Embedded Computing and
Mechatronics with the PIC32
Microcontroller

Kevin M. Lynch
Nicholas Marchuk
Matthew L. Elwin

AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢ LONDON
NEW YORK ¢ OXFORD ¢ PARIS « SAN DIEGO
SAN FRANCISCO ¢ SINGAPORE ¢ SYDNEY ¢« TOKYO
Newnes is an imprint of Elsevier Newnes

For more information on
the book see www.nu32.org

Newnes is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Copyright © 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

For information on all Newnes publications
visit our website at http://store.elsevier.com/

ISBN: 978-0-12-420165-1

Printed and bound in US

qa Working together
—4AB8 (o grow libraries in
Bockfid developing countries

www.elsevier.com e www.bookaid.org

For more information on
the book see www.nu32.org

Dedication

To Yuko, Erin, and Patrick.
—Kevin M. Lynch

To Mark and Liz.
—Nicholas Marchuk

To Hannah.
—Matthew L. Elwin

For more information on
the book see www.nu32.org

Figure Credits

The authors thank the following companies for permission to use their copyrighted images in
this book.

* Microchip Technology, Inc. www.microchip.com.

* Digi International, Inc. www.digi.com.

* Pololu Robotics and Electronics. www.pololu.com.

* Digi-Key Electronics. www.digikey.com.

* Advanced Photonix, Inc. www.advancedphotonix.com.

* Contelec AG. www.contelec.ch/en.

* Omega Engineering, Inc., Stamford, CT 06907 USA. www.omega.com.
* Avago Technologies. www.avagotech.com.

* Micro-Measurements, a brand of Vishay Precision Group (VPG), Raleigh, NC, USA.
WWW.Vpgsensors.com.

* Maxon Precision Motors. www.maxonmotorusa.com.
* Copley Controls. www.copleycontrols.com.
* H2W Technologies. www.h2wtech.com.

* Hitec RCD USA. www.hitecrcd.com.

For more information on
the book see www.nu32.org

Contents

Preface.ouiuiieiiieeeeeeeeeeoeeoseosassasonssonssnsonsons Xix
Acknowledgments ittt XXVii
I QUICKSTART 1
Chapter 1: Quickstart.c.iiuuiiiiiuiiiiiiiiieiieiieneenennns 3
1.1 What YOuNeed . ..ot e e e e 4
LIT Hardwareo e 4

112 0 Software. . ..o e 4

1.2 Compiling the Bootloader UtILItYottt ettt i eeeaee s 6
1.3 Compiling Your First Programouutiutinre ottt 7
1.4 Loading Your First Programouutontinntit it 9
1.5 ST MaKe . ottt ettt e e e e 10
1.6 Chapter SUMMATYttt e e e e e e e 13
Further Reading oo 14

Il FUNDAMENTALS 15
Chapter 2: Hardwarec.ooiiuiuiiuiuiiiiiiiiiinenenenenns 17
2.1 The PIC 32 . o e e e e e 17
2.1.1 Pins, Peripherals, and Special Function Registers (SFRs) 17

2.1.2 PIC32 Architecture.ottt e 20

2.1.3 The Physical Memory Mapovttiit ettt i 27

2.1.4 Configuration Bits 28

2.2 The NU32 Development Boardouuintti i i 28
2.3 Chapter SUMMATYo\ttt ettt e et et et et et et e e eee e 32
2.4 BREICISES. . . oottt et e 32
Further Reading 34

vii

For more information on
the book see www.nu32.org

viii Contents

Chapter 3: SOftWareouuiuiiniiiiiiiieneneneeeenenenns 35
3.1 The Virtual Memory Map.ottt ettt ettt et e e 35
3.2 AnExample: sTmplePlC. C ottt et e e e e e e 37
3.3 What Happens When You Build? o i, 38
3.4 What Happens When You Reset the PIC32? i 39
3.5 Understanding simpleP Tl . C vttt et ettt ettt ettt et e 40

3.5.1 DowntheRabbitHole 44
3.5.2 The Header File p32mx795f512N0 .0 vttt et e e 46
3.5.3 Other Microchip Software: Harmony 49
3.5.4 The NU32bootloaded.1d Linker Script............. 50
3.6 Bootloaded Programs vs. Standalone Programs.outireurarennanenn.. 51
3.7 Build SUMMATYo 53
3.8 Useful Command Line UtIIHESo\t vttt ettt et eee e 55
3.9 Chapter SUMMATYottt ettt 55
310 BXEICISES . .t o vttt et et e e e 56
Further Reading oo 57

Chapter 4: Using Librariesc.oeuiiiiiiiiieinenennennenns 59
4.1 Talking PIC . ..o 60
4.2 The NUB2 LIDTAIY . .o ovot ettt et e e et e e et e e e e et e e e e e e 61
4.3 Bootloaded Programsottt ettt ettt et et e 62
44 AnLCD LIDIArYottt e e e 63
4.5 MIicrochip LADIariesottt e e e 66
4.6 YOUr LIDIaries . . .o\t ot ettt et e e e 67
477 Chapter SUMMATY\ttt e et e e e e e e e e e e e e e e e 67
A8 BREICISES. . .ottt ettt et e e e 67

Further Reading 68

Chapter 5: Timeand Space.c.ccovuiiiiiiiiiiiiiiiienenenns 69
5.1 Compiler Optimizationot et ettt ettt et et et e et e 70
5.2 Time and the Disassembly Fileooiiuiii i i 71

5.2.1 Timing Using a Stopwatch (or an Oscilloscope) ...t 71
5.22 Timing Using the Core TImMerottt 71
5.2.3 Disassembling Your Codeoiiiiiin 72
5.2.4 ThePrefetch Cache Module i, 77
5.2.5 Math. .. e 78
5.3 Spaceandthe Map File.\ttt e e e 78
5.4 Chapter SUMMATYo v et ettt et et et et et e e e e e e e e 84
5.5 BREICISES. . o vttt 84
Further Reading oo 89

Chapter 6: INterruptsoceieieneniiieeenenenencacneanenenns 91
0.1 OVEIVIEW . .ot 91
0.2 DELAILS . . o et e e 92

For more information on
the book see www.nu32.org

Contents ix

6.3 Steps to Configure and Use an INTEITUPLo v vttt ettt et e eee it eeens 99
6.4 Sample Codet 99
6.4.1 Core Timer Interrupt e 99

6.4.2 External Interrupt............ ... 102

6.4.3 Speedup Due to the Shadow Register Set 103

6.4.4 Sharing Variables with ISRs 106

6.5 Chapter SUMMATYo\ttt ettt et et e et e e et e e e eens 107
0.0 BXEICISES ..ttt 108
Further Reading oo 111

Il PERIPHERAL REFERENCE 113
Chapter 7: Digital Input and Outputccoviiiieiienn.. 115
7 B € 1 o 1 115
T2 DEHAIlS. .ottt 117
7.2.1 Change NOtficationottt e i 118

T3 Sample Code vt 119
7.4 Chapter SUMMMATY ovt ettt ettt et et e et e et e e e e eens 120
7.5 BXEICISES . vt vttt ettt et e e e e 121
Further Readingo o e 121
Chapter 8: Counter/Timersc.cueueeueeeeneneneneeenenenens 123
Bl OVEIVIEW . . oot 123
8.2 DEHAILS. . ottt e 125
8.3 Sample Codet 128
8.3.1 AFixedFrequency ISR i 128

8.3.2 Counting External Pulses......... i i 128

8.3.3 Timing the Duration of an External Pulse 130

8.4 Chapter SUMMATYo\ttt ettt ettt et et ettt e et e 131
8.5 BXEICISES ..ottt 131
Further Reading. 131

Chapter 9: Output Compare.coieuieiieneenennennennannns 133
0.1 OVEIVIEW ettt 133
0.2 DEtaIlS. . o et 134
0.3 Sample Codeo .vt it 136
9.3.1 Generating a Pulse Train with PWM oo i it 136

0.3.2 Analog OUtPULottt e 137

0.4 Chapter SUMMATYo\ttt ettt ettt e et e et e et e eens 141
0.5 EXEICISES . vt vttt ettt e e 141
Further Reading. 143

For more information on
the book see www.nu32.org

x Contents

Chapter 10: Analog Inputot iiiiiiiiiiiiiienennennnn. 145
TOT OVErVIEW . ..o e 145
102 Details. ..ottt 149
103 Sample Codeot e 152

10.3.1 Manual Sampling and Conversionc.uuuieeeiinnnneeeennnnn .. 152
10.3.2 Maximum Possible Sample Rate i 153
10.4 Chapter SUMMATYot 157
LO.5 EXEICISES . oottt et e et e e e e e e e 158
Further Reading. o 158

Chapter 11: UARTottt ittt iiteaeenneenneannnns 159
TI.1 OVEIVIEW . .o oo e e e 159
1.2 DetailS. . ..ottt e e e 161
I11.3 Sample Code . ..o .v it e et 163

11.3.1 Loopback. 163
11.3.2 InterruptBased 165
T1.3.3 NUB2 LIDIary . o ovov ettt ettt et e e e e et e et e et 166
11.3.4 Sending DatafromanISR...... 168
11.3.5 Communication with MATLAB 172
11.3.6 Communicationwith Python......... 173
11.4 Wireless Communication withan XBee Radio 174
11.5 Chapter SUMMAryttt ettt et et ettt et e 175
L1.6 EXEICISES . ..ottt et e et e e e e e e e e e 175
Further Reading. 176

Chapter 12: SPI Communication.couuiieuinennnennennnnnn 177
L2, OVEIVIEW . ..ot e 177
12.2 DetailS. . ..ottt 179
12.3 Sample Codeottt e e 181

1231 LoopDbacKttt e 181
1232 SRAM 183
12.3.3 LSM303D Accelerometer/Magnetometerovveeeunnnneeeennnnneeen. 186
12.4 Chapter SUMMATYot e 190
12, BXEICISES « ottt e 190
Further Reading. 190

Chapter 13: I?C Communication.eeueeeeuenennennnenns 191
I3.1 OVEIVIEW . .o oo e 191
13.2 DetailS. . ..ottt 193
133 Sample Codeottt e 196

1331 LoopDbacKttt 196
13.3.2 Interrupt-Based Masterouttniiin ettt 200
13.3.3 Accelerometer/Magnetometer. v ettt ettt 203
1334 OLED SCIEEM . .« vttt ettt ettt e e e e e et e e e e 205

For more information on
the book see www.nu32.org

Contents xi

13.3.5 Multiple Devices. o 208

13,4 Chapter SUMMArY\ttt et et et e et e e et 211
13,5 BXEICISES . vttt ottt ettt e e e 211
Further Reading o e 211

Chapter 14: Parallel Master Portcccoviiiiiiiiiiienenennns 213
LA OVEIVIEW . . oot 213
T4.2 Details. ..ot 214
14.3 Sample COAEo ottt e e e e 215
14.4 Chapter SUMMATYottt e et e e e e e e 219
14,5 EXEICISES « vttt ettt et e et e e e e e 220
Further Reading 220

Chapter 15: Input Capturecoouuieuiieuneeneennennnennnnns 221
15,1 OVerview ..o 221
15.2 Details. ..ot 221
15.3 Sample Code . ..o vttt e 223
15.4 Chapter SUMMArY\ttt et et et e et e e e e e e e 225
15,5 EXEICISES « vttt ittt et e et e e e e 225
Further Reading oot 225

Chapter 16: Comparatorceueueeuieeeenenenenccenenenens 227
1O0.1 OVEIVIEW . .ottt et e e 227
16.2 DetailS. . . oev ettt e et e e e 227
16.3 Sample COAEo vttt et e e e e e 230
16.3.1 Voltage CompariSOnttt ettt e 230

16.3.2 Analog Outputootitt e 231

16.4 Chapter SUMMATYo\ttt ettt et et e et e et e e ae s 231
L16.5 BXREICISES . .\ v ottt et e e e e e 232
Further Reading. 232

Chapter 17: Sleep, Idle, and the Watchdog Timer 233
171 OVerview ..o 233
17.1.1 POWer SavINgo 233

17.1.2 Watchdog Timer e 234

17.2 Details. ..ot 234
17.3 Sample COAEo oottt e e 235
17.4 Chapter SUMMATYottt et e ettt et e 237
17.5 EXEICISES « vt ottt ettt e et e e e e e e 237
Further Reading oo 238

Chapter 18: FlashMemoryccouuieuiiiiiiiieennennnennnnnns 239
I8.1 OVEIVIEW ..ottt 239
18.2 DetalS. . .ottt ettt e e e 240

For more information on
the book see www.nu32.org

xii Contents

18.3 Sample Codeo 241
18.4 Chapter SUMMATY 246
I18.5 EXEICISES . ..ottt ittt e e e e 246
Further Reading e 247

Chapter 19: Controller Area Network (CAN)ccoviiiiiiiiinn... 249
19,1 OVErVIEW . .o 249
19.2 DetailS. . ..ottt 252
19.2.1 AdAIESSES . ..o v ettt et et e 257

19.2.2 Transmitting a Messageooutm ittt 257

19.2.3 Receiving a MeSSagettt e 258

193 Sample Code vt e 260
1931 LoOpDbacKottt 260

1932 Light Control. 261

19.4 Chapter SUMMATYo 264
19,5 BXEICISES « ottt 265
Further Reading. 265

Chapter 20: Harmony and Its Applicationto USB 267
2001 OVEIVIEW . o oot 267
20.2 The Frameworkttt e e 268
20.2.1 StUP - . ottt e 270

20.3 PLIB ... 270
20.4 Harmony CONMCEPLS v vttt ettt ettt e et e e e et e e e e e 272
20,5 DIIVEIS . .\ttt 274
20.5.1 UART . ..o e 275

20.5.2 TIMETS o vttt ettt et e e e e e e e e e e e e 281

20.5.3 Timers with Interruptsottt e e 285

20.6 SYSIEIM SEIVICES . . . oottt ettt e et e e 285
20.7 Program StrUCHUIE o .\ttt et e et et et e e e e et et e e 289
20.8 USB ... 295
20.8.1 USB BasSiCS .. u ittt e 295

20.8.2 Poweringthe NU32by USB 296

20.8.3 USBHID DEVICE . ..ottt e e e i 297

20.9 Chapter SUMMArYoii it e e e 313
20,10 BXEICISES . .\ttt ettt e e e e 313
Further Reading oot 313

IV MECHATRONICS 315
Chapter 21: SENSOFS oo vu ettt it eineennenneenneennennnnns 317
21.1 Contact: Buttons and SWitCheso.tirttirt it 318
D12 LAGRE. oot 319

For more information on
the book see www.nu32.org

Contents xiii

21.2.1 Types of Light Sensors. i 319

21.2.2 Basic Applications oo 321

21.3 Angle of a Revolute JOINtottt ettt ettt e et e e 323
21.3.1 POteNtIOMELET . . . o ettt ettt et e e e e e e e e e e 323

21.3.2 EBncoder...... ... i 324

21.3.3 Magnetic Encoders. ...t 327

21.3.4 ReSOIVEI. ... o i 327

21.3.5 TachOMEter 328

21.4 Position of a Prismatic JOINC.o.uiin i 328
21.5 Acceleration and Angular Velocity: Gyros, Accelerometers, and IMUS 329
21.5.1 MEMS ACCEIEIOMELET . . .« v o vttt ettt e e e ettt 329

21.5.2 MEMS GYTO ..ottt ettt e e e e e 330

21.5.3 MEMS IMU ..o 330

21.6 Magnetic Field Sensing: Hall Effect SEnsorsoutiuiiiriirinniannenn... 332
217 DESEANCE . . o vttt ettt e e e e e e e e 333
218 FOTCE . .ottt e 334
21.9 Temperaturec.oiin et 336
2110 CULTENt . . .o e e e 337
21.10.1 Current-Sense Resistor and Amplifier 337
21.10.2 Hall Effect Current SEnsOr.ttt ettt et et 339

2L L GPS . 339
2102 EXETCISES - v o vttt ettt ettt e e e e 340
Further Reading.t e 340
Chapter 22: Digital Signal Processing.ccciiiiiiiiiiann.. 341
22.1 Sampled Signals and AHaSINGottt e 342
22.2 The Discrete Fourier Transform.outitiit it i, 344
22.2.1 The Fast Fourier Transform........... ... i, 345

2222 The FFTin MATLAB oo e e e 347

22.2.3 The Inverse Fast Fourier Transform e, 349

22.3 Finite Impulse Response (FIR) Digital Filtersc.ovutiiteinraeaneann... 350
22.3.1 Moving Average Filter.......... ... 353

2232 FIRFilters Generally 357

22.4 Infinite Impulse Response (IIR) Digital Filterscoitiniirieinenn.n... 361
22.5 FFT-Based FAIErSottt it et e e e e e e e e e e 362
22,6 DSPONthe PIC32 ...\ttt et ettt 364
227 BXETCISES . oot v ottt ettt e e e e 373
Further Readingt 374
Chapter 23: PID Feedback Control.c.cciiiiiiiiiiennn. 375
23.1 ThePID CONtrollerottt ettt et et e e e e 376
23.2 Variants of the PID CONtroller\t vutt ettt e e et e eee e 379
23.3 Empirical Gain TUNINGo\ttt ettt ettt et et et e e e 380
23.4 Model-Based CONrolottt ettt e 381

For more information on
the book see www.nu32.org

xiv Contents

23.5 Chapter SUMMArYottt ettt e e e e e 383
23,0 BXEICISES . o vttt ettt e et et e e e 383
Further Reading. 385
Chapter 24: Feedback Control of LED Brightness 387
24.1 Wiring and Testing the CirCUIt.\t vtt ettt et oot e i eeee e 389
24.2 Powering the LED with OC1 o0ttt e 389
24.3 Playing an Open-Loop PWM Waveformootviiiitirenranennanen.n. 390
24.4 Establishing Communication with MATLABoiiiiiiiiiiinnnnn.n. 391
24.5 Plotting Datain MATLABttt 391
24,6 Writing t0 the LCD SCTEEMo\ttt ettt et et et e 395
2477 Readingthe ADC\ttt e e 395
24.8 PICONIOL. . .ottt ettt e e e e e 395
24.9 Additional FEatureso ettt e e e 396
24.10 Chapter SUMMATY outt ittt e e e et e e e e 396
2411 BXEICISES . o ettt et e ettt e e e e e e 397
Chapter 25: Brushed Permanent Magnet DC Motors. 399
251 MOt PRYSICS © o vttt ettt et et et et e e e e e e e 399
25.2 Governing BQUALIONSottt ettt et et et et e e et e e e 403
25.3 The Speed-Torque CUIVEottt ettt et e et et e et e ee s 406
25.4 Friction and Motor Efficiencyoiinei i 410
25.5 Motor Windings and the Motor CONStANTt vutvnrtet ettt 412
25.6 Other Motor CharaCteriStiCso vttt ettt e et et et e e e 413
257 Motor Data SHEELottt et e 415
25.8 Chapter SUMMATYottt ettt e e e e e e 420
25,9 BXEICISES . ..ottt ettt 421
Further Reading.o 425
Chapter 26: Gearing and Motor Sizingccoiieiiieinennnnn. 427
20,1 GEATINE . .. o\ e ottt ettt e 427
26.1.1 Practical ISSUES oot 428

26.1.2 EXamples. 429

26.2 Choosing a Motor and Gearheadoutirint it 431
26.2.1 Speed-Torque CUIVe. . .. oottt et et et et e e et 431

26.2.2 Inertiaand Reflected Inertia i 432

26.2.3 Choosing a Motor and Gearhead i 434

26.3 Chapter SUMMATY\ttt ettt e et et e 435
204 BXEICISES . o vttt ettt e et e e e 435
Further Reading. 437
Chapter 27: DC Motor Controlc.ccoiiiiiiiiiiiiiinennnnn. 439
27.1 The H-Bridge and Pulse Width Modulation................c.ivuiireerenneeneann.. 439
27.1.1 The H-Bridgeot e e e e 443

For more information on
the book see www.nu32.org

Contents xv

27.1.2 Control with PWM 445

27.1.3 Regeneration..... ...ttt 447

27.1.4 Other Practical Considerationsouuvituneiun e, 449

27.2 Motion Control of a DC MOTOTo\ttt e et et e 450
27.2.1 Motion Control.ttt e 451

2722 Current Control.ttt e 452

27.2.3 An Industrial Example: The Copley Controls Accelus Amplifier.............. 453

27.3 Chapter SUMMATYottt e e e e e e e e e e e e e e e e 455
274 BXEICISES . ..ottt et e e e e 455
Further Reading o e 458
Chapter 28: A Motor Control Projectccoiviiiieiinnn.. 459
28.1 HArdWAreout it e 459
28.2 SOftWare OVEIVIEWottt ettt et et e et e e e 460
28.3 Software Development TIPSo ouvt ettt e e e e e e e 467
284 SEP DY SO . . oot 470
28.4.1 Decisions, DECISIONS . . . v v vttt ettt e e e e e e 470

28.4.2 Establishing Communication with a Terminal Emulator 471

28.4.3 Establishing Communication withthe Client 473

28.4.4 Testingthe Encoder i 474

28.4.5 Adding Encoder Menu Optionsiiiiiiiniiiiiinnan. 475

28.4.6 PIC32OperatingMode i 477

28.4.7 Current Sensor Wiring and Calibration 478

28.4.8 ADC for the Current SeNnSOorvtttut ittt 480

28.49 PWMandthe H-Bridge......... ... i 480
28.4.10 PI Current Control and ITESTMode ..., 482
28.4.11 Position Controlo e 484
28.4.12 Trajectory Tracking it e 484

28.5 BXEEISIONS . . vttt ettt e et e e e e 487
28.6 Chapter SUMMMATYo\ttt ettt ettt et et e et e e et e e e et e e 489
287 BXEICISES . ..ttt i ettt et e 490
Chapter 29: Other ACLUALOFSco v v et iiieeineennennnennnnns 491
291 SOIEnOIdSv vttt 491
29.2 Speakers and Voice COil ACTUALOTSo vttt et et et e e et i e aeaee s 493
20.3 RO SEIVOS .« oottt ettt e e e 494
204 SEPPEr MOTOTS . .. oo ottt et e e et e e e e e e 495
29.4.1 Stepper Motor Coil Configurations.ooiiiiinne e eeeenn.. 498

29.5 Brushless DC MOTOLS . ..o vv vt et et et e et e et et e e e et e et 499
29.5.1 Interfacingthe PIC32to a BLDC i 502

29.52 A BLDCLIbrary.t e e e e e e 504

29.5.3 Commutation Using Hall Sensor Feedback 507

29.5.4 Synchronous Driving Using Open-Loop Control 509

29.6 Linear Brushless MOTOISo uv ittt e et et e e e e e e e e e e e 512
20.7 Chapter SUMMATYottt et et et et e e e e e e e e eeee s 513

For more information on
the book see www.nu32.org

xvi Contents

20.8 BXEICISES . .\ttt ettt e e 513
Further Reading oot 514
Appendix A: ACrash Coursein Ccouieiiiiiieeinennnennennnnnn 515
Al Quick Start in €. .ottt 515
AL OVEIVIEW .« o oot 517
A3 Important Concepts N C. . ..ottt 518
A31 DataTypes. . ..ot 518

A.3.2 Memory, Addresses, and Pointers. i i i 526

A33 Compilingo 528

A COSYMAX . . ottt 529
A4l BaSIC SYNIAX .. vttt ettt e e 539

A42 Program STUCIUIE. . .« .ottt ettt et e et e e e et e e 541

A.4.3 Preprocessor Commandsuuutnt it e 542

A.4.4 Typedefs, Structs,and Enums o i 545

A.45 Defining Variables 547

A.4.6 Defining and Calling Functions i .. 550

AT Math. ..o 551

A48 POINLETS . . oot e 553

A49 Arraysand SHrINGSt 554

A.4.10 Relational Operators and TRUE/FALSE Expressions 557

A.4.11 Logical and Bitwise Operatorsuuutetutinn et .. 558

A.4.12 Conditional Statementsttt 559

N G T 57 Yo o1 P 560

A4.14 TheC Standard Library i 562

A.4.15 Multiple File Programs and Libraries..................................... 567

ALS EXEICISES . vttt et 573
Further Reading. 585
Appendix B: Circuits Reviewcouuuiiiiiiiiiiiiineenennennns 587
Bl BasicS. ... 587
B.2 Linear Elements: Resistors, Capacitors, and Inductors 589
B.2.1 Time Response of RCand RL Circuits, 592

B.2.2 Frequency Response of RCand RL Circuitst 596

B.3 Nonlinear Elements: Diodes and Transistorsuutereenrenreaneennenn... 599
B3l DIOdes ..ot 599

B.3.2 Bipolar Junction TranSiStorscvuuut ittt et 601

B.4 Operational AMPIfIErsttt 603
B.4.1 Practical Op Amp Considerations.oiiiiiiiiiinnneennn.. 605

B.4.2 Single Supply Design and Virtual Ground................................. 606

B.4.3 Instrumentation AMPSttt e 607

B.5 Modular Circuit Design: Input and Output Impedancecovvenenn... 608
Further Reading. oot 609

For more information on
the book see www.nu32.org

Contents xvii

Appendix C: Other PIC32 Models.ccoviiiiiiiiiiiiinnnnn. 611
C.1 The PIC32MX5xx/6Xxx/Txx Familyoooit i 611
C.2 PIC32MXBXX/MAXX Family e 612
C.3 PIC32MXIXX/2XX Family e e 612
C4 PIC32MXI1xx/2xx/5xx 64-100 Pin Family.......... it 613
C.5 PIC32MX330/350/370/430/450/470 Familyooiuiiiie .. 614
C.6 PIC32MZEFamily e 614
C.7T CONCIUSIONottt e e e e e e e 615

Indexoiiuiiuiieiiniieeeeeeeeeoeeosessassassassnssnsonsonss 617

For more information on
the book see www.nu32.org

Preface

This book is about the Microchip 32-bit PIC32 microcontroller, its hardware, programming it
in C, and interfacing it to sensors and actuators. This book also covers related mechatronics
topics such as motor theory, choosing motor gearing, and practical introductions to digital
signal processing and feedback control. This book is written for:

* Anyone starting out with the Microchip PIC32 32-bit microcontroller. Microchip
documentation can be hard to navigate; this is the book we wish we had when we started!

* The hobbyist ready to explore beyond Arduino. Arduino software and its large user
support community allow you to be up and running quickly with Atmel microcontrollers.
But reliance on Arduino software prevents you from fully exploiting or understanding the
capability of the microcontroller.

¢ Teachers and students in mechatronics. The exercises, online material, and associated
kit are designed to support introductory, advanced, and flipped or online courses in

mechatronics.

* Anyone interested in mechatronics, actuators, sensors, and practical embedded
control.

Contents

This book was written based on the two-quarter mechatronics sequence at Northwestern
University, ME 333 Introduction to Mechatronics and ME 433 Advanced Mechatronics. In
ME 333, students learn about PIC32 hardware, fundamentals of programming the PIC32 in C,
the use of some basic peripherals, and interfacing the PIC32 with sensors and actuators. In
ME 433, material from the rest of the book is used as reference by groups working on
projects. Students taking the sequence range from sophomores to graduate students. The only
prerequisite is introductory circuit analysis and design; experience in C programming is not
required. While experience in C would allow faster progression through the material, we
decided not to require it, to make the course available to the broad set of students interested in
the material. To partially compensate for the wide range of experience in C (from expert to
none), we begin ME 333 with an intensive two-week introduction to fundamental C concepts
and syntax using the “Crash Course in C” in Appendix A. We also take advantage of student
expertise by facilitating peer mentoring.

Xix

For more information on
the book see www.nu32.org

xx Preface

The goals of this book mirror those of the Northwestern mechatronics sequence:

* to provide the beginner a sound introduction to microcontrollers using the example of the
PIC32, a modern 32-bit architecture;

* to do so by first providing an overview of microcontroller hardware, firm in the belief that
microcontroller programming is much more grounded when tightly connected to the
hardware that implements it;

* to provide a clear understanding of the fundamentals of professional PIC32 programming
in C, which builds a foundation for further exploration of the PIC32’s capabilities using
Microchip documentation and other advanced references;

* to provide reference material and sample code on the major peripherals and special
features of the PIC32;

* to instill an understanding of the theory of motor operation and control; and

* to teach how microcontroller peripherals can be used to interface with sensors and motors.

To achieve these goals, the book is divided into five main parts:

1. Quickstart. This part (Chapter 1) allows the student to get up and running with the PIC32
quickly.

2. Fundamentals. After achieving some early success with the quickstart, the five chapters
in Fundamentals (Chapters 2 to 6) examine the PIC32 hardware, the build process in C
and the connection of the code to the hardware, the use of libraries, and two important
topics for real-time embedded computing: interrupts and the time and space efficiency of
code. The time investment in these chapters provides the foundation needed to move
quickly through later chapters and to profit from other reference material, like Microchip’s
PIC32 Reference Manual, Data Sheets, and XC32 C/C++ Compiler User’s Guide.

3. Peripheral Reference. This part (Chapters 7 to 20) gives details on the operation of the
various peripherals on the PIC32, as well as sample code and applications. It is primarily
reference material that can be read in any order, though we recommend the first few
chapters (digital I/0, counter/timers, output compare, and analog input) be covered in
order. The peripheral reference concludes with an introduction to Harmony, Microchip’s
recent framework for high-level programming of PIC32s.

4. Mechatronics. This part (Chapters 21 to 29) focuses on interfacing sensors to a
microcontroller, digital signal processing, feedback control, brushed DC motor theory,
motor sizing and gearing, control by a microcontroller, and other actuators such as
brushless motors, stepper motors, and servo motors.

5. Appendixes. The appendixes cover background topics such as analysis of simple circuits
and an introduction to programming in C. We have our students first get used to writing C
programs on their laptops, and compiling with gcc, before moving on to programming a
microcontroller.

For more information on
the book see www.nu32.org

Preface xxi

In ME 333, we cover the crash course in C; the Quickstart; the Fundamentals; select topics
from the Peripheral Reference (digital I/O, counter/timers, output compare/PWM, and analog
input); and simple sensor interfacing, DC motor theory, motor sizing and gearing, and control
of a DC motor from the Mechatronics part. Other chapters are used for reference in ME 433
and other projects that students undertake.

Choices made in this book

‘We made several choices about how to teach mechatronics in ME 333, and those choices are
reflected in this book. Our choices are based on the desire to expose our students to the topics
they will need to integrate sensors and actuators and microcontrollers professionally, subject
to the constraint that most students will take only one or two courses in mechatronics. Our
choices are based on what we believe to be the smallest building blocks that a mechatronics
engineer needs to know about. For example, we do not attempt to teach microcontroller
architecture at the level that a computer engineer might learn it, since a mechatronics engineer
is not likely to design a microcontroller. On the other hand, we also do not rely on software
and hardware abstractions that keep the budding mechatronics engineer at arm’s length from
concepts needed to progress beyond the level of a hobbyist. With that philosophy in mind,
here are some of the choices made for ME 333 and this book:

* Microcontrollers vs. sensors and actuators. Mechatronics engineering integrates sensors,
actuators, and microcontrollers. Handing a student a microcontroller development board
and sample code potentially allows the course to focus on the sensors and actuators part.
In ME 333, however, we opted to make understanding the hardware and software of the
microcontroller approximately 50% of the course. This choice recognizes the fundamental
role microcontrollers play in mechatronics, and that mechatronics engineers must be
comfortable with programming.

* Choice of microcontroller manufacturer. There are many microcontrollers on the market,
with a wide variety of features. Manufacturers include Microchip, Atmel, Freescale,
Texas Instruments, STMicroelectronics, and many others. In particular, Atmel
microcontrollers are used in Arduino boards. Arduinos are heavily used by hobbyists and
in K-12 and university courses in large part due to the large online user support
community and the wide variety of add-on boards and user-developed software libraries.
In this book, we opt for the commercially popular Microchip PIC microcontrollers, and
we avoid the high-level software abstractions synonymous with Arduino. (Arduinos are
used in other Northwestern courses, particularly those focusing on rapid product
prototyping with little mechatronics design.)

* Choice of a particular microcontroller model. Microchip’s microcontroller line consists
of hundreds of different models, including 8-bit, 16-bit, and 32-bit architectures. We have
chosen a modern 32-bit architecture. And instead of trying to write a book that deals with
all PIC32 models, which includes six different families of PIC32s as of this writing (see

For more information on
the book see www.nu32.org

xxii Preface

Appendix C), we focus on one particular model: the PIC32MX795F512H. The reasons
for this choice are (a) it is a powerful chip with plenty of peripherals and memory

(128 KB data RAM and 512 KB program flash), and, more importantly, (b) focusing on a
single chip allows us to be concrete in the details of its operation. This is especially
important when learning how the hardware relates to the software. (One of the reasons
Microchip’s documentation is difficult to read, and is so full of exceptions and special
cases, is that it is written to be general to all PIC32s in the case of the Reference Manual,
or all PIC32s in a specific family in the case of the Data Sheets.) Once the reader has
learned about the operation of a specific PIC32, it is not too difficult to learn about the
differences for a different PIC32 model.

* Programming language: C++ vs. C vs. assembly. C++- is a relatively high-level
language, C is lower level, and assembly is lower still. We choose to program in C
because of the portability of the language, while staying relatively close to the assembly
language level and minimizing abstractions introduced by C++.

* Integrated Development Environment vs. command line. MPLAB X is Microchip’s
Integrated Development Environment (IDE) for developing software for PICs. So why do
we avoid using it in this book? Because we feel that it hides key steps in understanding
how the code you write turns into an executable for the PIC32. In this book, code is
written in a text editor and the C compiler is invoked at the command line. There are no
hidden steps. Once the reader has mastered the material in the first few chapters of this
book, MPLAB will no longer be mysterious.

* Use of the Harmony software vs. ignoring it. Microchip provides an extensive library of
middleware, device drivers, system services, and other software to support all of their
PIC32 models. One goal of this software is to allow you to write programs that are
portable across different PIC32 models. To achieve this, however, a significant amount of
abstraction is introduced, separating the code you write from the actual hardware
implementation. This is bad pedagogically as you learn about the PIC32. Instead, we use
low-level software commands to control the PIC32’s peripherals, reinforcing the hardware
documentation in this book and in the Data Sheet and Reference Manual. Only with the
more complicated peripherals do we use the Harmony software, specifically for USB, in
Chapter 20.

* Sample code vs. writing it yourself. The usual way to learn to program PIC32s is to take
some working sample code and try to modify it to do something else. This is natural,
except that if your modified code fails, you are often left with no idea what to do. In this
book we provide plenty of sample code, but we also focus on the fundamentals of
programming the PIC32 so that you learn to write code from scratch as well as strategies
to debug if things go wrong (Figure 0.1).

The philosophy represented by the choices above can be summed up succinctly: There should
be no magic steps! You should know how and why the code you write works, and how it

For more information on
the book see www.nu32.org

Preface xxiii

This book
PIC32
programming

ability : Usual

Copying .

code trajectory

A Foundations
/" Quickstart
Time
Figure 0.1

The trajectory of PIC32 programming ability vs. time for the usual “copy and modify” approach vs.
the foundational approach in this book. The crossover should occur at only a few weeks!

connects to the hardware. You should not be simply modifying opaque and abstract code,
compiling with a mysterious IDE, and hoping for the best.

The NU32 development board

The NU32 development board was created to support this book. If you do not have the board,
you can still learn a lot about how a PIC32 works from reading this book. We highly
recommend that you get the NU32 board and the kit of mechatronics parts, however, to allow
you to work through the examples in the book.

In keeping with the “no magic” philosophy, the primary function of the NU32 is to break out
the pins of the PIC32MX795F512H to a solderless prototyping breadboard, to allow easy
wiring to the pins. Otherwise we try to keep the board as bare bones and inexpensive as
possible, leaving external circuits to the reader. To allow you to get up and running as quickly
as possible, though, the board does provide a few devices external to the PIC32: two LEDs
and two buttons for simple user interaction; a 3.3 V regulator (to provide power to the PIC32)
and a 5 V regulator (to provide a commonly needed voltage); a resonator to provide a clock
signal; and a USB-to-UART chip that simplifies communication between the user’s computer
and the PIC32.

The PIC32 on the NU32 comes with a bootloader program pre-installed, allowing you to
program the PIC32 with just a USB cable. The NU32 can also be programmed directly using a
programmer device, like the PICKkit 3. This is covered in Chapter 3.6.

For more information on
the book see www.nu32.org

xxiv Preface

How to use this book in a course

Mechatronics is fundamentally an integrative discipline, requiring knowledge of
microcontrollers, programming, circuit design, sensors, signal processing, feedback control,
and motors. This book contains a practical introduction to these topics.

Recognizing that most students take no more than one or two courses in mechatronics,
however, this book does not delve deeply into the mathematical theory underlying topics such
as linear systems, circuit analysis, signal processing, or control theory.! Instead, a course
based on this book is meant to motivate further theoretical study in these disciplines by
exposing students to their practical applications.

As a result, students need only a basic background in circuits and programming to be able to
take a course based on this book. At Northwestern, this means that students take ME 333 as
early as their sophomore year. ME 333 is an intense 11-week quarter, covering, in order:

e Appendix A, a Crash Course in C. (Approximately 2 weeks.)

* Chapters 1-6, fundamentals of hardware and software of the PIC32 microcontroller.
(Approximately 3 weeks.)

* Chapters 7-10, covering digital input and output, counter/timers, output compare/PWM,
and analog input. These chapters are primarily used as reference in the context of the
following assignment.

¢ Chapters 23 and 24, on feedback control and PI control of the brightness of an LED using
a phototransistor for feedback. This project is the students’ first significant project using
the PIC32 for embedded control. It also serves as a warmup for the final project.
(Approximately 2 weeks.)

¢ Chapter 25 on theory and experimental characterization of a brushed DC motor.
(Approximately 1 week.)

* Introduction to encoders and current sensing in Chapter 21 and all of Chapters 27 and 28
on DC motor control. Chapter 27 introduces all the hardware and software elements of a
professional DC motor control system, including a nested-loop control system with an
outer-loop motion controller and an inner-loop current controller. Chapter 28 is a
chapter-long project that applies the ideas, leading the student through a significant
software design project to develop a motor control system that interfaces with a menu
system in MATLAB. This “capstone” project is motivated by professional motor amplifier
design and integrates the student’s knowledge of the PIC32, C programming, brushed DC
motors, feedback control, and the interfacing of sensors and actuators with a PIC32.
(Approximately 3 weeks.)

! Because other courses generally do not cover the operation of motors, this book goes into greater detail on motor
theory.

For more information on
the book see www.nu32.org

Preface xxv

This is a very full quarter, which would be less intense if students were required to know C
before taking the course.

ME 333 at Northwestern is taught as a flipped class. Students watch videos that support the
text on their own time, then work on assignments and projects during class time while the
instructor and TAs circulate to help answer questions. Students bring their laptops and
portable mechatronics Kkits to every class. This kit includes an inexpensive function generator
and oscilloscope, the nScope, that uses their laptop as the display. Thus ME 333 does not use a
lab facility; students use the classroom and their own dorm rooms. Students work and learn
together during classes, but each student completes her own assignment individually. The
follow-on course ME 433 focuses on more open-ended mechatronics projects in teams and
makes extensive use of a mechatronics lab that is open to students 24/7.

For a 15-week semester, good additions to the course would be two weeks on different sensor
technologies (Chapter 21) and digital signal processing of sensor data (Chapter 22). Another
week should also be devoted to the final motor control project (Chapter 28), to allow students
to experiment with various extensions. Time permitting, other common actuators (e.g.,
steppers, RC servos, and brushless motors) could be covered in Chapter 29.

For a two-quarter or two-semester sequence, the second course could focus on open-ended
team design projects, similar to ME 433 at Northwestern. The book then serves as a reference.
Other appropriate material includes chapters on communication protocols and supporting
PIC32 peripherals (e.g., UART, SPI, I?C, USB, and CAN).

Website, videos, and flipped classrooms

The book’s website, www.nu32.0rg, has links to downloadable data sheets, sample code, PCB
layouts and schematics, chapter extensions, errata, and other useful information and updates.
This website also links to short videos that summarize many of the chapters. These videos can
be used to flip a traditional classroom, as in ME 333, allowing students to watch the lectures at
home and to use class time to ask questions and work on projects.

Other PIC32 references

One goal of this book is to organize Microchip reference material in a logical way, for the
beginner. Another goal is to equip the reader to be able to parse Microchip documentation.
This ability allows the reader to continue to develop her PIC32 programming abilities beyond
the limits of this book. The reader should download and have at the ready the first two
references below; the others are optional. The readings are summarized in Figure 0.2.

* The PIC32 Reference Manual. The Reference Manual sections describe software and
hardware for all PIC32 families and models, so they can sometimes be confusing in their

For more information on
the book see www.nu32.org

www.nu32.org

xxvi Preface

All PIC32s

PIC32 Family Reference Manual
MPLAB XC32 C Compiler Guide
MPLAB Assembler and Linker Guide
MPLAB Harmony Help
MIPS32 Manuals

MX3xx/4xx family

MX3xx/4xx Family Data Sheet
MIPS32 M4K Readings

MX5xx/6xx/7xx family

MX5xx/6xx/7xx Family Data Sheet
MIPS32 M4K Readings

MX1xx/2xx family

MX1xx/2xx Family Data Sheet
MIPS32 M4K Readings

MX330/350/370/
430/450/470 family

MX330/350/370/430/450/470
Family Data Sheet
MIPS32 M4K Readings

PIC32MX795F512H
Memory Organization
Section of Data Sheet

NU32 board
This Book

MX1xx/2xx/5xx family

MX1xx/2xx/5xx Family Data Sheet
MIPS32 M4K Readings

MZ family

MZ Family Data Sheets
MIPS32 microAptiv MPU
Readings

Figure 0.2
Other reference reading and the PIC32s they apply to.

generality. Nevertheless, they are a good source for understanding the functions of the
PIC32 in more detail. Some of the sections, particularly the later ones, focus on the
PIC32MZ family and are not relevant to the PIC32MX795F512H.

* The PIC32MX5xx/6xx/7xx Family Data Sheet. This Data Sheet provides details
specific to the PIC32MX5xx/6xx/7xx family. In particular, the Memory Organization
section of the Data Sheet clarifies which special function registers (SFRs) are included on
the PIC32MX795F512H, and therefore which Reference Manual functions are available
for that model.

e (Optional) The Microchip MPLAB XC32 C Compiler User’s Guide and The
Assembler, Linker, and Utilities User’s Guide. These come with your XC32 C compiler
installation, so no need to download separately.

* (Optional) MPLAB Harmony Help. This documentation, which comes with the
Harmony installation, can be helpful once you start writing more complex code that uses
the Harmony software.

¢ (Optional) MIPS32 Architecture for Programmers manuals and other MIPS32
documentation. If you are curious about the MIPS32 M4K CPU, which is used on the
PIC32MX795F512H, and its assembly language instruction set, you can find references
online.

For more information on
the book see www.nu32.org

Acknowledgments

This book has benefited from the feedback of many students and teaching assistants in

ME 333 at Northwestern over the years, particularly Alex Ansari, Philip Dames, Mike Hwang,
Andy Long, David Meyer, Ben Richardson, Nelson Rosa, Jarvis Schultz, Jian Shi,

Craig Shultz, Matt Turpin, and Zack Woodruff.

Xxvil

For more information on
the book see www.nu32.org

Quickstart

Edit, compile, run, repeat: familiar to generations of C programmers, this mantra applies to
programming in C, regardless of platform. Architecture, program loading, input and output:
these details differ between your computer and the PIC32. Architecture refers to processor
type: your computer’s x86-64 CPU and the PIC32’s MIPS32 CPU understand different
machine code and therefore require different compilers. Your computer’s operating system
allows you to seamlessly run programs; the PIC32’s bootloader writes programs it receives
from your computer to flash memory and executes them when the PIC32 resets.! You interact
directly with your computer via the screen and keyboard; you interact indirectly with the
PIC32 using a terminal emulator to relay information between your computer and the
microcontroller. As you can see, programming the PIC32 requires attention to details that you
probably ignore when programming your computer.

Armed with an overview of the differences between computer programming and
microcontroller programming, you are ready to get your hands dirty. The rest of this chapter
will guide you through gathering the hardware and installing the software necessary to
program the PIC32. You will then verify your setup by running two programs on the PIC32.
By the end of the chapter, you will be able to compile and run programs for the PIC32
(almost) as easily as you compile and run programs for your computer!

Throughout this book, we will refer to “the PIC32.” Although there are many PIC32 models,
for us “the PIC32” is shorthand for the PIC32MX795F512H. While most of the concepts in
this book apply to many PIC32 models, you should be aware that some of the details differ
between models. (See Appendix C for a discussion of the differences.) Further, we refer to the
PIC32MX795F512H as it is configured on the NU32 development board; in particular, it is
powered by 3.3 V and is clocked by a system clock and a peripheral bus clock at 80 MHz. You
will learn more about these details in Chapter 2.

' Your computer also has a bootloader. It runs when you turn the computer on and loads the operating system.
Also, operating systems are available for the PIC32, but we will not use them in this book.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00001-9
Copyright © 2016 Elsevier Inc. All rights reserved. 3

For more information on
the book see www.nu32.org

4 Chapter 1

EE W EE N W EEEEE NN
WEE EEEEE WEEss W micro-B |

oo | USB to |
external device

! RESET! USER

| TemmEm mumEE mEEEE EEEES EEEEN
EEEEE EEEEE EEEEE EENEEE SFEEEWN

Figure 1.1
A photo of the NU32 development board mounted on a solderless breadboard.

1.1 What You Need

This section explains the hardware and software that you need to program the PIC32. Links to
purchase the hardware and download the free software are provided at the book’s
website, www.nu32.org.

1.1.1 Hardware

Although PIC32 microcontrollers integrate many devices on a single chip, they also require
external circuitry to function. The NU32 development board, shown in Figure 1.1, provides
this circuitry and more: buttons, LEDs, breakout pins, a USB port, and a virtual USB serial
port. The examples in this book assume that you use this board. You will also need the
following hardware:

1. Computer with a USB port. The host computer is used to create PIC32 programs. The
examples in this book work with the Linux, Windows, and Mac operating systems.

2. USB A to mini-B cable. This cable carries signals between the NU32 board and your
computer.

3. AC/DC adapter (6 V). This cable provides power to the PIC32 and NU32 board.

1.1.2 Software

Programming the PIC32 requires various software. You should be familiar with some
of the software from programming your computer in C; if not, refer to Appendix A.

For more information on
the book see www.nu32.org

www.nu32.org

Quickstart 5

For your convenience, we have aggregated the software you need at the book’s website.
You should download and install all of the following software.

1.

The command prompt allows you to control your computer using a text-based interface.
This program, cmd.exe on Windows, Terminal on Mac, and bash on Linux, comes with
your operating system so you should not need to install it. See Appendix A for more
information about the command line.

A text editor allows you to create text files, such as those containing C source code. See
Appendix A for more information.

A native C compiler converts human-readable C source code files into machine code that
your computer can execute. We suggest the free GNU compiler, gcc, which is available
for Windows, Mac, and Linux. See Appendix A for more information.

Make simplifies the build process by automatically executing the instructions required to
convert source code into executables. After manually typing all of the commands
necessary create your first program, you will appreciate make.

The Microchip XC32 compiler converts C source files into machine code that the PIC32
understands. This compiler is known as a cross compiler because it runs on one processor
architecture (e.g., x86-64 CPU) and creates machine code for another (e.g., MIPS32).
This compiler installation also includes C libraries to help you control PIC32-specific
features. Note where you install the compiler; we will refer to this directory as

<xc32dir>. If you are asked during installation whether you would like to add XC32 to
your path variable, do so.

MPLAB Harmony is Microchip’s collection of libraries and drivers that simplify the
task of writing code targeting multiple PIC32 models. We will use this library only in
Chapter 20; however, you should install it now. Note the installation directory, which we
will refer to as <harmony>.

The FTDI Virtual COM Port Driver allows you to use a USB port as a “virtual serial
communication (COM) port” to talk to the NU32 board. This driver is already included
with most Linux distributions, but Windows and Mac users may need to install it.

A terminal emulator provides a simple interface to a COM port on your computer,
sending keyboard input to the PIC32 and displaying output from the PIC32. For
Linux/Mac, you can use the built-in screen program. For Windows, we recommend you
download PuTTY. Remember where you install PuTTY; we refer to this directory as
{puttyPath>.

The PIC32 quickstart code contains source code and other support files to help you
program the PIC32. Download P1C32quickstart.zip from the book’s website, extract it,
and put it in a directory that you create. We will refer to this directory as <P1¢32>. In
<P1c32> you will keep the quickstart code, plus all of the PIC32 code you write, so make
sure the directory name makes sense to you. For example, depending on your operating
system, <P1¢32> could be /Users/kevin/PI1C32 or C:\Users\kevin\Documents\PI1C32. In
<P1C32>, you should have the following three files and one directory:

For more information on
the book see www.nu32.org

6 Chapter 1

* nu32utility.c: a program for your computer, used to load PIC32 executable
programs from your computer to the PIC32
* simplePIC.c, talkingPIC.c: PIC32 sample programs that we will test in this chapter
* skeleton: a directory containing
° Makefile: a file that will help us compile future PIC32 programs
° NU32.c, NU32.h: a library of useful functions for the NU32 board
° NU32bootloaded.1d: a linker script used when compiling programs for the PIC32
We will learn more about each of these shortly.

You should now have code in the following directories (if you are a Windows user, you will
also have PuTTY in the directory <puttyPath>):

e <xc32dir>. The Microchip XC32 compiler. You will never modify code in this directory.
Microchip wrote this code, and there is no reason for you to change it. Depending on your
operating system, your <xc32dir> could look something like the following:

. /Applications/microchip/xc32
® C:\Program Files (x86)\Microchip\xc32

* <harmony>. Microchip Harmony. You will never modify code in this directory.
Depending on your operating system, your <harmony> could look something like the
following:

° /Users/kevin/microchip/harmony
. C:\microchip\harmony

e <PI1C32>. Where PIC32 quickstart code, and code you will write, is stored, as described

above.

Now that you have installed all of the necessary software, it is time to program the PIC32. By
following these instructions, not only will you run your first PIC32 program, you will also
verify that all of the software and hardware is functioning properly. Do not worry too much
about what all the commands mean, we will explain the details in subsequent chapters.

Notation: Wherever we write <something>, replace it with the value relevant to your computer.
On Windows, use a backslash (\) and on Linux/Mac use a slash (/) to separate the directories
in a path. At the command line, place paths that contain spaces between quotation marks
(i.e, "C:\Program Files"). Enter the text following a > at the command line. Use a single line,
even if the command spans multiple lines in the book.

1.2 Compiling the Bootloader Utility

The bootloader utility, located at <P1C32>/nu32utility.c, sends compiled code to the PIC32.
To use the bootloader utility you must compile it. Navigate to the <P1c32> directory by typing:

For more information on
the book see www.nu32.org

Quickstart 7

> cd <PIC32>

Verify that <P1C32>/nu32utility.c exists by executing the following command, which lists all
the files in a directory:

Windows
> dir

e Linux/Mac
> 1s

Next, compile the bootloader utility using the native C compiler gcc:

* Windows
> gcc nu32utility.c -o nu32utility -Twinmm
¢ Linux/Mac

> gcc nu32utility.c -o nu32utility

When you successfully complete this step the executable file nu32uti1ity will be created.
Verify that it exists by listing the files in <P1C32>.

1.3 Compiling Your First Program

The first program you will load onto your PIC32 is <P1C32>/simplePIC.c, which is listed
below. We will scrutinize the source code in Chapter 3, but reading it now will help you
understand how it works. Essentially, after some setup, the code enters an infinite loop that
alternates between delaying and toggling two LEDs. The delay loops infinitely while the
USER button is pressed, stopping the toggling.

Code Sample 1.1 simplePIC.c. Blinking Lights on the NU32, Unless the USER Button
Is Pressed.

ffinclude <xc.h> // Load the proper header for the processor
void delay(void);
int main(void) f{

TRISF = OxFFFC; // Pins 0 and 1 of Port F are LED1 and LED2. Clear
// bits 0 and 1 to zero, for output. Others are inputs.

LATFbits.LATFO = 0; // Turn LED1 on and LED2 off. These pins sink current
LATFbits.LATF1 = 1; // on the NU32, so "high" (1) = "off" and "low" (0) = "on"
while(l) {

delay();

LATFINV = 0x0003; // toggle LED1 and LED2; same as LATFINV = 0x3;
}
return 0;

For more information on
the book see www.nu32.org

simplePIC.c

8 Chapter 1

void delay(void) {
int j;
for (j = 0; j < 1000000; j++) { // number is 1 million
while(!PORTDbits.RD7) {
// Pin D7 is the USER switch, Tow (FALSE) if pressed.
}
}
}

To compile this program you will use the xc32-gcc cross compiler, which compiles code for
the PIC32’s MIPS32 processor. This compiler and other Microchip tools are located at
<xc32dir>/<xc32ver>/bin, where <xc32ver> refers to the XC32 version (e.g., v1.40). To find
<xc32ver> list the contents of the Microchip XC32 directory, e.g.,

> 1s <xc32dir>

The subdirectory displayed is your <xc32ver> value. If you happen to have installed two or
more versions of XC32, you will always use the most recent version (the largest version
number).

Next you will compile simplePIC.c and create the executable hex file. To do this, you first
create the simplePIC.el1f file and then you create the simp1ePIC.hex file. (This two-step
process will be discussed in greater detail in Chapter 3.) Issue the following commands from
your <P1C32> directory (where simplePIC.c is), being sure to replace the text between the <>
with the values appropriate to your system. Remember, if the paths contain spaces, you must
surround them with quotes (i.e., "C:\Program Files\xc32\v1.40\bin\xc32-gcc").

> <xc32dir>/<xc32ver>/bin/xc32-gcc -mprocessor=32MX795F512H
-0 simplePIC.elf -W1,--script=skeleton/NU32bootloaded.1d simplePIC.c
> <xc32dir>/<xc32ver>/bin/xc32-binZhex simplePIC.elf

The -W1 is “~-W ell” not “-W one.” You can list the contents of <PI¢32> to make sure both
simplePIC.elf and simplePIC.hex were created. The hex file contains MIPS32 machine
code in a format that the bootloader understands, allowing it to load your program onto the
PIC32.

If, when you installed XC32, you selected to have XC32 added to your path, then in the two
commands above you could have simply typed

> xc32-gcc -mprocessor=32MX795F512H
-0 simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.1d simplePIC.c
> xc32-bin2hex simplePIC.elf

and your operating system would be able to find xc32-gcc and xc32-bin2hex without needing
the full paths to them.

For more information on
the book see www.nu32.org

Quickstart 9

1.4 Loading Your First Program

Loading a program onto the PIC32 from your computer requires communication between the
two devices. When the PIC32 is powered and connected to a USB port, your computer creates
a new serial communication (COM) port. Depending on your specific system setup, this COM
port will have different names. Therefore, we will determine the name of your COM port
through experimentation. First, with the PIC32 unplugged, execute the following command to
enumerate the current COM ports, and note the names that are listed:

e Windows:

> mode
* Mac:

> 1s /dev/tty.*
¢ Linux:

> 1s /dev/ttyUSB*

Next, plug the NU32 board into the wall using the AC adapter, turn the power switch on, and
verify that the red “power” LED illuminates. Connect the USB cable from the NU32’s mini-B
USB jack (next to the power jack) to a USB port on the host computer. Repeat the steps above,
and note that a new COM port appears. If it does not appear, make sure that you installed the
FTDI driver from Section 1.1.2. The name of the port will differ depending on the operating
system; therefore we have listed some typical names:

Windows: CoM4
e Mac: /dev/tty.usbserial-DJOODV5Y
e Linux: /dev/ttyUSB0

Your computer, upon detecting the NU32 board, has created this port. Your programs and the
bootloader use this port to communicate with your computer.

After identifying the COM port, place the PIC32 into program receive mode. Locate the
RESET button and the USER button on the NU32 board (Figure 1.1). The RESET button is
immediately above the USER button on the bottom of the board (the power jack is the board’s
top). Press and hold both buttons, release RESET, and then release USER. After completing
this sequence, the PIC32 will flash LED1, indicating that it has entered program receive mode.

Assuming that you are still in the <P1¢32> directory, start the loading process by typing

* Windows
nud2utility <COM> simplePIC.hex
* Linux/Mac
> ./nu32utility <COM> simplePIC.hex

For more information on
the book see www.nu32.org

10 Chapter 1

where <COM> is the name of your COM port.? After the utility finishes, LED1 and LED2 will
flash back and forth. Hold USER and notice that the LEDs stop flashing. Release USER and
watch the flashing resume. Turn the PIC32 off and then on. The LEDs resume blinking
because you have written the program to the PIC32’s nonvolatile flash memory.
Congratulations, you have successfully programmed the PIC32!

1.5 Using make

As you just witnessed, building an executable for the PIC32 requires several steps.
Fortunately, you can use make to simplify this otherwise tedious and error-prone procedure.
Using make requires a Makefile, which contains instructions for building the executable. We
have provided a Makefile in <PIC32>/skeleton. Prior to using make, you need to modify
<PIC32>/skeleton/Makefile so that it contains the paths and COM port specific to your
system.

Aside from the paths you have already used, you need your terminal emulator’s location,
<termEmu>, and the Harmony version, <harmVer>. On Windows, <termEmu> is
<puttyPath>/putty.exe and for Linux/Mac, <termEmu> is screen. To find Harmony’s version,
<harmVer>, list the contents of the <harmony> directory. Edit <P1C32>/skeleton/Makefile and
update the first five lines as indicated below.

XC32PATH=<xc32dir>/<xc32ver>/bin
HARMONYPATH=<harmony>/<harmVer>
NU32PATH=<PIC32>

PORT=<COM>

TERMEMU=<termEmu>

In the Makefile, do not surround paths with quotation marks, even if they contain spaces.

If your computer has more than one USB port, you should always use the same USB port to
connect your NU32. Otherwise, the name of the COM port may change, requiring you to edit
the Makefile again.

After saving the Makefile, you can use the skeleton directory to easily create new PIC32
programs. The skeleton directory contains not only the Makefile, but also the NU32 library
(NU32.h and NU32.c), and the linker script NU32bootloaded. 1d, all of which will be used
extensively throughout the book. The Makefile automatically compiles and links every .c file
in the directory into a single executable; therefore, your project directory should contain all
the C files you need and none that you do not want!

2 Windows: Write the ports as \\ . \COMx rather than COMx. Linux: To avoid needing to execute commands as
root, add yourself to the group that owns the COM port (e.g., uucp).

For more information on
the book see www.nu32.org

Quickstart 11

Each new project you create will have its own directory in <P1C32>, e.g.,
<PIC32>/<projectdir>. We now explain how to use the <P1C32>/skeleton directory to create a
new project, using <P1C32>/talkingPIC.c as an example. For this example, we will name the
project talkingPIC, SO <projectdir>is talkingPIC. By following this procedure, you will have
access to the NU32 library and will be able to avoid repeating the previous setup steps. Make
sure you are in the <P1¢32> directory, then copy the <P1C32>/skeleton directory to the new
project directory:

* Windows

> mkdir <projectdir>

> copy skeleton*.* <projectdir>
* Linux/Mac

> cp -R skeleton <projectdir>

Now copy the project source files, in this case just talkingPIC.c, to <PIC32>/<projectdir>,
and change to that directory:

* Windows
> copy talkingPIC.c <projectdir>
> cd <projectdir>

* Linux/Mac
> cp talkingPIC.c <projectdir>
> cd <projectdir>

Before explaining how to use make, we will examine talkingPIC.c, which accepts input
from and prints output to a terminal emulator running on the host computer. These
capabilities facilitate user interaction and debugging. The source code for talkingPIC.c is
listed below:

Code Sample 1.2 talkingPIC.c. The PIC32 Echoes Any Messages Sent to It from the
Host Keyboard Back to the Host Screen.

ffinclude "NU32.h" // constants, funcs for startup and UART
jtdefine MAX_MESSAGE_LENGTH 200

int main(void) ({
char message[MAX_MESSAGE_LENGTHI;

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

while (1) {
NU32_ReadUART3(message, MAX_MESSAGE_LENGTH); // get message from computer
NU32_WriteUART3(message); // send message back
NU32_WriteUART3("\r\n"); // carriage return and newline
NU32_LEDI = !NU32_LEDI; // toggle the LEDs
NU32_LED2 = INU32_LED2;

}

return 0;

For more information on
the book see www.nu32.org

talkingPIC.c

12 Chapter 1

The NU32 library function NU32_ReadUART3 allows the PIC32 to read data sent from your
computer’s terminal emulator. The function NU32_WriteUART3 sends data from your PIC32 to
be displayed by the terminal emulator.

Now that you know how talkingPIC.c works, it is time see it in action. First, make sure you
are in the <projectdir>. Next, build the project using make.

> make

This command compiles and assembles all . c files into .o object files, links them into a single
out.elf file, and turns that out.e1f file into an executable out.hex file. You can do a directory
listing to see all of these files.

Next, put the PIC32 into program receive mode (use the RESET and USER buttons) and
execute

> make write

to invoke the bootloader utility nu32utility and program the PIC32 with out.hex. When
LED1 stops flashing, the PIC32 has been programmed.

In summary, to create a new project and program the PIC32, you (1) create the project
directory <PI1C32>/<projectdir>; (2) copy the contents of <P1C32>/skeleton to this new
directory; (3) create the source code (talkingPIC.c in this case) in <projectdir>; (4) build the
executable by executing make in <projectdir>; and (5) use the RESET and USER buttons to
put the PIC32 in program receive mode and execute make write from <projectdir>. To modify
the program, you simply edit the source code and repeat steps (4) and (5) above. In fact, you
can skip step (4), since make write also builds the executable before loading it onto the
PIC32.

Now, to communicate with talkingPIC, you must connect to the PIC32 using your terminal
emulator. Recall that the terminal emulator communicates with the PIC32 using <coM>. Enter
the following command:

* Windows

<puttyPath>\putty -serial <COM> -sercfg 230400,R
¢ Linux/Mac

screen <COM> 230400,crtscts

PuTTY will launch in a new window, whereas screen will use the command prompt window.
The number 230400 in the above commands is the baud, the speed at which the PIC32 and
computer communicate, and the other parameter enables hardware flow control (see
Chapter 11 for details).

For more information on
the book see www.nu32.org

Quickstart 13

After connecting, press RESET to restart the program. Start typing, and notice that no
characters appear until you hit ENTER. This behavior may seem strange, but it occurs because
the terminal emulator only displays the text it receives from the PIC32. The PIC32 does not
send any text to your computer until it receives a special control character, which you
generate by pressing ENTER.>

For example, if you type Hello! ENTER, the PIC32 will receive Hello!\r, write Hello!\r\n to
the terminal emulator, and wait for more input.

When you are done conversing with the PIC32, you can exit the terminal emulator. To exit
screen type

CTRL-a k y

Note that CTRL and a should be pressed simultaneously. To exit PuTTY make sure the command
prompt window is focused and type

CTRL-c

Rather than memorizing these rather long commands to connect to the serial port, you can use
the Makefile. To connect PuTTY to the PIC32 type

> make putty

To use screen type

> make screen

Your system is now configured for PIC32 programming. Although the build process may seem
opaque, do not worry. For now it is only important that you can successfully compile programs
and load them onto the PIC32. Later chapters will explain the details of the build process.

1.6 Chapter Summary

* To start a new project, copy the <P1C32>/skeleton directory to a new location,
<projectdir>, and add your source code.
* From the directory <projectdir>, use make to build the executable.

3 Depending on the terminal emulator, ENTER may generate a carriage return (\r), newline (\n) or both. The
terminal emulator typically moves the cursor to the leftmost column when it receives a \r and to the next line
when it receives a \n.

For more information on
the book see www.nu32.org

14 Chapter 1

* Put the PIC32 into program receive mode by pressing the USER and RESET buttons
simultaneously, then releasing the RESET button, and finally releasing the USER button.
Then use make write to load your program.

* Use a terminal emulator to communicate with programs running on the PIC32. Typing
make putty or make screen from <projectdir> will launch the appropriate terminal
emulator and connect it to the PIC32.

Further Reading

Embedded computing and mechatronics with the PIC32 microcontroller website. http://www.nu32.org.

For more information on
the book see www.nu32.org

http://www.nu32.org

Fundamentals

For more information on
the book see www.nu32.org

For more information on
the book see www.nu32.org

Hardware

Microcontrollers power the modern world: from cars to microwaves to toys. These tiny
microchips integrate every component of a modern computer—a central processing unit
(CPU), random access memory (RAM), nonvolatile memory (flash), and peripherals—into a
single chip. Although microcontrollers have significantly less processing power than their
personal computer counterparts, they are also much smaller, cost less, and use less power.
Additionally, their peripherals—devices that connect the CPU with the physical world—allow
software to interact with circuits directly: flashing lights, moving motors, and reading sensors.

Companies including (but certainly not limited to) Microchip, Atmel, Freescale, Texas
Instruments, and STMicroelectronics manufacture an overwhelming array of microcontrollers
with vastly different specifications. Rather than attempt to discuss microcontrollers generally,
we focus on the PIC32MX795F512H (which we usually abbreviate as PIC32). With a fast
processor, ample memory, and numerous peripherals, the PIC32MX795F512H is excellent for
learning about microcontrollers and completing embedded control projects. Much of what you
learn about the PIC32MX795F512H also applies more generally to the PIC32MX family of
microcontrollers, and the broader concepts translate to microcontrollers more generally.
Appendix C describes the differences between the PIC32MX795F512H and other PIC32
models.

2.1 The PIC32
2.1.1 Pins, Peripherals, and Special Function Registers (SFRs)

The PIC32 requires a supply voltage between 2.3 and 3.6 V and features a maximum CPU
clock frequency of 80 MHz, 512 KB of program memory (flash), and 128 KB of data memory
(RAM). Its peripherals include a 10-bit analog-to-digital converter (ADC), many digital I/O
pins, USB 2.0, Ethernet, two CAN modules, four I2C and three SPI synchronous serial
communication modules, six UARTSs for asynchronous serial communication, five 16-bit
counter/timers (configurable to give two 32-bit timers and one 16-bit timer), five pulse-width
modulation outputs, and several pins that can generate interrupts based on external signals.
Whew. Do not worry if you do not know what all of these peripherals do, much of this book is
dedicated to explaining them.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00002-0
Copyright © 2016 Elsevier Inc. All rights reserved. 1 7

For more information on
the book see www.nu32.org

18 Chapter 2

Pins connect the peripherals to the outside world. To cram so much functionality into only 64
pins, many serve multiple functions. See the pinout diagram for the PIC32MX795F512H
(Figure 2.1). For example, pin 12 can be an analog input, a comparator input, a change
notification input (which can generate an interrupt when an input changes state), or a digital
input or output.

Table 2.1 summarizes some of the major pin functions. Other pin functions can be found in
the PIC32MX5xx/6xx/7xx Data Sheet.

EMDIO/AEMDIO/SCK3/U4TX/UTRTS/OC2/RD1

ERXERR/PMD4/RE4
ERXCLK/EREFCLKPMD3/RE3
ERXDV/ECRSDV/PMD2/RE2
ERXDO/PMD1/RE1
ERXD1/PMDO/REO
C1TX/AETXDO/ERXD2/RF1
C1RX/AETXD1/ERXD3/RFO
ETXCLK/AERXERR/CN16/RD7
AETXEN/ETXERR/CN15/RD6
PMRD/CN14/RD5
OC5/IC5/PMWR/CN13/RD4
SCL3/SDO3/U1TX/OC4/RD3
SDA3/SDI3/U1RX/OC3/RD2

b
=
14
)
&
2
=)
)
a
o
a
o
o
a

SOSCO/T1CK/CNO/RC14
SOSCI/CN1/RC13
OC1/INTO/RDO

ETXEN/PMD5/RES
ETXDO0/PMD6/RE6

ETXD1/PMD7/RE7
SCK2/UBTX/U3RTS/PMAS5/CN8/RG6E
SDA4/SDI2/U3RX/PMA4/CN9/RG7

ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11
ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10
AERXDO/ETXD2/SS3/U4RX/UTCTS/SDA1/IC2/INT2/RDY

SCL4/SDO2/U3TX/PMA3/CN10/RG8
MCLR
SS2/UBRX/U3CTS/PMA2/CN11/RGY

RTCC/AERXD1/ETXD3/IC1/INT1/RD8
Vss

OSC2/CLKO/RC15

OSC1/CLKI/RC12

VoD

PIC32MX775F256H
PIC32MX775F512H
PIC32MX795F512H
ANS/C1IN+VBUSON/CN7/RBS
AN4/CAIN-/ICN6/RB4

ANB/C2IN+/CN5/RB3

AN2/C2IN-ICN4/RB2
PGEC1/AN1/VREF-/CVREF-/CN3/RB1
PGED1/ANONREF+CVREF+/PMAG/CN2/RBO

m Shaded pins are 5 V tolerant

VBUS
USBID/RF3

1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
e v v

85888382882 I2
> m0>>0000CFF
ELZITIRE "ERREES
£2° 3329 cfozosi
85 OFx< 23325656
) OEZE £2E893¢2
Z o ook s LaFsgg
L0 o 5¢ET Se83<=2
q o OBz Z§<§D_&
2 SgET I2E3RR
5 x2c0 X352 a8
& SR CRRLISS
6 TQF FTle2F S
=} S Nﬂ-ag

2 2 S5
g 1
s 2 bogyg
[y = 20 o
N F S3%92
o Lexx
D ogkEr
P4 2205
< X5<Q
Q <

%o

Y

[

sE

2z

z

Figure 2.1

The pinout of the PIC32MX795F512H, the microcontroller used on the NU32 development board.

For more information on
the book see www.nu32.org

Hardware 19

Table 2.1: Some of the pin functions on the PIC32

Pin Label Function
ANx (x=0to 15) Analog-to-digital (ADC) inputs
AVDD, AVSS Positive supply and ground reference for ADC

CxIN-, CxIN+, CxOUT (x=1, 2)
CxRX, CxTx (x=1, 2)

CLKI, CLKO

CNx (x=0to 18)

CVREF-, CVREF+, CVREFOUT
D+, D-
ENVREG

ICx (x=1to 5)
INTx (x=0 to 4)
MCLR

OCx (x=1to 5)

OCFA, OCFB

0OSC1, OsC2

PMAX (x=0to 15)

PMDx (x=0to 7)

PMENB, PMRD, PMWR
Rxy (x=Bto G,y=0to 15)
RTCC

SClx, SDAx (x=1, 3, 4, 5)

SCKx, SDIx, SDOx (x=2 to 4)

SSx (x=2to 4)

T1CK

UxCTS, UxRTS, UxRX, UXTX
(x=1to0 6)

VDD

VDDCAP
VDDCORE
VREF-, VREF+
VSS

VBUS

vUSB

USBID

Comparator negative and positive input and output

CAN receive and transmit pins

Clock input and output (for particular clock modes)

Change notification; voltage changes on these pins can generate
interrupts

Comparator reference voltage low and high inputs, output

USB communication lines

Enable for on-chip voltage regulator that provides 1.8V to internal core
(on the NU32 board it is set to VDD to enable the regulator)

Input capture pins for measuring frequencies and pulse widths

Voltage changes on these pins can generate interrupts

Master clear reset pin, resets PIC when low

Output compare pins, usually used to generate pulse trains (pulse-width
modulation) or individual pulses

Fault protection for output compare pins; if a fault occurs, they can be
used to make OC outputs be high impedance (neither high nor low)
Crystal or resonator connections for different clock modes

Parallel master port address

Parallel master port data

Enable and read/write strobes for parallel master port

Digital I/O pins

Real-time clock alarm output

12C serial clock and data input/output for 12C synchronous serial
communication modules

Serial clock, serial data in, out for SPI synchronous serial communication
modules

Slave select (active low) for SPI communication

Input pin for counter/timer 1 when counting external pulses

UART clear to send, request to send, receive input, and transmit output
for UART modules

Positive voltage supply for peripheral digital logic and I/O pins (3.3V on
NU32)

Capacitor filter for internal 1.8V regulator when ENVREG enabled
External 1.8V supply when ENVREG disabled

Can be used as negative and positive limit for ADC

Ground for logic and 1/O

Monitors USB bus power

Power for USB transceiver

USB on-the-go (OTG) detect

See Section 1 of the Data Sheet for more information.

For more information on
the book see www.nu32.org

20 Chapter 2

Which function a particular pin actually serves is determined by Special Function Registers
(SFRs). Each SFR is a 32-bit word that sits at a memory address. The values of the SFR bits, 0
(cleared) or 1 (set), control the functions of the pins as well as other PIC32 behavior.

For example, pin 51 in Figure 2.1 can be OC4 (output compare 4) or RD3 (digital I/O number
3 on port D). If we wanted to use pin 51 as a digital output we would set the SFRs that control
this pin to disable the OC4 functionality and enable RD3 as a digital output. The Data Sheet
explains the memory addresses and meanings of the SFRs. Be careful, because it includes
information for many different PIC32 models. Looking at the Data Sheet section on Output
Compare reveals that the 32-bit SFR named “OC4CON” determines whether OC4 is enabled.
Specifically, for bits numbered 0-31, we see that bit 15 is responsible for enabling or disabling
OC4. We refer to this bit as OC4CON(15). If it is cleared (0), OC4 is disabled, and if it is set
(1), OC4 is enabled. So we clear this bit to 0. (Bits can be “cleared to 0” or simply “cleared,”
or “set to 1” or simply “set.”) Now, referring to the I/O Ports section of the Data Sheet, we see
that the input/output direction of Port D is controlled by the SFR TRISD, and bits 0-11
correspond to RD0O-RD11. Bit 3 of the SFR TRISD, i.e., TRISD(3), should be cleared to O to
make RD3 (pin 51) a digital output.

According to the Memory Organization section of the Data Sheet, OC4CON(15) is cleared by
default on reset, so it is not necessary for our program to clear OC4CON(15). On the other
hand, TRISD(3) is set to 1 on reset, making pin 51 a digital input by default, so the program
must clear TRISD(3). For safety, all pins are inputs on reset to prevent the PIC32 from
imposing an unwanted voltage on external circuitry.

In addition to setting the behavior of the pins, SFRs are the primary means of communication
between the PIC32’s CPU and its peripherals. You can think of a peripheral, such as a UART
communication peripheral, as an independent circuit on the same chip as the CPU. Your
program, running on the CPU, configures behavior of this circuit (such as the speed of UART
communication) by writing bits to one or more SFRs which are read by the peripheral circuit.
The CPU sends data to the peripheral (e.g., data to be sent by the UART) by writing to SFRs,
and the CPU receives data from the peripheral (e.g., data received by the UART) by reading
SFRs controlled by the peripheral.

We will see and use SFRs repeatedly as we learn about the PIC32.

2.1.2 PIC32 Architecture
Peripherals

Figure 2.2 depicts the PIC32’s architecture. Of course there is a CPU, program memory
(flash), and data memory (RAM). Perhaps most interesting to us, though, are the peripherals,
which make microcontrollers useful for embedded control. We briefly discuss the available
peripherals here; subsequent chapters cover them in detail. The peripherals are listed roughly
in top to bottom, left to right order, as they appear in Figure 2.2.

For more information on
the book see www.nu32.org

Hardware 21

0OSC2/CLKO VCAP/VCORE
OSC/Sosc
osci/cLkl XD itors Powerp 3 Vo, Ves
imer
FRC/LPRC VCiR
Voltage || Oscillator X
m regulator start-up timer
o Power-on

Preciion] gl reset

PLL-USB reference Watchdog

—— USBCLK timer

S ——» SYSCLK Brown-out
ming Ly, pRCLK reset
generation < >
Peripheral bus clocked by SYSCLK CNO-21
PORTA| = t >
Timer1-5
interrupt
BSCAN | | controller « — 0 PWM
PORTB | =) -] x 0OC1-5
@ S z O)
%) " o < [m] @D
EJTAG | INT = < w p= © 2 o
< = a
MIPS32° MaK® o w = [€&=)p| c15
PORTC 0 CPU core é
IS [Ds ©
32 32 f32 f32 y32 f32 E
32 32 s 0 SPI1-4
[0)
[PORTD| =) <
- | Bus matrix | 2
&
¢32 iaz $52 @=p| 12¢15
PORTE | = m——— A 4 -
refetc . .
module Data RAM Peripheral bridge 9
PORTF | =) @=p| 10-bitADC
128
— UART1-6
(0]
128-bit wide 5 § 4 >
PORTG 0 program flash memory | & € 0 RTCC
o

Figure 2.2

The PIC32MX5XX/6XX/7XX architecture. The PIC32MX795F512H is missing the digital I/O PORTA
and has only 19 change notification inputs, 3 SPI modules, and 4 12°C modules.

Digital input and output

Digital I/O ports (PORTB to PORTG on the PIC32MX795F512H) allow you to read or output
a digital voltage. A digital I/O pin configured as an input can detect whether the input voltage
is low or high. On the NU32, the PIC32 is powered by 3.3V, so voltages close to 0 V are
considered low and those close to 3.3 V are considered high. Some input pins can tolerate up

For more information on
the book see www.nu32.org

22 Chapter 2

to 5.5V, while voltages over 3.3 V on other pins could damage the PIC32 (see Figure 2.1 for
the pins that can tolerate 5.5 V).

A digital I/O pin configured as an output can produce a voltage of 0 or 3.3 V. An output pin
can also be configured as open drain. In this configuration, the pin is connected by an external
pull-up resistor to a voltage of up to 5.5 V. This allows the pin’s output transistor to either sink
current (to pull the voltage down to 0 V) or turn off (allowing the voltage to be pulled up as
high as 5.5 V), increasing the range of output voltages the pin can produce.

Universal Serial Bus

The Universal Serial Bus (USB) is an asynchronous communication protocol heavily used by
computers and other devices. One master communicates with one or more slaves over a
four-line bus: +5 V, ground, D+, and D— (differential data signals). The PIC32 has a single
USB peripheral implementing USB 2.0 full-speed and low-speed options, and can
communicate at theoretical data rates of up to several megabits per second.

Controller area network

Controller area network (CAN) is pervasive in industrial and automotive applications, where
electrical noise can be problematic. CAN allows many devices to communicate over a single
two-wire bus. Data rates of up to 1 megabit per second are possible. The CAN peripheral uses
an external transceiver chip to convert between signals on the bus and signals that the PIC32
can process. The PIC32 contains two CAN modules.

Ethernet

The Ethernet module allows the PIC32 to connect to the Internet. It uses an external physical
layer protocol transceiver (PHY) chip and direct memory access (DMA) to offload the heavy
processing requirements of Ethernet communication from the CPU. The NU32 board does not
include a PHY chip.

DMA controller

The direct memory access (DMA) controller (DMAC) transfers data without involving the
CPU. For example, DMA can allow an external device to dump data through a UART directly
into PIC32 RAM.

In-Circuit Debugger

The In-Circuit Debugger (ICD) is used by Microchip debugging tools to control the PIC32’s
operation during debugging.

For more information on
the book see www.nu32.org

Hardware 23

Watchdog timer

If the watchdog timer (WDT) is used by your program, your program must periodically reset a
counter. Otherwise, when the counter reaches a specified value, the PIC32 will reset. The
WDT allows the PIC32 to recover from an unexpected state or infinite loop caused by
software errors.

Change notification

A change notification (CN) pin can be used to generate an interrupt when the input voltage
changes from low to high or vice-versa. The PIC32 has 19 change notification pins (CNO to
CNI18).

Counter/timers

The PIC32 has five 16-bit counters/timers (Timer1 to Timer5). A counter counts the number
of pulses of a signal. If the pulses occur at a regular frequency, the count can be used as a time;
hence timers are just counters with inputs at a fixed frequency. Microchip uniformly refers to
these devices as “timers”, so we adopt that terminology from now on. Each timer can count
from O up to 2'® — 1, or any preset value less than 2!6 — 1 that we choose, before rolling over.
Timers can count external events, such as pulses on the TICK pin, or internal pulses on the
peripheral bus clock. Two 16-bit timers can be configured to make a single 32-bit timer. Two
different pairs of timers can be combined, yielding one 16-bit and two 32-bit timers.

Output compare

The five output compare (OC) pins (OC1 to OC5) are used to generate a single pulse of
specified duration, or a continuous pulse train of specified duty cycle and frequency. They
work with timers to generate pulses with precise timing. Output compare is commonly used to
generate PWM (pulse-width modulated) signals that can control motors or be low-pass filtered
to create a specified analog voltage output. (You cannot output an arbitrary analog voltage
from the PIC32.)

Input capture

The five input capture (IC) pins (IC1 to IC5) store the current time, as measured by a timer,
when an input changes. Thus, this peripheral allows precise measurements of input pulse
widths and signal frequencies.

Serial Peripheral Interface

The PIC32 has three Serial Peripheral Interface (SPI) peripherals (SPI2 to SPI4). The SPI bus
provides a method for synchronous serial communication between a master device (typically a

For more information on
the book see www.nu32.org

24 Chapter 2

microcontroller) and one or more slave devices. The interface typically requires four
communication pins: a clock (SCK), data in (SDI), data out (SDO), and slave select (SS).
Communication can occur at up to tens of megabits per second.

Inter-integrated circuit

The PIC32 has four inter-integrated circuit (I2C) modules (12C1, 12C3, 12C4, 12C5). I2C
(pronounced “I squared C”) is a synchronous serial communication standard (like SPI) that
allows several devices to communicate over only two wires. Any device can be the master and
control communication at any given time. The maximum data rate is less than for SPI, usually
100 or 400 kilobits per second.

Parallel master port

The parallel master port (PMP) module is used to read data from and write data to external
parallel devices. Parallel communication allows multiple data bits to be transferred
simultaneously, but each bit requires its own wire.

Analog input

The PIC32 has one analog-to-digital converter (ADC), but 16 different pins can be connected
to it, allowing up to 16 analog voltage values (typically sensor inputs) to be monitored. The
ADC can be programmed to continuously read data from a sequence of input pins, or to read a
single value. Input voltages must be between 0 and 3.3 V. The ADC has 10 bits of resolution,
allowing it to distinguish 2!° = 1024 different voltage levels. Conversions are theoretically
possible at a maximum rate of 1 million samples per second.

Universal asynchronous receiver/transmitter

The PIC32 has six universal asynchronous receiver transmitter (UART) modules (UART1 to
UART®6). These peripherals provide another method for serial communication between two
devices. Unlike synchronous serial protocols such as SPI, the UART has no clock line; rather
the devices communicating each have their own clocks that must operate at the same
frequency. Each of the two devices participating in UART communication has, at minimum, a
receive (RX) and transmit (TX) line. Often request to send (RTS) and clear to send (CTS)
lines are used as well, allowing the devices to coordinate when to send data. Typical data rates
are 9600 bits per second (9600 baud) up to hundreds of thousands of bits per second. The
talkingPIC.c program uses a UART configured to operate at 230,400 baud to communicate
with your computer.

Real-time clock and calendar

The real-time clock and calendar (RTCC) module maintains accurate time, in seconds,
minutes, days, months, and years, over extended periods of time.

For more information on
the book see www.nu32.org

Hardware 25

Comparators

The PIC32 has two comparators, each of which compares two analog input voltages and
determines which is larger. A configurable internal voltage reference may be used in the
comparison, or even output to a pin, resulting in a limited-resolution digital-to-analog
converter.

Other components

Note that the peripherals are on two different buses: one is clocked by the system clock
SYSCLK, and the other is clocked by the peripheral bus clock PBCLK. A third clock,
USBCLLK, is used for USB communication. The timing generation block that creates these
clock signals and other elements of the architecture in Figure 2.2 are briefly described below.

CPU

The central processing unit runs everything. It fetches program instructions over its
“instruction side” (IS) bus, reads data over its “data side” (DS) bus, executes the instructions,
and writes the results over the DS bus. The CPU can be clocked by SYSCLK at up to 80 MHz,
meaning it can execute one instruction every 12.5 ns. The CPU is capable of multiplying a
32-bit integer by a 16-bit integer in one cycle, or a 32-bit integer by a 32-bit integer in two
cycles. There is no floating point unit (FPU), so floating point math is carried out by software
algorithms, making floating point operations much slower than integer math.

The CPU is the MIPS32® M4K® microprocessor core, licensed from Imagination
Technologies. The CPU operates at 1.8 V (provided by a voltage regulator internal to the
PIC32, as it’s used on the NU32 board). The interrupt controller, discussed below, can notify
the CPU about external events.

Bus matrix

The CPU communicates with other units through the 32-bit bus matrix. Depending on the
memory address specified by the CPU, the CPU can read data from, or write data to, program
memory (flash), data memory (RAM), or SFRs. The memory map is discussed in

Section 2.1.3.

Interrupt controller

The interrupt controller presents “interrupt requests” to the CPU. An interrupt request (IRQ)
may be generated by a variety of sources, such as a changing input on a change notification
pin or by the elapsing of a specified time on one of the timers. If the CPU accepts the request,
it will suspend whatever it is doing and jump to an interrupt service routine (ISR), a function
defined in the program. After completing the ISR, program control returns to where it was
suspended. Interrupts are an extremely important concept in embedded control and are
discussed thoroughly in Chapter 6.

For more information on
the book see www.nu32.org

26 Chapter 2

Memory: Program flash and data RAM

The PIC32 has two types of memory: flash and RAM. Flash is generally more plentiful on
PIC32’s (e.g., 512 KB flash vs. 128 KB RAM on the PIC32MX795F512H), nonvolatile
(meaning that its contents are preserved when powered off, unlike RAM), but slower to read
and write than RAM. Your program is stored in flash memory and your temporary data is
stored in RAM. When you power cycle the PIC32, your program is still there but your data in
RAM is lost.!

Because flash is slow, with a max access speed of 30 MHz for the PIC32MX795F512H,
reading a program instruction from flash may take three CPU cycles when operating at
80 MHz (see Electrical Characteristics in the Data Sheet). The prefetch cache module
(described below) can minimize or eliminate the need for the CPU to wait for program
instructions to load from flash.

Prefetch cache module

You might be familiar with the term cache from your web browser. Your browser’s cache
stores recent documents or pages you have accessed, so the next time you request them, your
browser can provide a local copy immediately, instead of waiting for the download.

The prefetch cache module operates similarly—it stores recently executed program
instructions, which are likely to be executed again soon (as in a program loop), and, in linear
code with no branches, it can even run ahead of the current instruction and predictively
prefetch future instructions into the cache. In both cases, the goal is to have the next
instruction requested by the CPU already in the cache. When the CPU requests an instruction,
the cache is first checked. If the instruction at that memory address is in the cache (a cache
hit), the prefetch module provides the instruction to the CPU immediately. If there is a miss,
the slower load from flash memory begins.

In some cases, the prefetch module can provide the CPU with one instruction per cycle, hiding
the delays due to slow flash access. The module can cache all instructions in small program
loops, so that flash memory does not have to be accessed while executing the loop. For linear
code, the 128-bit wide data path between the prefetch module and flash memory allows the
prefetch module to run ahead of execution despite the slow flash load times.

The prefetch cache module can also store constant data.

Clocks and timing generation

There are three clocks on the PIC32: SYSCLK, PBCLK, and USBCLK. USBCLK is a
48 MHz clock used for USB communication. SYSCLK clocks the CPU at a maximum

! 1t is also possible to store program instructions in RAM, and to store data in flash, but we ignore that for now.

For more information on
the book see www.nu32.org

Hardware 27

frequency of 80 MHz, adjustable down to 0 Hz. Higher frequency means more calculations
per second but higher power usage (approximately proportional to frequency). PBCLK is used
by many peripherals, and its frequency is set to SYSCLK’s frequency divided by 1, 2, 4, or 8.
You might want to set PBCLK’s frequency lower than SYSCLK’s if you want to save power.
If PBCLK’s frequency is less than SYSCLK'’s, then programs with back-to-back peripheral
operations will cause the CPU to wait a few cycles before issuing the second peripheral
command to ensure that the first one has completed.

All clocks are derived either from an oscillator internal to the PIC32 or an external resonator
or oscillator provided by the user. High-speed operation requires an external circuit, so the
NU32 provides an external 8 MHz resonator as a clock source. The NU32 software sets the
PIC32’s configuration bits (see Section 2.1.4) to use a phase-locked loop (PLL) on the PIC32
to multiply this frequency by a factor of 10, generating a SYSCLK of 80 MHz. The PBCLK is
set to the same frequency. The USBCLK is also derived from the 8 MHz resonator by
multiplying the frequency by 6.

2.1.3 The Physical Memory Map

The CPU accesses peripherals, data, and program instructions in the same way: by writing a
memory address to the bus. The PIC32’s memory addresses are 32-bits long, and each address
refers to a byte in the memory map. Thus, the PIC32’s memory map consists of 4 GB (four
gigabytes, or 232 bytes). Of course most of these addresses are meaningless; there are far more
addresses than needed.

The PIC32’s memory map consists of four main components: RAM, flash, peripheral SFRs
that we write to (to control the peripherals or send outputs) or read from (to get sensor input,
for example), and boot flash. Of these, we have not yet seen “boot flash.” This extra flash
memory, 12 KB on the PIC32MX795F512H, contains program instructions that are executed
immediately upon reset.” The boot flash instructions typically perform PIC32 initialization
and then call the program installed in program flash. For the PIC32 on the NU32 board, the
boot flash contains a “bootloader” program that communicates with your computer when you
load a new program on the PIC32 (see Chapter 3).

The following table illustrates the PIC32’s physical memory map. It consists of a block of
“RAMsize” bytes of RAM (128 KB for the PIC32MX795F512H), “flashsize” bytes of flash
(512 KB for the PIC32MX795F512H), 1 MB for the peripheral SFRs, and “bootsize” for the
boot flash (12 KB for the PIC32MX795F512H):

2 The last four 32-bit words of the boot flash memory region are Device Configuration Registers (see Section
2.1.4).

For more information on
the book see www.nu32.org

28 Chapter 2

Physical Memory Start Address Size (bytes) Region
0x00000000 RAMsize (128 KB) Data RAM
0x1D000000 flashsize (512 KB) Program Flash
0x1F800000 1MB Peripheral SFRs
0x1FC00000 bootsize (12 KB) Boot Flash

The memory regions are not contiguous. For example, the first address of program flash is
480 MB after the first address of data RAM. An attempt to access an address between the data
RAM segment and the program flash segment would generate an error.

It is also possible to allocate a portion of RAM to hold program instructions.

In Chapter 3, when we discuss programming the PIC32, we will introduce the virfual memory
map and its relationship to the physical memory map.

2.1.4 Configuration Bits

The last four 32-bit words of the boot flash are the Device Configuration Registers,
DEVCFGO to DEVCFG3, containing the configuration bits. The values in these configuration
bits determine important properties of how the PIC32 will function. You can learn more about
configuration bits in the Special Features section of the Data Sheet. For example, DEVCFG1
and DEVCFG?2 contain configuration bits that determine the frequency multiplier converting
the external resonator frequency to the SYSCLK frequency, as well as bits that determine the
ratio between the SYSCLK and PBCLK frequencies. On the NU32 board (below), the
PIC32’s configuration bits were programmed along with the bootloader.

2.2 The NU32 Development Board

The NU32 development board is shown in Figure 1.1, and the pinout is given in Table 2.2. The
NU32 board provides easy breadboard access to most of the PIC32MX795F512H’s 64 pins.
The NU32 acts like a big 60-pin DIP (dual in-line package) chip and plugs into a standard
prototyping breadboard as shown in Figure 1.1. More details and the latest information on the
NU32 can be found on the book’s website.

Beyond simply breaking out the pins, the NU32 provides many features that make it easy to
get started with the PIC32. For example, to power the PIC32, the NU32 provides a barrel jack
that accepts a 1.35 mm inner diameter, 3.5 mm outer diameter center-positive power plug. The
plug should provide 1 A at DC 6 V or more. The PIC32 requires a supply voltage VDD
between 2.3 and 3.6 V, and the NU32 provides a 3.3 V voltage regulator providing a stable
voltage source for the PIC32 and other electronics on board. Since it is often convenient to
have a 5 V supply available, the NU32 also has a 5 V regulator. The power plug’s raw input

For more information on
the book see www.nu32.org

Table 2.2: The NU32 pinout (in gray, with power jack at top) with PIC32MX795F512H pin

numbers
Function | PIC32 PIC32 | Function
GND GND GND GND
33V 33V 33V 3.3V
5V 5V 5V 5V
VIN VIN VIN VIN
C1RX/RFO | /58 | FO GND GND
C1TX/RF1| /59 | F1 G9 [8./ | U6RX/U3CTS/PMA2/CN11/RG9
PMDO/REO | /60 | EO G8 | 6.,/ |SCL4/SDO2/U3TX/PMA3/CN10/RGS
PMD1/RE1 | /61 | ET G7|5. | SDA4/SDI2/U3RX/PMA4/CN9/RG7
PMD2/RE2 | /62 | E2 G6 | 4./ | SCK2/U6TX/U3RTS/PMA5/CN8/RG6
PMD3/RE3 | /63 |E3 MCLR|7. |MCLR
PMD4/RE4 | ./ 64 | E4 D7 | 55/ | CN16/RD7
PMD5/RE5 | /1 |E5 D6 | 54/ | CN15/RD6
PMD6/RE6 | /2 | E6 D5 | 53,/ | PMRD/CN14/RD5
PMD7/RE7 | /3 |E7 D4 |52,/ | OC5/IC5/PMWR/CN13/RD4
ANO/PMA6/CN2/RBO 16 | BO D3 | 51,/ | SCL3/SDO3/UTTX/OC4/RD3
ANT/CN3/RB1 15 | BT D2 | 50,/ | SDA3/SDI3/U1RX/OC3/RD2
AN2/C2IN-/CN4/RB2 14 | B2 D1 |49/ | SCK3/U4TX/UTRTS/OC2/RD1
AN3/C2IN+/CN5/RB3 13 | B3 DO | 46 ./ | OC1/INTO/RDO
AN4/C1IN-/CN6/RB4 12 | B4 C14 | 48 T1CK/CNO/RC14
ANS/C1IN+/CN7/RB5 11| B5 C13 | 47 CN1/RC13
AN6/OCFA/RB6 17 | B6 D11 | 45/ |1C4/PMA14/INT4/RD11
AN7/RB7 18 | B7 D10 | 44 ./ | SCL1/IC3/PMA15/INT3/RD10
AN8/C2TX/U5RX/U2CTS/RB8 21| B8 D9 | 43/ | U4RX/UTCTS/SDA1/1C2/INT2/RD9
AN9/PMA7/RB9 22 | B9 D8 | 42,/ | IC1/INT1/RDS8
AN10/PMA13/RB10 23 | B10 G2 |37 D+/RG2
ANT1/PMAT2/RB11 24 | B11 G3 | 36 D—/RG3
AN12/PMA11/RB12 27 |B12 VBUS |34/ |VBUS
AN13/PMA10/RB13 28 | B13 F3 |33,/ | USBID/RF3
AN14/C2RX/SCK4/U5TX/U2RTS/ 29 | B14 F4 | 31,/ | SDA5/SDI4/U2RX/PMA9/CN17/RF4
PMA1/RB14
AN15/OCFB/PMAO/CN12/RB15 30 | B15 F5 |32/ | SCL5/SDO4/U2TX/PMA8/CN18/RF5

Pins marked with a \/ are 5.5 V tolerant. Not all pin functions are listed; see Figure 2.1 or the PIC32 Data Sheet. Board pins
in bold should only be used with care, as they are shared with other functions on the NU32. In particular, the NU32 pins G6,
G7,G8, GY, FO, F1, D7, and MCLR should be considered outputs during normal usage. The value of MCLR is determined by
the MCLR button on the NU32; the value of D7 is determined by the USER button; FO and F1 are used by the PIC32 as digital
outputs to control LED1 and LED2 on the NU32, respectively; and G6 through G9 are used by the PIC32’s UART3 for

communication with the host computer through the mini-B USB jack.

For more information on
the book see www.nu32.org

30 Chapter 2

voltage Vin and ground, as well as the regulated 3.3 V and 5 V supplies, are made available to
the user as illustrated in Figure 1.1. The power jack is directly connected to the Vin and GND
pins so you could power the NU32 by putting Vin and GND on these pins directly and not
connecting the power jack.

The 3.3 V regulator provides up to 800 mA and the 5 V regulator provides up to 1 A of
current, provided the power supply can source that much current. In practice you should stay
well under each of these limits. For example, you should not plan to draw more than

200-300 mA or so from the NU32. Even if you use a higher-current power supply, such as a
battery, you should respect these limits, as the current has to flow through the relatively thin
traces of the PCB. It is also not recommended to use high voltage supplies greater than 9 V or
s0, as the regulators will heat up.

Since motors tend to draw lots of current (even small motors may draw hundreds of milliamps
up to several amps), do not try to power them from the NU32. Use a separate battery or power
supply instead.

In addition to the voltage regulators, the NU32 provides an 8 MHz resonator as the source of
the PIC32’s 80 MHz clock signal. It also has a mini-B USB jack to connect your computer’s
USB port to a USB-to-UART FTDI chip that allows your PIC32 to use its UART to
communicate with your computer.

A USB micro-B jack is provided to allow the PIC32 to speak USB to another external device,
like a smartphone.

The NU32 board also has a power switch which connects or disconnect the input power supply
to the voltage regulators, and two LEDs and two buttons (labeled USER and RESET) allowing
very simple input and output. The two LEDs, LED1 and LED2, are connected at one end by a
resistor to 3.3 V and the other end to digital outputs RFO and RF1, respectively, so that they
are off when those outputs are high and on when they are low. The USER and RESET buttons
are attached to the digital input RD7 and MCLR pins, respectively, and both buttons are
configured to give 0 V to these inputs when pressed and 3.3 V otherwise. See Figure 2.3.

Because pins RG6 through RG9, RF0, RF1, and RD7 on the PIC32 are used for UART
communication with the host computer, LEDs, and the USER button, other potential functions
of these pins are not available if you would like to use the communication, LEDs, and USER
button. In particular:

* UART®6 is unavailable (conflicts with pins RG6 and RG9). Since UART3 is used for
communication with the host computer, this leaves UART1, UART2, UART4, and
UARTS for your programs.

* SPI2 is unavailable (conflicts with pins RG6 and RG7). This leaves SPI3 and SPI4.

* 12C4 is unavailable (conflicts with pins RG7 and RGS). This leaves 12C1, I2C3, and 12CS5.

For more information on
the book see www.nu32.org

Hardware 31

* The default CAN1 pins C1RX and C1TX cannot be used (they conflict with pins RF0 and
RF1), but the configuration bit FCANIO in DEVCFG3 has been cleared to zero on the
NU32, thereby setting CAN1 to use the alternate pins AC1RX (RF4) and AC1TX (RFS).
Therefore no CAN module is lost.

* Media-independent interface (MII) Ethernet is unavailable (conflicts with pins RD7, RFO,
and RF1). The PIC32 can implement Ethernet communication using either the MII or the
reduced media-independent interface (RMII), and RMII Ethernet communication, which
uses many fewer pins than MII, is still available on the NU32.

* Several change notification and digital I/O pins are unavailable, but many more remain.

In all, very little functionality is unavailable due to connections on the NU32, and advanced
users can find ways to bypass even these limitations.

Although the NU32 comes with a bootloader installed in its flash memory, you have the option
to use a programmer to install a standalone program. The five plated through-holes on the
USB board align with the pins of devices such as the PICkit 3 programmer (Figure 2.4).

+3.3V +3.3V +3.3V
2.2 kQ 2.2 kQ 2.2kQ

RD7 USER

button

LED1 LED2 ’
N N 1 normally

RFO RF1 = open

Figure 2.3

The NU32 connection of the PIC32 pins RFO, RF1, and RD7 to LED1, LED2, and the USER button,
respectively.

=

2 ™
4

§2

=

o

Figure 2.4
Attaching the PICkit 3 programmer to the NU32 board.

For more information on
the book see www.nu32.org

32 Chapter 2

2.3 Chapter Summary

The PIC32 features a 32-bit data bus and a CPU capable of performing some 32-bit
operations in a single clock cycle.

In addition to nonvolatile flash program memory and RAM data memory, the PIC32
provides peripherals particularly useful for embedded control, including analog inputs,
digital I/O, PWM outputs, counter/timers, inputs that generate interrupts or measure pulse
widths or frequencies, and pins for a variety of communication protocols, including USB,
Ethernet, CAN, IZC, and SPI.

The functions performed by the pins and peripherals are determined by Special Function
Registers. SFRs are also used for communication back and forth between the CPU and
peripherals.

The PIC32 has three main clocks: the SYSCLK that clocks the CPU, the PBCLK that
clocks peripherals, and the USBCLK that clocks USB communication.

Physical memory addresses are specified by 32 bits. The physical memory map contains
four regions: data RAM, program flash, SFRs, and boot flash. RAM can be accessed in
one clock cycle, while flash access may be slower. The prefetch cache module can be used
to minimize delays in accessing program instructions.

Four 32-bit configuration words, DEVCFGO to DEVCFG3, set important behavior of the
PIC32. For example, these configuration bits determine how an external clock frequency
is multiplied or divided to create the PIC32 clocks.

The NU32 development board provides voltage regulators for power, includes a resonator
for clocking, breaks out the PIC32 pins to a solderless breadboard, provides a couple of
LEDs and buttons for simple input and output, and simplifies communication with the
PIC32 via your computer’s USB port.

2.4 Exercises

You will need to refer to the PIC32MX5XX/6XX/7XX Data Sheet and PIC32 Reference
Manual to answer some questions.

Search for a listing of PIC32 products on Microchip’s webpage, showing the

specifications of all the PIC32 models.

a. Find PIC32s that meet the following specs: at least 128 KB of flash, at least 32 KB
of RAM, and at least 80 MHz max CPU speed. What is the cheapest PIC32 that
meets these specs, and what is its volume price? How many ADC, UART, SPI, and
I°C channels does it have? How many timers?

b. What is the cheapest PIC32 overall? How much flash and RAM does it have, and
what is its maximum clock speed?

c. Among all PIC32s with 512 KB flash and 128 KB RAM, which is the cheapest?
How does it differ from the PIC32MX795F512H?

For more information on
the book see www.nu32.org

Hardware 33

10.

11.

12.

13.

Based on C syntax for bitwise operators and bit-shifting, calculate the following and give

your results in hexadecimal.

a. 0x37 | 0xA8

b. 0x37 & 0xA8

c. ~0x37

d. 0x37>>3

Describe the four functions that pin 12 of the PIC32MX795F512H can have. Isit 5 V

tolerant?

Referring to the Data Sheet section on I/O Ports, what is the name of the SFR you have

to modify if you want to change pins on PORTC from output to input?

The SFR CM1CON controls comparator behavior. Referring to the Memory

Organization section of the Data Sheet, what is the reset value of CM1CON in

hexadecimal?

In one sentence each, without going into detail, explain the basic function of the

following items shown in the PIC32 architecture block diagram Figure 2.2: SYSCLK,

PBCLK, PORTA to PORTG (and indicate which of these can be used for analog input on

the NU32’s PIC32), Timer1 to Timer5, 10-bit ADC, PWM OCI1-5, Data RAM, Program

Flash Memory, and Prefetch Cache Module.

List the peripherals that are not clocked by PBCLK.

If the ADC is measuring values between 0 and 3.3 V, what is the largest voltage

difference that it may not be able to detect? (It’s a 10-bit ADC.)

Refer to the Reference Manual chapter on the Prefetch Cache. What is the maximum

size of a program loop, in bytes, that can be completely stored in the cache?

Explain why the path between flash memory and the prefetch cache module is 128 bits

wide instead of 32, 64, or 256 bits.

Explain how a digital output could be configured to swing between 0 and 4 V, even

though the PIC32 is powered by 3.3 V.

PIC32’s have increased their flash and RAM over the years. What is the maximum

amount of flash memory a PIC32 can have before the current choice of base addresses in

the physical memory map (for RAM, flash, peripherals, and boot flash) would have to be
changed? What is the maximum amount of RAM? Give your answers in bytes in
hexadecimal.

Examine the Special Features section of the Data Sheet.

a. If you want your PBCLK frequency to be half the frequency of SYSCLK, which bits
of which Device Configuration Register do you have to modify? What values do you
give those bits?

b. Which bit(s) of which SFR set the watchdog timer to be enabled? Which bit(s) set
the postscale that determines the time interval during which the watchdog must be
reset to prevent it from restarting the PIC32? What values would you give these bits
to enable the watchdog and to set the time interval to be the maximum?

For more information on
the book see www.nu32.org

34

Chapter 2

14.

15.

16.

c. The SYSCLK for a PIC32 can be generated several ways, as discussed in the
Oscillator chapter in the Reference Manual and the Oscillator Configuration section
in the Data Sheet. The PIC32 on the NU32 uses the (external) primary oscillator in
HS mode with the phase-locked loop (PLL) module. Which bits of which device
configuration register enable the primary oscillator and turn on the PLL. module?

Your NU32 board provides four power rails: GND, regulated 3.3 V, regulated 5 V, and

the unregulated input voltage (e.g., 6 V). You plan to put a load from the 5 V output to

ground. If the load is modeled as a resistor, what is the smallest resistance that would be
safe? An approximate answer is fine. In a sentence, explain how you arrived at the
answer.

The NU32 could be powered by different voltages. Give a reasonable range of voltages

that could be used, minimum to maximum, and explain the reason for the limits.

Two buttons and two LEDs are interfaced to the PIC32 on the NU32. Which pins are

they connected to? Give the actual pin numbers, 1-64, as well as the name of the pin

function as it is used on the NU32. For example, pin 37 on the PIC32MX795F512H
could have the function D+ (USB data line) or RG2 (Port G digital input/output), but
only one of these functions could be active at a given time.

Further Reading

PIC32 family reference manual. Section 03: Memory organization. (2010). Microchip Technology Inc.
PIC32 family reference manual. Section 02: CPU for devices with the M4K core. (2012). Microchip Technology

Inc.

PIC32 family reference manual. Section 32: Configuration. (2013). Microchip Technology Inc.
PIC32MX5XX/6XX/7XX family data sheet. (2013). Microchip Technology Inc.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors

Most electric motors operate on the principle that current flowing through a magnetic field
creates a force. Because of this relationship between current and force, electric motors can be
used to convert electrical power to mechanical power. They can also be used to convert
mechanical power to electrical power; as with, for example, generators in hydroelectric dams
or regenerative braking in electric and hybrid cars.

In this chapter we study perhaps the simplest, cheapest, most common, and arguably most
useful electrical motor: the brushed permanent magnet direct current (DC) motor. For
brevity, we refer to these simply as DC motors. A DC motor has two input terminals, and a
voltage applied across these terminals causes the motor shaft to spin. For a constant load or
resistance at the motor shaft, the motor shaft achieves a speed proportional to the input
voltage. Positive voltage causes spinning in one direction, and negative voltage causes
spinning in the other.

Depending on the specifications, DC motors cost anywhere from tens of cents up to thousands
of dollars. For most small-scale or hobby applications, appropriate DC motors typically cost a
few dollars. DC motors are often outfitted with a sensing device, most commonly an encoder,
to track the position and speed of the motor, and a gearhead to reduce the output speed and
increase the output torque.

25.1 Motor Physics

DC motors exploit the Lorentz force law,
F = (I x B, (25.1)

where F, I, and B are three-vectors, B describes the magnetic field created by permanent
magnets, I is the current vector (including the magnitude and direction of the current flow
through the conductor), £ is the length of the conductor in the magnetic field, and F is the
force on the conductor. For the case of a current perpendicular to the magnetic field, the force
is easily understood using the right-hand rule for cross-products: with your right hand, point
your index finger along the current direction and your middle finger along the magnetic field
flux lines. Your thumb will then point in the direction of the force (see Figure 25.1).

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00025-1
Copyright © 2016 Elsevier Inc. All rights reserved. 399

For more information on
the book see www.nu32.org

400 Chapter 25

Figure 25.1
Two magnets create a magnetic field B, and a current | along the conductor causes a force F on the
conductor.

Figure 25.2
A current-carrying loop of wire in a magnetic field.

Now let us replace the conductor by a loop of wire, and constrain that loop to rotate about its
center. See Figures 25.2 and 25.3. In one half of the loop, the current flows into the page, and
in the other half of the loop the current flows out of the page. This creates forces of opposite
directions on the loop. Referring to Figure 25.3, let the magnitude of the force acting on each
half of the loop be f, and let d be the distance from the halves of the loop to the center of the
loop. Then the total torque acting on the loop about its center can be written

T = 2df cos @,

where 6 is the angle of the loop. The torque changes as a function of . For —90° < 6 < 90°,
the torque is positive, and it is maximum at & = 0. A plot of the torque on the loop as a
function of 6 is shown in Figure 25.4(a). The torque is zero at & = —90° and 90°, and of these
two, 8 = 90° is a stable equilibrium while 8 = —90° is an unstable equilibrium. Therefore, if
we send a constant current through the loop, it will likely come to rest at 6 = 90°.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 401

& Current into page
(® Current out of page

M

9,0

N ®—— ,,,9,
l

Figure 25.3
A loop of wire in a magnetic field, viewed end-on. Current flows into the page on one side of the
loop and out of the page on the other, creating forces of opposite directions on the two halves of
the loop. These opposite forces create torque on the loop about its center at most angles 6 of
the loop.

2 2 2 NN

-2 -2 -2
-180 0 180 -180 0 180 -180 0 180
angle 6 (deg) angle 6 (deg) angle 6 (deg)
(a) (b) ()
Figure 25.4
a) The torque on the loop of Figure 25.3 as a function of its angle for a constant current. (b) If we
q P g g
reverse the current direction at the angles 8 = —90° and 6 = 90°, we can make the torque

nonnegative at all 8. (c) If we use several loops offset from each other, the sum of their torques (the
thick curve) becomes more constant as a function of angle. The remaining variation contributes to
torque ripple.

To make a more useful motor, we can reverse the direction of current at 6 = —90° and

6 = 90°, which makes the torque nonnegative at all angles (Figure 25.4(b)). The torque

is still zero at & = —90° and 8 = 90°, however, and it undergoes a large variation as a
function of 6. To make the torque more constant as a function of 6, we can introduce more
loops of wire, each offset from the others in angle, and each reversing their current

direction at appropriate angles. Figure 25.4(c) shows an example with three loops of wire
offset from each other by 120°. Their component torques sum to give a more constant torque
as a function of angle. The remaining variation in torque contributes to angle-dependent
torque ripple.

For more information on
the book see www.nu32.org

402 Chapter 25

Finally, to increase the torque generated, each loop of wire is replaced by a coil of wire (also
called a winding) that loops back and forth through the magnetic field many times. If the coil
consists of 100 loops, it generates 100 times the torque of the single loop for the same current.
Wire used to create coils in motors, like magnet wire, is very thin, so there is resistance from
one end of a coil to the other, typically from fractions of an ohm up to hundreds of ohms.

As stated previously, the current in the coils must switch direction at the appropriate angle to
maintain non-negative torque. Figure 25.5 shows how brushed DC motors accomplish this
current reversal. The two input terminals are connected to brushes, typically made of a soft
conducting material like graphite, which are spring-loaded to press against the commutator,
which is connected to the motor coils. As the motor rotates, the brushes slide over the
commutator and switch between commutator segments, each of which is electrically
connected to the end of one or more coils. This switching changes the direction of current
through the coils. This process of switching the current through the coils as a function of the
angle of the motor is called commutation. Figure 25.5 shows a schematic of a minimal motor
design with three commutator segments and a coil between each pair of segments. Most high
quality motors have more commutator segments and coils.

Unlike the simplified example in Figure 25.4, the brush-commutator geometry means that
each coil in a real brushed motor is only energized at a subset of angles of the motor. Apart

Gearhead

Motor |
housing /4
Brush T

Commutator Coils

Figure 25.5
(Left) A schematic end-on view of a simple DC motor. The two brushes are held against the
commutator by leaf springs which are electrically connected to the external motor terminals. This
commutator has three segments and there are coils between each segment pair. The stator magnets
are epoxied to the inside of the motor housing. (Right) This disassembled Pittman motor has seven
commutator segments. The two brushes are attached to the motor housing, which has otherwise
been removed. One of the two permanent magnets is visible inside the housing. The coils are
wrapped around a ferromagnetic core to increase magnetic permeability. This motor has a gearhead
on the output.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 403

-180 0 180
angle 0 (deg)

Figure 25.6
Figure 25.4(c) illustrates the sum of the torque of three coils offset by 120° if they are all energized
at the same time. The geometry of the brushes and commutator ensure that not all coils are
energized simultaneously, however. This figure shows the angle-dependent torque of a three-coil
brushed motor that has only one coil energized at a time, which is approximately what happens if
the brushes in Figure 25.5 are small. The energized coil is the one at the best angle to create a
torque. The result is a motor torque as indicated by the thick curve; the thinner curves are the
torques that would be provided by the other coils if they were energized. Comparing this figure to
Figure 25.4(c) shows that this more realistic motor produces half the torque, but uses only one-third
of the electrical power, since only one of the three coils is energized. Power is not wasted by putting
current through coils that would generate little torque.

from being a consequence of the geometry, this has the added benefit of avoiding wasting
power when current through a coil would provide little torque. Figure 25.6 is a more realistic
version of Figure 25.4(c).

The stationary portion of the motor attached to the housing is called the stator, and the rotating
portion of the motor is called the rotor.

Figure 25.7 shows a cutaway of a Maxon brushed motor, exposing the brushes, commutator,
magnets, and windings. The figure also shows other elements of a typical motor application:
an encoder attached to one end of the motor shaft to provide feedback on the angle and a
gearhead attached to the other end of the motor shaft. The output shaft of the gearhead
provides lower speed but higher torque than the output shaft of the motor.

Brushless motors are a variant that use electronic commutation as opposed to brushed
commutation. For more on brushless DC motors, see Chapter 29.5.

25.2 Governing Equations

To derive an equation to model the motor’s behavior, we ignore the details of the
commutation and focus instead on electrical and mechanical power. The electrical power into
the motor is IV, where [is the current through the motor and V is the voltage across the motor.
We know that the motor converts some of this input power to mechanical power tw, where t

For more information on
the book see www.nu32.org

404 Chapter 25

Encoder Commutator

Windings
Motor shaft

Motor output pinion

Torsional / (input to gearhead)

spring Planetary
gearhead
Brush™ Housing -
(magnetic return) <

Ball bearings

Gearhead

Commutator Windings
| 9 output shaft

J i S—

[Magnet
[1 o Shaft
——
—‘ Iﬁ:
| !
Brush Housing
Figure 25.7

A cutaway of a Maxon brushed motor with an encoder and a planetary gearhead. The brushes are
spring-loaded against the commutator. The bottom left schematic is a simplified cross-section
showing the stationary parts of the motor (the stator) in dark gray and the rotating parts of the

motor (the rotor) in light gray. In this “coreless” motor geometry, the windings spin in a gap
between the permanent magnets and the housing. (Cutaway image courtesy of Maxon Precision
Motors, Inc., maxonmotorusa.com.)

and w are the torque and velocity of the output shaft, respectively. Electrically, the motor is
described by a resistance R between the two terminals as well as an inductance L due to the
coils. The resistance of the motor coils dissipates power I2R as heat. The motor also stores
energy %LI 2 in the inductor’s magnetic field, and the time rate of change of this is LI(d//df),
the power into (charging) or out of (discharging) the inductor. Finally, power is dissipated as
sound, heat due to friction at the brush-commutator interface and at the bearings between the
motor shaft and the housing, etc. In SI units, all these power components are expressed in
watts. Combining all of these factors provides a full accounting for the electrical power put
into the motor:

di
IV=tw+I’R+LI P + power dissipated due to friction, sound, etc.

Ignoring the last term, we have our simple motor model, written in terms of power:

) dr
IV =to+ PR+ L. (25.2)

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 405

From (25.2) we can derive all other relationships of interest. For example, dividing both sides
of (25.2) by I yields

velosm+rd (25.3)

= —w —_ .
1 dt

The ratio t/1 is a constant, an expression of the Lorentz force law for the particular motor

design. This constant, relating current to torque, is called the forque constant k;. The torque

constant is one of the most important properties of the motor:

k = ; or 7=kl (25.4)

The SI units of k; are Nm/A. (In this chapter, we only use SI units, but you should

be aware that many different units are used by different manufacturers, as on the
speed-torque curve and data sheet in Figure 25.16 in the Exercises.) Equation (25.3) also
shows that the SI units for k; can be written equivalently as Vs/rad, or simply Vs.

When using these units, we sometimes call the motor constant the electrical constant k.. The
inverse is sometimes called the speed constant. You should recognize that these terms

all refer to the same property of the motor. For consistency, we usually refer to the torque
constant k;.

We now express the motor model in terms of voltage as

d/
V =kw+ IR+ La. (25.5)

You should remember, or be able to quickly derive, the power equation (25.2), the torque
constant (25.4), and the voltage equation (25.5).

The term k;w, with units of voltage, is called the back-emf, where emf is short for
electromotive force. We could also call this “back-voltage.” Back-emf is the voltage generated
by a spinning motor to “oppose” the input voltage generating the motion. For example,
assume that the motor’s terminals are not connected to anything (open circuit). Then / = 0
and % =0, so (25.5) reduces to

V= kta).

This equation indicates that back-driving the motor (e.g., spinning it by hand) will generate a
voltage at the terminals. If we were to connect a capacitor across the motor terminals, then
spinning the motor by hand would charge the capacitor, storing some of the mechanical
energy we put in as electrical energy in the capacitor. In this situation, the motor acts as a
generator, converting mechanical energy to electrical energy.

The existence of this back-emf term also means that if we put a constant voltage V across a
free-spinning frictionless motor (i.e., the motor shaft is not connected to anything), after some

For more information on
the book see www.nu32.org

406 Chapter 25

time it will reach a constant speed V /k;. At this speed, by (25.5), the current / drops to zero,
meaning there is no more torque 7 to accelerate the motor. This happens because as the motor
accelerates, the back-emf increases, countering the applied voltage until no current flows (and
hence there is no torque or acceleration).

25.3 The Speed-Torque Curve

Consider a motor spinning a boat’s propeller at constant velocity. The torque t provided by
the motor can be written

T = Tfric T Tpushing water>

where ty¢ is the torque the motor has to generate to overcome friction and begin to spin,
while Tpushing water 18 the torque needed for the propeller to displace water when the motor is
spinning at velocity . In this section we assume Tfric = 0, SO T = Tpushing water 10 this
example. In Section 25.4 we consider nonzero friction.

For a motor spinning at constant speed @ and providing constant torque t (as in the propeller
example above), the current / is constant and therefore d//d¢ = 0. Under these assumptions,
(25.5) reduces to

V =kw + IR. (25.6)
Using the definition of the torque constant, we get the equivalent form

1 R
w=-=V-—

—T. 25.7
Ve (25.7)

Equation (25.7) gives w as a linear function of t for a given constant V. This line, of

slope —R/ k,z, is called the speed-torque curve for the voltage V.

The speed-torque curve plots all the possible constant-current operating conditions with
voltage V across the motor. Assuming friction torque is zero, the line intercepts the T = 0
axis at

wo = V/k; = no load speed.

The line intercepts the w = 0 axis at

k. V
Tstall = t? = Stall torque.

At the no-load condition, T = I = 0; the motor rotates at maximum speed with no current or
torque. At the stall condition, the shaft is blocked from rotating, and the current
(Istan = Tstal/kr = V/R) and output torque are maximized due to the lack of back-emf. Which

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 407

point along the speed-torque curve the motor actually operates at is determined by the load
attached to the motor shaft.

An example speed-torque curve is shown in Figure 25.8. This motor has wg = 500 rad/s and
Tsall = 0.1067 Nm for a nominal voltage of Vo = 12 V. The operating region is any point
below the speed-torque curve, corresponding to voltages less than or equal to 12 V. If the
motor is operated at a different voltage c¢Vyom, the intercepts of the speed-torque curve are
linearly scaled to cwg and ctgy).

Imagine squeezing the shaft of a motor powered by a voltage V and spinning at a constant
velocity. Your hand is applying a small torque to the shaft. Since the motor is not accelerating
and we are neglecting friction in the motor, the torque created by the motor’s coils must be
equal and opposite the torque applied by your hand. Thus the motor operates at a specific
point on the speed-torque curve. If you slowly squeeze the shaft harder, increasing the torque
you apply to the rotor, the motor will slow down and increase the torque it applies, to balance
your hand’s torque. Assuming the motor’s current changes slowly (i.e., Ld//dt is negligible),
then the operating point of the motor moves down and to the right on the speed-torque curve
as you increase your squeeze force. When you squeeze hard enough that the motor can no
longer move, the operating point is at the stall condition, the bottom-right point on the
speed-torque curve.

The speed-torque curve corresponds to constant V, but not to constant input power Py, = IV.
The current [is linear with 7, so the input electrical power increases linearly with t. The
output mechanical power is Py, = Tw, and the efficiency in converting electrical to
mechanical power is n = Poy/Pin = T@/IV. We return to efficiency in Section 25.4.

600

wo

400

Speed (rad/s)

200
Operating region

0 20 40 60 80 100 120
Torque (mNm) Tstall

Figure 25.8
A speed-torque curve. Many speed-torque curves use rpm for speed, but we prefer Sl units.

For more information on
the book see www.nu32.org

408 Chapter 25

To find the point on the speed-torque curve that maximizes the mechanical output power, we
can write points on the curve as (7, ®) = (¢Tstal1, (1 — ¢)wp) for 0 < ¢ < 1, so the output
power is expressed as

2
Pout = T = (¢ — ¢7) Tsan1 @0,

and the value of ¢ that maximizes the power output is found by solving

d
— ((C - Cz)fstallwo) = -20)tqaiw0 =0 — c=—.
dc 2

Thus the mechanical output power is maximized at T = Ty /2 and @ = wg/2. This maximum

output power is
1 1 1
Pmax = Efstall EwO = Z TstallW0-

Motor current is proportional to motor torque, so operating at high torques means large coil
heating power loss I?R, sometimes called ohmic heating. For that reason, motor manufacturers
specify a maximum continuous current .oy, the largest continuous current such that the coils’
steady-state temperature remains below a critical point.! The maximum continuous current
has a corresponding maximum continuous torque T.on. Points to the left of this torque and
under the speed-torque curve are called the continuous operating region. The motor can be

See Figure 25.9.

_1
7777777777777777 [)max - ZlTslall “wo

DI
€
S
g

Mech power

L

1
2 Tstall

Figure 25.9
The quadratic mechanical power plot P = tw plotted alongside the speed-torque curve. The area of
the speed-torque rectangle below and to the left of the operating point is the mechanical power.

' The maximum continuous current depends on thermal properties governing how fast coil heat can be transferred
to the environment. This depends on the environment temperature, typically considered to be room temperature.
The maximum continuous current can be increased by cooling the motor.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 409

operated intermittently outside of the continuous operating region, in the intermittent
operating region, provided the motor is allowed to cool sufficiently between uses in this
region. Motors are commonly rated with a nominal voltage that places the maximum
mechanical power operating point (at g,y /2) outside the continuous operating region.

Given thermal characteristics of the motor of Figure 25.8, the speed-torque curve can be
refined to Figure 25.10, showing the continuous and intermittent operating regions of the
motor. The point on the speed-torque curve at t.op 1S the rated or nominal operating point,
and the mechanical power output at this point is called the motor’s power rating. For the motor
of Figure 25.10, T¢ont = 26.67 mNm, which occurs at w = 375 rad/s, for a power rating of

0.02667 Nm x 375 rad/s = 10.0 W.

Figure 25.10 also shows the constant output power hyperbola trw = 10 W passing through the
nominal operating point.

The speed-torque curve for a motor is drawn based on a nominal voltage. This is a “safe”
voltage that the manufacturer recommends. It is possible to overvolt the motor, however,
provided it is not continuously operated beyond the maximum continuous current. A motor
also may have a specified maximum permissible speed wmax, Which creates a horizontal line
constraint on the permissible operating range. This speed is determined by allowable brush
wear, or possibly properties of the shaft bearings, and it is typically larger than the no-load
speed wg. The shaft and bearings may also have a maximum torque rating Tmax > Tstall- Lhese

600

Wo

400 Nominal operating point

Speed (rad/s)

200 { Continuous
operating
region

Intermittent 10 W

operating region

0 20 . 40 60 80 100 120
Tcont Torque (mNm) Tstall
Figure 25.10

The continuous operating region (under the speed-torque curve and left of Tconc) and the
intermittent operating region (the rest of the area under the speed-torque curve). The 10 W
mechanical power hyperbola is indicated, including the nominal operating point at Tcone.

For more information on
the book see www.nu32.org

410 Chapter 25

wn]ax t __ 1

Overvolted i

600 continuous i

operating i

W region Overvolted intermittent i

F;j\ﬁ‘ operating region 1

& 400]

=)

= |

5] I

o 1
o

Z :

200 { Continuous)

operating Intermittent 1

region operating region !

1

b N 3
0 20 40 60 80 100 120
Teont Torque (Hle) Tstall Tmax

Figure 25.11
It is possible to exceed the nominal operating voltage, provided the constraints w < wmax and
T < Tmax are respected and Tconc is only intermittently exceeded.

limits allow the definition of overvolted continuous and intermittent operating regions, as
shown in Figure 25.11.

25.4 Friction and Motor Efficiency

Until now we have been assuming that the full torque t = &,/ generated by the windings is
available at the output shaft. In practice, some torque is lost due to friction at the brushes and
the shaft bearings. Let us use a simple model of friction: assume a torque T > tgic > 0 must
be generated to overcome friction and initiate motion, and any torque beyond ty¢ is available
at the output shaft regardless of the motor speed (e.g., no friction that depends on speed
magnitude). When the motor is spinning, the torque available at the output shaft is

Tout = T — Tfric-

Nonzero friction results in a nonzero no-load current Iy = tgic/k: and a no-load speed wq less
than V /k;. The speed-torque curve of Figure 25.11 is modified to show a small friction torque
in Figure 25.12. The torque actually delivered to the load is reduced by tgic.

Taking friction into account, the motor’s efficiency in converting electrical to mechanical
power is

Tout®
= . 25.8
g 1A% ()

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 411

Wmax & 1
Overvolted | i
600 1 continuous | i
operating | i
ool I
R Lesion ! Overvolted intermittent E
= ! i i
§ 400 E i operating region E
=t | :
] [l I
|97) , !
200 ' Continuous i
! operating Intermittent i
! region operating region i
| .
0+ 4
0 20 40 60 80 100 120
Teric Teont Torque (mNm) Tstall Tmax

Figure 25.12
The speed-torque curve of Figure 25.11 modified to show a nonzero friction torque Tgic and the
resulting reduced no-load speed wy.

7777777777777777777777777777 R nmax,2

! St Sttt 4 nmax, 1

L =
| =

Speed

Torque 7 at windings

Tﬁ'ic,Z Thric,1

Figure 25.13
The speed-torque curve for a motor and two efficiency plots, one for high friction torque (case 1)
and one for low friction torque (case 2). For each case, efficiency is zero for all T below the level
needed to overcome friction. The low friction version of the motor (case 2) achieves a higher
maximum efficiency, at a higher speed and lower torque, than the high friction version (case 1).

The efficiency depends on the operating point on the speed-torque curve, and it is zero when
either 7,y Or w is zero, as there is no mechanical power output. Maximum efficiency generally
occurs at high speed and low torque, approaching the limit of 100% efficiency at T = 75y = 0
and w = wq as Tgic approaches zero. As an example, Figure 25.13 plots efficiency vs. torque
for the same motor with two different values of tgi.. Lower friction results in a higher
maximum efficiency nmax, occurring at a higher speed and lower torque.

For more information on
the book see www.nu32.org

412 Chapter 25

To derive the maximally efficient operating point and the maximum efficiency nmax for a given
motor, we can express the motor current as

I'=1o+1Ia,

where I is the no-load current necessary to overcome friction and /,, is the added current to
create torque to drive the load. Recognizing that toy = ki, V = IR, and

o = R(Igan — 1, — 1o) /k: by the linearity of the speed-torque curve, we can rewrite the
efficiency (25.8) as

~ LaUstan — Io — 1a)

(25.9)
(Io + 1) Isean

To find the operating point /} maximizing 7, we solve dn/dl, = 0 for I}, and recognizing that
Iy and Iy are nonnegative, the solution is

I = /Isaaulo — Io.

In other words, as the no-load current Iy goes to zero, the maximally efficient current (and

therefore 7)) goes to zero.
I o
Mmax = | 1 —
ma Lstan

This answer has the form we would expect: maximum efficiency approaches 100% as the
friction torque approaches zero, and maximum efficiency approaches 0% as the friction torque
approaches the stall torque.

Plugging I’¥ into (25.9), we find

2

Choosing an operating point that maximizes motor efficiency can be important when trying to
maximize battery life in mobile applications. For the majority of analysis and motor selection
problems, however, ignoring friction is a good first approximation.

25.5 Motor Windings and the Motor Constant

It is possible to build two different versions of the same motor by simply changing the
windings while keeping everything else the same. For example, imagine a coil of resistance R
with N loops of wire of cross-sectional area A. The coil carries a current / and therefore has a
voltage drop IR. Now we replace that coil with a new coil with N/c loops of wire with
cross-sectional area cA. This preserves the volume occupied by the coil, fitting in the same

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 413

form factor with similar thermal properties. Without loss of generality, let us assume that the
new coil has fewer loops and uses thicker wire (¢ > 1).

The resistance of the new coil is reduced to R/c?* (a factor of ¢ due to the shorter coil and
another factor of ¢ due to the thicker wire). To keep the torque of the motor the same, the new
coil would have to carry a larger current ¢/ to make up for the fewer loops, so that the current
times the pathlength through the magnetic field is unchanged. The voltage drop across the new
coil is (cI)(R/c?) = IR/c.

Replacing the coils allows us to create two versions of the motor: a many-loop, thin wire
version that operates at low current and high voltage, and a fewer-loop, thick wire version that
operates at high current and low voltage. Since the two motors create the same torque with
different currents, they have different torque constants. Each motor has the same motor
constant k,,, however, where

T kl‘
km = = —
vEeR VR

with units of Nm/+/W. The motor constant defines the torque generated per square root
of the power dissipated by coil resistance. In the example above, the new coil dissipates
(cI)?(R/c?) = I’R power as heat, just as the original coil does, while generating the same
torque.

Figure 25.16 shows the data sheet for a motor that comes in several different versions, each
identical in every way except for the winding. Each version of the motor has a similar stall
torque and motor constant but different nominal voltage, resistance, and torque constant.

25.6 Other Motor Characteristics

Electrical time constant

When the motor is subject to a step in the voltage across it, the electrical time constant T,
measures the time it takes for the unloaded current to reach 63% of its final value. The motor’s
voltage equation is

d/
V=kta)+IR+LE.

Ignoring back-emf (because the motor speed does not change significantly over one electrical
time constant), assuming an initial current through the motor of Iy, and an instantaneous drop
in the motor voltage to 0, we get the differential equation

For more information on
the book see www.nu32.org

414 Chapter 25

or

with solution
1) = Ip e ™R/ = [y e7/Te,

The time constant of this first-order decay of current is the motor’s electrical time constant,
T.=L/R.

Mechanical time constant

When the motor is subject to a step voltage across it, the mechanical time constant T,
measures the time it takes for the unloaded motor speed to reach 63% of its final value.
Beginning from the voltage equation

dIl
V=kw+IR+ L—,
dr

ignoring the inductive term, and assuming an initial speed wg at the moment the voltage drops
to zero, we get the differential equation

R JR dw
0= IR+ kwo = —7 + kiwo = —— + ko,
+ Krwo ktf + Krwq kt dr + Krwq

where we used t = Jdw/dt, where J is the inertia of the motor. We can rewrite this equation as

dw K2
— = ——Luwy
dr JR
with solution
w(f) = wy e,

with a time constant of T,,, = JR/k?. If the motor is attached to a load that increases the inertia
J, the mechanical time constant increases.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 415

Short-circuit damping

When the terminals of the motor are shorted together, the voltage equation (ignoring
inductance) becomes

T
0=k + IR = ko + R
t

or

2
T=—-Bw=—"uw,
R

where B = kt2 /R is the short-circuit damping. A spinning motor is slowed more quickly by
shorting its terminals together, compared to leaving the terminals open circuit, due to this
damping.

25.7 Motor Data Sheet

Motor manufacturers summarize motor properties described above in a speed-torque curve
and in a data sheet similar to the one in Figure 25.14. When you buy a motor second-hand or
surplus, you may need to measure these properties yourself. We will use all SI units, which is
not the case on most motor data sheets.

Many of these properties have been introduced already. Below we describe some methods for

estimating them.

Experimentally Characterizing a Brushed DC Motor

Given a mystery motor with an encoder, you can use a function generator, oscilloscope,
multimeter and perhaps some resistors and capacitors to estimate most of the important
properties of the motor. Below are some suggested methods; you may be able to devise others.

Terminal resistance R

You can measure R with a multimeter. The resistance may change as you rotate the shaft by
hand, as the brushes move to new positions on the commutator. You should record the
minimum resistance you can reliably find. A better choice, however, may be to measure the
current when the motor is stalled.

Torque constant k;

You can measure this by spinning the shaft of the motor, measuring the back-emf at the motor
terminals, and measuring the rotation rate w using the encoder. Or, if friction losses are

For more information on
the book see www.nu32.org

416 Chapter 25

Motor Characteristic Symbol Value Units Comments

Terminal resistance R Q Resistance of the motor windings. May change as
brushes slide over commutator segments. Increases
with heat.

Torque constant k, Nm/A The constant ratio of torque produced to current

through the motor.

Electrical constant k, Vs/rad Same numerical value as the torque constant (in SI
units). Also called voltage or back-emf constant.

Speed constant k rad/(Vs) Inverse of electrical constant.

Motor constant k., Nm/v/W Torque produced per square root of power dissi-
pated by the coils.

Max continuous current - A Max continuous current without overheating.

Max continuous torque Teont Nm Max continuous torque without overheating.

Short-circuit damping B Nms/rad Not included in most data sheets, but useful for
motor braking (and haptics).
Terminal inductance L H Inductance due to the coils.

Electrical time constant Te s The time for the motor current to reach 63% of

its final value. Equal to L/R.
Rotor inertia J kgm? Often given in units gem?.
Mechanical time constant Tm S The time for the motor to go from rest to 63% of
its final speed under constant voltage and no load.
Equal to JR/kt>.
Friction Not included in most data sheets. See explanation.
Values at Nominal Voltage

Nominal voltage Vjom A% Should be chosen so the no-load speed is safe for

brushes, commutator, and bearings.
Power rating P W Output power at the nominal operating point (max
continuous torque).
No-load speed wo rad/s Speed when no load and powered by Vnom. Usually
given in rpm (revs/min, sometimes m).

No-load current Iy A The current required to spin the motor at the
no-load condition. Nonzero because of friction
torque.

Stall current 1 A Same as starting current, Vnom/R.
Stall torque Tstall Nm The torque achieved at the nominal voltage when
the motor is stalled.
Max mechanical power P, W The max mechanical power output at the nominal
voltage (including short-term operation).
Max efficiency n % The maximum efficiency achievable in converting
electrical to mechanical power.

Figure 25.14
A sample motor data sheet, with values to be filled in.

negligible, a good approximation is Vyom/wp. This eliminates the need to spin the motor
externally.

Electrical constant k.

Identical to the torque constant in SI units. The torque constant k; is often expressed in units of
Nm/A or mNm/A or English units like oz-in/A, and often k, is given in V/rpm, but k; and k,
have identical numerical values when expressed in Nm/A and Vs/rad, respectively.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 417

Speed constant ks

Just the inverse of the electrical constant.

Motor constant k,,

The motor constant is calculated as &, = k;/ VR.

Max continuous current /cone

This is determined by thermal considerations, which are not easy to measure. It is typically
less than half the stall current.

Max continuous torque Tcont

This is determined by thermal considerations, which are not easy to measure. It is typically
less than half the stall torque.

Short-circuit damping B

This is most easily calculated from estimates of R and k;: B = k?/R.

Terminal inductance L

There are several ways to measure inductance. One approach is to add a capacitor in parallel
with the motor and measure the oscillation frequency of the resulting RLC circuit. For
example, you could build the circuit shown in Figure 25.15, where a good choice for C may be
0.01 or 0.1 wF. The motor acts as a resistor and inductor in series; back-emf will not be an
issue, because the motor will be powered by tiny currents at high frequency and therefore will
not move.

TkQ Scope

1 kHz Square
wave VW

Motor

Figure 25.15
Using a capacitor to create an RLC circuit to measure motor inductance.

For more information on
the book see www.nu32.org

418 Chapter 25

Use a function generator to put a 1 kHz square wave between 0 and 5 V at the point indicated.
The 1 k2 resistor limits the current from the function generator. Measure the voltage with an
oscilloscope where indicated. You should be able to see a decaying oscillatory response to the
square wave input when you choose the right scales on your scope. Measure the frequency of
the oscillatory response. Knowing C and that the natural frequency of an RLC circuit is

wy = 1/@ in rad/s, estimate L.

Let us think about why we see this response. Say the input to the circuit has been at 0 V for a
long time. Then your scope will also read 0 V. Now the input steps up to 5 V. After some time,
in steady state, the capacitor will be an open circuit and the inductor will be a closed circuit
(wire), so the voltage on the scope will settle to 5 V x (R/(1000 + R))—the two resistors in
the circuit set the final voltage. Right after the voltage step, however, all current goes to charge
the capacitor (as the zero current through the inductor cannot change discontinuously). If the
inductor continued to enforce zero current, the capacitor would charge to 5 V. As the voltage
across the capacitor grows, however, so does voltage across the inductor, and therefore so does
the rate of change of current that must flow through the inductor (by the relation

Vi + Vg = V¢ and the constitutive law Vr = LdI/dt). Eventually the integral of this rate of
change dictates that all current is redirected to the inductor, and in fact the capacitor will have
to provide current to the inductor, discharging itself. As the voltage across the capacitor drops,
though, the voltage across the inductor will eventually become negative, and therefore the rate
of change of current through the inductor will become negative. And so on, to create the
oscillation. If R were large, i.e., if the circuit were heavily damped, the oscillation would die
quickly, but you should be able to see it.

Note that you are seeing a damped oscillation, so you are actually measuring a damped natural
frequency. But the damping is low if you are seeing at least a couple of cycles of oscillation,
so the damped natural frequency is nearly indistinguishable from the undamped natural
frequency.

Electrical time constant T,

The electrical time constant can be calculated from L and R as T, = L/R.

Rotor inertia J

The rotor inertia can be estimated from measurements of the mechanical time constant 7}, the
torque constant k;, and the resistance R. Alternatively, a ballpark estimate can be made based
on the mass of the motor, a guess at the portion of the mass that belongs to the spinning rotor,
a guess at the radius of the rotor, and a formula for the inertia of a uniform density cylinder.
Or, more simply, consult a data sheet for a motor of similar size and mass.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 419

Mechanical time constant T,

The time constant can be measured by applying a constant voltage to the motor, measuring the
velocity, and determining the time it takes to reach 63% of final speed. Alternatively, you
could make a reasonable estimate of the rotor inertia J and calculate 7, = JR/ ktz.

Friction

Friction torque arises from the brushes sliding on the commutator and the motor shaft
spinning in its bearings, and it may depend on external loads. A typical model of friction
includes both Coulomb friction and viscous friction, written

Thic = bo sgn(w) + b w,

where by is the Coulomb friction torque (sgn(w) just returns the sign of w) and by is a viscous
friction coefficient. At no load, tic = k:lo. An estimate of each of by and b can be made by
running the motor at two different voltages with no load.

Nominal voltage Viom

This is the specification you are most likely to know for an otherwise unknown motor. It is
sometimes printed right on the motor itself. This voltage is just a recommendation; the real
issue is to avoid overheating the motor or spinning it at speeds beyond the recommended value
for the brushes or bearings. Nominal voltage cannot be measured, but a typical no-load speed
for a brushed DC motor is between 3000 and 10,000 rpm, so the nominal voltage will often
give a no-load speed in this range.

Power rating P

The power rating is the mechanical power output at the max continuous torque.

No-load speed wq

You can determine wgy by measuring the unloaded motor speed when powered with the
nominal voltage. The amount that this is less than Vo /k; can be attributed to friction
torque.

No-load current /g

You can determine /oy by using a multimeter in current measurement mode.

For more information on
the book see www.nu32.org

420 Chapter 25

Stall current /g4

Stall current is sometimes called starting current. You can estimate this using your estimate of
R. Since R may be difficult to measure with a multimeter, you can instead stall the motor shaft
and use your multimeter in current sensing mode, provided the multimeter can handle the
current.

Stall torque 7gea

This can be obtained from k; and ;.

Max mechanical power Pmax

The max mechanical power occurs at %rsmn and %a)o. For most motor data sheets, the max
mechanical power occurs outside the continuous operation region.

Max efficiency fmax

Efficiency is defined as the power out divided by the power in, toyiw/(IV). The wasted power
is due to coil heating and friction losses. Maximum efficiency can be estimated using the
no-load current Iy and the stall current Ig;, as discussed in Section 25.4.

25.8 Chapter Summary

* The Lorentz force law says that a current-carrying conductor in a constant magnetic field
feels a net force according to

F =1/ x B,

where £ is the length of the conductor in the field, I is the current vector, and B is the
(constant) magnetic field vector.

* A brushed DC motor consists of multiple current-carrying coils attached to a rotor, and
magnets on the stator to create a magnetic field. Current is transmitted to the coils by two
brushes connected to the stator sliding over a commutator ring attached to the rotor. Each
coil attaches to two different commutator segments.

* The voltage across a motor’s terminals can be expressed as

d/
V=ko+IR+L—,
dt
where k; is the torque constant and k;w is the back-emf.
* The speed-torque curve is obtained by plotting the steady-state speed as a function of
torque for a given motor voltage V,

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 421

1 R
w=-—V-—

—T.
ki k?

The maximum speed (at T = 0) is called the no-load speed wy and the maximum torque
(at w = 0) is called the stall torque Ty)-

* The continuous operating region of a motor is defined by the maximum current /
the motor coils can conduct continuously without overheating due to I°R power
dissipation.

* The mechanical power Tw delivered by a motor is maximized at half the stall torque and
half the no-load speed, Pmpax = %fstallwo-

* A motor’s electrical time constant 7, = L/R is the time needed for current to reach 63%
of its final value in response to a step input in voltage.

* A motor’s mechanical time constant 7,,, = JR/ kt2 is the time needed for the motor speed to
reach 63% of its final value in response to a step change in voltage.

25.9 Exercises

1. Assume a DC motor with a five-segment commutator. Each segment covers 70° of the
circumference of the commutator circle. The two brushes are positioned at opposite ends
of the commutator circle, and each makes contact with 10° of the commutator circle.

a. How many separate coils does this motor likely have? Explain.

b. Choose one of the motor coils. As the rotor rotates 360°, what is the total angle over
which that coil is energized? (For example, an answer of 360° means that the coil is
energized at all angles; an answer of 180° means that the coil is energized at half of
the motor positions.)

2. Figure 25.16 gives the data sheet for the 10 W Maxon RE 25 motor. The columns
correspond to different windings.

a. Draw the speed-torque curve for the 12 V version of the motor, indicating the no-load
speed (in rad/s), the stall torque, the nominal operating point, and the rated power of
the motor.

Explain why the torque constant is different for the different versions of the motor.

c. Using other entries in the table, calculate the maximum efficiency nmax of the 12 V
motor and compare to the value listed.

d. Calculate the electrical time constant 7, of the 12 V motor. What is the ratio to the

mechanical time constant 7;,,?

Calculate the short-circuit damping B for the 12 V motor.

Calculate the motor constant k,, for the 12 V motor.

How many commutator segments do these motors have?

Which versions of these motors are likely to be in stock?

50 - 0

For more information on
the book see www.nu32.org

422 Chapter 25

I Stock program Article Numbers
[Standard program
Special program (on request)

118742[118743 118746

Values at nominal voltage
1 Nominal voltage V 45 8 9 12 15 18 24 32 48
2 No load speed rom 5360 5320 5230 4850 4980 4790 5190 5510 5070
3 No load current mA 797 444 387 263 218 9.88 144 117 6.96
4 Nominal speed rpm 4980 4520 4220 3800 3920 3710 4130 4450 4000
5 Nominal torque (max. continuous torque) mNm 114 209 239 286 282 287 28 279 279
6 Nominal current (max. continuous current) A 15 1.5 15 124 101 0.811 0.652 0.516 0.317
7 Stall torque mNm 131 132 119 129 131 126 136 144 132
8 Starting current A 165 9.23 731 55 457 352 341 2.61 147
9 Max. efficiency % 87 87 86 87 87 90 87 87 87
Characteristics
10 Terminal resistance Q 0.273 0.867 1.23 218 3.28 511 773 123 326
11 Terminal inductance mH 0.0275 0.0882 0.115 0.238 0.353 0.551 0.832 1.31 3.48
12 Torque constant mNm/A 799 143 163 235 286 358 439 552 89.9
13 Speed constant rpm/V 1200 668 584 406 334 267 217 173 106
14 Speed / torque gradient rpm/mNm 40.9 40.5 44 377 383 382 383 385 386
15 Mechanical time constant ms 499 44 437 425 423 422 422 422 4.23
16 Rotor inertia gem? 117 104 949 108 10.6 106 105 10.5 10.5
Thermal data n [rpm] I Continuous operation
17 Thermal resistance housing-ambient 14 KW 6000 10w In observation of above listed thermal resistance
18 Thermal resistance winding-housing 3.1 KW (lines 17 and 18) the maximum permissible winding
19 Thermal time constant winding 125s temperature will be reached during continuous ope-
20 Thermal time constant motor 612s o a o
21 Ambient temperature -20...4+85°C i &l 25. Cvamb|em.
22 Max. permissible winding temperature +100°C =Thermal limit.
Mechanical data (ball bearings) Short term operation
23 Max. permissible speed 5500 rpm The motor may be briefly overloaded (recurring).
24 Axial play 0.05-0.15 mm
2 90 e
ax. axial loa namic, ¥ - :
27 Max. force for pre;/.s fits (static) 64N 1Al gssloneciponeietng
(static, shaft supported) 800 N
28 Max. radial loading, 5 mm from flange 16N
Other specifications maxon Modular System Overview on page 16 - 21
29 Number of pole pairs 1 Planetary Gearhead Encoder MR
30 Number of commutator segments 11 ry Gearhea ncoder
31 Weight of motor 130g 226 mm :;= - B= 128 - 1000 CPT,
CLL = Capacitor Long Life 0.5-4.5Nm 3 channels
Page 231/232 Page 272
Values listed in the table are nominal. Planetary Gearhead I Encoder Enc
Explanation of the figures on page 49. ©32mm |=:| = - 22mm
_ 0.75-6.0 Nm I 100 CPT, 2 channels
Option Page 234/235/237 O I= = Page 274
Preloaded ball bearings g%azxdrive I H :(r)\(t’:%c'i:e{ HED_ 5540
mm —i] | :
1.0-4.5Nm I|I= Recommended Electronics: B 3 channels
Page 240 ESCON 36/2DC Page 292 Page 276/278
Spindle Drive ESCON 50/5 292 DC-Tacho DCT
@32 mm =|| | EPOS2 24/2 312 @22 mm
Page 255/256/257 (] EPOS2 Module 36/2 312 052V
EPOS?2 24/5 313 Page 286
EPOS2 50/5 313
EPOS2 P 24/5 316
EPOS3 70/10 EtherCAT 319
Notes 18

Figure 25.16
The data sheet for the Maxon RE 25 motor. The columns correspond to different windings for
different nominal voltages. (Image courtesy of Maxon Precision Motors. Motor data is subject to
change at any time; consult maxonmotorusa.com for the latest data sheets.)

i. (Optional) Motor manufacturers may specify slightly different continuous and
intermittent operating regions than the ones described in this chapter. For example, the
limit of the continuous operating region is not quite vertical in the speed-torque plot
of Figure 25.16. Come up with a possible explanation, perhaps using online resources.

3. There are 21 entries on the motor data sheet from Section 25.7. Let us assume zero

friction, so we ignore the last entry. To avoid thermal tests, you may also assume a

maximum continuous power that the motor coils can dissipate as heat before overheating.

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 423

Of the 20 remaining entries, under the assumption of zero friction, how many independent
entries are there? That is, what is the minimum number N of entries you need to be able to
fill in the rest of the entries? Give a set of N independent entries from which you can derive
the other 20 — N dependent entries. For each of the 20 — N dependent entries, give the
equation in terms of the N independent entries. For example, Vo and R will be two of the

N independent entries, from which we can calculate the dependent entry g1 = Viom/R.

4. This exercise is an experimental characterization of a motor. For this exercise, you need a
low-power motor (preferably without a gearhead to avoid high friction) with an encoder.

You also need a multimeter, oscilloscope, and a power source for the encoder and motor.

Make sure the power source for the motor can provide enough current when the motor is

stalled. A low-voltage battery pack is a good choice.

a. Spin the motor shaft by hand. Get a feel for the rotor inertia and friction. Try to spin
the shaft fast enough that it continues spinning briefly after you let go of it.

b. Now short the motor terminals by electrically connecting them. Spin again by hand,
and try to spin the shaft fast enough that it continues spinning briefly after you let go
of it. Do you notice the short-circuit damping?

c. Try measuring your motor’s resistance using your multimeter. It may vary with the
angle of the shaft, and it may not be easy to get a steady reading. What is the
minimum value you can get reliably? To double-check your answer, you can power
your motor and use your multimeter to measure the current as you stall the motor’s
shaft by hand.

d. Attach one of your motor’s terminals to scope ground and the other to a scope input.
Spin the motor shaft by hand and observe the motor’s back-emf.

e. Power the motor’s encoder, attach the A and B encoder channels to your oscilloscope,
and make sure the encoder ground and scope ground are connected together. Do not
power the motor. (The motor inputs should be disconnected from anything.) Spin the
motor shaft by hand and observe the encoder pulses, including their relative phase.

f. Now power your motor with a low-voltage battery pack. Given the number of lines
per revolution of the encoder, and the rate of the encoder pulses you observe on your
scope, calculate the motor’s no-load speed for the voltage you are using.

g. Work with a partner. Couple your two motor shafts together by tape or flexible tubing.
(This may only work if your motor has no gearhead.) Now plug one terminal of one
of the motors (we shall call it the passive motor) into one channel of a scope, and plug
the other terminal of the passive motor into GND of the same scope. Now power the
other motor (the driving motor) with a battery pack so that both motors spin. Measure
the speed of the passive motor by looking at its encoder count rate on your scope.
Also measure its back-emf. With this information, calculate the passive motor’s
torque constant k;.

5. Using techniques discussed in this chapter, or techniques you come up with on your own,
create a data sheet with all 21 entries for your nominal voltage. Indicate how you

For more information on
the book see www.nu32.org

424 Chapter 25

calculated the entry. (Did you do an experiment for it? Did you calculate it from other

entries? Or did you estimate by more than one method to cross-check your answer?) For

the friction entry, you can assume Coulomb friction only—the friction torque opposes the
rotation direction (bg # 0), but is independent of the speed of rotation (b; = 0). For your

measurement of inductance, turn in an image of the scope trace you used to estimate w;,

and L, and indicate the value of C that you used.

If there are any entries you are unable to estimate experimentally, approximate, or

calculate from other values, simply say so and leave that entry blank.

6. Based on your data sheet from above, draw the speed-torque curves described below, and
answer the associated questions. Do not do any experiments for this exercise; just
extrapolate your previous results.

a. Draw the speed-torque curve for your motor. Indicate the stall torque and no-load
speed. Assume a maximum power the motor coils can dissipate continuously before
overheating and indicate the continuous operating regime. Given this, what is the
power rating P for this motor? What is the max mechanical power Ppax?

b. Draw the speed-torque curve for your motor assuming a nominal voltage four times
larger than in Exercise 6a. Indicate the stall torque and no-load speed. What is the
max mechanical power Pp,x?

7. You are choosing a motor for the last joint of a new direct-drive robot arm design.

(A direct-drive robot does not use gearheads on the motors, creating high speeds with low

friction.) Since it is the last joint of the robot, and it has to be carried by all the other

joints, you want it to be as light as possible. From the line of motors you are considering
from your favorite motor manufacturer, you know that the mass increases with the motor’s
power rating. Therefore you are looking for the lowest power motor that works for your
specifications. Your specifications are that the motor should have a stall torque of at least

0.1 Nm, should be able to rotate at least 5 revolutions per second when providing

0.01 Nm, and the motor should be able to operate continuously while providing 0.02 Nm.

Which motor do you choose from Table 25.17 Give a justification for your answer.

8. The speed-torque curve of Figure 25.8 is drawn for the positive speed and positive torque
quadrant of the speed-torque plane. In this exercise, we will draw the motor’s operating
region for all four quadrants. The power supply used to drive the motor is 24 V, and
assume the H-bridge motor controller (discussed in Chapter 27) can use that power supply
to create any average voltage across the motor between —24 and 24 V. The motor’s
resistance is 1 €2 and the torque constant is 0.1 Nm/A. Assume the motor has zero friction.

a. Draw the four-quadrant speed-torque operating region for the motor assuming the
24 V power supply (and the H-bridge driver) has no limit on current. Indicate the
torque and speed values where the boundaries of the operating region intersect the
o = 0 and T = 0 axes. Assume there are no other speed or torque constraints on the
motor except for the one due to the 24 V limit of the power supply. (Hint: the
operating region is unbounded in both speed and torque!)

For more information on
the book see www.nu32.org

Brushed Permanent Magnet DC Motors 425

Table 25.1: Motors to choose from

Assigned power rating wW 3 10 20 90
Nominal voltage \ 15 15 15 15
No load speed rpm 13,400 4980 9660 7180
No load current mA 36.8 21.8 60.8 247
Nominal speed rpm 10,400 3920 8430 6500
Max continuous torque mNm 2.31 28.2 20.5 73.1
Max continuous current mA 259 1010 1500 4000
Stall torque mNm 10.5 131 225 929
Stall current mA 1030 4570 15,800 47,800
Max efficiency % 65 87 82 83
Terminal resistance Ohm 14.6 3.28 0.952 0.314
Terminal inductance mH 0.486 0.353 0.088 0.085
Torque constant mNm/A 10.2 28.6 14.3 19.4
Speed constant rpm/V 932 334 670 491
Mechanical time constant ms 7.51 4.23 4.87 5.65
Rotor inertia gcm2 0.541 10.6 10.4 68.1
Max permissible speed rpm 16,000 5500 14,000 12,000
Cost usD 88 228 236 239

Note that sometimes the “Assigned power rating” is different from the mechanical power
output at the nominal operating point, for manufacturer-specific reasons. The meanings of the
other terms in the table are unambiguous.

b. Update the operating region with the constraint that the power supply can provide a
maximum current of 30 A. What is the maximum torque that can be generated using
this power supply, and what are the maximum and minimum motor speeds possible at
this maximum torque? What is the largest back-emf voltage that can be achieved?

c. Update the operating region with the constraint that the maximum recommended
speed for the motor brushes and shaft bearings is 250 rad/s.

d. Update the operating region with the constraint that the maximum recommended
torque at the motor shaft is 5 Nm.

e. Update the operating region to show the continuous operating region, assuming the
maximum continuous current is 10 A.

f. We typically think of a motor as consuming electrical power (IV > 0, or “motoring”)
and converting it to mechanical power, but it can also convert mechanical power to
electrical power (IV < 0, or “regenerating”). This occurs in electric car braking
systems, for example. Update the operating region to show the portion where the
motor is consuming electrical power and the portion where the motor is generating
electrical power.

Further Reading

Hughes, A., & Drury, B. (2013). Electric motors and drives: Fundamentals, types and applications (4th ed.).
Amsterdam: Elsevier.
Maxon DC motor RE 25, ¢ 25 mm, graphite brushes, 20 Watt. (2015). Maxon.

For more information on
the book see www.nu32.org

A Crash Course in C

This appendix provides an introduction to C for readers with no C experience but some
experience in another programming language. It is not intended as a complete reference;
plenty of great C resources already exist and provide a more complete picture. This appendix
applies to C in general, not just C on the Microchip PIC32. We recommend that you start by
programming your computer so you can experiment with C without needing extra equipment
or complication.

A.1 Quick Start in C

To start with C, you need a computer, a text editor, and a C compiler. You use the text editor to
write your C program, a plain text file with a name ending with the extension .c (e.g.,
myprog.c). The C compiler converts this program into machine code that your computer can
execute. There are many free C compilers available; we recommend the gcc C compiler, which
is part of the GNU Compiler Collection (GCC, found at http://gcc.gnu.org). GCC is
available for Windows, Mac OS, and Linux. For Windows, you can download the GCC
collection in MinGW.! If the installation asks you about what tools to install, make sure to
include the make tools. For Mac OS, you can download the full Xcode environment from the
Apple Developers website. This installation is multiple gigabytes; however, you can opt to
install only the “Command Line Tools for Xcode,” which is smaller and more than sufficient
for getting started with C (and for this appendix).

Many C installations come with an Integrated Development Environment (IDE) complete with
text editor, menus, and graphical tools to assist you with your programming projects. Every
IDE is different, and what we cover in this appendix does not require a sophisticated IDE. We
therefore use only command line tools, meaning that we initiate compilation and run the
program by typing at the command line. In Mac OS, the command line can be accessed from
the Terminal program. In Windows, you can access the command line by searching for cmd or
command prompt. Linux users should run a shell such as bash.

' You are also welcome to use Visual C from Microsoft. The command line compile command will look a bit
different than what you see in this appendix.

515

For more information on
the book see www.nu32.org

516 A Crash Course in C

To use the command line, you must learn some command line instructions. The Mac operating
system is built on top of Unix, which is similar to Linux, so Mac/Unix/Linux use the same
syntax. Windows uses slightly different commands. See the table of a few useful commands
below. You can find more information on how to use these commands as well as others by
searching for command line commands in Unix, Linux, or Windows.

Function Mac/Unix/Linux Windows
Show current directory pwd cd
List directory contents 1s dir
Make subdirectory newdir mkdir newdir mkdir newdir
Change to subdirectory newdir cd newdir cd newdir
Move “up” to parent directory cd .. cd ..
Copy fileto filenew cp file filenew | copy file filenew
Delete file file rm file del file
Delete directory dir rmdir dir rmdir dir
Help on using command cmd man cmd cmd /7

Following the long-established programming tradition, your first C program will simply print
“Hello world!” to the screen. Use a text editor to create the file HelloWorid.c:

#include <stdio.h>

int main(void) {
printf("Hello world!\n");
return 0;

}

Possible text editors include Notepad++ for Windows, TextWrangler for Mac OS, and Gedit
for Linux. You can also try vim or emacs, though they are not easy to get started with!
Whichever editor you use, you should save your file as plain text, not rich text or any other
formatted text.

To compile your program, navigate from the command line to the directory where the program
sits. Then, assuming your command prompt appears as >, type the following at the prompt:

> gcc HelloWorld.c -o HelloWorld

This command should create the executable file Hel1oWor1d in the same directory. (The
argument after the -o output flag is the name of the executable file to be created from
HelloWorld.c.) Now, to execute the program, type

Windows: > HelloWorld

Linux/MacOS: > ./HelloWorld

For Linux/MacOS users, the “.” is shorthand for “current directory,” and the ./ tells your
computer to look in the current directory for HelloWor1d. Windows implicitly searches the
current directory for executables, so you need not explicitly specify it.

For more information on
the book see www.nu32.org

A Crash CourseinC 517

If you have succeeded in getting this far, your C installation works and you can proceed. If
not, you may need to get help from friends or the internet.

A.2 Overview

If you are familiar with a high-level language like MATLAB or Python, you may know about
loops, functions, and other programming constructs. You will see that although C’s syntax is
different, the same concepts translate to C. Rather than starting with basic loops, if statements,
and functions, we begin by focusing on important concepts that you must master in C but
which you probably have not dealt with in a language such as MATLAB or Python.

* Memory, addresses, and pointers. Variables are stored at particular addresses in
memory as bits (0’s and 1’s). In C, unlike in MATLAB or Python, it is often useful to
access a variable’s memory address. Special variables called pointers contain the address
of another variable and can be used to access the contents of that address. Although
powerful, pointers can also be dangerous; misusing them can cause all sorts of bugs,
which is why many higher-level languages forgo them completely.

* Data types. In MATLAB, for example, you can simply typea = 1; b = [1.2 3.1416];
c=10[12; 341; s="a string’. MATLAB determines that a is a scalar, b is a vector
with two elements, c is a 2 x 2 matrix, and s is a string; automatically tracks the variable’s
type (e.g., a list of numbers for a vector or a list of characters for a string); and sets aside,
or allocates, memory to store them. In C, on the other hand, you must first define the
variable before you ever use it. To use a vector, for example, you must specify the number
and data type of its elements—integers or decimal numbers (floating point). The variable
definition tells the C compiler how much memory it needs to store the vector, the address
of each element, and how to interpret the bits of each element (as integers or floating point
numbers, for example).

* Compiling. MATLAB programs are typically interpreted: the commands are converted to
machine code and executed while the program is running. C programs, on the other hand,
are compiled, i.e., converted to machine-code in advance. This process consists of several
steps whose purpose is to turn your C program into machine-code before it ever runs. The
compiler can identify some errors and warn you about other questionable code. Compiled
code typically runs faster than interpreted code, since the translation to machine code is
done in advance.?

Each of these concepts is described in Section A.3 without going into detail on C syntax. In
Section A.4 we look at sample programs to introduce syntax, then offer more detailed
explanations.

2 The distinction between compiled and interpreted programs is narrowing: many interpreted languages are
actually just-in-time (JIT) compiled, that is program chunks are compiled in advance right before they are
needed.

For more information on
the book see www.nu32.org

518 A Crash Course in C

A.3 Important Concepts in C

We begin our discussion of C with this caveat:

C consists of an evolving set of standards for a programming language, and any specific C
installation is an “implementation” of C. While C standards require certain behavior from all
implementations, some details are implementation-dependent. For example, the number of
bytes used for some data types is non-standard. We sometimes ignore these details in favor of
clarity and succinctness. Platform- and compiler-specific results are from gcc 4.9.2 running on
an x86_64 compatible processor.

A.3.1 Data Types

Binary and hexadecimal

On a computer, programs and data are represented by sequences of 0’s and 1’s. A 0 or 1 may
be represented by two different voltages (low and high) held and controlled by a logic circuit,
for example. Each of these units of memory is called a bit.

A sequence of bits may be interpreted as a base-2 or binary number, just as a sequence of
digits in the range 0 to 9 is commonly treated as a base-10 or decimal number.? In the decimal
numbering system, a multi-digit number like 793 is interpreted as 7 * 10> + 9 % 10! 4+ 3 % 10°;
the rightmost column is the 10° (or 1’s) column, the next column to the left is the 10! (or 10’s)
column, the next column to the left is the 102 (or 100’s) column, and so on. Similarly, the
rightmost column of a binary number is the 2° column, the next column to the left is the 2!
column, etc. Converting the binary number 00111011 to its decimal representation, we get

0527 +0%20 122 +1%2% + 122 +0%22 + 152 +1%20=324+164+8+2+1 = 59.

The leftmost digit in a multi-digit number is called the most significant digit, and the
rightmost digit, corresponding to the 1’s column, is called the least significant digit. For
binary representations, these are often called the most significant bit (msb) and least
significant bit (Isb), respectively.

We specify that a sequence of numbers is base-2 by writing it as 001110115 or 0b00111011,
where the b stands for “binary.”

To convert a base-10 number x to binary:

1. Initialize the binary result to all zeros and k to a large integer, such that 2 is known to be
larger than x.

3 Bit is a portmanteau of binary and digit.

For more information on
the book see www.nu32.org

A Crash CourseinC 519

2. If 2% < x, place a 1 in the 2¥ column of the binary number and set x to x — 2~.
3. Ifx=0ork =0, we are finished. Else set k to k — 1 and go to line 2.

An alternative base-10 to binary conversion algorithm builds the binary number from the
rightmost to leftmost bit.

Divide x by 2.

The next digit (from right to left) is the remainder (so 1 if x is odd, O if x is even).
x=the quotient. (So if x were 5, the new x is 2, and if x were 190 the new x is 95).
Repeat process until x=0.

bl e

Compared to base-10, base-2 has a closer connection to actual hardware. Binary can be
inconvenient for human reading and writing, however, due to the large number of digits.
Therefore we often group four binary digits together (taking values 0b0000 to 0b1111, or O to
15 in base-10) and represent them with a single character using the numbers O to 9 or the
letters A to F. This base-16 representation is called hexadecimal or hex for short:Thus we can

base-2 (binary) base-16 (hex) base-10 (decimal) base-2 (binary) base-16 (hex) base-10 (decimal)
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

write the eight-digit binary number 000111011, or 0011 1011, more succinctly in hex as 38, or
3B16 Or 0x3B to clarify that it is a hex number. The corresponding decimal number is
3% 16" + 11 % 16° = 59.

Bits, bytes, and data types

Bits of memory are grouped together in groups of eight called bytes. A byte can be written in
binary or hexadecimal (e.g., 0000111011 or 0x3B), and can represent values between 0 and

28 — 1 = 255. Sometimes the four bits represented by a single hex digit are referred to as a
nibble. (Get it?)

A word is a grouping of multiple bytes. The number of bytes in a word depends on the
processor, but four-byte words are common, as with the PIC32. A word 01001101 11111010
10000011 11000111 in binary can be written in hexadecimal as 0x4DFA83C7. The most
significant byte (MSB) is the leftmost byte, 0x4D in this case, and the least significant byte

For more information on
the book see www.nu32.org

520 A Crash Course in C

(LLSB) is the rightmost byte 0xC7. The msb is the leftmost bit of the MSB, a 0 in this case, and
the Isb is the rightmost bit of the LSB, a 1 in this case.

A byte is the smallest unit of memory that has its own address. The address of the byte is a
number that represents the byte’s location in memory. Suppose your computer has 4 gigabytes
(GB), or 4 x230 = 232 bytes, of RAM.* Then to find the value stored in a particular byte, you
need at least 32 binary digits (8 hex digits or 4 bytes) to specify the address.

An example showing the first eight addresses in memory is given below. Here we show the
lowest address on the right, but we could have made the opposite choice.

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Address

11001101| 00100111| 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | Value

Assume that the byte at address 4 is part of the representation of a variable. Do these 0’s and
1’s represent an integer, or part of an integer? A number with a fractional component?
Something else?

The answer lies in the type of the variable at that address. In C, before you use a variable, you
must define it and its type, telling the compiler how many bytes to allocate for the variable (its
size) and how to interpret the bits.

The most common data types come in two flavors: integers and floating point numbers
(numbers with a decimal point). Of the integers, the two most common types are char, often
used to represent keyboard characters, and int.% Of the floating point numbers, the two most
common types are float and double. As we will see shortly, a char uses 1 byte and an

int usually uses 4, so two possible interpretations of the data held in the eight memory
addresses could be

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Address
11001101 | 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | Value
int char

4 In common usage, a kilobyte (KB) is 2!0 = 1024 bytes, a megabyte (MB) is 220 = 1,048, 576 bytes, a gigabyte
is 230 = 1,073, 741,824 bytes, and a terabyte (TB) is 240 —1,099,511,627,776 bytes. To remove confusion
with the common SI prefixes that use powers of 10 instead of powers of 2, these are sometimes referred to
instead as kibibyte, mebibyte, gibibyte, and tebibyte, where the “bi” refers to “binary.”

In C you can declare or define a variable. They use similar syntax, but a declaration simply gives the name and
the type of the variable, while a definition also allocates the memory to hold it. We avoid using the distinction for
now and just call everything a definition.

char is derived from the word “character.” People pronounce char variously as “car” (as in “driving the car”),
“care” (a shortening of “character”), and “char” (as in charcoal), and some just punt and say “character.”

For more information on
the book see www.nu32.org

A Crash Coursein C 521

where byte 0 is used to represent a char and bytes 4-7 are used to represent an int, or

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Address

11001101| 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | Value

char int

where bytes 0-3 are used to represent an int and byte 4 represents a char. Fortunately we do
not usually have to worry about how variables are packed into memory.

Below we describe the common data types. Although the number of bytes used for each type
is not the same for every processor, the numbers given are common on modern computers.
(Differences for the PIC32 are noted in Table A.1.) Example syntax for defining variables is
also given. Note that most C statements end with a semicolon.

char
Example definition:
char ch;

This syntax defines a variable named ch to be of type char. chars are the smallest data type,
using only one byte. They are often interpreted according to the “ASCII table” (pronounced
“ask-key”), the American Standard Code for Information Interchange, which maps the values
0 to 127 to letters, numbers, and other characters (Figure A.1). (The values 128 to 255 map to
an “extended” ASCII table.) For example, the values 48 to 57 map to the characters 0’ to ’9’,
65 to 90 map to the uppercase letters A’ to *Z’, and 97 to 122 map to the lowercase letters "a’
to ’z’. The assignments

ch

Il
o3}

and

ch 97;

are equivalent, as C equates characters inside single quotation marks with their ASCII table
numerical value.

Depending on the C implementation, char may be treated by default as unsigned, i.e., taking
values from 0 to 255, or signed, taking values from —128 to 127. If you use the char to
represent a standard ASCII character, the distinction does not matter. If, however, you use the
char data type for integer math on small integers, you should use the specifier signed or
unsigned, as appropriate. For example, we could use the following definitions, where
everything after // is a comment:

For more information on
the book see www.nu32.org

522 A Crash Course in C

ASCII Table

0 NULL 16 DLE 32 space 48 0 64 @ 80 P 96 112 p
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r
3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 ¢ 115 s
4 EOT 20 DC4 36 $ 52 4 68 D 8 T 100d 116 t
5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 £ 118 v
7 BELL 23 ETB 39 55 7 71 G 87 W 103 g 119 w
8 BACKSPACE 24 CAN 40 (56 8 72 H 88 X 104 h 120 x
9 TAB 25 EM 41) 57 9 73 1 89 Y 105 i 121y
10 NEWLINE 26 SUB 42 * 58 : 74 3 90 Z 106 j 122 z
11 VT 27 ESC 43 + 59 ; 75 K 91 [107 k 123 {
12 FORMFEED 28 FS 44 | 60 < 76 L 92 \ 108 1 124 |
13 RETURN 29 GS 45 - 61 = 77T M 93] 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 - 110 n 126 ~
156 SI 31 US 47 / 63 7 79 0 95 _ 111 o 127 DEL
Figure A.1

The 128 standard ASCII characters. The first 32 characters are non-printing characters and the
names of most of them are obscure. Values 128 to 255 (or —128 to —1) correspond to the extended
ASCII table.

unsigned char chl; // chl can take values 0 to 255
signed char ch2; // ch2 can take values -128 to 127

int (also known as signed int or signed)
Example definition:

int 1,7;

signed int k;

signed n;

ints typically use four bytes (32 bits) and take values from —(23!) to 23! — 1 (approximately
42 billion). In the example syntax, each of i, j, k, and n are defined to be the same data type.

We can use specifiers to get the following integer data types: unsigned int or simply
unsigned, a four-byte integer taking nonnegative values from 0 to 232
signed short, or signed short int, all meaning the same thing: a two-byte integer taking
values from —(212) to 21 — 1 (i.e., —32, 768 to 32,767); unsigned short int or unsigned
short, a two-byte integer taking nonnegative values from 0 to 216 _q (i.e., 0 to 65,535); Tong
int, long, signed long, or signed long int, often consisting of eight bytes and representing
values from —(26%) to 263 — 1; and unsigned Tong int or unsigned long, an eight-byte integer
taking nonnegative values from 0 to 264 — 1. A Tong Tong int data type may also be
available.

— 1; short int, short,

For more information on
the book see www.nu32.org

A Crash Coursein C 523

float
Example definition:
float x;

This syntax defines the variable x to be a four-byte “single-precision” floating point number.

double
Example definition:
double x;

This syntax defines the variable x to be an eight-byte “double-precision” floating point
number. The data type Tong double (quadruple precision) may also be available, using 16
bytes (128 bits). These types allow the representation of larger numbers, to more decimal
places, than single-precision floats.

The sizes of the data types, both on a typical x86_64 computer with gcc and on the PIC32, are
summarized in Table A.1. Note the differences; C lets the compiler determine these details.
The C99 standard introduces data types such as int32_t (32-bit signed integer) and unit8_t
(8-bit unsigned integer) which are guaranteed to be the specified size across platforms and
compilers.

Table A.1: Data type sizes on two different machines

Type # bytes on x86_64 # bytes on PIC32
char 1 1
short int 2 2
int 4 4
long int 8 4
long long int 8 8
float 4 4
double 8 4
long double 16 8

Using the data types

If your program requires floating point calculations, you can choose between float, double,
and 1ong double data types. The advantages of smaller types are that they use less memory
and computations with them (e.g., multiplies, square roots, etc.) may be faster. The advantage
of the larger types is the greater precision in the representation (e.g., smaller roundoff error).

If your program needs integer calculations, you should use integer rather than floating point
data types due to the higher speed of integer math and the ability to represent a larger range of

For more information on
the book see www.nu32.org

524 A Crash Course in C

integers for the same number of bytes.’” You can decide whether to use signed or unsigned
chars, or {signed/unsigned} {short/Tong} ints. The considerations are memory usage,
possibly the time of the computations, and whether the type can represent a sufficient range of
integer values.® For example, if you decide to use unsigned chars for integer math to save
memory, and you add two of them with values 100 and 240 and assign to a third unsigned
char, you will get a result of 84 due to integer overflow. This example is illustrated in the
program overflow.c in Section A.4.

Representations of data types

A simple representation for integers is the sign and magnitude representation. In this
representation, the msb represents the sign of the number (0 = positive, 1 =negative), and the
remaining bits represent the magnitude of the number. The sign and magnitude method
represents zero twice (positive and negative zero) and is not often used.

A more common representation for integers is called two’s complement. This method also
uses the msb as a sign bit, but it only has a single representation of zero. The two’s
complement representation of an 8-bit char is given below:

binary signed char, base-10 unsigned char, base-10
00000000 0 0
00000001 1 1
00000010 2 2
00000011 3 3
01111111 127 127
10000000 —128 128
10000001 —127 129
11111111 -1 255

As the binary representation is incremented, the two’s complement (signed) interpretation of
the binary number also increments, until it “wraps around” to the most negative value when
the msb becomes 1 and all other bits are 0. The signed value then resumes incrementing until

Just as a four-byte f10at can represent fractional values that a four-byte int cannot, a four-byte int can
represent more integers than a four-byte f10oat can. See the type conversion example program typecast.c in
Section A.4 for an example.

Computations with smaller data types are not always faster than with larger data types. It depends on the
architecture.

For more information on
the book see www.nu32.org

A Crash Coursein C 525

it reaches —1 when all bits are 1. To negate a number using two’s complement arithmetic,
invert all of the bits and add one. For example, 1 (0b00000001) becomes —1 (Ob11111111).
What happens when you perform the negation procedure on zero?

Another representation choice is endianness. The little-endian representation of an int stores
the least significant byte at the lowest address (ADDRESS) and the most significant byte at
highest (ADDRESS+3) (remember, little-lowest-least), while the big-endian convention is the
opposite, storing the most significant byte at the lowest address (ADDRESS) and the least
significant byte at the highest address (ADDRESS+3).? The convention used depends on the
processor. For definiteness in this appendix, we always assume little-endian representation,
which is used by x86_64 (most likely your computer’s architecture) and the PIC32.

floats, doubles, and Tong doubles are commonly represented in the IEEE 754 floating point
format

value = (—1)°* x b x 2°, (A.1)

where one bit is used to represent the sign (s = 0 for positive, s = 1 for negative);

m = 23/52/112 bits are used to represent the significand b (also known as the mantissa) in the
range 1 to 2 —27"; and n = 8/11/15 bits are used to represent the exponent ¢ in the range
—(2" 1y 4+ 2t0 2"~! — 1, where n and m depend on whether the type uses 4/8/16 bytes.
Certain exponent and significand combinations are reserved for representing special cases like
positive and negative infinity and “not a number” (NaN).

Specifically for a four-byte f1oat, the 32 bits of the IEEE 754 representation are

S €é7¢€g¢é5¢eé4¢e3eneeé
7ecesesezererey fifn...fofi

signbit 8 bits of exponent ¢ 23 bits of significand b

The exponent c in (A.1) is equal to e — 127, where e is the unsigned integer value of the eight
bits of e, ranging from 0 to 28 — 1 = 255. (The values ¢ = 0 and e = 255 are reserved to
represent special cases, like +infinity and “not a number.”) The significand b in (A.1) is
given by

23

b=1+)Y fi