
© 2009 Microchip Technology Inc. DS51686B

MPLAB® C Compiler
For PIC32 MCUs

User’s Guide

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
DS51686B-page ii
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
© 2009 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page iii

Table of Contents

Preface ... 1
Chapter 1. Language Specifics

1.1 Introduction ... 7
1.2 Highlights .. 7
1.3 Overview .. 7
1.4 File Naming Conventions ... 7
1.5 Data Storage .. 8
1.6 Predefined Macros ... 10
1.7 Attributes and Pragmas .. 12
1.8 Command Line Options .. 16
1.9 Compiling a Single File on the Command Line .. 41
1.10 Compiling Multiple Files on the Command Line ... 42
1.11 Binary Constants .. 42

Chapter 2. Library Environment
2.1 Introduction ... 43
2.2 Highlights .. 43
2.3 Standard I/O ... 43
2.4 Weak Functions .. 43
2.5 “Helper” Header Files ... 44
2.6 Multilibs .. 45

Chapter 3. Interrupts
3.1 Introduction ... 47
3.2 Highlights .. 47
3.3 Specifying an Interrupt Handler Function ... 47
3.4 Associating a Handler Function with an Exception Vector 48
3.5 Exception Handlers .. 51

Chapter 4. Low-Level Processor Control
4.1 Introduction ... 53
4.2 Highlights .. 53
4.3 Generic Processor Header File .. 53
4.4 Processor Support Header Files .. 53
4.5 Peripheral Library Functions .. 54
4.6 Special Function Register Access .. 55
4.7 CP0 Register Access ... 55
4.8 Configuration Bit Access .. 56

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page iv © 2009 Microchip Technology Inc.

Chapter 5. Compiler Run-time Environment
5.1 Introduction ... 59
5.2 Highlights .. 59
5.3 Register Conventions ... 59
5.4 Stack Usage ... 60
5.5 Heap Usage ... 61
5.6 Function Calling Convention .. 61
5.7 Start-up and Initialization .. 63
5.8 Contents of the Default Linker Script .. 75
5.9 RAM Functions ... 87

Appendix A. Implementation Defined Behavior
A.1 Introduction .. 89
A.2 Highlights ... 89
A.3 Overview .. 89
A.4 Translation ... 89
A.5 Environment ... 90
A.6 Identifiers ... 91
A.7 Characters ... 91
A.8 Integers .. 92
A.9 Floating-Point ... 93
A.10 Arrays and Pointers ... 94
A.11 Hints ... 95
A.12 Structures, Unions, Enumerations, and Bit fields 95
A.13 Qualifiers .. 96
A.14 Declarators ... 96
A.15 Statements ... 96
A.16 Pre-Processing Directives .. 96
A.17 Library Functions ... 98
A.18 Architecture .. 103

Appendix B. Open Source Licensing
B.1 Introduction .. 105
B.2 General Public License .. 105
B.3 BSD License .. 105
B.4 Sun Microsystems .. 106

Index ...107
Worldwide Sales and Service ...118

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 1

Preface

INTRODUCTION
This chapter contains general information that will be useful to know before using the
32-bit C Compiler. Items discussed in this chapter include:
• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support
• Document Revision History

DOCUMENT LAYOUT
This document describes how to use the 32-bit C Compiler as a development tool to
emulate and debug firmware on a target board. The document layout is as follows:
• Chapter 1. Language Specifics – discusses command line usage of the

compiler, attributes, pragmas, and data representation
• Chapter 2. Library Environment – discusses using the compiler libraries
• Chapter 3. Interrupts – presents an overview of interrupt processing
• Chapter 4. Low-Level Processor Control – discusses access to the low-level

registers and configuration of the PIC32MX devices
• Chapter 5. Compiler Run-time Environment – discusses the compiler run-time

environment
• Appendix A. Implementation Defined Behavior – discusses the choices for

implementation defined behavior in compiler
• Appendix B. Open Source Licensing – gives a summary of the open source

licenses used for portions of the compiler package

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

www.microchip.com

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 2 © 2009 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE
This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

N‘Rnnnn A number in verilog format,
where N is the total number of
digits, R is the radix and n is a
digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier New font:
Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1
Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Preface

© 2009 Microchip Technology Inc. DS51686B-page 3

RECOMMENDED READING
This user’s guide describes how to use 32-bit C Compiler. Other useful documents are
listed below. The following Microchip documents are available and recommended as
supplemental reference resources.
Readme Files
For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.
Device-Specific Documentation
The Microchip web site contains many documents that describe 32-bit device functions
and features. Among these are:
• Individual and family data sheets
• Family reference manuals
• Programmer’s reference manuals
32-Bit Language Tools Libraries (DS51685)
Lists all library functions provided with the MPLAB C Compiler for PIC32 MCUs with
detailed descriptions of their use.
PIC32MX Configuration Settings
Lists the Configuration Bit Settings for the Microchip PIC32MX devices supported by
the MPLAB C Compiler for PIC32 MCUs’s #pragma config.
C Standards Information
American National Standard for Information Systems – Programming Language – C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals
Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,

Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

GCC Documents
http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/

http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 4 © 2009 Microchip Technology Inc.

THE MICROCHIP WEB SITE
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:
• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE
Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.
To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.
The Development Systems product group categories are:
• Compilers – The latest information on Microchip C compilers, assemblers, linkers

and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

• Emulators – The latest information on Microchip in-circuit emulators. This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debuggers. These include MPLAB ICD 2 and PICkit™ 2.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the MPLAB PM3 device programmer and the PICSTART® Plus, PICkit™ 1,
PICkit™ 2 and PICkit™ 3 development programmers.

www.microchip.com
www.microchip.com

Preface

© 2009 Microchip Technology Inc. DS51686B-page 5

CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (October 2007)
• Initial Release of this document.

Revision B (July 2009)
• Changed product name from MPLAB C32 C Compiler to MPLAB C Compiler for

PIC32 MCUs throughout the document. Also changed references to C32 Libraries
to 32-Bit Language Tools Libraries.

• Added __VERSION__ and __C32_VERSION__ to Section 1.6.1 “32-Bit C Com-
piler Macros”

• Added -msmart-io=[0|1|2] and -mapio-debug to Section 1.8.1 “Options
Specific to PIC32MX Devices”, Table 1-2

• Added Section 1.11 “Binary Constants”
• Added __ISR_SINGLE__ and __ISR_SINGLE_AT_VECTOR__ to

Section 2.5.1 “sys/attribs.h”
• Revised Section 3.3.2.1 “Interrupt Attribute”
• Added Section 3.4.4 “__ISR Macros”
• Added Section 3.4.4.3 “Interrupt-Vector Macros”

http://support.microchip.com

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 6 © 2009 Microchip Technology Inc.

NOTES:

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 7

Chapter 1. Language Specifics

1.1 INTRODUCTION
This chapter discusses command line usage of the 32-bit C compiler, attributes,
pragmas and data representation.

1.2 HIGHLIGHTS
Items discussed in this chapter are:
• Overview
• File Naming Conventions
• Data Storage
• Predefined Macros
• Attributes and Pragmas
• Command Line Options
• Compiling a Single File on the Command Line
• Compiling Multiple Files on the Command Line
• Binary Constants

1.3 OVERVIEW
The compilation driver program (pic32-gcc) compiles, assembles and links C and
assembly language modules and library archives. Most of the compiler command line
options are common to all implementations of the GCC toolset. A few are specific to
the compiler.
The basic form of the compiler command line is:
pic32-gcc [options] files

The available options are described in Section 1.8 “Command Line Options”.
For example, to compile, assemble and link the C source file hello.c, creating the
absolute executable hello.out.
pic32-gcc -o hello.out hello.c

1.4 FILE NAMING CONVENTIONS
The compilation driver recognizes the following file extensions, which are case
sensitive.

Note: Command line options and file name extensions are case sensitive.

TABLE 1-1: FILE NAMES
Extensions Definition

file.c A C source file that must be preprocessed.
file.h A header file (not to be compiled or linked).
file.i A C source file that has already been pre-processed.
file.o An object file.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 8 © 2009 Microchip Technology Inc.

1.5 DATA STORAGE

1.5.1 Storage Endianness
The compiler stores multibyte values in little-endian format. That is, the Least
Significant Byte is stored at the lowest address.
For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:

1.5.2 Integer Representation
Integer values in the compiler are represented in 2’s complement and vary in size from
8 to 64 bits. These values are available in compiled code via limits.h.

1.5.3 Signed and Unsigned Character Types
By default, values of type plain char are signed values. This behavior is
implementation-defined by the C standard, and some environments1 define a plain
char value to be unsigned. The command line option -funsigned-char can be used
to set the default type to unsigned for a given translation unit.

1.5.4 Floating-Point Representation
The compiler uses the IEEE-754 floating-point format. Detail regarding the
implementation limits is available to a translation unit in float.h.

1.5.5 Pointers
Pointers in the compiler are all 32 bits in size.

file.s An assembly language source file.
file.S An assembly language source file that must be preprocessed.
other A file to be passed to the linker.

TABLE 1-1: FILE NAMES (CONTINUED)
Extensions Definition

Address 0x100 0x101 0x102 0x103

Data 0x78 0x56 0x34 0x12

Type Bits Min Max

char, signed char 8 -128 127
unsigned char 8 0 255
short, signed short 16 -32768 32767
unsigned short 16 0 65535
int, signed int, long, signed long 32 -231 231-1
unsigned int, unsigned long 32 0 232-1
long long, signed long long 64 -263 263-1
unsigned long long 64 0 264-1

1. Notably, PowerPC and ARM

Type Bits

float 32
double 64
long double 64

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 9

1.5.6 limits.h
The limits.h header file defines the ranges of values which can be represented by
the integer types.

Macro name Value Description

CHAR_BIT 8 The size, in bits, of the smallest non-bit field
object.

SCHAR_MIN -128 The minimum value possible for an object of
type signed char.

SCHAR_MAX 127 The maximum value possible for an object of
type signed char.

UCHAR_MAX 255 The maximum value possible for an object of
type unsigned char.

CHAR_MIN -128 (or 0, see Signed
and Unsigned
Character Types)

The minimum value possible for an object of
type char.

CHAR_MAX 127 (or 255, see
Signed and Unsigned
Character Types)

The maximum value possible for an object of
type char.

MB_LEN_MAX 16 The maximum length of multibyte character in
any locale.

SHRT_MIN -32768 The minimum value possible for an object of
type short int.

SHRT_MAX 32767 The maximum value possible for an object of
type short int.

USHRT_MAX 65535 The maximum value possible for an object of
type unsigned short int.

INT_MIN -231 The minimum value possible for an object of
type int.

INT_MAX 231-1 The maximum value possible for an object of
type int.

UINT_MAX 232-1 The maximum value possible for an object of
type unsigned int.

LONG_MIN -231 The minimum value possible for an object of
type long.

LONG_MAX 231-1 The maximum value possible for an object of
type long.

ULONG_MAX 232-1 The maximum value possible for an object of
type unsigned long.

LLONG_MIN -263 The minimum value possible for an object of
type long long.

LLONG_MAX 263-1 The maximum value possible for an object of
type long long.

ULLONG_MAX 264-1 The maximum value possible for an object of
type unsigned long long.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 10 © 2009 Microchip Technology Inc.

1.6 PREDEFINED MACROS

1.6.1 32-Bit C Compiler Macros
The compiler defines a number of macros, most with the prefix “_MCHP_,” which
characterize the various target specific options, the target processor and other aspects
of the host environment.

_MCHP_SZINT 32 or 64, depending on command line options
to set the size of an integer (-mint32
-mint64).

_MCHP_SZLONG 32 or 64, depending on command line options
to set the size of an integer (-mlong32
-mlong64).

_MCHP_SZPTR 32 always since all pointers are 32 bits.
__mchp_no_float Defined if -mno-float specified.
__NO_FLOAT Defined if -mno-float specified.
__SOFT_FLOAT Defined if -mno-float not specified.

Indicates that floating-point is supported via
library calls.

__PIC__
__pic__

The translation unit is being compiled for
position independent code.

__PIC32MX
__PIC32MX__

Always defined.

__PIC32_FEATURE_SET__ The compiler predefines a macro based on
the features available for the selected device.
These macros are intended to be used when
writing code to take advantage of features
available on newer devices while maintaining
compatibility with older devices.
Examples: PIC32MX795F512L would use
__PIC32_FEATURE_SET__ == 795, and
PIC32MX340F128H would use
__PIC32_FEATURE_SET__ == 340.

PIC32MX Defined if -ansi is not specified.
__LANGUAGE_ASSEMBLY
__LANGUAGE_ASSEMBLY__
_LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files).

LANGUAGE_ASSEMBLY Defined if compiling a pre-processed
assembly file (.S files) and -ansi is not
specified.

__LANGUAGE_C
__LANGUAGE_C__
_LANGUAGE_C

Defined if compiling a C file.

LANGUAGE_C Defined if compiling a C file and -ansi is not
specified.

__processor__ Where “processor” is the capitalized argument
to the -mprocessor option. E.g.,
-mprocessor=32mx12f3456 will define
__32MX12F3456__.

__VERSION__ The __VERSION__ macro expands to a string
constant describing the compiler in use. Do
not rely on its contents having any particular
form, but it should contain at least the release
number. Use the __C32_VERSION__ macro
for a numeric version number.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 11

1.6.2 SDE Compatibility Macros
The MIPS® SDE (Software Development Environment) defines a number of macros,
most with the prefix “_MIPS_,” which characterize various target specific options, some
determined by command line options (e.g., -mint64). Where applicable, these
macros will be defined by the compiler in order to ease porting applications and
middleware from the SDE to the compiler.

__C32_VERSION__ The C compiler defines the constant
__C32_VERSION__, giving a numeric value
to the version identifier. This macro can be
used to construct applications that take
advantage of new compiler features while still
remaining backward compatible with older
versions. The value is based upon the major
and minor version numbers of the current
release. For example, release version 1.03
will have a __C32_VERSION__ definition of
103. This macro can be used, in conjunction
with standard preprocessor comparison
statements, to conditionally include/exclude
various code constructs.

_MIPS_SZINT 32 or 64, depending on command line options
to set the size of an integer (-mint32
-mint64).

_MIPS_SZLONG 32 or 64, depending on command line options
to set the size of an integer (-mlong32
-mlong64).

_MIPS_SZPTR 32 always since all pointers are 32 bits.
__mips_no_float Defined if -mno-float specified.
__mips__
_mips
_MIPS_ARCH_PIC32MX
_MIPS_TUNE_PIC32MX
_R3000
__R3000
__R3000__
__mips_soft_float
__MIPSEL
__MIPSEL__
_MIPSEL

Always defined.

R3000
MIPSEL

Defined if -ansi is not specified.

_mips_fpr Defined as 32.
__mips16
__mips16e

Defined if -mips16 or -mips16e specified.

__mips Defined as 32.
__mips_isa_rev Defined as 2.
_MIPS_ISA Defined as _MIPS_ISA_MIPS32.
__mips_single_float Defined if -msingle-float specified.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 12 © 2009 Microchip Technology Inc.

1.7 ATTRIBUTES AND PRAGMAS

1.7.1 Function Attributes
always_inline
If the function is declared inline, always inline the function, even if no optimization
level was specified.
longcall
Always invoke the function by first loading its address into a register and then using the
contents of that register. This allows calling a function located beyond the 28-bit
addressing range of the direct CALL instruction.
far
Functionally equivalent to longcall.
near
Always invoke the function with an absolute CALL instruction, even when the
-mlong-calls command line option is specified.
mips16
Generate code for the function in the MIPS16® instruction set.
nomips16
Always generate code for the function in the MIPS32® instruction set, even when
compiling the translation unit with the -mips16 command line option.
interrupt
Generate prologue and epilogue code for the function as an interrupt handler function.
See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.
vector
Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.
at_vector
Place the body of the function at the indicated exception vector address. See Chapter
3. “Interrupts” and Section 3.5 “Exception Handlers”.
naked
Generate no prologue or epilogue code for the function.
section (“name”)
Place the function into the named section.
For example,
void __attribute__ ((section (“.wilma”))) baz () {return;}

Function baz will be placed in section .wilma.
The -ffunction-sections command line option has no effect on functions defined
with a section attribute.
unique_section
Place the function in a uniquely named section, just as if -ffunction-sections had
been specified. If the function also has a section attribute, use that section name as
the prefix for generating the unique section name.
For example,
void __attribute__ ((section (“.fred”), unique_section) foo (void) {return;}

Function foo will be placed in section .fred.foo.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 13

noreturn
Indicate to the compiler that the function will never return. In some situations, this can
allow the compiler to generate more efficient code in the calling function since
optimizations can be performed without regard to behavior if the function ever did
return. Functions declared as noreturn should always have a return type of void.
noinline
The function will never be considered for inlining.
pure
If a function has no side effects other than its return value, and the return value is
dependent only on parameters and/or (nonvolatile) global variables, the compiler can
perform more aggressive optimizations around invocations of that function. Such
functions can be indicated with the pure attribute.
const
If a pure function determines its return value exclusively from its parameters (i.e., does
not examine any global variables), it may be declared const, allowing for even more
aggressive optimization. Note that a function which de-references a pointer argument
is not const since the pointer de-reference uses a value which is not a parameter,
even though the pointer itself is a parameter.
format (type, format_index, first_to_check)
The format attribute indicates that the function takes a printf, scanf, strftime,
or strfmon style format string and arguments and that the compiler should type check
those arguments against the format string, just as it does for the standard library
functions.
The type parameter is one of printf, scanf, strftime or strfmon (optionally with
surrounding double underscores, e.g., __printf__) and determines how the format
string will be interpreted.
The format_index parameter specifies which function parameter is the format string.
Function parameters are numbered from the left-most parameter, starting from 1.
The first_to_check parameter specifies which parameter is the first to check
against the format string. If first_to_check is zero, type checking is not performed
and the compiler only checks the format string for consistency (e.g., vfprintf).
format_arg (index)
The format_arg attribute specifies that a function manipulates a printf style format
string and that the compiler should check the format string for consistency. The function
attribute which is a format string is identified by index.
nonnull (index, ...)
Indicate to the compiler that one or more pointer arguments to the function must be
non-null. If the compiler determines that a Null Pointer is passed as a value to a
non-null argument, and the -Wnonnull command line option was specified, a warning
diagnostic is issued.
If no arguments are give to the nonnull attribute, all pointer arguments of the function
are marked as non-null.
unused
Indicate to the compiler that the function may not be used. The compiler will not issue
a warning for this function if it is not used.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 14 © 2009 Microchip Technology Inc.

used
Indicate to the compiler that the function is always used and code must be generated
for the function even if the compiler cannot see a reference to the function. For
example, if inline assembly is the only reference to a static function.
deprecated
When a function specified as deprecated is used, a warning is generated.
warn_unused_result
A warning will be issued if the return value of the indicated function is unused by a
caller.
weak
A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead. For example, this is useful when a library function is
implemented such that it can be overridden by a user written function.
malloc
Any non-Null Pointer return value from the indicated function will not alias any other
pointer which is live at the point when the function returns. This allows the compiler to
improve optimization.
alias (“symbol”)
Indicates that the function is an alias for another symbol. For example,

void foo (void) { /* stuff */ }
void bar (void) __attribute__ ((alias(“foo”)));

Symbol bar is considered to be an alias for symbol foo.

1.7.2 Variable Attributes
aligned (n)
The attributed variable will be aligned on the next n byte boundary.
The aligned attribute can also be used on a structure member. Such a member will
be aligned to the indicated boundary within the structure.
If the alignment value n is omitted, the alignment of the variable is set 8 (the largest
alignment value for a basic data type).
Note that the aligned attribute is used to increase the alignment of a variable, not
reduce it. To decrease the alignment value of a variable, use the packed attribute.
cleanup (function)
Indicate a function to call when the attributed automatic function scope variable goes
out of scope.
The indicated function should take a single parameter, a pointer to a type compatible
with the attributed variable, and have void return type.
deprecated
When a variable specified as deprecated is used, a warning is generated.
packed
The attributed variable or structure member will have the smallest possible alignment.
That is, no alignment padding storage will be allocated for the declaration. Used in
combination with the aligned attribute, packed can be used to set an arbitrary
alignment restriction, greater or lesser than the default alignment for the type of the
variable or structure member.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 15

section (“name”)
Place the function into the named section.
For example,
unsigned int dan __attribute__ ((section (“.quixote”)))

Variable dan will be placed in section .quixote.
The -fdata-sections command line option has no effect on variables defined with
a section attribute unless unique_section is also specified.
unique_section
Place the variable in a uniquely named section, just as if -fdata-sections had been
specified. If the variable also has a section attribute, use that section name as the
prefix for generating the unique section name.
For example,
int tin __attribute__ ((section (“.ofcatfood”), unique_section)

Variable tin will be placed in section .ofcatfood.
transparent_union
When a function parameter of union type has the transparent_union attribute
attached, corresponding arguments are passed as if the type were the type of the first
member of the union.
unused
Indicate to the compiler that the variable may not be used. The compiler will not issue
a warning for this variable if it is not used.
weak
A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead.

1.7.3 Pragmas
#pragma interrupt

Mark a function as an interrupt handler. The prologue and epilogue code for the
function will perform more extensive context preservation. See Chapter
3. “Interrupts” and Section 3.5 “Exception Handlers”.
#pragma vector

Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.
#pragma config

The #pragma config directive specifies the processor-specific configuration settings
(i.e., Configuration bits) to be used by the application. See Chapter 4. “Low-Level
Processor Control”.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 16 © 2009 Microchip Technology Inc.

1.8 COMMAND LINE OPTIONS
The compiler has many options for controlling compilation, all of which are case
sensitive.
• Options Specific to PIC32MX Devices
• Options for Controlling the Kind of Output
• Options for Controlling the C Dialect
• Options for Controlling Warnings and Errors
• Options for Debugging
• Options for Controlling Optimization
• Options for Controlling the Preprocessor
• Options for Assembling
• Options for Linking
• Options for Directory Search
• Options for Code Generation Conventions

1.8.1 Options Specific to PIC32MX Devices
TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS

Option Definition

-mprocessor Selects the device for which to compile.
(e.g., -mprocessor=32MX360F512L)

-mips16
-mno-mips16

Generate (do not generate) MIPS16® code.

-mno-float Don’t use floating-point libraries.
-msingle-float Assume that the floating-point coprocessor only

supports single-precision operations.
-mdouble-float Assume that the floating-point coprocessor supports

double-precision operations. This is the default.
-mlong64 Force long types to be 64 bits wide. See -mlong32

for an explanation of the default and the way that the
pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.
The default size of ints, longs and pointers is 32
bits.

-G num Put global and static items less than or equal to num
bytes into the small data or bss section instead of the
normal data or bss section. This allows the data to be
accessed using a single instruction.
All modules should be compiled with the same -G num
value.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if
possible, then next in the small data section if possible,
otherwise in data. This gives slightly slower code than
the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some
embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

Put uninitialized const variables in the read-only data
section. This option is only meaningful in conjunction
with -membedded-data.

-mcheck-zero-division
-mno-check-zero-division

Trap (do not trap) on integer division by zero. The
default is -mcheck-zero-division.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 17

-mmemcpy
-mno-memcpy

Force (do not force) the use of memcpy() for
non-trivial block moves. The default is -mno-memcpy,
which allows GCC to inline most constant-sized
copies.

-mlong-calls
-mno-long-calls

Disable (do not disable) use of the jal instruction.
Calling functions using jal is more efficient but
requires the caller and callee to be in the same 256
megabyte segment.
This option has no effect on abicalls code. The default
is -mno-long-calls.

-mno-peripheral-libs Do not use the standard peripheral libraries when
linking.

-msmart-io=[0|1|2] This option attempts to statically analyze format strings
passed to printf, scanf and the ‘f’ and ‘v’
variations of these functions. Uses of nonfloating-point
format arguments will be converted to use an
integer-only variation of the library function. For many
applications, this feature can reduce program-memory
usage.
-msmart-io=0 disables this option, while
-msmart-io=2 causes the compiler to be optimistic
and convert function calls with variable or unknown
format arguments. -msmart-io=1 is the default and
will convert only when the compiler can prove that
floating-point support is not required.

-mappio-debug Enable the APPIN/APPOUT debugging library
functions for the MPLAB ICD 3 debugger and MPLAB
REAL ICE emulator. This feature allows you to use the
DBPRINTF and related functions and macros as
described in the 32-bit Language Tool Libraries
document (DS51685). Enable this option only when
using a target PIC32 device that supports the
APPIN/APPOUT feature.

TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS (CONTINUED)
Option Definition

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 18 © 2009 Microchip Technology Inc.

1.8.2 Options for Controlling the Kind of Output
The following options control the kind of output produced by the compiler.
TABLE 1-3: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-c Compile or assemble the source files, but do not link. The default file
extension is .o.

-E Stop after the preprocessing stage (i.e., before running the compiler
proper). The default output file is stdout.

-o file Place the output in file.
-S Stop after compilation proper (i.e., before invoking the assembler). The

default output file extension is .s.
-v Print the commands executed during each stage of compilation.
-x You can specify the input language explicitly with the -x option:

-x language
Specify explicitly the language for the following input files (rather than
letting the compiler choose a default based on the file name suffix).
This option applies to all following input files until the next -x option.
The following values are supported by the compiler:
c
c-header
cpp-output
assembler
assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes. This is the default
behavior but is needed if another -x option has been used. For
example:
pic32-gcc -x assembler foo.asm bar.asm -x none
main.c mabonga.s

Without the -x none, the compiler assumes all the input files are for
the assembler.

--help Print a description of the command line options.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 19

1.8.3 Options for Controlling the C Dialect
The following options define the kind of C dialect used by the compiler.
TABLE 1-4: C DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C programs.
-aux-info filename Output to the given filename prototyped declarations for all

functions declared and/or defined in a translation unit,
including those in header files. This option is silently
ignored in any language other than C. Besides
declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the
declaration was implicit, prototyped or unprototyped (I, N
for new or O for old, respectively, in the first character after
the line number and the colon), and whether it came from a
declaration or a definition (C or F, respectively, in the
following character). In the case of function definitions, a
K&R-style list of arguments followed by their declarations is
also provided, inside comments, after the declaration.

-ffreestanding Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding
environment is one in which the standard library may not
exist, and program start-up may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword,
so that code can use these words as identifiers. You can
use the keywords __asm__, __inline__ and
__typeof__ instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with
__builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-traditional is used, in which case bit fields are always
unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.
-fwritable-strings Store strings in the writable data segment and don’t make

them unique.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 20 © 2009 Microchip Technology Inc.

1.8.4 Options for Controlling Warnings and Errors
Warnings are diagnostic messages that report constructions that are not inherently
erroneous but that are risky or suggest there may have been an error.
You can request many specific warnings with options beginning -W, for example,
-Wimplicit, to request warnings on implicit declarations. Each of these specific
warning options also has a negative form beginning -Wno- to turn off warnings, for
example, -Wno-implicit. This manual lists only one of the two forms, whichever is
not the default.
The following options control the amount and kinds of warnings produced by the
compiler.
TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY

-WALL

Option Definition

-fsyntax-only Check the code for syntax, but don’t do anything beyond that.
-pedantic Issue all the warnings demanded by strict ANSI C. Reject all

programs that use forbidden extensions.
-pedantic-errors Like -pedantic, except that errors are produced rather than

warnings.
-w Inhibit all warning messages.
-Wall All of the -W options listed in this table combined. This

enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify
to prevent the warning), even in conjunction with macros.

-Wchar-subscripts Warn if an array subscript has type char.
-Wcomment
-Wcomments

Warn whenever a comment-start sequence /* appears in a
/* comment, or whenever a Backslash-Newline appears in a
// comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit
the warning messages, use -Wno-div-by-zero.
Floating-point division by zero is not warned about, as it can
be a legitimate way of obtaining infinities and NaNs.
(This is the default.)

-Werror-implicit-
 function-declaration

Give an error whenever a function is used before being
declared.

-Wformat Check calls to printf and scanf, etc., to make sure that
the arguments supplied have types appropriate to the format
string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

-Wimplicit-function-
 declaration

Give a warning whenever a function is used before being
declared.

-Wimplicit-int Warn when a declaration does not specify a type.
-Wmain Warn if the type of main is suspicious. main should be a

function with external linkage, returning int, taking either
zero, two or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed.
In the following example, the initializer for a is not fully
bracketed, but that for b is fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 21

-Wmultichar
-Wno-multichar

Warn if a multi-character character constant is used.
Usually, such constants are typographical errors. Since they
have implementation-defined values, they should not be
used in portable code. The following example illustrates the
use of a multi-character character constant:
char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose
precedence people often find confusing.

-Wreturn-type Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with
no return-value in a function whose return-type is not void.

-Wsequence-point Warn about code that may have undefined semantics
because of violations of sequence point rules in the C
standard.
The C standard defines the order in which expressions in a C
program are evaluated in terms of sequence points, which
represent a partial ordering between the execution of parts of
the program: those executed before the sequence point and
those executed after it. These occur after the evaluation of a
full expression (one which is not part of a larger expression),
after the evaluation of the first operand of a &&, ||, ? : or ,
(comma) operator, before a function is called (but after the
evaluation of its arguments and the expression denoting the
called function), and in certain other places. Other than as
expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather
than a total order, since, for example, if two functions are
called within one expression with no sequence point between
them, the order in which the functions are called is not
specified. However, the standards committee has ruled that
function calls do not overlap.
It is not specified, when, between sequence points
modifications to the values of objects take effect. Programs
whose behavior depends on this have undefined behavior,
The C standard specifies that “Between the previous and
next sequence point, an object shall have its stored value
modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine
the value to be stored.” If a program breaks these rules, the
results on any particular implementation are entirely
unpredictable.
Examples of code with undefined behavior are a = a++;,
a[n] = b[n++] and a[i++] = i;. Some more
complicated cases are not diagnosed by this option, and it
may give an occasional false positive result, but in general it
has been found fairly effective at detecting this sort of
problem in programs.

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option Definition

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 22 © 2009 Microchip Technology Inc.

-Wswitch Warn whenever a switch statement has an index of
enumeral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system
header files. Warnings from system headers are normally
suppressed, on the assumption that they usually do not
indicate real problems and would only make the compiler
output harder to read. Using this command line option tells
the compiler to emit warnings from system headers as if they
occurred in user code. However, note that using -Wall in
conjunction with this option does not warn about unknown
pragmas in system headers. For that, -Wunknown-pragmas
must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are
enabled).

-Wuninitialized Warn if an automatic variable is used without first being
initialized.
These warnings are possible only when optimization is
enabled, because they require data flow information that is
computed only when optimizing.
These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a
variable that is declared volatile, or whose address is
taken, or whose size is other than 1, 2, 4 or 8 bytes. Also,
they do not occur for structures, unions or arrays, even when
they are in registers.
Note that there may be no warning about a variable that is
used only to compute a value that itself is never used,
because such computations may be deleted by data flow
analysis before the warnings are printed.

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not
understood by the compiler. If this command line option is
used, warnings will even be issued for unknown pragmas in
system header files. This is not the case if the warnings were
only enabled by the -Wall command line option.

-Wunused Warn whenever a variable is unused aside from its
declaration, whenever a function is declared static but never
defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not
used.
In order to get a warning about an unused function
parameter, both -W and -Wunused must be specified.
Casting an expression to void suppresses this warning for an
expression. Similarly, the unused attribute suppresses this
warning for unused variables, parameters and labels.

-Wunused-function Warn whenever a static function is declared but not defined
or a non-inline static function is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress
this warning, use the unused attribute.

-Wunused-parameter Warn whenever a function parameter is unused aside from its
declaration. To suppress this warning, use the unused
attribute.

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option Definition

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 23

-Wunused-variable Warn whenever a local variable or non-constant static
variable is unused aside from its declaration. To suppress this
warning, use the unused attribute.

-Wunused-value Warn whenever a statement computes a result that is
explicitly not used. To suppress this warning, cast the
expression to void.

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option Definition

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 24 © 2009 Microchip Technology Inc.

The following -W options are not implied by -Wall. Some of them warn about
constructions that users generally do not consider questionable, but which you might
occasionally wish to check for. Others warn about constructions that are necessary or
hard to avoid in some cases, and there is no simple way to modify the code to suppress
the warning.
TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY

-WALL

Option Definition

-W Print extra warning messages for these events:
• A nonvolatile automatic variable might be changed by a

call to longjmp. These warnings are possible only in
optimizing compilation. The compiler sees only the calls
to setjmp. It cannot know where longjmp will be called.
In fact, a signal handler could call it at any point in the
code. As a result, a warning may be generated even
when there is in fact no problem, because longjmp
cannot in fact be called at the place that would cause a
problem.

• A function could exit both via return value; and
return;. Completing the function body without passing
any return statement is treated as return;.

• An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as x[i,j] causes a
warning, but x[(void)i,j] does not.

• An unsigned value is compared against zero with < or <=.
• A comparison like x<=y<=z appears, This is equivalent

to (x<=y ? 1 : 0) <= z, which is a different
interpretation from that of ordinary mathematical notation.

• Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.

• If -Wall or -Wunused is also specified, warn about
unused arguments.

• A comparison between signed and unsigned values could
produce an incorrect result when the signed value is
converted to unsigned. (But don’t warn if
-Wno-sign-compare is also specified.)

• An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for
x.h:
struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

• An aggregate has an initializer that does not initialize all
members. For example, the following code would cause
such a warning, because x.h would be implicitly
initialized to zero:
struct s { int f, g, h; };
struct s x = { 3, 4 };

-Waggregate-return Warn if any functions that return structures or unions are
defined or called.

-Wbad-function-cast Warn whenever a function call is cast to a non-matching type.
For example, warn if int foof() is cast to anything *.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 25

-Wcast-align Warn whenever a pointer is cast, such that the required
alignment of the target is increased. For example, warn if a
char * is cast to an int * .

-Wcast-qual Warn whenever a pointer is cast, so as to remove a type
qualifier from the target type. For example, warn if a
const char * is cast to an ordinary char *.

-Wconversion Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the
width or signedness of a fixed point argument, except when
the same as the default promotion.
Also, warn if a negative integer constant expression is
implicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsigned) -1.

-Werror Make all warnings into errors.
-Winline Warn if a function can not be inlined, and either it was

declared as inline, or else the -finline-functions option
was given.

-Wlarger-than-len Warn whenever an object of larger than len bytes is defined.
-Wlong-long
-Wno-long-long

Warn if long long type is used. This is default. To inhibit the
warning messages, use -Wno-long-long. Flags
-Wlong-long and -Wno-long-long are taken into account
only when -pedantic flag is used.

-Wmissing-declarations Warn if a global function is defined without a previous
declaration. Do so even if the definition itself provides a
prototype.

-Wmissing-
 format-attribute

If -Wformat is enabled, also warn about functions that might
be candidates for format attributes. Note these are only
possible candidates, not absolute ones. This option has no
effect unless -Wformat is enabled.

-Wmissing-noreturn Warn about functions that might be candidates for attribute
noreturn. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions.
Actually, do not ever return before adding the noreturn
attribute, otherwise subtle code generation bugs could be
introduced.

-Wmissing-prototypes Warn if a global function is defined without a previous
prototype declaration. This warning is issued even if the
definition itself provides a prototype. (This option can be used
to detect global functions that are not declared in header files.)

-Wnested-externs Warn if an extern declaration is encountered within a
function.

-Wno-deprecated-
 declarations

Do not warn about uses of functions, variables and types
marked as deprecated by using the deprecated attribute.

-Wpadded Warn if padding is included in a structure, either to align an
element of the structure or to align the whole structure.

-Wpointer-arith Warn about anything that depends on the size of a function
type or of void. The compiler assigns these types a size of 1,
for convenience in calculations with void * pointers and
pointers to functions.

TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY
-WALL (CONTINUED)

Option Definition

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 26 © 2009 Microchip Technology Inc.

-Wredundant-decls Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wshadow Warn whenever a local variable shadows another local
variable.

-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned
values could produce an incorrect result when the signed
value is converted to unsigned. This warning is also enabled
by -W. To get the other warnings of -W without this warning,
use -W -Wno-sign-compare.

-Wstrict-prototypes Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies
the argument types.)

-Wtraditional Warn about certain constructs that behave differently in
traditional and ANSI C.
• Macro arguments occurring within string constants in the

macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

• A function declared external in one block and then used
after the end of the block.

• A switch statement has an operand of type long.
• A nonstatic function declaration follows a static one. This

construct is not accepted by some traditional C compilers.
-Wundef Warn if an undefined identifier is evaluated in an #if

directive.
-Wunreachable-code Warn if the compiler detects that code will never be executed.

It is possible for this option to produce a warning even though
there are circumstances under which part of the affected line
can be executed, so care should be taken when removing
apparently-unreachable code. For instance, when a function is
inlined, a warning may mean that the line is unreachable in
only one inlined copy of the function.

-Wwrite-strings Give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer
gets a warning. At compile time, these warnings help you find
code that you can try to write into a string constant, but only if
you have been very careful about using const in declarations
and prototypes. Otherwise, it’s just a nuisance, which is why
-Wall does not request these warnings.

TABLE 1-6: WARNING AND ERROR OPTIONS NOT IMPLIED BY
-WALL (CONTINUED)

Option Definition

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 27

1.8.5 Options for Debugging
The following options are used for debugging.
TABLE 1-7: DEBUGGING OPTIONS

Option Definition

-g Produce debugging information.
The compiler supports the use of -g with -O making it possible
to debug optimized code. The shortcuts taken by optimized code
may occasionally produce surprising results:
• Some declared variables may not exist at all;
• Flow of control may briefly move unexpectedly;
• Some statements may not be executed because they

compute constant results or their values were already at
hand;

• Some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This
makes it reasonable to use the optimizer for programs that might
have bugs.

-Q Makes the compiler print out each function name as it is
compiled, and print some statistics about each pass when it
finishes.

-save-temps Don’t delete intermediate files. Place them in the current
directory and name them based on the source file. Thus,
compiling foo.c with -c -save-temps would produce the
following files:
foo.i (preprocessed file)
foo.s (assembly language file)
foo.o (object file)

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 28 © 2009 Microchip Technology Inc.

1.8.6 Options for Controlling Optimization
The following options control compiler optimizations.

The following options control specific optimizations. The -O2 option turns on all of
these optimizations except -funroll-loops, -funroll-all-loops and
-fstrict-aliasing.

TABLE 1-8: GENERAL OPTIMIZATION OPTIONS
Option Definition

-O0 Do not optimize. (This is the default.)
Without -O, the compiler’s goal is to reduce the cost of
compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program
with a breakpoint between statements, you can then assign a
new value to any variable or change the program counter to
any other statement in the function and get exactly the results
you would expect from the source code.
The compiler only allocates variables declared register in
registers.

-O
-O1

Optimization level 1. Optimizing compilation takes somewhat
longer, and a lot more host memory for a large function.
With -O, the compiler tries to reduce code size and execution
time.
When -O is specified, the compiler turns on
-fthread-jumps and
 -fdefer-pop. The compiler turns on
-fomit-frame-pointer.

-O2 Optimization level 2. The compiler performs nearly all
supported optimizations that do not involve a space-speed
trade-off. -O2 turns on all optional optimizations except for
loop unrolling (-funroll-loops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing). It also turns on force copy of
memory operands (-fforce-mem) and Frame Pointer
elimination (-fomit-frame-pointer). As compared to -O,
this option increases both compilation time and the
performance of the generated code.

-O3 Optimization level 3. -O3 turns on all optimizations specified
by -O2 and also turns on the inline-functions option.

-Os Optimize for size. -Os enables all -O2 optimizations that do
not typically increase code size. It also performs further
optimizations designed to reduce code size.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 29

You can use the following flags in the rare cases when “fine-tuning” of optimizations to
be performed is desired.
TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS

Option Definition

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater
than n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next
32-byte boundary, but -falign-functions=24 would align
to the next 32-byte boundary only if this can be done by
skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are
equivalent and mean that functions are not aligned.
The assembler only supports this flag when n is a power of
two, so n is rounded up. If n is not specified, use a
machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping
up to n bytes like -falign-functions. This option can
easily make code slower, because it must insert dummy
operations for when the branch target is reached in the usual
flow of the code.
If -falign-loops or -falign-jumps are applicable and
are greater than this value, then their values are used instead.
If n is not specified, use a machine-dependent default which is
very likely to be 1, meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes
like -falign-functions. The hope is that the loop is
executed many times, which makes up for any execution of
the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that are clobbered
by function calls, by emitting extra instructions to save and
restore the registers around such calls. Such allocation is
done only when it seems to result in better code than would
otherwise be produced.

-fcse-follow-jumps In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by any
other path. For example, when CSE encounters an if
statement with an else clause, CSE follows the jump when
the condition tested is false.

-fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple if statement with no else clause,
-fcse-skip-blocks causes CSE to follow the jump around
the body of the if.

-fexpensive-
 optimizations

Perform a number of minor optimizations that are relatively
expensive.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the
output file. The name of the function or the name of the data
item determines the section's name in the output file.
Only use these options when there are significant benefits for
doing so. When you specify these options, the assembler and
linker may create larger object and executable files and is also
slower.

-fgcse Perform a global common subexpression elimination pass.
This pass also performs global constant and copy
propagation.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 30 © 2009 Microchip Technology Inc.

-fgcse-lm When -fgcse-lm is enabled, global common subexpression
elimination attempts to move loads which are only killed by
stores into themselves. This allows a loop containing a
load/store sequence to change to a load outside the loop, and
a copy/store within the loop.

-fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after
global common subexpression elimination. This pass attempts
to move stores out of loops. When used in conjunction with
-fgcse-lm, loops containing a load/store sequence can
change to a load before the loop and a store after the loop.

-fmove-all-movables Forces all invariant computations in loops to be moved outside
the loop.

-fno-defer-pop Always pop the arguments to each function call as soon as
that function returns. The compiler normally lets arguments
accumulate on the stack for several function calls and pops
them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole
optimizations occur at various points during the compilation.
-fno-peephole disables peephole optimization on machine
instructions, while -fno-peephole2 disables high level
peephole optimizations. To disable peephole entirely, use both
options.

-foptimize-
 register-move
-fregmove

Attempt to reassign register numbers in move instructions and
as operands of other simple instructions in order to maximize
the amount of register tying.
-fregmove and -foptimize-register-moves are the
same optimization.

-freduce-all-givs Forces all general-induction variables in loops to be
strength-reduced.
These options may generate better or worse code. Results
are highly dependent on the structure of loops within the
source code.

-frename-registers Attempt to avoid false dependencies in scheduled code by
making use of registers left over after register allocation. This
optimization most benefits processors with lots of registers. It
can, however, make debugging impossible, since variables no
longer stay in a “home register”.

-frerun-cse-after-
 loop

Rerun common subexpression elimination after loop
optimizations has been performed.

-frerun-loop-opt Run the loop optimizer twice.
-fschedule-insns Attempt to reorder instructions to eliminate instruction stalls

due to required data being unavailable.
-fschedule-insns2 Similar to -fschedule-insns, but requests an additional

pass of instruction scheduling after register allocation has
been done.

-fstrength-reduce Perform the optimizations of loop strength reduction and
elimination of iteration variables.

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)
Option Definition

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 31

-fstrict-aliasing Allows the compiler to assume the strictest aliasing rules
applicable to the language being compiled. For C, this
activates optimizations based on the type of expressions. In
particular, an object of one type is assumed never to reside at
the same address as an object of a different type, unless the
types are almost the same. For example, an unsigned int
can alias an int, but not a void* or a double. A character
type may alias any other type.
Pay special attention to code like this:
union a_union {
 int i;
 double d;
};

int f() {
 union a_union t;
 t.d = 3.0;
 return t.i;
}
The practice of reading from a different union member than
the one most recently written to (called “type-punning”) is
common. Even with -fstrict-aliasing, type-punning is
allowed, provided the memory is accessed through the union
type. So, the code above works as expected. However, this
code might not:
int f() {
 a_union t;
 int* ip;
 t.d = 3.0;
 ip = &t.i;
 return *ip;
}

-fthread-jumps Perform optimizations where a check is made to see if a jump
branches to a location where another comparison subsumed
by the first is found. If so, the first branch is redirected to either
the destination of the second branch or a point immediately
following it, depending on whether the condition is known to
be true or false.

-funroll-loops Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or run time. -funroll-loops implies both
-fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops Perform the optimization of loop unrolling. This is done for all
loops and usually makes programs run more slowly.
-funroll-all-loops implies -fstrength-reduce, as
well as -frerun-cse-after-loop.

TABLE 1-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)
Option Definition

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 32 © 2009 Microchip Technology Inc.

Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)
TABLE 1-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option Definition

-fforce-mem Force memory operands to be copied into registers
before doing arithmetic on them. This produces better
code by making all memory references potential common
subexpressions. When they are not common
subexpressions, instruction combination should eliminate
the separate register-load. The -O2 option turns on this
option.

-finline-functions Integrate all simple functions into their callers. The
compiler heuristically decides which functions are simple
enough to be worth integrating in this way. If all calls to a
given function are integrated, and the function is declared
static, then the function is normally not output as
assembler code in its own right.

-finline-limit=n By default, the compiler limits the size of functions that
can be inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline (i.e., marked
with the inline keyword). n is the size of functions that
can be inlined in number of pseudo instructions (not
counting parameter handling). The default value of n is
10000. Increasing this value can result in more inlined
code at the cost of compilation time and memory
consumption.
Decreasing usually makes the compilation faster and less
code is inlined (which presumably means slower
programs). This option is particularly useful for programs
that use inlining.

Note: Pseudo instruction represents, in this particular
context, an abstract measurement of function's size. In no
way does it represent a count of assembly instructions
and as such, its exact meaning might change from one
release of the compiler to an another.

-fkeep-inline-functions Even if all calls to a given function are integrated, and the
function is declared static, output a separate run time
callable version of the function. This switch does not
affect extern inline functions.

-fkeep-static-consts Emit variables declared static const when optimization
isn't turned on, even if the variables are not referenced.
The compiler enables this option by default. If you want to
force the compiler to check if the variable was referenced,
regardless of whether or not optimization is turned on,
use the -fno-keep-static-consts option.

-fno-function-cse Do not put function addresses in registers. Make each
instruction that calls a constant function contain the
function's address explicitly.
This option results in less efficient code, but some
strange hacks that alter the assembler output may be
confused by the optimizations performed when this option
is not used.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 33

1.8.7 Options for Controlling the Preprocessor
The following options control the compiler preprocessor.

-fno-inline Do not pay attention to the inline keyword. Normally
this option is used to keep the compiler from expanding
any functions inline. If optimization is not enabled, no
functions can be expanded inline.

-fomit-frame-pointer Do not keep the Frame Pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore Frame Pointers. It also makes an extra
register available in many functions.

-foptimize-sibling-calls Optimize sibling and tail recursive calls.

TABLE 1-11: PREPROCESSOR OPTIONS
Option Definition

-Aquestion (answer) Assert the answer answer for question question, in case it is
tested with a preprocessing conditional such as #if
#question(answer). -A- disables the standard assertions
that normally describe the target machine.
For example, the function prototype for main might be declared
as follows:
#if #environ(freestanding)
int main(void);
#else
int main(int argc, char *argv[]);
#endif
A -A command line option could then be used to select
between the two prototypes. For example, to select the first of
the two, the following command line option could be used:
-Aenviron(freestanding)

-A -predicate =answer Cancel an assertion with the predicate predicate and
answer answer.

-A predicate =answer Make an assertion with the predicate predicate and answer
answer. This form is preferred to the older form
-A predicate(answer), which is still supported, because it
does not use shell special characters.

-C Tell the preprocessor not to discard comments. Used with the
-E option.

-dD Tell the preprocessor to not remove macro definitions into the
output, in their proper sequence.

-Dmacro Define macro macro with the string 1 as its definition.
-Dmacro=defn Define macro macro as defn. All instances of -D on the

command line are processed before any -U options.
-dM Tell the preprocessor to output only a list of the macro

definitions that are in effect at the end of preprocessing. Used
with the -E option.

-dN Like -dD except that the macro arguments and contents are
omitted. Only #define name is included in the output.

-fno-show-column Do not print column numbers in diagnostics. This may be
necessary if diagnostics are being scanned by a program that
does not understand the column numbers, such as dejagnu.

-H Print the name of each header file used, in addition to other
normal activities.

TABLE 1-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS
Option Definition

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 34 © 2009 Microchip Technology Inc.

-I- Any directories you specify with -I options before the -I-
options are searched only for the case of #include "file".
They are not searched for #include <file>.
If additional directories are specified with -I options after the
-I-, these directories are searched for all #include
directives. (Ordinarily all -I directories are used this way.)
In addition, the -I- option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for #include "file". There is no way to
override this effect of -I-. With -I. you can specify searching
the directory that was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by
default, but it is often satisfactory.
-I- does not inhibit the use of the standard system directories
for header files. Thus, -I- and -nostdinc are independent.

-Idir Add the directory dir to the head of the list of directories to be
searched for header files. This can be used to override a
system header file, substituting your own version, since these
directories are searched before the system header file
directories. If you use more than one -I option, the directories
are scanned in left-to-right order. The standard system
directories come after.

-idirafter dir Add the directory dir to the second include path. The
directories on the second include path are searched when a
header file is not found in any of the directories in the main
include path (the one that -I adds to).

-imacros file Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated
from the file is discarded, the only effect of -imacros file is
to make the macros defined in file available for use in the main
input.
Any -D and -U options on the command line are always
processed before -imacros file, regardless of the order in
which they are written. All the -include and -imacros
options are processed in the order in which they are written.

-include file Process file as input before processing the regular input file. In
effect, the contents of file are compiled first. Any -D and -U
options on the command line are always processed before
-include file, regardless of the order in which they are
written. All the -include and -imacros options are
processed in the order in which they are written.

-iprefix prefix Specify prefix as the prefix for subsequent -iwithprefix
options.

-isystem dir Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same special
treatment as is applied to the standard system directories.

-iwithprefix dir Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where prefix
was specified previously with -iprefix. If a prefix has not yet
been specified, the directory containing the installed passes of
the compiler is used as the default.

-iwithprefixbefore
dir

Add a directory to the main include path. The directory’s name
is made by concatenating prefix and dir, as in the case of
-iwithprefix.

TABLE 1-11: PREPROCESSOR OPTIONS (CONTINUED)
Option Definition

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 35

-M Tell the preprocessor to output a rule suitable for make
describing the dependencies of each object file. For each
source file, the preprocessor outputs one make-rule whose
target is the object file name for that source file and whose
dependencies are all the #include header files it uses. This
rule may be a single line or may be continued with \-newline
if it is long. The list of rules is printed on standard output instead
of the preprocessed C program.
-M implies -E (see Section 1.8.2 “Options for Controlling
the Kind of Output”).

-MD Like -M but the dependency information is written to a file and
compilation continues. The file containing the dependency
information is given the same name as the source file with a .d
extension.

-MF file When used with -M or -MM, specifies a file in which to write the
dependencies. If no -MF switch is given, the preprocessor
sends the rules to the same place it would have sent
preprocessed output.
When used with the driver options, -MD or -MMD, -MF,
overrides the default dependency output file.

-MG Treat missing header files as generated files and assume they
live in the same directory as the source file. If -MG is specified,
then either -M or -MM must also be specified. -MG is not
supported with -MD or -MMD.

-MM Like -M but the output mentions only the user header files
included with #include “file”. System header files included
with #include <file> are omitted.

-MMD Like -MD except mention only user header files, not system
header files.

-MP This option instructs CPP to add a phony target for each
dependency other than the main file, causing each to depend
on nothing. These dummy rules work around errors make gives
if you remove header files without updating the make-file to
match.
This is typical output:
test.o: test.c test.h
test.h:

-MQ Same as -MT, but it quotes any characters which are special to
make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o:
foo.c
The default target is automatically quoted, as if it were given
with -MQ.

-MT target Change the target of the rule emitted by dependency
generation. By default, CPP takes the name of the main input
file, including any path, deletes any file suffix such as .c, and
appends the platform’s usual object suffix. The result is the
target.
An -MT option sets the target to be exactly the string you
specify. If you want multiple targets, you can specify them as a
single argument to -MT, or use multiple -MT options.
For example:
-MT '$(objpfx)foo.o' might give $(objpfx)foo.o:
foo.c

TABLE 1-11: PREPROCESSOR OPTIONS (CONTINUED)
Option Definition

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 36 © 2009 Microchip Technology Inc.

1.8.8 Options for Assembling
The following options control assembler operations.

-nostdinc Do not search the standard system directories for header files.
Only the directories you have specified with -I options (and the
current directory, if appropriate) are searched. (See
Section 1.8.10 “Options for Directory Search”) for
information on -I.
By using both -nostdinc and -I-, the include-file search
path can be limited to only those directories explicitly specified.

-P Tell the preprocessor not to generate #line directives. Used
with the -E option (see Section 1.8.2 “Options for
Controlling the Kind of Output”).

-trigraphs Support ANSI C trigraphs. The -ansi option also has this
effect.

-Umacro Undefine macro macro. -U options are evaluated after all -D
options, but before any -include and -imacros options.

-undef Do not predefine any nonstandard macros (including
architecture flags).

TABLE 1-12: ASSEMBLY OPTIONS
Option Definition

-Wa,option Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

TABLE 1-11: PREPROCESSOR OPTIONS (CONTINUED)
Option Definition

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 37

1.8.9 Options for Linking
If any of the options -c, -S or -E are used, the linker is not run and object file names
should not be used as arguments.
TABLE 1-13: LINKING OPTIONS

Option Definition

-Ldir Add directory dir to the list of directories to be searched for libraries
specified by the command line option -l.

-llibrary Search the library named library when linking.
The linker searches a standard list of directories for the library, which is
actually a file named liblibrary.a. The linker then uses this file as if
it had been specified precisely by name.
It makes a difference where in the command you write this option. The
linker processes libraries and object files in the order they are specified.
Thus, foo.o -lz bar.o searches library z after file foo.o but before
bar.o. If bar.o refers to functions in libz.a, those functions may not
be loaded.
The directories searched include several standard system directories,
plus any that you specify with -L.
Normally the files found this way are library files (archive files whose
members are object files). The linker handles an archive file by scanning
through it for members which define symbols that have so far been
referenced but not defined. But if the file that is found is an ordinary
object file, it is linked in the usual fashion. The only difference between
using an -l option (e.g., -lmylib) and specifying a file name (e.g.,
libmylib.a) is that -l searches several directories, as specified.
By default the linker is directed to search:
<install-path>\lib
for libraries specified with the -l option. For a compiler installed into the
default location, this would be:
c:\Program Files\Microchip\MPLAB C32\lib
This behavior can be overridden using the environment variables.

-nodefaultlibs Do not use the standard system libraries when linking. Only the libraries
you specify are passed to the linker. The compiler may generate calls to
memcmp, memset and memcpy. These entries are usually resolved by
entries in the standard compiler libraries. These entry points should be
supplied through some other mechanism when this option is specified.

-nostdlib Do not use the standard system start-up files or libraries when linking.
No start-up files and only the libraries you specify are passed to the
linker. The compiler may generate calls to memcmp, memset and
memcpy. These entries are usually resolved by entries in standard
compiler libraries. These entry points should be supplied through some
other mechanism when this option is specified.

-s Remove all symbol table and relocation information from the
executable.

-u symbol Pretend symbol is undefined to force linking of library modules to
define the symbol. It is legitimate to use -u multiple times with different
symbols to force loading of additional library modules.

-Wl,option Pass option as an option to the linker. If option contains commas, it
is split into multiple options at the commas.

-Xlinker option Pass option as an option to the linker. You can use this to supply
system-specific linker options that the compiler does not know how to
recognize.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 38 © 2009 Microchip Technology Inc.

1.8.10 Options for Directory Search
The following options specify to the compiler where to find directories and files to
search.
TABLE 1-14: DIRECTORY SEARCH OPTIONS

Option Definition

-Bprefix This option specifies where to find the executables, libraries,
include files and data files of the compiler itself.
The compiler driver program runs one or more of the
sub-programs pic32-cpp, pic32-cc1, pic32-as and
pic32-ld. It tries prefix as a prefix for each program it tries to
run.
For each sub-program to be run, the compiler driver first tries the
-B prefix, if any. Lastly, the driver searches the current PATH
environment variable for the subprogram.
-B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into -L options for the linker. They also apply to include
files in the preprocessor, because the compiler translates these
options into -isystem options for the preprocessor. In this case,
the compiler appends include to the prefix.

-specs=file Process file after the compiler reads in the standard specs file, in
order to override the defaults that the pic32-gcc driver program
uses when determining what switches to pass to pic32-cc1,
pic32-as, pic32-ld, etc. More than one -specs=file can be
specified on the command line, and they are processed in order,
from left to right.

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 39

1.8.11 Options for Code Generation Conventions
Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)
TABLE 1-15: CODE GENERATION CONVENTION OPTIONS

Option Definition

-fargument-alias
-fargument-noalias
-fargument-
 noalias-global

Specify the possible relationships among parameters and between
parameters and global data.
-fargument-alias specifies that arguments (parameters) may
alias each other and may alias global storage.
-fargument-noalias specifies that arguments do not alias
each other, but may alias global storage.
-fargument-noalias-global specifies that arguments do not
alias each other and do not alias global storage.
Each language automatically uses whatever option is required by
the language standard. You should not need to use these options
yourself.

-fcall-saved-reg Treat the register named reg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way saves and
restores the register reg if they use it.
It is an error to used this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.
A different sort of disaster results from the use of this flag for a
register in which function values are returned.
This flag should be used consistently through all modules.

-fcall-used-reg Treat the register named reg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register reg.
It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.
This flag should be used consistently through all modules.

-ffixed-reg Treat the register named reg as a fixed register. Generated code
should never refer to it (except perhaps as a Stack Pointer, Frame
Pointer or in some other fixed role).
reg must be the name of a register (e.g., -ffixed-$0).

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 40 © 2009 Microchip Technology Inc.

-finstrument-
 functions

Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions are called with the address of the current
function and its call site.
void __cyg_profile_func_enter
 (void *this_fn, void *call_site);
void __cyg_profile_func_exit
 (void *this_fn, void *call_site);
The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
The profiling functions should be provided by the user.
Function instrumentation requires the use of a Frame Pointer.
Some optimization levels disable the use of the Frame Pointer.
Using -fno-omit-frame-pointer prevents this.
This instrumentation is also done for functions expanded inline in
other functions. The profiling calls indicates where, conceptually,
the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all
your uses of a function are expanded inline, this may mean an
additional expansion of code size. If you use extern inline in
your C code, an addressable version of such functions must be
provided.
A function may be given the attribute
no_instrument_function, in which case this instrumentation
is not done.

-fno-ident Ignore the #ident directive.
-fpack-struct Pack all structure members together without holes. Usually you

would not want to use this option, since it makes the code
sub-optimal, and the offsets of structure members won’t agree with
system libraries.

-fpcc-struct-
 return

Return short struct and union values in memory like longer
ones, rather than in registers. This convention is less efficient, but
it has the advantage of allowing capability between 32-bit compiled
files and files compiled with other compilers.
Short structures and unions are those whose size and alignment
match that of an integer type.

-fno-short-double By default, the compiler uses a double type equivalent to float.
This option makes double equivalent to long double. Mixing
this option across modules can have unexpected results if
modules share double data either directly through argument
passage or indirectly through shared buffer space. Libraries
provided with the product function with either switch setting.

-fshort-enums Allocate to an enum type only as many bytes as it needs for the
declared range of possible values. Specifically, the enum type is
equivalent to the smallest integer type which has enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code
to make it more readable.
-fno-verbose-asm, the default, causes the extra information to
be omitted and is useful when comparing two assembler files.

-fvolatile Consider all memory references through pointers to be volatile.
-fvolatile-global Consider all memory references to external and global data items

to be volatile. The use of this switch has no effect on static data.
-fvolatile-static Consider all memory references to static data to be volatile.

TABLE 1-15: CODE GENERATION CONVENTION OPTIONS (CONTINUED)
Option Definition

Language Specifics

© 2009 Microchip Technology Inc. DS51686B-page 41

1.9 COMPILING A SINGLE FILE ON THE COMMAND LINE
This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler is installed on your c: drive in a directory called
Program Files\Microchip\MPLAB C32. Therefore the following applies:
• c:\Program Files\Microchip\MPLAB C32\pic32mx\include – Include

directory for standard C header files.
• c:\Program Files\Microchip\MPLAB C32\pic32mx\include\proc –

Include directory for PIC32MX device-specific header files.
• c:\Program Files\Microchip\MPLAB C32\pic32mx\lib – Library

directory structure for standard libraries and start-up files.
• c:\Program Files\Microchip\MPLAB
C32\pic32mx\include\peripheral – Include directory for PIC32MX
peripheral library include files.

• c:\Program Files\Microchip\MPLAB C32\pic32mx\lib\proc –
Directory for device-specific linker script fragments, register definition files and
configuration data may be found.

• c:\Program Files\Microchip\MPLAB C32\bin – Directory where the top
level tools executables are located. The PATH environment variable may include
this directory.

The following is a simple C program that adds two numbers.
Create the following program with any text editor and save it as ex1.c.
#include <p32xxxx.h>

unsigned int x, y, z;

unsigned int
add(unsigned int a, unsigned int b)
{
 return(a+b);
}

int
main(void)
{
 x = 2;
 y = 5;
 z = add(x,y);
 return 0;
}

The first line of the program includes the header file p32xxxx.h, which provides
definitions for all Special Function Registers (SFRs) on that part. For more information
on processor header files, see Chapter 4. “Low-Level Processor Control”.
Compile the program by typing the following at a DOS prompt:
C:\> pic32-gcc -o ex1.out ex1.c

The command line option -o ex1.out names the output executable file (if the -o
option is not specified, then the output file is named a.out). The executable file may
be loaded into the MPLAB IDE.
If a hex file is required, for example, to load into a device programmer, then use the
following command:
C:\> pic32-bin2hex ex1.out

This creates an Intel hex file named ex1.hex.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 42 © 2009 Microchip Technology Inc.

1.10 COMPILING MULTIPLE FILES ON THE COMMAND LINE
Move the Add() function into a file called add.c to demonstrate the use of multiple
files in an application. That is:
File 1
/* ex1.c */
#include <p32xxxx.h>
int main(void);
unsigned int add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
File 2
/* add.c */
#include <p32xxxx.h>
unsigned int
add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files by typing the following at a DOS prompt:
C:\> pic32-gcc -o ex1.out ex1.c add.c

This command compiles the modules ex1.c and add.c. The compiled modules are
linked with the compiler libraries and the executable file ex1.out is created.

1.11 BINARY CONSTANTS
A sequence of binary digits preceded by 0b or 0B (the numeral ‘0’ followed by the letter
‘b’ or ‘B’) is taken to be a binary integer. The binary digits consist of the numerals ‘0’
and ‘1’. For example, the (decimal) number 255 can be written as 0b11111111. Like
other integer constants, a binary constant may be suffixed by the letter ‘u’ or ‘U’, to
specify that it is unsigned. A binary constant may also be suffixed by the letter ‘l’ or ‘L’,
to specify that it is long. Similarly, the suffix ‘ll’ or ‘LL’ denotes a long long binary
constant.

Note: This binary-constant syntax may not be accepted by other C compilers.

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 43

Chapter 2. Library Environment

2.1 INTRODUCTION
This chapter discusses using the 32-bit language tools libraries.

2.2 HIGHLIGHTS
Items discussed in this chapter are:
• Standard I/O
• Weak Functions
• “Helper” Header Files
• Multilibs

2.3 STANDARD I/O
The standard input/output library functions support two modes of operation, Simple and
Full. The Simple mode supports I/O via a two function interface on a single character
device used for stdout, stdin and stderr. The Full mode supports the complete
set of standard I/O functions. The library will use Full mode if the application calls
fopen, otherwise Simple mode is used.
Simple mode performs I/O using four functions, _mon_puts, _mon_write,
_mon_getc and _mon_putc, to perform the raw device I/O. The default
implementation of _mon_getc always returns failure (i.e., by default, character input is
not available). The default implementation of _mon_putc writes a character to UART2.
It is assumed that the application has performed any necessary initialization of the
UART. The default implementations of _mon_puts and _mon_write both simply call
_mon_putc iteratively. All four functions are defined as weak functions, and so may be
overridden by the user application if different functionality is desired. See the “32-Bit
Language Tools Libraries” for detailed information on these functions.
An application using Full mode must supply the standard low-level POSIX I/O functions
open, read, write, lseek and close. No default implementations are provided. See
the “32-Bit Language Tools Libraries” (DS51685) for detailed information on these
functions.

2.4 WEAK FUNCTIONS
The standard library provides a number of weak function implementations of low-level
interfaces. User applications which use this functionality will often implement more full
featured versions of these functions. For details of the specific functions, see the
“32-Bit Language Tools Libraries Libraries” (DS51685).
As described above, the standard I/O library functions utilize a set of weak functions for
simple output: _mon_write, _mon_putc, _mon_puts, and _mon_getc.
The standard start-up code (See Section 5.7 “Start-up and Initialization”) invokes a
number of weak functions directly and provides weak handlers for bootstrap exceptions
and general exceptions: _on_reset, _nmi_handler,
_bootstrap_exception_handler, _general_exception_handler, and
_on_bootstrap.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 44 © 2009 Microchip Technology Inc.

The standard library function exit calls the weak function _exit prior to returning.
The standard library functions for signals, signal and raise, are implemented as
weak functions which always fail.
The standard library functions for locales, setlocale and localeconv, are
implemented as weak functions which do nothing.
The standard library function for accessing environment variables, getenv, is
implemented as a weak function which always returns null.

2.5 “HELPER” HEADER FILES

2.5.1 sys/attribs.h
Macros are provided for many commonly used attributes in order to enhance user code
readability.

2.5.2 sys/kmem.h
System code may need to translate between virtual and physical addresses, as well as
between kernel segment addresses. Macros are provided to make these translations
easier and to determine the segment an address is in.

__section__(s) Apply the section attribute with section name s.
__unique_section__ Apply the unique_section attribute.
__ramfunc__ Locate the attributed function in the RAM function code

section.
__longramfunc__ Locate the attributed function in the RAM function code

section and apply the longcall attribute.
__longcall__ Apply the longcall attribute.
__ISR(v,ipl) Apply the interrupt attribute with priority level ipl

and the vector attribute with vector number v.
__ISR_AT_VECTOR(v,ipl) Apply the interrupt attribute with priority level ipl

and the at_vector attribute with vector number v.
__ISR_SINGLE__ Specifies a function as an Interrupt Service Routine in

single-vector mode. This places a jump at the
single-vector location to the interrupt handler.

__ISR_SINGLE_AT_VECTOR__ Places the entire single-vector interrupt handler at the
vector 0 location. When used, ensure that the vector
spacing is set to accommodate the size of the handler.

KVA_TO_PA(v) Translate a kernel virtual address to a physical address.
PA_TO_KVA0(pa) Translate a physical address to a KSEG0 virtual address.
PA_TO_KVA1(pa) Translate a physical address to a KSEG1 virtual address.
KVA0_TO_KVA1(v) Translate a KSEG0 virtual address to a KSEG1 virtual address.
KVA1_TO_KVA0(v) Translate a KSEG1 virtual address to a KSEG0 virtual address.
IS_KVA(v) Evaluates to 1 if the address is a kernel segment virtual address,

zero otherwise.
IS_KVA0(v) Evaluate to 1 if the address is a KSEG0 virtual address, zero

otherwise.
IS_KVA1(v) Evaluate to 1 if the address is a KSEG1 virtual address, zero

otherwise.
IS_KVA01(v) Evaluate to 1 if the address is either a KSEG0 or a KSEG1 virtual

address, zero otherwise.

Library Environment

© 2009 Microchip Technology Inc. DS51686B-page 45

2.6 MULTILIBS

2.6.1 What are Multilibs?
With multilibs, target libraries are built multiple times with a permutated set of options.
Multilibs are the resulting set of target libraries that are built with these options. When
the compiler shell is called to compile and link an application, the shell chooses the
version of the target library that has been built with the same options.

2.6.2 What Multilibs are Available for 32-Bit Language Tools?
The target libraries that are distributed with the compiler are built for the following
options:
• Size versus speed (-Os vs. -O3)
• 16-bit versus 32-bit (-mips16 vs. -mno-mips16)
• Software floating-point versus no floating-point support (-msoft-float vs.
-mno-float)

By default the 32-bit language tools compile for -O0, -mno-mips16, and
-msoft-float. Therefore, the options that we are concerned about are -Os or -O3,
-mips16, and -mno-float. Libraries built with the following command line options
are made available:
1. Default command line options
2. -Os
3. -O3
4. -mips16
5. -mno-float
6. -mips16 -mno-float
7. -Os -mips16
8. -Os -mno-float
9. -Os -mips16 -mno-float
10.-O3 -mips16
11.-O3 -mno-float
12.-O3 -mips16 -mno-float

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 46 © 2009 Microchip Technology Inc.

2.6.3 Where are the Multilibs Directories?
By default, the 32-bit language tools use the directory
<install-directory>/lib/gcc/ to store the specific libraries and the directory
<install-directory>/<pic32mx>/lib to store the target-specific libraries. Both
of these directory structures contain subdirectories for each of the multilib combinations
specified above. These subdirectories, respectively, are as follows:
1. .
2. ./size
3. ./speed
4. ./mips16
5. ./no-float
6. ./mips16/no-float
7. ./size/mips16
8. ./size/no-float
9. ./size/mips16/no-float
10../speed/mips16
11../speed/no-float
12../speed/mips16/no-float

2.6.4 Which Multilib Directory Are Selected?
This section looks at examples and provide details on which of the multilibs
subdirectories are chosen.
1. pic32-gcc foo.c

For this example, no command line options have been specified (i.e., the default
command line options are being used). In this case, the . subdirectories are
used.

2. pic32-gcc -Os foo.c

For this example, the command line option for optimizing for size has been
specified (i.e., -Os is being used). In this case, the ./size subdirectories are
used.

3. pic32-gcc -O2 foo.c

For this example, the command line option for optimizing has been specified,
however, this command line option optimizes for neither size nor space (i.e., -O2
is being used). In this case, the . subdirectories are used.

4. pic32-gcc -Os -mips16 foo.c

For this example, the command line options for optimizing for size and for
MIPS16 code have been specified (i.e., -Os and -mips16 are being used). In
this case, the ./size/mips16 subdirectories are used.

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 47

Chapter 3. Interrupts

3.1 INTRODUCTION
Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.
PIC32MX devices support multiple interrupts, from both internal and external sources.
The devices allow high-priority interrupts to override any lower priority interrupts that
may be in progress.
The compiler provides full support for interrupt processing in C or inline assembly code.
This chapter presents an overview of interrupt processing.

3.2 HIGHLIGHTS
Items discussed in this chapter are:
• Specifying an Interrupt Handler Function
• Associating a Handler Function with an Exception Vector
• Exception Handlers

3.3 SPECIFYING AN INTERRUPT HANDLER FUNCTION
An interrupt handler function handles the context save and restore to ensure that upon
return from interrupt, the program context is maintained.

3.3.1 Handler Function Context Saving
The standard calling convention for C functions will already preserve zero, s0-s7, gp,
sp, and fp. k0 and k1 are used by the compiler to access and preserve non-GPR
context, but are always accessed atomically (i.e., in sequences with global interrupts
disabled), so they need not be preserved actively. In addition to the standard registers,
a handler function will actively preserve the a0-a3, t0-t9, v0, v1 and ra registers.
An interrupt handler function will also actively save and restore processor status
registers that are utilized by the handler function. Specifically, the EPC, SR, hi and lo
registers are preserved as context.
Handler functions specified as priority level 7 (highest priority) will use a shadow
register set to preserve the General Purpose Registers, enabling lower latency entry
into the application code of the handler function.

3.3.2 Marking a Function as an Interrupt Handler
A function is marked as a handler function via either the interrupt attribute or the
interrupt pragma1. Each method is functionally equivalent to the other. The interrupt is
specified as handling interrupts of a specific priority level or for operating in single
vector mode.

1. Note that pre-processor macros are not expanded in pragma directives.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 48 © 2009 Microchip Technology Inc.

3.3.2.1 INTERRUPT ATTRIBUTE

__attribute__((interrupt([IPLn[SRS|SOFT|AUTO]])))

Where n is in the range of 0..7, inclusive.
In early PIC32 devices, the shadow register set is hard coded to priority level 7 (IPL7).
For these devices, we specify __attribute__((interrupt(IPLn))), where n is
the priority level. For IPL7, the compiler generates function prologue and epilogue code
utilizing the shadow register set for context saving. The compiler generates software
context-saving code when the user specifies lower IPL values.
Later PIC32 devices allow us to select, via configuration settings, which priority will use
the shadow register set. (Refer to the device data sheet to determine if your PIC32
device supports this feature.) This means we must specify which context-saving
mechanism to use for each Interrupt Service Routine. The compiler will generate
interrupt prologue and epilogue code utilizing shadow register context saving for
IPLnSRS. It will use software context saving for IPLnSOFT.

The compiler also supports an IPLnAUTO IPL specifier that uses the run-time value in
SRSCTL to determine whether it should use software or SRS context-saving code. The
compiler defaults to using IPLnAUTO when the IPL specifier is omitted from the
interrupt() attribute.

3.3.2.2 INTERRUPT PRAGMA

pragma interrupt function-name IPLn[AUTO|SOFT|SRS] [vector
[@]vector-number [, vector-number-list]]
pragma interrupt function-name single [vector [@] 0
Where n is in the range of 0..7, inclusive. The IPLn specifier may be all uppercase or
all lowercase.
The function definition for a handler function indicated by an interrupt pragma must
follow in the same translation unit as the pragma itself.
The interrupt attribute will also indicate that a function definition is an interrupt
handler. It is functionally equivalent to the interrupt pragma.
For example, the definitions of foo below both indicate that it is an interrupt handler
function for an interrupt of priority 4 that uses software context saving.
#pragma interrupt foo IPL4SOFT
void foo (void)

is functionally equivalent to
void __attribute__ ((interrupt(IPL4SOFT))) foo (void)

3.4 ASSOCIATING A HANDLER FUNCTION WITH AN EXCEPTION VECTOR
There are 64 exception vectors, numbered 0..63 inclusive. Each interrupt source is
mapped to an exception vector as specified in the device data sheet. By default, four
words of space are reserved at each vector address for a dispatch to the handler
function for that exception source.

Note: Application code is responsible for applying the correct value to the
matching handler routine.

Note: SRS has the shortest latency and SOFT has a longer latency due to
registers saved on the stack. AUTO adds a few cycles to test if SRS or SOFT
should be used.

Interrupts

© 2009 Microchip Technology Inc. DS51686B-page 49

An interrupt handler function can be associated with an interrupt vector either as the
target of a dispatch function located at the exception vector address, or as being
located directly at the exception vector address. A single handler function can be the
target of multiple dispatch functions.
The association of a handler function to one or more exception vector addresses is
specified via a clause of the interrupt pragma, a separate vector pragma, or a vector
attribute on the function declaration.

3.4.1 Interrupt Pragma Clause
The interrupt pragma has an optional vector clause following the priority specifier.
pragma interrupt function-name ipl-specifier [vector
[@]vector-number [, vector-number-list]]
A dispatch function targeting the specified handler function will be created at the
exception vector address for the specified vector numbers. If the first vector number is
specified with a preceding “@” symbol, the handler function itself will be located there
directly.
For example, the following pragma specifies that function foo will be created as an
interrupt handler function of priority four. foo will be located at the address of exception
vector 54. A dispatch function targeting foo will be created at exception vector address
34.
#pragma interrupt foo ipl4 vector @54, 34

The following pragma specifies that function bar will be created as an interrupt handler
function of priority five. bar will be located in general purpose program memory (.text
section). A dispatch function targeting bar will be created at exception vector address
23.
#pragma interrupt bar ipl5 vector 23

3.4.2 Vector Pragma
The vector pragma creates one or more dispatch functions targeting the indicated
function. For target functions specified with the interrupt pragma, this functions as
if the vector clause had been used. The target function of a vector pragma can be
any function, including external functions implemented in assembly or by other means.
pragma vector function-name vector vector-number [,
vector-number-list]

The following pragma defines a dispatch function targeting foo at exception vector
address 54.
#pragma vector foo 54

3.4.3 Vector Attribute
A handler function can be associated with one or more exception vector addresses via
an attribute. The at_vector attribute indicates that the handler function should itself
be placed at the exception vector address. The vector attribute indicates that a
dispatch function should be created at the exception vector address(es).
For example, the following declaration specifies that function foo will be created as an
interrupt handler function of priority four. foo will be located at the address of exception
vector 54.
void __attribute__ ((interrupt(ipl4))) __attribute__ ((at_vector(54)))
foo (void)

The following declaration specifies that function foo will be created as an interrupt
handler function of priority four. Define dispatch functions targeting foo at exception
vector addresses 52 and 53.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 50 © 2009 Microchip Technology Inc.

void __attribute__ ((interrupt(ipl4))) __attribute__ ((vector(53,
52))) foo (void)

3.4.4 __ISR Macros
The <sys/attribs.h> header file provides macros intended to simplify the
application of attributes to functions. There are also vector macros defined in the
processor header files. (See the appropriate header file in the compiler install
directory.)

3.4.4.1 __ISR(v, ipl)

Use the __ISR(v, ipl) macro to assign the vector-number location and associate it
with the software-assigned interrupt priority. This will place a jump to the interrupt
handler at the associated vector location. This macro also applies the nomips16
attribute since ISR functions are required to be MIPS32.

EXAMPLE 3-1: CORE TIMER VECTOR, IPL2SOFT

void __ISR(_CORE_TIMER_VECTOR, IPL2SOFT) CoreTimerHandler(void);

Example 3-1 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places a dispatch function at the
associated vector location. To reach this function, the core timer interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of two. The
compiler generates software context-saving code for this handler function.

EXAMPLE 3-2: CORE SOFTWARE 0 VECTOR, IPL3SRS

void __ISR(_CORE_SOFTWARE_0_VECTOR,IPL3SRS)
_CoreSoftwareInt0Handler(void);

Example 3-2 creates an interrupt handler function for the core software interrupt 0 that
has an interrupt priority level of three. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of three. The
device configuration fuses must assign Shadow Register Set 1 to interrupt priority level
three. The compiler generates code that assumes that register context will be saved in
SRS1.

EXAMPLE 3-3: CORE SOFTWARE 1 VECTOR, IPL0AUTO

void __ISR(_CORE_SOFTWARE_1_VECTOR, IPL0AUTO)
_CoreSoftwareInt1Handler(void);

Example 3-3 creates an interrupt handler function for the core software interrupt 1 that
has an interrupt priority level of zero. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt 1 flag and
enable bits must be set, and the interrupt priority should be set to a level of zero. The
compiler generates code that determines at run time whether software context saving
is required.

EXAMPLE 3-4: CORE SOFTWARE 1 VECTOR, DEFAULT

void __ISR(_CORE_SOFTWARE_1_VECTOR) _CoreSoftwareInt1Handler(void);

Example 3-4 is functionally equivalent to Example 3. Because the IPL specifier is
omitted, the compiler assumes IPL0AUTO.

Interrupts

© 2009 Microchip Technology Inc. DS51686B-page 51

3.4.4.2 __ISR_AT_VECTOR(v, ipl)

Use the __ISR_AT_VECTOR(v, ipl) to place the entire interrupt handler at the
vector location and associate it with the software-assigned interrupt priority. Application
code is responsible for making sure that the vector spacing is set to accommodate the
size of the handler. This macro also applies the nomips16 attribute since ISR functions
are required to be MIPS32.

EXAMPLE 3-5: CORE TIMER VECTOR, IPL2SOFT

void __ISR_AT_VECTOR(_CORE_TIMER_VECTOR, IPL2SOFT)
CoreTimerHandler(void);

Example 3-5 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places the entire interrupt handler at the
vector location. It does not use a dispatch function. To reach this function, the core timer
interrupt flag and enable bits must be set, and the interrupt priority should be set to a
level of two. The compiler generates software context-saving code for this handler
function.

3.4.4.3 INTERRUPT-VECTOR MACROS

Each processor-support header file provides a macro for each interrupt-vector number
(for example, \pic32mx\include\proc\p32mx360f512l.h. See the appropriate
header file in the compiler install directory). When used in conjunction with the
__ISR() macro provided by the sys\attribs.h header file, these macros help
make an Interrupt Service Routine easier to write and maintain.

EXAMPLE 3-6: INTERRUPT-VECTOR WITH HANDLER

void __ISR (_TIMER_1_VECTOR, IPL7SRS) Timer1Handler (void);

Example 3-6 creates an interrupt handler function for the Timer 1 interrupt that has an
interrupt priority level of seven. The compiler places a dispatch function at the vector
location associated with macro _TIMER_1_VECTOR as defined in the device-specific
header file. To reach this function, the Timer 1 interrupt flag and enable bits must be
set, and the interrupt priority should be set to a level of seven. For devices that allow
assignment of shadow registers to specific IPL values, the device Configuration bit
settings must assign Shadow Register Set 1 to interrupt priority level seven. The
compiler generates code that assumes that register context will be saved in SRS1.

3.5 EXCEPTION HANDLERS
The PIC32MX devices also have two exception vectors for non-interrupt exceptions.
These exceptions are grouped into bootstrap exceptions and general exceptions.

3.5.1 Bootstrap Exception
A reset exception is any exception which occurs while bootstrap code is running
(StatusBEV=1). All reset exceptions are vectored to 0xBFC00380.
At this location the 32-bit toolchain places a branch instruction targeting a function
named _bootstrap_exception_handler(). In the standard library, a default
weak version of this function is provided which merely goes into an infinite loop. If the
user application provides an implementation of
_bootstrap_exception_handler(), that implementation will be used instead.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 52 © 2009 Microchip Technology Inc.

3.5.2 General Exception
A general exception is any non-interrupt exception which occurs during program
execution outside of bootstrap code (StatusBEV=0). General exceptions are vectored
to offset 0x180 from EBase.
At this location the 32-bit toolchain places a branch instruction targeting a function
named _general_exception_context(). The provided implementation of this
function saves context, calls an application handler function, restores context and
performs a return from the exception instruction. The context saved is the hi and lo
registers and all General Purpose Registers except s0-s8, which are defined to be
preserved by all called functions and so are not necessary to actively save again here.
The values of the Cause and Status registers are passed to the application handler
function (_general_exception_handler()). If the user application provides an
implementation of _general_exception_context(), that implementation will be
used instead.
void _general_exception_handler (unsigned cause, unsigned status);

A weak default implementation of _general_exception_handler() is provided in
the standard library which merely goes into an infinite loop. If the user application
provides an implementation of _general_exception_handler(), that
implementation will be used instead.

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 53

Chapter 4. Low-Level Processor Control

4.1 INTRODUCTION
This chapter discusses access to the low-level registers and configuration of the
PIC32MX devices.

4.2 HIGHLIGHTS
Items discussed in this chapter are:
• Generic Processor Header File
• Processor Support Header Files
• Peripheral Library Functions
• Special Function Register Access
• CP0 Register Access
• Configuration Bit Access

4.3 GENERIC PROCESSOR HEADER FILE
The generic processor header file is a C file that includes the correct processor-specific
header file based on the processor specified with the -mprocessor command line
option. The generic processor header file is located in
c:\Program Files\Microchip\MPLAB C32\pic32mx\include, where
c:\Program Files\Microchip\MPLAB C32 is the directory in which the 32-bit
toolchain was installed. Besides including the correct processor-specific header file,
the generic processor header file also provides #defines which allow the use of
conventional register names from within assembly language files.
To include the generic processor header file, use the following from within your source
code:
#include <p32xxxx.h>

Inclusion of the generic processor header file allows your source code to be compiled
for any of the processors supported by the 32-bit toolchain without having to change
the file which is being included.

4.4 PROCESSOR SUPPORT HEADER FILES
The processor-specific header files are files that contain external declarations for the
Special Function Registers (SFRs) for use in either C or assembly. By convention, each
SFR is named using the same name that appears in the data sheet – for example,
WDTCON for the Watchdog Timer Control register. If the register has individual bits that
may be of interest, there is also be a structure typedef defined for that SFR, where
the name of the structure typedef is the name of the register with bits_t appended
– for example, __WDTCONbits_t. The individual bits (or bit fields) are named in the
structure using the names in the data sheet. For example, in the PIC32MX360F512L
processor-specific header file, the WDTCON register for use with C is declared as:

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 54 © 2009 Microchip Technology Inc.

extern volatile unsigned int WDTCON __attribute__((section("sfrs")));
typedef union {
 struct {
 unsigned WDTCLR:1;
 unsigned :1;
 unsigned SWDTPS0:1;
 unsigned SWDTPS1:1;
 unsigned SWDTPS2:1;
 unsigned SWDTPS3:1;
 unsigned SWDTPS4:1;
 unsigned :8;
 unsigned ON:1;
 };
 struct {
 unsigned :2;
 unsigned WDTPSTA:5;
 unsigned :1;
 unsigned PWRTPSTA:3;
 };
 struct {
 unsigned w:32;
 };

} __WDTCONbits_t;

For use with assembly, the WDTCON register is declared as: .extern WDTCON.
The processor-specific header files are located in
c:\Program Files\Microchip\MPLAB C32\pic32mx\include\proc, where
c:\Program Files\Microchip\MPLAB C32 is the directory in which the 32-bit
toolchain was installed. To include a processor-specific header file, it is recommended
that you include the generic processor header file (see Section 4.3 “Generic
Processor Header File”), however, if you would like to specifically call out the
processor-specific header file, use the following from your source file (example
assumes inclusion of the processor-specific header file for the PIC32MX360F512L):
#include <proc/p32mx360f512l.h>

4.5 PERIPHERAL LIBRARY FUNCTIONS
Many of the peripherals of the PIC32MX devices are supported by the peripheral library
functions provided with the compiler tools. See the “32-Bit Language Tools Libraries”
(DS51685) for details on the functions provided.

extern volatile __WDTCONbits_t WDTCONbits asm ("WDTCON") __attribute__((section("sfrs")));

Note: The symbols WDTCON and WDTCONbits refer to the same register and
resolve to the same address as can be seen by the declaration for
WDTCONbits.

Low-Level Processor Control

© 2009 Microchip Technology Inc. DS51686B-page 55

4.6 SPECIAL FUNCTION REGISTER ACCESS
There are three steps to follow when using SFRs in an application.
1. Include either the generic processor header file (i.e., p32xxxx.h) or the

processor-specific header file for the appropriate device (e.g.,
proc/p32mx360f512l.h).
#include <p32xxxx.h>

2. Access SFRs like any other C variables. The source code can write to and/or
read from the SFRs. For example, the following statement clears all the bits to
zero in the Special Function Register for Timer 1:
TMR1 = 0;

The next statement enables the Watchdog Timer:
WDTCONbits.ON = 1;

3. Link with the default linker script or include the processor.o file for the
appropriate processor in your project.

4.7 CP0 REGISTER ACCESS

4.7.1 CP0 Register Definitions Header File
The CP0 register definitions header file (cp0defs.h) is a file that contains definitions
for the CP0 registers and their fields. In addition, it contains macros for accessing the
CP0 registers. The CP0 register definitions header file is located in
c:\Program Files\Microchip\MPLAB C32\pic32mx\include, where
c:\Program Files\Microchip\MPLAB C32 is the directory in which the 32-bit
toolchain was installed. The CP0 register definitions header file was designed to work
with either Assembly or C files.
The CP0 register definitions header file is dependent on macros defined within the
processor generic header file (See Section 4.3 “Generic Processor Header File”).
To include the CP0 register definitions header file, use the following from within your
source code:

#include <p32xxxx.h>

4.7.2 CP0 Register Definitions
When the CP0 register definitions header file is included from an Assembly file, the
CP0 registers are defined as:

#define _CP0_REGISTER_NAME $register_number, select_number

For example, the IntCtl register is defined as:
#define _CP0_INTCTL $12, 1

When the CP0 register definitions header file is included from a C file, the CP0 registers
and selects are defined as:

#define _CP0_REGISTER_NAME register_number
#define _CP0_REGISTER_NAME_SELECT select_number

For example, the IntCtl register is defined as:
#define _CP0_INTCTL 12
#define _CP0_INTCTL_SELECT 1

4.7.3 CP0 Register Field Definitions
When the CP0 register definitions header file is included from either an Assembly or a
C file, three #defines exist for each of the CP0 register fields.
_CP0_REGISTER_NAME_FIELD_NAME_POSITION – the starting bit location

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 56 © 2009 Microchip Technology Inc.

_CP0_REGISTER_NAME_FIELD_NAME_MASK – the bits that are part of this field are set
_CP0_REGISTER_NAME_FIELD_NAME_LENGTH – the number of bits that this field occupies
For example, the vector spacing field of the IntCtl register has the following defines:

#define _CP0_INTCTL_VS_POSITION 0x00000005
#define _CP0_INTCTL_VS_MASK 0x000003E0
#define _CP0_INTCTL_VS_LENGTH 0x00000005

4.7.4 CP0 Access Macros
When the CP0 register definitions header file is included from a C file, CP0 access
macros are defined. Each CP0 register may have up to six different access macros
defined:

4.8 CONFIGURATION BIT ACCESS

4.8.1 #pragma config
The #pragma config directive specifies the processor-specific configuration settings
(i.e., Configuration bits) to be used by the application. Refer to the “PIC32MX
Configuration Settings” online help (found under MPLAB IDE>Help>Topics>Language
Tools) for more information. (If using the compiler from the command line, this help file
is located at the default location at C:\Program Files\Microchip\MPLAB
C32\doc\hlpPIC32MXConfigSet.chm.).
Configuration settings may be specified with multiple #pragma config directives.
The compiler verifies that the configuration settings specified are valid for the processor
for which it is compiling. If a given setting in the Configuration Word has not been
specified in any #pragma config directive, the bits associated with that setting
default to the unprogrammed value.
For each Configuration Word for which a setting is specified with the #pragma config
directive, the compiler generates a read-only data section named .config_address,
where address is the hexadecimal representation of the address of the Configuration
Word. For example, if a configuration setting was specified for the Configuration Word
located at address 0xBFC02FFC, a read-only data section named
.config_BFC02FFC would be created.

_CP0_GET_REGISTER_NAME () Returns the value for register, REGISTER_NAME.
_CP0_SET_REGISTER_NAME (val) Sets the register, REGISTER_NAME, to val, and

returns void. Only defined for registers that
contain a writable field.

_CP0_XCH_REGISTER_NAME (val) Sets the register, REGISTER_NAME, to val, and
returns the previous register value. Only
defined for registers that contain a writable
field.

_CP0_BIS_REGISTER_NAME (set) Sets the register, REGISTER_NAME, to
(reg |= set), and returns the previous register
value. Only defined for registers that contain
writable bit fields.

_CP0_BIC_REGISTER_NAME (clr) Sets the register, REGISTER_NAME, to
(reg &= ~clr), and returns the previous
register value. Only defined for registers that
contain writable bit fields.

_CP0_BCS_REGISTER_NAME (clr, set) Sets the register, REGISTER_NAME, to
(reg = (reg & ~clr) | set), and returns the
previous register value. Only defined for
registers that contain writable bit fields.

Low-Level Processor Control

© 2009 Microchip Technology Inc. DS51686B-page 57

4.8.1.1 SYNTAX

pragma-config-directive:
 # pragma config setting-list
setting-list:
 setting
 | setting-list, setting
setting:
 setting-name = value-name
The setting-name and value-name are device specific and can be determined by
utilizing the PIC32MX Configuration Settings document.

4.8.1.2 EXAMPLE

The following example shows how the #pragma config directive might be utilized.
The example does the following:
• Enables the Watchdog Timer,
• Sets the Watchdog Postscaler to 1:128, and
• Selects the HS Oscillator for the Primary Oscillator

#pragma config FWDTEN = ON, WDTPS = PS128
#pragma config POSCMOD = HS
...
void main (void)
{
...
}

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 58 © 2009 Microchip Technology Inc.

NOTES:

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 59

Chapter 5. Compiler Run-time Environment

5.1 INTRODUCTION
This chapter discusses the compiler run-time environment.

5.2 HIGHLIGHTS
Items discussed in this chapter are:
• Register Conventions
• Stack Usage
• Heap Usage
• Function Calling Convention
• Start-up and Initialization
• Contents of the Default Linker Script
• RAM Functions

5.3 REGISTER CONVENTIONS

TABLE 5-1: REGISTER CONVENTIONS
Register Name Software Name Use

$0 zero Always 0 when read.
$1 at Assembler temporary variable.
$2-$3 v0-v1 Return value from functions.
$4-$7 a0-a3 Used for passing arguments to functions.
$8-$15 t0-t7 Temporary registers used by compiler for expression

evaluation. Values not saved across function calls.
$16-$23 s0-s7 Temporary registers whose values are saved across

function calls.
$24-$25 t8-t9 Temporary registers used by compiler for expression

evaluation. Values not saved across function calls.
$26-$27 k0-k1 Reserved for interrupt/trap handler.
$28 gp Global Pointer.
$29 sp Stack Pointer.
$30 fp or s8 Frame Pointer if needed. Additional temporary saved

register if not.
$31 ra Return address for functions.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 60 © 2009 Microchip Technology Inc.

5.4 STACK USAGE
The compiler dedicates General Purpose Register 29 as the software Stack Pointer. All
processor stack operations, including function call, interrupts and exceptions use the
software stack. The stack grows downward from high addresses to low addresses.
By default, the size of the stack is 1024 bytes. The size of the stack may be changed
by specifying the size on the linker command line using the
--defsym_min_stack_size linker command line option. An example of allocating
a stack of 2048 bytes using the command line is:
pic32-gcc foo.c -Wl,--defsym,_min_stack_size=2048

The run-time stack grows downward from higher addresses to lower addresses (see
Figure 5-1). The compiler uses two working registers to manage the stack:
• Register 29 (sp) – This is the Stack Pointer. It points to the next free location on

the stack.
• Register 30 (fp) – This is the Frame Pointer. It points to the current function’s

frame. Each function, if required, creates a new frame from which automatic and
temporary variables are allocated. Compiler optimization may eliminate Stack
Pointer references via the Frame Pointer to equivalent references via the Stack
Pointer. This optimization allows the Frame Pointer to be used as a General
Purpose Register.

FIGURE 5-1: STACK FRAME

Stack grows
toward
lower
addresses

FP

Caller

Space for more
arguments if
necessary

Space for argument 4

Space for argument 3

Space for argument 2

Space for argument 1

Local variables and
temporary values

Register save area

Space for arguments
used in function calls

Callee

SP

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 61

5.5 HEAP USAGE
The C run-time heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, calloc, malloc and realloc. If you do not use any of these functions,
then you do not need to allocate a heap. By default, a heap is not created.
If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library function that
uses one of these functions, then a heap must be created. A heap is created by
specifying its size on the linker command line using the --defsym_min_heap_size
linker command line option. An example of allocating a heap of 512 bytes using the
command line is:
pic32-gcc foo.c -Wl,--defsym,_min_heap_size=512

The linker allocates the heap immediately before the stack.

5.6 FUNCTION CALLING CONVENTION
The Stack Pointer is always aligned on a 4-byte boundary.
• All integer types smaller than a 32-bit integer are first converted to a 32-bit value.

The first four 32 bits of arguments are passed via registers a0-a3 (see Table 5-2
for how many registers are required for each data type).

• Although some arguments may be passed in registers, space is still allocated on
the stack for all arguments to be passed to a function (see Figure 5-2).

• When calling a function:
- Registers a0-a3 are used for passing arguments to functions. Values in these

registers are not preserved across function calls.
- Registers t0-t7 and t8-t9 are caller saved registers. The calling function

must push these values onto the stack for the registers’ values to be saved.
- Registers s0-s7 are called saved registers. The function being called must

save any of these registers it modifies.
- Register s8 is a saved register if the optimizer eliminates its use as the Frame

Pointer. s8 is a reserved register otherwise.
- Register ra contains the return address of a function call.

TABLE 5-2: REGISTERS REQUIRED
Data Type Number of Registers Required

char 1
short 1
int 1
long 1
long long 2
float 1
double 2
long double 2
Structure Up to 4, depending on the size of the struct.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 62 © 2009 Microchip Technology Inc.

FIGURE 5-2: PASSING ARGUMENTS

Example 1:

int add (int, int)

a= add (5, 10);

SP + 4

SP

a0

a1

undefined

undefined

5

10

Example 2:

void foo (double, double)

call= foo (10.5, 20.1);

SP + 12

SP

undefined
SP + 8

SP + 4
undefined

a0

a3

10.5
a1

a2
20.1

void calculate (double, double, int)

calculate (50.3, 100.0, .10);

SP + 12

SP

undefined
SP + 8

SP + 4
undefined

a0

a3
100.0

a1

a2

.10

50.3

SP + 16

Example 3:

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 63

5.7 START-UP AND INITIALIZATION

5.7.1 Provisions
The following provisions are made regarding the run-time model:
• Kernel mode only
• KSEG1 only
• RAM functions are attributed with __ramfunc__ or __longramfunc__,

meaning that all RAM functions end up in the .ramfunc section

5.7.2 PIC32MX Start-up Code
The PIC32MX start-up code must perform the following:
1. Jump to NMI Handler if an NMI Occurred
2. Initialize Stack Pointer and Heap
3. Initialize Global Pointer
4. Call “On Reset” Procedure
5. Clear Uninitialized Data Sections
6. Copy Initialized Data from Program Flash to Data Memory
7. Copy RAM Functions from Program Flash to Data Memory
8. Initialize Bus Matrix Registers
9. Initialize CP0 Registers
10. Trace Control 2 Register (TraceControl2 – CP0 Register 23, Select 2)
11. Call “On Bootstrap” Procedure
12. Change Location of Exception Vectors
13. Call Main

5.7.2.1 JUMP TO NMI HANDLER IF AN NMI OCCURRED

If an NMI caused entry to the Reset vector, a jump to an NMI handler procedure
(_nmi_handler) occurs. A weak version of the NMI handler procedure is provided
that performs an ERET. The _nmi_handler function must be attributed with
nomips16 [e.g., __attribute__((nomips16))] since the start-up code jumps to
this function.

5.7.2.2 INITIALIZE STACK POINTER AND HEAP

The Stack Pointer (sp) register must be initialized in the start-up code. To enable the
start-up code to initialize the sp register, the linker script must initialize a variable which
points to the end of KSEG1 data memory1. This variable is named _stack. The user
can change the minimum amount of stack space allocated by providing the command
line option --defsym _min_stack_size=N to the linker. _min_stack_size is
provided by the linker script with a default value of 1024.
On a similar note, the user may wish to utilize a heap with their application. While the
start-up code does not need to initialize the heap, the standard C libraries (sbrk) must
be made aware of the heap location and its size. The linker script creates a variable to
identify the beginning of the heap. The location of the heap is the end of the utilized
KSEG1 data memory. This variable is named _heap. The user can change the
minimum amount of heap space allocated by providing the command line option
--defsym _min_heap_size=M to the linker. _min_heap_size is provided by the

1. The end of data memory are different based on whether RAM functions exist. If RAM functions exist, then
part of the DRM must be configured for kernel program to contain the RAM functions, and the Stack
Pointer is located one word prior to the beginning of the DRM kernel program boundary address. If RAM
functions do not exist, then the Stack Pointer is located at the true end of DRM.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 64 © 2009 Microchip Technology Inc.

linker script with a default value of 0. If the heap is used when the heap size is set to
zero, the behavior is the same as when the heap usage exceeds the minimum heap
size. Namely, it overflows into the space allocated for the stack.
The heap and the stack use the unallocated KSEG1 data memory, with the heap
starting from the end of allocated KSEG1 data memory and growing upwards towards
the stack while the stack starts at the end of KSEG1 data memory and grows
downwards towards the heap. If enough space is not available based on the minimum
amount of heap size and stack size requested, the linker issues an error.

FIGURE 5-3: STACK AND HEAP LAYOUT

FIGURE 5-4: STACK AND HEAP LAYOUT WITH RAM FUNCTIONS

5.7.2.3 INITIALIZE GLOBAL POINTER

The compiler toolchain supports Global Pointer (gp) relative addressing. Loads and
stores to data lying within 32KB of either side of the address stored in the gp register
can be performed in a single instruction using the gp register as the base register.

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 65

Without the Global Pointer, loading data from a static memory area takes two
instructions – one to load the Most Significant bits of the 32-bit constant address
computed by the compiler/linker and one to do the data load.
To utilize gp-relative addressing, the compiler and assembler must group all of the
“small” variables and constants into one of the following sections:

The linker must then group all of the above input sections together. The run-time
start-up code must initialize the gp register to point to the “middle” of this output section.
To enable the start-up code to initialize the gp register, the linker script must initialize a
variable which is 32 KB from the start of the output section containing the “small”
variables and constants. This variable is named _gp (to match core linker scripts).
Besides being initialized in the standard GPR set, the Global Pointer must also be
initialized in the register shadow set.

FIGURE 5-5: GLOBAL POINTER LOCATION

5.7.2.4 CALL “ON RESET” PROCEDURE

A procedure is called after initializing a minimum ‘C’ context. This procedure allows
users to perform actions almost immediately on Reset of the device. An empty weak
version of this procedure (_on_reset) is provided with the start-up code. Special
consideration needs to be taken by the user if this procedure is written in ‘C’. Most
importantly, statically allocated variables are not initialized (with either the specified
initializer or a zero as required for uninitialized variables).

5.7.2.5 CLEAR UNINITIALIZED DATA SECTIONS

There are two uninitialized data sections—.sbss and .bss. The .sbss section is a
data segment containing uninitialized variables less than or equal to n bytes where n
is determined by the -Gn command line option. The .bss section is a data segment
containing uninitialized variables not included in .sbss.

• .lit4. • lit8

• .sdata. • sbss

• .sdata.* • sbss.*

• .gnu.linkonce.s.* • .gnu.linkonce.sb.*

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 66 © 2009 Microchip Technology Inc.

The C standard requires that the uninitialized data sections be initialized to 0 on
start-up. In order to initialize these sections, the linker script must allocate these
sections contiguously and initialize two variables – one for the start address of the
uninitialized data section and one for the end address of the uninitialized data section.
The start-up code clears all data memory locations between these two addresses.
These variables are named _bss_begin and _bss_end, respectively.

FIGURE 5-6: UNINITIALIZED DATA

5.7.2.6 COPY INITIALIZED DATA FROM PROGRAM FLASH TO DATA MEMORY

Similar to uninitialized data sections, four initialized data sections exist:.sdata,
.data, .lit4, and .lit8. The .sdata section is a data segment containing
initialized variables less than or equal to n bytes where n is determined by the -Gn
command line option. The .data section is a data segment containing initialized
variables not included in .sdata. The .lit4 and .lit8 sections contain constants
(usually floating-point) which the assembler decides to store in memory rather than in
the instruction stream.
On start-up, a copy of the initialized data exists in the program Flash. This data must
be copied to data memory. To facilitate this, the linker script must initialize three
variables—one for the start address of the image in program Flash, one for the start
address of the section in data memory, and one for the end address of the section in
data memory. The start-up code copies all data memory locations from program Flash
image to data memory using these variables. These variables are named
_data_image_begin, _data_begin, and _data_end, respectively.

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 67

FIGURE 5-7: INITIALIZED DATA

5.7.2.7 COPY RAM FUNCTIONS FROM PROGRAM FLASH TO DATA MEMORY

RAM functions are similar to initialized data, except that the data that exists in the
program Flash represents functions instead of initial values for symbols. Similar to the
way that initialized data is copied from program Flash to data memory, the linker script
must initialize three variables—one for the start address of the image in program Flash,
one for the start address of the section in data memory and one for the end address of
the section in data memory. The start-up code copies the memory locations from the
program Flash image to the data memory using these variables. These variables are
named _ramfunc_image_begin, _ramfunc_begin, and _ramfunc_end,
respectively.

FIGURE 5-8: RAM FUNCTIONS

5.7.2.8 INITIALIZE BUS MATRIX REGISTERS

The bus matrix registers (BMXDKPBA, BMXDUDBA, BMXDUPBA) should be initialized by
the start-up code if any RAM functions exist, otherwise, these registers should not be
modified. To determine whether any RAM functions exist in the application, the linker
script provides a variable that contains the length of the .ramfunc section1. This

1. All functions attributed with __ramfunc__ or __longramfunc__ are placed in the .ramfunc section.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 68 © 2009 Microchip Technology Inc.

variable is named _ramfunc_length. In addition, the linker script provides three
variables that contain the address of the bus matrix registers. These variables are
named _bmxdkpba_address, _bmxdudba_address, and _bmxdupba_address.
The following calculations are used to calculate these addresses:
_bmxdkpba_address = _ramfunc_begin -
 ORIGIN(${DATA_MEMORY_LOCATION}) ;
_bmxdudba_address = LENGTH(${DATA_MEMORY_LOCATION}) ;
_bmxdupba_address = LENGTH(${DATA_MEMORY_LOCATION}) ;

The linker script ensures that RAM functions are aligned to a 2K alignment boundary
as is required by the BMXDKPBA register.

FIGURE 5-9: BUS MATRIX INITIALIZATION

5.7.2.9 INITIALIZE CP0 REGISTERS

The CP0 registers are initialized in the following order:
1. Count register
2. Compare register
3. EBase register
4. IntCtl register
5. Cause register
6. Status register

5.7.2.9.1 Hardware Enable Register (HWREna – CP0 Register 7, Select 0)
This register contains a bit mask that determines which hardware registers are
accessible via the RDHWR instruction. Privileged software may determine which of the
hardware registers are accessible by the RDHWR instruction. In doing so, a register may
be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to
provide direct access to the Count register, access to the register may be individually
disabled and the return value can be virtualized by the operating system.
No initialization is performed on this register in the PIC32MX start-up code.

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 69

5.7.2.9.2 Bad Virtual Address Register (BadVAddr – CP0 Register 8, Select 0)
This register is a read-only register that captures the most recent virtual address that
caused an Address Error exception (AdEL or AdES).
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.3 Count Register (Count – CP0 Register 9, Select 0)
This register acts as a timer, incrementing at a constant rate, whether or not an
instruction is executed, retired, or any forward progress is made through the pipeline.
The counter increments every other clock, if the DC bit in the Cause register is 0. The
Count register can be written for functional or diagnostic purposes, including at Reset
or to synchronize processors. By writing the CountDM bit in the Debug register, it is
possible to control whether the Count register continues incrementing while the
processor is in Debug mode.
This register is cleared in the PIC32MX start-up code.

5.7.2.9.4 Compare Register (Compare – CP0 Register 11, Select 0)
This register acts in conjunction with the Count register to implement a timer and timer
interrupt function. The timer interrupt is an output of the core. The Compare register
maintains a stable value and does not change on its own. When the value of the Count
register equals the value of the Compare register, the SI_TimerInt pin is asserted.
This pin remains asserted until the Compare register is written. The SI_TimerInt pin
can be fed back into the core on one of the interrupt pins to generate an interrupt. For
diagnostic purposes, the Compare register is a read/write register. In normal use,
however, the Compare register is write-only. Writing a value to the Compare register,
as a side effect, clears the timer interrupt.
This register is set to 0xFFFFFFFF in the PIC32MX start-up code.

5.7.2.9.5 Status Register (Status – CP0 Register 12, Select 0)
This register is a read/write register that contains the operating mode, Interrupt
Enabling, and the diagnostic states of the processor. Fields of this register combine to
create operating modes for the processor.
The following settings are initialized by the PIC32MX start-up code
(0b000000000x0xx0?00000000000000000):
• Access to Coprocessor 0 not allowed in User mode (CU0 = 0)
• User mode uses configured endianess (RE = 0)
• No change to exception vectors location (BEV = no change)
• No change to flag bits that indicate reason for entry to the Reset exception vector

(SR, NMI = no change)
• If CorExtend User Defined Instructions have been implemented

(ConfigUDI == 1), CorExtend is enabled (CEE = 1), otherwise, CorExtend is
disabled (CEE = 0).

• Interrupt masks are cleared to disable any pending interrupt requests (IM7..IM2
= 0, IM1..IM0 = 0)

• Interrupt priority level is 0 (IPL = 0)
• Base mode is Kernel mode (UM = 0)
• Error level is normal (ERL = 0)
• Exception level is normal (EXL = 0)
• Interrupts are disabled (IE = 0)

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 70 © 2009 Microchip Technology Inc.

5.7.2.9.6 Interrupt Control Register (IntCtl – CP0 Register 12, Select 1)
This register controls the expanded interrupt capability added in Release 2 of the
Architecture, including vectored interrupts and support for an external interrupt
controller.
This register contains the vector spacing for interrupt handling. The vector spacing
portion of this register (bits 9..5) is initialized with the value of the _vector_spacing
symbol by the PIC32MX start-up code. All other bits are set to ‘1’.

5.7.2.9.7 Shadow Register Control Register (SRSCtl – CP0 Register 12, Select 2)
This register controls the operation of the GPR shadow sets in the processor.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.8 Shadow Register Map Register (SRSMap – CP0 Register 12, Select 3)
This register contains eight 4-bit fields that provide the mapping from a vector number
to the shadow set number to use when servicing such an interrupt. The values from this
register are not used for a non-interrupt exception, or a non-vectored interrupt
(CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS. If SRSCtlHSS is zero, the results of a software read or write of this register
are UNPREDICTABLE. The operation of the processor is UNDEFINED if a value is
written to any field in this register that is greater than the value of SRSCtlHSS. The
SRSMap register contains the shadow register set numbers for vector numbers 7..0.
The same shadow set number can be established for multiple interrupt vectors,
creating a many-to-one mapping from a vector to a single shadow register set number.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.9 Cause Register (Cause – CP0 Register 13, Select 0)
This register primarily describes the cause of the most Recent exception. In addition,
fields also control software interrupt requests and the vector through which interrupts
are dispatched. With the exception of the DC, IV, and IP1..IP0 fields, all fields in the
Cause register are read-only. Release 2 of the Architecture added optional support for
an External Interrupt Controller (EIC) interrupt mode, in which IP7..IP2 are
interpreted as the Requested Interrupt Priority Level (RIPL).
The following settings are initialized by the PIC32MX start-up code:
• Enable counting of Count register (DC = no change)
• Use the special exception vector (16#200) (IV = 1)
• Disable software interrupt requests (IP1..IP0 = 0)

5.7.2.9.10 Exception Program Counter (EPC – CP0 Register 14, Select 0)
This register is a read/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are
significant and must be writable. For synchronous (precise) exceptions, the EPC
contains one of the following:
• The virtual address of the instruction that was the direct cause of the exception
• The virtual address of the immediately preceding branch or jump instruction, when

the exception causing instruction is a branch delay slot and the Branch Delay
bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit
in the Status register is set, however, the register can still be written via the MTC0
instruction.
No initialization is performed on this register in the PIC32MX start-up code.

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 71

5.7.2.9.11 Processor Identification Register (PRid – CP0 Register 15, Select 0)
This register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the
processor.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.12 Exception Base Register (EBase – CP0 Register 15, Select 1)
This register is a read/write register containing the base address of the exception
vectors used when StatusBEV equals 0, and a read-only CPU number value that may
be used by software to distinguish different processors in a multi-processor system.
The EBase register provides the ability for software to identify the specific processor
within a multi-processor system, and allows the exception vectors for each processor
to be different, especially in systems composed of heterogeneous processors. Bits
31..12 of the EBase register are concatenated with zeros to form the base of the
exception vectors when StatusBEV is 0. The exception vector base address comes
from fixed defaults when StatusBEV is 1, or for any EJTAG Debug exception. The reset
state of bits 31..12 of the EBase register initialize the exception base register to
16#80000000, providing backward compatibility with Release 1 implementations. Bits
31..30 of the EBase register are fixed with the value 2#10 to force the exception base
address to be in KSEG0 or KSEG1 unmapped virtual address segments.
If the value of the exception base register is to be changed, this must be done with
StatusBEV equal 1. The operation of the processor is UNDEFINED if the Exception
Base field is written with a different value when StatusBEV is 0.
Combining bits 31..30 with the Exception Base field allows the base address of the
exception vectors to be placed at any 4K byte page boundary. If vectored interrupts are
used, a vector offset greater than 4K byte can be generated. In this case, bit 12 of the
Exception Base field must be zero. The operation of the processor is UNDEFINED if
software writes bit 12 of the Exception Base field with a 1 and enables the use of a
vectored interrupt whose offset is greater than 4K bytes from the exception base
address.
This register us initialized with the value of the _ebase_address symbol by the
PIC32MX start-up code. _ebase_address is provided by the linker script with a
default value of the start of KSEG1 program memory. The user can change this value
by providing the command line option -–defsym _ebase_address=A to the linker.

5.7.2.9.13 Config Register (Config – CP0 Register 16, Select 0)
This register specifies various configuration and capabilities information. Most of the
fields in the Config register are initialized by hardware during the Reset exception
process, or are constant.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.14 Config1 Register (Config1 – CP0 Register 16, Select 1)
This register is an adjunct to the Config register and encodes additional information
about the capabilities present on the core. All fields in the Config1 register are
read-only.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.15 Config2 Register (Config2 – CP0 Register 16, Select 2)
This register is an adjunct to the Config register and is reserved to encode additional
capabilities information. Config2 is allocated for showing the configuration of level 2/3
caches. These fields are reset to 0 because L2/L3 caches are not supported on the
core. All fields in the Config2 register are read-only.
No initialization is performed on this register in the PIC32MX start-up code.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 72 © 2009 Microchip Technology Inc.

5.7.2.9.16 Config3 Register (Config3 – CP0 Register 16, Select 3)
This register encodes additional capabilities. All fields in the Config3 register are
read-only.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.17 Debug Register (Debug – CP0 Register 23, Select 0)
This register is used to control the debug exception and provide information about the
cause of the debug exception and when re-entering at the debug exception vector due
to a normal exception in Debug mode. The read-only information bits are updated
every time the debug exception is taken or when a normal exception is taken when
already in Debug mode. Only the DM bit and the EJTAGver field are valid when read
from non-Debug mode. The values of all other bits and fields are UNPREDICTABLE.
Operation of the processor is UNDEFINED if the Debug register is written from
non-Debug mode.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.9.18 Trace Control Register (TraceControl – CP0 Register 23, Select 1)
This register provides control and status information. The TraceControl register is
only implemented if the EJTAG Trace capability is present.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10 TRACE CONTROL 2 REGISTER (TraceControl2 – CP0 REGISTER 23,
SELECT 2)

This register provides additional control and status information. The TraceControl2
register is only implemented if the EJTAG Trace capability is present.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.1 User Trace Data Register (UserTraceData – CP0 Register 23, Select 3)
When this register is written to, a trace record is written indicating a type 1 or type 2
user format. This type is based on the UT bit in the TraceControl register. This
register cannot be written in consecutive cycles. The trace output data is
UNPREDICTABLE if this register is written in consecutive cycles. The
UserTraceData register is only implemented if the EJTAG Trace capability is present.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.2 TraceBPC Register (TraceBPC – CP0 Register 23, Select 4)
This register is used to control start and stop of tracing using an EJTAG hardware
breakpoint. The hardware breakpoint would then be set as a triggered source and
optionally also as a Debug exception breakpoint. The TraceBPC register is only
implemented if both the hardware breakpoints and the EJTAG Trace cap are present.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.3 Debug2 Register (Debug2 – CP0 Register 23, Select 5)
This register holds additional information about Complex Breakpoint exceptions. The
Debug2 register is only implemented if complex hardware breakpoints are present.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.4 Debug Exception Program Counter (DEPC – CP0 Register 24, Select 0)
This register is a read/write register that contains the address at which processing
resumes after a debug exception or Debug mode exception has been serviced. For
synchronous (precise) debug and Debug mode exceptions, the DEPC contains either:

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 73

• The virtual address of the instruction that was the direct cause of the debug
exception, or

• The virtual address of the immediately preceding branch or jump instruction, when
the debug exception causing instruction is in a branch delay slot, and the Debug
Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC
contains the virtual address of the instruction where execution should resume after the
debug handler code is executed.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.5 Error Exception Program Counter (ErrorEPC – CP0 Register 30,
Select 0)

This register is a read/write register, similar to the EPC register, except that it is used on
error exceptions. All bits of the ErrorEPC are significant and must be writable. It is also
used to store the program counter on Reset, Soft Reset, and non-maskable interrupt
(NMI) exceptions. The ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address can be:
• The virtual address of the instruction that caused the exception, or
• The virtual address of the immediately preceding branch or jump instruction when

the error causing instruction is a branch delay slot.
Unlike the EPC register, there is no corresponding branch delay slot indication for the
ErrorEPC register.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.10.6 Debug Exception Save Register (DeSave – CP0 Register 31, Select 0)
This register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save on of the GPRs that is then
used to save the rest of the context to a pre-determined memory area (such as in the
EJTAG Probe). This register allows the safe debugging of exception handlers and other
types of code where the existence of a valid stack for context saving cannot be
assumed.
No initialization is performed on this register in the PIC32MX start-up code.

5.7.2.11 CALL “ON BOOTSTRAP” PROCEDURE

A procedure is called after initializing the CP0 registers. This procedure allows users to
perform actions during bootstrap (i.e., while StatusBEV is set) and before entering into
the main routine. An empty weak version of this procedure (_on_bootstrap) is
provided with the start-up code. This procedure may be used for performing hardware
initialization and/or for initializing the environment required by an RTOS.

5.7.2.12 CHANGE LOCATION OF EXCEPTION VECTORS

Immediately before calling the applications main routine, the StatusBEV is cleared to
change the location of the exception vectors from the bootstrap location to the normal
location.

5.7.2.13 CALL MAIN

The last thing that the start-up code performs is a call to the main routine. If the user
returns from main, the start-up code goes into an infinite loop.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 74 © 2009 Microchip Technology Inc.

5.7.3 Exceptions
In addition, two weak general exception handlers are provided that can be overridden
by the application—one to handle exceptions when StatusBEV is 1
(_bootstrap_exception_handler) and one to handle exceptions when
StatusBEV is 0 (_general_exception_handler). Both the weak Reset exception
handler and the weak general exception handler provided with the start-up code enters
an infinite loop. The start-up code arranges for a jump to the reset exception handler to
be located at 0xBFC00380 and a jump to the general exception handler to be located
at EBASE + 0x180.
Both handlers must be attributed with the nomips16 [e.g., __attribute__
((nomips16))] since the start-up code jumps to these functions.

FIGURE 5-10: EXCEPTIONS

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 75

5.7.4 Symbols Required by Start-up Code and C Library
This section details the symbols that are required by the start-up code and C library.
Currently the default linker script defines these symbols. If an application provides a
custom linker script, the user must ensure that all of the following symbols are provided
in order for the start-up code and C library to function:

5.8 CONTENTS OF THE DEFAULT LINKER SCRIPT
The default linker script contains the following categories of information:
• Output Format and Entry Points
• Default Values for Minimum Stack and Heap Sizes
• Processor Definitions Include File

Symbol Name Description

_bmxdkpba_address The address to place into the BMXDKPBA register if
_ramfunc_length is greater than 0.

_bmxdudba_address The address to place into the BMXDUDBA register if
_ramfunc_length is greater than 0.

_bmxdupba_address The address to place into the BMXDUPBA register if
_ramfunc_length is greater than 0.

_bss_begin The starting location of the uninitialized data.
Uninitialized data includes both .sbss and .bss.

_bss_end The end location of the uninitialized data.
Uninitialized data includes both .sbss and .bss.

_data_begin The starting location of the initialized data.
Initialized data includes .data, .got, .sdata,
.lit8, and .lit4.

_data_end The end location of the initialized data. Initialized
data includes .data, .got, .sdata, .lit8, and
.lit4.

_data_image_begin The starting location in program memory of the
image of initialized data. Initialized data includes
.data, .got, .sdata, .lit8, and .lit4.

_ebase_address The location of EBASE.
_end The end of data allocation. Should be identical to

_heap.
_gp Points to the “middle” of the small variables region.

By convention this is 0x8000 bytes from the first
location used for small variables.

_heap The starting location of the heap in DRM.
_ramfunc_begin The starting location of the RAM functions. This

should be located at a 2K boundary as it is used to
initialize the BMXDKPBA register.

_ramfunc_end The end location of the RAM functions.
_ramfunc_image_begin The starting location in program memory of the

image of RAM functions.
_ramfunc_length The length of the .ramfunc section.
_stack The starting location of the stack in DRM.

Remember that the stack grows from the bottom of
data memory so this symbol should point to the
bottom of the section allocated for the stack.

_vector_spacing The initialization value for the vector spacing field in
the IntCtl register.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 76 © 2009 Microchip Technology Inc.

- Inclusion of Processor-Specific Object File(s)
- Base Exception Vector Address and Vector Spacing Symbols
- Memory Address Equates
- Memory Regions
- Configuration Words Input/Output Section Map

• Input/Output Section Map

5.8.1 Output Format and Entry Points
The first several lines of the default linker script define the output format and the entry
point for the application. Copies of the default linker scripts are provided in
C:\program files\...\MPLAB C32\pic32mx\lib\ldscripts.
OUTPUT_FORMAT("elf32-tradlittlemips")
OUTPUT_ARCH(pic32mx)
ENTRY(_reset)

The OUTPUT_FORMAT line selects the object file format for the output file. The output
object file format generated by the 32-bit language tools is a traditional, little-endian,
MIPS, ELF32 format.
The OUTPUT_ARCH line selects the specific machine architecture for the output file.
The output files generated by the 32-bit language tools contains information that
identifies the file was generated for the PIC32MX architecture.
The ENTRY line selects the entry point of the application. This is the symbol identifying
the location of the first instruction to execute. The 32-bit language tools begins
execution at the instruction identified by the _reset label.

5.8.2 Default Values for Minimum Stack and Heap Sizes
The next section of the default linker script provides default values for the minimum
stack and heap sizes.
/*
 * Provide for a minimum stack and heap size
 * - _min_stack_size - represents the minimum space that must
 * be made available for the stack. Can
 * be overridden from the command line
 * using the linker's --defsym option.
 * - _min_heap_size - represents the minimum space that must
 * be made available for the heap. Can
 * be overridden from the command line
 * using the linker's --defsym option.
 */
EXTERN (_min_stack_size _min_heap_size)
PROVIDE(_min_stack_size = 0x400) ;
PROVIDE(_min_heap_size = 0) ;

The EXTERN line ensures that the rest of the linker script has access to the default
values of _min_stack_size and _min_heap_size assuming that the user does not
override these values using the linker’s --defsym command line option.
The two PROVIDE lines ensure that a default value is provided for both
_min_stack_size and _min_heap_size. The default value for the minimum stack
size is 1024 bytes (0x400). The default value for the minimum heap size is 0 bytes.

Note: All addresses specified in the linker scripts should be specified as virtual not
physical addresses.

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 77

5.8.3 Processor Definitions Include File
The next line in the default linker script pulls in information specific to the processor.
INCLUDE procdefs.ld

The file procdefs.ld is included in the linker script at this point. The file is searched
for in the current directory and in any directory specified with the -L command line
option. The compiler shell ensures that the correct directory is passed to the linker with
the -L command line option based on the processor selected with the -mprocessor
command line option.
The processor definitions linker script contains the following pieces of information:
• Inclusion of Processor-Specific Object File(s)
• Base Exception Vector Address and Vector Spacing Symbols
• Memory Address Equates
• Memory Regions
• Configuration Words Input/Output Section Map

5.8.3.1 INCLUSION OF PROCESSOR-SPECIFIC OBJECT FILE(S)

This section of the processor definitions linker script ensures that the
processor-specific object file(s) get included in the link.
/**
 * Processor-specific object file. Contains SFR definitions.
 **/
INPUT(“processor.o”)

The INPUT line specifies that processor.o should be included in the link as if this file
were named on the command line. The linker attempts to find this file in the current
directory. If it is not found, the linker searches through the library search paths (i.e., the
paths specified with the -L command line option).

5.8.3.2 BASE EXCEPTION VECTOR ADDRESS AND VECTOR SPACING
SYMBOLS

This section of the processor definitions linker script defines values for the base
exception vector address and vector spacing.
/**
 * For interrupt vector handling
 **/
_vector_spacing= 0x00000001;
_ebase_address= 0x9FC01000;

The first line defines a value of 1 for _vector_spacing. The available memory for
exceptions only supports a vector spacing of 1. The second line defines the location of
the base exception vector address (EBASE). This address is located in the KSEG0 boot
segment.

5.8.3.3 MEMORY ADDRESS EQUATES

This section of the processor definitions linker script provides information about certain
memory addresses required by the default linker script.
/**
 * Memory Address Equates
 **/
_RESET_ADDR= 0xBFC00000;
_BEV_EXCPT_ADDR= 0xBFC00380;
_DBG_EXCPT_ADDR= 0xBFC00480;
_DBG_CODE_ADDR= 0xBFC02000;
_GEN_EXCPT_ADDR= _ebase_address + 0x180;

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 78 © 2009 Microchip Technology Inc.

The _RESET_ADDR defines the processor’s Reset address. This is the virtual begin
address of the IFM Boot section in Kernel mode.
The _BEV_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and StatusBEV = 1.
The _DBG_EXCPT_ADDR defines the address that the processor jumps to when a
debug exception is encountered.
The _DBG_CODE_ADDR defines the address that the start address of the debug
executive.
The _GEN_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and StatusBEV = 0.

5.8.3.4 MEMORY REGIONS

This section of the processor definitions linker script provides information about the
memory regions that are available on the device.
/**
 * Memory Regions
 *
 * Memory regions without attributes cannot be used for
 * orphaned sections. Only sections specifically assigned to
 * these regions can be allocated into these regions.
 **/
MEMORY
{
 kseg0_program_mem (rx) : ORIGIN = 0x9D000000, LENGTH = 0x8000
 kseg0_boot_mem : ORIGIN = 0x9FC00490, LENGTH = 0x970
 exception_mem : ORIGIN = 0x9FC01000, LENGTH = 0x1000
 kseg1_boot_mem : ORIGIN = 0xBFC00000, LENGTH = 0x490
 debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = 0xFF0
 config3 : ORIGIN = 0xBFC02FF0, LENGTH = 0x4
 config2 : ORIGIN = 0xBFC02FF4, LENGTH = 0x4
 config1 : ORIGIN = 0xBFC02FF8, LENGTH = 0x4
 config0 : ORIGIN = 0xBFC02FFC, LENGTH = 0x4
 kseg1_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x2000
 sfrs : ORIGIN = 0xBF800000, LENGTH = 0x10000
}

Eleven memory regions are defined with an associated start address and length:
1. Program memory region (kseg0_program_mem) for application code
2. Boot memory regions (kseg0_boot_mem and kseg1_boot_mem)
3. Exception memory region (exception_mem)
4. Debug executive memory region (debug_exec_mem)
5. Configuration memory regions (config3, config2, config1, and config0)
6. Data memory region (kseg1_data_mem)
7. SFR memory region (sfrs)
The default linker script uses these names to locate sections into the correct regions.
Sections which are non-standard become orphaned sections. The attributes of the
memory regions are used to locate these orphaned sections. The attributes (rx)
specify that read-only sections or executable sections can be located into the program
memory regions. Similarly, the attributes (w!x) specify that sections that are not
read-only and not executable can be located in the data memory region. Since no
attributes are specified for the boot memory region, the configuration memory regions,
or the SFR memory region, only specified sections may be located in these regions

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 79

(i.e., orphaned sections may not be located in the boot memory regions, the exception
memory region, the configuration memory regions, the debug executive memory
region, or the SFR memory region).

5.8.3.5 CONFIGURATION WORDS INPUT/OUTPUT SECTION MAP

The last section in the processor definitions linker script is the input/output section map
for Configuration Words. This section map is additive to the Input/Output Section Map
found in the default linker script (see Section 5.8.4 “Input/Output Section Map”). It
defines how input sections for Configuration Words are mapped to output sections for
Configuration Words. Note that input sections are portions of an application that are
defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section. All output sections
are specified within a SECTIONS command in the linker script.
For each Configuration Word that exists on the specific processor, a distinct output
section named .config_address exists where address is the location of the
Configuration Word in memory. Each of these sections contains the data created by the
#pragma config directive (see Section 4.8.1 “#pragma config”) for that
Configuration Word. Each section is assigned to their respective memory region
(confign).

SECTIONS
{
 .config_BFC02FF0 : {
 *(.config_BFC02FF0)
 } > config3
 .config_BFC02FF4 : {
 *(.config_BFC02FF4)
 } > config2
 .config_BFC02FF8 : {
 *(.config_BFC02FF8)
 } > config1
 .config_BFC02FFC : {
 *(.config_BFC02FFC)
 } > config0
}

5.8.4 Input/Output Section Map
The last section in the default linker script is the input/output section map. The section
map is the heart of the linker script. It defines how input sections are mapped to output
sections. Note that input sections are portions of an application that are defined in
source code, while output sections are created by the linker. Generally, several input
sections may be combined into a single output section. All output sections are specified
within a SECTIONS command in the linker script.
The following output sections may be created by the linker:
• .reset Section
• .bev_excpt Section
• .dbg_excpt Section
• .dbg_code Section
• .app_excpt Section
• .vector_0 .. .vector_63 Sections
• .start-up Section
• .text Section
• .rodata Sectionn

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 80 © 2009 Microchip Technology Inc.

• .sdata2 Section
• .sbss2 Section
• .dbg_data Section
• .data Section
• .got Section
• .sdata Section
• .lit8 Section
• .lit4 Section
• .sbss Section
• .bss Section
• .heap Section
• .stack Section
• .ramfunc Section
• Stack Location
• Debug Sections

5.8.4.1 .RESET SECTION

This section contains the code that is executed when the processor performs a Reset.
This section is located at the Reset address (_RESET_ADDR) as specified in the
processor definitions linker script and is assigned to the boot memory region
(kseg1_boot_mem).
.reset _RESET_ADDR :
{
 *(.reset)
} > kseg1_boot_mem

5.8.4.2 .BEV_EXCPT SECTION

This section contains the handler for exceptions that occur when StatusBEV = 1. This
section is located at the BEV exception address (_BEV_EXCPT_ADDR) as specified in
the processor definitions linker script and is assigned to the boot memory region
(kseg1_boot_mem).
.bev_excpt _BEV_EXCPT_ADDR :
{
 *(.bev_handler)
} > kseg1_boot_mem

5.8.4.3 .DBG_EXCPT SECTION

This section reserves space for the debug exception vector. This section is only
allocated if the symbol _DEBUGGER has been defined. (This symbol is defined if the
-mdebugger command line option is specified to the shell.) This section is located at
the debug exception address (_DBG_EXCPT_ADDR) as specified in the processor
definitions linker script and is assigned to the boot memory region
(kseg1_boot_mem). The section is marked as NOLOAD as it is only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.
.dbg_excpt _DBG_EXCPT_ADDR (NOLOAD) :
{
 . += (DEFINED (_DEBUGGER) ? 0x8 : 0x0);
} > kseg1_boot_mem

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 81

5.8.4.4 .DBG_CODE SECTION

This section reserves space for the debug exception handler. This section is only
allocated if the symbol _DEBUGGER has been defined. (This symbol is defined if the
-mdebugger command line option is specified to the shell.) This section is located at
the debug code address (_DBG_CODE_ADDR) as specified in the processor definitions
linker script and is assigned to the debug executive memory region
(debug_exec_mem). The section is marked as NOLOAD as it is only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.
.dbg_code _DBG_CODE_ADDR (NOLOAD) :
{
 . += (DEFINED (_DEBUGGER) ? 0xFF0 : 0x0);
} > debug_exec_mem

5.8.4.5 .APP_EXCPT SECTION

This section contains the handler for exceptions that occur when StatusBEV = 0. This
section is located at the general exception address (_GEN_EXCPT_ADDR) as specified
in the processor definitions linker script and is assigned to the exception memory
region (exception_mem).
.app_excpt _GEN_EXCPT_ADDR :
{
 *(.gen_handler)
} > exception_mem

5.8.4.6 .VECTOR_0 .. .VECTOR_63 SECTIONS

These sections contain the handler for each of the interrupt vectors. These sections are
located at the correct vectored addresses using the formula:
_ebase_address + 0x200 + (_vector_spacing << 5) * n

where n is the respective vector number.
Each of the sections is followed by an assert that ensures the code located at the vector
does not exceed the vector spacing specified.
.vector_n _ebase_address + 0x200 + (_vector_spacing << 5) * n :
 {
 *(.vector_n)
 } > exception_mem
ASSERT (SIZEOF(.vector_n) < (_vector_spacing << 5), "function at
exception vector n too large")

5.8.4.7 .START-UP SECTION

This section contains the C start-up code. This section is assigned to the KSEG0 boot
memory region (kseg0_boot_mem).
.startup ORIGIN(kseg0_boot_mem) :
 {
 *(.startup)
 } > kseg0_boot_mem

5.8.4.8 .TEXT SECTION

This section collects executable code from all of the application’s input files. This
section is assigned to the program memory region (kseg0_program_mem) and has a
fill value of NOP (0). Symbols are defined to represent the begin (_text_begin) and
end (_text_end) addresses of this section.
.text ORIGIN(kseg0_program_mem) :
{
 _text_begin = . ;

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 82 © 2009 Microchip Technology Inc.

 (.text .stub .text. .gnu.linkonce.t.*)
 KEEP (*(.text.*personality*))
 *(.gnu.warning)
 (.mips16.fn.)
 (.mips16.call.)
 _text_end = . ;
} > kseg0_program_mem =0

5.8.4.9 .RODATA SECTION

This section collects the read-only sections from all of the application’s input files. This
section is assigned to the program memory region (kseg0_program_mem).
.rodata :
{
 (.rodata .rodata. .gnu.linkonce.r.*)
 *(.rodata1)
} > kseg0_program_mem

5.8.4.10 .SDATA2 SECTION

This section collects the small initialized constant global and static data from all of the
application’s input files. Because of the constant nature of the data, this section is also
a read-only section. This section is assigned to the program memory region
(kseg0_program_mem).
/*
 * Small initialized constant global and static data can be
 * placed in the .sdata2 section. This is different from
 * .sdata, which contains small initialized non-constant
 * global and static data.
 */
.sdata2 :
{
 (.sdata2 .sdata2. .gnu.linkonce.s2.*)
} > kseg0_program_mem

5.8.4.11 .SBSS2 SECTION

This section collects the small uninitialized constant global and static data from all of
the application’s input files. Because of the constant nature of the data, this section is
also a read-only section. This section is assigned to the program memory region
(kseg0_program_mem).
/*
 * Uninitialized constant global and static data (i.e.,
 * variables which will always be zero). Again, this is
 * different from .sbss, which contains small non-initialized,
 * non-constant global and static data.
 */
.sbss2 :
{
 (.sbss2 .sbss2. .gnu.linkonce.sb2.*)
} > kseg0_program_mem

5.8.4.12 .DBG_DATA SECTION

This section reserves space for the data required by the debug exception handler. This
section is only allocated if the symbol _DEBUGGER has been defined. (This symbol is
defined if the -mdebugger command line option is specified to the shell.) This section
is assigned to the data memory region (kseg1_data_mem). The section is marked as
NOLOAD as it is only intended to ensure that application data cannot be placed at
locations reserved for the debug executive.

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 83

.dbg_data (NOLOAD) :
{
 . += (DEFINED (_DEBUGGER) ? 0x200 : 0x0);
} > kseg1_data_mem

5.8.4.13 .DATA SECTION

This section collects the initialized data from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem) with a load address
located in the program memory region (kseg0_program_mem). Symbols are defined
to represent the virtual begin (_data_begin) and end (_data_end) addresses of this
section, as well as the physical begin address of the data in program memory
(_data_image_begin).
.data :
{
 _data_begin = . ;
 (.data .data. .gnu.linkonce.d.*)
 KEEP (*(.gnu.linkonce.d.*personality*))
 *(.data1)
} > kseg1_data_mem AT> kseg0_program_mem
_data_image_begin = LOADADDR(.data) ;

5.8.4.14 .GOT SECTION

This section collects the global offset table from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem) with a load address
located in the program memory region (kseg0_program_mem). A symbol is defined
to represent the location of the Global Pointer (_gp).
 _gp = ALIGN(16) + 0x7FF0 ;
 .got :
 {
 *(.got.plt) *(.got)
 } > kseg1_data_mem AT> kseg0_program_mem

5.8.4.15 .SDATA SECTION

This section collects the small initialized data from all of the application’s input files.
This section is assigned to the data memory region (kseg1_data_mem) with a load
address located in the program memory region (kseg0_program_mem). Symbols are
defined to represent the virtual begin (_sdata_begin) and end (_sdata_end)
addresses of this section.
/*
 * We want the small data sections together, so
 * single-instruction offsets can access them all, and
 * initialized data all before uninitialized, so
 * we can shorten the on-disk segment size.
 */
.sdata :
{
 _sdata_begin = . ;
 (.sdata .sdata. .gnu.linkonce.s.*)
 _sdata_end = . ;
} > kseg1_data_mem AT> kseg0_program_mem

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 84 © 2009 Microchip Technology Inc.

5.8.4.16 .LIT8 SECTION

This section collects the 8-byte constants (usually floating-point) which the assembler
decides to store in memory rather than in the instruction stream from all of the
application’s input files. This section is assigned to the data memory region
(kseg1_data_mem) with a load address located in the program memory region
(kseg0_program_mem).
.lit8 :
{
 *(.lit8)
} > kseg1_data_mem AT> kseg0_program_mem

5.8.4.17 .LIT4 SECTION

This section collects the 4-byte constants (usually floating-point) which the assembler
decides to store in memory rather than in the instruction stream from all of the
application’s input files. This section is assigned to the data memory region
(kseg1_data_mem) with a load address located in the program memory region
(kseg0_program_mem). A symbol is defined to represent the virtual end address of
the initialized data (_data_end).
 .lit4 :
 {
 *(.lit4)
 } > kseg1_data_mem AT> kseg0_program_mem
 _data_end = . ;

5.8.4.18 .SBSS SECTION

This section collects the small uninitialized data from all of the application’s input files.
This section is assigned to the data memory region (kseg1_data_mem). A symbol is
defined to represent the virtual begin address of uninitialized data (_bss_begin).
Symbols are also defined to represent the virtual begin (_sbss_begin) and end
(_sbss_end) addresses of this section.
 _bss_begin = . ;
 .sbss :
 {
 _sbss_begin = . ;
 *(.dynsbss)
 (.sbss .sbss. .gnu.linkonce.sb.*)
 *(.scommon)
 _sbss_end = . ;
 } > kseg1_data_mem

5.8.4.19 .BSS SECTION

This section collects the uninitialized data from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem). A symbol is
defined to represent the virtual end address of uninitialized data (_bss_end). A symbol
is also defined to represent the virtual end address of data memory (_end).
.bss :
{
 *(.dynbss)
 (.bss .bss. .gnu.linkonce.b.*)
 *(COMMON)
 /*
 * Align here to ensure that the .bss section occupies
 * space up to _end. Align after .bss to ensure correct
 * alignment even if the .bss section disappears because
 * there are no input sections.

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 85

 */
 . = ALIGN(32 / 8) ;
} > kseg1_data_mem
. = ALIGN(32 / 8) ;
_end = . ;
_bss_end = . ;

5.8.4.20 .HEAP SECTION

This section reserves space for the heap, which is required for dynamic memory
allocation. A symbol is defined to represent the virtual address of the heap (_heap).
The minimum amount of space reserved for the heap is determined by the symbol
_min_heap_size.
/* Heap allocating takes a chunk of memory following BSS */
.heap ALIGN(4) :
{
 _heap = . ;
 . += _min_heap_size ;
} > kseg1_data_mem

5.8.4.21 .STACK SECTION

This section reserves space for the stack. The minimum amount of space reserved for
the stack is determined by the symbol _min_stack_size.
/* Stack allocation follows the heap */
.stack ALIGN(4) :
{
 . += _min_stack_size ;
} > kseg1_data_mem

5.8.4.22 .RAMFUNC SECTION

This section collects the RAM functions from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem) with a load address
located in the program memory region (kseg0_program_mem). Symbols are defined
to represent the virtual begin (_ramfunc_begin) and end (_ramfunc_end)
addresses of this section, as well as the physical begin address of the RAM functions
in program memory (_ramfunc_image_begin) and a length of the RAM functions
(_ramfunc_length). In addition, the addresses for the bus matrix registers are
calculated (_bmxdkpba_address, _bmxdudba_address, and
_bmxdupba_address).
/*
 * RAM functions go at the end of our stack and heap allocation.
 * Alignment of 2K required by the boundary register (BMXDKPBA).
 */
.ramfunc ALIGN(2K) :
{
 _ramfunc_begin = . ;
 (.ramfunc .ramfunc.)
 . = ALIGN(4) ;
 _ramfunc_end = . ;
} > kseg1_data_mem AT> kseg0_program_mem
_ramfunc_image_begin = LOADADDR(.ramfunc) ;
_ramfunc_length = SIZEOF(.ramfunc) ;
_bmxdkpba_address = _ramfunc_begin - ORIGIN(kseg1_data_mem) ;
_bmxdudba_address = LENGTH(kseg1_data_mem);
_bmxdupba_address = LENGTH(kseg1_data_mem);

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 86 © 2009 Microchip Technology Inc.

5.8.4.23 STACK LOCATION

A symbol is defined to represent the location of the Stack Pointer (_stack). This
location is dependent on whether RAM functions exist in the application. If RAM
functions exist, then the location of the Stack Pointer should include the gap between
the stack section and the beginning of the .ramfunc section caused by the alignment
of the .ramfunc section minus one word. If RAM functions do not exist, then the
location of the Stack Pointer should be the end of the KSEG1 data memory.
/*
 * The actual top of stack should include the gap between
 * the stack section and the beginning of the .ramfunc
 * section caused by the alignment of the .ramfunc section
 * minus 1 word. If RAM functions do not exist, then the top
 * of the stack should point to the end of the kseg1 data
 * memory.
 */
_stack = (_ramfunc_length > 0)
 ? _ramfunc_begin - 4
 : ORIGIN(kseg1_data_mem) + LENGTH(kseg1_data_mem) ;
ASSERT((_min_stack_size + _min_heap_size) <= (_stack - _heap),
 "Not enough space to allocate both stack and heap. Reduce heap
and/or stack size.")

5.8.4.24 DEBUG SECTIONS

The debug sections contain debugging information. They are not loaded into program
flash.
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
/* DWARF debug sections.
 Symbols in the DWARF debugging sections are relative
 to the beginning of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }

/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }

Compiler Run-time Environment

© 2009 Microchip Technology Inc. DS51686B-page 87

.debug_typenames 0 : { *(.debug_typenames) }

.debug_varnames 0 : { *(.debug_varnames) }
/DISCARD/ : { *(.note.GNU-stack) }

5.9 RAM FUNCTIONS
Functions may be located in RAM to improve performance. The __ramfunc__ and
__longramfunc__ specifiers are used on a function declaration to specify that the
function will be executed out of RAM.
Functions specified as a RAM function will be copied to RAM by the start-up code and
all calls to those functions will reference the RAM location. Functions located in RAM
will be in a different 512MB memory segment than functions located in program
memory, so the longcall attribute should be applied to any RAM function which will
be called from a function not in RAM. The __longramfunc__ specifier will apply the
longcall attribute as well as place the function in RAM1.
/* function ‘foo’ will be placed in RAM */
void __ramfunc__ foo (void)
{
}

/* function ‘bar’ will be placed in RAM and will be invoked
 using the full 32 bit address */
void __longramfunc__ bar (void)
{
}

1. Specifying __longramfunc__ is functionally equivalent to specifying both __ramfunc__ and
__longcall__.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 88 © 2009 Microchip Technology Inc.

NOTES:

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 89

Appendix A. Implementation Defined Behavior

A.1 INTRODUCTION

This chapter discusses the choices for implementation defined behavior in compiler.

A.2 HIGHLIGHTS

Items discussed in this chapter are:
• Overview
• Translation
• Environment
• Identifiers
• Characters
• Integers
• Floating-Point
• Arrays and Pointers
• Hints
• Structures, Unions, Enumerations, and Bit fields
• Qualifiers
• Declarators
• Statements
• Pre-Processing Directives
• Library Functions
• Architecture

A.3 OVERVIEW

ISO C requires a conforming implementation to document the choices for behaviors
defined in the standard as “implementation-defined.” The following sections list all such
areas, the choices made for the compiler, and the corresponding section number from
the ISO/IEC 9899:1999 standard.

A.4 TRANSLATION

ISO Standard: “How a diagnostic is identified (3.10, 5.1.1.3).”

Implementation: All output to stderr is a diagnostic.

ISO Standard: “Whether each nonempty sequence of white-space characters
other than new-line is retained or replaced by one space character
in translation phase 3 (5.1.1.2).”

Implementation: Each sequence of whitespace is replaced by a single character.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 90 © 2009 Microchip Technology Inc.

A.5 ENVIRONMENT

ISO Standard: “The name and type of the function called at program start-up in a
freestanding environment (5.1.2.1).”

Implementation: int main (void);

ISO Standard: “The effect of program termination in a freestanding environment
(5.1.2.1).”

Implementation: An infinite loop (branch to self) instruction will be execute.

ISO Standard: “An alternative manner in which the main function may be defined
(5.1.2.2.1).”

Implementation: int main (void);

ISO Standard: “The values given to the strings pointed to by the argv argument
to main (5.1.2.2.1).”

Implementation: No arguments are passed to main. Reference to argc or argv is
undefined.

ISO Standard: “What constitutes an interactive device (5.1.2.3).”

Implementation: Application defined.

ISO Standard: “Signals for which the equivalent of signal(sig, SIG_IGN);
is executed at program start-up (7.14.1.1).”

Implementation: Signals are application defined.

ISO Standard: “The form of the status returned to the host environment to
indicate unsuccessful termination when the SIGABRT signal is
raised and not caught (7.20.4.1).”

Implementation: The host environment is application defined.

ISO Standard: “The forms of the status returned to the host environment by the
exit function to report successful and unsuccessful termination
(7.20.4.3).”

Implementation: The host environment is application defined.

ISO Standard: “The status returned to the host environment by the exit function
if the value of its argument is other than zero, EXIT_SUCCESS, or
EXIT_FAILURE (7.20.4.3).”

Implementation: The host environment is application defined.

ISO Standard: “The set of environment names and the method for altering the
environment list used by the getenv function (7.20.4.4).”

Implementation: The host environment is application defined.

Implementation Defined Behavior

© 2009 Microchip Technology Inc. DS51686B-page 91

ISO Standard: “The manner of execution of the string by the system function
(7.20.4.5).”

Implementation: The host environment is application defined.

A.6 IDENTIFIERS

ISO Standard: “Which additional multibyte characters may appear in identifiers
and their correspondence to universal character names (6.4.2).”

Implementation: No.

ISO Standard: “The number of significant initial characters in an identifier
(5.2.4.1, 6.4.2).”

Implementation: All characters are significant.

A.7 CHARACTERS

ISO Standard: “The number of bits in a byte (C90 3.4, C99 3.6).”

Implementation: 8.

ISO Standard: “The values of the members of the execution character set (C90
and C99 5.2.1).”

ISO Standard: “The unique value of the member of the execution character set
produced for each of the standard alphabetic escape sequences
(C90 and C99 5.2.2).”

Implementation: The execution character set is ASCII.

ISO Standard: “The value of a char object into which has been stored any
character other than a member of the basic execution character
set (C90 6.1.2.5, C99 6.2.5).”

Implementation: The value of the char object is the 8-bit binary representation of
the character in the source character set. That is, no translation is
done.

ISO Standard: “Which of signed char or unsigned char has the same range,
representation, and behavior as “plain” char (C90 6.1.2.5, C90
6.2.1.1, C99 6.2.5, C99 6.3.1.1).”

Implementation: By default, signed char is functionally equivalent to plain char. The
options -funsigned-char and -fsigned-char can be used
to change the default.

ISO Standard: “The mapping of members of the source character set (in
character constants and string literals) to members of the
execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99
5.1.1.2).”

Implementation: The binary representation of the source character set is preserved
to the execution character set.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 92 © 2009 Microchip Technology Inc.

ISO Standard: “The value of an integer character constant containing more than
one character or containing a character or escape sequence that
does not map to a single-byte execution character (C90 6.1.3.4,
C99 6.4.4.4).”

Implementation: The compiler determines the value for a multi-character character
constant one character at a time. The previous value is shifted left
by eight, and the bit pattern of the next character is masked in. The
final result is of type int. If the result is larger than can be
represented by an int, a warning diagnostic is issued and the
value truncated to int size.

ISO Standard: “The value of a wide character constant containing more than one
multibyte character, or containing a multibyte character or escape
sequence not represented in the extended execution character set
(C90 6.1.3.4, C99 6.4.4.4).”

Implementation: See previous.

ISO Standard: “The current locale used to convert a wide character constant
consisting of a single multibyte character that maps to a member
of the extended execution character set into a corresponding wide
character code (C90 6.1.3.4, C99 6.4.4.4).”

Implementation: LC_ALL

ISO Standard: “The current locale used to convert a wide string literal into
corresponding wide character codes (C90 6.1.4, C99 6.4.5).”

Implementation: LC_ALL

ISO Standard: “The value of a string literal containing a multibyte character or
escape sequence not represented in the execution character set
(C90 6.1.4, C99 6.4.5).”

Implementation: The binary representation of the characters is preserved from the
source character set.

A.8 INTEGERS

ISO Standard: “Any extended integer types that exist in the implementation (C99
6.2.5).”

Implementation: There are no extended integer types.

ISO Standard: “Whether signed integer types are represented using sign and
magnitude, two’s complement, or one’s complement, and whether
the extraordinary value is a trap representation or an ordinary
value (C99 6.2.6.2).”

Implementation: All integer types are represented as two’s complement, and all bit
patterns are ordinary values.

ISO Standard: “The rank of any extended integer type relative to another
extended integer type with the same precision (C99 6.3.1.1).”

Implementation Defined Behavior

© 2009 Microchip Technology Inc. DS51686B-page 93

Implementation: No extended integer types are supported.

ISO Standard: “The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an
object of that type (C90 6.2.1.2, C99 6.3.1.3).”

Implementation: When converting value X to a type of width N, the value of the
result is the Least Significant N bits of the 2’s complement
representation of X. That is, X is truncated to N bits. No signal is
raised.

ISO Standard: “The results of some bitwise operations on signed integers (C90
6.3, C99 6.5).”

Implementation: Bitwise operations on signed values act on the 2’s complement
representation, including the sign bit. The result of a signed right
shift expression is sign extended.

C99 allows some aspects of signed ‘<<’ to be undefined. The
compiler does not do so.

A.9 FLOATING-POINT

ISO Standard: “The accuracy of the floating-point operations and of the library
functions in <math.h> and <complex.h> that return floating-point
results (C90 and C99 5.2.4.2.2).”

Implementation: The accuracy is unknown.

ISO Standard: “The accuracy of the conversions between floating-point internal
representations and string representations performed by the
library functions in <stdio.h>, <stdlib.h>, and <wchar.h> (C90 and
C99 5.2.4.2.2).”

Implementation: The accuracy is unknown.

ISO Standard: “The rounding behaviors characterized by non-standard values of
FLT_ROUNDS (C90 and C99 5.2.4.2.2).”

Implementation: No such values are used.

ISO Standard: “The evaluation methods characterized by non-standard negative
values of FLT_EVAL_METHOD (C90 and C99 5.2.4.2.2).”

Implementation: No such values are used.

ISO Standard: “The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original
value (C90 6.2.1.3, C99 6.3.1.4).”

Implementation: C99 Annex F is followed.

ISO Standard: “The direction of rounding when a floating-point number is
converted to a narrower floating-point number (C90 6.2.1.4,
6.3.1.5).”

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 94 © 2009 Microchip Technology Inc.

Implementation: C99 Annex F is followed.

ISO Standard: “How the nearest representable value or the larger or smaller
representable value immediately adjacent to the nearest
representable value is chosen for certain floating constants (C90
6.1.3.1, C99 6.4.4.2).”

Implementation: C99 Annex F is followed.

ISO Standard: “Whether and how floating expressions are contracted when not
disallowed by the FP_CONTRACT pragma (C99 6.5).”

Implementation: The pragma is not implemented.

ISO Standard: “The default state for the FENV_ACCESS pragma (C99 7.6.1).”

Implementation: This pragma is not implemented.

ISO Standard: “Additional floating-point exceptions, rounding modes,
environments, and classifications, and their macro names (C99
7.6, 7.12).”

Implementation: None supported.

ISO Standard: “The default state for the FP_CONTRACT pragma (C99 7.12.2).”

Implementation: This pragma is not implemented.

ISO Standard: “Whether the “inexact” floating-point exception can be raised
when the rounded result actually does equal the mathematical
result in an IEC 60559 conformant implementation (C99 F.9).”

Implementation: Unknown.

ISO Standard: “Whether the “underflow” (and “inexact”) floating-point exception
can be raised when a result is tiny but not inexact in an IEC 60559
conformant implementation (C99 F.9).”

Implementation: Unknown.

A.10 ARRAYS AND POINTERS

ISO Standard: “The result of converting a pointer to an integer or vice versa (C90
6.3.4, C99 6.3.2.3).”

Implementation: A cast from an integer to a pointer or vice versa results uses the
binary representation of the source type, reinterpreted as
appropriate for the destination type.

If the source type is larger than the destination type, the Most
Significant bits are discarded. When casting from a pointer to an
integer, if the source type is smaller than the destination type, the
result is sign extended. When casting from an integer to a pointer,
if the source type is smaller than the destination type, the result is
extended based on the signedness of the source type.

Implementation Defined Behavior

© 2009 Microchip Technology Inc. DS51686B-page 95

ISO Standard: “The size of the result of subtracting two pointers to elements of
the same array (C90 6.3.6, C99 6.5.6).”

Implementation: 32-bit signed integer.

A.11 HINTS

ISO Standard: “The extent to which suggestions made by using the register
storage-class specifier are effective (C90 6.5.1, C99 6.7.1).”

Implementation: The register storage class specifier generally has no effect.

ISO Standard: “The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).”

Implementation: If -fno-inline or -O0 are specified, no functions will be inlined,
even if specified with the inline specifier. Otherwise, the
function may or may not be inlined dependent on the optimization
heuristics of the compiler.

A.12 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT FIELDS

ISO Standard: “A member of a union object is accessed using a member of a
different type (C90 6.3.2.3).”

Implementation: The corresponding bytes of the union object are interpreted as an
object of the type of the member being accessed without regard
for alignment or other possible invalid conditions.

ISO Standard: “Whether a “plain” int bit field is treated as a signed int bit
field or as an unsigned int bit field (C90 6.5.2, C90 6.5.2.1, C99
6.7.2, C99 6.7.2.1).”

Implementation: By default, a plain int bit field is treated as a signed integer. This
behavior can be altered by use of the -funsigned-bitfields
command line option.

ISO Standard: “Allowable bit field types other than _Bool, signed int, and
unsigned int (C99 6.7.2.1).”

Implementation: No other types are supported.

ISO Standard: “Whether a bit field can straddle a storage unit boundary (C90
6.5.2.1, C99 6.7.2.1).”

Implementation: No.

ISO Standard: “The order of allocation of bit fields within a unit (C90 6.5.2.1, C99
6.7.2.1).”

Implementation: Bit fields are allocated left to right.

ISO Standard: “The alignment of non-bit field members of structures (C90
6.5.2.1, C99 6.7.2.1).”

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 96 © 2009 Microchip Technology Inc.

Implementation: Each member is located to the lowest available offset allowable
according to the alignment restrictions of the member type.

ISO Standard: “The integer type compatible with each enumerated type (C90
6.5.2.2, C99 6.7.2.2).”

Implementation: If the enumeration values are all non-negative, the type is
unsigned int, else it is int. The -fshort-enums command
line option can change this.

A.13 QUALIFIERS

ISO Standard: “What constitutes an access to an object that has volatile-qualified
type (C90 6.5.3, C99 6.7.3).”

Implementation: Any expression which uses the value of or stores a value to a
volatile object is considered an access to that object. There is no
guarantee that such an access is atomic.

If an expression contains a reference to a volatile object but
neither uses the value nor stores to the object, the expression is
considered an access to the volatile object or not depending on
the type of the object. If the object is of scalar type, an aggregate
type with a single member of scalar type, or a union with members
of (only) scalar type, the expression is considered an access to the
volatile object. Otherwise, the expression is evaluated for its side
effects but is not considered an access to the volatile object.

For example,

volatile int a;

a; /* access to ‘a’ since ‘a’ is scalar */

A.14 DECLARATORS

ISO Standard: “The maximum number of declarators that may modify an
arithmetic, structure or union type (C90 6.5.4).”

Implementation: No limit.

A.15 STATEMENTS

ISO Standard: “The maximum number of case values in a switch statement (C90
6.6.4.2).”

Implementation: No limit.

A.16 PRE-PROCESSING DIRECTIVES

ISO Standard: “How sequences in both forms of header names are mapped to
headers or external source file names (C90 6.1.7, C99 6.4.7).”

Implementation Defined Behavior

© 2009 Microchip Technology Inc. DS51686B-page 97

Implementation: The character sequence between the delimiters is considered to
be a string which is a file name for the host environment.

ISO Standard: “Whether the value of a character constant in a constant
expression that controls conditional inclusion matches the value of
the same character constant in the execution character set (C90
6.8.1, C99 6.10.1).”

Implementation: Yes.

ISO Standard: “Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may have
a negative value (C90 6.8.1, C99 6.10.1).”

Implementation: Yes.

ISO Standard: “The places that are searched for an included < > delimited
header, and how the places are specified or the header is
identified (C90 6.8.2, C99 6.10.2).”

Implementation: <install directory>/lib/gcc/pic32mx/3.4.4/include

<install directory>/pic32mx/include

ISO Standard: “How the named source file is searched for in an included “”
delimited header(C90 6.8.2, C99 6.10.2).”

Implementation: The compiler first searches for the named file in the directory
containing the including file, the directories specified by the
-iquote command line option (if any), then the directories which
are searched for a < > delimited header.

ISO Standard: “The method by which preprocessing tokens are combined into a
header name (C90 6.8.2, C99 6.10.2).”

Implementation: All tokens, including whitespace, are considered part of the header
file name. Macro expansion is not performed on tokens inside the
delimiters.

ISO Standard: “The nesting limit for #include processing (C90 6.8.2, C99
6.10.2).”

Implementation: No limit.

ISO Standard: “The behavior on each recognized non-STDC #pragma directive
(C90 6.8.6, C99 6.10.6).”

Implementation: See Section 1.7 “Attributes and Pragmas”.

ISO Standard: “The definitions for __DATE_ _ and __TIME_ _ when
respectively, the date and time of translation are not available
(C90 6.8.8, C99 6.10.8).”

Implementation: The date and time of translation are always available.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 98 © 2009 Microchip Technology Inc.

A.17 LIBRARY FUNCTIONS

ISO Standard: “The Null Pointer constant to which the macro NULL expands
(C90 7.1.6, C99 7.17).”

Implementation: (void *)0

ISO Standard: “Any library facilities available to a freestanding program, other
than the minimal set required by clause 4 (5.1.2.1).”

Implementation: See the “32-Bit Language Tools Libraries” (DS51685).

ISO Standard: “The format of the diagnostic printed by the assert macro
(7.2.1.1).”

Implementation: “Failed assertion ‘message’ at line line of ‘filename’.\n”

ISO Standard: “The default state for the FENV_ACCESS pragma (7.6.1).”

Implementation: Unimplemented.

ISO Standard: “The representation of floating-point exception flags stored by the
fegetexceptflag function (7.6.2.2).”

Implementation: Unimplemented.

ISO Standard: “Whether the feraiseexcept function raises the inexact
exception in addition to the overflow or underflow exception
(7.6.2.3).”

Implementation: Unimplemented.

ISO Standard: “Floating environment macros other than FE_DFL_ENV that can
be used as the argument to the fesetenv or feupdateenv
function (7.6.4.3, 7.6.4.4).”

Implementation: Unimplemented.

ISO Standard: “Strings other than “C” and “” that may be passed as the
second argument to the setlocale function (7.11.1.1).”

Implementation: None.

ISO Standard: “The types defined for float_t and double_t when the value
of the FLT_EVAL_METHOD macro is less than 0 or greater than 2
(7.12).”

Implementation: Unimplemented.

ISO Standard: “The infinity to which the INFINITY macro expands, if any
(7.12).”

Implementation: Unimplemented.

Implementation Defined Behavior

© 2009 Microchip Technology Inc. DS51686B-page 99

ISO Standard: “The quiet NaN to which the NAN macro expands, when it is
defined (7.12).”

Implementation: Unimplemented.

ISO Standard: “Domain errors for the mathematics functions, other than those
required by this International Standard (7.12.1).”

Implementation: None.

ISO Standard: “The values returned by the mathematics functions, and whether
errno is set to the value of the macro EDOM, on domain errors
(7.12.1).”

Implementation: errno is set to EDOM on domain errors.

ISO Standard: “Whether the mathematics functions set errno to the value of the
macro ERANGE on overflow and/or underflow range errors
(7.12.1).”

Implementation: Yes.

ISO Standard: “The default state for the FP_CONTRACT pragma (7.12.2)

Implementation: Unimplemented.

ISO Standard: “Whether a domain error occurs or zero is returned when the fmod
function has a second argument of zero (7.12.10.1).”

Implementation: NaN is returned.

ISO Standard: “The base-2 logarithm of the modulus used by the remquo
function in reducing the quotient (7.12.10.3).”

Implementation: Unimplemented.

ISO Standard: “The set of signals, their semantics, and their default handling
(7.14).”

Implementation: The default handling of signals is to always return failure. Actual
signal handling is application defined.

ISO Standard: “If the equivalent of signal(sig, SIG_DFL); is not executed
prior to the call of a signal handler, the blocking of the signal that
is performed (7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Whether the equivalent of signal(sig, SIG_DFL); is
executed prior to the call of a signal handler for the signal SIGILL
(7.14.1.1).”

Implementation: Application defined.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 100 © 2009 Microchip Technology Inc.

ISO Standard: “Signal values other than SIGFPE, SIGILL, and SIGSEGV that
correspond to a computational exception (7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Whether the last line of a text stream requires a terminating
new-line character (7.19.2).”

Implementation: Yes.

ISO Standard: “Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in
(7.19.2).”

Implementation: Yes.

ISO Standard: “The number of null characters that may be appended to data
written to a binary stream (7.19.2).”

Implementation: No null characters are appended to a binary stream.

ISO Standard: “Whether the file position indicator of an append-mode stream is
initially positioned at the beginning or end of the file (7.19.3).”

Implementation: Application defined. The system level function open is called with
the O_APPEND flag.

ISO Standard: “Whether a write on a text stream causes the associated file to be
truncated beyond that point (7.19.3).”

Implementation: Application defined.

ISO Standard: “The characteristics of file buffering (7.19.3).”

ISO Standard: “Whether a zero-length file actually exists (7.19.3).”

Implementation: Application defined.

ISO Standard: “The rules for composing valid file names (7.19.3).”

Implementation: Application defined.

ISO Standard: “Whether the same file can be open multiple times (7.19.3).”

Implementation: Application defined.

ISO Standard: “The nature and choice of encodings used for multibyte characters
in files (7.19.3).”

Implementation: Encodings are the same for each file.

ISO Standard: “The effect of the remove function on an open file (7.19.4.1).”

Implementation: Application defined. The system function unlink is called.

Implementation Defined Behavior

© 2009 Microchip Technology Inc. DS51686B-page 101

ISO Standard: “The effect if a file with the new name exists prior to a call to the
rename function (7.19.4.2).”

Implementation: Application defined. The system function link is called to create
the new filename, then unlink is called to remove the old
filename. Typically, link will fail if the new filename already
exists.

ISO Standard: “Whether an open temporary file is removed upon abnormal
program termination (7.19.4.3).”

Implementation: No.

ISO Standard: “What happens when the tmpnam function is called more than
TMP_MAX times (7.19.4.4).”

Implementation: Temporary names will wrap around and be reused.

ISO Standard: “Which changes of mode are permitted (if any), and under what
circumstances (7.19.5.4).”

Implementation: The file is closed via the system level close function and
re-opened with the open function with the new mode. No
additional restriction beyond those of the application defined open
and close functions are imposed.

ISO Standard: “The style used to print an infinity or NaN, and the meaning of the
n-char-sequence if that style is printed for a NaN (7.19.6.1,
7.24.2.1).”

Implementation: No char sequence is printed.

NaN is printed as “NaN”.

Infinity is printed as “[-/+]Inf”.

ISO Standard: “The output for %p conversion in the fprintf or fwprintf
function (7.19.6.1, 7.24.2.1).”

Implementation: Functionally equivalent to %x.

ISO Standard: “The interpretation of a - character that is neither the first nor the
last character, nor the second where a ^ character is the first, in
the scanlist for %[conversion in the fscanf or fwscanf
function (7.19.6.2, 7.24.2.1).”

Implementation: Unknown

ISO Standard: “The set of sequences matched by the %p conversion in the
fscanf or fwscanf function (7.19.6.2, 7.24.2.2).”

Implementation: The same set of sequences matched by %x.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 102 © 2009 Microchip Technology Inc.

ISO Standard: “The interpretation of the input item corresponding to a %p
conversion in the fscanf or fwscanf function (7.19.6.2,
7.24.2.2).”

Implementation: If the result is not a valid pointer, the behavior is undefined.

ISO Standard: “The value to which the macro errno is set by the fgetpos,
fsetpos, or ftell functions on failure (7.19.9.1, 7.19.9.3,
7.19.9.4).”

Implementation: If the result exceeds LONG_MAX, errno is set to ERANGE.

Other errors are application defined according to the application
definition of the lseek function.

ISO Standard: “The meaning of the n-char-sequence in a string converted by the
strtod, strtof, strtold, wcstod, wcstof, or wcstold
function (7.20.1.3, 7.24.4.1.1).”

Implementation: No meaning is attached to the sequence.

ISO Standard: “Whether or not the strtod, strtof, strtold, wcstod,
wcstof, or wcstold function sets errno to ERANGE when
underflow occurs (7.20.1.3, 7.24.4.1.1).”

Implementation: Yes.

ISO Standard: “Whether the calloc, malloc, and realloc functions return a
Null Pointer or a pointer to an allocated object when the size
requested is zero (7.20.3).”

Implementation: A pointer to a statically allocated object is returned.

ISO Standard: “Whether open output streams are flushed, open streams are
closed, or temporary files are removed when the abort function
is called (7.20.4.1).”

Implementation: No.

ISO Standard: “The termination status returned to the host environment by the
abort function (7.20.4.1).”

Implementation: By default, there is no host environment.

ISO Standard: “The value returned by the system function when its argument is
not a Null Pointer (7.20.4.5).”

Implementation: Application defined.

ISO Standard: “The local time zone and Daylight Saving Time (7.23.1).”

Implementation: Application defined.

ISO Standard: “The era for the clock function (7.23.2.1).”

Implementation Defined Behavior

© 2009 Microchip Technology Inc. DS51686B-page 103

Implementation: Application defined.

ISO Standard: “The positive value for tm_isdst in a normalized tmx structure
(7.23.2.6).”

Implementation: 1.

ISO Standard: “The replacement string for the %Z specifier to the strftime,
strfxtime, wcsftime, and wcsfxtime functions in the “C”
locale (7.23.3.5, 7.23.3.6, 7.24.5.1, 7.24.5.2).”

Implementation: Unimplemented.

ISO Standard: “Whether or when the trigonometric, hyperbolic, base-e
exponential, base-e logarithmic, error, and log gamma functions
raise the inexact exception in an IEC 60559 conformant
implementation (F.9).”

Implementation: No.

ISO Standard: “Whether the inexact exception may be raised when the rounded
result actually does equal the mathematical result in an IEC 60559
conformant implementation (F.9).”

Implementation: No.

ISO Standard: “Whether the underflow (and inexact) exception may be raised
when a result is tiny but not inexact in an IEC 60559 conformant
implementation (F.9).”

Implementation: No.

ISO Standard: “Whether the functions honor the Rounding Direction mode (F.9).”

Implementation: The Rounding mode is not forced.

A.18 ARCHITECTURE

ISO Standard: “The values or expressions assigned to the macros specified in
the headers <float.h>, <limits.h>, and <stdint.h> (C90
and C99 5.2.4.2, C99 7.18.2, 7.18.3).”

Implementation: See Section 1.5.6 “limits.h”.

ISO Standard: “The number, order, and encoding of bytes in any object (when not
explicitly specified in the standard) (C99 6.2.6.1).”

Implementation: Little endian, populated from Least Significant Byte first. See
Section 1.5 “Data Storage”.

ISO Standard: “The value of the result of the size of operator (C90 6.3.3.4, C99
6.5.3.4).”

Implementation: See Section 1.5 “Data Storage”.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 104 © 2009 Microchip Technology Inc.

NOTES:

MPLAB® C COMPILER FOR
PIC32 MCUs USER’S GUIDE

© 2009 Microchip Technology Inc. DS51686B-page 105

Appendix B. Open Source Licensing

B.1 INTRODUCTION
This chapter gives a summary of the open source licenses used for portions of the
compiler package.

B.2 GENERAL PUBLIC LICENSE
The executables for the compiler, assembler, linker, and associated binary utilities are
covered under the GNU General Public License. See the file doc/COPYING.GPL in the
product installation directory for the full text of the license.

B.3 BSD LICENSE
Portions of the standard library are distributed under the terms of the “BSD” license
from the University of California:
Copyright © Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the
following acknowledgement:
This product includes software developed by the University of California, Berkeley and
its contributors.
4. Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 106 © 2009 Microchip Technology Inc.

B.4 SUN MICROSYSTEMS
Portions of the standard library are copyright Sun Microsystems and are distributed
under the permissions granted by the following terms:
Developed at SunPro, a Sun Microsystems, Inc. business. Permission to use, copy,
modify, and distribute this software is freely granted, provided that this notice is
preserved.

MPLAB® C COMPILER
FOR PIC32 MCUs USER’S

© 2009 Microchip Technology Inc. DS51686B-page 107

Index

Symbols
__C32_VERSION__ .. 11
__ISR Macros .. 50
__ISR_AT_VECTOR(v, ipl)...................................... 51
__ISR(v, ipl) ... 50
__LANGUAGE_ASSEMBLY.................................... 10
__LANGUAGE_ASSEMBLY__................................ 10
__LANGUAGE_C .. 10
__LANGUAGE_C__ .. 10
__longramfunc__ ..63, 87
__mips ... 11
__mips__ ... 11
__mips_isa_rev.. 11
__mips_single_float ... 11
__mips_soft_float ... 11
__mips16 ... 11
__mips16e ... 11
__MIPSEL.. 11
__MIPSEL__.. 11
__NO_FLOAT .. 10
__PIC__ ... 10
__pic__ .. 10
__PIC32_FEATURE_SET__ 10
__PIC32MX.. 10
__PIC32MX__.. 10
__processor__ ... 10
__R3000 .. 11
__R3000__ .. 11
__ramfunc__ ...63, 87
__SOFT_FLOAT.. 10
__VERSION__... 10
_BEV_EXCPT_ADDR...78, 80
_bmxdkpba_address.....................................68, 75, 85
_bmxdudba_address68, 75, 85
_bmxdupba_address68, 75, 85
_bootstrap_exception_handler............................43, 74
_bootstrap_exception_handler() 51
_bss_begin..66, 75, 84
_bss_end ..66, 75, 84
_data_begin ..66, 75, 83
_data_end ... 66, 75, 83, 84
_data_image_begin66, 75, 83
_DBG_CODE_ADDR..78, 81
_DBG_EXCPT_ADDR ..78, 80
_DEBUGGER ...80, 82
_ebase_address ...71, 75
_end ..75, 84
_exit ... 44
_GEN_EXCPT_ADDR ..78, 81
_general_exception_context().................................. 52
_general_exception_handler...............................43, 74

_gp ..65, 75, 83
_heap ..63, 75, 85
_LANGUAGE_ASSEMBLY...................................... 10
_LANGUAGE_C... 10
MCHP... 10
_mchp_no_float.. 10
_MCHP_SZINT .. 10
_MCHP_SZLONG.. 10
_MCHP_SZPTR... 10
_min_heap_size ... 63, 76
_min_stack_size..63, 76, 85
_mips.. 11
MIPS .. 11
_MIPS_ARCH_PIC32MX... 11
_mips_fpr ... 11
_MIPS_ISA... 11
_mips_no_float... 11
_MIPS_SZINT .. 11
_MIPS_SZLONG.. 11
_MIPS_SZPTR... 11
_MIPS_TUNE_PIC32MX ... 11
_MIPSEL .. 11
_mon_getc ... 43
_mon_putc ... 43
_mon_puts ... 43
_mon_write... 43
_nmi_handler ... 43, 63
_on_bootstrap .. 43
_on_reset ... 43, 65
_R3000... 11
_ramfunc_begin ..67, 75, 85
_ramfunc_end ...67, 75, 85
_ramfunc_image_begin.................................67, 75, 85
_ramfunc_length ...68, 75, 85
_reset ... 76
_RESET_ADDR ... 78, 80
_sbss_begin ... 84
_sbss_end.. 84
_sdata_begin.. 83
_sdata_end .. 83
_stack..63, 75, 86
_text_begin... 81
_text_end ... 81
_vector_spacing ..70, 75, 77
.app_excpt Section... 81
.bev_excpt Section... 80
.bss... 65
.bss Section.. 84
.config_address.. 79
.data ... 66
.data Section .. 83

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 108 © 2009 Microchip Technology Inc.

.dbg_data Section .. 82

.dbg_excpt Section... 80

.got Section .. 83

.heap Section ... 85

.lit4.. 66

.lit4 Section... 84

.lit8.. 66

.lit8 Section... 84

.ramfunc ..63, 67, 86

.ramfunc Section .. 85

.reset Section ... 80

.rodata Section ... 82

.sbss... 65

.sbss Section.. 84

.sbss2 Section.. 82

.sdata ... 66

.sdata Section .. 83

.sdata2 Section .. 82

.stack Section... 85

.startup Section .. 81

.text Section ... 81

.vector_n Sections.. 81
“On Bootstrap” Procedure .. 73
#define ... 33
#ident ... 40
#if ... 26
#include.. 34, 35
#line.. 36
#pragma ... 22
#pragma config .. 15
#pragma interrupt ... 15
#pragma vector .. 15

Numerics
-msmart-io= .. 17
PIC32MX Device-Specific Options

-msmart-io=... 17
32-Bit C Compiler Macros .. 10

A
-A.. 33
a0-a3 .. 47
alias (“symbol”)... 14
aligned (n) .. 14
always_inline .. 12
-ansi ... 19, 36
ANSI C, Strict ... 20
Assembly Options .. 36

-Wa ... 36
at_vector Attribute .. 12, 49
Attribute, Function

alias (“symbol”).. 14
always_inline... 12
at_vector ... 12
const ... 13
deprecated .. 14
far .. 12
format (type, format_index, first_to_check)....... 13
format_arg (index)... 13
interrupt ... 12
longcall .. 12

malloc.. 14
mips16... 12
naked .. 12
near ... 12
no_instrument_function..................................... 40
noinline.. 13
nomips16... 12
nonnull (index, ...).. 13
noreturn... 13, 25
pure ... 13
section (“name”) .. 12
unique_section .. 12
unused .. 13
used .. 14
vector .. 12
warn_unused_result .. 14
weak.. 14

Attribute, Variable
aligned (n) ... 14
cleanup (function).. 14
deprecated .. 14
packed... 14
section (“name”) .. 15
transparent_union ... 15
unique_section .. 15
unused .. 15
weak.. 15

Attribute, Vector
at_vector ... 49
vector .. 49

Automatic Variable ... 22, 24
-aux-info ... 19

B
-B.. 38
Bad Virtual Address Register 69
BadVAddr. See Bad Virtual Address Register
Bit Fields... 19
BMXDKPBA ... 67
BMXDUDBA ... 67
BMXDUPBA ... 67
Boot Memory Region

kseg0_boot_mem.. 78
kseg1_boot_mem.. 78

Bootstrap Exception ... 51
Branch Delay.. 70
Bus Matrix Register .. 67

BMXDKPBA .. 67
BMXDUDBA.. 67
BMXDUPBA .. 67

C
-C.. 33
-c .. 18, 37
C Dialect Control Options... 19

-ansi .. 19
-aux-info .. 19
-ffreestanding .. 19
-fno-asm .. 19
-fno-builtin ... 19
-fno-signed-bitfields... 19

Index

© 2009 Microchip Technology Inc. DS51686B-page 109

-fno-unsigned-bitfields 19
-fsigned-bitfields.. 19
-fsigned-char ... 19
-funsigned-bitfields.. 19
-funsigned-char ... 19
-fwritable-strings ... 19

C Stack Usage ... 60
Call Main .. 73
calloc.. 61
Cast...22, 24, 25
Cause Register ...69, 70
char ... 8, 19, 20, 61
CHAR_BIT ... 9
CHAR_MAX ... 9
CHAR_MIN .. 9
cleanup (function) .. 14
close... 43
Code Generation Conventions Options 39

-fargument-alias .. 39
-fargument-noalias.. 39
-fargument-noalias-global 39
-fcall-saved ... 39
-fcall-used ... 39
-ffixed .. 39
-finstrument-functions 40
-fno-ident... 40
-fno-short-double .. 40
-fno-verbose-asm.. 40
-fpack-struct .. 40
-fpcc-struct-return ... 40
-fshort-enums.. 40
-fverbose-asm... 40
-fvolatile .. 40
-fvolatile-global.. 40
-fvolatile-static ... 40

Code Size, Reduce .. 28
Command Line Option, Compiler

-A .. 33
-fdate-sections .. 15
-ffunction-sections... 12
-fshort-enums.. 96
-funsigned-bitfields.. 95
-funsigned-char ... 8
-iquote... 97
-l .. 37
-mdebugger ...80, 81, 82
-mips16 ..12, 45
-mips16 -mno-float .. 45
-mlong-calls .. 12
-mno-float.. 45
-mprocessor .. 77
-o ex1.out .. 41
-O3.. 45
-O3 -mips16 .. 45
-O3 -mips16 -mno-float 45
-O3 -mno-float... 45
-Os .. 45
-Os -mips16 .. 45
-Os -mips16 -mno-float 45
-Os -mno-float ... 45

-Wall.. 22
-Wnonnull .. 13

Command Line Option, Linker
--defsym .. 76
--defsym_min_stack_size 60
-L... 77

Command Line Options ... 16
Comments.. 20, 33
Common Subexpression Elimination29, 30, 31
Common Subexpressions .. 32
Compare Register .. 69
Compiler

Driver ...7, 38, 41
Compiling Multiple Files ... 42
con fign... 79
Config Register .. 71
Config1 Register .. 71
Config2 Register .. 71
Config3 Register .. 72
Configuration Bit Access .. 56
Configuration Memory Region

config3, config2, config1, config0...................... 78
Configuration Pragma .. 56, 57
Configuration Words .. 56, 57
const... 13
Count.. 68
Count Register ... 69
CountDM .. 69
CP0 Access Macros... 56
CP0 Register Access ... 55
CP0 Registers .. 68
Customer Notification Service.................................... 4
Customer Support .. 5

D
-D ..33, 34, 36
Data Memory Region

kseg1_data_mem ... 78
Data Memory Space .. 61
DBD. See Debug Branch Delay
-dD ... 33
Debug Branch Delay .. 73
Debug Exception Program Counter 72
Debug Exception Save Register 73
Debug Executive Memory Region

debug_exec_mem .. 78
Debug Register .. 69, 72
Debug Sections.. 86
debug_exec_mem.. 81
Debug2 Register .. 72
Debugging Information... 27
Debugging Options .. 27

-g... 27
-Q .. 27
-save-temps .. 27

--defsym ... 76
-–defsym _ebase_address=A 71
--defsym _min_heap_size=M................................... 63
--defsym _min_stack_size=N................................... 63
--defsym_min_stack_size... 60
--defsym, _min_heap_size 61

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 110 © 2009 Microchip Technology Inc.

DEPC. See Debug Exception Program Counter
deprecated Attribute... 14, 25
DeSave .. 73
Directories .. 34, 36
Directory Search Options ... 38

-B .. 38
-specs= ... 38

-dM ... 33
-dN ... 33
Documentation

Conventions .. 2
Layout ... 1

double ...8, 40, 61

E
-E... 18, 33, 35, 36, 37
EBase Register .. 71
EJTAGver... 72
ENTRY ... 76
EPC Register ..47, 70, 73
ERET.. 63
Error Control Options

-pedantic-errors... 20
-Werror .. 25
-Werror-implicit-function-declaration 20

Error Exception Program Counter 73
ErrorEPC. See Error Exception Program Counter
Exception Base Register .. 71
Exception Memory Region

exception_mem... 78
Exception Program Counter 70
Exception Vector .. 48
exception_mem.. 81
Executables.. 41
exit.. 44
EXL Bit ... 70
Extensions.. 35
EXTERN... 76
extern ..25, 32, 40
External Interrupt Controller 70

F
-falign-functions.. 29
-falign-labels ... 29
-falign-loops.. 29
far ... 12
-fargument-alias ... 39
-fargument-noalias ... 39
-fargument-noalias-global... 39
-fcaller-saves.. 29
-fcall-saved... 39
-fcall-used... 39
-fcse-follow-jumps .. 29
-fcse-skip-blocks... 29
-fdata-sections.. 15, 29
-fdefer-pop. See -fno-defer
-fexpensive-optimizations... 29
-ffixed ... 39
-fforce-mem.. 28, 32
-ffreestanding ... 19
-ffunction-sections .. 12, 29

-fgcse.. 29
-fgcse-lm... 30
-fgcse-sm.. 30
File Extensions ... 7

file.c... 7
file.h... 7
file.i .. 7
file.o... 7
file.S .. 8
file.s... 8

File Naming Convention ... 7
file.c .. 7
file.h.. 7
file.i ... 7
file.o.. 7
file.S ... 8
file.s .. 8
-finline-functions ... 25, 28, 32
-finline-limit=n ... 32
-finstrument-functions... 40
-fkeep-inline-functions .. 32
-fkeep-static-consts .. 32
Flags, Positive and Negative.............................. 32, 39
float... 8, 40, 61
float.h.. 8
Floating-Point Format

double ... 8
float ... 8
long double.. 8

-fmove-all-movables ... 30
-fno ... 32, 39
-fno-asm ... 19
-fno-builtin... 19
-fno-defer-pop... 30
-fno-function-cse... 32
-fno-ident .. 40
-fno-inline.. 33
-fno-keep-static-consts ... 32
-fno-peephole ... 30
-fno-peephole2 ... 30
-fno-short-double .. 40
-fno-show-column... 33
-fno-signed-bitfields .. 19
-fno-unsigned-bitfields .. 19
-fno-verbose-asm ... 40
-fomit-frame-pointer .. 28, 33
-foptimize-register-move... 30
-foptimize-sibling-calls .. 33
format (type, format_index, first_to_check) 13
format_arg (index) .. 13
fp .. 47
-fpack-struct.. 40
-fpcc-struct-return ... 40
Frame Pointer (W14).. 33, 39
-freduce-all-givs.. 30
-fregmove ... 30
-frename-registers .. 30
-frerun-cse-after-loop.. 30, 31
-frerun-loop-opt... 30
-fschedule-insns ... 30

Index

© 2009 Microchip Technology Inc. DS51686B-page 111

-fschedule-insns2... 30
-fshort-enums..40, 96
-fsigned-bitfields... 19
-fsigned-char .. 19
-fstrength-reduce...30, 31
-fstrict-aliasing...28, 31
-fsyntax-only... 20
-fthread-jumps...28, 31
Full Mode

close ... 43
lseek ... 43
open.. 43
read... 43
write .. 43

Function
Call Conventions... 61

Function Attributes. See Attributes, Function
-funroll-all-loops ..28, 31
-funroll-loops ...28, 31
-funsigned-bitfields ..19, 95
-funsigned-char ...8, 19
-fverbose-asm .. 40
-fvolatile.. 40
-fvolatile-global ... 40
-fvolatile-static .. 40
-fwritable-strings... 19

G
-g.. 27
-G num ... 16
General Exception ... 52
Generic Processor Header File................................ 53
getenv .. 44
-Gn ..65, 66
gp ..47, 64, 65

H
-H ... 33
Hardware Enable Register 68
Header Files.. 7, 33, 34, 35, 36
Heap .. 63
Heap Usage ... 61
--help.. 18
Hex File .. 41
hi .. 47
High-Priority Interrupts ... 47
HWREna .. 68

I
-I ..34, 36
-I-...34, 36
-idirafter .. 34
-imacros ..34, 36
Include ... 41
-include ...34, 36
Include Files... 38
Inhibit Warnings ... 20
Inline ...25, 28, 32
inline..33, 40
INPUT .. 77
int ..8, 61

INT_MAX.. 9
INT_MIN... 9
IntCtl ... 70
Integer Values

char ... 8
int .. 8
long ... 8
long long ... 8
short .. 8
signed char ... 8
signed int... 8
signed long.. 8
signed long long.. 8
signed short .. 8
unsigned char ... 8
unsigned int... 8
unsigned long.. 8
unsigned long long.. 8
unsigned short .. 8

Internet Address... 4
Interrupt

High Priority .. 47
Lower Priority .. 47

interrupt .. 12
Interrupt Attribute ... 48
Interrupt Control Register... 70
Interrupt Handler .. 47
Interrupt Handler Function 47
interrupt handler function ... 47
Interrupt Pragma .. 48
Interrupt Pragma Clause .. 49
-iprefix .. 34
-iquote .. 97
-isystem.. 34, 38
-iwithprefix .. 34
-iwithprefixbefore.. 34

K
k0 ... 47
k1 ... 47
KSEG0 ... 81
kseg0_boot_mem... 81
kseg0_program_mem 81, 82, 83, 84, 85
KSEG1 Data Memory... 63, 64
kseg1_boot_mem... 80
kseg1_data_mem....................................82, 83, 84, 85

L
-L ...37, 38, 77
-l ... 37
LANGUAGE_ASSEMBLY.. 10
LANGUAGE_C... 10
Library .. 37, 41
limits.h .. 9

CHAR_BIT .. 9
CHAR_MAX .. 9
CHAR_MIN ... 9
INT_MAX .. 9
INT_MIN.. 9
LLONG_MAX .. 9
LLONG_MIN ... 9

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 112 © 2009 Microchip Technology Inc.

LONG_MAX .. 9
LONG_MIN ... 9
MB_LEN_MAX.. 9
SCHAR_MAX.. 9
SCHAR_MIN... 9
SHRT_MAX .. 9
SHRT_MIN.. 9
UCHAR_MAX ... 9
UINT_MAX.. 9
ULLONG_MAX ... 9
ULONG_MAX ... 9
USHRT_MAX.. 9

limits.h .. 8
link.. 101
Linker ... 37
Linker Script ... 41
Linking Options .. 37

-L... 37, 38
-l .. 37
-nodefaultlibs... 37
-nostdlib .. 37
-s ... 37
-u... 37
-Wl... 37
-Xlinker .. 37

little-endian... 8
LLONG_MAX ... 9
LLONG_MIN .. 9
lo .. 47
localeconv .. 44
long .. 8, 61
Long double ... 61
long double... 8, 40
long long..8, 25, 61
LONG_MAX ... 9
LONG_MIN .. 9
longcall ... 12
longcall Attribute... 87
Loop Optimizer ... 30
Loop Unrolling .. 31
Lower-Priority Interrupts ... 47
lseek... 43

M
-M ... 35
macro ..33, 34, 36
Macros

__C32_VERSION_ ... 11
__LANGUAGE_ASSEMBLY............................. 10
__LANGUAGE_ASSEMBLY__......................... 10
__LANGUAGE_C ... 10
__LANGUAGE_C__ ... 10
__NO_FLOAT ... 10
__PIC__ .. 10
__pic__ ... 10
__PIC32_FEATURE_SET__ 10
__PIC32MX... 10
__PIC32MX__... 10
__processor__ .. 10
__SOFT_FLOAT... 10
__VERSION__.. 10

_LANGUAGE_ASSEMBLY............................... 10
_LANGUAGE_C.. 10
_mchp_no_float... 10
_MCHP_SZINT ... 10
_MCHP_SZLONG... 10
_MCHP_SZPTR.. 10
LANGUAGE_ASSEMBLY................................. 10
LANGUAGE_C.. 10
PIC32MX... 10

malloc ... 14, 61
-mappio-debug ... 17
MB_LEN_MAX ... 9
-mcheck-zero-division .. 16
-MD... 35
-mdebugger .. 80, 81, 82
-mdouble-float .. 16
-membedded-data .. 16
-MF ... 35
-MG .. 35
Microchip Internet Web Site 4
-mips16... 12, 16, 45
mips16.. 12
-mips16 -mno-float ... 45
MIPSEL .. 11
-mlong32 .. 16
-mlong64 .. 16
-mlong-calls .. 12, 17
-MM .. 35
-MMD.. 35
-mmemcpy.. 17
-mno-check-zero-division ... 16
-mno-embedded-data... 16
-mno-float ... 16, 45
-mno-long-calls... 17
-mno-memcpy .. 17
-mno-mips16 .. 16, 45
-mno-peripheral-libs ... 17
-mno-uninit-const-in-rodata 16
-MP... 35
-mprocessor ... 16, 53, 77
-MQ .. 35
-msingle-float .. 16
-msoft-float ... 45
-MT ... 35
MTC0 Instruction .. 70
-muninit-const-in-rodata ... 16

N
naked.. 12
near .. 12
no_instrument_function Attribute.............................. 40
-nodefaultlibs .. 37
noinline ... 13
NOLOAD .. 81, 82
nomips16.. 12, 63, 74
nonnull (index, ...) ... 13
NOP.. 81
noreturn .. 13
noreturn Attribute.. 25
-nostdinc... 34, 36
-nostdlib.. 37

Index

© 2009 Microchip Technology Inc. DS51686B-page 113

O
-O ..27, 28
-o...18, 41
-o ex1.out ... 41
-O0 ..28, 45
-O1 ... 28
-O2 ..28, 32
-O3 ..28, 45
-O3 -mips16 ... 45
-O3 -mips16 -mno-float .. 45
-O3 -mno-float .. 45
Object File ...29, 35, 37
open ... 43
Optimization Control Options 28

-falign-functions .. 29
-falign-labels ... 29
-falign-loops .. 29
-fcaller-saves .. 29
-fcse-follow-jumps... 29
-fcse-skip-blocks ... 29
-fdata-sections .. 29
-fexpensive-optimizations 29
-fforce-mem .. 32
-ffunction-sections... 29
-fgcse .. 29
-fgcse-lm ... 30
-fgcse-sm .. 30
-finline-functions.. 32
-finline-limit=n.. 32
-fkeep-inline-functions....................................... 32
-fkeep-static-consts... 32
-fmove-all-movables ... 30
-fno-defer-pop ... 30
-fno-function-cse ... 32
-fno-inline .. 33
-fno-peephole.. 30
-fno-peephole2.. 30
-fomit-frame-pointer .. 33
-foptimize-register-move 30
-foptimize-sibling-calls....................................... 33
-freduce-all-givs .. 30
-fregmove.. 30
-frename-registers .. 30
-frerun-cse-after-loop .. 30
-frerun-loop-opt ... 30
-fschedule-insns.. 30
-fschedule-insns2.. 30
-fstrength-reduce .. 30
-fstrict-aliasing... 31
-fthread-jumps... 31
-funroll-all-loops .. 31
-funroll-loops ... 31
-O.. 28
-O0.. 28
-O1.. 28
-O2.. 28
-O3.. 28
-Os .. 28

Optimization, Loop ... 30
Optimization, Peephole.. 30

Options
Assembling ... 36
C Dialect Control ... 19
Code Generation Conventions.......................... 39
Debugging... 27
Directory Search ... 38
Linking... 37
Optimization Control ... 28
Output Control... 18
Preprocessor Control .. 33
Warnings and Errors Control 20

-Os ... 28, 45
-Os -mips16.. 45
-Os -mips16 -mno-float .. 45
-Os -mno-float .. 45
Output Control Options .. 18

-c ... 18
-E .. 18
--help... 18
-o... 18
-S .. 18
-v ... 18
-x ... 18

OUTPUT_ARCH .. 76
OUTPUT_FORMAT ... 76

P
-P.. 36
packed.. 14
PATH.. 41
-pedantic .. 20, 25
-pedantic-errors.. 20
Peephole Optimization ... 30
pic32-gcc.. 7
PIC32MX.. 10
PIC32MX Device-Specific Options

-G num .. 16
-mappio-debug.. 17
-mcheck-zero-division 16
-mdouble-float ... 16
-membedded-data... 16
-mips16 ... 16
-mlong32 ... 16
-mlong64 ... 16
-mlong-calls... 17
-mmemcpy .. 17
-mno-check-zero-division.................................. 16
-mno-embedded-data 16
-mno-float.. 16
-mno-long-calls ... 17
-mno-memcpy ... 17
-mno-mips16 ... 16
-mno-peripheral-libs .. 17
-mno-uninit-const-in-rodata............................... 16
-mprocessor .. 16
-msingle-float .. 16
-muninit-const-in-rodata 16

PIC32MX Start-up Code .. 63
Pointers .. 8, 25

Frame.. 33, 39
Stack ... 39

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 114 © 2009 Microchip Technology Inc.

Pragmas... 12
#pragma config15, 56, 57
#pragma interrupt.. 15
#pragma vector ... 15

Predefined Macros ... 10
prefix .. 34, 38
Preprocessor Control Options.................................. 33

-A .. 33
-C .. 33
-D .. 33
-dD .. 33
-dM.. 33
-dN .. 33
-fno-show-column ... 33
-H .. 33
-I .. 34
-I-... 34
-idirafter ... 34
-imacros .. 34
-include ... 34
-iprefix ... 34
-isystem... 34
-iwithprefix ... 34
-iwithprefixbefore... 34
-M.. 35
-MD ... 35
-MF.. 35
-MG ... 35
-MM... 35
-MMD .. 35
-MQ ... 35
-MT.. 35
-nostdinc ... 36
-P .. 36
-trigraphs... 36
-U .. 36
-undef .. 36

PRId ... 71
Processor Identification Register.............................. 71
Processor Support Header Files 53
processor.o .. 77
Program Memory Region

kseg0_program_mem 78
PROVIDE ... 76
Provisions... 63
pure .. 13

Q
-Q ... 27

R
R3000... 11
ra .. 47
raise ... 44
RAM Functions... 67, 87
RAW Dependency.. 30
RDHWR.. 68
read .. 43
Reading, Recommended.. 3
realloc... 61
Reduce Code Size ... 28

Register Conventions ... 59
Requested Interrupt Priority Level............................ 70
Return Type.. 21
Run-time Environment.. 59
rx .. 78

S
-S.. 18, 37
-s .. 37
s0-s7... 47
-save-temps.. 27
sbrk... 63
SCHAR_MAX ... 9
SCHAR_MIN .. 9
Scheduling.. 30
SDE Compatibility Macros.. 11

__mips... 11
__mips__... 11
__mips_isa_rev ... 11
__mips_single_float .. 11
__mips_soft_float .. 11
__mips16... 11
__mips16e... 11
__MIPSEL ... 11
__MIPSEL__ ... 11
__R3000.. 11
__R3000__.. 11
_mips... 11
_MIPS_ARCH_PIC32MX.................................. 11
_mips_fpr .. 11
_MIPS_ISA.. 11
_mips_no_float.. 11
_MIPS_SZINT ... 11
_MIPS_SZLONG... 11
_MIPS_SZPTR.. 11
_MIPS_TUNE_PIC32MX 11
_MIPSEL ... 11
_R3000.. 11
MIPSEL ... 11
R3000.. 11

Section
Configuration Words ... 56

section .. 29
section (“name”) ... 12, 15
SECTIONS Command ... 79
setlocale ... 44
SFR Memory Region

sfrs .. 78
Shadow Register Control Register 70
Shadow Register Map Register................................ 70
short ... 8, 61
SHRT_MAX.. 9
SHRT_MIN ... 9
SI_TimerInt... 69
signal .. 44
signed char... 8
signed int .. 8
signed long ... 8
signed long long ... 8
signed short .. 8
Simple Mode

Index

© 2009 Microchip Technology Inc. DS51686B-page 115

_mon_getc .. 43
_mon_put .. 43
_mon_putc .. 43
_mon_write ... 43

Software Stack... 60
sp ..47, 63
Special Function Register Access............................ 55
Special Function Registers 41
-specs= .. 38
SR .. 47
SRSCtl ... 70
SRSMap... 70
Stack

C Usage.. 60
Pointer (W15).. 39
Software.. 60

Stack Location ... 86
Stack Pointer.. 63
Stack Usage... 60
Start-up and Initialization ... 63
static... 40
Status Register .. 69
StatusBEV...71, 74
Strings.. 19
Structure .. 61
switch ... 22
symbol.. 37
Syntax Check... 20
sys/attribs.h.. 44
sys/kmem.h.. 44
System Function

link .. 101
unlink .. 101

System Header Files...22, 35

T
t0-t9 .. 47
Trace Control Register ... 72
TraceBPC Register .. 72
-traditional .. 19
Traditional C... 26
transparent_union .. 15
Trigraphs...22, 36
-trigraphs.. 36
Type Conversion.. 25
typedef ... 53

U
-U ..33, 34, 36
-u.. 37
UCHAR_MAX .. 9
UINT_MAX... 9
ULLONG_MAX .. 9
ULONG_MAX .. 9
-undef ... 36
unique_section..12, 15
unlink.. 101
Unroll Loop... 31
unsigned char .. 8
unsigned int.. 8
unsigned long... 8

unsigned long long ... 8
unsigned short.. 8
unused Attribute ..13, 15, 22
Unused Function Parameter 22
Unused Variable... 22
used Attribute ... 14
User Trace Data Register .. 72
USHRT_MAX ... 9

V
-v .. 18
v0 ... 47
v1 ... 47
Variable Attributes. See Attributes, Variable
vector ... 12
Vector Attribute .. 49
vector Attribute ... 49
Vector Pragma ... 49
volatile .. 40

W
-W..20, 22, 24, 26
-w ... 20
w!x.. 78
-Wa... 36
-Waggregate-return.. 24
-Wall ..20, 22, 24, 26
warn_unused_result ... 14
Warnings and Errors Control Options 20

-fsyntax-only.. 20
-pedantic ... 20
-pedantic-errors... 20
-W ... 24
-w .. 20
-Waggregate-return... 24
-Wall.. 20
-Wbad-function-cast.. 24
-Wcast-align .. 25
-Wcast-qual... 25
-Wchar-subscripts ... 20
-Wcomment... 20
-Wconversion .. 25
-Wdiv-by-zero.. 20
-Werror.. 25
-Werror-implicit-function-declaration 20
-Wformat ... 20
-Wimplicit .. 20
-Wimplicit-function-declaration.......................... 20
-Wimplicit-int ... 20
-Winline ... 25
-Wlarger-than-... 25
-Wlong-long... 25
-Wmain.. 20
-Wmissing-braces ... 20
-Wmissing-declarations..................................... 25
-Wmissing-format-attribute................................ 25
-Wmissing-noreturn... 25
-Wmissing-prototypes 25
-Wmultichar... 21
-Wnested-externs.. 25
-Wno-long-long ... 25

MPLAB® C Compiler for PIC32 MCUs User’s Guide

DS51686B-page 116 © 2009 Microchip Technology Inc.

-Wno-multichar.. 21
-Wno-sign-compare... 26
-Wpadded ... 25
-Wparentheses.. 21
-Wpointer-arith .. 25
-Wredundant-decls.. 26
-Wreturn-type .. 21
-Wsequence-point ... 21
-Wshadow ... 26
-Wsign-compare.. 26
-Wstrict-prototypes.. 26
-Wswitch ... 22
-Wsystem-headers .. 22
-Wtraditional .. 26
-Wtrigraphs ... 22
-Wundef .. 26
-Wuninitialized... 22
-Wunknown-pragmas.. 22
-Wunreachable-code... 26
-Wunused.. 22
-Wunused-function.. 22
-Wunused-label ... 22
-Wunused-parameter .. 22
-Wunused-value.. 23
-Wunused-variable .. 23
-Wwrite-strings .. 26

Warnings, Inhibit .. 20
Warranty Registration... 3
-Wbad-function-cast ... 24
-Wcast-align ... 25
-Wcast-qual .. 25
-Wchar-subscripts .. 20
-Wcomment .. 20
-Wconversion ... 25
-Wdiv-by-zero... 20
WDTCON ... 53
weak... 14, 15
-Werror ... 25
-Werror-implicit-function-declaration 20
-Wformat .. 20, 25
-Wimplicit.. 20
-Wimplicit-function-declaration 20
-Wimplicit-int... 20
-Winline .. 25
-Wl .. 37
-Wlarger-than- .. 25
-Wlong-long.. 25
-Wmain... 20
-Wmissing-braces... 20
-Wmissing-declarations.. 25
-Wmissing-format-attribute 25
-Wmissing-noreturn .. 25
-Wmissing-prototypes... 25
-Wmultichar .. 21
-Wnested-externs... 25
-Wno- ... 20
-Wno-deprecated-declarations................................. 25
-Wno-div-by-zero.. 20
-Wno-long-long... 25
-Wno-multichar ... 21

-Wnonnull ... 13
-Wno-sign-compare.. 24, 26
-Wpadded... 25
-Wparentheses ... 21
-Wpointer-arith.. 25
-Wredundant-decls ... 26
-Wreturn-type ... 21
write.. 43
-Wsequence-point .. 21
-Wshadow .. 26
-Wsign-compare ... 26
-Wstrict-prototypes ... 26
-Wswitch... 22
-Wsystem-headers ... 22
-Wtraditional ... 26
-Wtrigraphs... 22
-Wundef.. 26
-Wuninitialized .. 22
-Wunknown-pragmas ... 22
-Wunreachable-code .. 26
-Wunused ... 22, 24
-Wunused-function ... 22
-Wunused-label .. 22
-Wunused-parameter ... 22
-Wunused-value ... 23
-Wunused-variable ... 23
-Wwrite-strings ... 26
WWW Address ... 4

X
-x .. 18
-Xlinker ... 37

© 2009 Microchip Technology Inc. DS51686B-page 117

MPLAB® C Compiler for PIC32 MCUs User’s Guide

NOTES:

DS51686B-page 118 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	Preface
	Chapter 1. Language Specifics
	1.1 Introduction
	1.2 Highlights
	1.3 Overview
	1.4 File Naming Conventions
	1.5 Data Storage
	1.6 Predefined Macros
	1.7 Attributes and Pragmas
	1.8 Command Line Options
	1.9 Compiling a Single File on the Command Line
	1.10 Compiling Multiple Files on the Command Line
	1.11 Binary Constants

	Chapter 2. Library Environment
	2.1 Introduction
	2.2 Highlights
	2.3 Standard I/O
	2.4 Weak Functions
	2.5 “Helper” Header Files
	2.6 Multilibs

	Chapter 3. Interrupts
	3.1 Introduction
	3.2 Highlights
	3.3 Specifying an Interrupt Handler Function
	3.4 Associating a Handler Function with an Exception Vector
	3.5 Exception Handlers

	Chapter 4. Low-Level Processor Control
	4.1 Introduction
	4.2 Highlights
	4.3 Generic Processor Header File
	4.4 Processor Support Header Files
	4.5 Peripheral Library Functions
	4.6 Special Function Register Access
	4.7 CP0 Register Access
	4.8 Configuration Bit Access

	Chapter 5. Compiler Run-time Environment
	5.1 Introduction
	5.2 Highlights
	5.3 Register Conventions
	5.4 Stack Usage
	5.5 Heap Usage
	5.6 Function Calling Convention
	5.7 Start-up and Initialization
	5.8 Contents of the Default Linker Script
	5.9 RAM Functions

	Appendix A. Implementation Defined Behavior
	A.1 Introduction
	A.2 Highlights
	A.3 Overview
	A.4 Translation
	A.5 Environment
	A.6 Identifiers
	A.7 Characters
	A.8 Integers
	A.9 Floating-Point
	A.10 Arrays and Pointers
	A.11 Hints
	A.12 Structures, Unions, Enumerations, and Bit fields
	A.13 Qualifiers
	A.14 Declarators
	A.15 Statements
	A.16 Pre-Processing Directives
	A.17 Library Functions
	A.18 Architecture

	Appendix B. Open Source Licensing
	B.1 Introduction
	B.2 General Public License
	B.3 BSD License
	B.4 Sun Microsystems

	Index
	Worldwide Sales and Service

