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Preface

This book is about the Microchip 32-bit PIC32 microcontroller, its hardware, programming it
in C, and interfacing it to sensors and actuators. This book also covers related mechatronics
topics such as motor theory, choosing motor gearing, and practical introductions to digital
signal processing and feedback control. This book is written for:

• Anyone starting out with the Microchip PIC32 32-bit microcontroller.Microchip
documentation can be hard to navigate; this is the book we wish we had when we started!

• The hobbyist ready to explore beyond Arduino. Arduino software and its large user
support community allow you to be up and running quickly with Atmel microcontrollers.
But reliance on Arduino software prevents you from fully exploiting or understanding the
capability of the microcontroller.

• Teachers and students in mechatronics. The exercises, online material, and associated
kit are designed to support introductory, advanced, and flipped or online courses in
mechatronics.

• Anyone interested in mechatronics, actuators, sensors, and practical embedded
control.

Contents

This book was written based on the two-quarter mechatronics sequence at Northwestern
University, ME 333 Introduction to Mechatronics and ME 433 Advanced Mechatronics. In
ME 333, students learn about PIC32 hardware, fundamentals of programming the PIC32 in C,
the use of some basic peripherals, and interfacing the PIC32 with sensors and actuators. In
ME 433, material from the rest of the book is used as reference by groups working on
projects. Students taking the sequence range from sophomores to graduate students. The only
prerequisite is introductory circuit analysis and design; experience in C programming is not
required. While experience in C would allow faster progression through the material, we
decided not to require it, to make the course available to the broad set of students interested in
the material. To partially compensate for the wide range of experience in C (from expert to
none), we begin ME 333 with an intensive two-week introduction to fundamental C concepts
and syntax using the “Crash Course in C” in Appendix A. We also take advantage of student
expertise by facilitating peer mentoring.

xix
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xx Preface

The goals of this book mirror those of the Northwestern mechatronics sequence:

• to provide the beginner a sound introduction to microcontrollers using the example of the
PIC32, a modern 32-bit architecture;

• to do so by first providing an overview of microcontroller hardware, firm in the belief that
microcontroller programming is much more grounded when tightly connected to the
hardware that implements it;

• to provide a clear understanding of the fundamentals of professional PIC32 programming
in C, which builds a foundation for further exploration of the PIC32’s capabilities using
Microchip documentation and other advanced references;

• to provide reference material and sample code on the major peripherals and special
features of the PIC32;

• to instill an understanding of the theory of motor operation and control; and
• to teach how microcontroller peripherals can be used to interface with sensors and motors.

To achieve these goals, the book is divided into five main parts:

1. Quickstart. This part (Chapter 1) allows the student to get up and running with the PIC32
quickly.

2. Fundamentals. After achieving some early success with the quickstart, the five chapters
in Fundamentals (Chapters 2 to 6) examine the PIC32 hardware, the build process in C
and the connection of the code to the hardware, the use of libraries, and two important
topics for real-time embedded computing: interrupts and the time and space efficiency of
code. The time investment in these chapters provides the foundation needed to move
quickly through later chapters and to profit from other reference material, like Microchip’s
PIC32 Reference Manual, Data Sheets, and XC32 C/C++ Compiler User’s Guide.

3. Peripheral Reference. This part (Chapters 7 to 20) gives details on the operation of the
various peripherals on the PIC32, as well as sample code and applications. It is primarily
reference material that can be read in any order, though we recommend the first few
chapters (digital I/O, counter/timers, output compare, and analog input) be covered in
order. The peripheral reference concludes with an introduction to Harmony, Microchip’s
recent framework for high-level programming of PIC32s.

4. Mechatronics. This part (Chapters 21 to 29) focuses on interfacing sensors to a
microcontroller, digital signal processing, feedback control, brushed DC motor theory,
motor sizing and gearing, control by a microcontroller, and other actuators such as
brushless motors, stepper motors, and servo motors.

5. Appendixes. The appendixes cover background topics such as analysis of simple circuits
and an introduction to programming in C. We have our students first get used to writing C
programs on their laptops, and compiling with gcc, before moving on to programming a
microcontroller.
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In ME 333, we cover the crash course in C; the Quickstart; the Fundamentals; select topics
from the Peripheral Reference (digital I/O, counter/timers, output compare/PWM, and analog
input); and simple sensor interfacing, DC motor theory, motor sizing and gearing, and control
of a DC motor from the Mechatronics part. Other chapters are used for reference in ME 433
and other projects that students undertake.

Choices made in this book

We made several choices about how to teach mechatronics in ME 333, and those choices are
reflected in this book. Our choices are based on the desire to expose our students to the topics
they will need to integrate sensors and actuators and microcontrollers professionally, subject
to the constraint that most students will take only one or two courses in mechatronics. Our
choices are based on what we believe to be the smallest building blocks that a mechatronics
engineer needs to know about. For example, we do not attempt to teach microcontroller
architecture at the level that a computer engineer might learn it, since a mechatronics engineer
is not likely to design a microcontroller. On the other hand, we also do not rely on software
and hardware abstractions that keep the budding mechatronics engineer at arm’s length from
concepts needed to progress beyond the level of a hobbyist. With that philosophy in mind,
here are some of the choices made for ME 333 and this book:

• Microcontrollers vs. sensors and actuators.Mechatronics engineering integrates sensors,
actuators, and microcontrollers. Handing a student a microcontroller development board
and sample code potentially allows the course to focus on the sensors and actuators part.
In ME 333, however, we opted to make understanding the hardware and software of the
microcontroller approximately 50% of the course. This choice recognizes the fundamental
role microcontrollers play in mechatronics, and that mechatronics engineers must be
comfortable with programming.

• Choice of microcontroller manufacturer. There are many microcontrollers on the market,
with a wide variety of features. Manufacturers include Microchip, Atmel, Freescale,
Texas Instruments, STMicroelectronics, and many others. In particular, Atmel
microcontrollers are used in Arduino boards. Arduinos are heavily used by hobbyists and
in K-12 and university courses in large part due to the large online user support
community and the wide variety of add-on boards and user-developed software libraries.
In this book, we opt for the commercially popular Microchip PIC microcontrollers, and
we avoid the high-level software abstractions synonymous with Arduino. (Arduinos are
used in other Northwestern courses, particularly those focusing on rapid product
prototyping with little mechatronics design.)

• Choice of a particular microcontroller model.Microchip’s microcontroller line consists
of hundreds of different models, including 8-bit, 16-bit, and 32-bit architectures. We have
chosen a modern 32-bit architecture. And instead of trying to write a book that deals with
all PIC32 models, which includes six different families of PIC32s as of this writing (see
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Appendix C), we focus on one particular model: the PIC32MX795F512H. The reasons
for this choice are (a) it is a powerful chip with plenty of peripherals and memory
(128 KB data RAM and 512 KB program flash), and, more importantly, (b) focusing on a
single chip allows us to be concrete in the details of its operation. This is especially
important when learning how the hardware relates to the software. (One of the reasons
Microchip’s documentation is difficult to read, and is so full of exceptions and special
cases, is that it is written to be general to all PIC32s in the case of the Reference Manual,
or all PIC32s in a specific family in the case of the Data Sheets.) Once the reader has
learned about the operation of a specific PIC32, it is not too difficult to learn about the
differences for a different PIC32 model.

• Programming language: C++ vs. C vs. assembly. C++ is a relatively high-level
language, C is lower level, and assembly is lower still. We choose to program in C
because of the portability of the language, while staying relatively close to the assembly
language level and minimizing abstractions introduced by C++.

• Integrated Development Environment vs. command line.MPLAB X is Microchip’s
Integrated Development Environment (IDE) for developing software for PICs. So why do
we avoid using it in this book? Because we feel that it hides key steps in understanding
how the code you write turns into an executable for the PIC32. In this book, code is
written in a text editor and the C compiler is invoked at the command line. There are no
hidden steps. Once the reader has mastered the material in the first few chapters of this
book, MPLAB will no longer be mysterious.

• Use of the Harmony software vs. ignoring it.Microchip provides an extensive library of
middleware, device drivers, system services, and other software to support all of their
PIC32 models. One goal of this software is to allow you to write programs that are
portable across different PIC32 models. To achieve this, however, a significant amount of
abstraction is introduced, separating the code you write from the actual hardware
implementation. This is bad pedagogically as you learn about the PIC32. Instead, we use
low-level software commands to control the PIC32’s peripherals, reinforcing the hardware
documentation in this book and in the Data Sheet and Reference Manual. Only with the
more complicated peripherals do we use the Harmony software, specifically for USB, in
Chapter 20.

• Sample code vs. writing it yourself. The usual way to learn to program PIC32s is to take
some working sample code and try to modify it to do something else. This is natural,
except that if your modified code fails, you are often left with no idea what to do. In this
book we provide plenty of sample code, but we also focus on the fundamentals of
programming the PIC32 so that you learn to write code from scratch as well as strategies
to debug if things go wrong (Figure 0.1).

The philosophy represented by the choices above can be summed up succinctly: There should
be no magic steps! You should know how and why the code you write works, and how it
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Quickstart

Copying 
code

Foundations

    Usual 
trajectory

This book

PIC32
programming

ability

Time

Figure 0.1
The trajectory of PIC32 programming ability vs. time for the usual “copy and modify” approach vs.

the foundational approach in this book. The crossover should occur at only a few weeks!

connects to the hardware. You should not be simply modifying opaque and abstract code,
compiling with a mysterious IDE, and hoping for the best.

The NU32 development board

The NU32 development board was created to support this book. If you do not have the board,
you can still learn a lot about how a PIC32 works from reading this book. We highly
recommend that you get the NU32 board and the kit of mechatronics parts, however, to allow
you to work through the examples in the book.

In keeping with the “no magic” philosophy, the primary function of the NU32 is to break out
the pins of the PIC32MX795F512H to a solderless prototyping breadboard, to allow easy
wiring to the pins. Otherwise we try to keep the board as bare bones and inexpensive as
possible, leaving external circuits to the reader. To allow you to get up and running as quickly
as possible, though, the board does provide a few devices external to the PIC32: two LEDs
and two buttons for simple user interaction; a 3.3 V regulator (to provide power to the PIC32)
and a 5 V regulator (to provide a commonly needed voltage); a resonator to provide a clock
signal; and a USB-to-UART chip that simplifies communication between the user’s computer
and the PIC32.

The PIC32 on the NU32 comes with a bootloader program pre-installed, allowing you to
program the PIC32 with just a USB cable. The NU32 can also be programmed directly using a
programmer device, like the PICkit 3. This is covered in Chapter 3.6.
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How to use this book in a course

Mechatronics is fundamentally an integrative discipline, requiring knowledge of
microcontrollers, programming, circuit design, sensors, signal processing, feedback control,
and motors. This book contains a practical introduction to these topics.

Recognizing that most students take no more than one or two courses in mechatronics,
however, this book does not delve deeply into the mathematical theory underlying topics such
as linear systems, circuit analysis, signal processing, or control theory.1 Instead, a course
based on this book is meant to motivate further theoretical study in these disciplines by
exposing students to their practical applications.

As a result, students need only a basic background in circuits and programming to be able to
take a course based on this book. At Northwestern, this means that students take ME 333 as
early as their sophomore year. ME 333 is an intense 11-week quarter, covering, in order:

• Appendix A, a Crash Course in C. (Approximately 2 weeks.)
• Chapters 1–6, fundamentals of hardware and software of the PIC32 microcontroller.

(Approximately 3 weeks.)
• Chapters 7–10, covering digital input and output, counter/timers, output compare/PWM,

and analog input. These chapters are primarily used as reference in the context of the
following assignment.

• Chapters 23 and 24, on feedback control and PI control of the brightness of an LED using
a phototransistor for feedback. This project is the students’ first significant project using
the PIC32 for embedded control. It also serves as a warmup for the final project.
(Approximately 2 weeks.)

• Chapter 25 on theory and experimental characterization of a brushed DC motor.
(Approximately 1 week.)

• Introduction to encoders and current sensing in Chapter 21 and all of Chapters 27 and 28
on DC motor control. Chapter 27 introduces all the hardware and software elements of a
professional DC motor control system, including a nested-loop control system with an
outer-loop motion controller and an inner-loop current controller. Chapter 28 is a
chapter-long project that applies the ideas, leading the student through a significant
software design project to develop a motor control system that interfaces with a menu
system in MATLAB. This “capstone” project is motivated by professional motor amplifier
design and integrates the student’s knowledge of the PIC32, C programming, brushed DC
motors, feedback control, and the interfacing of sensors and actuators with a PIC32.
(Approximately 3 weeks.)

1 Because other courses generally do not cover the operation of motors, this book goes into greater detail on motor
theory.
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This is a very full quarter, which would be less intense if students were required to know C
before taking the course.

ME 333 at Northwestern is taught as a flipped class. Students watch videos that support the
text on their own time, then work on assignments and projects during class time while the
instructor and TAs circulate to help answer questions. Students bring their laptops and
portable mechatronics kits to every class. This kit includes an inexpensive function generator
and oscilloscope, the nScope, that uses their laptop as the display. Thus ME 333 does not use a
lab facility; students use the classroom and their own dorm rooms. Students work and learn
together during classes, but each student completes her own assignment individually. The
follow-on course ME 433 focuses on more open-ended mechatronics projects in teams and
makes extensive use of a mechatronics lab that is open to students 24/7.

For a 15-week semester, good additions to the course would be two weeks on different sensor
technologies (Chapter 21) and digital signal processing of sensor data (Chapter 22). Another
week should also be devoted to the final motor control project (Chapter 28), to allow students
to experiment with various extensions. Time permitting, other common actuators (e.g.,
steppers, RC servos, and brushless motors) could be covered in Chapter 29.

For a two-quarter or two-semester sequence, the second course could focus on open-ended
team design projects, similar to ME 433 at Northwestern. The book then serves as a reference.
Other appropriate material includes chapters on communication protocols and supporting
PIC32 peripherals (e.g., UART, SPI, I2C, USB, and CAN).

Website, videos, and flipped classrooms

The book’s website, www.nu32.org, has links to downloadable data sheets, sample code, PCB
layouts and schematics, chapter extensions, errata, and other useful information and updates.
This website also links to short videos that summarize many of the chapters. These videos can
be used to flip a traditional classroom, as in ME 333, allowing students to watch the lectures at
home and to use class time to ask questions and work on projects.

Other PIC32 references

One goal of this book is to organize Microchip reference material in a logical way, for the
beginner. Another goal is to equip the reader to be able to parse Microchip documentation.
This ability allows the reader to continue to develop her PIC32 programming abilities beyond
the limits of this book. The reader should download and have at the ready the first two
references below; the others are optional. The readings are summarized in Figure 0.2.

• The PIC32 Reference Manual. The Reference Manual sections describe software and
hardware for all PIC32 families and models, so they can sometimes be confusing in their
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Figure 0.2
Other reference reading and the PIC32s they apply to.

generality. Nevertheless, they are a good source for understanding the functions of the
PIC32 in more detail. Some of the sections, particularly the later ones, focus on the
PIC32MZ family and are not relevant to the PIC32MX795F512H.

• The PIC32MX5xx/6xx/7xx Family Data Sheet. This Data Sheet provides details
specific to the PIC32MX5xx/6xx/7xx family. In particular, the Memory Organization
section of the Data Sheet clarifies which special function registers (SFRs) are included on
the PIC32MX795F512H, and therefore which Reference Manual functions are available
for that model.

• (Optional) The Microchip MPLAB XC32 C Compiler User’s Guide and The
Assembler, Linker, and Utilities User’s Guide. These come with your XC32 C compiler
installation, so no need to download separately.

• (Optional) MPLAB Harmony Help. This documentation, which comes with the
Harmony installation, can be helpful once you start writing more complex code that uses
the Harmony software.

• (Optional) MIPS32 Architecture for Programmers manuals and other MIPS32
documentation. If you are curious about the MIPS32 M4K CPU, which is used on the
PIC32MX795F512H, and its assembly language instruction set, you can find references
online.
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CHAPTER 1

Quickstart

Edit, compile, run, repeat: familiar to generations of C programmers, this mantra applies to
programming in C, regardless of platform. Architecture, program loading, input and output:
these details differ between your computer and the PIC32. Architecture refers to processor
type: your computer’s x86-64 CPU and the PIC32’s MIPS32 CPU understand different
machine code and therefore require different compilers. Your computer’s operating system
allows you to seamlessly run programs; the PIC32’s bootloader writes programs it receives
from your computer to flash memory and executes them when the PIC32 resets.1 You interact
directly with your computer via the screen and keyboard; you interact indirectly with the
PIC32 using a terminal emulator to relay information between your computer and the
microcontroller. As you can see, programming the PIC32 requires attention to details that you
probably ignore when programming your computer.

Armed with an overview of the differences between computer programming and
microcontroller programming, you are ready to get your hands dirty. The rest of this chapter
will guide you through gathering the hardware and installing the software necessary to
program the PIC32. You will then verify your setup by running two programs on the PIC32.
By the end of the chapter, you will be able to compile and run programs for the PIC32
(almost) as easily as you compile and run programs for your computer!

Throughout this book, we will refer to “the PIC32.” Although there are many PIC32 models,
for us “the PIC32” is shorthand for the PIC32MX795F512H. While most of the concepts in
this book apply to many PIC32 models, you should be aware that some of the details differ
between models. (See Appendix C for a discussion of the differences.) Further, we refer to the
PIC32MX795F512H as it is configured on the NU32 development board; in particular, it is
powered by 3.3 V and is clocked by a system clock and a peripheral bus clock at 80 MHz. You
will learn more about these details in Chapter 2.

1 Your computer also has a bootloader. It runs when you turn the computer on and loads the operating system.
Also, operating systems are available for the PIC32, but we will not use them in this book.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00001-9
Copyright © 2016 Elsevier Inc. All rights reserved. 3
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Figure 1.1
A photo of the NU32 development board mounted on a solderless breadboard.

1.1 What You Need

This section explains the hardware and software that you need to program the PIC32. Links to
purchase the hardware and download the free software are provided at the book’s
website, www.nu32.org.

1.1.1 Hardware

Although PIC32 microcontrollers integrate many devices on a single chip, they also require
external circuitry to function. The NU32 development board, shown in Figure 1.1, provides
this circuitry and more: buttons, LEDs, breakout pins, a USB port, and a virtual USB serial
port. The examples in this book assume that you use this board. You will also need the
following hardware:

1. Computer with a USB port. The host computer is used to create PIC32 programs. The
examples in this book work with the Linux, Windows, and Mac operating systems.

2. USB A to mini-B cable. This cable carries signals between the NU32 board and your
computer.

3. AC/DC adapter (6V). This cable provides power to the PIC32 and NU32 board.

1.1.2 Software

Programming the PIC32 requires various software. You should be familiar with some
of the software from programming your computer in C; if not, refer to Appendix A.

For more information on 
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For your convenience, we have aggregated the software you need at the book’s website.
You should download and install all of the following software.

1. The command prompt allows you to control your computer using a text-based interface.
This program, cmd.exe on Windows, Terminal on Mac, and bash on Linux, comes with
your operating system so you should not need to install it. See Appendix A for more
information about the command line.

2. A text editor allows you to create text files, such as those containing C source code. See
Appendix A for more information.

3. A native C compiler converts human-readable C source code files into machine code that
your computer can execute. We suggest the free GNU compiler, gcc, which is available
for Windows, Mac, and Linux. See Appendix A for more information.

4. Make simplifies the build process by automatically executing the instructions required to
convert source code into executables. After manually typing all of the commands
necessary create your first program, you will appreciate make.

5. The Microchip XC32 compiler converts C source files into machine code that the PIC32
understands. This compiler is known as a cross compiler because it runs on one processor
architecture (e.g., x86-64 CPU) and creates machine code for another (e.g., MIPS32).
This compiler installation also includes C libraries to help you control PIC32-specific
features. Note where you install the compiler; we will refer to this directory as
<xc32dir>. If you are asked during installation whether you would like to add XC32 to
your path variable, do so.

6. MPLAB Harmony is Microchip’s collection of libraries and drivers that simplify the
task of writing code targeting multiple PIC32 models. We will use this library only in
Chapter 20; however, you should install it now. Note the installation directory, which we
will refer to as <harmony>.

7. The FTDI Virtual COM Port Driver allows you to use a USB port as a “virtual serial
communication (COM) port” to talk to the NU32 board. This driver is already included
with most Linux distributions, but Windows and Mac users may need to install it.

8. A terminal emulator provides a simple interface to a COM port on your computer,
sending keyboard input to the PIC32 and displaying output from the PIC32. For
Linux/Mac, you can use the built-in screen program. For Windows, we recommend you
download PuTTY. Remember where you install PuTTY; we refer to this directory as
<puttyPath>.

9. The PIC32 quickstart code contains source code and other support files to help you
program the PIC32. Download PIC32quickstart.zip from the book’s website, extract it,
and put it in a directory that you create. We will refer to this directory as <PIC32>. In
<PIC32> you will keep the quickstart code, plus all of the PIC32 code you write, so make
sure the directory name makes sense to you. For example, depending on your operating
system, <PIC32> could be /Users/kevin/PIC32 or C:\Users\kevin\Documents\PIC32. In
<PIC32>, you should have the following three files and one directory:

For more information on 
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• nu32utility.c: a program for your computer, used to load PIC32 executable
programs from your computer to the PIC32

• simplePIC.c, talkingPIC.c: PIC32 sample programs that we will test in this chapter
• skeleton: a directory containing

• Makefile: a file that will help us compile future PIC32 programs
• NU32.c, NU32.h: a library of useful functions for the NU32 board
• NU32bootloaded.ld: a linker script used when compiling programs for the PIC32

We will learn more about each of these shortly.

You should now have code in the following directories (if you are a Windows user, you will
also have PuTTY in the directory <puttyPath>):

• <xc32dir>. The Microchip XC32 compiler. You will never modify code in this directory.
Microchip wrote this code, and there is no reason for you to change it. Depending on your
operating system, your <xc32dir> could look something like the following:
• /Applications/microchip/xc32

• C:\Program Files (x86)\Microchip\xc32

• <harmony>. Microchip Harmony. You will never modify code in this directory.
Depending on your operating system, your <harmony> could look something like the
following:
• /Users/kevin/microchip/harmony

• C:\microchip\harmony

• <PIC32>. Where PIC32 quickstart code, and code you will write, is stored, as described
above.

Now that you have installed all of the necessary software, it is time to program the PIC32. By
following these instructions, not only will you run your first PIC32 program, you will also
verify that all of the software and hardware is functioning properly. Do not worry too much
about what all the commands mean, we will explain the details in subsequent chapters.

Notation: Wherever we write <something>, replace it with the value relevant to your computer.
On Windows, use a backslash (\) and on Linux/Mac use a slash (/) to separate the directories
in a path. At the command line, place paths that contain spaces between quotation marks
(i.e., "C:\Program Files"). Enter the text following a > at the command line. Use a single line,
even if the command spans multiple lines in the book.

1.2 Compiling the Bootloader Utility

The bootloader utility, located at <PIC32>/nu32utility.c, sends compiled code to the PIC32.
To use the bootloader utility you must compile it. Navigate to the <PIC32> directory by typing:

For more information on 
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> cd <PIC32>

Verify that <PIC32>/nu32utility.c exists by executing the following command, which lists all
the files in a directory:

• Windows
> dir

• Linux/Mac
> ls

Next, compile the bootloader utility using the native C compiler gcc:

• Windows
> gcc nu32utility.c -o nu32utility -lwinmm

• Linux/Mac
> gcc nu32utility.c -o nu32utility

When you successfully complete this step the executable file nu32utility will be created.
Verify that it exists by listing the files in <PIC32>.

1.3 Compiling Your First Program

The first program you will load onto your PIC32 is <PIC32>/simplePIC.c, which is listed
below. We will scrutinize the source code in Chapter 3, but reading it now will help you
understand how it works. Essentially, after some setup, the code enters an infinite loop that
alternates between delaying and toggling two LEDs. The delay loops infinitely while the
USER button is pressed, stopping the toggling.

Code Sample 1.1 simplePIC.c. Blinking Lights on the NU32, Unless the USER Button
Is Pressed.

#include <xc.h> // Load the proper header for the processor

void delay(void);

int main(void) {
TRISF = 0xFFFC; // Pins 0 and 1 of Port F are LED1 and LED2. Clear

// bits 0 and 1 to zero, for output. Others are inputs.
LATFbits.LATF0 = 0; // Turn LED1 on and LED2 off. These pins sink current
LATFbits.LATF1 = 1; // on the NU32, so "high" (1) = "off" and "low" (0) = "on"

while(1) {
delay();
LATFINV = 0x0003; // toggle LED1 and LED2; same as LATFINV = 0x3;

}
return 0;

}

For more information on 
the book see www.nu32.org

simplePIC.c


8 Chapter 1

void delay(void) {
int j;
for (j = 0; j < 1000000; j++) { // number is 1 million
while(!PORTDbits.RD7) {

; // Pin D7 is the USER switch, low (FALSE) if pressed.
}

}
}

To compile this program you will use the xc32-gcc cross compiler, which compiles code for
the PIC32’s MIPS32 processor. This compiler and other Microchip tools are located at
<xc32dir>/<xc32ver>/bin, where <xc32ver> refers to the XC32 version (e.g., v1.40). To find
<xc32ver> list the contents of the Microchip XC32 directory, e.g.,

> ls <xc32dir>

The subdirectory displayed is your <xc32ver> value. If you happen to have installed two or
more versions of XC32, you will always use the most recent version (the largest version
number).

Next you will compile simplePIC.c and create the executable hex file. To do this, you first
create the simplePIC.elf file and then you create the simplePIC.hex file. (This two-step
process will be discussed in greater detail in Chapter 3.) Issue the following commands from
your <PIC32> directory (where simplePIC.c is), being sure to replace the text between the <>

with the values appropriate to your system. Remember, if the paths contain spaces, you must
surround them with quotes (i.e., "C:\Program Files\xc32\v1.40\bin\xc32-gcc").

> <xc32dir>/<xc32ver>/bin/xc32-gcc -mprocessor=32MX795F512H
-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> <xc32dir>/<xc32ver>/bin/xc32-bin2hex simplePIC.elf

The -Wl is “-W ell” not “-W one.” You can list the contents of <PIC32> to make sure both
simplePIC.elf and simplePIC.hex were created. The hex file contains MIPS32 machine
code in a format that the bootloader understands, allowing it to load your program onto the
PIC32.

If, when you installed XC32, you selected to have XC32 added to your path, then in the two
commands above you could have simply typed

> xc32-gcc -mprocessor=32MX795F512H
-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> xc32-bin2hex simplePIC.elf

and your operating system would be able to find xc32-gcc and xc32-bin2hex without needing
the full paths to them.

For more information on 
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1.4 Loading Your First Program

Loading a program onto the PIC32 from your computer requires communication between the
two devices. When the PIC32 is powered and connected to a USB port, your computer creates
a new serial communication (COM) port. Depending on your specific system setup, this COM
port will have different names. Therefore, we will determine the name of your COM port
through experimentation. First, with the PIC32 unplugged, execute the following command to
enumerate the current COM ports, and note the names that are listed:

• Windows:
> mode

• Mac:
> ls /dev/tty.*

• Linux:
> ls /dev/ttyUSB*

Next, plug the NU32 board into the wall using the AC adapter, turn the power switch on, and
verify that the red “power” LED illuminates. Connect the USB cable from the NU32’s mini-B
USB jack (next to the power jack) to a USB port on the host computer. Repeat the steps above,
and note that a new COM port appears. If it does not appear, make sure that you installed the
FTDI driver from Section 1.1.2. The name of the port will differ depending on the operating
system; therefore we have listed some typical names:

• Windows: COM4
• Mac: /dev/tty.usbserial-DJ00DV5V
• Linux: /dev/ttyUSB0

Your computer, upon detecting the NU32 board, has created this port. Your programs and the
bootloader use this port to communicate with your computer.

After identifying the COM port, place the PIC32 into program receive mode. Locate the
RESET button and the USER button on the NU32 board (Figure 1.1). The RESET button is
immediately above the USER button on the bottom of the board (the power jack is the board’s
top). Press and hold both buttons, release RESET, and then release USER. After completing
this sequence, the PIC32 will flash LED1, indicating that it has entered program receive mode.

Assuming that you are still in the <PIC32> directory, start the loading process by typing

• Windows
nu32utility <COM> simplePIC.hex

• Linux/Mac
> ./nu32utility <COM> simplePIC.hex

For more information on 
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where <COM> is the name of your COM port.2 After the utility finishes, LED1 and LED2 will
flash back and forth. Hold USER and notice that the LEDs stop flashing. Release USER and
watch the flashing resume. Turn the PIC32 off and then on. The LEDs resume blinking
because you have written the program to the PIC32’s nonvolatile flash memory.
Congratulations, you have successfully programmed the PIC32!

1.5 Using make

As you just witnessed, building an executable for the PIC32 requires several steps.
Fortunately, you can use make to simplify this otherwise tedious and error-prone procedure.
Using make requires a Makefile, which contains instructions for building the executable. We
have provided a Makefile in <PIC32>/skeleton. Prior to using make, you need to modify
<PIC32>/skeleton/Makefile so that it contains the paths and COM port specific to your
system.

Aside from the paths you have already used, you need your terminal emulator’s location,
<termEmu>, and the Harmony version, <harmVer>. On Windows, <termEmu> is
<puttyPath>/putty.exe and for Linux/Mac, <termEmu> is screen. To find Harmony’s version,
<harmVer>, list the contents of the <harmony> directory. Edit <PIC32>/skeleton/Makefile and
update the first five lines as indicated below.

XC32PATH=<xc32dir>/<xc32ver>/bin
HARMONYPATH=<harmony>/<harmVer>
NU32PATH=<PIC32>
PORT=<COM>
TERMEMU=<termEmu>

In the Makefile, do not surround paths with quotation marks, even if they contain spaces.

If your computer has more than one USB port, you should always use the same USB port to
connect your NU32. Otherwise, the name of the COM port may change, requiring you to edit
the Makefile again.

After saving the Makefile, you can use the skeleton directory to easily create new PIC32
programs. The skeleton directory contains not only the Makefile, but also the NU32 library
(NU32.h and NU32.c), and the linker script NU32bootloaded.ld, all of which will be used
extensively throughout the book. The Makefile automatically compiles and links every .c file
in the directory into a single executable; therefore, your project directory should contain all
the C files you need and none that you do not want!

2 Windows: Write the ports as \\.\COMx rather than COMx. Linux: To avoid needing to execute commands as
root, add yourself to the group that owns the COM port (e.g., uucp).
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Each new project you create will have its own directory in <PIC32>, e.g.,
<PIC32>/<projectdir>. We now explain how to use the <PIC32>/skeleton directory to create a
new project, using <PIC32>/talkingPIC.c as an example. For this example, we will name the
project talkingPIC, so <projectdir> is talkingPIC. By following this procedure, you will have
access to the NU32 library and will be able to avoid repeating the previous setup steps. Make
sure you are in the <PIC32> directory, then copy the <PIC32>/skeleton directory to the new
project directory:

• Windows
> mkdir <projectdir>

> copy skeleton\*.* <projectdir>

• Linux/Mac
> cp -R skeleton <projectdir>

Now copy the project source files, in this case just talkingPIC.c, to <PIC32>/<projectdir>,
and change to that directory:

• Windows
> copy talkingPIC.c <projectdir>

> cd <projectdir>

• Linux/Mac
> cp talkingPIC.c <projectdir>

> cd <projectdir>

Before explaining how to use make, we will examine talkingPIC.c, which accepts input
from and prints output to a terminal emulator running on the host computer. These
capabilities facilitate user interaction and debugging. The source code for talkingPIC.c is
listed below:

Code Sample 1.2 talkingPIC.c. The PIC32 Echoes Any Messages Sent to It from the
Host Keyboard Back to the Host Screen.

#include "NU32.h" // constants, funcs for startup and UART

#define MAX_MESSAGE_LENGTH 200

int main(void) {
char message[MAX_MESSAGE_LENGTH];

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
while (1) {

NU32_ReadUART3(message, MAX_MESSAGE_LENGTH); // get message from computer
NU32_WriteUART3(message); // send message back
NU32_WriteUART3("\r\n"); // carriage return and newline
NU32_LED1 = !NU32_LED1; // toggle the LEDs
NU32_LED2 = !NU32_LED2;

}
return 0;

}

For more information on 
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The NU32 library function NU32_ReadUART3 allows the PIC32 to read data sent from your
computer’s terminal emulator. The function NU32_WriteUART3 sends data from your PIC32 to
be displayed by the terminal emulator.

Now that you know how talkingPIC.c works, it is time see it in action. First, make sure you
are in the <projectdir>. Next, build the project using make.

> make

This command compiles and assembles all .c files into .o object files, links them into a single
out.elf file, and turns that out.elf file into an executable out.hex file. You can do a directory
listing to see all of these files.

Next, put the PIC32 into program receive mode (use the RESET and USER buttons) and
execute

> make write

to invoke the bootloader utility nu32utility and program the PIC32 with out.hex. When
LED1 stops flashing, the PIC32 has been programmed.

In summary, to create a new project and program the PIC32, you (1) create the project
directory <PIC32>/<projectdir>; (2) copy the contents of <PIC32>/skeleton to this new
directory; (3) create the source code (talkingPIC.c in this case) in <projectdir>; (4) build the
executable by executing make in <projectdir>; and (5) use the RESET and USER buttons to
put the PIC32 in program receive mode and execute make write from <projectdir>. To modify
the program, you simply edit the source code and repeat steps (4) and (5) above. In fact, you
can skip step (4), since make write also builds the executable before loading it onto the
PIC32.

Now, to communicate with talkingPIC, you must connect to the PIC32 using your terminal
emulator. Recall that the terminal emulator communicates with the PIC32 using <COM>. Enter
the following command:

• Windows
<puttyPath>\putty -serial <COM> -sercfg 230400,R

• Linux/Mac
screen <COM> 230400,crtscts

PuTTY will launch in a new window, whereas screen will use the command prompt window.
The number 230400 in the above commands is the baud, the speed at which the PIC32 and
computer communicate, and the other parameter enables hardware flow control (see
Chapter 11 for details).
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After connecting, press RESET to restart the program. Start typing, and notice that no
characters appear until you hit ENTER. This behavior may seem strange, but it occurs because
the terminal emulator only displays the text it receives from the PIC32. The PIC32 does not
send any text to your computer until it receives a special control character, which you
generate by pressing ENTER.3

For example, if you type Hello! ENTER, the PIC32 will receive Hello!\r, write Hello!\r\n to
the terminal emulator, and wait for more input.

When you are done conversing with the PIC32, you can exit the terminal emulator. To exit
screen type

CTRL-a k y

Note that CTRL and a should be pressed simultaneously. To exit PuTTY make sure the command
prompt window is focused and type

CTRL-c

Rather than memorizing these rather long commands to connect to the serial port, you can use
the Makefile. To connect PuTTY to the PIC32 type

> make putty

To use screen type

> make screen

Your system is now configured for PIC32 programming. Although the build process may seem
opaque, do not worry. For now it is only important that you can successfully compile programs
and load them onto the PIC32. Later chapters will explain the details of the build process.

1.6 Chapter Summary

• To start a new project, copy the <PIC32>/skeleton directory to a new location,
<projectdir>, and add your source code.

• From the directory <projectdir>, use make to build the executable.

3 Depending on the terminal emulator, ENTER may generate a carriage return (\r), newline (\n) or both. The
terminal emulator typically moves the cursor to the leftmost column when it receives a \r and to the next line
when it receives a \n.
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• Put the PIC32 into program receive mode by pressing the USER and RESET buttons
simultaneously, then releasing the RESET button, and finally releasing the USER button.
Then use make write to load your program.

• Use a terminal emulator to communicate with programs running on the PIC32. Typing
make putty or make screen from <projectdir> will launch the appropriate terminal
emulator and connect it to the PIC32.

Further Reading

Embedded computing and mechatronics with the PIC32 microcontroller website. http://www.nu32.org.
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CHAPTER 25

Brushed Permanent Magnet DC Motors

Most electric motors operate on the principle that current flowing through a magnetic field
creates a force. Because of this relationship between current and force, electric motors can be
used to convert electrical power to mechanical power. They can also be used to convert
mechanical power to electrical power; as with, for example, generators in hydroelectric dams
or regenerative braking in electric and hybrid cars.

In this chapter we study perhaps the simplest, cheapest, most common, and arguably most
useful electrical motor: the brushed permanent magnet direct current (DC) motor. For
brevity, we refer to these simply as DC motors. A DC motor has two input terminals, and a
voltage applied across these terminals causes the motor shaft to spin. For a constant load or
resistance at the motor shaft, the motor shaft achieves a speed proportional to the input
voltage. Positive voltage causes spinning in one direction, and negative voltage causes
spinning in the other.

Depending on the specifications, DC motors cost anywhere from tens of cents up to thousands
of dollars. For most small-scale or hobby applications, appropriate DC motors typically cost a
few dollars. DC motors are often outfitted with a sensing device, most commonly an encoder,
to track the position and speed of the motor, and a gearhead to reduce the output speed and
increase the output torque.

25.1 Motor Physics

DC motors exploit the Lorentz force law,

F = ℓI × B, (25.1)

where F, I, and B are three-vectors, B describes the magnetic field created by permanent
magnets, I is the current vector (including the magnitude and direction of the current flow
through the conductor), ℓ is the length of the conductor in the magnetic field, and F is the
force on the conductor. For the case of a current perpendicular to the magnetic field, the force
is easily understood using the right-hand rule for cross-products: with your right hand, point
your index finger along the current direction and your middle finger along the magnetic field
flux lines. Your thumb will then point in the direction of the force (see Figure 25.1).

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00025-1
Copyright © 2016 Elsevier Inc. All rights reserved. 399
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Figure 25.1
Two magnets create a magnetic field B, and a current I along the conductor causes a force F on the

conductor.
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Figure 25.2
A current-carrying loop of wire in a magnetic field.

Now let us replace the conductor by a loop of wire, and constrain that loop to rotate about its
center. See Figures 25.2 and 25.3. In one half of the loop, the current flows into the page, and
in the other half of the loop the current flows out of the page. This creates forces of opposite
directions on the loop. Referring to Figure 25.3, let the magnitude of the force acting on each
half of the loop be f , and let d be the distance from the halves of the loop to the center of the
loop. Then the total torque acting on the loop about its center can be written

τ = 2df cos θ ,

where θ is the angle of the loop. The torque changes as a function of θ . For −90◦ < θ < 90◦,
the torque is positive, and it is maximum at θ = 0. A plot of the torque on the loop as a
function of θ is shown in Figure 25.4(a). The torque is zero at θ = −90◦ and 90◦, and of these
two, θ = 90◦ is a stable equilibrium while θ = −90◦ is an unstable equilibrium. Therefore, if
we send a constant current through the loop, it will likely come to rest at θ = 90◦.
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Figure 25.3
A loop of wire in a magnetic field, viewed end-on. Current flows into the page on one side of the
loop and out of the page on the other, creating forces of opposite directions on the two halves of

the loop. These opposite forces create torque on the loop about its center at most angles θ of
the loop.
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Figure 25.4
(a) The torque on the loop of Figure 25.3 as a function of its angle for a constant current. (b) If we

reverse the current direction at the angles θ = −90◦ and θ = 90◦, we can make the torque
nonnegative at all θ . (c) If we use several loops offset from each other, the sum of their torques (the
thick curve) becomes more constant as a function of angle. The remaining variation contributes to

torque ripple.

To make a more useful motor, we can reverse the direction of current at θ = −90◦ and
θ = 90◦, which makes the torque nonnegative at all angles (Figure 25.4(b)). The torque
is still zero at θ = −90◦ and θ = 90◦, however, and it undergoes a large variation as a
function of θ . To make the torque more constant as a function of θ , we can introduce more
loops of wire, each offset from the others in angle, and each reversing their current
direction at appropriate angles. Figure 25.4(c) shows an example with three loops of wire
offset from each other by 120◦. Their component torques sum to give a more constant torque
as a function of angle. The remaining variation in torque contributes to angle-dependent
torque ripple.
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Finally, to increase the torque generated, each loop of wire is replaced by a coil of wire (also
called a winding) that loops back and forth through the magnetic field many times. If the coil
consists of 100 loops, it generates 100 times the torque of the single loop for the same current.
Wire used to create coils in motors, like magnet wire, is very thin, so there is resistance from
one end of a coil to the other, typically from fractions of an ohm up to hundreds of ohms.

As stated previously, the current in the coils must switch direction at the appropriate angle to
maintain non-negative torque. Figure 25.5 shows how brushed DC motors accomplish this
current reversal. The two input terminals are connected to brushes, typically made of a soft
conducting material like graphite, which are spring-loaded to press against the commutator,
which is connected to the motor coils. As the motor rotates, the brushes slide over the
commutator and switch between commutator segments, each of which is electrically
connected to the end of one or more coils. This switching changes the direction of current
through the coils. This process of switching the current through the coils as a function of the
angle of the motor is called commutation. Figure 25.5 shows a schematic of a minimal motor
design with three commutator segments and a coil between each pair of segments. Most high
quality motors have more commutator segments and coils.

Unlike the simplified example in Figure 25.4, the brush-commutator geometry means that
each coil in a real brushed motor is only energized at a subset of angles of the motor. Apart

Brush

Commutator
segment

Coils

Magnet Magnet

       Leaf
spring

Motor
 housing

Magnet

Brush

Commutator Coils

Gearhead

Figure 25.5
(Left) A schematic end-on view of a simple DC motor. The two brushes are held against the

commutator by leaf springs which are electrically connected to the external motor terminals. This
commutator has three segments and there are coils between each segment pair. The stator magnets
are epoxied to the inside of the motor housing. (Right) This disassembled Pittman motor has seven
commutator segments. The two brushes are attached to the motor housing, which has otherwise

been removed. One of the two permanent magnets is visible inside the housing. The coils are
wrapped around a ferromagnetic core to increase magnetic permeability. This motor has a gearhead

on the output.
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Figure 25.6
Figure 25.4(c) illustrates the sum of the torque of three coils offset by 120◦ if they are all energized

at the same time. The geometry of the brushes and commutator ensure that not all coils are
energized simultaneously, however. This figure shows the angle-dependent torque of a three-coil

brushed motor that has only one coil energized at a time, which is approximately what happens if
the brushes in Figure 25.5 are small. The energized coil is the one at the best angle to create a
torque. The result is a motor torque as indicated by the thick curve; the thinner curves are the

torques that would be provided by the other coils if they were energized. Comparing this figure to
Figure 25.4(c) shows that this more realistic motor produces half the torque, but uses only one-third
of the electrical power, since only one of the three coils is energized. Power is not wasted by putting

current through coils that would generate little torque.

from being a consequence of the geometry, this has the added benefit of avoiding wasting
power when current through a coil would provide little torque. Figure 25.6 is a more realistic
version of Figure 25.4(c).

The stationary portion of the motor attached to the housing is called the stator, and the rotating
portion of the motor is called the rotor.

Figure 25.7 shows a cutaway of a Maxon brushed motor, exposing the brushes, commutator,
magnets, and windings. The figure also shows other elements of a typical motor application:
an encoder attached to one end of the motor shaft to provide feedback on the angle and a
gearhead attached to the other end of the motor shaft. The output shaft of the gearhead
provides lower speed but higher torque than the output shaft of the motor.

Brushless motors are a variant that use electronic commutation as opposed to brushed
commutation. For more on brushless DC motors, see Chapter 29.5.

25.2 Governing Equations

To derive an equation to model the motor’s behavior, we ignore the details of the
commutation and focus instead on electrical and mechanical power. The electrical power into
the motor is IV , where I is the current through the motor and V is the voltage across the motor.
We know that the motor converts some of this input power to mechanical power τω, where τ
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Figure 25.7
A cutaway of a Maxon brushed motor with an encoder and a planetary gearhead. The brushes are

spring-loaded against the commutator. The bottom left schematic is a simplified cross-section
showing the stationary parts of the motor (the stator) in dark gray and the rotating parts of the

motor (the rotor) in light gray. In this “coreless” motor geometry, the windings spin in a gap
between the permanent magnets and the housing. (Cutaway image courtesy of Maxon Precision

Motors, Inc., maxonmotorusa.com.)

and ω are the torque and velocity of the output shaft, respectively. Electrically, the motor is
described by a resistance R between the two terminals as well as an inductance L due to the
coils. The resistance of the motor coils dissipates power I2R as heat. The motor also stores
energy 1

2LI
2 in the inductor’s magnetic field, and the time rate of change of this is LI(dI/dt),

the power into (charging) or out of (discharging) the inductor. Finally, power is dissipated as
sound, heat due to friction at the brush-commutator interface and at the bearings between the
motor shaft and the housing, etc. In SI units, all these power components are expressed in
watts. Combining all of these factors provides a full accounting for the electrical power put
into the motor:

IV = τω + I2R+ LI
dI
dt

+ power dissipated due to friction, sound, etc.

Ignoring the last term, we have our simple motor model, written in terms of power:

IV = τω + I2R+ LI
dI
dt
. (25.2)
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From (25.2) we can derive all other relationships of interest. For example, dividing both sides
of (25.2) by I yields

V = τ

I
ω + IR+ L

dI
dt
. (25.3)

The ratio τ/I is a constant, an expression of the Lorentz force law for the particular motor
design. This constant, relating current to torque, is called the torque constant kt. The torque
constant is one of the most important properties of the motor:

kt = τ

I
or τ = ktI. (25.4)

The SI units of kt are Nm/A. (In this chapter, we only use SI units, but you should
be aware that many different units are used by different manufacturers, as on the
speed-torque curve and data sheet in Figure 25.16 in the Exercises.) Equation (25.3) also
shows that the SI units for kt can be written equivalently as Vs/rad, or simply Vs.
When using these units, we sometimes call the motor constant the electrical constant ke. The
inverse is sometimes called the speed constant. You should recognize that these terms
all refer to the same property of the motor. For consistency, we usually refer to the torque
constant kt.

We now express the motor model in terms of voltage as

V = ktω + IR+ L
dI
dt
. (25.5)

You should remember, or be able to quickly derive, the power equation (25.2), the torque
constant (25.4), and the voltage equation (25.5).

The term ktω, with units of voltage, is called the back-emf, where emf is short for
electromotive force. We could also call this “back-voltage.” Back-emf is the voltage generated
by a spinning motor to “oppose” the input voltage generating the motion. For example,
assume that the motor’s terminals are not connected to anything (open circuit). Then I = 0
and dI

dt = 0, so (25.5) reduces to

V = ktω.

This equation indicates that back-driving the motor (e.g., spinning it by hand) will generate a
voltage at the terminals. If we were to connect a capacitor across the motor terminals, then
spinning the motor by hand would charge the capacitor, storing some of the mechanical
energy we put in as electrical energy in the capacitor. In this situation, the motor acts as a
generator, converting mechanical energy to electrical energy.

The existence of this back-emf term also means that if we put a constant voltage V across a
free-spinning frictionless motor (i.e., the motor shaft is not connected to anything), after some
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time it will reach a constant speed V/kt. At this speed, by (25.5), the current I drops to zero,
meaning there is no more torque τ to accelerate the motor. This happens because as the motor
accelerates, the back-emf increases, countering the applied voltage until no current flows (and
hence there is no torque or acceleration).

25.3 The Speed-Torque Curve

Consider a motor spinning a boat’s propeller at constant velocity. The torque τ provided by
the motor can be written

τ = τfric + τpushing water,

where τfric is the torque the motor has to generate to overcome friction and begin to spin,
while τpushing water is the torque needed for the propeller to displace water when the motor is
spinning at velocity ω. In this section we assume τfric = 0, so τ = τpushing water in this
example. In Section 25.4 we consider nonzero friction.

For a motor spinning at constant speed ω and providing constant torque τ (as in the propeller
example above), the current I is constant and therefore dI/dt = 0. Under these assumptions,
(25.5) reduces to

V = ktω + IR. (25.6)

Using the definition of the torque constant, we get the equivalent form

ω = 1
kt
V − R

k2t
τ . (25.7)

Equation (25.7) gives ω as a linear function of τ for a given constant V . This line, of
slope −R/k2t , is called the speed-torque curve for the voltage V .

The speed-torque curve plots all the possible constant-current operating conditions with
voltage V across the motor. Assuming friction torque is zero, the line intercepts the τ = 0
axis at

ω0 = V/kt = no load speed.

The line intercepts the ω = 0 axis at

τstall = ktV
R

= Stall torque.

At the no-load condition, τ = I = 0; the motor rotates at maximum speed with no current or
torque. At the stall condition, the shaft is blocked from rotating, and the current
(Istall = τstall/kt = V/R) and output torque are maximized due to the lack of back-emf. Which
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point along the speed-torque curve the motor actually operates at is determined by the load
attached to the motor shaft.

An example speed-torque curve is shown in Figure 25.8. This motor has ω0 = 500 rad/s and
τstall = 0.1067 Nm for a nominal voltage of Vnom = 12 V. The operating region is any point
below the speed-torque curve, corresponding to voltages less than or equal to 12 V. If the
motor is operated at a different voltage cVnom, the intercepts of the speed-torque curve are
linearly scaled to cω0 and cτstall.

Imagine squeezing the shaft of a motor powered by a voltage V and spinning at a constant
velocity. Your hand is applying a small torque to the shaft. Since the motor is not accelerating
and we are neglecting friction in the motor, the torque created by the motor’s coils must be
equal and opposite the torque applied by your hand. Thus the motor operates at a specific
point on the speed-torque curve. If you slowly squeeze the shaft harder, increasing the torque
you apply to the rotor, the motor will slow down and increase the torque it applies, to balance
your hand’s torque. Assuming the motor’s current changes slowly (i.e., LdI/dt is negligible),
then the operating point of the motor moves down and to the right on the speed-torque curve
as you increase your squeeze force. When you squeeze hard enough that the motor can no
longer move, the operating point is at the stall condition, the bottom-right point on the
speed-torque curve.

The speed-torque curve corresponds to constant V , but not to constant input power Pin = IV .
The current I is linear with τ , so the input electrical power increases linearly with τ . The
output mechanical power is Pout = τω, and the efficiency in converting electrical to
mechanical power is η = Pout/Pin = τω/IV . We return to efficiency in Section 25.4.
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Figure 25.8
A speed-torque curve. Many speed-torque curves use rpm for speed, but we prefer SI units.
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To find the point on the speed-torque curve that maximizes the mechanical output power, we
can write points on the curve as (τ ,ω) = (cτstall, (1 − c)ω0) for 0 ≤ c ≤ 1, so the output
power is expressed as

Pout = τω = (c− c2)τstallω0,

and the value of c that maximizes the power output is found by solving

d
dc

(
(c− c2)τstallω0

)
= (1 − 2c)τstallω0 = 0 → c = 1

2
.

Thus the mechanical output power is maximized at τ = τstall/2 and ω = ω0/2. This maximum
output power is

Pmax =
(
1
2
τstall

)(
1
2
ω0

)
= 1

4
τstallω0.

See Figure 25.9.

Motor current is proportional to motor torque, so operating at high torques means large coil
heating power loss I2R, sometimes called ohmic heating. For that reason, motor manufacturers
specify a maximum continuous current Icont, the largest continuous current such that the coils’
steady-state temperature remains below a critical point.1 The maximum continuous current
has a corresponding maximum continuous torque τcont. Points to the left of this torque and
under the speed-torque curve are called the continuous operating region. The motor can be

1
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ω0

τstall

Pmax = 1
4τstall ω0
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Figure 25.9
The quadratic mechanical power plot P = τω plotted alongside the speed-torque curve. The area of

the speed-torque rectangle below and to the left of the operating point is the mechanical power.

1 The maximum continuous current depends on thermal properties governing how fast coil heat can be transferred
to the environment. This depends on the environment temperature, typically considered to be room temperature.
The maximum continuous current can be increased by cooling the motor.
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operated intermittently outside of the continuous operating region, in the intermittent
operating region, provided the motor is allowed to cool sufficiently between uses in this
region. Motors are commonly rated with a nominal voltage that places the maximum
mechanical power operating point (at τstall/2) outside the continuous operating region.

Given thermal characteristics of the motor of Figure 25.8, the speed-torque curve can be
refined to Figure 25.10, showing the continuous and intermittent operating regions of the
motor. The point on the speed-torque curve at τcont is the rated or nominal operating point,
and the mechanical power output at this point is called the motor’s power rating. For the motor
of Figure 25.10, τcont = 26.67 mNm, which occurs at ω = 375 rad/s, for a power rating of

0.02667 Nm × 375 rad/s = 10.0 W.

Figure 25.10 also shows the constant output power hyperbola τω = 10 W passing through the
nominal operating point.

The speed-torque curve for a motor is drawn based on a nominal voltage. This is a “safe”
voltage that the manufacturer recommends. It is possible to overvolt the motor, however,
provided it is not continuously operated beyond the maximum continuous current. A motor
also may have a specified maximum permissible speed ωmax, which creates a horizontal line
constraint on the permissible operating range. This speed is determined by allowable brush
wear, or possibly properties of the shaft bearings, and it is typically larger than the no-load
speed ω0. The shaft and bearings may also have a maximum torque rating τmax > τstall. These

0 20 40 60 80 100 120
0

200

400

600

Nominal operating point

Continuous
operating
region

Intermittent
operating region

10 W

τstallτcont

ω0

Torque (mNm)

Sp
ee

d
(r

ad
/s

)

Figure 25.10
The continuous operating region (under the speed-torque curve and left of τcont) and the

intermittent operating region (the rest of the area under the speed-torque curve). The 10 W
mechanical power hyperbola is indicated, including the nominal operating point at τcont.
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Figure 25.11
It is possible to exceed the nominal operating voltage, provided the constraints ω < ωmax and

τ < τmax are respected and τcont is only intermittently exceeded.

limits allow the definition of overvolted continuous and intermittent operating regions, as
shown in Figure 25.11.

25.4 Friction and Motor Efficiency

Until now we have been assuming that the full torque τ = ktI generated by the windings is
available at the output shaft. In practice, some torque is lost due to friction at the brushes and
the shaft bearings. Let us use a simple model of friction: assume a torque τ ≥ τfric > 0 must
be generated to overcome friction and initiate motion, and any torque beyond τfric is available
at the output shaft regardless of the motor speed (e.g., no friction that depends on speed
magnitude). When the motor is spinning, the torque available at the output shaft is

τout = τ − τfric.

Nonzero friction results in a nonzero no-load current I0 = τfric/kt and a no-load speed ω0 less
than V/kt. The speed-torque curve of Figure 25.11 is modified to show a small friction torque
in Figure 25.12. The torque actually delivered to the load is reduced by τfric.

Taking friction into account, the motor’s efficiency in converting electrical to mechanical
power is

η = τoutω

IV
. (25.8)
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Figure 25.12
The speed-torque curve of Figure 25.11 modified to show a nonzero friction torque τfric and the

resulting reduced no-load speed ω0.
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Figure 25.13
The speed-torque curve for a motor and two efficiency plots, one for high friction torque (case 1)
and one for low friction torque (case 2). For each case, efficiency is zero for all τ below the level

needed to overcome friction. The low friction version of the motor (case 2) achieves a higher
maximum efficiency, at a higher speed and lower torque, than the high friction version (case 1).

The efficiency depends on the operating point on the speed-torque curve, and it is zero when
either τout or ω is zero, as there is no mechanical power output. Maximum efficiency generally
occurs at high speed and low torque, approaching the limit of 100% efficiency at τ = τout = 0
and ω = ω0 as τfric approaches zero. As an example, Figure 25.13 plots efficiency vs. torque
for the same motor with two different values of τfric. Lower friction results in a higher
maximum efficiency ηmax, occurring at a higher speed and lower torque.
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To derive the maximally efficient operating point and the maximum efficiency ηmax for a given
motor, we can express the motor current as

I = I0 + Ia,

where I0 is the no-load current necessary to overcome friction and Ia is the added current to
create torque to drive the load. Recognizing that τout = ktIa, V = IstallR, and
ω = R(Istall − Ia − I0)/kt by the linearity of the speed-torque curve, we can rewrite the
efficiency (25.8) as

η = Ia(Istall − I0 − Ia)
(I0 + Ia)Istall

. (25.9)

To find the operating point I∗a maximizing η, we solve dη/dIa = 0 for I∗a , and recognizing that
I0 and Istall are nonnegative, the solution is

I∗a =
√
IstallI0 − I0.

In other words, as the no-load current I0 goes to zero, the maximally efficient current (and
therefore τ ) goes to zero.

Plugging I∗a into (25.9), we find

ηmax =
(

1 −
√

I0
Istall

)2

.

This answer has the form we would expect: maximum efficiency approaches 100% as the
friction torque approaches zero, and maximum efficiency approaches 0% as the friction torque
approaches the stall torque.

Choosing an operating point that maximizes motor efficiency can be important when trying to
maximize battery life in mobile applications. For the majority of analysis and motor selection
problems, however, ignoring friction is a good first approximation.

25.5 Motor Windings and the Motor Constant

It is possible to build two different versions of the same motor by simply changing the
windings while keeping everything else the same. For example, imagine a coil of resistance R
with N loops of wire of cross-sectional area A. The coil carries a current I and therefore has a
voltage drop IR. Now we replace that coil with a new coil with N/c loops of wire with
cross-sectional area cA. This preserves the volume occupied by the coil, fitting in the same
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form factor with similar thermal properties. Without loss of generality, let us assume that the
new coil has fewer loops and uses thicker wire (c > 1).

The resistance of the new coil is reduced to R/c2 (a factor of c due to the shorter coil and
another factor of c due to the thicker wire). To keep the torque of the motor the same, the new
coil would have to carry a larger current cI to make up for the fewer loops, so that the current
times the pathlength through the magnetic field is unchanged. The voltage drop across the new
coil is (cI)(R/c2) = IR/c.

Replacing the coils allows us to create two versions of the motor: a many-loop, thin wire
version that operates at low current and high voltage, and a fewer-loop, thick wire version that
operates at high current and low voltage. Since the two motors create the same torque with
different currents, they have different torque constants. Each motor has the same motor
constant km, however, where

km = τ√
I2R

= kt√
R

with units of Nm/
√
W. The motor constant defines the torque generated per square root

of the power dissipated by coil resistance. In the example above, the new coil dissipates
(cI)2(R/c2) = I2R power as heat, just as the original coil does, while generating the same
torque.

Figure 25.16 shows the data sheet for a motor that comes in several different versions, each
identical in every way except for the winding. Each version of the motor has a similar stall
torque and motor constant but different nominal voltage, resistance, and torque constant.

25.6 Other Motor Characteristics
Electrical time constant

When the motor is subject to a step in the voltage across it, the electrical time constant Te
measures the time it takes for the unloaded current to reach 63% of its final value. The motor’s
voltage equation is

V = ktω + IR+ L
dI
dt
.

Ignoring back-emf (because the motor speed does not change significantly over one electrical
time constant), assuming an initial current through the motor of I0, and an instantaneous drop
in the motor voltage to 0, we get the differential equation
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0 = I0R+ L
dI
dt

or

dI
dt

= −R
L
I0

with solution

I(t) = I0 e−tR/L = I0 e−t/Te .

The time constant of this first-order decay of current is the motor’s electrical time constant,
Te = L/R.

Mechanical time constant

When the motor is subject to a step voltage across it, the mechanical time constant Tm
measures the time it takes for the unloaded motor speed to reach 63% of its final value.
Beginning from the voltage equation

V = ktω + IR+ L
dI
dt
,

ignoring the inductive term, and assuming an initial speed ω0 at the moment the voltage drops
to zero, we get the differential equation

0 = IR+ ktω0 = R
kt

τ + ktω0 = JR
kt

dω
dt

+ ktω0,

where we used τ = Jdω/dt, where J is the inertia of the motor. We can rewrite this equation as

dω
dt

= − k2t
JR

ω0

with solution

ω(t) = ω0 e−t/Tm ,

with a time constant of Tm = JR/k2t . If the motor is attached to a load that increases the inertia
J, the mechanical time constant increases.
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Short-circuit damping

When the terminals of the motor are shorted together, the voltage equation (ignoring
inductance) becomes

0 = ktω + IR = ktω + τ

kt
R

or

τ = −Bω = −k2t
R

ω,

where B = k2t /R is the short-circuit damping. A spinning motor is slowed more quickly by
shorting its terminals together, compared to leaving the terminals open circuit, due to this
damping.

25.7 Motor Data Sheet

Motor manufacturers summarize motor properties described above in a speed-torque curve
and in a data sheet similar to the one in Figure 25.14. When you buy a motor second-hand or
surplus, you may need to measure these properties yourself. We will use all SI units, which is
not the case on most motor data sheets.

Many of these properties have been introduced already. Below we describe some methods for
estimating them.

Experimentally Characterizing a Brushed DC Motor

Given a mystery motor with an encoder, you can use a function generator, oscilloscope,
multimeter and perhaps some resistors and capacitors to estimate most of the important
properties of the motor. Below are some suggested methods; you may be able to devise others.

Terminal resistance R

You can measure R with a multimeter. The resistance may change as you rotate the shaft by
hand, as the brushes move to new positions on the commutator. You should record the
minimum resistance you can reliably find. A better choice, however, may be to measure the
current when the motor is stalled.

Torque constant kt

You can measure this by spinning the shaft of the motor, measuring the back-emf at the motor
terminals, and measuring the rotation rate ω using the encoder. Or, if friction losses are
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Motor Characteristic Symbol Value Units Comments
Terminal resistance R Ω Resistance of the motor windings. May change as

brushes slide over commutator segments. Increases
with heat.

Torque constant kt Nm/A The constant ratio of torque produced to current
through the motor.

Electrical constant ke Vs/rad Same numerical value as the torque constant (in SI
units). Also called voltage or back-emf constant.

Speed constant ks rad/(Vs) Inverse of electrical constant.
Motor constant km Nm/

√
W Torque produced per square root of power dissi-

pated by the coils.
Max continuous current Icont A Max continuous current without overheating.
Max continuous torque τcont Nm Max continuous torque without overheating.
Short-circuit damping B Nms/rad Not included in most data sheets, but useful for

motor braking (and haptics).
Terminal inductance L H Inductance due to the coils.

Electrical time constant Te s The time for the motor current to reach 63% of
its final value. Equal to L/R.

Rotor inertia J kgm2 Often given in units gcm2.
Mechanical time constant Tm s The time for the motor to go from rest to 63% of

its final speed under constant voltage and no load.
Equal to JR/kt2.

Friction Not included in most data sheets. See explanation.
Values at Nominal Voltage

Nominal voltage Vnom V Should be chosen so the no-load speed is safe for
brushes, commutator, and bearings.

Power rating P W Output power at the nominal operating point (max
continuous torque).

No-load speed ω0 rad/s Speed when no load and powered by Vnom. Usually
given in rpm (revs/min, sometimes m–1).

No-load current I0 A The current required to spin the motor at the
no-load condition. Nonzero because of friction
torque.

Stall current I A Same as starting current, Vnom/R.
Stall torque τstall Nm The torque achieved at the nominal voltage when

the motor is stalled.
Max mechanical power Pmax W The max mechanical power output at the nominal

voltage (including short-term operation).
Max efficiency η % The maximum efficiency achievable in converting

electrical to mechanical power.

Figure 25.14
A sample motor data sheet, with values to be filled in.

negligible, a good approximation is Vnom/ω0. This eliminates the need to spin the motor
externally.

Electrical constant ke

Identical to the torque constant in SI units. The torque constant kt is often expressed in units of
Nm/A or mNm/A or English units like oz-in/A, and often ke is given in V/rpm, but kt and ke
have identical numerical values when expressed in Nm/A and Vs/rad, respectively.
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Speed constant ks

Just the inverse of the electrical constant.

Motor constant km

The motor constant is calculated as km = kt/
√
R.

Max continuous current Icont

This is determined by thermal considerations, which are not easy to measure. It is typically
less than half the stall current.

Max continuous torque τcont

This is determined by thermal considerations, which are not easy to measure. It is typically
less than half the stall torque.

Short-circuit damping B

This is most easily calculated from estimates of R and kt: B = k2t /R.

Terminal inductance L

There are several ways to measure inductance. One approach is to add a capacitor in parallel
with the motor and measure the oscillation frequency of the resulting RLC circuit. For
example, you could build the circuit shown in Figure 25.15, where a good choice for C may be
0.01 or 0.1 µF. The motor acts as a resistor and inductor in series; back-emf will not be an
issue, because the motor will be powered by tiny currents at high frequency and therefore will
not move.

Motor

1 kW
1 kHz Square

wave

Scope

c

L

R

Figure 25.15
Using a capacitor to create an RLC circuit to measure motor inductance.
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Use a function generator to put a 1 kHz square wave between 0 and 5 V at the point indicated.
The 1 k& resistor limits the current from the function generator. Measure the voltage with an
oscilloscope where indicated. You should be able to see a decaying oscillatory response to the
square wave input when you choose the right scales on your scope. Measure the frequency of
the oscillatory response. Knowing C and that the natural frequency of an RLC circuit is
ωn = 1/

√
LC in rad/s, estimate L.

Let us think about why we see this response. Say the input to the circuit has been at 0 V for a
long time. Then your scope will also read 0 V. Now the input steps up to 5 V. After some time,
in steady state, the capacitor will be an open circuit and the inductor will be a closed circuit
(wire), so the voltage on the scope will settle to 5 V × (R/(1000 + R))—the two resistors in
the circuit set the final voltage. Right after the voltage step, however, all current goes to charge
the capacitor (as the zero current through the inductor cannot change discontinuously). If the
inductor continued to enforce zero current, the capacitor would charge to 5 V. As the voltage
across the capacitor grows, however, so does voltage across the inductor, and therefore so does
the rate of change of current that must flow through the inductor (by the relation
VL + VR = VC and the constitutive law VL = L dI/dt). Eventually the integral of this rate of
change dictates that all current is redirected to the inductor, and in fact the capacitor will have
to provide current to the inductor, discharging itself. As the voltage across the capacitor drops,
though, the voltage across the inductor will eventually become negative, and therefore the rate
of change of current through the inductor will become negative. And so on, to create the
oscillation. If R were large, i.e., if the circuit were heavily damped, the oscillation would die
quickly, but you should be able to see it.

Note that you are seeing a damped oscillation, so you are actually measuring a damped natural
frequency. But the damping is low if you are seeing at least a couple of cycles of oscillation,
so the damped natural frequency is nearly indistinguishable from the undamped natural
frequency.

Electrical time constant Te

The electrical time constant can be calculated from L and R as Te = L/R.

Rotor inertia J

The rotor inertia can be estimated from measurements of the mechanical time constant Tm, the
torque constant kt, and the resistance R. Alternatively, a ballpark estimate can be made based
on the mass of the motor, a guess at the portion of the mass that belongs to the spinning rotor,
a guess at the radius of the rotor, and a formula for the inertia of a uniform density cylinder.
Or, more simply, consult a data sheet for a motor of similar size and mass.
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Mechanical time constant Tm

The time constant can be measured by applying a constant voltage to the motor, measuring the
velocity, and determining the time it takes to reach 63% of final speed. Alternatively, you
could make a reasonable estimate of the rotor inertia J and calculate Tm = JR/k2t .

Friction

Friction torque arises from the brushes sliding on the commutator and the motor shaft
spinning in its bearings, and it may depend on external loads. A typical model of friction
includes both Coulomb friction and viscous friction, written

τfric = b0 sgn(ω) + b1ω,

where b0 is the Coulomb friction torque (sgn(ω) just returns the sign of ω) and b1 is a viscous
friction coefficient. At no load, τfric = ktI0. An estimate of each of b0 and b1 can be made by
running the motor at two different voltages with no load.

Nominal voltage Vnom

This is the specification you are most likely to know for an otherwise unknown motor. It is
sometimes printed right on the motor itself. This voltage is just a recommendation; the real
issue is to avoid overheating the motor or spinning it at speeds beyond the recommended value
for the brushes or bearings. Nominal voltage cannot be measured, but a typical no-load speed
for a brushed DC motor is between 3000 and 10,000 rpm, so the nominal voltage will often
give a no-load speed in this range.

Power rating P

The power rating is the mechanical power output at the max continuous torque.

No-load speed ω0

You can determine ω0 by measuring the unloaded motor speed when powered with the
nominal voltage. The amount that this is less than Vnom/kt can be attributed to friction
torque.

No-load current I0

You can determine I0 by using a multimeter in current measurement mode.
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Stall current Istall

Stall current is sometimes called starting current. You can estimate this using your estimate of
R. Since R may be difficult to measure with a multimeter, you can instead stall the motor shaft
and use your multimeter in current sensing mode, provided the multimeter can handle the
current.

Stall torque τstall

This can be obtained from kt and Istall.

Max mechanical power Pmax

The max mechanical power occurs at 1
2τstall and

1
2ω0. For most motor data sheets, the max

mechanical power occurs outside the continuous operation region.

Max efficiency ηmax

Efficiency is defined as the power out divided by the power in, τoutω/(IV). The wasted power
is due to coil heating and friction losses. Maximum efficiency can be estimated using the
no-load current I0 and the stall current Istall, as discussed in Section 25.4.

25.8 Chapter Summary
• The Lorentz force law says that a current-carrying conductor in a constant magnetic field

feels a net force according to

F = ℓI × B,

where ℓ is the length of the conductor in the field, I is the current vector, and B is the
(constant) magnetic field vector.

• A brushed DC motor consists of multiple current-carrying coils attached to a rotor, and
magnets on the stator to create a magnetic field. Current is transmitted to the coils by two
brushes connected to the stator sliding over a commutator ring attached to the rotor. Each
coil attaches to two different commutator segments.

• The voltage across a motor’s terminals can be expressed as

V = ktω + IR+ L
dI
dt
,

where kt is the torque constant and ktω is the back-emf.
• The speed-torque curve is obtained by plotting the steady-state speed as a function of

torque for a given motor voltage V ,
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ω = 1
kt
V − R

k2t
τ .

The maximum speed (at τ = 0) is called the no-load speed ω0 and the maximum torque
(at ω = 0) is called the stall torque τstall.

• The continuous operating region of a motor is defined by the maximum current I
the motor coils can conduct continuously without overheating due to I2R power
dissipation.

• The mechanical power τω delivered by a motor is maximized at half the stall torque and
half the no-load speed, Pmax = 1

4τstallω0.
• A motor’s electrical time constant Te = L/R is the time needed for current to reach 63%

of its final value in response to a step input in voltage.
• A motor’s mechanical time constant Tm = JR/k2t is the time needed for the motor speed to

reach 63% of its final value in response to a step change in voltage.

25.9 Exercises
1. Assume a DC motor with a five-segment commutator. Each segment covers 70◦ of the

circumference of the commutator circle. The two brushes are positioned at opposite ends
of the commutator circle, and each makes contact with 10◦ of the commutator circle.
a. How many separate coils does this motor likely have? Explain.
b. Choose one of the motor coils. As the rotor rotates 360◦, what is the total angle over

which that coil is energized? (For example, an answer of 360◦ means that the coil is
energized at all angles; an answer of 180◦ means that the coil is energized at half of
the motor positions.)

2. Figure 25.16 gives the data sheet for the 10 W Maxon RE 25 motor. The columns
correspond to different windings.
a. Draw the speed-torque curve for the 12 V version of the motor, indicating the no-load

speed (in rad/s), the stall torque, the nominal operating point, and the rated power of
the motor.

b. Explain why the torque constant is different for the different versions of the motor.
c. Using other entries in the table, calculate the maximum efficiency ηmax of the 12 V

motor and compare to the value listed.
d. Calculate the electrical time constant Te of the 12 V motor. What is the ratio to the

mechanical time constant Tm?
e. Calculate the short-circuit damping B for the 12 V motor.
f. Calculate the motor constant km for the 12 V motor.
g. How many commutator segments do these motors have?
h. Which versions of these motors are likely to be in stock?
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Article Numbers

Specifications Operating Range

maxon Modular System

Motor Data

Figure 25.16
The data sheet for the Maxon RE 25 motor. The columns correspond to different windings for

different nominal voltages. (Image courtesy of Maxon Precision Motors. Motor data is subject to
change at any time; consult maxonmotorusa.com for the latest data sheets.)

i. (Optional) Motor manufacturers may specify slightly different continuous and
intermittent operating regions than the ones described in this chapter. For example, the
limit of the continuous operating region is not quite vertical in the speed-torque plot
of Figure 25.16. Come up with a possible explanation, perhaps using online resources.

3. There are 21 entries on the motor data sheet from Section 25.7. Let us assume zero
friction, so we ignore the last entry. To avoid thermal tests, you may also assume a
maximum continuous power that the motor coils can dissipate as heat before overheating.
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Of the 20 remaining entries, under the assumption of zero friction, how many independent
entries are there? That is, what is the minimum number N of entries you need to be able to
fill in the rest of the entries? Give a set of N independent entries from which you can derive
the other 20 − N dependent entries. For each of the 20 − N dependent entries, give the
equation in terms of the N independent entries. For example, Vnom and R will be two of the
N independent entries, from which we can calculate the dependent entry Istall = Vnom/R.

4. This exercise is an experimental characterization of a motor. For this exercise, you need a
low-power motor (preferably without a gearhead to avoid high friction) with an encoder.
You also need a multimeter, oscilloscope, and a power source for the encoder and motor.
Make sure the power source for the motor can provide enough current when the motor is
stalled. A low-voltage battery pack is a good choice.
a. Spin the motor shaft by hand. Get a feel for the rotor inertia and friction. Try to spin

the shaft fast enough that it continues spinning briefly after you let go of it.
b. Now short the motor terminals by electrically connecting them. Spin again by hand,

and try to spin the shaft fast enough that it continues spinning briefly after you let go
of it. Do you notice the short-circuit damping?

c. Try measuring your motor’s resistance using your multimeter. It may vary with the
angle of the shaft, and it may not be easy to get a steady reading. What is the
minimum value you can get reliably? To double-check your answer, you can power
your motor and use your multimeter to measure the current as you stall the motor’s
shaft by hand.

d. Attach one of your motor’s terminals to scope ground and the other to a scope input.
Spin the motor shaft by hand and observe the motor’s back-emf.

e. Power the motor’s encoder, attach the A and B encoder channels to your oscilloscope,
and make sure the encoder ground and scope ground are connected together. Do not
power the motor. (The motor inputs should be disconnected from anything.) Spin the
motor shaft by hand and observe the encoder pulses, including their relative phase.

f. Now power your motor with a low-voltage battery pack. Given the number of lines
per revolution of the encoder, and the rate of the encoder pulses you observe on your
scope, calculate the motor’s no-load speed for the voltage you are using.

g. Work with a partner. Couple your two motor shafts together by tape or flexible tubing.
(This may only work if your motor has no gearhead.) Now plug one terminal of one
of the motors (we shall call it the passivemotor) into one channel of a scope, and plug
the other terminal of the passive motor into GND of the same scope. Now power the
other motor (the driving motor) with a battery pack so that both motors spin. Measure
the speed of the passive motor by looking at its encoder count rate on your scope.
Also measure its back-emf. With this information, calculate the passive motor’s
torque constant kt.

5. Using techniques discussed in this chapter, or techniques you come up with on your own,
create a data sheet with all 21 entries for your nominal voltage. Indicate how you
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calculated the entry. (Did you do an experiment for it? Did you calculate it from other
entries? Or did you estimate by more than one method to cross-check your answer?) For
the friction entry, you can assume Coulomb friction only—the friction torque opposes the
rotation direction (b0 ̸= 0), but is independent of the speed of rotation (b1 = 0). For your
measurement of inductance, turn in an image of the scope trace you used to estimate ωn
and L, and indicate the value of C that you used.
If there are any entries you are unable to estimate experimentally, approximate, or
calculate from other values, simply say so and leave that entry blank.

6. Based on your data sheet from above, draw the speed-torque curves described below, and
answer the associated questions. Do not do any experiments for this exercise; just
extrapolate your previous results.
a. Draw the speed-torque curve for your motor. Indicate the stall torque and no-load

speed. Assume a maximum power the motor coils can dissipate continuously before
overheating and indicate the continuous operating regime. Given this, what is the
power rating P for this motor? What is the max mechanical power Pmax?

b. Draw the speed-torque curve for your motor assuming a nominal voltage four times
larger than in Exercise 6a. Indicate the stall torque and no-load speed. What is the
max mechanical power Pmax?

7. You are choosing a motor for the last joint of a new direct-drive robot arm design.
(A direct-drive robot does not use gearheads on the motors, creating high speeds with low
friction.) Since it is the last joint of the robot, and it has to be carried by all the other
joints, you want it to be as light as possible. From the line of motors you are considering
from your favorite motor manufacturer, you know that the mass increases with the motor’s
power rating. Therefore you are looking for the lowest power motor that works for your
specifications. Your specifications are that the motor should have a stall torque of at least
0.1 Nm, should be able to rotate at least 5 revolutions per second when providing
0.01 Nm, and the motor should be able to operate continuously while providing 0.02 Nm.
Which motor do you choose from Table 25.1? Give a justification for your answer.

8. The speed-torque curve of Figure 25.8 is drawn for the positive speed and positive torque
quadrant of the speed-torque plane. In this exercise, we will draw the motor’s operating
region for all four quadrants. The power supply used to drive the motor is 24 V, and
assume the H-bridge motor controller (discussed in Chapter 27) can use that power supply
to create any average voltage across the motor between −24 and 24 V. The motor’s
resistance is 1 & and the torque constant is 0.1 Nm/A. Assume the motor has zero friction.

a. Draw the four-quadrant speed-torque operating region for the motor assuming the
24 V power supply (and the H-bridge driver) has no limit on current. Indicate the
torque and speed values where the boundaries of the operating region intersect the
ω = 0 and τ = 0 axes. Assume there are no other speed or torque constraints on the
motor except for the one due to the 24 V limit of the power supply. (Hint: the
operating region is unbounded in both speed and torque!)
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Table 25.1: Motors to choose from
Assigned power rating W 3 10 20 90
Nominal voltage V 15 15 15 15
No load speed rpm 13,400 4980 9660 7180
No load current mA 36.8 21.8 60.8 247
Nominal speed rpm 10,400 3920 8430 6500
Max continuous torque mNm 2.31 28.2 20.5 73.1
Max continuous current mA 259 1010 1500 4000
Stall torque mNm 10.5 131 225 929
Stall current mA 1030 4570 15,800 47,800
Max efficiency % 65 87 82 83
Terminal resistance Ohm 14.6 3.28 0.952 0.314
Terminal inductance mH 0.486 0.353 0.088 0.085
Torque constant mNm/A 10.2 28.6 14.3 19.4
Speed constant rpm/V 932 334 670 491
Mechanical time constant ms 7.51 4.23 4.87 5.65
Rotor inertia gcm2 0.541 10.6 10.4 68.1
Max permissible speed rpm 16,000 5500 14,000 12,000
Cost USD 88 228 236 239

Note that sometimes the “Assigned power rating” is different from the mechanical power
output at the nominal operating point, for manufacturer-specific reasons. The meanings of the
other terms in the table are unambiguous.

b. Update the operating region with the constraint that the power supply can provide a
maximum current of 30 A. What is the maximum torque that can be generated using
this power supply, and what are the maximum and minimum motor speeds possible at
this maximum torque? What is the largest back-emf voltage that can be achieved?

c. Update the operating region with the constraint that the maximum recommended
speed for the motor brushes and shaft bearings is 250 rad/s.

d. Update the operating region with the constraint that the maximum recommended
torque at the motor shaft is 5 Nm.

e. Update the operating region to show the continuous operating region, assuming the
maximum continuous current is 10 A.

f. We typically think of a motor as consuming electrical power (IV > 0, or “motoring”)
and converting it to mechanical power, but it can also convert mechanical power to
electrical power (IV < 0, or “regenerating”). This occurs in electric car braking
systems, for example. Update the operating region to show the portion where the
motor is consuming electrical power and the portion where the motor is generating
electrical power.

Further Reading

Hughes, A., & Drury, B. (2013). Electric motors and drives: Fundamentals, types and applications (4th ed.).
Amsterdam: Elsevier.

Maxon DC motor RE 25, ø 25 mm, graphite brushes, 20 Watt. (2015). Maxon.
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APPENDIX A

A Crash Course in C

This appendix provides an introduction to C for readers with no C experience but some
experience in another programming language. It is not intended as a complete reference;
plenty of great C resources already exist and provide a more complete picture. This appendix
applies to C in general, not just C on the Microchip PIC32. We recommend that you start by
programming your computer so you can experiment with C without needing extra equipment
or complication.

A.1 Quick Start in C

To start with C, you need a computer, a text editor, and a C compiler. You use the text editor to
write your C program, a plain text file with a name ending with the extension .c (e.g.,
myprog.c). The C compiler converts this program into machine code that your computer can
execute. There are many free C compilers available; we recommend the gcc C compiler, which
is part of the GNU Compiler Collection (GCC, found at http://gcc.gnu.org). GCC is
available for Windows, Mac OS, and Linux. For Windows, you can download the GCC
collection in MinGW.1 If the installation asks you about what tools to install, make sure to
include the make tools. For Mac OS, you can download the full Xcode environment from the
Apple Developers website. This installation is multiple gigabytes; however, you can opt to
install only the “Command Line Tools for Xcode,” which is smaller and more than sufficient
for getting started with C (and for this appendix).

Many C installations come with an Integrated Development Environment (IDE) complete with
text editor, menus, and graphical tools to assist you with your programming projects. Every
IDE is different, and what we cover in this appendix does not require a sophisticated IDE. We
therefore use only command line tools, meaning that we initiate compilation and run the
program by typing at the command line. In Mac OS, the command line can be accessed from
the Terminal program. In Windows, you can access the command line by searching for cmd or
command prompt. Linux users should run a shell such as bash.

1 You are also welcome to use Visual C from Microsoft. The command line compile command will look a bit
different than what you see in this appendix.

515
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To use the command line, you must learn some command line instructions. The Mac operating
system is built on top of Unix, which is similar to Linux, so Mac/Unix/Linux use the same
syntax. Windows uses slightly different commands. See the table of a few useful commands
below. You can find more information on how to use these commands as well as others by
searching for command line commands in Unix, Linux, or Windows.

Function Mac/Unix/Linux Windows
Show current directory pwd cd
List directory contents ls dir

Make subdirectory newdir mkdir newdir mkdir newdir
Change to subdirectory newdir cd newdir cd newdir
Move “up” to parent directory cd .. cd ..

Copy file to filenew cp file filenew copy file filenew
Delete file file rm file del file

Delete directory dir rmdir dir rmdir dir
Help on using command cmd man cmd cmd /?

Following the long-established programming tradition, your first C program will simply print
“Hello world!” to the screen. Use a text editor to create the file HelloWorld.c:

#include <stdio.h>
int main(void) {

printf("Hello world!\n");
return 0;

}

Possible text editors include Notepad++ for Windows, TextWrangler for Mac OS, and Gedit
for Linux. You can also try vim or emacs, though they are not easy to get started with!
Whichever editor you use, you should save your file as plain text, not rich text or any other
formatted text.

To compile your program, navigate from the command line to the directory where the program
sits. Then, assuming your command prompt appears as >, type the following at the prompt:

> gcc HelloWorld.c -o HelloWorld

This command should create the executable file HelloWorld in the same directory. (The
argument after the -o output flag is the name of the executable file to be created from
HelloWorld.c.) Now, to execute the program, type
Windows: > HelloWorld

Linux/MacOS: > ./HelloWorld

For Linux/MacOS users, the “.” is shorthand for “current directory,” and the ./ tells your
computer to look in the current directory for HelloWorld. Windows implicitly searches the
current directory for executables, so you need not explicitly specify it.
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If you have succeeded in getting this far, your C installation works and you can proceed. If
not, you may need to get help from friends or the internet.

A.2 Overview

If you are familiar with a high-level language like MATLAB or Python, you may know about
loops, functions, and other programming constructs. You will see that although C’s syntax is
different, the same concepts translate to C. Rather than starting with basic loops, if statements,
and functions, we begin by focusing on important concepts that you must master in C but
which you probably have not dealt with in a language such as MATLAB or Python.

• Memory, addresses, and pointers. Variables are stored at particular addresses in
memory as bits (0’s and 1’s). In C, unlike in MATLAB or Python, it is often useful to
access a variable’s memory address. Special variables called pointers contain the address
of another variable and can be used to access the contents of that address. Although
powerful, pointers can also be dangerous; misusing them can cause all sorts of bugs,
which is why many higher-level languages forgo them completely.

• Data types. In MATLAB, for example, you can simply type a = 1; b = [1.2 3.1416];

c = [1 2; 3 4]; s = ’a string’. MATLAB determines that a is a scalar, b is a vector
with two elements, c is a 2× 2 matrix, and s is a string; automatically tracks the variable’s
type (e.g., a list of numbers for a vector or a list of characters for a string); and sets aside,
or allocates, memory to store them. In C, on the other hand, you must first define the
variable before you ever use it. To use a vector, for example, you must specify the number
and data type of its elements—integers or decimal numbers (floating point). The variable
definition tells the C compiler how much memory it needs to store the vector, the address
of each element, and how to interpret the bits of each element (as integers or floating point
numbers, for example).

• Compiling. MATLAB programs are typically interpreted: the commands are converted to
machine code and executed while the program is running. C programs, on the other hand,
are compiled, i.e., converted to machine-code in advance. This process consists of several
steps whose purpose is to turn your C program into machine-code before it ever runs. The
compiler can identify some errors and warn you about other questionable code. Compiled
code typically runs faster than interpreted code, since the translation to machine code is
done in advance.2

Each of these concepts is described in Section A.3 without going into detail on C syntax. In
Section A.4 we look at sample programs to introduce syntax, then offer more detailed
explanations.

2 The distinction between compiled and interpreted programs is narrowing: many interpreted languages are
actually just-in-time (JIT) compiled, that is program chunks are compiled in advance right before they are
needed.
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A.3 Important Concepts in C

We begin our discussion of C with this caveat:

C consists of an evolving set of standards for a programming language, and any specific C
installation is an “implementation” of C. While C standards require certain behavior from all
implementations, some details are implementation-dependent. For example, the number of
bytes used for some data types is non-standard. We sometimes ignore these details in favor of
clarity and succinctness. Platform- and compiler-specific results are from gcc 4.9.2 running on
an x86_64 compatible processor.

A.3.1 Data Types

Binary and hexadecimal

On a computer, programs and data are represented by sequences of 0’s and 1’s. A 0 or 1 may
be represented by two different voltages (low and high) held and controlled by a logic circuit,
for example. Each of these units of memory is called a bit.

A sequence of bits may be interpreted as a base-2 or binary number, just as a sequence of
digits in the range 0 to 9 is commonly treated as a base-10 or decimal number.3 In the decimal
numbering system, a multi-digit number like 793 is interpreted as 7 ∗ 102 + 9 ∗ 101 + 3 ∗ 100;
the rightmost column is the 100 (or 1’s) column, the next column to the left is the 101 (or 10’s)
column, the next column to the left is the 102 (or 100’s) column, and so on. Similarly, the
rightmost column of a binary number is the 20 column, the next column to the left is the 21

column, etc. Converting the binary number 00111011 to its decimal representation, we get

0 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 32+ 16+ 8+ 2+ 1 = 59.

The leftmost digit in a multi-digit number is called the most significant digit, and the
rightmost digit, corresponding to the 1’s column, is called the least significant digit. For
binary representations, these are often called the most significant bit (msb) and least
significant bit (lsb), respectively.

We specify that a sequence of numbers is base-2 by writing it as 001110112 or 0b00111011,
where the b stands for “binary.”

To convert a base-10 number x to binary:
1. Initialize the binary result to all zeros and k to a large integer, such that 2k is known to be

larger than x.

3 Bit is a portmanteau of binary and digit.
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2. If 2k ≤ x, place a 1 in the 2k column of the binary number and set x to x− 2k.
3. If x = 0 or k = 0, we are finished. Else set k to k − 1 and go to line 2.

An alternative base-10 to binary conversion algorithm builds the binary number from the
rightmost to leftmost bit.

1. Divide x by 2.
2. The next digit (from right to left) is the remainder (so 1 if x is odd, 0 if x is even).
3. x= the quotient. (So if x were 5, the new x is 2, and if x were 190 the new x is 95).
4. Repeat process until x= 0.

Compared to base-10, base-2 has a closer connection to actual hardware. Binary can be
inconvenient for human reading and writing, however, due to the large number of digits.
Therefore we often group four binary digits together (taking values 0b0000 to 0b1111, or 0 to
15 in base-10) and represent them with a single character using the numbers 0 to 9 or the
letters A to F. This base-16 representation is called hexadecimal or hex for short:Thus we can

base-2 (binary) base-16 (hex) base-10 (decimal) base-2 (binary) base-16 (hex) base-10 (decimal)
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

write the eight-digit binary number 0b00111011, or 0011 1011, more succinctly in hex as 3B, or
3B16 or 0x3B to clarify that it is a hex number. The corresponding decimal number is
3 ∗ 161 + 11 ∗ 160 = 59.

Bits, bytes, and data types

Bits of memory are grouped together in groups of eight called bytes. A byte can be written in
binary or hexadecimal (e.g., 0b00111011 or 0x3B), and can represent values between 0 and
28 − 1 = 255. Sometimes the four bits represented by a single hex digit are referred to as a
nibble. (Get it?)

A word is a grouping of multiple bytes. The number of bytes in a word depends on the
processor, but four-byte words are common, as with the PIC32. A word 01001101 11111010

10000011 11000111 in binary can be written in hexadecimal as 0x4DFA83C7. The most
significant byte (MSB) is the leftmost byte, 0x4D in this case, and the least significant byte
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(LSB) is the rightmost byte 0xC7. The msb is the leftmost bit of the MSB, a 0 in this case, and
the lsb is the rightmost bit of the LSB, a 1 in this case.

A byte is the smallest unit of memory that has its own address. The address of the byte is a
number that represents the byte’s location in memory. Suppose your computer has 4 gigabytes
(GB), or 4 ×230 = 232 bytes, of RAM.4 Then to find the value stored in a particular byte, you
need at least 32 binary digits (8 hex digits or 4 bytes) to specify the address.

An example showing the first eight addresses in memory is given below. Here we show the
lowest address on the right, but we could have made the opposite choice.

    7           6           5           4           3           2           1           0        Address

11001101    00100111    01110001    01010111    01010011    00011110    10111011    01100010      Value
...

Assume that the byte at address 4 is part of the representation of a variable. Do these 0’s and
1’s represent an integer, or part of an integer? A number with a fractional component?
Something else?

The answer lies in the type of the variable at that address. In C, before you use a variable, you
must define it and its type, telling the compiler how many bytes to allocate for the variable (its
size) and how to interpret the bits.5

The most common data types come in two flavors: integers and floating point numbers
(numbers with a decimal point). Of the integers, the two most common types are char, often
used to represent keyboard characters, and int.6 Of the floating point numbers, the two most
common types are float and double. As we will see shortly, a char uses 1 byte and an
int usually uses 4, so two possible interpretations of the data held in the eight memory
addresses could be

    7           6           5           4           3           2           1           0        Address

11001101    00100111    01110001    01010111    01010011    00011110    10111011    01100010      Value

int char

...

4 In common usage, a kilobyte (KB) is 210 = 1024 bytes, a megabyte (MB) is 220 = 1, 048, 576 bytes, a gigabyte
is 230 = 1, 073, 741, 824 bytes, and a terabyte (TB) is 240 = 1, 099, 511, 627, 776 bytes. To remove confusion
with the common SI prefixes that use powers of 10 instead of powers of 2, these are sometimes referred to
instead as kibibyte, mebibyte, gibibyte, and tebibyte, where the “bi” refers to “binary.”

5 In C you can declare or define a variable. They use similar syntax, but a declaration simply gives the name and
the type of the variable, while a definition also allocates the memory to hold it. We avoid using the distinction for
now and just call everything a definition.

6 char is derived from the word “character.” People pronounce char variously as “car” (as in “driving the car”),
“care” (a shortening of “character”), and “char” (as in charcoal), and some just punt and say “character.”
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where byte 0 is used to represent a char and bytes 4-7 are used to represent an int, or

    7           6           5           4           3           2           1           0        Address

11001101    00100111    01110001    01010111    01010011    00011110    10111011    01100010      Value
...

char int

where bytes 0-3 are used to represent an int and byte 4 represents a char. Fortunately we do
not usually have to worry about how variables are packed into memory.

Below we describe the common data types. Although the number of bytes used for each type
is not the same for every processor, the numbers given are common on modern computers.
(Differences for the PIC32 are noted in Table A.1.) Example syntax for defining variables is
also given. Note that most C statements end with a semicolon.

char
Example definition:
char ch;

This syntax defines a variable named ch to be of type char. chars are the smallest data type,
using only one byte. They are often interpreted according to the “ASCII table” (pronounced
“ask-key”), the American Standard Code for Information Interchange, which maps the values
0 to 127 to letters, numbers, and other characters (Figure A.1). (The values 128 to 255 map to
an “extended” ASCII table.) For example, the values 48 to 57 map to the characters ’0’ to ’9’,
65 to 90 map to the uppercase letters ’A’ to ’Z’, and 97 to 122 map to the lowercase letters ’a’
to ’z’. The assignments

ch = ’a’;

and

ch = 97;

are equivalent, as C equates characters inside single quotation marks with their ASCII table
numerical value.

Depending on the C implementation, char may be treated by default as unsigned, i.e., taking
values from 0 to 255, or signed, taking values from −128 to 127. If you use the char to
represent a standard ASCII character, the distinction does not matter. If, however, you use the
char data type for integer math on small integers, you should use the specifier signed or
unsigned, as appropriate. For example, we could use the following definitions, where
everything after // is a comment:
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ASCII Table

0 NULL 16 DLE 32 space 48 0 64 @ 80 P 96 ‘ 112 p
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r
3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v
7 BELL 23 ETB 39 ’ 55 7 71 G 87 W 103 g 119 w
8 BACKSPACE 24 CAN 40 ( 56 8 72 H 88 X 104 h 120 x
9 TAB 25 EM 41 ) 57 9 73 I 89 Y 105 i 121 y
10 NEWLINE 26 SUB 42 * 58 : 74 J 90 Z 106 j 122 z
11 VT 27 ESC 43 + 59 ; 75 K 91 [ 107 k 123 {
12 FORMFEED 28 FS 44 , 60 < 76 L 92 \ 108 l 124 |
13 RETURN 29 GS 45 - 61 = 77 M 93 ] 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 ˆ 110 n 126 ˜
15 SI 31 US 47 / 63 ? 79 O 95 _ 111 o 127 DEL

Figure A.1
The 128 standard ASCII characters. The first 32 characters are non-printing characters and the

names of most of them are obscure. Values 128 to 255 (or −128 to −1) correspond to the extended
ASCII table.

unsigned char ch1; // ch1 can take values 0 to 255
signed char ch2; // ch2 can take values -128 to 127

int (also known as signed int or signed)
Example definition:
int i,j;
signed int k;
signed n;

ints typically use four bytes (32 bits) and take values from −(231) to 231 − 1 (approximately
±2 billion). In the example syntax, each of i, j, k, and n are defined to be the same data type.

We can use specifiers to get the following integer data types: unsigned int or simply
unsigned, a four-byte integer taking nonnegative values from 0 to 232 − 1; short int, short,
signed short, or signed short int, all meaning the same thing: a two-byte integer taking
values from −(215) to 215 − 1 (i.e., −32, 768 to 32, 767); unsigned short int or unsigned
short, a two-byte integer taking nonnegative values from 0 to 216 − 1 (i.e., 0 to 65, 535); long
int, long, signed long, or signed long int, often consisting of eight bytes and representing
values from −(263) to 263 − 1; and unsigned long int or unsigned long, an eight-byte integer
taking nonnegative values from 0 to 264 − 1. A long long int data type may also be
available.
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float
Example definition:
float x;

This syntax defines the variable x to be a four-byte “single-precision” floating point number.

double
Example definition:
double x;

This syntax defines the variable x to be an eight-byte “double-precision” floating point
number. The data type long double (quadruple precision) may also be available, using 16
bytes (128 bits). These types allow the representation of larger numbers, to more decimal
places, than single-precision floats.

The sizes of the data types, both on a typical x86_64 computer with gcc and on the PIC32, are
summarized in Table A.1. Note the differences; C lets the compiler determine these details.
The C99 standard introduces data types such as int32_t (32-bit signed integer) and unit8_t

(8-bit unsigned integer) which are guaranteed to be the specified size across platforms and
compilers.

Table A.1: Data type sizes on two different machines

Type # bytes on x86_64 # bytes on PIC32
char 1 1

short int 2 2
int 4 4

long int 8 4
long long int 8 8

float 4 4
double 8 4

long double 16 8

Using the data types

If your program requires floating point calculations, you can choose between float, double,
and long double data types. The advantages of smaller types are that they use less memory
and computations with them (e.g., multiplies, square roots, etc.) may be faster. The advantage
of the larger types is the greater precision in the representation (e.g., smaller roundoff error).

If your program needs integer calculations, you should use integer rather than floating point
data types due to the higher speed of integer math and the ability to represent a larger range of
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integers for the same number of bytes.7 You can decide whether to use signed or unsigned
chars, or {signed/unsigned} {short/long} ints. The considerations are memory usage,
possibly the time of the computations, and whether the type can represent a sufficient range of
integer values.8 For example, if you decide to use unsigned chars for integer math to save
memory, and you add two of them with values 100 and 240 and assign to a third unsigned

char, you will get a result of 84 due to integer overflow. This example is illustrated in the
program overflow.c in Section A.4.

Representations of data types

A simple representation for integers is the sign and magnitude representation. In this
representation, the msb represents the sign of the number (0 = positive, 1 = negative), and the
remaining bits represent the magnitude of the number. The sign and magnitude method
represents zero twice (positive and negative zero) and is not often used.

A more common representation for integers is called two’s complement. This method also
uses the msb as a sign bit, but it only has a single representation of zero. The two’s
complement representation of an 8-bit char is given below:

binary signed char, base-10 unsigned char, base-10
00000000 0 0
00000001 1 1
00000010 2 2
00000011 3 3

...
01111111 127 127
10000000 −128 128
10000001 −127 129

...
11111111 −1 255

As the binary representation is incremented, the two’s complement (signed) interpretation of
the binary number also increments, until it “wraps around” to the most negative value when
the msb becomes 1 and all other bits are 0. The signed value then resumes incrementing until

7 Just as a four-byte float can represent fractional values that a four-byte int cannot, a four-byte int can
represent more integers than a four-byte float can. See the type conversion example program typecast.c in
Section A.4 for an example.

8 Computations with smaller data types are not always faster than with larger data types. It depends on the
architecture.
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it reaches −1 when all bits are 1. To negate a number using two’s complement arithmetic,
invert all of the bits and add one. For example, 1 (0b00000001) becomes −1 (0b11111111).
What happens when you perform the negation procedure on zero?

Another representation choice is endianness. The little-endian representation of an int stores
the least significant byte at the lowest address (ADDRESS) and the most significant byte at
highest (ADDRESS+3) (remember, little-lowest-least), while the big-endian convention is the
opposite, storing the most significant byte at the lowest address (ADDRESS) and the least
significant byte at the highest address (ADDRESS+3).9 The convention used depends on the
processor. For definiteness in this appendix, we always assume little-endian representation,
which is used by x86_64 (most likely your computer’s architecture) and the PIC32.

floats, doubles, and long doubles are commonly represented in the IEEE 754 floating point
format

value = (−1)s × b× 2c, (A.1)

where one bit is used to represent the sign (s = 0 for positive, s = 1 for negative);
m = 23/52/112 bits are used to represent the significand b (also known as the mantissa) in the
range 1 to 2 − 2−m; and n = 8/11/15 bits are used to represent the exponent c in the range
−(2n−1) + 2 to 2n−1 − 1, where n and m depend on whether the type uses 4/8/16 bytes.
Certain exponent and significand combinations are reserved for representing special cases like
positive and negative infinity and “not a number” (NaN).

Specifically for a four-byte float, the 32 bits of the IEEE 754 representation are

s︸︷︷︸
sign bit

e7 e6 e5 e4 e3 e2 e1 e0︸ ︷︷ ︸
8 bits of exponent c

f23 f22 . . . f2 f1︸ ︷︷ ︸
23 bits of significand b

.

The exponent c in (A.1) is equal to e− 127, where e is the unsigned integer value of the eight
bits of e, ranging from 0 to 28 − 1 = 255. (The values e = 0 and e = 255 are reserved to
represent special cases, like ±infinity and “not a number.”) The significand b in (A.1) is
given by

b = 1 +
23∑

i=1

fi 2−i,

so b ranges from 1 to 2 − 2−23.

9 These phrases come from Gulliver’s Travels by Jonathan Swift, where Lilliputians fanatically divide themselves
according to which end of a soft-boiled egg they crack open.
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See Exercise 14 to experiment with two’s complement and IEEE 754 floating point
representations.

Rarely do you need to worry about the specific bit-level representation of the different data
types: endianness, two’s complement, IEEE 754, etc. You tell the compiler to store values and
retrieve values, and it handles implementing the representations.

A.3.2 Memory, Addresses, and Pointers

Consider the following C syntax:

int i;
int *ip;

These definitions may appear to define the variables i and *ip of type int; however, the
character * cannot be part of a variable name. The variable name is actually ip, and the special
character * means that ip is a pointer to something of type int. Pointers store the address of
another variable; in other words, they “point” to another variable. We often use the words
“address” and “pointer” interchangeably.

When the compiler sees the definition int i, it allocates four bytes of memory to hold the
integer i. When the compiler sees the definition int *ip, it creates the variable ip and
allocates to it whatever amount of memory is needed to hold an address, a platform-dependent
quantity.10 The compiler also remembers the data type that ip points to, int in this case, so
when you use ip in a context that requires a pointer to a different data type, the compiler may
generate a warning or an error. Technically, the type of ip is “pointer to type int.”

Important! Defining a pointer only allocates memory to hold the pointer. It does not allocate
memory for a pointee variable to be pointed at. Also, simply defining a pointer does not initialize
it to point to anything valid. Do not use pointers without explicitly initializing them!

When we want the address of a variable, we apply the address (or reference) operator to the
variable, which returns a pointer to the variable (its address). In C, the address operator is
written &. Thus the following command assigns the address of i to the pointer ip:

ip = &i; // ip now holds the address of i

10 When computers switched from the 32-bit x86 to the 64-bit x86_64 architecture, code that relied on pointers
being 32 bits long were in trouble; x86_64 uses 64-bit long pointers!
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The address operator always returns the lowest address of a multi-byte type. For example, if
the four-byte int i occupies addresses 0x0004 to 0x0007 in memory, &i will return 0x0004.11

If we have a pointer (an address) and we want the contents at that address, we apply the
dereference operator to the pointer. In C, the dereference operator is written *. Thus the
following command stores the value at the address pointed to by ip in i:

i = *ip; // i now holds the contents at the address ip

However, you should never dereference a pointer until it has been initialized to point to
something using a statement such as ip = &i.

As an analogy, consider the pages of a book. A page number can be considered a pointer,
while the text on the page can be considered the contents of a variable. So the notation &text

would return the page number (pointer or address) of the text, while *page_number would
return the text on that page (but only after page_number is initialized to point at a page of text).

Even though we are focusing on the concept of pointers, and not C syntax, let us look at some
sample C code, remembering that everything after // on the same line is a comment:

int i,j; // define i, j as type int
int *ip; // define ip as type "pointer to type int"
ip = &i; // set ip to the address of i (& "references" i)
i = 100; // put the value 100 in the location allocated by the compiler for i
j = *ip; // set j to the contents of the address ip (* dereferences ip),

// i.e., 100
j = j+2; // add 2 to j, making j equal to 102
i = *(&j); // & references j to get the address, then * gets contents; i is set

// to 102
*(&j) = 200; // content of the address of j (j itself) is set to 200; i is unchanged

The use of pointers can be powerful, but also dangerous. For example, you may accidentally
try to access an illegal memory location. The compiler is unlikely to recognize this during
compilation, and you may end up with a “segmentation fault” when you execute the code.12

This kind of bug can be difficult to find, and dealing with it is a C rite of passage. More on
pointers in Section A.4.8.

11 The address my actually be a “virtual” address rather than a physical location in memory. The computer
automatically translates the value of &i to an actual physical address, when needed.

12 A good name for a program like this is coredumper.c.
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A.3.3 Compiling

The process loosely referred to as “compilation” actually consists of four steps:

1. Preprocessing. The preprocessor takes the program.c source code and produces an
equivalent .c source code, performing operations such as removing comments. Section
A.4.3 discusses the preprocessor in more detail.

2. Compiling. The compiler turns the preprocessed code into assembly code for the specific
processor. The C code becomes a set of instructions that directly correspond to actions
that the processor can perform. The compiler can be configured with several options that
impact the assembly code generated. For example, the compiler can generate assembly
code that increases execution time to reduce the amount of memory needed to store the
code. Assembly code generated by a compiler can be inspected with a standard text editor.
Coding directly in assembly is still a popular, if painful (or fun), way to program
microcontrollers.

3. Assembling. The assembler converts the assembly instructions into processor-dependent
machine-level binary object code. This code cannot be examined using a text editor.13

Object code is called relocatable, in that the exact memory addresses for the data and
program statements are not specified.

4. Linking. The linker takes one or more object code files and produces a single executable
file. For example, if your code includes pre-compiled libraries, such as the C standard
library that allows you to print to the screen (described in Sections A.4.3 and A.4.14), this
code is included in the final executable. The data and program statements in the various
object code files are assigned to specific memory locations.

In our HelloWorld.c program, this entire process is initiated by the single command line
statement

> gcc HelloWorld.c -o HelloWorld

If our HelloWorld.c program used any mathematical functions in Section A.4.7, the
compilation would be initiated by

> gcc HelloWorld.c -o HelloWorld -lm

where the -lm flag tells the linker to link the math library, which may not be linked by default
like other libraries are.

If you want to see the intermediate results of the preprocessing, compiling, and assembling
steps, Exercise 42 provides an example.

For more complex projects requiring compilation of several files into a single executable or
specifying various options to the compiler, it is common to create a Makefile that specifies

13 Well, you can view it in a text editor, but it will be incomprehensible.
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how the compilation should be performed, and to then use the command make to actually
execute the commands to create the executable. Details on the use of Makefiles is beyond the
scope of this appendix; however, we use one extensively when programming the PIC32.
Section A.4.15 gives a simple example of compiling multiple C files into single executable
using a Makefile.

A.4 C Syntax

So far we have seen only glimpses of C syntax. Let us begin our study of C syntax with a few
simple programs. We then jump to a more complex program, invest.c, that demonstrates
many of the major elements of C structure and syntax. If you can understand invest.c and can
create programs using similar elements, you are well on your way to mastering C. We defer
the more detailed descriptions of the syntax until after introducing invest.c.

Printing to screen

Because it is the simplest way to see the results of a program, as well as a useful tool for
debugging, let us start with the function printf for printing to the screen.14 We have already
seen it in HelloWorld.c. Here’s a slightly more interesting example. Let us call this program
file printout.c.

#include <stdio.h>

int main(void) {

int i;
float f;
double d;
char c;

i = 32;
f = 4.278;
d = 4.278;
c = ’k’; // or, by ASCII table, c = 107;

printf("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);
printf(" f = %19.17f\n",f);
printf(" d = %19.17f\n",d);
return 0;

}

14 Programs called debuggers (such as gdb) also help you debug, allowing you to step through your program line
by line as it runs.
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The first line of the program

#include <stdio.h>

tells the preprocessor that the program will use functions from the “standard input and output”
library, one of many code libraries provided in standard C installations that extend the power
of the language. The stdio.h function used in printout.c is printf, covered in more detail in
Section A.4.14.

The next line

int main(void) {

starts the block of code that defines the main function. The main code block is closed by the
final closing brace }. Each C program has exactly one main function, and program execution
begins there. The type of main is int, meaning that the function should end by returning a
value of type int. In our case, it returns a 0, which indicates to the operating system that the
program has terminated successfully.

The next four lines define and allocate memory for four variables with four different types.
The following lines assign values to those variables. The printf lines will be discussed after
we look at the output.

Now that you have created printout.c, you can create the executable file printout and run it
from the command line. Make sure you are in the directory containing printout.c, then type
the following:

> gcc printout.c -o printout
> printout

(Again, you may have to use ./printout to tell your computer to look in the current directory.)
Here is the output:

Formatted output:
i = 32 c = ’k’
f = 4.27799987792968750
d = 4.27799999999999958

The main purpose of this program is to demonstrate formatted output from the code

printf("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);
printf(" f = %19.17f\n",f);
printf(" d = %19.17f\n",d);

Inside the function call to printf, everything inside the double quotation marks is printed to
the screen, but some character sequences have special meaning. The \n sequence creates a
newline. The % is a special character, indicating that some data will be printed, and for each %
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in the double quotes, there must be a variable or other expression in the comma-separated list
at the end of the printf call. The %4d means that an int type variable is expected, and it will be
displayed right-justified using four spaces. (If the number has more than four digits, it will
take as much space as is needed.) The %c means that a char is expected. The %19.17f means
that a float or double will be printed right-justified over 19 spaces with 17 spaces after the
decimal point. If you did not care how many decimal places were displayed, you could have
simply used %f and let the C implementation default make the choice for you.15 More details
on printf can be found in Section A.4.14.

The output of the program also shows that neither the float f nor the double d can represent
4.278 exactly, though the double-precision representation comes closer.

Data sizes

Since we have focused on data types, our next program measures how much memory is used
by different data types. Create a file called datasizes.c that looks like the following:

#include <stdio.h>

int main(void) {
char a;
char *bp;
short c;
int d;
long e;
float f;
double g;
long double h;
long double *ip;

printf("Size of char: %2ld bytes\n",sizeof(a)); // "% 2 ell d"
printf("Size of char pointer: %2ld bytes\n",sizeof(bp));
printf("Size of short int: %2ld bytes\n",sizeof(c));
printf("Size of int: %2ld bytes\n",sizeof(d));
printf("Size of long int: %2ld bytes\n",sizeof(e));
printf("Size of float: %2ld bytes\n",sizeof(f));
printf("Size of double: %2ld bytes\n",sizeof(g));
printf("Size of long double: %2ld bytes\n",sizeof(h));
printf("Size of long double pointer: %2ld bytes\n",sizeof(ip));
return 0;

}

The first lines in the main function define nine variables, telling the compiler to allocate space
for these variables. Two of these variables are pointers. The sizeof() operator returns the
number of bytes allocated in memory for its argument. You can use sizeof() on either a
variable or a type (i.e., sizeof(int)); here we use it exclusively on variables.

15 printf does not distinguish between doubles and floats, so use %f for both.
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Here is the output of the program:

Size of char: 1 bytes
Size of char pointer: 8 bytes
Size of short int: 2 bytes
Size of int: 4 bytes
Size of long int: 8 bytes
Size of float: 4 bytes
Size of double: 8 bytes
Size of long double: 16 bytes
Size of long double pointer: 8 bytes

We see that, on an x86_64 computer with gcc, ints and floats use four bytes, short ints two
bytes, long ints and doubles eight bytes, and long doubles 16 bytes. Regardless of whether it
points to a char or a long double, a pointer (address) uses eight bytes, meaning we can
address a maximum of (28)8 = 2568 bytes of memory. Considering that corresponds to almost
18 quintillion bytes, or 18 billion gigabytes, we should have enough available addresses (at
least for the time-being)!

Overflow

Now let us try the program overflow.c, which demonstrates the issue of integer overflow
mentioned in Section A.3.1.

#include <stdio.h>

int main(void) {
char i = 100, j = 240, sum;
unsigned char iu = 100, ju = 240, sumu;
signed char is = 100, js = 240, sums;

sum = i+j;
sumu = iu+ju;
sums = is+js;

printf("char: %d + %d = %3d or ASCII %c\n",i,j,sum,sum);
printf("unsigned char: %d + %d = %3d or ASCII %c\n",iu,ju,sumu,sumu);
printf("signed char: %d + %d = %3d or ASCII %c\n",is,js,sums,sums);
return 0;

}

In this program we initialize the values of some of the variables when they are defined. You
might also notice that we are assigning a signed char a value of 240, even though the range
for that data type is −128 to 127. So something fishy is happening. The program outputs:

char: 100 + -16 = 84 or ASCII T
unsigned char: 100 + 240 = 84 or ASCII T
signed char: 100 + -16 = 84 or ASCII T

For more information on 
the book see www.nu32.org



A Crash Course in C 533

Notice that, with our C compiler, chars are the same as signed chars. Even though we
assigned the value of 240 to js and j, they contain the value −16 because the binary
representation of 240 has a 1 in the 27 column. For the two’s complement representation of a
signed char, this column indicates whether the value is positive or negative. Finally, we notice
that the unsigned char ju is successfully assigned the value 240 since its range is 0 to 255, but
the addition of iu and ju leads to an overflow. The correct sum, 340, has a 1 in the 28 (or 256)
column, but this column is not included in the 8 bits of the unsigned char. Therefore we see
only the remainder of the number, 84. The number 84 is assigned the character T in the
standard ASCII table.

Type conversion

Continuing our focus on data types, we try another simple program that illustrates what
happens when you mix data types in mathematical expressions. This program uses a helper
function in addition to the main function. We name this program typecast.c.

#include <stdio.h>

void printRatio(int numer, int denom) { // printRatio is a helper function
double ratio;

ratio = numer/denom;
printf("Ratio, %1d/%1d: %5.2f\n",numer,denom,ratio);
ratio = numer/((double) denom);
printf("Ratio, %1d/((double) %1d): %5.2f\n",numer,denom,ratio);
ratio = ((double) numer)/((double) denom);
printf("Ratio, ((double) %1d)/((double) %1d): %5.2f\n",numer,denom,ratio);

}

int main(void) {
int num = 5, den = 2;

printRatio(num,den); // call the helper function
return(0);

}

The helper function printRatio “returns” type void since it does not return a value. It takes
two ints as arguments and calculates their ratio in three different ways. In the first, the two
ints are divided and the result is assigned to a double. In the second, the integer denom is
typecast or cast to double before the division occurs, so an int is divided by a double and the
result is assigned to a double.16 In the third, both the numerator and denominator are cast as
doubles before the division, so two doubles are divided and the result is assigned to a double.

16 The typecasting does not change the variable denom itself; it simply creates a temporary double version of
denom which is lost as soon as the division is complete.
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The main function defines two ints, num and den, and passes their values to printRatio, where
those values are copied to numer and denom, respectively. The variables num and den are only
available to main, and the variables numer and denom are only available to printRatio, since
they are defined inside those functions.

Execution of any C program always begins with the main function, regardless of where it
appears in the file.

After compiling and running, we get the output

Ratio, 5/2: 2.00
Ratio, 5/((double) 2): 2.50
Ratio, ((double) 5)/((double) 2): 2.50

The first answer is “wrong,” while the other two answers are correct. Why?

The first division, numer/denom, is an integer division. When the compiler sees that there are
ints on either side of the divide sign, it assumes you want integer math and produces a result
that is an int by simply truncating any remainder (rounding toward zero). This value, 2, is
then converted to the floating point number 2.0 so it can be assigned to the double-precision
floating point variable ratio. On the other hand, the expression numer/((double) denom), by
virtue of the parentheses, first produces a double version of denom before performing the
division. The compiler recognizes that you are dividing two different data types, so it
temporarily coerces the int to a double so it can perform a floating point division. This is
equivalent to the third and final division, except that the typecast of the numerator to double is
explicit in the code for the third division.

Thus we have two kinds of type conversions:

• Implicit type conversion, or coercion. This occurs, for example, when a type has to be
converted to carry out a variable assignment or to allow a mathematical operation. For
example, dividing an int by a double will cause the compiler to treat the int as a double

before carrying out the division.
• Explicit type conversion. An explicit type conversion is coded using a casting operator,

e.g., (double) <expression> or (char) <expression>, where <expression> may be a
variable or mathematical expression.

Certain type conversions may result in a change of value. For example, assigning the value of
a float to an int results in truncation of the fractional portion; assigning a double to a float

may result in roundoff error; and assigning an int to a char may result in overflow. Here’s a
less obvious example:

float f;
int i = 16777217;
f = i; // f now has the value 16,777,216.0, not 16,777,217!
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It turns out that 16, 777, 217 = 224 + 1 is the smallest positive integer that cannot be
represented by a 32-bit float. On the other hand, a 32-bit int can represent all integers in the
range −231 to 231 − 1.

Some type conversions, called promotions, never result in a change of value because the new
type can represent all possible values of the original type. Examples include converting a char

to an int or a float to a long double.

As with pointers, typecasts are dangerous and should be used sparingly. Knowing where type
coercion occurs, however, can be crucial. In the example below, the first line performs integer
division and then converts the result to a double, whereas the second line performs floating
point division.

double f = 3/2; // yields 1.0!
double g = 3.0/2.0; // yields 1.5

We will see more on use of parentheses (Section A.4.1), the scope of variables (Section
A.4.5), and defining and calling helper functions (Section A.4.6).

Advanced: Pointers can be used in conjunction with typecasts to view the same data in different
ways. For example, the declaration unsigned short s = 0xAB12 stores 0xAB12 in memory as
two consecutive bytes: 0x12 0xAB (remember, the LSB is in the lowest address on a little-endian
processor). Performing (*&s) dereferences the address &s and treats the memory location as an
unsigned short because &s has type unsigned short *; thus, the expression yields 0xAB12.
Performing *(unsigned char *)&s yields 0x12 because the typecast converts the pointer &s into
a pointer to an unsigned char *. Dereferencing such a pointer yields an unsigned char, which
is only one byte long. Pointers always refer to the lowest address of the variable, so the result is
0x12 not 0xAB. On a big-endian system, however, the result would be 0xAB.

A more complete example: invest.c

Until now we have been dipping our toes in the C pool. Now let us dive in headfirst.

Our next program is called invest.c, which takes an initial investment amount, an expected
annual return rate, and a number of years, and returns the growth of the investment over the
years. After performing one set of calculations, it prompts the user for another scenario, and
continues this way until the data entered is invalid. The data is invalid if, for example, the
initial investment is negative or the number of years to track is outside the allowed range.

The real purpose of invest.c, however, is to demonstrate the syntax and several useful
features of C.

Here’s an example of compiling and running the program. The only data entered by the user
are the three numbers corresponding to the initial investment, the growth rate, and the number
of years.
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> gcc invest.c -o invest
> invest
Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 5
Valid input? 1

RESULTS:

Year 0: 100.00
Year 1: 105.00
Year 2: 110.25
Year 3: 115.76
Year 4: 121.55
Year 5: 127.63

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 200
Valid input? 0
Invalid input; exiting.
>

Before we look at the full invest.c program, let us review two principles that should be
adhered to when writing a longer program: modularity and readability.

• Modularity. You should break your program into a set of functions that perform specific,
well-defined tasks, with a small number of inputs and outputs. As a rule of thumb, no
function should be longer than about 20 lines. (Experienced programmers often break this
rule of thumb, but if you are a novice and are regularly breaking this rule, you are likely
not thinking modularly.) Almost all variables you define should be “local” to (i.e., only
recognizable by) their particular function. Global variables, which can be accessed by all
functions, should be minimized or avoided altogether, since they break modularity,
allowing one function to affect the operation of another without the information passing
through the well-defined “pipes” (input arguments to a function or its returned results). If
you find yourself typing the same (or similar) code more than once, that’s a good sign you
should determine how to write a single function and just call that function from multiple
places. Modularity makes it much easier to develop large programs and track down the
inevitable bugs.

• Readability. You should use comments to help other programmers, and even yourself,
understand the purpose of the code you have written. Variable and function names should
be chosen to indicate their purpose. Be consistent in how you name variables and
functions. Any “magic number” (constant) used in your code should be given a name and
defined at the beginning of the program, so if you ever want to change this number, you
can just change it at one place in the program instead of every place it is used. Global
variables and constants should be written in a way that easily distinguishes them from
more common local variables; for example, you could WRITE CONSTANTS IN
UPPERCASE and Capitalize Globals. You should use whitespace (blank lines, spaces,
tabbing, etc.) consistently to make it easy to read the program. Use a fixed-width font
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(e.g., Courier) so that the spacing/tabbing is consistent. Modularity (above) also improves
readability.

The program invest.c demonstrates readable modular code using the structure and syntax of
a typical C program. In the program’s comments, you will see references of the form
==SecA.4.3== that indicate where you can find more information in the review of syntax that
follows the program.

/******************************************************************************
* PROGRAM COMMENTS (PURPOSE, HISTORY)
******************************************************************************/

/*
* invest.c
*
* This program takes an initial investment amount, an expected annual
* return rate, and the number of years, and calculates the growth of
* the investment. The main point of this program, though, is to
* demonstrate some C syntax.
*
* References to further reading are indicated by ==SecA.B.C==
*
*/

/******************************************************************************
* PREPROCESSOR COMMANDS ==SecA.4.3==
******************************************************************************/

#include <stdio.h> // input/output library
#define MAX_YEARS 100 // constant indicating max number of years to track

/******************************************************************************
* DATA TYPE DEFINITIONS (HERE, A STRUCT) ==SecA.4.4==
******************************************************************************/

typedef struct {
double inv0; // initial investment
double growth; // growth rate, where 1.0 = zero growth
int years; // number of years to track
double invarray[MAX_YEARS+1]; // investment array ==SecA.4.9==

} Investment; // the new data type is called Investment

/******************************************************************************
* GLOBAL VARIABLES ==SecA.4.2, A.4.5==
******************************************************************************/

// no global variables in this program

/******************************************************************************
* HELPER FUNCTION PROTOTYPES ==SecA.4.2==
******************************************************************************/

int getUserInput(Investment *invp); // invp is a pointer to type ...
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void calculateGrowth(Investment *invp); // ... Investment ==SecA.4.6, A.4.8==
void sendOutput(double *arr, int years);

/******************************************************************************
* MAIN FUNCTION ==SecA.4.2==
******************************************************************************/

int main(void) {

Investment inv; // variable definition, ==SecA.4.5==

while(getUserInput(&inv)) { // while loop ==SecA.4.13==
inv.invarray[0] = inv.inv0; // struct access ==SecA.4.4==
calculateGrowth(&inv); // & referencing (pointers) ==SecA.4.6, A.4.8==
sendOutput(inv.invarray, // passing a pointer to an array ==SecA.4.9==

inv.years); // passing a value, not a pointer ==SecA.4.6==
}
return 0; // return value of main ==SecA.4.6==

} // ***** END main *****

/******************************************************************************
* HELPER FUNCTIONS ==SecA.4.2==
******************************************************************************/

/* calculateGrowth
*
* This optimistically-named function fills the array with the investment
* value over the years, given the parameters in *invp.
*/

void calculateGrowth(Investment *invp) {

int i;

// for loop ==SecA.4.13==
for (i = 1; i <= invp->years; i= i + 1) { // relational operators ==SecA.4.10==

// struct access ==SecA.4.4==
invp->invarray[i] = invp->growth * invp->invarray[i-1];

}
} // ***** END calculateGrowth *****

/* getUserInput
*
* This reads the user’s input into the struct pointed at by invp,
* and returns TRUE (1) if the input is valid, FALSE (0) if not.
*/

int getUserInput(Investment *invp) {

int valid; // int used as a boolean ==SecA.4.10==

// I/O functions in stdio.h ==SecA.4.14==
printf("Enter investment, growth rate, number of yrs (up to %d): ",MAX_YEARS);
scanf("%lf %lf %d", &(invp->inv0), &(invp->growth), &(invp->years));

// logical operators ==SecA.4.11==

For more information on 
the book see www.nu32.org



A Crash Course in C 539

valid = (invp->inv0 > 0) && (invp->growth > 0) &&
(invp->years > 0) && (invp->years <= MAX_YEARS);

printf("Valid input? %d\n",valid);

// if-else ==SecA.4.12==
if (!valid) { // ! is logical NOT ==SecA.4.11==

printf("Invalid input; exiting.\n");
}
return(valid);

} // ***** END getUserInput *****

/* sendOutput
*
* This function takes the array of investment values (a pointer to the first
* element, which is a double) and the number of years (an int). We could
* have just passed a pointer to the entire investment record, but we decided
* to demonstrate some different syntax.
*/
void sendOutput(double *arr, int yrs) {

int i;
char outstring[100]; // defining a string ==SecA.4.9==

printf("\nRESULTS:\n\n");
for (i=0; i<=yrs; i++) { // ++, +=, math in ==SecA.4.7==

sprintf(outstring,"Year %3d: %10.2f\n",i,arr[i]);
printf("%s",outstring);

}
printf("\n");

} // ***** END sendOutput *****

A.4.1 Basic Syntax

Comments

Everything after a /* and before the next */ is a comment. Comments are removed during the
preprocessing step of compilation. They help make the purpose of the program, function,
loop, or statement clear to yourself or other programmers.17 Keep the comments neat and
concise for program readability. Some programmers use extra asterisks or other characters to
make the comments stand out (see the examples in invest.c), but all that matters is that
/* starts the comment and the next */ ends it.

If your comment is short, you can use // instead. Everything after // and before the next
carriage return will be ignored. The // style comments originate from C++ but most modern C
compilers support them.

17Reading your own code after several months away from it is often like reading someone else’s code!
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Semicolons

A code statement must be completed by a semicolon. Some exceptions to this rule include
preprocessor commands (see PREPROCESSOR COMMANDS in the program and Section A.4.3) and
statements that end with blocks of code enclosed by braces { }. A single code statement may
extend over multiple lines of the program listing until it is terminated by a semicolon (see, for
example, the assignment to valid in the function getUserInput).

Braces and blocks of code

Blocks of code are enclosed in braces { }. Examples include entire functions (see the
definition of the main function and the helper functions), blocks of code executed inside of a
while loop (in the main function) or for loop (in the calculateGrowth and sendOutput

functions), as well as other examples. In invest.c, braces are placed as shown here

while (<expression>) {
/* block of code */

}

but this style is equivalent

while (<expression>)
{
/* block of code */

}

as is this

while (<expression>) { /* block of code */ }

Which brings us to...

Whitespace

Whitespace, such as spaces, tabs, and carriage returns, is only required where it is needed to
recognize keywords and other syntax. The whole program invest.c could be written on a
single line, for example. Indentations and line breaks should be used consistently, however, to
make the program readable. Insert line breaks after each semicolon. Statements within the
same code block should be left-justified with each other and statements in a code block nested
within another code block should be indented with respect to the parent code block. Text
editors should use a fixed-width font so that alignment is clear. Most editors provide
fixed-width fonts and automatic indentation to enhance readability.
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Parentheses

C has rules defining the order in which operations in an expression are evaluated, much like
standard math rules that say 3+ 5 ∗ 2 evaluates to 3+ (10) = 13, not (8) ∗ 2 = 16. If uncertain
about the default order of operations, use parentheses ( ) to enclose sub-expressions. For
example, 3 + (40/(4 ∗ (3 + 2))) evaluates to 3 + (40/(4 ∗ 5)) = 3 + (40/20) = 3 + 2 = 5,
whereas 3 + 40/4 ∗ 3 + 2 evaluates to 3 + 30 + 2 = 35.

A.4.2 Program Structure

invest.c demonstrates a typical structure for a program written in one .c file. When you write
larger programs, you may wish to divide your program into multiple files, to increase
modularity. Section A.4.15 discusses C programs that consist of multiple source code files.

Let us consider the seven major sections of the program in order of appearance. PROGRAM
COMMENTS describe the purpose of the program. PREPROCESSOR COMMANDS define constants and
“header” files that should be included, giving the program access to library functions that
extend the power of the C language. This section is described in more detail in Section A.4.3.
In some programs, it may be helpful to define a new data type, as shown in DATA TYPE

DEFINITIONS. In invest.c, several variables are packaged together in a single record or struct
data type, as described in Section A.4.4. Any GLOBAL VARIABLES are then defined. These are
variables that are available for use by all functions in the program. Because of this special
status, the names of global variables could be Capitalized or otherwise written in a way to
remind the programmer that they are not local variables (Section A.4.5). Generally, global
variables should be avoided because they violate modularity.

The next section of the program contains the HELPER FUNCTION PROTOTYPES of the various
helper functions. A prototype of a function declares the name, argument types, and return
types of a function that will be defined later. Prototypes are used to allow code to call
functions that have not yet been fully defined or are defined elsewhere (perhaps in another
source file). For example, the function printRatio has a return type of void, meaning that it
does not return a value. It takes two arguments, each of type int. The function getUserInput

returns an int and takes a single argument: a pointer to a variable of type Investment, a data
type defined a few lines above the getUserInput prototype.

The next section of the program, MAIN FUNCTION, is where the main function is defined. Every
program has exactly one main function, where the program starts execution. The main function
returns an int. By convention, it returns 0 if it executes successfully, and otherwise returns a
nonzero value. In invest.c, main takes no arguments, hence the void in the argument list.
Some programs accept arguments on the command line; these can be passed as arguments to
main. For example, we could have written invest.c to run with a command such as this:
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> invest 100.0 1.05 5

To allow this, main would have been defined with the following syntax:

int main(int argc, char *argv[]) {

Then when the program is invoked as above, the integer argc would be set to four, the number
of whitespace-separated strings on the command line, and argv would point to a array of four
strings, where the string argv[0] is ’invest’, argv[1] is ’100.0’, etc. You can learn more about
arrays and strings in Section A.4.9.

Finally, the last section of the program is the definition of the HELPER FUNCTIONS whose
prototypes were given earlier. It is not strictly necessary that the helper functions have
prototypes, but if not, every function should be defined before it is used by any other function.
For example, none of the helper functions uses another helper function, so they could have all
been defined before the main function, in any order, and their function prototypes eliminated.
The names of the variables in a function prototype and in the actual definition of the function
need not be the same; for example, the prototype of sendOutput uses variables named arr and
years, whereas the actual function definition uses arr and yrs. What matters is that the
prototype and actual function definition have the same number of arguments, of the same
types, and in the same order. In fact, in the arguments of the function prototypes, you can
leave out variable names altogether, and just keep the comma separated list of argument data
types; however, including the names serves as additional documentation and is generally a
good practice.

A.4.3 Preprocessor Commands

In the preprocessing stage of compilation, all comments are removed from the program.
Additionally, the preprocessor performs actions when encountering the following
preprocessor commands, recognizable by the # character:

#include <stdio.h> // input/output header
#define MAX_YEARS 100 // constant indicating max number of years to track

Include files

The first preprocessor command in invest.c indicates that the program will use standard C
input/output functions. The file stdio.h is called a header file for the library. This file is
readable by a text editor and contains constants, function prototypes, and other included
headers that are made available to the program. The preprocessor replaces the
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#include <stdio.h> command with the contents of the header file stdio.h.18 Examples of
function prototypes that are included are

int printf(const char *Format, ...);
int sprintf(char *Buffer, const char *Format, ...);
int scanf(const char *Format, ...);

Each of these three functions is used in invest.c. If the program were compiled without
including stdio.h, the compiler would generate a warning or an error due to the lack of
function prototypes. See Section A.4.14 for more information on using the stdio input and
output functions.

During the linking stage, the object code of invest.c is linked with the object code for printf,
sprintf, and scanf in your C installation. Libraries like the C standard library provide access
to functions beyond the basic C syntax. Other useful libraries (and header files for the C
standard library) are briefly described in Section A.4.14.

Constants

The second line defines the constant MAX_YEARS to be equal to 100. The preprocessor searches
for each instance of MAX_YEARS in the program and replaces it with 100. If we later decide that
the maximum number of years to track investments should be 200, we can change the
definition of this constant in one place, instead of in several places. Since MAX_YEARS is
constant, not a variable, it can never be assigned another value somewhere else in the program.
To indicate that it is not a variable, a common convention is to write constants in
UPPERCASE. This is not required by C, however. We should emphasize that the preprocessor
performs a text substitution, as if you used the “find and replace” feature of your text editor.
So, in this example, the preprocessor literally replaces every occurrence of MAX_YEARS with the
number 100.

Macros

One more use of the preprocessor is to define simple function-like macros that you may use in
more than one place in your program. Constants, as described above, are technically a simple
macro. Here’s an example that converts radians to degrees:

#define RAD_TO_DEG(x) ((x) * 57.29578)

18 The preprocesser searches for header files in directories specified by the “include path.” If the header file
header.h sits in the same directory as invest.c, we would write #include "header.h" instead of
#include <header.h>.
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The preprocessor searches for any instance of RAD_TO_DEG(x) in the program, where x can be
any text, and replaces it with ((x) * 57.29578). For example, the initial code

angle_deg = RAD_TO_DEG(angle_rad);

is replaced by

angle_deg = ((angle_rad) * 57.29578);

Note the importance of the outer parentheses in the macro definition. If we had instead used
the preprocessor command

#define RAD_TO_DEG(x) (x) * 57.29578 // don’t do this!

then the code

answer = 1.0 / RAD_TO_DEG(3.14);

would be replaced by

answer = 1.0 / (3.14) * 57.29578;

which is very different from

answer = 1.0 / ((3.14) * 57.29578);

Moral: if the expression you are defining is anything other than a single constant, enclose it in
parentheses, to tell the compiler to evaluate the expression first.

As a second example, the macro

#define MAX(A,B) ((A) > (B) ? (A):(B))

returns the maximum of two arguments. The ? is the ternary operator in C, which has the form

<test> ? return_value_if_test_is_true : return_value_if_test_is_false

The preprocessor replaces

maxval = MAX(13+7,val2);
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with

maxval = ((13+7) > (val2) ? (13+7):(val2));

Why define a macro instead of just writing a function? One reason is that the macro may
execute slightly faster, since no passing of control to another function and no passing of
variables is needed. Most of the time, you should use functions.

A.4.4 Typedefs, Structs, and Enums

In simple programs, you will do just fine with the data types int, char, float, double, and
variations. Sometimes you may find it useful to create an alias for a data type, using the
following syntax:

typedef <type> newtype;

where <type> is an existing data type and newtype is its alias. Then, you can define a new
variable x of type newtype by

newtype x;

For example, you could write

typedef int days_of_the_month;
days_of_the_month day;

You might find it satisfying that your variable day (taking values 1 to 31) is of type
days_of_the_month, but the compiler will still treat it as an int. However, if you use this type a
lot and later want to change it, using the typedef provides one location to make the change
rather than needing to go through your whole program: you can think of a typedef as a
constant but for data types.

In addition to aliasing existing data types, you can also create new types that combine several
variables into a single record or struct. We gather investment information into a single struct

in invest.c:

typedef struct {
double inv0; // initial investment
double growth; // growth rate, where 1.0 = zero growth
int years; // number of years to track
double invarray[MAX_YEARS+1]; // investment values

} Investment; // the new data type is called Investment
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Notice how the struct {...} replaces the data type int in our previous typedef example. This
syntax creates a new data type Investment with a record structure, with fields named inv0 and
growth of type double, years of type int, and invarray, an array of doubles.19 (Arrays are
discussed in Section A.4.9.) With this new type definition, we can define a variable named inv

of type Investment:

Investment inv;

This definition allocates sufficient memory to hold the two doubles, the int, and the array of
doubles. We can access the contents of the struct using the “.” operator:

int yrs;
yrs = inv.years;
inv.growth = 1.1;

An example of this kind of usage is seen in main.

Referring to the discussion of pointers in Sections A.3.2 and A.4.8, if we are working with a
pointer invp that points to inv, we can use the “->” operator to access the contents of the
record inv:

Investment inv; // allocate memory for inv, an investment record
Investment *invp; // invp will point to something of type Investment
int yrs;
invp = &inv; // invp points to inv
inv.years = 5; // setting one of the fields of inv
yrs = invp->years; // inv.years, (*invp).years, and invp->years are all identical
invp->growth = 1.1;

Examples of this usage are seen in calculateGrowth() and getUserInput(). Using the operator
a->b is equivalent to doing (*a).b, dereferencing the struct pointer and accessing a specific
field.

Another data type you can create is called an enum, short for “enumeration.” Although
invest.c does not use an enumeration, they can be useful for describing a type that can take
one of a limited set of values. For example, if you wanted a function to use a cardinal direction
you could define an enumeration as follows:

typedef enum {NORTH, SOUTH, EAST, WEST} Direction;

19 The typedef is actually aliasing an anonymous struct with the name Investment. You can omit the typedef,
but then you create a type that must be referred to as struct Investment rather than Investment. The
typedef provides a more convenient syntax when you use the type.

For more information on 
the book see www.nu32.org



A Crash Course in C 547

Each item in the enum gets assigned a constant numerical value. You can explicitly state this
value, or use the default compiler-provided values, which start at zero and increment by one
for each element. For example, the declaration above is equivalent to

typedef enum {NORTH = 0, SOUTH = 1, EAST = 2, WEST = 3} Direction;

You can use an enum as you would any other data type.

A.4.5 Defining Variables

Variable names

Variable names can consist of uppercase and lowercase letters, numbers, and underscore
characters ’_’. You should generally use a letter as the first character; var, Var2, and
Global_Var are all valid names, but 2var is not. C is case sensitive, so the variable names var
and VAR are different. A variable name cannot conflict with a reserved keyword in C, like int

or for. Names should be succinct but descriptive. The variable names i, j, and k are often used
for integer counters in for loops, and pointers often begin with ptr_, such as ptr_var, or end
with p, such as varp, to remind you that they are pointers. Regardless of how you choose to
name your variables, adopting a consistent naming convention throughout a program aids
readability.

Scope

The scope of a variable refers to where it can be used in the program. A variable may be
global, i.e., usable by any function, or local to a specific function or piece of a function. A
global variable is one that is defined in the GLOBAL VARIABLES section, outside of and before
any function that uses it. Such variables can be referred to or altered in any function.20

Because of this special status, global variables are often Capitalized. Global variable usage
should be minimized for program modularity and readability.

A local variable is one that is defined in a function. Such a variable is only usable inside that
function, after the definition.21 If you choose a local variable name var that is also the name of
a global variable, inside that function var will refer to the local variable, and the global
variable will not be available. It is not good practice to choose local variable names to be the

20 You could also define a variable outside of any function definition but after some of the function definitions. This
quasi-global variable would be available to all functions defined after the variable is defined, but not those
before. This practice is discouraged, as it makes the code harder to read.

21 Since we recommend that each function be brief, you can define all local variables in that function at the
beginning of the function, so we can see in one place what local variables the function uses. Some programmers
prefer instead to define variables just before their first use, to minimize their scope. Older C specifications
required that all local variables be defined at the beginning of a code block enclosed by braces { }.
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same as global variable names, as it makes the program confusing to understand and is often
the source of bugs.

The parameters to a function are local to that function’s definition, as in sendOutput at the end
of invest.c:

void sendOutput(double *arr, int yrs) { // ...

The variables arr and yrs are local to sendOutput.

Otherwise, local variables are defined at the beginning of the function code block by syntax
similar to that shown in the function main.

int main(void) {
Investment inv; // Investment is a variable type we defined
// ... rest of the main function ...

Since this definition appears within the function, inv is local to main. Had this definition
appeared before any function definition, inv would be a global variable.

A global variable can be declared as static:

static int i;

The static specifier means that the global variable can only be used from within the given .c

file; other files cannot use the variable. If you must use a global variable, you should declare it
static if possible. Preventing other .c files in a multi-file C program from accessing the
variable helps increase modularity and reduce bugs.

Variables can also have qualifiers attached to their types. There are two main qualifiers in C,
const and volatile. The const qualifier prevents the “variable” from being modified. The
definition

const int i = 3;

sets i to 3, and i can never be changed after that. The volatile qualifier is used extensively in
embedded programming, and indicates that the variable may change outside of the normal
flow of the program (i.e., due to interrupts, Chapter 6) that the compiler cannot know about in
advance. Therefore, the compiler should not assume anything about the current value of a
volatile variable. Here is an example usage:

volatile int i;
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We discuss volatile more fully in Chapter 6.

Qualifiers can also be applied to pointers. The syntax, however, can be a bit tricky. The first
two definitions below make cp a const pointer, meaning that the content pointed to by cp (i.e.,
*cp) is constant: the value of cp, however, may change. The third definition makes the pointer
cp itself constant, but the contents pointed to by cp may change. The fourth line makes both
the pointer and the data that the pointer references constant.

const int * cp; // pointer to const data
int const * cp; // pointer to const data
int * const cp; // pointer to data, value of cp is const
const int * const cp; // pointer and data are const

Definition and initialization

When a variable is defined, memory for the variable is allocated. In general, you cannot
assume anything about the contents of the variable until you have initialized it. For example, if
you want to define a float x with value 0.0, the command

float x;

is insufficient. The memory allocated may have random 0’s and 1’s already in it, and the
allocation of memory does not generally change the current contents of the memory. Instead,
you can use

float x = 0.0;

to initialize the value of x when you define it. Equivalently, you could use

float x;
x = 0.0;

but, when possible, it is better to initialize a variable when you define it, so you do not
accidentally use an uninitialized value.

Static local variables

Each time a function is called, its local variables are allocated space in memory. When the
function completes, its local variables are discarded, freeing memory. If you want to keep the
results of some calculation by the function after the function completes, you could return the
results from the function or store them in a global variable. Sometimes, a better alternative is
to use the static modifier in the local variable definition, as in the following program:

#include <stdio.h>
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void myFunc(void) {
static char ch=’d’; // this local variable is static, allocated and initialized

// only once during the entire program
printf("ch value is %d, ASCII character %c\n",ch,ch);
ch = ch+1;

}

int main(void) {
myFunc();
myFunc();
myFunc();
return 0;

}

The static modifier in the definition of ch in myFunc means that ch is only allocated, and
initialized to ’d’, the first time myFunc is called during the execution of the program. This
allocation persists after the function returns, and the value of ch is remembered. The output of
this program is

ch value is 100, ASCII character d
ch value is 101, ASCII character e
ch value is 102, ASCII character f

Numerical values

Just as you can assign an integer a base-10 value using commands like ch=100, you can assign
a number written in hexadecimal notation by putting “0x” at the beginning of the digit
sequence, e.g.,

unsigned char ch = 0x64; // ch now has the base-10 value 100

This form may be convenient when you want to directly control bit values. This is often useful
in microcontroller applications. Some C compilers, including the PIC32 C compiler, allow
specifying bits directly using the following syntax:

unsigned char ch = 0b1100100; // ch now has the base-10 value 100

A.4.6 Defining and Calling Functions

A function definition consists of the function’s return type, function name, argument list, and
body (a block of code). Allowable function names follow the same rules as variable names.
The function name should make the purpose of the function clear; for example, getUserInput
(which gets input from the user) in invest.c.

If the function does not return a value, it has return type void, as with calculateGrowth. If it
does return a value, such as getUserInput which returns an int, the function should end with
the command
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return val;

where val is a variable with the same type as the function’s return type. The main function
returns an int and should return 0 upon successful completion.

The function definition

void sendOutput(double *arr, int yrs) { // ...

indicates that sendOutput returns nothing and takes two arguments, a pointer to type double

and an int. When the function is called with the statement

sendOutput(inv.invarray, inv.years);

the invarray and years fields of the inv structure in main are copied to sendOutput, which now
has its own local copies of these variables, stored in arr and yrs. The difference between the
two is that yrs is just data, while arr is a pointer, holding the address of the first element of
invarray, i.e., &(inv.invarray[0]). (Arrays will be discussed in more detail in Section A.4.9.)
Since sendOutput now has the memory address of the beginning of this array, it can directly
access, and potentially change, the original array seen by main. On the other hand, sendOutput
cannot, by itself change the value of inv.years in main, since it only has a copy of that value,
not the actual memory address of main’s inv.years. sendOutput takes advantage of its direct
access to the inv.invarray to print out all the values stored there, eliminating the need to copy
all the values of the array from main to sendOutput. To prevent the function from changing the
contents of arr we could have (and probably should have) declared the parameter const, as in
double const * arr.

The function calculateGrowth, which is called with a pointer to main’s inv data structure,
takes advantage of its direct access to the invarray field to change the values stored there.

When a function is passed a pointer argument, it is called a pass by reference; the argument is
a reference (address, or pointer) to data. When a function is passed non-pointer data, it is
called a pass by value; data is copied but not an address.

If a function takes no arguments and returns no value, we can define it as void myFunc(void).
The function is called using

myFunc();

A.4.7 Math

Standard binary math operators (operators on two operands) include +, -, *, and /. These
operators take two operands and return a result, as in
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ratio = a/b;

If the operands are the same type, then the CPU carries out a division (or add, subtract,
multiply) specific for that type and produces a result of the same type. In particular, if the
operands are integers, the result will be an integer, even for division (fractions are rounded
toward zero). If one operand is an integer type and the other is a floating point type, the integer
type will generally be coerced to a floating point to allow the operation (see the typecast.c

program description of Section A.4).

The modulo operator % takes two integers and returns the remainder of their division, i.e.,

int i;
i = 16 % 7; // i is now equal to 2

C also provides +=, -=, *=, /=, %= to simplify some expressions, as shown below:

x = x * 2; // these two lines
x *= 2; // are equivalent

y = y + 7; // these two lines
y += 7; // are equivalent

Since adding one to an integer or subtracting one from an integer are common operations in
loops, these have a further simplification. For an integer i, we can write

++i; // adds 1 to i, equivalent to i = i+1;
--i; // equivalent to i = i-1;

In fact we also have the syntax i++ and i–. If the ++ or – come in front of the variable, the
variable is modified before it is used in the rest of the expression. If they come after, the
variable is modified after the expression has been evaluated. So

int i = 5, j;
j = (++i)*2; // after this line, i is 6 and j is 12

but

int i = 5,j;
j = (i++)*2; // after this line, i is 6 and j is 10

But your code would be much more readable if you just wrote i++ before or after
the j = i*2 line.
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If your program includes the C math library with the preprocessor command #include

<math.h>, you have access to a much larger set of mathematical operations, some of which are
listed here:

int abs (int x); // integer absolute value
double fabs (double x); // floating point absolute value
double cos (double x); // all trig functions work in radians,

not degrees
double sin (double x);
double tan (double x);
double acos (double x); // inverse cosine
double asin (double x);
double atan (double x);
double atan2 (double y, double x); // two-argument arctangent
double exp (double x); // base e exponential
double log (double x); // natural logarithm
double log2 (double x); // base 2 logarithm
double log10 (double x); // base 10 logarithm
double pow (double x, double y); // raise x to the power of y
double sqrt (double x); // square root of x

These functions also have versions for floats. The names of those functions are identical,
except with an ’f’ appended to the end, e.g., cosf.

When compiling programs using math.h, you may need to include the linker flag -lm, e.g.,

gcc myprog.c -o myprog -lm

to tell the linker to link with the math library.

A.4.8 Pointers

It’s a good idea to review the introduction to pointers in Section A.3.2 and the discussion of
call by reference in Section A.4.6. In summary, the operator & references a variable, returning
a pointer to (the address of) that variable, and the operator * dereferences a pointer, returning
the contents of the address.

These statements define a variable x of type float and a pointer ptr to a variable of type float:

float x;
float *ptr;

At this point, the assignment

*ptr = 10.3;
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would result in undefined behavior, because the pointer ptr does not currently point to
anything. The following code would be valid:

ptr = &x; // assign ptr to the address of x; x is the "pointee" of ptr
*ptr = 10.3; // set the contents at address ptr to 10.3; now x is equal to 10.3
*(&x) = 4 + *ptr; // the * and & on the left cancel each other; x is set to 14.3

Since ptr is an address, it is an integer (technically the type is “pointer to type float”), and we
can add and subtract integers from it. For example, say that ptr contains the value n, and then
we execute the statement

ptr = ptr + 1; // equivalent to ptr++;

If we now examined ptr, we would find that it has the value n+ 4. Why? Because the
compiler knows that ptr points to the type float, so when we add 1 to ptr, the assumption is
that we want to increment by one float in memory, not one byte. Since a float occupies four
bytes, the address ptr must increase by 4 to point to the next float. The ability to increment a
pointer in this way can be useful when dealing with arrays, next.

A.4.9 Arrays and Strings

One-dimensional arrays

An array of five floats can be defined by

float arr[5];

We could also initialize the array at the time we define it:

float arr[5] = {0.0, 10.0, 20.0, 30.0, 40.0};

Each of these definitions allocates five floats in memory, accessed by arr[0] (initialized to
0.0 above) through arr[4] (initialized to 40.0). The elements are stored consecutively, as per
Figure A.2. The assignment

arr[5] = 3.2;

[4] [3] [2] [1] [0]

Figure A.2
A float array with five elements, as stored in memory. The dashed lines separate bytes and the solid

lines separate floats. Each float has four bytes.

For more information on 
the book see www.nu32.org



A Crash Course in C 555

is a mistake, since only arr[0..4] have been allocated. This statement will compile
successfully because compilers do not check for indexing arrays out of bounds. The best result
at this point would be for your program to crash, to alert you to the fact that you are
overwriting memory that may be allocated for another purpose. More insidiously, the program
could seem to run just fine, but with difficult-to-debug erratic behavior.22 Bottom line: never
access arrays out of bounds!

In the expression arr[i], i is an integer called the index, and arr[i] is of type float. The
variable arr by itself points to the first element of the array, and is equivalent to &(arr[0]).
The address &(arr[i]) is at arr plus i*4 bytes, since the elements of the array are stored
consecutively, and a float uses four bytes. Both arr[i] and *(arr+i) are correct syntax to
access the ith element of the array. Since the compiler knows that arr is a pointer to the
four-byte type float, the address represented by (arr+i) is i*4 bytes higher than the
address arr.

Consider the following code:

float arr[5] = {0.0, 10.0, 20.0, 30.0, 40.0};
float *ptr;
ptr = arr + 3;
// arr[0] contains 0.0 and ptr[0] = arr[3] = 30.0
// arr[0] is equivalent to *arr; ptr[0] is equivalent to *ptr and *(arr+3);
// ptr is equivalent to &(arr[3])

If we would like to pass the array arr to a function that initializes each element of the array,
we could call

arrayInit(arr,5);

or

arrayInit(&(arr[0]),5);

The function definition for arrayInit might look like

void arrayInit(float *vals, int length) {

int i;

for (i=0; i<length; i++) vals[i] = i*10.0;
// equivalently, we could substitute the line below for the line above
// for (i=0; i<length; i++) {*vals = i*10.0; vals++;}

}

22 The mistake could potentially be exploited as a security flaw.
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The pointer vals in arrayInit is set to point to the same location as arr in the calling function.
Therefore vals[i] refers to the same memory contents that arr[i] does.

Note that arr does not carry any information on the length of the array, so we must send the
length separately to arrayInit.

Strings

A string is an array of chars. The definition

char s[100];

allocates memory for 100 chars, s[0] to s[99]. We could initialize the array with

char s[100] = "cat"; // note the double quotes

This places a ’c’ (integer value 99) in s[0], an ’a’ (integer value 97) in s[1], a ’t’ (integer
value 116) in s[2], and a value of 0 in s[3], corresponding to the NULL (’\0’) character and
indicating the end of the string. (You could also do this, less elegantly, by initializing just
those four elements using braces as we did with the float array above.)

You notice that we allocated more memory than was needed to hold “cat.” Perhaps we will
append something to the string in future, so we might want to allocate that extra space just in
case. But if not, we could have initialized the string using

char s[] = "cat";

and the compiler would only assign the minimum memory needed (four bytes in this case,
three for each character and one for the NULL character).

The function sendOutput in invest.c shows an example of constructing a string using sprintf,
a function provided by stdio.h. Other functions for manipulating strings are provided in
string.h. Both of these headers are described briefly in Section A.4.14.

Multi-dimensional arrays

The definition

int mat[2][3];

allocates memory for 6 ints, mat[0][0] to mat[1][2], which can be thought of as a
two-dimensional array, or matrix. These occupy a contiguous region of memory, with
mat[0][0] at the lowest memory location, followed by mat[0][1], mat[0][2], mat[1][0],
mat[1][1], and mat[1][2]. This matrix can be initialized using nested braces,
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int mat[2][3] = {{0, 1, 2}, {3, 4, 5}};

Higher-dimensional arrays can be created by simply adding more indexes. In memory, a
“row” of the rightmost index is completed before incrementing the next index to the left.

Static vs. dynamic memory allocation

A command of the form float arr[5] is called static memory allocation, meaning that the
size of the array is known at compile time. Another option is dynamic memory allocation,
where the size of the array can be chosen at run time.23 With the C standard library header
stdlib.h included using the preprocessor command #include <stdlib.h>, the syntax

float *arr; // arr is a pointer to float, but no memory has been allocated for the array
int i=5;
arr = (float *) malloc(i * sizeof(float)); // allocate the memory

allocates arr[0..4], and

free(arr);

releases the memory when it is no longer needed. It is crucial to remember to free memory
allocated with malloc when you are finished with it, so you do not run out of memory if you
repeatedly allocate memory.24 If malloc cannot allocate the requested memory, perhaps
because the computer is out of memory, it returns a NULL pointer (i.e., arr will have value 0).
You must always check that the result of malloc is valid before continuing with your program.

A.4.10 Relational Operators and TRUE/FALSE Expressions

== equal
!= not equal

>, >= greater than, greater than or equal to
<, <= less than, less than or equal to

Relational operators operate on two values and evaluate to 0 or 1. A 0 indicates that the
expression is FALSE and a 1 indicates that the expression is TRUE. For example, the
expression (3>=2) is TRUE, so it evaluates to 1, while (3<2) evaluates to 0, or FALSE.

23 Dynamic memory is allocated from the heap, a portion of memory set aside for dynamic allocation (and
therefore is not available for statically allocated variables and program code). You may have to adjust linker
options setting the size of the heap. See Chapter 5.3.

24 malloc tracks the size of the block associated with the address arr, so you do not need to tell free how much
memory to release.
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The most common mistake with relational operators is using = to test for equality instead of
==. For example, using the if conditional syntax (Section A.4.12), the test

int i = 2;
if (i = 3) { // error: this is an assignment, not a test!!

printf("Test is true.");
}

always evaluates to TRUE, because the expression (i=3) assigns the value of 3 to i, and the
expression evaluates to 3. Any nonzero value is treated as logical TRUE. If the condition is
written (i==3), it will operate as intended, evaluating to 0 (FALSE).

Be aware of potential pitfalls in checking equality of floating point numbers. Consider the
following program:

#include <stdio.h>
#define VALUE 3.1
int main(void) {

float x = VALUE;
double y = VALUE;
if (x == VALUE) {
printf("x is equal to %f.\n",VALUE);

} else {
printf("x is not equal to %f!\n",VALUE);

}
if (y == VALUE) {
printf("y is equal to %f.\n",VALUE);

} else {
printf("y is not equal to %f!\n",VALUE);

}
return 0;

}

You might be surprised to see that your program says that x is not equal while y is! In fact,
neither x nor y are exactly 3.1 due to roundoff error in the floating point representation.
However, by default, the constant 3.1 is treated as a double, so the double y carries the
identical (wrong) value. If you want a constant to be treated explicitly as a float, you can
write it as 3.1F, and if you want it to be treated as a long double, you can write it as 3.1L.

A.4.11 Logical and Bitwise Operators

∼ bitwise NOT
& bitwise AND
| bitwise OR
∧ bitwise XOR
>> shift bits to the right (shifting in 0’s from the left)
<< shift bits to the left (shifting in 0’s from the right)
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Bitwise operators act directly on the bits of the operand(s), as in the following example:

unsigned char a=0xC, b=0x6, c; // in binary, a is 0b00001100 and b is 0b00000110
c = ˜a; // NOT; c is 0xF3 or 0b11110011
c = a & b; // AND; c is 0x04 or 0b00000100
c = a | b; // OR; c is 0x0E or 0b00001110
c = a ˆ b; // XOR; c is 0x0A or 0b00001010
c = a >> 3; // SHIFT RT 3; c is 0x01 or 0b00000001, one 1 is shifted off the

right end
c = a << 3; // SHIFT LT 3; c is 0x60 or 0b01100000, 1’s shifted to more

significant digits

Much like the math operators, we also have the assignment expressions &=, |=, ˆ=, >>=, and
<<=, so a &= b is equivalent to a = a&b.

A.4.12 Conditional Statements

if-else

The basic if-else construct takes this form:

if (<expression>) {
// execute this code block if <expression> is TRUE, then exit

}
else {
// execute this code block if <expression> is FALSE

}

If the code block is a single statement, the braces are not necessary; however, good practice
dictates that you should always use braces, in case you want to add additional statements later.
The else and the block after it can be eliminated if no action needs to be taken when
<expression> is FALSE.

if-else statements can be made into arbitrarily long chains:

if (<expression1>) {
// execute this code block if <expression1> is TRUE, then exit this if-else chain

}
else if (<expression2>) {
// execute this code block if <expression2> is TRUE, then exit this if-else chain

}
else {
// execute this code block if both expressions above are FALSE

}

An example if statement is in getUserInput.

For more information on 
the book see www.nu32.org



560 A Crash Course in C

switch

If you would like to check if the value of a single expression is one of several possibilities, a
switch may be simpler, clearer, and faster than a chain of if-else statements. Here is an
example:

char ch;
// ... omitting code that sets the value of ch ...
switch (ch) {

case ’a’: // execute these statements if ch has value ’a’
<statement>;
<statement>;
break; // exit the switch statement

case ’b’:
// ... some statements
break;

case ’c’:
// ... some statements
break;

default: // execute this code if none of the previous cases applied
// ... some statements

}

Notice the break; statement after each case. These statements are required to prevent the code
from “falling through” to the next case, which is usually undesirable.

A.4.13 Loops

for loop

A for loop has the following syntax:

for (<initialization>; <test>; <update>) {
// code block
}

If the code block consists of only one statement, the surrounding braces can be eliminated, but
it is a good idea to use them anyway.

The sequence is as follows: at the beginning of the loop, the <initialization> statement is
executed. Then the <test> is evaluated. If it is TRUE, the code block is executed, the <update>

is performed, and we return to the <test>. If it is FALSE, the for loop exits.

The following for loop is in calculateGrowth:

for (i = 1; i <= invp->years; i = i + 1) {
invp->invarray[i] = invp->growth*invp->invarray[i-1];

}
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The <initialization> step sets i = 1. The <test> is TRUE if i is less than or equal to the
number of years we will calculate growth in the investment. If it is TRUE, the value of the
investment in year i is calculated from the value in year i-1 and the growth rate. The <update>

adds 1 to i. In this example, the code block is executed for i values of 1 to invp->years.

It is possible to perform more than one statement in the <initialization> and <update> steps
by separating the statements by commas. For example, we could write

for (i = 1, j = 10; i <= 10; i++, j--) { /* code */ };

if we want i to count up and j to count down.

while loop

A while loop has the following syntax:

while (<test>) {
// code block

}

First, the <test> is evaluated, and if it is FALSE, the while loop exits. If the test is TRUE, the
code block is executed and we return to the <test>.

In main of invest.c, the while loop executes until the function getUserInput returns 0, i.e.,
FALSE. getUserInput collects the user’s input and returns an int that is 0 if the user’s input is
invalid and 1 if it is valid.

do-while loop

This is similar to a while loop, except the <test> is executed at the end of the code block,
guaranteeing that the loop is executed at least once.

do {
// code block

} while (<test>);

break and continue

If anywhere in the loop’s code block the command break is encountered, the program will exit
the loop. If the command continue is encountered, the rest of the commands in the code block
will be skipped, and control will return to the <update> in a for loop or the <test> in a while

or do-while loop. Examples:

while (<test1>) {
if (<test2>) {

break; // jump out of the while loop
}
// ...

}
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while (<test1>) {
if (<test2>) {
continue; // skip the rest of the loop and go back to <test1>

}
x = x+3;

}

Use break and continue judiciously; they can make your code difficult to read. If you find
yourself relying on numerous break and continue statements in a single loop, you may want to
rethink your approach.

A.4.14 The C Standard Library

C comes with a standard library, aspects of which you can use by including the appropriate .h

header file. The header file provides data types, function prototypes and macros required for
part of the library.25 We have already seen examples of standard header files such as stdio.h,
which contains input/output functions; math.h in Section A.4.7; and stdlib.h in Section A.4.9.
Third-party libraries can also be included by including their header files and linking with them.

It is well beyond our scope to provide details on the C standard library. Here we highlight a
few particularly useful functions in stdio.h, string.h, and stdlib.h.

Input and output: stdio.h

int printf(const char *Format, ...);

The function printf is used to print to the “standard output,” which, for a PC, is typically the
screen. It takes a formatting string Format and a variable number of extra arguments,
determined by the formatting string, as indicated by the ... notation. The keyword const

means that printf cannot change the string Format.

An example comes from our program printout.c:

int i;
float f;
double d;
char c;

25 Reminder: if you include <math.h>, you should also compile your program with the -lm flag, so the math
library is linked during the linking stage. The math library is logically part of the C standard library, it just
happens to be in a different file.
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i = 32;
f = 4.278;
d = 4.278;
c = ’k’; // or, by ASCII table, c = 107;

printf("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);
printf(" f = %19.17f\n",f);
printf(" d = %19.17f\n",d);

which produces the output

Formatted output:
i = 32 c = ’k’
f = 4.27799987792968750
d = 4.27799999999999958

The formatting strings consist of plain text, the special character \n that prints a newline, and
directives of the form %4d and %19.17f. Each directive indicates that printf will be looking for
a corresponding variable in the argument list to insert into the output. A non-exhaustive list of
directives is given here:

%d Print an int. Corresponding argument should be an int.
%u Print an unsigned int. Corresponding argument should be an integer data type.
%ld Print a long int.
%f Print a double or a float. Corresponding argument should be a float or a double.
%c Print a character according to the ASCII table. Argument should be char.
%s Print a string. Argument should be a pointer to a char (first element of a string),

terminated with a NULL character (’\0’).
%x Print an unsigned int as a hexadecimal number.

The directive %d can be written instead as %4d, for example, meaning that four spaces are
allocated to write the integer, which will be right-justified in that space with unused spaces
blank. The directive %f can be written instead as %6.3f, indicating that six spaces are reserved
to write out the variable, with one of those spaces being the decimal point and three of the
spaces after the decimal point.

int sprintf(char *str, const char *Format, ...);

Instead of printing to the screen, sprintf prints to the string str. An example of this is in
sendOutput. The string str must have enough memory allocated to fit the results.

int scanf(const char *Format, ...);

The function scanf is a formatted read from the “standard input,” which is typically the
keyboard. Arguments to scanf consist of a formatting string and pointers to variables where
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the input should be stored. Typically the formatting string consists of directives like %d, %f,
etc., separated by whitespace. The directives are similar to those for printf, except they do not
accept spacing modifiers (like the 5 in %5d).

One notable difference between formatting strings is that, unlike printf, scanf does
distinguish between floats and doubles. To read a double with scanf use %lf rather than %f.

For each directive, scanf expects a pointer to a variable of that type in the argument list. A
very common mistake is the following:

int i;
scanf("%d",i); // WRONG! We need a pointer to the variable.
scanf("%d",&i); // RIGHT.

The pointer allows scanf to put the input into the right place in memory.

getUserInput uses the statement

scanf("%lf %lf %d", &(invp->inv0), &(invp->growth), &(invp->years));

to read in two doubles and an int and place them into the appropriate spots in the investment
data structure. scanf ignores the whitespace (tabs, newlines, spaces, etc.) between the inputs.

int sscanf(char *str, const char *Format, ...);

Instead of scanning from the keyboard, scanf scans the string pointed to by str.

FILE* fopen(const char *Path, const char *Mode);
int fclose(FILE *Stream);
int fscanf(FILE *Stream, const char *Format, ...);
int fprintf(FILE *Stream, const char *Format, ...);

These commands are for reading from and writing to files. Say you have a file named
inputfile, sitting in the same directory as the program, with information your program needs.
The following code would read from it and then write to the file outputfile.

int i;
double x;
FILE *input, *output;
input = fopen("inputfile","r"); // "r" means you will read from this file
output = fopen("outputfile","w"); // "w" means you will write to this file
fscanf(input,"%d %lf",&i,&x);
fprintf(output,"I read in an integer %d and a double %lf.\n",i,x);
fclose(input); // these streams should be closed ...
fclose(output); // ... at the end of the program

Normally, you would check the return value of fopen. If it returns NULL, than it failed to open
the file.
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int fputc(int character, FILE *stream);
int fputs(const char *str, FILE *stream);
int fgetc(FILE *stream);
char* fgets(char *str, int num, FILE *stream);
int puts(const char *str);

These commands write (put) a character or string to a file, get a character or string from a file,
or write a string to the screen. The variable stdin is a FILE * that corresponds to keyboard
input, and stdout is a FILE * that corresponds to screen output.

String manipulation: string.h

char* strcpy(char *destination, const char *source);

Given two strings, char destination[100],source[100], we cannot simply copy one to the
other using the assignment destination = source. Instead we use
strcpy(destination,source), which copies the string source (until reaching the string
terminator character, integer value 0) to destination. The string destination must have
enough memory allocated to hold the source string.

char* strcat(char *destination, const char *source);

Appends the string in source to the end of the string destination, which must be large enough
to hold the concatenated string.

int strcmp(const char *s1, const char *s2);

Returns 0 if the two strings are identical, a positive integer if the first unequal character in s1 is
greater than s2, and a negative integer if the first unequal character in s1 is less than s2.

size_t strlen(const char *s);

The type size_t is an unsigned integer type. strlen returns the length of the string s, where
the end of the string is indicated by the NULL character (’\0’).

void* memset(void *s, int c, size_t len);

memset writes len bytes of the value c (converted to an unsigned char) starting at the
beginning of the string s. So
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char s[10];
memset(s,’c’,5);

would fill the first five characters of the string s with the character ’c’ (or integer value 99).
This can be a convenient way to initialize a string.

General purpose functions in stdlib.h

void* malloc(size_t objectSize)

malloc is used for dynamic memory allocation. An example use is in Section A.4.9.

void free(void *objptr)

free is used to release memory allocated by malloc. An example use is in Section A.4.9.

int rand()

It is sometimes useful to generate random numbers, particularly for games. The code

int i;
i = rand();

places in i a pseudo-random number between 0 and RAND_MAX, a constant which is defined in
stdlib.h (2,147,483,647 in our gcc installation). To convert this to an integer between 1 and
10, you could follow with

i = 1 + (int) ((10.0*i)/(RAND_MAX+1.0));

One drawback of the code above is that calling rand multiple times will lead to the same
sequence of random numbers every time the program runs. The usual solution is to “seed” the
random number algorithm with a different number each time, and this different number is
often taken from a system clock. The srand function is used to seed rand, as in the example
below:

#include <stdio.h> // allows use of printf()
#include <stdlib.h> // allows use of rand() and srand()
#include <time.h> // allows use of time()

int main(void) {
int i;
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srand(time(NULL)); // seed the random number generator with the current time
for (i=0; i<10; i++) printf("Random number: %d\n",rand());
return 0;

}

If we take out the line with srand, this program produces the same ten “random” numbers
every time we run it. Note that this program includes the time.h header to allow the use of the
time function.

void exit(int status)

When exit is invoked, the program exits with the exit code status. stdlib.h defines
EXIT_SUCCESS with value 0 and EXIT_FAILURE with value −1, so that a typical call to exit

might look like

exit(EXIT_SUCCESS);

A.4.15 Multiple File Programs and Libraries

So far our programs have used the C Standard Library, which provides several functions,
including printf and scanf. Accessing these functions is possible because:

1. The preprocessor command #include <stdio.h> inserts the header file stdio.h into the
current compilation unit, providing function prototypes for library functions.

2. The linker links the pre-compiled library object code in the C Standard Library with your
program.

Thus, using a library usually requires header files and object code. We could also loosely
define a library to consist of a header file and a C file (without a main function) containing
source code for the library functions.

The purpose of a library is to collect functions that are likely to be useful in multiple programs
so you do not have to rewrite the code for each program. The same principles apply when
dividing your project into multiple source files. Think about what functions may be generally
useful yet related and put them into their own file. Having code in multiple files not only
promotes reuse, but it also isolates your project’s components making them easier to test and
debug. Many libraries evolve from a collection of source files that were designed for one
particular project, but prove more generally useful.

Let us look at an example.

A simple example: The rad2volume library

Pretend you want to write several programs that need to calculate the volume of a sphere given
its radius. You could copy and paste the formula into all of your programs. If, however, you
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made some mistake and wanted to fix it, you would then need to find where you used the
formula in every program and change it. By placing the formula in a function, in its own file,
you only need to make one correction to fix everything.

In this example, you decide to write one helper C file, rad2volume.c, with a function double

radius2Volume(double r) that can be used by other C files. For good measure, you decide to
make the constant MY_PI available also. To test your new rad2volume library consisting of
rad2volume.c and rad2volume.h, you create a main.c file that uses it. The three files are given
below.

// ***** file: rad2volume.h *****
#ifndef RAD2VOLUME_H // "include guard"; don’t include twice in one compilation
#define RAD2VOLUME_H // second line of the "include guard"

#define MY_PI 3.1415926 // constant available to files including rad2Volume.h
double radius2Volume(double r); // prototype available to files including rad2Volume.h

#endif // third line, and end, of "include guard"

// ***** file: rad2volume.c *****
#include <math.h> // for the function pow
#include "rad2volume.h" // if the header is in the same directory, use "quotes"

static double cuber(double x) { // this function is not available externally
return pow(x,3.0);

}

double radius2Volume(double rad) { // function definition
return (4.0/3.0)*MY_PI*cuber(rad);

}

// ***** file: main.c *****
#include <stdio.h>
#include "rad2volume.h"

int main(void) {
double radius = 3.0, volume;
volume = radius2Volume(radius);
printf("Pi is approximated as %25.23lf.\n",MY_PI);
printf("The volume of the sphere is %8.4lf.\n",volume);
return 0;

}

The C file rad2volume.c contains two functions, cuber and radius2Volume. The function cuber

is only meant for internal, private use by rad2volume.c, so there is no prototype in
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rad2volume.h and it is also declared static so it is not visible to other source files. The
function radius2Volume is meant for public use by other C files, so a prototype for
radius2Volume is included in the library header file rad2volume.h. The constant MY_PI is also
meant for public use, so it is defined in rad2volume.h. Now radius2Volume and MY_PI are
available to any file that includes rad2volume.h. In this case, they are available to main.c and
rad2volume.c. Typically, it is good practice for the implementation file to #include its own
header; this prevents problems relating to a mismatch between function prototypes and
function definitions.

Each of main.c and rad2volume.c is compiled independently to create the object code files
main.o and rad2volume.o. The linker combines these files into the final executable. main.c
compiles successfully because it has a prototype for rad2Volume from including rad2volume.h,
and it expects that, during the linking stage, rad2Volume will be present. If no object code
passed to the linker defines rad2Volume then a linker error occurs.

Note the three lines making up the include guard in rad2volume.h. During preprocessing of a
C file, if rad2volume.h is included, the macro RAD2VOLUME_H is defined. If the same C file tries
to include rad2volume.h again, the include guard will recognize that RAD2VOLUME_H already
exists and therefore skip the prototype and constant definition, down to the #endif. Without
include guards, if we wrote a .c file including both header1.h and header2.h, for example, not
knowing that header2.h already includes header1.h, header1.h would be included twice,
possibly causing errors.

The two C files, rad2volume.c and main.c, can be compiled into object code using the
commands

gcc -c rad2volume.c -o rad2volume.o
gcc -c main.c -o main.o

where the -c flag indicates that the source code should be compiled and assembled, but not
linked. The result is the object files rad2volume.o and main.o. The two object files can be
linked into a final executable using

gcc rad2volume.o main.o -o myprog

Instead of typing these three lines, the single command

gcc rad2volume.c main.c -o myprog

will automatically compile and link the files.

Executing myprog, the output is

Pi is approximated as 3.14159260000000006840537.
The volume of the sphere is 113.0973.
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More general multi-file projects

Generalizing from the previous example, a header file declares constants, macros, new data
types, and function prototypes that are needed by the files that #include them. A header file
can be included by C source files or other header files. Figure A.3 illustrates a project
consisting of one C source file with a main function and two helper C source files without a
main function. (Every C program has exactly one .c file with a main function.) Each of the
helper C files has its own header file. This project also has another header file, general.h,
without an associated C file. This header contains general constant, macro, and data type
definitions that are not specific to either helper source file or the main C file. The arrows
indicate that the pointed-to file #includes the pointed-from header file.

Assuming that all the files are in the same directory, the project in Figure A.3 can be built by
the following four commands, which create three object files (one for each source file) and
link them together into myprog:

gcc -c main.c -o main.o
gcc -c helper1.c -o helper1.o
gcc -c helper2.c -o helper2.o
gcc main.o helper1.o helper2.o -o myprog

The build is illustrated in Figure A.4. Each C file is compiled independently and requires the
constants, macros, data types, and function prototypes needed to successfully compile and
assemble into an object file. During compilation of a single C file, the compiler neither has nor
needs access to the source code for functions in other C files. If main.c uses a function in
helper1.c, for example, it needs only a prototype of the function, provided by helper1.h. The
prototype tells the compiler the return type of the function and what arguments it takes,
allowing the compiler to check if the code in main.c uses the function properly. Calls to the
function from main.o are linked to the actual function in helper1.o at the linker stage.

main.c helper2.chelper1.c

helper2.h

general.h

helper1.h

Figure A.3
An example project consisting of three C files and three header files. Arrows point from header files

to files that include them.
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main.c

helper2.h

general.h

helper1.h

helper1.c

helper1.h

general.h

helper2.c

helper2.h

general.h

main.ohelper2.ohelper1.o

Link

myprog

Preprocess,
compile,

assemble

Preprocess,
compile,

assemble

Preprocess,
compile,

assemble

Figure A.4
The building of the project in Figure A.3.

Another benefit of splitting your project comes during compilation. If a .c file and the header
files it includes do not change, then the .c file need not be compiled every time you build your
project; the existing .o file may be used during the linking stage.

According to Figures A.3 and A.4, main.c has the following preprocessor commands:

#include "general.h"
#include "helper1.h"
#include "helper2.h"

The preprocessor replaces these commands with copies of the files general.h, helper1.h, and
helper2.h. But when it includes helper1.h, it finds that helper1.h tries to include a second
copy of general.h (see Figure A.3; helper1.h has a #include "general.h" command). Since
general.h has already been copied in, it should not be copied again; otherwise we would have
multiple copies of the same function prototypes, constant definitions, etc. The include guards
prevent this duplication from happening.

In summary, the general.h, helper1.h, and helper2.h header files contain definitions that are
made public to files including them. We might see the following items in the helper1.h header
file, for example:
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• an include guard
• other include files
• constants and macros defined with #define made public (and which may also be used by

helper1.c)
• new data types (which may also be used by helper1.c)
• function prototypes of those functions in helper1.c which are meant to be used by other

files

If a variable, function prototype, or constant is private to one C file, you should define it with
the static keyword in the C file and not include it in the header file.

A header file like helper1.h could also have the declaration

extern int Helper1_Global_Var; // no space is allocated by this declaration

where helper1.c has the global variable definition

int Helper1_Global_Var; // space is allocated by this definition

Then any file including helper1.h would have access to the global variable
Helper1_Global_Var allocated by helper1.c. Global variables defined in helper1.c with the
static keyword are private to helper1.c and cannot be accessed by other files. If you have to
use global variables (which should be avoided generally), declare them static whenever
possible. Only in rare circumstances should you need to use extern.

Makefiles

When you are ready to build your executable, you can type the gcc commands at the command
line, as we have seen previously. A Makefile simplifies the process, particularly for multi-file
projects, by specifying the dependencies and commands needed to build the project. A
Makefile for our rad2volume example is shown below, where everything after a # is a
comment.

# ***** file: Makefile *****
# Comment: This is the simplest of Makefiles!

# Here is a template:
# [target]: [dependencies]
# [tab] [command to execute]

# The thing to the left of the colon in the first line is what is created,
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# and the thing(s) to the right of the colon are what it depends on. The second
# line is the action to create the target. If the things it depends on
# haven’t changed since the target was last created, no need to do the action.
# Note: The tab spacing in the second line is important! You can’t just use
# individual spaces.

# "make myprog" or "make" links two object codes to create the executable
myprog: main.o rad2volume.o

gcc main.o rad2volume.o -o myprog

# "make main.o" produces main.o object code; depends on main.c and rad2volume.h
main.o: main.c rad2volume.h

gcc -c main.c -o main.o

# "make rad2volume.o" produces rad2volume.o; depends on one .c and one h file
rad2volume.o: rad2volume.c rad2volume.h

gcc -c rad2volume -o rad2volume.o

# "make clean" throws away any object files to ensure make from scratch
clean:

rm *.o

With this Makefile in the same directory as your other files, you should be able to type the
command make [target],26 where [target] is myprog, main.o, rad2volume.o, or clean. If the
target depends on other files, make will make sure those are up to date first, and if not, it will
call the commands needed to create them. For example, make myprog triggers a check of
main.o, which triggers a check of main.c and rad2volume.h. If either of those have changed
since the last time main.o was made, then main.c is compiled and assembled to create a new
main.o before the linking step.

The command make with no target specified will make the first target (which is myprog in
this case).

Ensure that your Makefile is saved without any extensions (e.g., .txt) and that the commands
are preceded by a tab (not spaces).

There are many more sophisticated uses of Makefiles which you can learn about from other
sources.

A.5 Exercises
1. Install C, create the HelloWorld.c program, and compile and run it.
2. Explain what a pointer variable is, and how it is different from a non-pointer variable.
3. Explain the difference between interpreted and compiled code.

26 In some C installations make is named differently, like nmake for Visual Studio or mingw32-make. If you can
find no version of make, you may not have selected the make tools installation option when you performed the C
installation.
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4. Write the following hexadecimal (base-16) numbers in eight-digit binary (base-2) and
three-digit decimal (base-10). Also, for each of the eight-digit binary representations,
give the value of the most significant bit. (a) 0x1E. (b) 0x32. (c) 0xFE.
(d) 0xC4.

5. What is 33310 in binary and 10111101112 in hexadecimal? What is the maximum value,
in decimal, that a 12-bit number can hold?

6. Assume that each byte of memory can be addressed by a 16-bit address, and every 16-bit
address has a corresponding byte in memory. How many total bits of memory do you
have?

7. (Consult the ASCII table.) Let ch be of type char. (a) The assignment ch = ’k’ can be
written equivalently using a number on the right side. What is that number? (b) The
number for ’5’? (c) For ’=’? (d) For ’?’?

8. What is the range of values for an unsigned char, short, and double data type?
9. How many bits are used to store a char, short, int, float, and double?

10. Explain the difference between unsigned and signed integers.
11. (a) For integer math, give the pros and cons of using chars vs. ints. (b) For floating point

math, give the pros and cons of using floats vs. doubles. (c) For integer math, give the
pros and cons of using chars vs. floats.

12. The following signed short ints, written in decimal, are stored in two bytes of memory
using the two’s complement representation. For each, give the four-digit hexadecimal
representation of those two bytes. (a) 13. (b) 27. (c) −10. (d) −17.

13. The smallest positive integer that cannot be exactly represented by a four-byte IEEE 754
float is 224 + 1, or 16,777,217. Explain why.

14. Give the four bytes, in hex, that represent the following decimal values: (a) 20 as an
unsigned int. (b) −20 as a two’s complement signed int. (c) 1.5 as an IEEE 754 float.
(d) 0 as an IEEE 754 float.
To verify your answers, use the program typereps.c below. This program allows the user
to enter four bytes as eight hex characters, then prints the value of those four bytes when
they are interpreted as an unsigned int, a two’s complement signed int, an IEEE 754
float, or four consecutive chars. To do this, the program creates a new data type
four_types_t consisting of four bytes, or 32 bits. These same 32 bits are interpreted as
either an unsigned int, int, float, or four chars depending on whether we reference the
bits using the fields u, i, f, or char0–char3 in the union.

#include <stdio.h>

typedef union { // a new data type consisting of four bytes
unsigned int u; // the 32 bits interpreted as an unsigned int
int i; // the same 32 bits interpreted as a two’s complement int
float f; // the same 32 bits interpreted as an IEEE 754 single prec float
struct {

char char0:8; // bits 0 - 7 interpreted as char, called char0
char char1:8; // bits 8 - 15 interpreted as char, called char1
char char2:8; // bits 16 - 23 interpreted as char, called char2
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char char3:8; // bits 24 - 31 interpreted as char, called char3
};

} four_types_t; // the new type is called four_types_t

int main(void) {
four_types_t val;

while (1) { // exit the infinite loop using ctrl-c or similar
printf("Enter four bytes as eight hex characters 0-f, e.g., abcd0123: ");
scanf("%x",&val.u);
printf("\nThe 32 bits in hex: %x\n",val.u);
printf("The 32 bits as an unsigned int, in decimal: %u\n",val.u);
printf("The 32 bits as a signed int, in decimal: %d\n",val.i);
printf("The 32 bits as a float: %.20f\n",val.f);
printf("The 32 bits as 4 chars: %c %c %c %c\n\n",

val.char3, val.char2, val.char1, val.char0);
}
return 0;

}

Below is a sample output. Note that only the ASCII values 32-126 have a visible printed
representation, so the printouts as chars are meaningless in the first two examples.

Enter four bytes as eight hex characters 0-f, e.g., abcd0123: c0000000

The 32 bits in hex: c0000000
The 32 bits as an unsigned int, in decimal: 3221225472
The 32 bits as a signed int, in decimal: -1073741824
The 32 bits as a float: -2.00000000000000000000
The 32 bits as 4 chars: ?

Enter four bytes as eight hex characters 0-f, e.g., abcd0123: ff800000

The 32 bits in hex: ff800000
The 32 bits as an unsigned int, in decimal: 4286578688
The 32 bits as a signed int, in decimal: -8388608
The 32 bits as a float: -inf
The 32 bits as 4 chars: ? ?

Enter four bytes as eight hex characters 0-f, e.g., abcd0123: 48494a4b

The 32 bits in hex: 48494a4b
The 32 bits as an unsigned int, in decimal: 1212762699
The 32 bits as a signed int, in decimal: 1212762699
The 32 bits as a float: 206121.17187500000000000000
The 32 bits as 4 chars: H I J K

You can easily modify the code to allow the user to enter the four bytes as a float or int
to examine their hex representations.

15. Write a program that prints out the sign, exponent, and significand bits of the IEEE 754
representation of a float entered by the user.

16. Technically the data type of a pointer to a double is “pointer to type double.” Of the
common integer and floating point data types discussed in this chapter, which is the most
similar to this pointer type? Assume pointers occupy eight bytes.
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17. To keep things simple, let us assume we have a microcontroller with only 28 = 256 bytes
of RAM, so each address is given by a single byte. Now consider the following code
defining four global variables:

unsigned int i, j, *kp, *np;

Let us assume that the linker places i in addresses 0xB0..0xB3, j in 0xB4..0xB7, kp in
0xB8, and np in 0xB9. The code continues as follows:

// (a) the initial conditions, all memory contents unknown
kp = &i; // (b)
j = *kp; // (c)
i = 0xAE; // (d)
np = kp; // (e)
*np = 0x12; // (f)
j = *kp; // (g)

For each of the comments (a)-(g) above, give the contents (in hexadecimal) at the
address ranges 0xB0..0xB3 (the unsigned int i), 0xB4..0xB7 (the unsigned int j),
0xB8 (the pointer kp), and 0xB9 (the pointer np), at that point in the program, after
executing the line containing the comment. The contents of all memory addresses are
initially unknown or random, so your answer to (a) is “unknown” for all memory
locations. If it matters, assume little-endian representation.

18. Invoking the gcc compiler with a command like gcc myprog.c -o myprog actually
initiates four steps. What are the four steps called, and what is the output of each step?

19. What is main’s return type, and what is the meaning of its return value?
20. Give the printf statement that will print out a double d with eight digits to the right of

the decimal point and four spaces to the left.
21. Consider three unsigned chars, i, j, and k, with values 60, 80, and 200, respectively. Let

sum also be an unsigned char. For each of the following, give the value of sum after
performing the addition. (a) sum = i+j; (b) sum = i+k; (c) sum = j+k;

22. For the variables defined as

int a=2, b=3, c;
float d=1.0, e=3.5, f;

give the values of the following expressions. (a) f = a/b; (b) f = ((float) a)/b; (c) f =

(float) (a/b); (d) c = e/d; (e) c = (int) (e/d); (f) f = ((int) e)/d;

23. In each snippet of code in (a)-(d), there is an arithmetic error in the final assignment of
ans. What is the final value of ans in each case?

a. char c = 17;
float ans = (1 / 2) * c;

b. unsigned int ans = -4294967295;

c. double d = pow(2, 16);
short ans = (short) d;

d. double ans = ((double) -15 * 7) / (16 / 17) + 2.0;
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24. Truncation is not always bad. Say you wanted to store a list of percentages rounded down
to the nearest percent, but you were tight on memory and cleverly used an array of chars
to store the values. For example, pretend you already had the following snippet of code:

char percent(int a, int b) {
// assume a <= b
char c;
c = ???;
return c;

}

You cannot simply write c = a / b. If ab = 0.77426 or ab = 0.778, then the correct return
value is c = 77. Finish the function definition by writing a one-line statement to replace c
= ???.

25. Explain why global variables work against modularity.
26. What are the seven sections of a typical C program?
27. You have written a large program with many functions. Your program compiles without

errors, but when you run the program with input for which you know the correct output,
you discover that your program returns the wrong result. What do you do next? Describe
your systematic strategy for debugging.

28. Erase all the comments in invest.c, recompile, and run the program to make sure it still
functions correctly. You should be able to recognize what is a comment and what is not.
Turn in your modified invest.c code.

29. The following problems refer to the program invest.c. For all problems, you should
modify the original code (or the code without comments from the previous problem) and
run it to make sure you get the expected behavior. For each problem, turn in the modified
portion of the code only.
a. Using if, break and exit. Include the header file stdlib.h so we have access to the

exit function (Section A.4.14). Change the while loop in main to be an infinite loop
by inserting an expression <expr> in while(<expr>) that always evaluates to 1
(TRUE). (What is the simplest expression that evaluates to 1?) Now the first
command inside the while loop gets the user’s input. if the input is not valid, exit
the program; otherwise continue. Next, change the exit command to a break

command, and see the different behavior.
b. Accessing fields of a struct. Alter main and getUserInput to set inv.invarray[0] in

getUserInput, not main.
c. Using printf. In main, before sendOutput, echo the user’s input to the screen. For

example, the program could print out You entered 100.00, 1.05, and 5.
d. Altering a string. After the sprintf command of sendOutput, try setting an element

of outstring to 0 before the printf command. For example, try setting the third
element of outstring to 0. What happens to the output when you run the program?
Now try setting it to ’0’ instead and see the behavior.
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e. Relational operators. In calculateGrowth, eliminate the use of <= in favor of an
equivalent expression that uses !=.

f. Math. In calculateGrowth, replace i=i+1 with an equivalent statement using +=.
g. Data types. Change the fields inv0, growth, and invarray[] to be float instead of

double in the definition of the Investment data type. Make sure you make the correct
changes everywhere else in the program.

h. Pointers. Change sendOutput so that the second argument is of type int *, i.e., a
pointer to an integer, instead of an integer. Make sure you make the correct changes
everywhere else in the program.

i. Conditional statements. Use an else statement in getUserInput to print Input is

valid if the input is valid.
j. Loops. Change the for loop in sendOutput to an equivalent while loop.
k. Logical operators. Change the assignment of valid to an equivalent statement using

|| and !, and no &&.
30. Consider this array definition and initialization:

int x[4] = {4, 3, 2, 1};

For each of the following, give the value or write “error/unknown” if the compiler will
generate an error or the value is unknown. (a) x[1] (b) *x (c) *(x+2) (d) (*x)+2 (e) *x[3]
(f) x[4] (g) *(&(x[1]) + 1)

31. For the (strange) code below, what is the final value of i? Explain why.
int i,k=6;
i = 3*(5>1) + (k=2) + (k==6);

32. As the code below is executed, give the value of c in hex at the seven break points
indicated, (a)-(g).

unsigned char a=0x0D, b=0x03, c;
c = ˜a; // (a)
c = a & b; // (b)
c = a | b; // (c)
c = a ˆ b; // (d)
c = a >> 3; // (e)
c = a << 3; // (f)
c &= b; // (g)

33. In your C installation, or by searching on the web, find a listing of the header file
stdio.h. Find the function prototype for one function provided by the library, but not
mentioned in this appendix, and describe what that function does.

34. Write a program to generate the ASCII table for values 33 to 127. The output should be
two columns: the left side with the number and the right side with the corresponding
character. Turn in your code and the output of the program.

35. We will write a simple bubble sort program to sort a string of text in ascending order
according to the ASCII table values of the characters. A bubble sort works as follows.
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Given an array of n elements with indexes 0 to n− 1, we start by comparing elements 0
and 1. If element 0 is greater than element 1, we swap them. If not, leave them where
they are. Then we move on to elements 1 and 2 and do the same thing, etc., until finally
we compare elements n− 2 and n− 1. After this, the largest value in the array has
“bubbled” to the last position. We now go back and do the whole thing again, but this
time only comparing elements 0 up to n− 2. The next time, elements 0 to n− 3, etc.,
until the last time through we only compare elements 0 and 1.
Although this simple program bubble.c could be written in one function (main), we are
going to break it into some helper functions to get used to using them. The function
getString will get the input from the user; the function printResult will print the sorted
result; the function greaterThan will check if one element is greater than another; and the
function swap will swap two elements in the array. With these choices, we start with an
outline of the program that looks like this.

#include <stdio.h>
#include <string.h>
#define MAXLENGTH 100 // max length of string input

void getString(char *str); // helper prototypes
void printResult(char *str);
int greaterThan(char ch1, char ch2);
void swap(char *str, int index1, int index2);

int main(void) {
int len; // length of the entered string
char str[MAXLENGTH]; // input should be no longer than MAXLENGTH
// here, any other variables you need

getString(str);
len = strlen(str); // get length of the string, from string.h
// put nested loops here to put the string in sorted order
printResult(str);
return(0);

}

// helper functions go here

Here’s an example of the program running. Everything after the first colon is entered by
the user. Blank spaces are written using an underscore character, since scanf assumes
that the string ends at the first whitespace.

Enter the string you would like to sort: This_is_a_cool_program!
Here is the sorted string: !T____aacghiilmoooprrss

Complete the following steps in order. Do not move to the next step until the current step
is successful.
a. Write the helper function getString to ask the user for a string and place it in the

array passed to getString. You can use scanf to read in the string. Write a simple
call in main to verify that getString works as you expect before moving on.
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b. Write the helper function printResult and verify that it works correctly.
c. Write the helper function greaterThan and verify that it works correctly.
d. Write the helper function swap and verify that it works correctly.
e. Now define the other variables you need in main and write the nested loops to

perform the sort. Verify that the whole program works as it should.
Turn in your final documented code and an example of the output of the program.

36. A more useful sorting program would take a series of names (e.g., Doe_John) and scores
associated with them (e.g., 98) and then list the names and scores in two columns in
descending order. Modify your bubble sort program to do this. The user enters a name
string and a number at each prompt. The user indicates that there are no more names by
entering 0 0.
Your program should define a constant MAXRECORDS which contains the maximum number
of records allowable. You should define an array, MAXRECORDS long, of struct variables,
where each struct has two fields: the name string and the score. Write your program
modularly so that there is at least a sort function and a readInput function of type int

that returns the number of records entered.
Turn in your code and example output.

37. Modify the previous program to read the data in from a file using fscanf and write the
results out to another file using fprintf. Turn in your code and example output.

38. Consider the following lines of code:
int i, tmp, *ptr, arr[7] = {10, 20, 30, 40, 50, 60, 70};

ptr = &arr[6];
for(i = 0; i < 4; i++) {
tmp = arr[i];
arr[i] = *ptr;
*ptr = tmp;
ptr–;

}

a. How many elements does the array arr have?
b. How would you access the middle element of arr and assign its value to the variable

tmp? Do this two ways, once indexing into the array using [] and the other with the
dereferencing operator and some pointer arithmetic. Your answer should only be in
terms of the variables arr and tmp.

c. What are the contents of the array arr before and after the loop?
39. The following questions pertain to the code below. For your responses, you only need to

write down the changes you would make using valid C code. You should verify that your
modifications actually compile and run correctly. Do not submit a full C program for this
question. Only write the changes you would make using legitimate C syntax.

#include <stdio.h>
#define MAX 10

void MyFcn(int max);
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int main(void) {
MyFcn(5);
return(0);

}

void MyFcn(int max) {
int i;
double arr[MAX];

if(max > MAX) {
printf("The range requested is too large. Max is %d.\n", MAX);
return;

}
for(i = 0; i < max; i++) {

arr[i] = 0.5 * i;
printf("The value of i is %d and %d/2 is %f.\n", i, i, arr[i]);

}
}

a. while loops and for loops are essentially the same thing. How would you write an
equivalent while loop that replicates the behavior of the for loop?

b. How would you modify the main function so that it reads in an integer value from the
keyboard and then passes the result to MyFcn? (This replaces the statement
MyFcn(5);.) If you need to use extra variables, make sure to define them before you
use them in your snippet of code.

c. Change main so that if the input value from the keyboard is between −MAX and MAX,
you call MyFcn with the absolute value of the input. If the input is outside this range,
then you simply call MyFcn with the value MAX. How would you make these changes
using conditional statements?

d. In C, you will often find yourself writing nested loops (a loop inside a loop) to
accomplish a task. Modify the for loop to use nested loops to set the ith element in
the array arr to half the sum of the first i− 1 integers, i.e., arr[i] = 1

2
∑i−1

j=0 j. (You
can easily find a formula for this that does not require the inner loop, but you should
use nested loops for this problem.) The same loops should print the value of each
arr[i] to 2 decimal places using the %f formatting directive.

40. If there are n people in a room, what is the chance that two of them have the same
birthday? If n = 1, the chance is zero, of course. If n > 366, the chance is 100%. Under
the assumption that births are distributed uniformly over the days of the year, write a
program that calculates the chances for values of n = 2 to 100. What is the lowest value
n∗ such that the chance is greater than 50%? (The surprising result is sometimes called
the “birthday paradox.”) If the distribution of births on days of the year is not uniform,
will n∗ increase or decrease? Turn in your answer to the questions as well as your C code
and the output.

41. In this problem you will write a C program that solves a “puzzler” that was presented on
NPR’s CarTalk radio program. In a direct quote of their radio transcript, found here
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http://www.cartalk.com/content/hall-lights?question, the problem is described as
follows:

RAY: This puzzler is from my “ceiling light” series. Imagine, if you will, that you
have a long, long corridor that stretches out as far as the eye can see. In that corridor,
attached to the ceiling are lights that are operated with a pull cord.

There are gazillions of them, as far as the eye can see. Let us say there are 20,000
lights in a row.

They’re all off. Somebody comes along and pulls on each of the chains, turning on
each one of the lights. Another person comes right behind, and pulls the chain on
every second light.

TOM: Thereby turning off lights 2, 4, 6, 8 and so on.
RAY: Right. Now, a third person comes along and pulls the cord on every third

light. That is, lights number 3, 6, 9, 12, 15, etc. Another person comes along and pulls
the cord on lights number 4, 8, 12, 16 and so on. Of course, each person is turning on
some lights and turning other lights off.

If there are 20,000 lights, at some point someone is going to come skipping along
and pull every 20,000th chain.

When that happens, some lights will be on, and some will be off. Can you predict
which lights will be on?

You will write a C program that asks the user the number of lights n and then
prints out which of the lights are on, and the total number of lights on, after the last (nth)
person goes by. Here’s an example of what the output might look like if the user enters
200:

How many lights are there? 200

You said 200 lights.
Here are the results:
Light number 1 is on.
Light number 4 is on.
...
Light number 196 is on.
There are 14 total lights on!

Your program lights.c should follow the template outlined below. Turn in your code
and example output.

/**************************************************************************
* lights.c
*
* This program solves the light puzzler. It uses one main function
* and two helper functions: one that calculates which lights are on,
* and one that prints the results.
*
***************************************************************************/

#include <stdio.h>
#include <stdlib.h> // allows the use of the "exit()" function
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#define MAX_LIGHTS 1000000 // maximum number of lights allowed

// here’s a prototype for the light toggling function
// here’s a prototype for the results printing function

int main(void) {

// Define any variables you need, including for the lights’ states

// Get the user’s input.
// If it is not valid, say so and use "exit()" (stdlib.h, Sec 1.2.16).
// If it is valid, echo the entry to the user.

// Call the function that toggles the lights.
// Call the function that prints the results.

return(0);
}

// definition of the light toggling function
// definition of the results printing function

42. We have been preprocessing, compiling, assembling, and linking programs with
commands like

gcc HelloWorld.c -o HelloWorld

The gcc command recognizes the first argument, HelloWorld.c, is a C file based on its .c
extension. It knows you want to create an output file called HelloWorld because of the -o

option. And since you did not specify any other options, it knows you want that output to
be an executable. So it performs all four of the steps to take the C file to an executable.
We could have used options to stop after each step if we wanted to see the intermediate
files produced. Below is a sequence of commands you could try, starting with your
HelloWorld.c code. Do not type the “comments” to the right of the
commands!

> gcc HelloWorld.c -E > HW.i // stop after preprocessing, dump into file HW.i
> gcc HW.i -S -o HW.s // compile HW.i to assembly file HW.s and stop
> gcc HW.s -c -o HW.o // assemble HW.s to object code HW.o and stop
> gcc HW.o -o HW // link with stdio printf code, make executable HW

At the end of this process you have HW.i, the C code after preprocessing (.i is a standard
extension for C code that should not be preprocessed); HW.s, the assembly code
corresponding to HelloWorld.c; HW.o, the unreadable object code; and finally the
executable code HW. The executable is created from linking your HW.o object code with
object code from the stdio (standard input and output) library, specifically object code
for printf.
Try this and verify that you see all the intermediate files, and that the final executable
works as expected. (An easier way to generate the intermediate files is to use gcc
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HelloWorld.c -save-temps -o HelloWorld, where the -save-temps option saves the
intermediate files.)
If our program used any math functions, the final linker command would be

> gcc HW.o -o HW -lm // link with stdio and math libraries, make
executable HW

The C standard library is linked automatically, but often the math library is not, requiring
the extra -lm option.
The HW.i and HW.s files can be inspected with a text editor, but the object code HW.o and
executable HW cannot. We can try the following commands to make viewable versions:

> xxd HW.o v1.txt // can’t read obj code; this makes viewable v1.txt
> xxd HW v2.txt // can’t read executable; make viewable v2.txt

The utility xxd just turns the first file’s string of 0’s and 1’s into a string of hex characters,
represented as text-editor-readable ASCII characters 0..9, A..F. It also has an ASCII
sidebar: when a byte (two consecutive hex characters) has a value corresponding to a
printable ASCII character, that character is printed. You can even see your message
“Hello world!” buried there!
Take a quick look at the HW.i, HW.s, and v1.txt and v2.txt files. No need to understand
these intermediate files any further. If you do not have the xxd utility, you could create
your own program hexdump.c instead:

#include <stdio.h>
#define BYTES_PER_LINE 16

int main(void) {
FILE *inputp, *outputp; // ptrs to in and out files
int c, count = 0;
char asc[BYTES_PER_LINE+1], infile[100];

printf("What binary file do you want the hex rep of? ");
scanf("%s",infile); // get name of input file
inputp = fopen(infile,"r"); // open file as "read"
outputp = fopen("hexdump.txt","w"); // output file is "write"

asc[BYTES_PER_LINE] = 0; // last char is end-string
while ((c=fgetc(inputp)) != EOF) { // get byte; end of file?

fprintf(outputp,"%x%x ",(c >> 4),(c & 0xf)); // print hex rep of byte
if ((c>=32) && (c<=126)) asc[count] = c; // put printable chars in asc
else asc[count] = ’.’; // otherwise put a dot
count++;
if (count==BYTES_PER_LINE) { // if BYTES_PER_LINE reached

fprintf(outputp," %s\n",asc); // print ASCII rep, newline
count = 0;

}
}
if (count!=0) { // print last (short) line

for (c=0; c<BYTES_PER_LINE-count; c++) // print extra spaces
fprintf(outputp," ");
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asc[count]=0; // add end-string char to asc
fprintf(outputp," %s\n",asc); // print ASCII rep, newline

}
fclose(inputp); // close files
fclose(outputp);
printf("Printed hexdump.txt.\n");
return(0);

}

Further Reading

Bronson, G. J. (2006). A first book of ANSI C (4th ed.). Boston, MA: Course Technology Press.
Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language (2nd ed.). Upper Saddle River, NJ:

Prentice Hall.
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APPENDIX B

Circuits Review

This appendix is meant as a brief refresher on basic analysis of circuits with resistors,
capacitors, inductors, diodes, bipolar junction transistors, and operational amplifiers, at the
level they are used in this book. In particular, this appendix does not cover the general
frequency response of circuits with complex impedance. It also does not cover digital circuit
design; in this book, most logical operations are performed by the PIC32.

B.1 Basics

Primary quantities of interest in circuit analysis and design are voltage and current.

Voltage is an effort variable, analogous to force in mechanical systems. In fact, voltage is
sometimes referred to as electromotive force. Just as a force causes a mass to move, a voltage
causes electrons (and therefore current) to flow. The unit of voltage is a Volt (V). Voltage is
measured across elements (e.g., the voltage, or potential, at the positive terminal of a 9 V
battery is 9 V greater than at the negative terminal). By defining the voltage at a particular
point in a circuit as 0 V, or ground (GND), it is possible to refer to the voltage at a point,
implicitly comparing it to ground.

Current is a flow variable, analogous to velocity in mechanical systems. The unit of current is
an Ampere (A), commonly shortened to amp. Current is measured as a flow through circuit
elements. Current into a circuit element must equal the current coming out of the element, and
therefore current can only flow around a closed loop. It cannot, for example, flow into an
element and stop there.

Just as force times velocity is power in mechanical systems, voltage times current is power in
electrical systems. The unit of power is the Watt (W), and 1 W = 1 A × 1 V. For example,
Figure B.1 shows a generic circuit element (perhaps a battery, resistor, capacitor, diode, etc.).
The voltage V across the element is defined to be positive if the potential is higher at the end
of the element labeled +; otherwise V is negative. The current I through the element is defined
to be positive if it is in the direction of the arrow, from + to −; otherwise I is negative.1 With

1 Note: The labeling of the ends of the element as + and − does not necessarily indicate which end has higher
potential. It just indicates the convention chosen to call the voltage positive or negative. Similarly, the arrow does
not necessarily indicate which direction the current actually flows.

587
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Figure B.1
Defining positive voltage V across, and current I through, a circuit element.
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Figure B.2
The same circuit drawn two different ways, with a battery of voltage V and four generic elements,

A through D.

these conventions, the power consumed by the element is P = IV . When IV > 0, the element
is consuming electrical power, either dissipating it (as with a resistor) or storing it as energy
(as with a capacitor or inductor). When IV < 0, the element is providing electrical power (e.g.,
a battery or a discharging capacitor). The unit of energy is the Joule (J), and 1 J = 1 W × 1 s.

Figure B.2 shows a circuit with a battery of voltage V and four generic elements, labeled A
through D. The voltages across the elements are VA through VD. The current I1 flows through
the battery, A, and B; I2 flows through C; and I3 flows through D. The same circuit is drawn in
two different ways. In one, a battery is drawn explicitly, allowing a closed loop for current to
be clearly visualized. In the other, which is more common in circuit schematics, the closed
loop through the battery is left implicit. This circuit also introduces the ground symbol the
voltage level defined as zero volts (at the negative terminal of the battery in this case).

To solve for voltages and currents in this circuit, we use Kirchhoff’s current law (KCL) and
Kirchhoff’s voltage law (KVL). KCL says that current is preserved at any node: current into
the node is equal to current out of the node. In Figure B.2, there are two nodes where currents
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come together, indicated by dots, and each provides the same equation:

I1 = I2 + I3.

KVL says that the sum of voltages around any closed loop must be zero. As you step around a
loop, add voltages from elements where you proceed from the − terminal to the + terminal,
and subtract voltages from elements where you proceed from the + terminal to the − terminal.
For example, there are three loops in Figure B.2: through the battery, A, B, and C; through the
battery, A, B, and D; and through C and D. These yield the following equations, respectively:

V − VA − VB − VC = 0

V − VA − VB − VD = 0

VC − VD = 0.

Only two of these equations are independent. For example, the third equation can be used to
show that the first two are equivalent.

We now have three independent equations (one from KCL and two from KVL) to solve for
seven unknowns in the circuit: the three currents I1, I2, and I3, and the four voltages across the
elements, VA, VB, VC, and VD. To get four more equations, we need the constitutive laws of
the elements, relating the voltages across the elements to the currents through them. Let us
begin with the constitutive laws of the common linear circuit elements: resistors, capacitors,
and inductors.

B.2 Linear Elements: Resistors, Capacitors, and Inductors

Resistors, capacitors, and inductors are called linear circuit elements because the voltages
across the elements are proportional to the current, time integral of the current, or derivative of
the current, respectively. The symbols, units, constitutive laws, and information about power
and energy are summarized in Table B.1. Resistors only dissipate power, as heat, while

Table B.1: The three linear circuit elements and the constitutive laws relating the current I
through them and the voltage V across them

Element Schematic Symbol Unit Constitutive Law Power (W) Energy Stored ( J)

Resistor
+ _

R Ohm (!) V = IR I2R dissipated 0

Capacitor
+ _

C Farad (F) I = C dV
dt CV dV

dt
1
2 CV2

Inductor
+ _

L Henry (H) V = L dI
dt LI dI

dt
1
2 LI2
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I1

I2

I3

RA = 10 Ω

RB = 20 Ω

RC = 30 Ω RD = 40 Ω

V = 5 V

Figure B.3
A resistor network.

capacitors and inductors do not dissipate any power, but either charge (consuming electrical
power and storing it as energy) or discharge (providing electrical power).

Figure B.3 shows the circuit of Figure B.2 with the generic elements replaced by resistors. We
can solve for the four voltages across the resistors and the three currents by simultaneously
solving the seven KCL, KVL, and constitutive law equations:

KCL: I1 = I2 + I3
KVL: 0 = V − VA − VB − VD

0 = VC − VD
Constitutive laws: VA = I1RA

VB = I1RB
VC = I2RC
VD = I3RD

Substituting the battery voltage V = 5 V and the resistances RA = 10 !, RB = 20 !,
RC = 30 !, and RD = 40 !, the currents and voltages can be solved as

I1 = 0.106 A, I2 = 0.061 A, I3 = 0.045 A

VA = 1.061 V, VB = 2.121 V, VC = 1.818 V, VD = 1.818 V .
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Table B.2: Equivalent resistance, capacitance, and
inductance of elements in series and parallel

Elements In Series In Parallel
Resistors R1, R2 R1 + R2 R1R2/(R1 + R2)

Capacitors C1, C2 C1C2/(C1 + C2) C1 + C2
Inductors L1, L2 L1 + L2 L1L2/(L1 + L2)

According to our sign convention, where I is defined as positive if it flows from the
terminal labeled + to the terminal labeled −, the power consumed by the battery
is −I1V = −(0.106 A)(5 V) =−0.53 W. Since the power consumed is negative, the battery
is providing power. The power consumed by RA is I1VA = I21RA = 0.112 W. The power
consumed by RB, RC, and RD can be calculated as 0.225, 0.112, and 0.081 W, respectively,
and the sum of the power dissipated by the resistors is 0.53 W, equal to the power provided by
the battery, as we would expect.

If any of the elements were capacitors or inductors, those constitutive laws would relate the
current through a capacitor to the rate of change of the voltage, or the voltage across an
inductor to the rate of change of current. Instead of simply solving linear equations as above,
we must now solve linear differential equations. In this book we do not delve into analysis of
linear circuits with arbitrary combinations of resistors, inductors, and capacitors, but focus on
circuits with resistors only, as above, as well as circuits with resistors and either a single
capacitor or a single inductor (Section B.2.1). Such circuits cover many practical cases of
interest in mechatronics.

In Figure B.3, the resistors RA and RB are said to be in series. The resistors RC and RD are said
to be in parallel. A simple derivation shows that resistors in series act like a single resistor of
greater resistance, Rseries = RA + RB, and resistors in parallel act like a single resistor of lesser
resistance (since there are now two paths for the current to follow),
Rparallel = RCRD/(RC + RD). Similar relationships can be derived for capacitors and inductors
(Table B.2).

The last linear element we will use is the potentiometer, or pot for short (Figure B.4). A pot is
a resistor with three connections: the terminals at either end, like a regular resistor, and a third
connection called the wiper. The wiper is an electrical contact that can slide from one end of
the resistor to the other, creating a variable resistance between the wiper and the end
connections. If R+ is the resistance between the + terminal of the resistor and the wiper, and
R− is the resistance between the − terminal and the wiper, then the sum of R+ and R− always
equals R, where R is the total resistance of the pot between the two ends. Pots often come
packaged in rotary knobs, and turning the knob moves the wiper to allow R+ and R− to be
varied from approximately 0 to R.
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+ _

Wiper

Figure B.4
Symbol for a potentiometer.

B.2.1 Time Response of RC and RL Circuits

Figure B.5(a)–(d) shows four circuits, each consisting of a resistor R and either a capacitor C
or an inductor L. For mechatronics, circuits with resistors and a single inductor are important
for understanding the behavior of motors, which have significant inductance. Circuits with
resistors and a single capacitor are often used for signal filtering.

The circuits in Figure B.5(a)–(d) are powered by a time-varying voltage Vin(t) that
periodically switches between Vhi > 0 and 0 V relative to ground. Let us focus on the circuit
in Figure B.5(a), where Vout = VC is the voltage across the capacitor.

Vout

R

C

(a)

+

_

+
_

Vout

R

L

(d)

(e)

(f)

V  (t) in

Vout

R

L

(c)

V  (t) in

Vout

R

C

(b)

V  (t) inV  (t) in

Vhi

0

0.37Vhi
V    (t) out

t

V    (t) out

t

V  (t) in

Response of circuits (a,d)

Vhi

0

V    (t) out

t

V    (t) out

t

V  (t) in

Response of circuits (b,c)

Figure B.5
(a–d) RC circuits and RL circuits. (e) Response of the circuits in (a) and (d) to a changing Vin(t).

Note the discontinuity in time in the middle of the plot, to allow the response to reach steady state.
(f) Response of the circuits in (b) and (c) to a changing Vin(t).
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KVL tells us that the circuit in Figure B.5(a) satisfies

Vin(t) = VR(t) + VC(t) = I(t)R+ 1
C

∫ t

0
I(s) ds.

Assume that the input voltage Vin(t) is equal to Vhi, and has been for a long time so that any
transients have died out. Current flowing through the capacitor has charged it up until, in
steady state, the capacitor is fully charged to a voltage VC = Vhi and an energy 1

2CV
2
hi.

Therefore there is no voltage across the resistor, so I = 0. The capacitor is acting like an
open circuit.

The key point is that the voltage across the capacitor VC(t) cannot be discontinuous in time if
current is finite. For example, VC cannot change from 0 to 5 V instantaneously; it takes time
for the current to integrate to develop a voltage across the capacitor.

Now consider what happens when Vin(t) instantly changes from Vhi to 0 V. Since the voltage
across the capacitor cannot change instantaneously, just after the switch occurs, the voltage
across the capacitor is still Vhi. This means that the voltage across the resistor R is −Vhi.
Therefore current must be flowing from ground through the capacitor and resistor. By KVL,
and the constitutive law of the resistor, we can calculate the current I just after the switch at
time t = 0 (let us call this time 0+):

Vin(0+) = 0 = VR(0+) + VC(0+) = I(0+)R+ Vhi → I(0+) = −Vhi
R

.

This negative current begins to discharge the energy stored in the capacitor, and therefore the
voltage across the capacitor begins to drop. To solve for dVC/dt, the rate of change of the
voltage across the capacitor, at time 0+, we use the constitutive law of the capacitor:

I(0+) = −Vhi
R

= C
dVC
dt

(0+) → dVC
dt

(0+) = −Vhi
RC

.

If the capacitor continued to discharge at this rate, it would fully discharge in RC seconds.

Of course the capacitor does not continue to discharge at this rate; the rate slows as the voltage
across the capacitor drops. To fully solve for VC(t) using KVL and the constitutive law of the
capacitor, we solve the first-order linear differential equation

0 = I(t)R+ VC(t)

0 = C
dVC
dt

(t)R+ VC(t)

dVC
dt

(t) = − 1
RC

VC(t) (B.1)
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to get

VC(t) = V0e−t/RC (B.2)

where the initial voltage V0 is Vhi. This is an exponential decay to zero as t → ∞. The time
constant of the decay is τ = RC, in seconds. One time constant after the switch, the voltage is
VC(τ ) = V0e−1 = 0.37V0; the voltage has decayed by 63%. After 3τ , the voltage has decayed
to 5% of its initial value.

Note that the time constant τ = RC is large if R is large, since the large resistance limits the
current to charge or discharge the capacitor, or if C is large, because it takes more time for the
current to charge or discharge energy in the capacitor, which is 1

2CV
2
C.

If instead Vin(t) has been at 0 V for a long time and then switches to Vhi at t = 0, a similar
derivation yields

Vout = VC(t) = Vhi(1 − e−t/RC),

a rise from 0 V asymptoting at Vhi. The voltage across the capacitor rises to 63% (95%) of Vhi
after time τ (3τ ).

Figure B.5(e) shows a plot of the fall and rise of the voltage Vout(t) = VC(t) in the circuit in
Figure B.5(a) in response to a Vin(t) occasionally switching between Vhi and 0.

In Figure B.5(b), the positions of the capacitors and the resistors are reversed, so
Vout = VR = Vin(t) − VC(t). The response of Vout(t) to the switching Vin(t) is shown in Figure
B.5(f). In this case, Vout spikes to −Vhi on a falling edge of Vin(t), then decays back to zero,
and spikes to Vhi on a rising edge of Vin(t), then decays back to zero.

In summary, the output of the circuit in Figure B.5(a) is a smoothed version of Vin(t), where
the output gets smoother as RC gets larger, while the output in circuit in Figure B.5(b)
responds most strongly at the times of the switches of Vin(t). Smoothing is characteristic of a
low-pass filter, while strong response to signal changes is characteristic of a high-pass filter;
see Section B.2.2.

The circuits in Figure B.5(c) and (d) can be analyzed similarly, now using the constitutive law
VL = L dI/dt for the inductor instead of I = C dVC/dt for the capacitor. It is also important to
realize that the inductor does not allow current to change discontinuously, as a discontinuous
current implies an unbounded voltage L dI/dt across the inductor. It takes time to charge or
discharge the energy in the inductor, 1

2LI
2, and therefore I cannot change instantaneously.

Based on this analysis, we see that the response of the RL circuit in Figure B.5(c) is that
shown in Figure B.5(f), but now with a time constant τ = L/R. Similarly, the response of the
RL circuit in Figure B.5(d) is shown in Figure B.5(e), again with a time constant τ = L/R.
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Table B.3: Summary of capacitor and inductor behavior

Element Rule Enforced Discharged Charged
Capacitor Continuous voltage Wire Open circuit
Inductor Continuous current Open circuit Wire

Note that the time constant is large if R is small, since the low resistance does not dissipate
much power for a given current, or if L is large, since it takes longer to charge or discharge the
inductor’s energy 1

2LI
2.

Some rules of analyzing circuits with a capacitor or inductor are summarized in Table B.3.
When a capacitor is initially discharged, it lets current flow freely (like a wire), and when it is
fully charged, it behaves like an open circuit (no current flows). When an inductor is initially
discharged, it behaves like an open circuit (it takes time for current to build up as initially all
voltage is claimed by L dI/dt), and when it is fully charged and dI/dt = 0, it lets current flow
freely with no voltage across it (like a wire).

Application: Switch debouncing

Figure B.6 illustrates a closing mechanical switch, nominally generating a clean falling edge
from GND to V . In practice, mechanical switches tend to bounce; the two metal contacts
impact and bounce before coming into steady contact. The result is a V0(t) that rapidly
switches between V and GND before settling at GND. Switch bounce is a common problem,
and programs responding to button presses should not respond to the bounces.

To remedy the signal bounce, a debouncing circuit, as shown in Figure B.6, can be used. First,
an RC filter is used to slow down the voltage variations, creating the signal V1(t). Because the

V

V0

V

V2V1

1/6 of 74HC14 hex
Schmitt trigger inverter

R

C

V  (t)2

V  (t)0
Bouncing

V  (t)1
Vh

V

Figure B.6
(Left) Bounces on the closing of a mechanical switch generate the output signal V0(t) on the right.

(Middle) A debouncing circuit. The bouncing signal is RC filtered, creating the signal V1(t). This
signal then passes through a Schmitt trigger inverter, creating a single clean rising edge V2(t). (Right)

The signals V0(t), V1(t), and V2(t). The Schmitt trigger hysteresis voltages Vh and Vℓ are shown on
the signal V1(t).
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bouncing transitions occur quickly, the signal V1(t) changes little during the bouncing. Once
the bouncing has ended, V1(t) drops steadily to zero, according to the RC time constant.

The signal V1 is then fed to a digital output Schmitt trigger chip. The purpose of a Schmitt
trigger is to implement hysteresis: if the input is currently low, the output does not change
until the input has risen past a voltage Vh; if the input is high, the output does not change until
the input has dropped below a voltage Vℓ; and Vh > Vℓ. This hysteresis means that small
variations of the input signal should not change the output signal. Further, a Schmitt trigger
inverter makes the digital output opposite the input. The 74HC14 chip has six Schmitt trigger
inverters on it.

Because the Schmitt trigger inverter ignores the small voltage variations at V1(t) during
bouncing, it does not change its output until the switch contact is steady. The end result of the
debouncing circuit, V2(t), is a single clean rising edge, after the bounces have terminated.

Since it is unlikely that you will need to press and release a button in less than 10 ms, it is not
unreasonable to choose RC ≈ 10 ms.

There are other debouncing circuits, and debouncing can instead be performed in software.
See Exercise 16 of Chapter 6.

B.2.2 Frequency Response of RC and RL Circuits

In the previous section we focused on the time response of RC and RL circuits in response to
step changes in voltage. The step response is helpful to understand, as microcontrollers and
some sensors output digital signals. We should remember, however, that by Fourier
decomposition, any periodic signal of frequency f can be represented by a sum of sinusoids of
frequency f , 2f , 3f , etc. For example, the 50% duty cycle square wave of amplitude 1 and
frequency f in Figure B.7 can be represented by an infinite sum of sinusoids at frequencies f ,
3f , 5f , etc. Therefore it is useful to understand the behavior of circuits in response to
sinusoidal inputs.

(4/p) sin(2pft) (4/p) sin(2pft) +
(4/(3p)) sin(6pft)

(4/p) sin(2pft) +
(4/(3p)) sin(6pft) +
(4/(5p)) sin(10pft)

 (4/p) sin(2pft) +
(4/(3p)) sin(6pft) +
(4/(5p)) sin(10pft) +
(4/(7p)) sin(14pft)

Figure B.7
The lowest four frequency components of a Fourier decomposition of a square wave of amplitude 1

and frequency f .
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If the input to a linear system, like an RCL circuit, is a sinusoid of the form
Vin(t) = A sin(2π ft), the output is a scaled, phase-shifted sinusoid of the same frequency,
Vout(t) = G(f )A sin(2π ft + φ(f )), where the system’s gain G(f ) and phase φ(f ) are a function
of the frequency f of the input (Figure B.8). Collectively the gain G(f ) and the phase φ(f ) are
called the frequency response of the system. For periodic non-sinusoidal input signals like the
square wave in Figure B.7, the output is the sum of the individually scaled and shifted
sinusoids that constitute the Fourier decomposition of the input.

Each of the RC and RL circuits in Figure B.5 is a linear system, with Vin(t) as input and
Vout(t) as output. Without derivation (take a linear systems or circuits course!), the frequency
responses of the circuits are plotted in Figure B.9, where Figure B.9(a) is the frequency
response G(f ) and φ(f ) of the circuits in Figure B.5(a) and (d), and Figure B.9(b) is the
frequency response of the circuits in Figure B.5(b) and (c). Note that the frequency and gain

A

A/ √2   

f = – 45!
Input

Output

Figure B.8
An example linear system time response to a sinusoidal input of amplitude A. The output is phase

shifted by φ = −45◦ and scaled by a gain G = 1/
√

2.
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Figure B.9
(a) The frequency response of a first-order low-pass filter, e.g., the circuits in Figure B.5(a)

and (d). (b) The frequency response of a first-order high-pass filter, e.g., the circuits in
Figure B.5(b) and (c).
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are plotted on log scales, to cover larger ranges of values and to more clearly show the
essential features of the response.

The frequency response in Figure B.9(a) corresponds to a low-pass filter (LPF). This name
comes from the fact that low-frequency sinusoids are passed from the input to the output with
little change: G ≈ 1 and φ ≈ 0. As the frequency increases, the gain drops and the output
signal begins to lag the input signal (φ < 0). At the cutoff frequency fc = 1/(2πτ ), where
τ = RC for the RC circuits and τ = L/R for the RL circuits, the gain has dropped to
G(fc) = 1/

√
2 and the phase has dropped to φ(fc) = −45◦. Beyond the cutoff frequency the

gain drops by a factor of 10 for every increase in the frequency by a factor of 10, so
G(10fc) ≈ 0.1 and G(100fc) ≈ 0.01. The phase φ continues to drop, asymptoting at −90◦ at
high frequencies.

The frequency response in Figure B.9(b) corresponds to a high-pass filter (HPF). This name
comes from the fact that high-frequency sinusoids are passed from the input to the output with
little change: G ≈ 1 and φ ≈ 0. As the frequency decreases, the gain drops and the output
signal begins to lead the input signal (φ > 0). At the cutoff frequency fc = 1/(2πτ ), the gain
has dropped to G(fc) = 1/

√
2 and the phase has risen to φ(fc) = 45◦. Beyond the cutoff

frequency the gain drops by a factor of 10 for every decrease in the frequency by a factor of
10, so G(0.1fc) ≈ 0.1 and G(0.01fc) ≈ 0.01. This means that DC (constant) signals are
completely suppressed by the filter. The phase φ continues to rise with decreasing frequency,
asymptoting at 90◦ at low frequencies.

Low-pass and high-pass filters are useful for isolating a signal of interest from other signals
summed with it. For example, LPFs can be used to smooth and suppress high-frequency noise
on a sensor line. HPFs can be used to suppress DC signals and only look for sudden changes
in a sensor reading, just as the output depicted in Figure B.5(f) is largest when the input
suddenly changes value and drops to zero when the signal is constant.

The LPFs and HPFs illustrated in Figure B.9 are called first order because the circuit response
is described by a first-order differential equation, e.g., (B.1). First-order filters have relatively
slow rolloff—in the cutoff frequencies, the filter gain drops by only a factor of 10 for every
factor of 10 in frequency. By using more passive elements, it is possible to design
second-order filters with a gain rolloff of 100 for every factor of 10 in frequency, which are
better at suppressing signals at frequencies we want to eliminate with less effect on signals at
frequencies we want to preserve. Higher-order filters, with even steeper rolloff, can be
constructed by putting first- and second-order filters in series. LPFs and HPFs can also be
combined to create bandpass filters, which suppress frequency components below some fmin

and above some fmax, or bandstop or notch filters, which suppress frequency components
between fmin and fmax.

Filters constructed purely with resistors, capacitors, and inductors are called passive filters, as
these circuit elements do not generate power. More sophisticated active filters can be created
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using operational amplifiers (Section B.4). These circuits have the advantage of having high
input impedance (drawing very little current from Vin) and low output impedance (capable of
supplying a lot of current at Vout while maintaining the desired behavior as a function of Vin).

The gain (or magnitude) portion of the frequency response is often written in terms of decibels
asMdB, where

MdB = 20 log10G.

So a gain of 1 corresponds to 0 dB, a gain of 0.1 corresponds to −20 dB, and a gain of 100
corresponds to 40 dB.

B.3 Nonlinear Elements: Diodes and Transistors

Nonlinear circuit elements are critical for computing and nearly all modern circuits. Two
common types of nonlinear elements are diodes and transistors. While there are many kinds of
transistors, in this section we focus on bipolar junction transistors (BJTs), notably excluding
field effect transistors (FETs), which are extraordinarily useful and come in many different
varieties. In keeping with the spirit of this appendix, we do not get into the semiconductor
physics of these nonlinear elements, but focus on simplified models that facilitate analysis.

Analyzing circuits with simplified models of nonlinear elements is quite different from
circuits with only linear elements. We do not simply write a set of equations and solve them.
Instead, a nonlinear element can operate in different regimes (two regimes for a diode:
conducting and not conducting; and three regimes for a BJT: off, linear, and saturated), each
regime with its own governing equations. In principle, we have to solve a complete set of
circuit equations for each possible combination of regimes for the nonlinear elements in the
circuit. All but one of these guesses at the operating regimes will be wrong, leading to
equations and inequalities without valid solutions.

B.3.1 Diodes

Figure B.10 shows the circuit symbol and the simplified current-voltage behavior of a diode.
When the voltage across the diode is less than the forward bias voltage Vd ≥ 0, no current
flows through the diode. When current flows, it is only allowed to flow in the direction
indicated in Figure B.10, from anode to cathode, and the voltage across the diode is Vd. It is
never possible to have a voltage greater than Vd across the diode. A typical forward bias
voltage for a diode is around 0.7 V, but other values are also possible.

Figure B.11(a) shows a simple resistor-diode circuit. Assume Vin = 5 V and Vd = 0.7 V. To
solve for Vout, we analyze the circuit for the two possible cases of the diode: conducting or not
conducting.
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Figure B.10
(Left) The circuit symbol for a diode, indicating positive current and positive voltage. (Right) The

simplified current-voltage relationship for a diode with forward bias voltage Vd.
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Figure B.11
(a) A resistor-diode circuit. (b) The output voltage Vout for a sawtooth Vin. The output voltage is

equal to the input voltage for Vin < Vd, but the output voltage is capped at Vd by the diode.
Reversing the direction of the diode would cause the output to track the input for Vin > −Vd, and

the voltage would never drop below −Vd.

• Case 1: diode is not conducting. In this case, we know I = 0, so there is no voltage drop
across the resistor, so Vout = Vin = 5 V. But we know that the diode can never have more
than Vd = 0.7 V across it. Therefore this regime is not valid.

• Case 2: diode is conducting. Since the diode is conducting in this case, we know that the
voltage across the diode is the forward bias voltage Vd = 0.7 V. Therefore the current I
must be (5 V− 0.7 V)/R from the constitutive law of the resistor. This current is flowing
in the right direction (positive current) and therefore does not violate the current-voltage
relationship of the diode, so this is a valid solution.

Figure B.11(b) illustrates Vout as Vin follows a sawtooth profile, showing that Vout can never
exceed Vd. The power dissipated by the diode when current I flows is IVd.

A light-emitting diode (LED) is just a diode that emits visible or invisible light when current
flows. A typical forward bias voltage for an LED is 1.7 V.

If a large negative voltage is placed across a diode, it may break down, allowing negative
current to flow. While this is a failure mode for most diodes, for Zener diodes it is the intended
use. Zener diodes are designed to have specific (and often relatively small) negative
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Figure B.12
(Left) The circuit symbol for an NPN transistor, showing the collector, base, and emitter.

(Right) A resistor-transistor circuit.

breakdown voltages and to allow current to flow easily while at that breakdown voltage. Zener
diodes can be used in voltage regulator applications.

B.3.2 Bipolar Junction Transistors

Bipolar junction transistors come in two flavors: NPN and PNP. We will focus on the NPN
BJT, then return to the PNP.

Figure B.12 shows the circuit symbol for an NPN BJT. It has three connections: the collector
(C), base (B), and emitter (E). Current flows into the collector and base, and the sum of those
currents flows out of the emitter, IE = IC + IB. The voltage drop from the base to the emitter is
denoted VBE and the voltage drop from the collector to the emitter is written VCE. In normal
usage, IC, IB, IE, and VCE are all nonnegative.

The basic function of the NPN BJT is to attempt to generate a collector current that amplifies
the base current, IC = βIB, where β is the gain of the transistor (also commonly referred to as
hFE). A typical value of β is 100. Depending on the amount of base current flowing, the
transistor can be in one of three modes—off, linear, or saturated—and each mode provides
three equations governing the transistor voltages and currents:

• Linear: IB > 0 and VCE > VCE,sat. In this mode, the collector current is IC = βIB, and the
transistor is not yet saturated, so if IB increases, IC will also increase. Saturation occurs
when VCE drops to the collector-emitter saturation voltage VCE,sat, which is commonly
around 0.2 V or so. In the linear mode, VBE is equal to VBE,on, the PN junction diode
voltage drop from the base to the emitter. A typical value is VBE,on = 0.7 V. Governing
equations: IC = βIB, VBE = VBE,on, and IE = IC + IB.
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• Off: IB = 0. This means that IC = 0 and therefore IE = 0. VBE is less than VBE,on.
Governing equations: IB = IC = IE = 0.

• Saturated: IB > 0 and VCE = VCE,sat. In this mode the collector cannot provide more
current even if the base current increases; the transistor is saturated. This is because the
voltage between the collector and emitter cannot drop below VCE,sat. This means that the
relationship IC = βIB no longer holds. Governing equations: VCE = VCE,sat,
VBE = VBE,on, and IE = IC + IB.

When IE > 0, the power dissipated by the transistor is IBVBE,on + ICVCE,sat.

Figure B.12 shows an NPN BJT in a common emitter circuit, so called because the emitter is
attached to ground (“common”). We can determine the transistor’s operating mode as a
function of Vin:

• Off: Vin ≤ VBE,on. Input voltages in this range do not provide enough voltage to turn on
the base-emitter PN junction while also providing a base current IB > 0. Since IC = 0,
there is no voltage drop across RC, and Vout = V .

• Saturated: Vin ≥ VBE,on + RB(V − VCE,sat)/(βRC). When the transistor is saturated, the
output voltage is Vout = VCE,sat, and the voltage across RC is V − VCE,sat. This means
IC = (V − VCE,sat)/RC. At the boundary between the linear and saturated regions, the
relationship IC = βIB is still satisfied, so IB = IC/β. So the minimum Vin for saturation is
the sum of VBE,on and the voltage drop IBRB across the base resistor.

• Linear: All Vin between the off and saturated regimes. In this regime,
IB = (Vin − VBE,on)/RB and IC = βIB, so

Vout = V − ICRC = V − βRC
RB

(Vin − VBE,on).

To increase the gain of a transistor we can use two transistors, Q1 and Q2, as a Darlington
pair (Figure B.13(a)). The two collectors are connected and the emitter of Q1 feeds the base
of Q2. The two together act like a single transistor, with the base of Q1 as the base of the pair

E

B

C

E

B C

IB

IE

IC

(a) (b)

Q1

Q2

Figure B.13
(a) An NPN Darlington pair. (b) A PNP BJT.
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and the emitter of Q2 as the emitter of the pair, but now the overall gain is β1β2. VBE,on for the
Darlington pair is the sum of the individual base-emitter voltages.

Finally, Figure B.13(b) shows the circuit symbol for a PNP transistor. For a PNP BJT,
IC = βIB as with the NPN, but now IB and IC flow out of the transistor and IE = IC + IB flows
into it. At saturation, VE is greater than VC (typically by about 0.2 V), and when the transistor
is on, the voltage drop from VE to VB is approximately 0.7 V. The PNP BJT is off if IB = 0; it
is saturated if IB > 0 and the voltage drop from VE to VC indicates saturation; and otherwise it
is in the linear mode.

B.4 Operational Amplifiers

The circuit symbol for an operational amplifier (op amp) is shown in Figure B.14(a). Apart
from the power supply inputs, the op amp has two inputs, a noninverting input labeled + and
an inverting input labeled −, and one output. Figure B.14(b) shows a particular chip, the 8-pin
Texas Instruments TLV272, which has two op amps.

An ideal op amp obeys the following rules:

1. Input impedance is infinite. No current flows in or out of the inputs.
2. Output impedance is zero. The op amp can produce any current necessary to satisfy the

following rule.
3(a). If there is no feedback connection between the output and the inputs, then the output

satisfies Vout = G(Vin+ − Vin−), where the gain G is very large, effectively infinite.
(The output goes to its maximum positive or negative value if Vin+ and Vin− are
different.)

3(b). If there is a current path from the output to the inverting input (negative feedback), for
example through a capacitor or resistor, then the voltage at the two inputs are equal.
This is because the large gain G of the op amp attempts to eliminate the voltage
difference Vin+ − Vin−.

Almost all useful op amp circuits have negative feedback, so rule 3(b) applies.

+
_

+_

+ _

1IN−
1OUT

1IN+
GND

2OUT
VDD

2IN−
2IN+

(a) (b)

Vin+ Vout

V _in

Figure B.14
(a) The op amp circuit symbol. (b) The 8-pin TLV272 integrated circuit, with two op amps.
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Figure B.15
Common op amp circuits. Of these circuits, note that only the unity gain buffer and the

noninverting amplifier present the very high input impedance of the op amp at the Vin input; in the
other circuits, the input impedance is dominated by external resistors or capacitors. See Section B.5

for a discussion of input impedance.

Figure B.15 shows several useful circuits built with op amps. To analyze these circuits,
remember that no current flows in or out of the op amp inputs (current only flows through the
external resistors and capacitors), and since there is negative feedback in each of them, the
voltages at the two inputs are equal.

For example, to analyze the weighted summer circuit, we recognize that both inputs are at 0 V
(ground). Therefore the currents flowing through R, 2R, and 4R are simply V2/R, V1/(2R),
and V0/(4R). Since no current flows in or out of the − input, these currents sum to give the
current I through the feedback resistor Rf , and the output voltage is simply Vout = −IRf . If the
input voltages Vi are binary, this circuit provides an analog voltage representation of the
three-digit binary number V2V1V0, where V2 represents the most significant bit (since it
provides the most current) and V0 represents the least significant bit. If instead the three
resistors R, 2R, 4R are replaced by variable resistances set by potentiometers, the weighted
summer is similar to an audio mixer.

The response of the integrator circuit is obtained by recognizing that the current flowing from
Vin is I = −Vin/R and that

Vout = −VC = − 1
C

∫
I(t) dt = − 1

RC

∫
Vin(t) dt.

If Vin is constant at zero, ideally Vout should also be zero. In practice, however, the voltage
across the capacitor is likely to drift due to nonidealities of the op amp (Section B.4.1),
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including slight input offset. For this reason, it is good practice to put another resistor in
parallel with the capacitor. This resistor serves to slowly bleed off capacitor charge,
counteracting voltage drift. This resistance should be much larger than R to prevent significant
impact on the circuit’s behavior at frequencies of interest.

The voltage follower circuit simply implements Vout = Vin, but it is quite useful because it
draws essentially no current from the source providing Vin (such as a sensor) while being able
to provide significant current at the output. For this reason the circuit is sometimes called a
unity gain buffer: the op amp provides a buffer that prevents the circuit connected to the output
of the op amp from affecting the behavior of the circuit connected to the input of the op amp.
This allows individual circuits to be designed and tested modularly, then cascaded using
buffers in between (Section B.5).

One application of the unity gain buffer is to implement an RC LPF or HPF (Section B.2.2).
By cascading a unity gain buffer, then a passive RC LPF or HPF, we get the ideal frequency
response of the passive filter but with high input impedance, as opposed to the relatively low
input impedance of the passive filter alone. There are many more sophisticated higher-order
op amp filter designs that achieve better attenuation at frequencies to be suppressed; consult
any text on the design of op amp filters. In particular, for LPFs, HPFs, bandpass, and notch
filters, popular filters are Butterworth, Chebyshev, and Bessel filters, each with somewhat
different properties. These names refer to the form of the mathematical transfer function from
input to output. To implement these transfer functions using op amps, resistors, and
capacitors, there are different types of circuit designs; popular choices are the Sallen-Key
circuit topology and the multiple feedback circuit topology.

B.4.1 Practical Op Amp Considerations

If you want to purchase an op amp chip, you will find that there are tens of thousands to
choose from! How do you choose? Op amp data sheets can be bewildering to read, with many
different characteristics, most of them depending on the particular operating condition (the
power supply voltage, the load at the output, etc.). Here are a few characteristics to consider,
along with the values for the flexible and inexpensive TLV272.

• Supply voltage range. An op amp has both a minimum and a maximum allowable
voltage across the power supply lines. TLV272: 2.7-16 V.

• Output voltage swing (rail-to-rail or not). The maximum outputs of some op amps do
not reach all the way to the power supply rails, falling short by 1 V or more. Other op
amps are rail-to-rail, meaning that the output voltage can come close to the power supply
rails. The TLV272 is rail-to-rail, with a maximum output voltage swing to within about
0.1 V of the rails.
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• Input voltage range. Even if the output goes rail-to-rail, the differential inputs may not
be allowed to approach the rails. TLV272: inputs can go rail-to-rail.

• Output current. The maximum amount of current that can be provided by a single
output. TLV272: up to 100 mA.

• Unity gain bandwidth. This is a specification of how fast the op amp output can change.
For an input signal at this frequency, the effective gain of the amplifier (which we
assumed to be infinite) has dropped to one. TLV272: 3 MHz.

• Slew rate. This is another measure of how fast the output can change, in V/s. TLV272:
2.4V/µs.

• Input bias current. There is actually a very small current at the inputs (we assumed it to
be zero). This is the typical average of those input currents. TLV272: 1 pA.

• Input offset current. This is the typical difference between the two input currents.
TLV272: 1 pA.

• Input offset voltage. Ideally zero voltage difference at the inputs would cause zero
voltage at the open-loop output. In practice, the input levels may have to be slightly
different to achieve a zero voltage output. TLV272: 0.5 mV.

• Common-mode rejection ratio. The ideal amplifier amplifies only the difference
between the voltages at the + and − inputs, but there is actually a small amplification of
the common voltage between them. For example, if the voltage V+ is 5.1 V and the
voltage V− is 5.0 V, the usual amplifier gain acts on the 0.1 V difference while the
common-mode gain acts on the average, 5.05 V. The CMRR specifies the ratio of the
differential gain to the common-mode gain. TLV272: 80 dB (or 10,000).

• Number of op amps. Some chips have more than one op amp. TLV272: two op amps.
• Packaging. Op amps come in different types of packaging. DIP packages are easiest to

work with for breadboard prototyping. TLV272: available in a variety of packages,
including an 8-pin DIP.

• Price. Price increases for higher bandwidth and slew rates, higher output current, lower
offset voltage, higher common-mode rejection ratio, rail-to-rail operation, etc. TLV272:
about one dollar.

B.4.2 Single Supply Design and Virtual Ground

When using an op amp in microcontroller applications, often the only power supply available
is a positive voltage rail and ground (no negative rail), and the positive voltage may be small
(e.g., 3.3 V). First of all, this likely means that a rail-to-rail op amp should be used, to
maximize the output voltage range, and it should be capable of being powered by the
microcontroller voltage (e.g., 3.3 V). Secondly, notice that many of the standard op amp
circuits (Figure B.15) provide an output voltage that has a sign opposite of the input voltage,
which the op amp cannot produce if there is no negative rail.

For more information on 
the book see www.nu32.org



Circuits Review 607
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Figure B.16
Creating a virtual ground at V/2.

One way to handle this issue is to introduce a virtual ground at a voltage halfway between the
positive supply rail and ground, effectively creating a bipolar supply about this virtual ground.
Figure B.16 illustrates the idea. A unity gain buffer is used in combination with a voltage
divider to create a virtual ground at V/2. The capacitor helps stabilize the reference voltage to
any transients on the power supply line. This virtual ground is then used in place of ground in
the inverting circuits in Figure B.15. Inverted voltages are now with respect to V/2 instead
of 0.

Since the op amp likely sinks or sources less current than a typical power supply, care should
be taken to make sure that these limits are never exceeded.

B.4.3 Instrumentation Amps

An instrumentation amp is a specialized amplifier designed to precisely amplify the difference
in voltage between two inputs, Vout = G(Vin+ − Vin−). Like an op amp, it has inputs Vin+ and
Vin−, but unlike an op amp, it is not used with a negative feedback path. Instead, an
instrumentation amp like the Texas Instruments INA128 allows you to connect a single
external resistor RG to determine the gain G, where

G = 1 + 50 k!
RG

.

The INA128 is typically used to implement gains G from 1 (RG = ∞, i.e., no connection at
the gain resistor inputs) to 10,000 (RG ≈ 5 !).

Other instrumentation amps allow you to choose from a fixed set of very precise gains, not
dependent on an external resistor (with its associated tolerance). These are sometimes called
programmable-gain instrumentation amps, and an example is the TI PGA204, which uses two
digital inputs to choose gains of 1, 10, 100, or 1000. A related design is the TI INA110,
offering gains of 1, 10, 100, 200, or 500.

Instrumentation amps distinguish themselves in their very high common-mode rejection ratio
(120 dB for the INA128). Instrumentation amps are typically more expensive than op amps,
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e.g., in the range of 10 to 20 USD for quantities of one. If you are trying to save money, you
can build your own difference-and-gain circuit using multiple op amps, but you will not
achieve the same performance as an instrumentation amp.

B.5 Modular Circuit Design: Input and Output Impedance

One way to design a complex circuit is to design subcircuits, each with a specific function,
and then cascade them so that the output of one circuit is the input of another. Modular circuit
design is similar to modular code design: each subcircuit has a specific function and
well-defined inputs and outputs.

Modularity requires that connecting the output of circuit A to the input of circuit B does not
change the behavior of either circuit. Modularity is assured if circuit A has low output
impedance (it can source or sink a lot of current with little change in the output voltage) and
circuit B has high input impedance (it draws little current at the input).2 For constant (DC)
voltages and currents, if a change 'I in the current drawn from the output of a circuit causes a
change of voltage 'V , then the DC output impedance (or simply the output resistance, since
the voltage is DC) is |'V/'I|. A circuit’s input resistance can be measured similarly. High
input impedance means that a change in input voltage gives a very small change in input
current.

Input and output impedance are generally frequency dependent. For sinusoidal signals of any
frequency ω = 2π f , the impedance of a resistor is simply its resistance R. The magnitude of
the impedance of an inductor is ωL, meaning that the impedance increases linearly with
ω—the impedance is zero at DC and infinite at infinite frequency. The magnitude of the
impedance of a capacitor is 1/(ωC), indicating that the impedance magnitude is infinite at DC
and zero at infinite frequency.

As a simple DC example, consider the following design problem. We want to provide a user
the ability to choose an input voltage between 0 and 3 V by turning a potentiometer knob. So
we decide the circuit B will be a 10 k! potentiometer with one end at 3 V and the other end at
0 V, with the wiper providing the user’s input signal. No 3 V supply is available, however;
there is only a 6 V supply. So we decide to design a circuit A, a voltage divider consisting of
two resistors of resistance R, to create the 3 V reference. The output of circuit A becomes the
input for circuit B (see Figure B.17).

Let us say we choose R = 100 k! for the voltage divider. Then the currents in Figure B.17 can
be calculated using

2 It is actually the ratio of input impedance to output impedance that matters. This ratio should ideally be multiple
orders of magnitude.
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Figure B.17
A voltage divider circuit A feeding a potentiometer circuit B.

I1 = I2 + I3
6V = I1 100 k! + I2 100 k!

I2 100 k! = I3 10 k!

to find I1 = 55µA, I2 = 5µA, and I3 = 50µA. This means the voltage divider actually
creates a voltage at the output of A of 6 V − (55 µA)(100 k!) = 0.5 V instead of 3 V. Circuit
B “loads” or “pulls down” the output of circuit A. The output impedance R of circuit A is too
high relative to the 10 k! input impedance of circuit B, defeating circuit modularity. Our
attempt to design circuits A and B independently and put them together has failed.

On the other hand, if we choose R = 100 ! for the voltage divider, we find that
I1 = 30.15 mA, so VA = 2.985 V, very close to our target of 3 V. The output impedance of
circuit A is much lower, so modularity is more closely achieved. This comes at the cost of
greater power dissipated by the voltage divider, V2/R = (6 V)2/200 ! = 180 mW vs.
(6 V)2/200 k! = 0.18 mW.

Op amps, with their high input impedance and low output impedance, are quite useful in
achieving circuit modularity. In particular, a unity gain buffer between the output A and input
B in Figure B.17 would eliminate any loading of the circuit A by circuit B, allowing us to use
higher resistances for R and therefore wasting less power.

Further Reading

Hambley, A. R. (2000). Electronics (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
Horowitz, P., & Hill, W. (2015). The art of electronics (3rd ed.). New York, NY: Cambridge University Press.
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APPENDIX C

Other PIC32 Models

As of this writing, there are nearly 200 different PIC32 models, arranged in six major families:
PIC32MX1xx/2xx, PIC32MX3xx/4xx, PIC32MX5xx/6xx/7xx (from which our
PIC32MX795F512H was chosen), PIC32MX1xx/2xx/5xx 64-100 pins,
PIC32MX330/350/370/430/450/470, and PIC32MZ. The five PIC32MX families all use the
MIPS32 M4K processor as the CPU, at speeds of 40-120 MHz, while the MZ family has a
different architecture and uses the MIPS32 microAptiv microprocessor as the CPU at up to
200 MHz. “MIPS32” refers to CPU architectures and associated assembly language
instructions licensed by Microchip from Imagination Technologies.

The main differences between the families are the CPU architecture (MIPS32 M4K vs.
microAptiv), CPU clock speeds, amount of RAM and flash, physical packaging, available
peripherals, number of pins, and the extent to which the pins can be mapped to different
functions. This appendix provides a brief introduction to the features of the different families.

C.1 The PIC32MX5xx/6xx/7xx Family

Devices in the PIC32MX5xx/6xx/7xx family have names of the form

PIC32MX 5, 6, or 7︸ ︷︷ ︸
communication options

x x︸︷︷︸
other model options

F yyy︸︷︷︸
flash in KB

H or L︸ ︷︷ ︸
64 or 100 pins

The 5xx series has full-speed USB and CAN peripherals, the 6xx series has full-speed USB
and Ethernet, and the 7xx series has full-speed USB, Ethernet, and CAN. The xx code can be
34, 64, 75, or 95, corresponding to other model options, but primarily indicating the amount of
RAM available (16, 32, 64, and 128 KB, respectively). The yyy code indicates the amount of
flash memory, in KB. (All devices in this family also have an additional 12 KB of boot flash.)
Devices ending in H have 64 pins and devices ending in L have 100 pins. Therefore the
PIC32MX795F512H has full-speed USB, CAN, and Ethernet; 128 KB of RAM; 512 KB of
flash; and 64 pins.

The M4K CPU can operate at up to 80 MHz for all devices in the PIC32MX5xx/6xx/7xx
family. All devices have full-speed USB, five 16-bit counter/timers with up to two 32-bit
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counter/timers, five input capture devices, five output compare modules with 16-bit resolution,
16 10-bit ADC inputs, six UARTs, two comparators, DMA, and PMP. Devices with 64 pins
have three SPI and four I2C peripherals; devices with 100 pins have four SPI and five I2C
peripherals. All devices are available only in surface mount packages.

C.2 PIC32MX3xx/4xx Family

PIC32MX3xx/4xx devices are the first to have appeared in the PIC32 line. The M4K CPU can
operate at up to 80 MHz for most devices in this family, but a few devices are limited to
40 MHz. Devices in this family have up to 32 KB of RAM and 512 KB of flash and have
names of the form

PIC32MX 3 or 4︸ ︷︷ ︸
3: no USB; 4: with USB

xx︸︷︷︸
20, 40, or 60

F yyy︸︷︷︸
flash in KB

H or L︸ ︷︷ ︸
64 or 100 pins

Thus the PIC32MX460F512H has full-speed USB, 32 KB of RAM (with the “60” option),
512 KB of flash, and 64 pins.

Devices in the PIC32MX3xx/4xx family have similar capabilities to those in the
PIC32MX5xx/6xx/7xx family, except they do not offer Ethernet or CAN, have fewer UART,
SPI, and I2C peripherals, and have only one 32-bit counter/timer.

C.3 PIC32MX1xx/2xx Family

PIC32MX1xx/2xx devices are more recent than the 3xx/4xx and 5xx/6xx/7xx families. They
are smaller devices, coming in 28-, 36-, and 44-pin devices. The 28-pin devices are available
in DIP (dual inline package), convenient for breadboarding. The maximum CPU clock speed
for a 1xx/2xx device is 40 or 50 MHz, depending on the model. The 1xx/2xx devices do not
have a prefetch cache module; they run at full speed pulling instructions from flash.

Devices in this family have up to 64 KB of RAM and 256 KB of flash and have names of
the form

PIC32MX 1 or 2︸ ︷︷ ︸
1: no USB; 2: with USB

xx︸︷︷︸
other model options

F yyy︸︷︷︸
flash in KB

B, C, or D︸ ︷︷ ︸
28, 36, or 44 pins

The xx code can be 10, 20, 30, 50, or 70, which correspond to 4, 8, 16, 32, or 64 KB of RAM,
respectively. Thus the PIC32MX230F064B has full-speed USB, 16 KB of RAM, 64 KB of
flash, and 28 pins.

Devices in this family differ from the 5xx/6xx/7xx family in that they have only 3 KB of boot
flash; fewer ADC inputs; fewer UART, SPI, and I2C peripherals; and no Ethernet or CAN.
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The 1xx/2xx devices have three comparator modules instead of two, programmable with up to
32 reference voltages as compared to the 16 of the 5xx/6xx/7xx family. Other interesting new
features, which we have not seen in the previous models, include Peripheral Pin Select (PPS),
audio interface by SPI, and charge-time measurement for capacitive touch sensing, as
discussed below.

PPS allows a wide range of digital-only peripherals to be assigned flexibly to different device
pins, a major feature for low-pin-count devices like PIC32MX1xx/2xx devices. While a pin of
our PIC32MX795F512H can support several possible peripherals, devices with PPS have
much more flexibility in mapping certain peripherals to different pins. A remappable
peripheral does not have default I/O pins; SFRs must be configured to assign the peripheral to
specific pins before it can be used. Examples of peripherals that can be remapped by PPS
include UARTs, SPI modules, counter/timer inputs, input capture, output compare, and
interrupt-on-change inputs. Some peripherals cannot be remapped, such as I2C peripherals
and ADC inputs, because of special requirements on the I/O circuitry for those peripherals.

The 1xx/2xx devices’ SPI modules support audio interface protocols for 16-, 24-, and 32-bit
audio data. One example is the Inter-IC Sound (I2S) protocol, which allows the transmission
of two channels of digital audio data using the SPI peripheral. The I2S capability allows a
1xx/2xx device to communicate with digital audio equipment as either the master or slave.

Finally, the 1xx/2xx’s Charge-Time Measurement Unit (CTMU) provides a current source to
interface with an external capacitive touch sensor, such as a capacitive on/off button or even an
x-y touchpad. The CTMU is used with one or more ADC channels to measure the capacitance
of one or more analog capacitive sensors.

C.4 PIC32MX1xx/2xx/5xx 64-100 Pin Family

The PIC32MX1xx/2xx/5xx 64-100 pin family expands on the features of the
PIC32MX1xx/2xx family, which includes PPS, CTMU, and audio interface protocols. The
M4K CPU operates at speeds up to 50 MHz, and the devices have 64 or 100 pins and up to
64 KB of RAM and 512 KB of flash. These devices feature more analog input channels (up to
48), more UART and SPI peripherals, and some models feature USB and CAN. Device names
have the form

PIC32MX 1, 2, or 5︸ ︷︷ ︸
communication options

xx︸︷︷︸
other model options

F yyy︸︷︷︸
flash in KB

H or L︸ ︷︷ ︸
64 or 100 pins

The 1xx series has neither CAN nor USB, the 2xx series features full-speed USB but no CAN,
and the 5xx series has both full-speed USB and CAN. The code xx can be 20, 30, 50, or 70,
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corresponding to 8, 16, 32, or 64 KB of RAM, respectively. Thus the PIC32MX570F512H
offers both USB and CAN and has 64 KB of RAM, 512 KB of flash, and 64 pins.

C.5 PIC32MX330/350/370/430/450/470 Family

The PIC32MX330/350/370/430/450/470 family differs from the PIC32MX1xx/2xx/5xx
64-100 pin family by offering 12 KB of boot flash, up to 128 KB of RAM, and CPU speeds up
to 120 MHz, the fastest in the PIC32MX families. Devices in this family have two SPI
channels (compared to the three or four of the PIC32MX1xx/2xx/5xx 64-100 pin family) and
do not offer CAN. 4xx devices in this family offer full-speed USB while 3xx devices do not.

C.6 PIC32MZ Family

The most recent addition to the PIC32 line, the PIC32MZ family is the most advanced.
Devices in this family have names of the form

PIC32MZ xxxx︸︷︷︸
flash in KB

three-letter code yyy︸︷︷︸
number of pins

The number of pins (yyy) is either 064, 100, 124, or 144. The three-letter code indicates
whether the PIC32 has CAN modules; an external bus interface (EBI), described below; a
floating point unit (FPU) for fast floating point operations; and a Crypto Engine, a hardware
module used to accelerate applications requiring encryption, decryption, and authentication.
PIC32MZs currently have up to 512 KB of RAM.

All PIC32MZs have a much larger boot flash segment (160 KB), nine 16-bit counter/timers
configurable to up to four 32-bit counter/timers, nine output compares with up to 32-bit
resolution, nine input captures, six UARTs, up to five I2C modules, up to six SPI modules
supporting audio interfaces, PPS for more flexible pin remapping, Ethernet, and high-speed
USB, as opposed to the slower full-speed USB of the PIC32MX models. PIC32MZs do not
currently have a CTMU.

Two new capabilities on the PIC32MZ are the 50 MHz External Bus Interface (EBI) and the
50 MHz Serial Quad Interface (SQI). SQI is similar to SPI, except it has four data lines and
supports single lane, dual lane, and quad lane modes of operation. In single lane mode, it is
identical to SPI. EBI allows a high-speed connection to external memory devices, like NOR
flash devices or SRAM, allowing you to seamlessly address external memory in your C code.

The PIC32MZ family also has several different peripheral buses, each potentially clocked at
different frequencies.
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Certainly the biggest difference of the PIC32MZ family from PIC32MX devices is its different
microprocessor, the MIPS32 microAptiv core. The microAptiv CPU can be clocked at up to
200 MHz, and it has multiple shadow register sets, a larger number of interrupt sources, and
new assembly instructions and hardware to accelerate digital signal processing calculations.
Other capabilities of the microAptiv core can be found in Section 50 of the Reference Manual.

C.7 Conclusion

To learn more about a specific PIC32 model, first consult the Data Sheet for the appropriate
PIC32 family to learn the specific capabilities of each model. After that, you can consult the
sections of the Reference Manual for more information. You will find it helpful to be armed
with the knowledge of the features that your PIC32 model has or does not have, since the
Reference Manual is currently written to cover all PIC32 models. After that, you can modify
the sample code provided in this book for your particular PIC32, or start with sample code
provided by Microchip.
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