);
mc_go();

The master device must send the mc_go();
command before the action will be carried out.
This is a non-device-specific command as all
devices will carry out their last set command
and does not need to immediately follow each

command. The following set commands are
available:

set_mc_”____”(device,number)
 position Absolute position

velocity
Rotational velocity (in encoder
counts per 250 ms)

kp Proportional constant

ki Integral gain constant

kd Derivative gain constant

The read commands are used in a similar
fashion. The difference in the syntax is the
address is the only input. The function call
returns the value being asked for as an int32 or
signed int32.
The following get commands are available:

mc_get_”_____”(device)
 position Absolute position

velocity
Rotational velocity (in encoder
counts per 250 ms)

TargetPosition Absolute Position being tracked

TargetVelocity Rotational Velocity being tracked

Additional commands are:

mc_go(); Begin actions on all slaves

mc_pos(device); Set slave to position tracking

mc_vel(device); Set slave to velocity tracking

mc_resetpos(device); Sets current position to zero

MATLAB COMMANDS
 MATLAB commands are nearly identical
to the PIC commands. The difference is that the
connection the master PIC is made through the
function MotorControllerConnect.m. Choose
the appropriate port and it will return the serial
object it creates. That serial object is an input
into the commands to control the master
device.

Motor Controller on PIC 18F4520

Northwestern University Page 3

An example communication is shown below.
Note that this is the communication to get to
plots in figures 1 and 2.

s = MotorControllerConnect(7)

mc_resetpos(8,s);

pause(2);

kp = 10000;

ki = 0;

set_mc_kp(kp,8,s)

set_mc_ki(ki,8,s)

time = 0:15;

set_mc_position(39000,8,s);

tic;

for ii = 1:(size(time,2)-1);

 pos(ii) = mc_get_position(8,s);

 time(ii+1) = toc+time(ii);

 pause(.1);

end

plot(time(1,2:16),pos,)

This communication can handle any number
between –(2^31) and 2^31 for velocities and
positions and from 0 to 2^31 for gains.

Below is a complete listing of MATLAB
functions. There is no need to issue a mc_go(),
mc_pos() or mc_vel() command as they are
built into the MATLAB functions.

serial object = MotorControllerConnect(serial port number)

position = mc_get_position(device,serial object)

velocity = mc_get_velocity(device,serial object)

mc_resetpos(device, serial object)

set_mc_position(position,device,serial object)

set_mc_velocity(velocity,device,serial object)

set_mc_kp(kp,device,serial object)

set_mc_ki(ki,device,serial object)

set_mc_kd(kd,device,serial object)

Table 1: MATLAB Commands

Motor Controller on PIC 18F4520

Northwestern University Page 4

CONTROL
 Each slave uses its own PID control
algorithm with programmable control gains to
drive the motor to the desired position and
velocity. The algorithm completes one cycle in
under 200 microseconds with a 40 MHz clock.
This allows the device to call the PID function
once every 250 microseconds which totals to
the device processing the PID control 4000
times per second.

The device uses anti-windup when the
integral term is nonzero. The method of anti-
saturation is whenever the motor is at full
power, the integral term does not accumulate.
This results in no windup, but gives a slight

discontinuity when the slave gets below
saturation and the integral term begins to
accrue.

Some step response plots are shown

below. A mass of 3 kg was attached to a
Pittman GM8224 motor and set to spin one
revolution or 39000 counts. The first plot is
with Kp = 10000, Ki = 0, and Kd = 0. The second
plot adds an integral tern of 10. There is a slight
delay in the response as well as less overshoot
and nearly zero steady state error (oscillates
around zero error). Additionally, notice when
the integral takes control, the response speeds
up with a bit of discontinuous motion.

Figure 1: Plot of a step response of 39000 with Kp=10000, Ki = 10, Kd = 0: Final value = 40750

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time (seconds)

P
o
s
it
io

n
 (

c
o
u
n
ts

)

Response with Kp = 10000, Ki = 0, Kd = 0

Motor Controller on PIC 18F4520

Northwestern University Page 5

Figure 2: Plot of a step response of 39000 with Kp=10000, Ki = 10, Kd = 0: Final value = 39005

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time (seconds)

P
o
s
it
io

n
 (

c
o
u
n
ts

)

Response with Kp = 10000, Ki = 10, Kd = 0

Motor Controller on PIC 18F4520

Northwestern University Page 6

ADDRESSING
 There are 16 preset addresses as
outlined in the table below. Use resistors to
pull up the appropriate pins on the slave. These
addresses are only read once on startup, so if a
change is made to the addressing, a restart of
the slave is required.

Device
Number

Decimal I2C
Address

Hex I2C
Address

Binary I2C
Address

Input A
Pin E1

Input B
Pin E2

Input C
Pin B5

Input D
Pin B4

0 128 80 10000000 0 0 0 0

1 130 82 10000010 0 0 0 1

2 132 84 10000100 0 0 1 0

3 134 86 10000110 0 0 1 1

4 136 88 10001000 0 1 0 0

5 138 8A 10001010 0 1 0 1

6 140 8C 10001100 0 1 1 0

7 142 8E 10001110 0 1 1 1

8 144 90 10010000 1 0 0 0

9 146 92 10010010 1 0 0 1

10 148 94 10010100 1 0 1 0

11 150 96 10010110 1 0 1 1

12 152 98 10011000 1 1 0 0

13 154 9A 10011010 1 1 0 1

14 156 9C 10011100 1 1 1 0

15 158 9E 10011110 1 1 1 1

Table 2: Addressing Slave Device Pin Inputs

Motor Controller on PIC 18F4520

Northwestern University Page 7

WIRING
 The wiring of the PICs is
straightforward. The single master controller
requires only power, ground, I2C data and clock
lines, a “Go” line and optional serial lines for
communication with MATLAB. The SDA and SCL
lines need pull up resistors with a value of
about 10K.

 Figure 3: Master Wiring Diagram

The slave configuration is as shown in
Figure 4. The LS7083 quadrature counter takes
inputs A and B from the motor Encoder and
outputs pulses according Figure 5. The mode
can be changed from X4 mode to X1 mode by
changing the mode (pin 6) to ground. This will
result in one quarter the number of counts
output by the device. The Rbias value of 100K
results in a pulse width of approximately 500
nanoseconds. This can be increased if the
controller is missing counts.

Inputs A-D on the PIC are determined
based on what address the slave will take. See
Table 1 for addressing information.

SCL and SDA are the same for all slaves

and only one set of pull up resistors is needed
for the entire motor controller. The Go line is
also common between all devices and needs no
resistor.

The H-Bridge takes both the inverted
and non-inverted signals and outputs n
appropriate voltage difference across the motor
terminals. The fly back diodes are shown, but
may be unnecessary for some H-Bridges.

Supply Voltage can be any voltage
within the range of the motor and H-Bridge and
should not be the same supply as that for logic
to prevent noise from affecting the PICs.

If the motor appears to not be tracking,
try reversing Encoder wires.

Motor Controller on PIC 18F4520

Northwestern University Page 8

Figure 4: Slave Wiring Diagram

Motor Controller on PIC 18F4520

Northwestern University Page 9

Figure 5: Quadrature Diagram in 4X mode

Motor Controller on PIC 18F4520

Northwestern University Page 10

Slave Code

 Put this code on each slave controller:

#include <18f4520.h>
#device high_ints=TRUE
#fuses HS,NOLVP,NOWDT,NOPROTECT
#use delay(clock=40000000) //Numbers are preset for 40 mHz clock
#use i2c(SLAVE, FAST, SCL=PIN_C3, SDA=PIN_C4, address=0x80, FORCE_HW)
 //Using hardware I2C, defaults to address 0x80 or device 1

//Encoder Variables
int32 TotalCount = 1<<31;
int16 Count0 = 0, Count1 = 0;
int16 Last0 = 0, Last1 = 0;

//PID vars
int32 error = 0;
signed int32 p_error = 0;
signed int32 i_error = 0;
signed int32 d_error = 0;
signed int32 error_old = 0;
signed int32 pid_error = 0;
int32 kp = 16000;
int32 ki = 0;
int32 kd = 0;
signed int16 Duty = 511;
int normalize = 16;
int i_check = 0;
int i_spacing = 10;

//Velocity Variables
signed int32 Velocity = 0;

//Tracking Variables
int AngleOrVel = 0;
signed int32 TargetVelocity = 0;
int32 TargetPosition = (1<<31);

//I2C variables
int State; //State of Transmission
int32 Number32Bit = 0; //Stores bumbers converted to 32 bit
int Number[4] = {0,0,0,0}; //Stores 4 bytes of 32 bit numbers
int DataType = 0; //Type of operation being preformed

void runsetup()
{
 I2C_SlaveAddr(128|((int)input(pin_B4)<<1)|((int)input(pin_B5)<<2)|((int)input(pin_E2)<<3)|((int)input(pin_E1)<<4));
//setting internal address see data sheet for truth table

 setup_timer_0(RTCC_EXT_L_TO_H | RTCC_DIV_1); //external input from quadrature encoder 0
 setup_timer_1(T1_EXTERNAL | T1_DIV_BY_1); //external input from quadrature encoder 1
 setup_timer_2(T2_DIV_BY_1, 255, 1); //for PWM at 20KHz, out of audible range
 setup_timer_3(T3_INTERNAL|T3_DIV_BY_1); //for counting time, increments every .2us and rolls over 76.3 times per sec
 enable_interrupts(INT_SSP); //enable I2C interrupt
 enable_interrupts(INT_EXT); //enable "go" interrupt on pin C7

Motor Controller on PIC 18F4520

Northwestern University Page 11

 enable_interrupts(global);

 setup_ccp2(ccp_pwm); //setup PWM

 set_timer0(0); //clear starting point of timers
 set_timer1(0);

 set_PWM2_duty(511); //motor starts at 0 velocity

}
void PID() //Proportional-Integral-Derivative control
{
 switch(AngleOrVel) //0 for angle tracking, 1 for velocity tracking
 {
 case 0:
 if(TargetPosition==TotalCount) //Exactly on target
 {
 error=0;
 Duty = 511; //Stop motor
 }
 else if(TargetPosition>TotalCount)
 {
 error = (TargetPosition-TotalCount); //Current error
 p_error = ((error*kp)>>normalize); //Calculating proportional error
 if (p_error>512)
 {
 Duty = 1023; //Motor saturated
 }
 else
 {
 d_error = (error-error_old)*kd; //Calculating derivative error
 if (i_check>=i_spacing) //Spaces out integral calculations to avoid premature integral buildup
 {
 i_error += error*ki; //Calculating integral error
 i_check = 0;
 }
 else
 {
 i_check++;
 }
 pid_error = p_error+(i_error>>normalize)+d_error; //PID combined error

 if (pid_error>511) //PID error will saturate motor
 {
 if (i_check == 0)
 {
 i_error -= error*ki; //Anti-windup action taken
 }
 Duty = 1023; //Motor is saturated
 }
 else if(pid_error>(-512)) //PID between -512 and 511 does not saturate motor
 {
 Duty = 511+pid_error; //Gives non-saturated duty
 }
 else //PID error less than -512
 {
 Duty = 0; //Motor saturated
 }

Motor Controller on PIC 18F4520

Northwestern University Page 12

 error_old = error; //Remember preveous error for derivative calculation
 }
 }
 else //Same as above but for negative error
 {
 error = (TotalCount-TargetPosition); //Current error
 p_error = ((error*kp)>>normalize); //Calculating proportional error
 if (p_error>512)
 {
 Duty = 0; //Motor saturated
 }
 else
 {
 d_error = (error-error_old)*kd; //Calculating derivative error

 if (i_check>=i_spacing) //Spaces out integral calculations to avoid premature integral buildup
 {
 i_error -= error*ki; //Calculating integral error
 i_check = 0;
 }
 else
 {
 i_check++;
 }
 pid_error = p_error+(i_error>>normalize)+d_error; //PID combined error

 if (pid_error>511)
 {
 if (i_check == 0) //PID error will saturate motor
 {
 i_error += error*ki; //Anti-windup action taken
 }
 Duty = 0; //Motor saturated
 }
 else if (pid_error>(-512)) //PID between -512 and 511 does not saturate motor
 {
 Duty = 512-pid_error; //Gives non-saturated duty
 }
 else
 {
 Duty = 1023; //PID error less than -512
 }
 error_old = error; //Remember preveous error for derivative calculation
 }
 }
 break;
 case 1: //Velocity tracking
 Duty+=TargetVelocity-Velocity; //Adjust Duty to trak the velocity
 if (Duty>1023) //Saturated Motor
 {
 Duty = 1023;
 Duty-=TargetVelocity-Velocity;
 }
 else if (Duty<0) //Saturated Motor
 {
 Duty = 0;
 Duty-=TargetVelocity-Velocity;
 }

Motor Controller on PIC 18F4520

Northwestern University Page 13

 break;
 break;
 }
 set_PWM2_duty(Duty); //Adjust PWM in response to PID control
}

void cleartrackingvars() //clears all tracking variables on each new command
{
 Duty = 511; //Motors stop
 error = 0; //Error variables set to 0
 p_error = 0;
 i_error = 0;
 d_error = 0;
 error_old = 0;
 pid_error = 0;
}

void updatestatus() //Calculates position and velocity based on encoder counts
{
 Count0 = get_timer0(); //Up counts
 Count1 = get_timer1(); //Down counts

 Velocity = ((signed int32)(Count0 - Last0))-((signed int32)(Count1 - Last1)); //Current Velocity

 disable_interrupts(global); //Disable interrupts temporarily to prevent inacurate position calcultaion
 TotalCount += ((int16)(Count0 - Last0)); //Increment up counts
 Last0 = Count0;

 TotalCount -= ((int16)(Count1 - Last1)); //Increment down counts
 Last1 = Count1;
 enable_interrupts(global); //Re-enable interrupts

 PID(); //Track using PID
}
void updatetracking() //Updates variables on external signal on line B0
{
 switch(DataType)
 {
 case 1: //Position or Velocity select
 AngleOrVel = (int8)Number32Bit;
 break;
 case 2: //Target position update
 TargetPosition = (1<<31)+(signed int32)Number32Bit;
 break;
 case 3: //Target velocity update
 TargetVelocity = (signed int32)Number32Bit;
 break;
 case 4: //Proportionality constant update
 kp = (int16) Number32Bit;
 break;
 case 5: //Integral constant update
 ki = (int16) Number32Bit;
 break;
 case 6: //Derative constant update
 kd = (int16) Number32Bit;
 break;
 case 10: //Reset position variable

Motor Controller on PIC 18F4520

Northwestern University Page 14

 TotalCount = 1<<31;
 TargetVelocity = 0;
 TargetPosition = 1<<31;
 break;
 }
 cleartrackingvars(); //Clear tracking variables after new data is received
}

void recombine() //Turns 4 one byte numbers into one 32 bit number
{
 Number32Bit = ((int32)Number[0]|(int32)Number[1]<<8|(int32)Number[2]<<16|(int32)Number[3]<<24);
 delay_us(1); //Prevents overflow
}

#INT_EXT high
void motorgo() //Begins latest tracking information
{
 updatetracking();
}

#INT_SSP high
void ssp_interupt () //I2C interrupt
{
 disable_interrupts(global); //Disable interrupts necessary to prevent exit during transmission
 state = i2c_isr_state();
 if(state < 0x80) //Master is sending data
 {
 if(state == 0) //First received byte is address
 {
 }
 if(state == 1) //Second received byte is address
 {
 DataType = i2c_read();
 }
 if(state >1) //Additional received bytes are data
 {
 Number[state-2] = i2c_read();
 }
 if (state==5) //Combine 4 one byte numbers into one 32 bit number
 {
 recombine();
 }
 }
 if(state >= 0x80) //Master is requesting data
 {
 switch(DataType) //Slices data to send to master
 {
 case 255:
 i2c_write((int8)(TotalCount));
 break;
 case 254:
 i2c_write((int8)(TotalCount>>8));
 break;
 case 253:
 i2c_write((int8)(TotalCount>>16));
 break;
 case 252:
 i2c_write((int8)(TotalCount>>24));

Motor Controller on PIC 18F4520

Northwestern University Page 15

 break;
 case 251:
 i2c_write((int8)(Velocity));
 break;
 case 250:
 i2c_write((int8)(Velocity>>8));
 break;
 case 249:
 i2c_write((int8)(Velocity>>16));
 break;
 case 248:
 i2c_write((int8)(Velocity>>24));
 break;
 case 247:
 i2c_write((int8)(TargetPosition));
 break;
 case 246:
 i2c_write((int8)(TargetPosition>>8));
 break;
 case 245:
 i2c_write((int8)(TargetPosition>>16));
 break;
 case 244:
 i2c_write((int8)(TargetPosition>>24));
 break;
 case 243:
 i2c_write((int8)(TargetVelocity));
 break;
 case 242:
 i2c_write((int8)(TargetVelocity>>8));
 break;
 case 241:
 i2c_write((int8)(TargetVelocity>>16));
 break;
 case 240:
 i2c_write((int8)(TargetVelocity>>24));
 break;
 }
 }
 enable_interrupts(global); //Re-enable interrupts
}

void main()
{
 runsetup();
 while (TRUE)
 {
 while(get_timer3()>2475) //Enters main function every 250us or 4000 times per second
 {
 set_timer3(0); //Reset timer 3
 updatestatus();
 }
 }
}

Motor Controller on PIC 18F4520

Northwestern University Page 16

Master Code

 Put this code on the master controller as well as put the following reference file in the same
directory to include it:

#include <18f4520.h>
#fuses HS,NOLVP,NOWDT,NOPROTECT
#use delay(clock=20000000)
#use I2C(FAST, SCL=PIN_C3, SDA=PIN_C4, FORCE_HW) //Set up Hardware I2C
#use rs232(baud=19200, UART1) //Set up PIC UART on RC6 (tx) and RC7 (rx)
#include "MotorControllerFunctions.c" //Motor Controller function calls

// Set up data_tx (transmit values), data_rx (recieve values)
int8 data_tx, data_rx[11] = {0,0,0,0,0,0,0,0,0,0,0};

//Counting Varibles
signed int ii = 0;
int jj = 0;

//Device Name
int Device = 0;

//Temporary variables
int32 Send = 0;
int32 Input=0;

void write() //For writing to MATLAB
{
 for(jj=0;jj<4;jj++)
 {
 data_tx = ((int8)(Send>>(8*jj))); //Breaks variables to send to MATLAB into readable Bytes
 printf("%u\n", data_tx); //Sends one Byte at a time
 }
}

void readincoming() //Any incoming data is dealt with in this function
{
 data_rx[ii] = fgetc(); //Read in recieved value from buffer
 if((data_rx[ii]>96)&&(ii>1)) //Ascii characters above 96 (lowercase letters) are used to recieve values from the
Slave
 {
 switch(data_rx[ii])
 {
 case 112: //"p" retrieves position
 Send = mc_get_pos(Device);
 write();
 break;
 case 114: //"r" to reset position
 mc_resetpos(Device);
 mc_go();
 break;
 case 118: //"v" retrieves velocity
 Send = (mc_get_vel(Device)+(1<<31));
 write();

Motor Controller on PIC 18F4520

Northwestern University Page 17

 break;
 }
 ii=-1; //Negative 1 counters ii++ later in function
 }
 else if ((data_rx[ii]>70)&&(ii>1)) //Capital Ascii characters are used to set vales to the Slave
 {
 data_rx[2] = data_rx[ii]; //Ensures no read errors on MATLAB communication
 ii = 2;
 }
 else if(data_rx[ii]<65) //Normalizing Ascii values 1-9 to decimal values 1-9
 {
 data_rx[ii] = data_rx[ii]-48;
 }
 else //Normalizing Ascii values A-E to decimal values 10-15
 {
 data_rx[ii] = data_rx[ii]-55;
 }
 ii++; //Increment value being referenced
 if(ii==2) //After recieving the address of the slave, convert from hex to binary
 {
 Device = ((data_rx[0]<<4)|data_rx[1]);
 }
 if(ii>10) //Enter after all hex values recieved
 {
 Input = 0; //Zero out Input variable
 for(jj=0;jj<8;jj++) //Convert from eight hex values to one 32 bit binary value
 {
 Input = ((Input<<4)|(data_rx[3+jj]));
 }
 switch(data_rx[2]) //Call appropriate functions to carry out actions
 {
 case 73: //"I" for integral constant
 set_mc_ki(Device,(int32)(Input));
 mc_go();
 break;
 case 75: //"K" for proportional constant
 set_mc_kp(Device,(int32)(Input));
 mc_go();
 break;
 case 80: //"P" for position
 mc_pos(Device);
 mc_go();
 set_mc_abspos(Device,(signed int32)(Input-(1<<31)));
 mc_go();
 break;
 case 82: //"R" for derivative constant
 set_mc_kd(Device,(int32)(Input));
 mc_go();
 break;
 case 86: //"V" for velocity
 mc_vel(Device);
 mc_go();
 set_mc_vel(Device,(signed int32)(Input-(1<<31)));
 mc_go();
 break;
 }
 ii = 0; //Reset counting variable
 }

Motor Controller on PIC 18F4520

Northwestern University Page 18

}

void main()
{

 while (TRUE) //PIC will always watch for data
 {
 if (kbhit()) //If PIC senses data pushed to serial buffer
 {
 readincoming(); //Call function to handle incoming data
 }
 }
}

Include this C file saved as MotorControllerFunctions.c

void mc_transmit(int device, int* output[5])
{
 int ii;

 i2c_start(); //begin transmission
 i2c_write(device); //select address of device to communicate with
 for(ii=0;ii<5; ii++)
 {
 i2c_write(output[ii]);
 }
 i2c_stop();
 delay_us(10);
}

void set_mc_abspos(int device, int32 position)
{
 int* output[5] = {0,0,0,0,0};
 int ii;

 output[0] = 2;
 for(ii=0;ii<4;ii++)
 {
 output[ii+1] = (int8)(position>>(8*(ii)));
 }
 mc_transmit(device,output);
}

void set_mc_vel(int device, signed int32 velocity)
{
 int* output[5] = {0,0,0,0,0};
 int ii;

 output[0] = 3;
 for(ii=0;ii<4;ii++)
 {
 output[ii+1] = (int8)(velocity>>(8*(ii)));
 }
 mc_transmit(device,output);

Motor Controller on PIC 18F4520

Northwestern University Page 19

}

void mc_pos(int device)
{
 int* output[5] = {1,0,0,0,0};
 mc_transmit(device,output);
}

void mc_vel(int device)
{
 int* output[5] = {1,1,0,0,0};
 mc_transmit(device,output);
}

void mc_go()
{
 output_high(pin_a5);
 delay_us(10);
 output_low(pin_a5);
}

void mc_resetpos(int device)
{
 int* output[5] = {10,0,0,0,0};
 mc_transmit(device,output);
}

void set_mc_kp(int device, int32 kp)
{
 int* output[5] = {4,0,0,0,0};
 int ii;

 for(ii=0;ii<4;ii++)
 {
 output[ii+1] = (int8)(kp>>(8*(ii)));
 }
 mc_transmit(device,output);
}

void set_mc_ki(int device, int32 ki)
{
 int* output[5] = {5,0,0,0,0};
 int ii;

 for(ii=0;ii<4;ii++)
 {
 output[ii+1] = (int8)(ki>>(8*(ii)));
 }
 mc_transmit(device,output);
}

void set_mc_kd(int device, int32 kd)
{
 int* output[5] = {6,0,0,0,0};
 int ii;

 for(ii=0;ii<4;ii++)
 {

Motor Controller on PIC 18F4520

Northwestern University Page 20

 output[ii+1] = (int8)(kd>>(8*(ii)));
 }
 mc_transmit(device,output);
}

signed int32 mc_request(int device, int datatype)
{
 int ii;
 int input[4] = {0,0,0,0};

 for(ii=0;ii<4;ii++) //change this back
 {
 i2c_start (); //begin communication
 i2c_write (device); //send slave address
 i2c_write (datatype-ii);
 i2c_start (); //send repeated start command to begin read cycle
 i2c_write (device+1); //add 1 to the address to send a write bit
 input[ii] = i2c_read(0); //read requested information from the slave
 i2c_stop (); //terminate communication
 }
 return ((int32)input[0]|((int32)input[1]<<8)|((int32)input[2]<<16)|((int32)input[3]<<24));
}

signed int32 mc_get_pos(int device)
{
 int32 position;
 position = mc_request(device,255);
 return ((signed int32)position);
}

signed int32 mc_get_vel(int device)
{
 int32 velocity;
 velocity = mc_request(device,251);
 return ((signed int32)velocity);
}

signed int32 mc_get_targetpos(int device)
{
 int32 targetposition;
 targetposition = mc_request(device,247);
 return ((signed int32)targetposition);
}

signed int32 mc_get_targetvel(int device)
{
 int32 targetvelocity;
 targetvelocity = mc_request(device,243);
 return ((signed int32)targetvelocity);
}

Motor Controller on PIC 18F4520

Northwestern University Page 21

MATLAB Functions:

function [s] = MotorControllerConnect(com)

%MotorController takes a COM port input and returns a serial object to be

% used with other motorcontroller functions.

%

%Input the COM port as a double or enter it at the prompt

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

%clears old serial objects

delete(instrfind)

%if COM port not specified, request it

if nargin~=1

 comport = ['com' num2str(input('Enter COM port: '))];

elseif nargin==1

 comport = ['com' num2str(com)];

end

%open the serial port and return the serial object

s = serial(comport,'BAUD',19200); % Create serial object (PORT Dependent)

fopen(s) % Open the serial port for r/w

end

Motor Controller on PIC 18F4520

Northwestern University Page 22

function [position] = mc_get_position(device, s)

%mc_get_position takes a device, and serial object and returns the absolute

% position of that device

%

% This function outputs numbers in the range of -(2^31) to 2^31

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 %lookup of device hex address

 dev = devlookup(device);

 %convert to a string

 str = [dev 'p'];

 data = zeros(1,4);

 %transmit string

 for ii = 1:3

 fprintf(s, '%s', str(1,ii));

 end

 %recieve string

 for ii=1:4

 data(1,ii) = str2num(fscanf(s));

 end

 %recombine data

 position = (data(4)*2^24+data(3)*2^16+data(2)*2^8+data(1))-2^31;

 end

Motor Controller on PIC 18F4520

Northwestern University Page 23

function [velocity] = mc_get_velocity(device,s)

%mc_get_velocity takes a device, and serial object and returns the

% rotational velocity of that device

%

% This function outputs numbers in the range of -(2^31) to 2^31

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 %lookup of device hex address

 dev = devlookup(device);

 %convert to a string

 str = [dev 'v'];

 data = zeros(1,4);

 %transmit string

 for ii = 1:3

 fprintf(s, '%s', str(1,ii));

 end

 %recieve string

 for ii=1:4

 data(1,ii) = str2num(fscanf(s));

 end

 %recombine data

 velocity = (data(4)*2^24+data(3)*2^16+data(2)*2^8+data(1))-2^31;

 end

Motor Controller on PIC 18F4520

Northwestern University Page 24

function mc_resetpos(device, s)

%mc_resetpos resets the current position of the device being addressed to zero

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 %lookup of device hex address

 dev = devlookup(device);

 %convert to a string

 str = [dev 'r'];

 %transmit string

 for ii = 1:3

 fprintf(s, '%s', str(1,ii));

 end

 end

Motor Controller on PIC 18F4520

Northwestern University Page 25

function set_mc_position(position, device, s)

%set_mc_position takes a position input, device, and serial object

% this information is exported to the master of the motor controller and

% the move to that absolute position is carried out.

%

% This function supports inputs from -(2^31) to 2^31

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 %lookup of device hex address

 dev = devlookup(device);

 %convert to a string

 str = [dev 'P' dec2hex(position+2^31)];

 %transmit string

 for ii = 1:11

 fprintf(s, '%s', str(1,ii));

 end

end

Motor Controller on PIC 18F4520

Northwestern University Page 26

function set_mc_velocity(velocity, device, s)

%set_mc_velocity takes a velocity input, device, and serial object

% This information is exported to the master of the motor controller and

% the controller adjusts the velocity to the desired level

%

% This function supports inputs from -(2^31) to 2^31

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 %lookup of device hex address

 dev = devlookup(device);

 %convert to a string

 str = [dev 'V' dec2hex(velocity+2^31)];

 %transmit string

 for ii = 1:11

 fprintf(s, '%s', str(1,ii));

 end

end

Motor Controller on PIC 18F4520

Northwestern University Page 27

function set_mc_kp(kp, device, s)

%set_mc_kp takes a gain constant input, device, and serial object

% this information is exported to the master of the motor controller and

% the adjusts the velocity to the desired level

%

% This function supports inputs from 0 to 2^31

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 dev = devlookup(device);

 %convert to a string

 str = [dev 'K' dec2hex(kp+2^31)];

 str(1,4) = '0';

 %transmit string

 for ii = 1:11

 fprintf(s, '%s', str(1,ii));

 end

end

Motor Controller on PIC 18F4520

Northwestern University Page 28

function set_mc_ki(ki, device, s)

%set_mc_ki takes a gain constant input, device, and serial object

% this information is exported to the master of the motor controller and

% the adjusts the velocity to the desired level

%

% This function supports inputs from 0 to 2^31

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 %lookup of device hex address

 dev = devlookup(device);

 %convert to a string

 str = [dev 'I' dec2hex(ki+2^31)];

 str(1,4) = '0';

 %transmit string

 for ii = 1:11

 fprintf(s, '%s', str(1,ii));

 end

end

Motor Controller on PIC 18F4520

Northwestern University Page 29

function set_mc_kd(kd, device, s)

%set_mc_kd takes a gain constant input, device, and serial object

% this information is exported to the master of the motor controller and

% the adjusts the velocity to the desired level

%

% This function supports inputs from 0 to 2^31

%Record of Revisions:

% Date Programmer Description of Change

% ==== ========== =====================

% 3/14/2007 Matthew Turpin Original Code

 %lookup of device hex address

 dev = devlookup(device);

 %convert to a string

 str = [dev 'I' dec2hex(kd+2^31)];

 str(1,4) = '0';

 %transmit string

 for ii = 1:11

 fprintf(s, '%s', str(1,ii));

 end

end

