

Simulation of a 2-link Brachiating
Robot with Open-Loop Controllers

David Ufford

Northwestern University

June 2009

 2

SIMULATION OF A 2-LINK BRACHIATING ROBOT WITH OPEN-LOOP CONTROLLERS.... 1

1. PROJECT OVERVIEW... 3

2. MONKEYBOT OVERVIEW... 3

3. MONKEYBOT DYNAMICS ... 5

3.1 MOTION DYNAMICS.. 5
3.2 REDUCED DYNAMICS FOR SWINGING STATE .. 6
3.3 IMPACT DYNAMICS... 7

4. ATTEMPTS TO FIND STABLE OPEN-LOOP GAITS ... 9

4.1 HORIZONTAL BRACHIATING GAITS .. 9
4.2 SEARCHING FOR STABLE GAITS.. 10
4.3 FUTURE WORK ... 18

5. SIMULATION.. 19

5.1 CODE HIGH-LEVEL OVERVIEW... 19
5.2 ADJUSTING CONTROL ALGORITHM AND SYSTEM PARAMETERS ... 20
5.3 SEARCHING FOR STABLE GAITS USING SIMULATION.. 21

 3

1. Project Overview
The goal of this project was to write a complete simulation of a 2-link swinging robot

(the “MonkeyBot”). The simulation models swinging, free flight, and impacts with user-

inputted parameters.

A secondary goal of this project was to attempt to identify the stability of the MonkeyBot

with an open-loop controller. Gaits for horizontal swinging and their dependence on

initial conditions were examined.

2. MonkeyBot Overview
The MonkeyBot is a two-link robot, currently in the prototype stage, which is designed to

climb along vertical walls. It attaches to the wall surface using electromagnets at the end

of each link. These magnets are configured to allow the device to pivot about the

attachment point. The electromagnets can be simultaneously or individually activated as

needed.

The two links are connected by an actuated rotating joint. With proper control, the motor

at this joint can leverage the 2-link swinging dynamics to create desired motion. A

combination of swinging the links and changing the activated electromagnet will allow

the robot to move about the wall.

The MonkeyBot is modeled as two massive links connected by a central joint. The links

of length L1, L2 each have mass m1, m2 and rotational inertia (I1, I2). The center of gravity

(CG) is located axially a distance r1, r2 along the link.

Figure 1: Diagram of 2-link MonkeyBot model with parameters.

If we contain the device to planar movement, the system can be fully expressed in terms

of four generalized coordinates, contained in vector q.

 4



















=

2

1

θ

θ

y

x

q

(x, y) is the coordinate location of the “top” link. θ1 is the angle of the top link relative to

vertical, and θ2 is the relative angle between the links.

The MonkeyBot is capable of engage in three general types of motion phases that are

defined by the configuration of active magnets

1. Free flight - no magnets are active, system has four degrees of freedom.

2. Swinging – one magnet is activated, system has two degrees of freedom.

3. Fixed – both magnets activated so that the robot cannot move. Dynamics during

this state are trivially zero, and are not analyzed.

Transitioning to the swinging or fixed phase involves activating the magnet on one or

both links. The resultant clamping of the magnet to the wall surface is a collision that

must be accounted for in dynamics and motion planning.

 5

3. MonkeyBot Dynamics

3.1 Motion Dynamics

The simplest way to obtain the mechanical dynamics of our system is via Lagrangian

dynamics. The Lagrangian L of the system is defined as the difference between the

kinetic (K) and potential (V) energies of the system.

()qVqqKqqL −=
••

),(),(

For our system, the KE and PE terms can be expressed as:

)(

)(
2

1

2211

2
212

2
11

2

22

2

11

ymymgV

IIvmvmK

+=







++++=

•••

θθθ

v1 and v2 are velocities of the CGs expressed in the x-y coordinate system. Likewise y1

and y2 are the vertical positions of the CG in the x-y system. They are used in the

previous equations for simplicity and conciseness, and are replaced by variables in the q

coordinate system using the following transformations:

2

21212111

2

21212111

2

2

2

111

2

111

2

1

212112

111

))(sin()sin(

))(cos()cos(

)sin()cos(

)sin()sin(

)sin(







++++

+





++++=







++





+=

+−−=

−=

••••

••••

••••

θθθθθθ

θθθθθθ

θθθθ

θθθ

θ

rLy

rLxv

ryrxv

rLyy

ryy

Once the substitutions are made in K and V for the generalized q coordinates, we can

generate the Euler-Lagrange equations of motion, written below. F is the vector of

applied external forces in the generalized q system.

F
q

L

q

L

dt

d
=

∂

∂
−

∂

∂
•

The Euler-Lagrange gives us a system of 4 differential equations, one for each coordinate

in q. The equations can then be manipulated and grouped into the standardized form:

)(),()(qgqqqCqqMF ++=
••••

 *(1)

Where M(q) is the mass or inertia matrix, C is a matrix that contains centrifugal and

coriolis terms, and g is a vector of gravitational forces. For our 2-link system, these

matrices are:
i

 6



















+++

+++++++++++

+++

+++

=

2

22222122

2

2212221222

22122

2

222122

2

22

2

12

2

1121122211211122211211

122212221121121

122212221121121

2)()(

)(0

)(0

)(

rmIIcLrmrmsrmcrm

IcLrmrmcLrmrmLmrmIIsrmsLmrmcrmcLmrm

srmsrmsLmrmmm

crmcrmcLmrmmm

qM

where s1=sin(θ1), c1=cos(θ1), c12=cos(θ1+θ2), etc.

The external force vector, F allows us to apply friction and motor torque to the system.

Motor torque, if any, is inserted into the third row of the F vector, corresponding to a

force applied to the relative θ2 angle between the joints.

These equations describe the 2-link system with four degrees of freedom. Numerical

integration of these general equation *(1) with the given matrices will result in a

simulated MonkeyBot in unrestricted free-flight motion.

3.2 Reduced Dynamics for Swinging State

While the free-flight dynamics fully describe the unrestricted system, we need to

contstrain one of the link ends in order to take advantage of the MonkeyBot’s swinging

properties. In the swinging state, the robot is assumed to rotate around the fixed end at

(x,y). Instead of applying constraints to the equations of 3.1, the system can be reduced

to only two generalized coordinates, q=[θ1 θ2]
T
. Solving this reduced system follows the

procedure above (though the algebra is much simpler). The resultant matrices for the

standardized form *(1) in this swinging state are:









=

2

1

θ

θ
q

 7

This swinging state is applicable to any brachiating type motion. The robot might swing

with only one magnet attached to the wall - a situation that is described by these reduced

equations. At the end of the swing, the robot could release the magnet and enter a free-

flight phase, which would instead be described by the full 4 degree of freedom system in

section 3.1 Smooth transitions between these states is critical to an accurate simulation.

3.3 Impact Dynamics

To move any significant distance across the wall, the MonkeyBot needs to transition its

holding points by changing which magnet is fixed. The transitions involve impact and

corresponding loss of energy as the magnet attaches to the wall surface. It is assumed the

friction and holding force of the magnets is high, so we model these collisions as purely

plastic.

If both magnets are simultaneously active, then the solution to this impact is trivial and

uninteresting – all motion and velocities are halted. As such, we will only consider

impacts in the case of transition from free-flight to swinging dynamics (or, equivalently,

an instantaneous change from one magnet to the other).

Using the end of the top link as the attachment point, we approximate the impact as an

(unknown) finite impulse applied at the (x,y) position. The impulse is constrained so that

the fixed end velocities in the post-impact state are zero (plastic collision).
ii

 0)(=
•
+qqJ (*)

J(q) is a Jacobian matrix that transforms the generalized velocities (dq) into a secondary

coordinate system consisting only of the velocities we want to become zero: [dx dy]
T
. dx

and dy are identical in both systems, so J(q) is simply:

 







=

0010

0001
)(qJ

 8

Impulse applied to a system causes a change in momentum (mass*velocity). The change

in momentum is reflected by a change in velocity, ∆dq=(dq
+

- dq
-
), where dq

-
 and dq

+
 are

the pre- and post- impact velocities respectively.

 λTqJqqM)()(=∆
•

 (**)

The parameter λ in (**) represents the (unknown) impulse applied to the fixed end

during.

Combining equations (*) and (**), and solving to eliminate the parameter λ, gives us the

solution to our impact problem. The post-impact velocities are in terms of the pre-impact

state and a projection matrix P(q):

JJJMJMIqP

qqPq

TT 111)()(

)(

−−−

−•+•

−=

= *(2)

The above equation applies when the end at (x,y) becomes fixed. In the alternate case

where we desire to activate the other magent (at the end of the second/bottom link), we

can simply transform the coordinates so that (x,y) are located about the desired point.

Applying geometry to q and dq, the bottom and top links are effectively interchanged.

These transformations are:























−

+

++++

++++

=























=



















−

++

+−−

+++

=



















=

•

••

••••

••••

•

•

•

•

•

2

21

21212111

21212111

2

1

2

21

21211

21211

2

1

))(sin()sin(

))(cos()cos(

)cos()cos(

)sin()sin(

θ

θθ

θθθθθθ

θθθθθθ

θ

θ

θ

θθπ

θθθ

θθθ

θ

θ

LLy

LLx

y

x

q

LLy

LLx

y

x

q

flipped

flipped

flipped

flipped

We must also ensure to swap the parameters for the links, to ensure the “flipped” system

is consistent with the old one. The impact equations *(2) can then be correctly applied to

dqflipped.

 9

4. Attempts to Find Stable Open-Loop Gaits

4.1 Horizontal Brachiating Gaits

Using the simulation, we can attempt to identify stable gaits for use by open-loop

controllers.

The simplest motion to target for the stable gait search is horizontal brachiation. This

involves swinging movements with end of one link fixed to wall at all times. We can

start the search for a specific subset of gaits that contain a single impact, are symmetric

about the vertical position, and go through the following steps as in Figure 2:

1. Initial position at vertical (θ1=0, θ2=0) with a set of initial velocities dθ1, dθ2. The

robot has one link (labeled ‘A’) fixed to the wall.

2. Initial velocities cause the end of second link (‘B’) to swing up to the same

vertical height as A.

3. The magnet at B fixes to the wall as A is released (an instantaneous switch). This

causes an impact with corresponding change in velocities.

4. Point A begins to swing downwards. Torque is applied (from the motor) to the

central joint until energy is fully restored to the system.

5. Gait ends when position passes through vertical (θ1=0).

Figure 2: Stages of robot movement during the symmetrical horizontal brachiating gait.

If the final state and initial state (θ1, θ2, dθ1, and dθ2) are identical, then the gait is

repeatable and causes only purely horizontal movement. Continuing the gait continually

will allow the MonkeyBot to move sideways indefinitely without changing height.

 10

4.2 Searching for Stable Gaits

A search algorithm was employed to identify these horizontal brachiating gaits, and

subsequently determine if they are stable. The search parameters can be defined

concisely by the set of two initial conditions (dθ1, dθ2). The system starts with these

initial conditions and is then integrated until point B reaches vertical (checked by the

condition θ2 = π-θ1). At this time the magnets are switched, impact projections applied,

and motor turned on. As point ‘A’ descends, the motor is turned off when the energy is

restored to its initial state value. The integration is finally halted as the top link passes

through vertical (θ1=0). When this condition occurs, an error function for closeness to

the initial state is evaluated. The error is defined as

()
2

_2_2

2

_1_1
2

_2 







−+








−+

••••

FinallInitialFinalInitialFinal θθθθθ

Minimizing the error allows us to identify the horizontal brachiating gaits. If a successful

gait is identified, recording the times of magnet switching and applied motor torque

allows us to produce it with an open-loop controller.

An initial search was iterated over a large range of values to gain insight into the nature

of the search space
iii

. Results of this iteration are displayed as a 3D plot in Figure 3 and

as an intensity map in Figure 4.

 11

Figure 3: 3D Plot of error value square root for range of initial conditions dθ1, dθ2. Flat area in

bottom left are sets of initial conditions without sufficient energy to bring point ‘B’ to horizontal.

 12

Figure 4: Intensity map of error function values. Error values above 5 have been truncated to

increase the utility of the graph. Darker colors (black) indicate smaller values for error function.

Green squares/dots indicate locations of indentified minima.

Darker values indicate a smaller value of the error function. The area of smallest values

can be seen around (dθ1, dθ2) = (0.5, 11.5). Interestingly, this is along the border of the

area where initial conditions did not have sufficient energy to bring point ‘B’ up to

vertical. This seems to indicate that minimizing energy gives the best values for our error

functions.

A finer tuned optimization, with initial guess of (1, 12) identified the minimum of

.000016 at (0.902, 10.935). The corresponding event times were magnet switch at 0.428

seconds with 0.025 seconds of motor torque.

A preliminary evaluation of stability is to run the simulation for several cycles. Although

initially performing well, the repeatability of the gait failed after running for several

iterations, as shown in Figures 5-7. The error is likely due to the limited precision of

1ms used for the magnet/motor controllers in the simulation. Desired stable gaits, for use

in motion planning, would continue to travel horizontally despite this and even be able to

correct small changes in initial conditions.

 13

Figure 5: Error value (difference from initial conditions when θ1=0) while iterating the first

discovered gait (0.902, 10.935).

 14

Figure 6: Kinetic energy of robot at vertical position (θ1=0) during each iteration. Kinetic energy

starts to change visibly around gait iteration 10, correlating with the increase in error value.

 15

Figure 7: Vertical height (at impact point) while repeating the first discovered gait (0.902, 10.935).

The robot maintains the same approximate vertical position during initial iterations, but begins to

fall as the error increases. Each link is 0.61m in length.

A second search, starting with a guess of (.5, 11.75), identified another minimum of

.00053 at (.768, 11.094). However, running this gait for several iterations gave similarly

undesirable results. Figure 8 shows a plot of the error function for this gait.

 16

Figure 8: Error value while attempting second gait (0.768, 11.094).

Additional graphs:

 17

Figure 9: Error values for higher initial dθ2. The minimum of this graph, near dθ2=20, does not drop

much below an error value of 1. Values above 5 truncated.

 18

Figure 10: Error values for lower values of dθ2 and higher values of dθ1. Same results as Figure 9.

4.3 Future Work

These preliminary results indicate there are no stable gaits belonging to the subset

defined in section 5.1. Expansion on this research could look at variations of the motions

tested, including gaits that:

o Have more than one impact (i.e. multiple swings per iteration)

o Involve free-flight, with both magnets released during part of the travel

o Applying the motor at different or multiple times

o Do not pass through and are not symmetrical about the vertical (θ1=θ2=0)

Testing any of the above modifications may result in a more stable gait that is suitable for

motion planning. Changing the system parameters including mass, link lengths, etc. may

also benefit the search.

Additionally, there may be stable solutions for other motions that are not purely

horizontal, such as climbing gaits.

 19

5. Simulation

5.1 Code High-Level Overview

The primary objective of the code is to provide a simulation for MonkeyBot. The code,

written in Matlab, handles equations of motions for all possible motion types: free-flight,

swinging, and fixed. It also smoothly transitions between motion types, modeling

impacts as necessary. Parameters for the MonkeyBot are user modifiable.

The simulation function, monkeySim is called with the initial conditions and system

parameters. It will return results of the simulation at each time step (.001seconds).

Numerical integration is done with Matlab’s ode45, using the standardized equation *(1)

and the matrices applicable to the motion state / magnet configuration.

Solving the equations of motion for each time step is handled by the function

DiffEqWrapper. The control algorithm is (mostly) modular and contained with

controlAlgorithm.m. It can be easily replaced or modified.

The attached .zip file contains a folder with the simulation code, and a sample script file

main.m to demonstrate its use.

The overall algorithm is as follows:

1. Setup script: main.m – sets up the initial conditions, system parameters, and

controller parameters

2. Simulation function: monkeySim is then called with all necessary parameters

3. Values for generating the matrices M, C, and G are pre-calculated to improve

speed

4. ode45 is called to numerically integrate the equations of motion

5. For each time step in ode45, the equations of motion are solved by

DiffEqWrapper

a. Reduced matrices (2 DOF) used when swinging with only one magnet

attached

b. Full matrices (4 DOF) used when neither magnet is attached.

6. For each time step specified (.001seconds), a monitoring function, DiffEqMonitor

is called by ode45

a. Plots the location and state of the MonkeyBot, so that user can watch

simulation progress

b. Control algorithm is called to check current state

i. Control algorithm receives current system state Q

ii. Can adjust motor torque or change magnet states

7. Changes in motor / magnet state restart the integration so that discontinuties are

handled correctly

8. If the magnets are transitioned (impact):

a. System state is flipped (bottom link becomes top, end point becomes new

base x/y)

 20

b. Projection matrix calculates post impact velocities from free-flight

dynamics.

9. Integration repeated with new initial conditions

5.2 Adjusting Control Algorithm and System Parameters

System parameters available for modification include m, I, L, and r for each link, as well

as the gravity constant g. These parameters are passed in vector form (e.g. M=[m1 m2])

to the simulation function. Demonstration of these parameters is shown in main.m.

The control algorithm setup was designed to be isolated from the rest of the simulation.

The function controlAlgorithm is called for each time step, and is passed the current time

and system state. Any changes made to the global control variables (motorState,

magnetState) will be reflected as the simulation progresses.

The current code package includes a simple time-based (open-loop) controller.

Modification of initial_t, motor_t, swap_t, and maxMotorPower will give demonstration

of varying simulation results. See main.m and controlAlgorithm.m.

Additional parameters can be fine tuned in various parts of the program:

o Step size (currently .001) can be changed in monkeySim.m to change the

controller resolution or number of reported values. Note: This does not affect the

accuracy of the integration as ode45 chooses its own step size then interpolates to

return values at the desired points. It does affect the precision of when the

controller acts.

o Friction (currently 0). DiffEqWrapper includes parameters to apply both constant

and viscous friction to the joints at θ1 and θ2.

Frequency of graphing can be changed in DiffEqMonitor. This has a large impact on

simulation time.

 21

5.3 Searching for Stable Gaits Using Simulation

See GaitSearchQuickStart.pdf embedded within code package.

Quick Start:

The search for gaits involves modified versions of the simulation functions designed to

search through range of parameters.

3D Plot for Error Values

The search.m script file contains everything necessary to iterate over a range of values

and create 3D plots of the fitness function.

Modify the values for the range/arrays dt1_rng and dt2_rng. The script will iterate over

all combinations of values contained within this range, and store the error values in the

results array. Everything is saved to a time-stamped .mat file, and the square root of the

values is plotted automatically.

Minimization/Optimization of Initial Values

The minimize.m script file contains the procedure necessary for finding and evaluating

gaits.

Modify the seed values for the minimization: dt1_guess, dt2_guess. The script will use

the Matlab function fminsearch to find the optimal solution. This solution is then iterated

(and shown visually) for several cycles. Results for error value, kinetic energy, and,

vertical height, are plotted.

Gait-Search Specific Code

The main component in the above two scripts is a modified version of the simulation

function, called runSim_fitness. This function runs the simulation only through the steps

of a single gait (swing up, impact, motor impulse, finish at vertical). At the end of the

single gait, it returns the fitness value calculated as the sum of the squares of the

difference from initial conditions. runSim_fitness is evaluated for every point in the 3D

plot, and minimized in the optimization step.

The fitness function uses a modified version of the controller, controlAlgorithm_search,

that acts depending on the state of the robot. It swaps the magnets at when the second

link has reached the horizontal (θ2=π-2θ1) , and impulses the motor until pre-impact

energy matches post-impact energy. The timings of these events are recorded in global

variables, which are obtained later by the script file as necessary.

 22

A second modified simulation function, runSim_stability runs the robot through several

iterations using the standard open-loop controller. It calculates some potentially useful

values at each iteration.

Modifying the Search / Looking for different types of Gaits

To modify the search or looking for different types of gaits involves three main steps:

1. Change the search controller, controlAlgorithm_search, to act and record timings

as necessary for the gait.

2. Change the fitness simulator, runSim_fitness, to stop integration at the right point,

and return the correct fitness value.

3. Change the actual control algorithm, controlAlgorithm, to reflect the modified gait

type.

4. Modify the script files search.m, minimize.m as necessary to use new gait

parameters / controller timings.

i
 M(q), C(q,dq), G(q) matrices for both dynamic systems (free-flight/4 DOF and

swinging/2 DOF) obtained from Nelson Rosa.
ii
 Equations for impact dynamics obtained from Kevin Lynch.

iii

 System paramters (Mass, Inertia, etc.) and starting point for parameters dθ1 and dθ2 based off of 2-link

model in “A five-link 2D brachiating ape model with life-like zero-energy-cost motions” by Mario W.

Gomes & Andy L. Ruina.

