N

MICROCHIP

32-Bit Language Tools
Libraries

DDDDDDDD

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEeLOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit,
PICtail, PIC3? logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper.

Microchip received 1ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51685D-page ii

© 2009 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Table of Contents

] = Lo = PR PURRPPRRPR 1
Chapter 1. Library Overview
I [o1 o o 1H o 1 o o USRS 7
S = U el U o T O o o PSR 7
1.3 32-Bit Peripheral LIDrariesccueeiiiiiiiiiiiieeee e 7
1.4 Standard C Libraries (with Math FUNCLIONS)cooooiiiiiiii e 7
Chapter 2. Standard C Libraries with Math Functions
P22 I [o To [o 1o] o TSRS 9
2.2 Using the Standard C Librariesc.cvviiiiiiiiiiiieeciiin e 10
2.3 <ASSErt.N> DIAGNOSLICSevviiiieiiiiiiiiiiii e 11
2.4 <ctype.h> Character Handlingcouuiiiiiieiiiieeecs s eeee 11
I =11 1 [0 10 Dl (0] £ PSP 15
2.6 <float.h> Floating-Point CharacteristiCScccccciieiiiiiiiiiieecc e, 16
2.7 <limits.h> Implementation-Defined LIMitScccccoriiiiiiiiiiieen e 21
2.8 <locale.n> LoCaAliZAtioNceiviiiiiiiiiiiiiiiiiiiree e 23
2.9 <setimp.h> NON-LOCAl JUMPSouiiiiiiiiieiiiiiiee e 24
2.10 <signal.h> Signal Handling ... 25
2.11 <stdarg.h> Variable Argument LiStScccviiiiiiieiiiiiiiiiieeee e 27
2.12 <stddef.h> Common DefinitioNSccoiiviiiiiiiiiiiii 28
2.13 <stdio.h> Input and OULPULcceeeiiiiiieieeiiiee e 29
2.14 <stdlib.h> Utility FUNCHONSiiiiiiiiceeci e e e 52
2.15 <string.h> String FUNCLIONSouiiiiiiiiiee e 65
2.16 <time.h> Date and Time FUNCLONSccccccviiiiiiiiii 73
2.17 <math.h> Mathematical FUNCLIONScuvviiiiiiiiiiiiiiiieieeeeeeeee e 78
2.18 <unistd.h> Miscellaneous FUNCLIONSccccccvviiiiiiiiii 92
Chapter 3. PIC32 DSP Library
G 700 I 10T [T 4o o PP 95
3.2 Vector Math FUNCLIONSuuuuiiiiiiiiiiiiiiiiieieiiieieieeeeeeieeee e e e eeeeeeeeeeeeeaeeeeas 98
3.3 Filtering FUNCLIONScooiiiiiii e e e e eeaenes 107
3.4 Frequency Domain Transform FUNCLIONScccvvvveveiiiiiiiiiieiceee e 111
3.5 Video Processing FUNCLIONScooiuiiiiiiiii e e e e e e e e e 114
Chapter 4. PIC32 Debug-Support Library
O Y= V=P 119
4.2 Configuring Debug Input/Output for the target and toolccccocooeeeeees 119
4.3 <sys/appio.h> PIC32 Debugging SUPPOITccorrimmrrmmieeeeniiiiiiieeeeee e 120
Appendix A. ASCI CharacCter Selccccoiiiiiiiiiiiieeeee e 123

© 2009 Microchip Technology Inc. DS51685D-page iii

32-Bit Language Tools Libraries

Appendix B. Types, Constants, Functions and MacrosSccccceeveeeeeiiininininneinne 125
Appendix C. 16-Bit DSP Wrapper FUNCLIONScooooiiiiiiiiiiiiiiiie e 129
C.LINrOAUCTION .oeiiiiiiiieee e, 129
C.2 PIC32 DSP Wrapper FUNCLIONS LIStvvviiiiieiiiiiiieiieeeeee e 129
C.3 Differences Between Wrapper Functions and dsPIC® DSP Library 130
1o 1= PSSR 131
Worldwide Sales and SEIVICEuuuuiiiiiiiiii e 145

DS51685D-page iv © 2009 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS

MICROCHIP LIBRARIES

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

document.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX”" is the document number and “A” is the revision level of the

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
32-bit libraries. Items discussed include:

Document Layout

Conventions Used in this Guide

Recommended Reading

The Microchip Web Site

Development Systems Customer Change Notification Service
Customer Support

DOCUMENT LAYOUT

This document describes how to use language tools to write code for 32-bit
applications. The document layout is as follows:

Chapter 1. Library Overview — gives an overview of libraries. Some are
described further in this document, while others are described in other documents
or on-line Help files.

Chapter 2. Standard C Libraries with Math Functions — lists the library
functions and macros for standard C operation.

Chapter 3. PIC32 DSP Library — lists the PIC32 DSP library functions, such as
vector operations, filters and transforms.

Appendix A. ASCII Character Set — ASCII Character Set.

Appendix B. Types, Constants, Functions and Macros — an alphabetical list of
types, constants, functions and macros.

Appendix C. 16-Bit DSP Wrapper Functions — discusses the PIC32 DSP
wrapper functions.

© 2009 Microchip Technology Inc. DS51685D-page 1

www.microchip.com

32-Bit Language Tools Libraries

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

dialog

Description Represents Examples
Arial font:
Italic Referenced books MPLAB® IDE User’s Guide
Emphasized text ...Is the only compiler...
Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic with right A menu path File>Save
angle bracket
Bold A dialog button Click OK

Atab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Sample source code #defi ne START
Filenames aut oexec. bat
File paths c:\nccl8\h
Keywords _asm _endasm static
Command-line options - Opa+, -Opa-
Bit values 0, 1
Constants OxFF, "A
Italic A variable argument file.o,wherefilecanbe

any valid filename

Square brackets []

Optional arguments

npasmu n [opti ons]
file [options]

Curly brackets and pipe
character: { |}

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]1}

Ellipses...

Replaces repeated text

var_nane [,
var _nane. . .|

Represents code supplied by
user

void main (void)
{
}

DS51685D-page 2

© 2009 Microchip Technology Inc.

Preface

RECOMMENDED READING

This documentation describes how to use the 32-bit libraries. Other useful documents
are listed below. The following Microchip documents are available and recommended
as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

Device-Specific Documentation

The Microchip web site contains many documents that describe 16-bit device functions
and features. Among these are:

« Individual and family data sheets

« Family reference manuals

* Programmer’s reference manuals

MPLAB® C32 C Compiler User’s Guide (DS51686)

Comprehensive guide that describes the operation and features of Microchip’s 32-bit
C compiler for PIC32MX devices.

PIC32MX Configuration Settings

Lists the Configuration Bit Settings for the Microchip PIC32MS devices supported by
the 32-bit C compiler’s #pr agma conf i g directive.

C Standards Information

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

© 2009 Microchip Technology Inc. DS51685D-page 3

32-Bit Language Tools Libraries

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

e Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQSs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

e Compilers — The latest information on Microchip C compilers and other language
tools. These include all MPLAB® C compilers; all MPLAB assemblers (including
MPASM™ assembler); all MPLAB linkers (including MPLINK™ obiject linker); and
all MPLAB librarians (including MPLIB™ object librarian).

« Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

¢ In-Circuit Debuggers — The latest information on the Microchip in-circuit
debuggers. These include MPLAB ICD 2 in-circuit debugger and PICkit™ 2 debig
express.

« MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 device programmer and the PICSTART® Plus, PICkit™ 1 and
PICkit™ 2 development programmers.

DS51685D-page 4 © 2009 Microchip Technology Inc.

www.microchip.com
www.microchip.com

Preface

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)

 Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.

REVISION HISTORY

Revision A (October 2007)

« Initial release of this document.
Revision B (October 2008)

« Added Appendix C. PIC32 DSP Library
Revision C (February 2009)

« Incorporated name changes from MPLAB 32 C Compiler to 32-bhit C Compiler.
¢ Add MIPS and review updates.

Revision D (July 2009)

* Moved PIC32 DSP Library from Appendix C to Chapter 3.
« Added Chapter 4. PIC32 Debug-Support Library.

© 2009 Microchip Technology Inc. DS51685D-page 5

http://support.microchip.com

32-Bit Language Tools Libraries

NOTES:

DS51685D-page 6 © 2009 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 1. Library Overview

1.1 INTRODUCTION

A library is a collection of functions grouped for reference and ease of linking.

111 C Code Applications

The 32-bit language tool libraries are included in the pi c32nmx\ | i b subdirectory of the
MPLAB C compiler for PIC32MX MCUs (formerly MPLAB C32) install directory, which
is by default:

C.\ Program Fi |l es\ M crochi p\ MPLAB C32\ pi c32mx\Ili b

or,

C:\ Program Fil es\ M crochi p\ MPLAB C32 Suite\pic32m\Ilib

These libraries can be linked directly into an application with the 32-bit linker.

1.1.2 Chapter Organization

This chapter is organized as follows:

« Start-up Code

» 32-Bit Peripheral Libraries

 Standard C Libraries (with Math Functions)

1.2 START-UP CODE

In order to initialize variables in data memory, the linker creates a data initialization
image. This image must be copied into RAM at start-up, before the application proper
takes control. Initialization of the runtime environment is performed by start-up code in
crt 0. o. Details of the initialization process are described in Section 5.7 Start-up and
Initialization in the “MPLAB Compiler for PIC32MX MCUs User’s Guide” (DS51686).

1.3 32-BIT PERIPHERAL LIBRARIES

The 32-bit software and hardware peripheral libraries provide functions and macros for
setting up and controlling the 32-bit peripherals. These libraries are processor-specific
and of the form | i bnchp_peri pheral _Devi ce. a, where Devi ce is the 32-bit device
number.

1.4 STANDARD C LIBRARIES (WITH MATH FUNCTIONS)

A complete set of ANSI-89 conforming libraries are provided. The standard C library
files are | i bc. a (written by MIPS Technologies) | i be.aand | i bm a.

A typical C application will require all three libraries, these are linked in by default and
do not need to be specified by the user.

© 2009 Microchip Technology Inc. DS51685D-page 7

32-Bit Language Tools Libraries

NOTES:

DS51685D-page 8 © 2009 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 2. Standard C Librarieswith Math Functions

2.1 INTRODUCTION

Standard ANSI C library functions are contained in the libraries | i bc. aand | i bgcc. a.
Multiple versions of these libraries exist, each compiled with different compilation
options. They are intended to match closely with a subset of the build options used to
compile your application. The compilation environment will select the library that is
most appropriate for the selected build options.

The available libraries have been optimized for: speed, size, integer arithmetic only and
MIPS16® mode.

2.1.1 C Code Applications

The 32-bit C compiler directory contains a library and include file subdirectory that is
automatically searched by the tool chain. For a full install of the compiler, the default
install directory is c¢: \ Program Fi | es\ M cr ochi p\ MPLAB C32. For a demo install
(with MPLAB IDE) of the compiler, the default install directory is

c:\ Program Fi |l es\ M crochi p\ MPLAB C32 Suite.

2.1.2 Chapter Organization

This chapter is organized as follows:

 Using the Standard C Libraries
 <assert.h> Diagnostics

e <ctype.h> Character Handling
 <errno.h> Errors

* <float.h> Floating-Point Characteristics
¢ <limits.h> Implementation-Defined Limits
 <locale.h> Localization

« <math.h> Mathematical Functions

« <setjmp.h> Non-Local Jumps

* <signal.h> Signal Handling
 <stdarg.h> Variable Argument Lists

» <stddef.h> Common Definitions
 <stdio.h> Input and Output

« <stdlib.h> Utility Functions
 <string.h> String Functions

« <time.h> Date and Time Functions

¢ <unistd.h> Miscellaneous Functions

© 2009 Microchip Technology Inc. DS51685D-page 9

32-Bit Language Tools Libraries

2.2 USING THE STANDARD C LIBRARIES

Building an application that utilizes the standard C libraries requires two types of files:
header files and library files.

2.2.1 Header Files

All standard C library entities are declared or defined in one or more standard headers
(See list in Section 2.1.2 “Chapter Organization”.) To make use of a library entity in
a program, write an include directive that names the relevant standard header.

The contents of a standard header is included by naming it in an include directive, as in:
#i nclude <stdio.h> /* include |I/O facilities */

The standard headers can be included in any order. Do not include a standard header
within a declaration. Do not define macros that have the same names as keywords
before including a standard header.

2.2.2 Library Files

The archived library files contain all the individual object files for each library function.

When linking an application, the library file must be provided as an input to the linker
(using the --1ibrary or-1 linker option or by specifying them on the command line)
such that the functions used by the application may be linked into the application.
Library linking is order dependent. A library must be required at the inclusion point for
it to be used.

A typical C application will require three library files: | i bc. a, I i bm a, and | i be. a.
These libraries will be included automatically if linking is performed using the 32-bit
compiler.

Note: Some standard library functions require a heap. These include the standard
I/0 functions that open files and the memory allocation functions. Refer to
Section 5.5 of the “MPLAB C Compiler for PIC32MX MCUs User’s Guide”
(DS51686).

DS51685D-page 10

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.3

2.4

<ASSERT.H> DIAGNOSTICS

The header file assert . h consists of a single macro that is useful for debugging logic
errors in programs. By using the assert statement in critical locations where certain
conditions should be true, the logic of the program may be tested.

Assertion testing may be turned off without removing the code by defining NDEBUG
before including <assert . h>. If the macro NDEBUGIs defined, assert () is ignored and
no code is generated.

assert

Description: If the expression is false, an assertion message is printed to st der r
and the program is aborted.

Include: <assert. h>

Prototype: voi d assert(int expression);

Argument: expr essi on The expression to test.

Remarks: The expression evaluates to zero or non-zero. If zero, the assertion

fails a message is printed to st der r and abort () is called which
will terminate execution. The message includes the source file name
(__FILE__), the source line number (__LI NE__), the expression
being evaluated and the message.

If the macro NDEBUG is defined assert () will do nothing. assert ()
is defined as a C macro.

<CTYPE.H> CHARACTER HANDLING

The header file ct ype. h consists of functions that are useful for classifying and
mapping characters. Characters are interpreted according to the Standard C locale.

Use of any one of these functions will import 257 bytes worth of data.

isalnum

Description: Test for an alphanumeric character.
Include: <ctype. h>

Prototype: int isalnun(int c);
Argument: c The character to test.

Return Value:

Returns a non-zero integer value if the character is alphanumeric,
otherwise, returns a zero.

Remarks: Alphanumeric characters are included within the ranges A-Z, a-z or 0-9.
isalpha

Description: Test for an alphabetic character.

Include: <ctype. h>

Prototype: int isalpha(int c);

Argument: c The character to test.

Return Value:

Remarks:

Returns a non-zero integer value if the character is alphabetic,
otherwise, returns zero.

Alphabetic characters are included within the ranges A-Z or a-z.

© 2009 Microchip Technology Inc.

DS51685D-page 11

32-Bit Language Tools Libraries

isascii

Description: Test for an ascii character.

Include: <ctype. h>

Prototype: int isascii(int c);
Argument: c The character to test.

Return Value:

Returns a non-zero integer value if the character is a member of the
ascii character set, 0x00 to Ox7F inclusive.

iscntrl

Description: Test for a control character.
Include: <ctype. h>

Prototype: int iscntrl(int c);
Argument: c character to test.

Return Value:

Returns a non-zero integer value if the character is a control character,
otherwise, returns zero.

Remarks: A character is considered to be a control character if its ASCII value is
in the range 0x00 to Ox1F inclusive, or 0x7F.

isdigit

Description: Test for a decimal digit.

Include: <ctype. h>

Prototype: int isdigit(int c);

Argument: c character to test.

Return Value:

Returns a non-zero integer value if the character is a digit, otherwise,
returns zero.

Remarks: A character is considered to be a digit character if it is in the range of
-9,

isgraph

Description: Test for a graphical character.

Include: <ctype. h>

Prototype: int isgraph (int c);

Argument: c character to test

Return Value:

Remarks:

Returns a non-zero integer value if the character is a graphical
character, otherwise, returns zero.

A character is considered to be a graphical character if it is any
printable character except a space.

DS51685D-page 12

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

islower

Description: Test for a lowercase alphabetic character.
Include: <ctype. h>

Prototype: int islower (int c);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is a lowercase
alphabetic character, otherwise, returns zero.

Remarks: A character is considered to be a lowercase alphabetic character if it is
in the range of ‘a’-'z’.

isprint

Description: Test for a printable character (includes a space).

Include: <ctype. h>

Prototype: int isprint (int c);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is printable,
otherwise, returns zero.

Remarks: A character is considered to be a printable character if it is in the range
0x20 to 0x7e inclusive.

ispunct

Description: Test for a punctuation character.

Include: <ctype. h>

Prototype: int ispunct (int c);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is a punctuation
character, otherwise, returns zero.

Remarks: A character is considered to be a punctuation character if it is a
printable character which is neither a space nor an alphanumeric
character. Punctuation characters consist of the following:

"#S% &' ();<=>2@[\]*+,-. [_{|}~

isspace

Description: Test for a white-space character.

Include: <ctype. h>

Prototype: int isspace (int c);

Argument: c character to test

Return Value:

Remarks:

Returns a non-zero integer value if the character is a white-space
character, otherwise, returns zero.

A character is considered to be a white-space character if it is one of
the following: space (' '), form feed (\f'), newline (\n"), carriage return
('\r"), horizontal tab (\t'), or vertical tab ('\v').

© 2009 Microchip Technology Inc.

DS51685D-page 13

32-Bit Language Tools Libraries

isupper

Description: Test for an uppercase letter.
Include: <ctype. h>

Prototype: int isupper (int c);
Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is an uppercase
alphabetic character, otherwise, returns zero.

Remarks: A character is considered to be an uppercase alphabetic character if it
is in the range of ‘A-‘Z'.

isxdigit

Description: Test for a hexadecimal digit.

Include: <ctype. h>

Prototype: int isxdigit (int c);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is a hexadecimal digit,
otherwise, returns zero.

Remarks: A character is considered to be a hexadecimal digit character if it is in
the range of ‘0’-'9’, ‘A-‘F’, or ‘a’-'f".
Note: The list does not include the leading Ox because 0x is the prefix
for a hexadecimal number but is not an actual hexadecimal digit.

tolower

Description: Convert a character to a lowercase alphabetical character.

Include: <ctype. h>

Prototype: int tolower (int c);

Argument: c The character to convert to lowercase.

Return Value:

Returns the corresponding lowercase alphabetical character if the
argument was originally uppercase, otherwise, returns the original
character.

Remarks: Only uppercase alphabetical characters may be converted to
lowercase.

toupper

Description: Convert a character to an uppercase alphabetical character.

Include: <ctype. h>

Prototype: int toupper (int c);

Argument: c The character to convert to uppercase.

Return Value:

Remarks:

Returns the corresponding uppercase alphabetical character if the
argument was originally lowercase, otherwise, returns the original
character.

Only lowercase alphabetical characters may be converted to
uppercase.

DS51685D-page 14

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

<ERRNO.H> ERRORS

The header file er r no. h consists of macros that provide error codes that are reported
by certain library functions (see individual functions). The variable er r no may evaluate
to any value greater than zero. To test if a library function encounters an error, the pro-
gram should store the value zero in er r no immediately before calling the library func-
tion. The value should be checked before another function call which may change the
value. At program start-up, er r no is zero. Library functions will never set er r no to zero.

The following section identifies error values that are returned by the libraries. The
header file defines errors that are not generated by the libraries.

2.5.1 Constants

EBADF

Description: Represents a bad file number.

Include: <errno. h>

Remarks: EBADF represents a bad file descriptor number. File descriptors are
used by low-level 10 library functions such as wri t (), which are not
provided by default. For more information on library I/O functions, see
Section 2.13.2 “Customizing STDIO”.

EDOM

Description: Represents a domain error.

Include: <errno. h>

Remarks: EDOMrepresents a domain error, which occurs when an input argument
is outside the domain for which the function is defined.

EINVAL

Description: Represents an invalid argument.

Include: <errno. h>

Remarks: El NVAL represents an invalid argument to f open(), which is not
provided by default. For more information on library I/O functions, see
Section 2.13.2 “Customizing STDIO".

ENOMEM

Description: An error indicating that there is no more memory available.

Include: <errno. h>

Remarks: ENOMEM is returned from the low-level function when there is no more
memory. Typically this in response to a heap allocation request.

ERANGE

Description: Represents an overflow or underflow error.

Include: <errno. h>

Remarks: ERANGE represents an overflow or underflow error, which occurs when

a result is too large or too small to be stored.

© 2009 Microchip Technology Inc.

DS51685D-page 15

32-Bit Language Tools Libraries

252 Functions and Macros

errno

Description:
Include:
Remarks:

Contains the value of an error when an error occurs in a function.
<errno. h>

The variable er r no is set to a non-zero integer value by a library
function when an error occurs. At program start-up, er r no is set to
zero. Er r no should be reset to zero prior to calling a function that sets
it.

2.6 <FLOAT.H> FLOATING-POINT CHARACTERISTICS

The header file f I oat . h consists of macros that specify various properties of
floating-point types. These properties include the number of significant figures, digits,
size limits and what rounding mode is used.

DBL_DIG

Description: Number of decimal digits of precision in a double precision
floating-point value

Include: <float. h>

Value: 15

DBL_EPSILON

Description: The difference between 1.0 and the next larger representable double
precision floating-point value

Include: <fl oat. h>

Value: 2.2204460492503131e-16

DBL_MANT _DIG

Description: Number of base-FLT_RADI X digits in a double precision floating-point
significand

Include: <float. h>

Value: 53

DBL_MAX

Description: Maximum finite double precision floating-point value

Include: <fl oat. h>

Value: 1.7976931348623157e+308

DBL_MAX_10_EXP

Description:

Include:
Value:

Maximum integer value for a double precision floating-point exponent in
base 10

<fl oat. h>
308

DS51685D-page 16

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

DBL_MAX_EXP

Description:

Include:
Value:

Maximum integer value for a double precision floating-point exponent in
base FLT_RADI X

<fl oat. h>
1024

DBL_MIN

Description:
Include:
Value:

Minimum double precision floating-point value
<fl oat. h>
2.2250738585072014e-308

DBL_MIN_10_EXP

Description:

Include:
Value:

Minimum negative integer value for a double precision floating-point
exponent in base 10

<fl oat. h>
-307

DBL_MIN_EXP

Description:

Include:
Value:

Minimum negative integer value for a double precision floating-point
exponent in base FLT_RADI X

<fl oat. h>
-1021

FLT DIG

Description:

Include:
Value:

Number of decimal digits of precision in a single precision floating-point
value

<fl oat. h>
6

FLT_EPSILON

Description:

Include:
Value:

The difference between 1.0 and the next larger representable single
precision floating-point value

<fl oat. h>
1.1920929e-07

FLT_MANT_DIG

Description:

Include:
Value:

Number of base-FLT_RADI X digits in a single precision floating-point
significand

<float. h>

24

© 2009 Microchip Technology Inc.

DS51685D-page 17

32-Bit Language Tools Libraries

FLT _MAX
Description: Maximum finite single precision floating-point value
Include: <float. h>

Value: 3.40282347e+38

FLT_MAX_10 EXP

Description: Maximum integer value for a single precision floating-point exponent in
base 10

Include: <fl oat. h>

Value: 38

FLT_MAX_EXP

Description: Maximum integer value for a single precision floating-point exponent in
base FLT_RADI X

Include: <float. h>

Value: 128

FLT_MIN

Description: Minimum single precision floating-point value

Include: <float. h>

Value: 1.17549435e-38

FLT_MIN_10 _EXP

Description: Minimum negative integer value for a single precision floating-point
exponent in base 10

Include: <float. h>

Value: -37

FLT _MIN_EXP

Description: Minimum negative integer value for a single precision floating-point
exponent in base FLT_RADI X

Include: <fl oat. h>

Value: -125

FLT_RADIX

Description: Radix of exponent representation

Include: <fl oat. h>

Value: 2

Remarks: The base representation of the exponent is base-2 or binary.

DS51685D-page 18 © 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

FLT _ROUNDS

Description: Represents the rounding mode for floating-point operations

Include: <fl oat. h>

Value: 1

Remarks: Rounds to the nearest representable value

LDBL_DIG

Description: Number of decimal digits of precision in a long double precision
floating-point value

Include: <fl oat. h>

Value: 15

LDBL_EPSILON

Description: The difference between 1.0 and the next larger representable long
double precision floating-point value

Include: <fl oat. h>
Value: 2.2204460492503131e-16

LDBL_MANT DIG

Description: Number of base-FLT_RADI X digits in a long double precision
floating-point significand

Include: <fl oat. h>

Value: 53

LDBL_MAX

Description: Maximum finite long double precision floating-point value
Include: <fl oat. h>

Value: 1.7976931348623157e+308

LDBL_MAX_10 EXP

Description: Maximum integer value for a long double precision floating-point
exponent in base 10

Include: <fl oat. h>
Value: 308

LDBL_MAX_EXP

Description: Maximum integer value for a long double precision floating-point
exponent in base FLT_RADI X

Include: <fl oat. h>

Value: 1024

© 2009 Microchip Technology Inc. DS51685D-page 19

32-Bit Language Tools Libraries

LDBL_MIN

Description: Minimum long double precision floating-point value
Include: <fl oat. h>

Value: 2.2250738585072014e-308

LDBL_MIN_10_EXP

Description: Minimum negative integer value for a long double precision
floating-point exponent in base 10

Include: <fl oat. h>
Value: -307

LDBL_MIN_EXP

Description: Minimum negative integer value for a long double precision
floating-point exponent in base FLT_RADI X

Include: <fl oat. h>

Value: -1021

DS51685D-page 20 © 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.7 <LIMITS.H> IMPLEMENTATION-DEFINED LIMITS

The header file I i mi t s. h consists of macros that define the minimum and maximum
values of integer types. Each of these macros can be used in #i f preprocessing

directives.

CHAR_BIT

Description: Number of bits to represent type char
Include: <limts. h>

Value: 8

CHAR_MAX

Description: Maximum value of a char

Include: <limts. h>

Value: 255 by default, 127 if the - f si gned- char option is specified.
CHAR_MIN

Description: Minimum value of a char

Include: <limts. h>

Value: 0 by default, -128 if the - f si gned- char option is specified.
INT_MAX

Description: Maximum value of an i nt

Include: <limts. h>

Value: 2147483647

INT_MIN

Description: Minimum value of an i nt

Include: <limts. h>

Value: -2147483648

LLONG_MAX

Description: Maximum value of al ong | ong i nt
Include: <limts. h>

Value: 9223372036854775807
LLONG_MIN

Description: Minimum value of al ong | ong i nt
Include: <limts. h>

Value: -9223372036854775808

© 2009 Microchip Technology Inc.

DS51685D-page 21

32-Bit Language Tools Libraries

LONG_MAX

Description: Maximum value of a | ong i nt
Include: <limts.h>

Value: 2147483647

LONG_MIN

Description: Minimum value of al ong i nt
Include: <limts. h>

Value: -2147483648
MB_LEN_MAX

Description: Maximum number of bytes in a multibyte character
Include: <limts. h>

Value: 16

SCHAR_MAX

Description: Maximum value of a si gned char
Include: <limts. h>

Value: 127

SCHAR_MIN

Description: Minimum value of a si gned char
Include: <limts.h>

Value: -128

SHRT_MAX

Description: Maximum value of a short int
Include: <limts.h>

Value: 32767

SHRT_MIN

Description: Minimum value of a short i nt
Include: <limts.h>

Value: -32768

UCHAR_MAX

Description: Maximum value of an unsi gned char
Include: <limts. h>

Value: 255

DS51685D-page 22 © 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

UINT_MAX

Description:
Include:
Value:

Maximum value of an unsi gned i nt
<limts.h>
4294967295

ULLONG_MAX

Description:
Include:
Value:

Maximum value of al ong | ong unsi gned i nt
<limts. h>
18446744073709551615

ULONG_MAX

Description:
Include:
Value:

Maximum value of al ong unsi gned i nt
<limts. h>
4294967295

USHRT_MAX

Description:
Include:
Value:

Maximum value of an unsi gned short int
<limts. h>
65535

2.8 <LOCALE.H>LOCALIZATION

This compiler defaults to the C locale and does not support any other locales, therefore
it does not support the header file | ocal e. h. The following would normally be found in

this file:

e struct |conv
« LC_ALL

« LC_COLLATE
« LC_CTYPE

« LC_MONETARY
¢ LC_NUMERI C

« LC_TIME

e | ocal econv

« setlocal e

© 2009 Microchip Technology Inc.

DS51685D-page 23

32-Bit Language Tools Libraries

29 <SETJMP.H> NON-LOCAL JUMPS

The header file set j np. h consists of a type, a macro and a function that allow control
transfers to occur that bypass the normal function call and return process.

29.1 Types

jmp_buf

Description: A type that is an array used by set j np and | ongj np to save and
restore the program environment.

Include: <setj np. h>

Prototype: typedef int jnp_buf[_JB LEN;

Remarks: _JB_LENIs defined as 24.

2.9.2 Functions and Macros

longjmp

Description: A function that restores the environment saved by set j np.

Include: <setj np. h>

Prototype: voi d | ongj np(j np_buf env, int val);

Arguments: env variable where environment is stored
val value to be substituted for the result of the original set j np call.

Remarks: The value parameter val should be non-zero, aval of zero will
cause 1 to be substituted. If | ongj np is invoked from a nested
signal handler (that is, invoked as a result of a signal raised during the
handling of another signal), the behavior is undefined.

setimp

Description: A macro that saves the current state of the program for later use by
| ongj np.

Include: <setj np. h>

Prototype: #define setjnp(j np_buf env)

Argument: env variable where environment is stored

Return Value:

If the return is from a direct call, set j np returns zero. If the return is
from a call to | ongj np, set j np returns a non-zero value.
Note: If the argument val from | ongj np is 0, set j np returns 1.

DS51685D-page 24

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.10 <SIGNAL.H> SIGNAL HANDLING

The header file si gnal . h consists of a type, several macros and two functions that
specify how the program handles signals while it is executing. A signal is a condition
that may be reported during the program execution. Signals are synchronous, occur-
ring under software control via the r ai se function. In a hosted environment, a signal
may be raised in response to various events (control-C being pressed or resizing an
X11 window). In the embedded world, signals are not tied to any specific hardware
feature.

By default the 32-bit C compiler does not constitute a hosted environment, and as such
there are no signal handling facilities provided. An OS or RTOS may provide these fea-
tures. Cursory documentation is provided here for information purposes only.

A signal may be handled by:

« Default handling (SI G_DFL). The signal is treated as a fatal error and execution
stops.

* Ignoring the signal (SI G_I GN). The signal is ignored and control is returned to the
user application.

< Handling the signal with a function designated via si gnal .
By default all signals are handled by the default handler, which is identified by SI G_DFL.

The type si g_at oni c_t is an integer type that the program access atomically. When
this type is used with the keyword vol ati | e, the signal handler can share the data
objects with the rest of the program.

2.10.1 Types

sig_atomic_t

Description: A type used by a signal handler
Include: <si gnal . h>
Prototype: typedef int sig_atomic_t;

2.10.2 Constants

SIG_DFL

Description: Used as the second argument and/or the return value for si gnal to
specify that the default handler should be used for a specific signal.

Include: <si gnal . h>

SIG_ERR

Description: Used as the return value for si gnal when it cannot complete a
request due to an error.

Include: <si gnal . h>

SIG_IGN

Description: Used as the second argument and/or the return value for si gnal to
specify that the signal should be ignored.

Include: <si gnal . h>

© 2009 Microchip Technology Inc. DS51685D-page 25

32-Bit Language Tools Libraries

SIGABRT

Description: Name for the abnormal termination signal.

Include: <si gnal . h>

Prototype: #defi ne Sl GABRT

Remarks: S| GABRT represents an abnormal termination signal and is used in
conjunction with r ai se or si gnal .

SIGFPE

Description: Signals floating-point error such as for division by zero or result out of
range.

Include: <si gnal . h>

Prototype: #defi ne SI GFPE

Remarks: S| GFPE is used as an argument for r ai se and/or si gnal .

SIGILL

Description: Signals illegal instruction.

Include: <si gnal . h>

Prototype: #define SIGLL

Remarks: S| G LL is used as an argument for r ai se and/or si gnal .

SIGINT

Description: Interrupt signal.

Include: <si gnal . h>

Prototype: #define SI G NT

Remarks: S| G NT is used as an argument for r ai se and/or si gnal .

SIGSEGV

Description: Signals invalid access to storage.

Include: <si gnal . h>

Prototype: #defi ne SI GSEGV

Remarks: SI GSEGV is used as an argument for r ai se and/or si gnal .

SIGTERM

Description: Signals a termination request

Include: <si gnal . h>

Prototype: #defi ne S| GTERM

Remarks: SI GTERMis used as an argument for r ai se and/or si gnal .

DS51685D-page 26

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.10.3 Functions and Macros

raise

Description: Reports a synchronous signal.
Include: <si gnal . h>

Prototype: int raise(int sig);
Argument: si g signal name

Return Value:

Returns a 0 if successful, otherwise, returns a non-zero value.

Remarks: r ai se should send the signal identified by si g to the executing
program, however the default implementation always returns SI G_ERR.

signal

Description: Controls interrupt signal handling.

Include: <si gnal . h>

Prototype: void (*signal (int sig, void(*func)(int)))(int);

Arguments: sig signal name

Return Value:
Remarks:

func function to be executed
Returns the previous value of f unc or SI G_ERR.

si gnal should set the signal handler identified by si g to the f unc
specified, however the default implementation always returns
S| G_ERR.

2.11 <STDARG.H> VARIABLE ARGUMENT LISTS

The header file st dar g. h supports functions with variable argument lists. This allows
functions to have arguments without corresponding parameter declarations. There
must be at least one named argument. The variable arguments are represented by
ellipses (...). An object of type va_l i st must be declared inside the function to hold the
arguments. va_st art will initialize the variable to an argument list, va_ar g will access
the argument list, and va_end will end the use of the argument.

va_arg

Description: Gets the current argument.

Include: <stdarg. h>

Prototype: #define va_arg(va_list ap, T)
Argument: ap pointer to list of arguments

Return Value:

T type of argument to be retrieved
Returns the current argument as type T

Remarks: va_st art must be called before va_ar g.

va_end

Description: Ends the use of ap.

Include: <stdarg. h>

Prototype: #define va_end(va_list ap)

Argument: ap pointer to list of arguments

Remarks: After a call to va_end, the argument list pointer ap is considered to be

invalid. Further calls to va_ar g should not be made until the next
va_start.

© 2009 Microchip Technology Inc.

DS51685D-page 27

32-Bit Language Tools Libraries

va_list

Description: The type va_l i st declares a variable that will refer to each argument
in a variable-length argument list.

Include: <stdarg. h>

va_start

Description: Sets the argument pointer ap to first optional argument in the
variable-length argument list.

Include: <stdarg. h>

Prototype: #define va_start(va_list ap, last_arg)

Argument: ap pointer to list of arguments
| ast _arg last named argument before the optional (ellipsis)

arguments

2.12 <STDDEF.H> COMMON DEFINITIONS

The header file st ddef . h consists of several types and macros that are of general use

in programs.

2.12.1 Constants

NULL

Description: The value of a Null Pointer constant.

Include: <st ddef . h>

2.12.2 Functions and Macros

offsetof

Description: Gives the offset of a structure member from the beginning of the
structure.

Include: <st ddef. h>

Prototype: #define of fsetof (T, nbr)

Arguments: T name of structure

Return Value:

nbr name of member in structure T

Returns the offset in bytes of the specified member (nbr) from the
beginning of the structure.

Remarks: The macro of f set of is undefined for bit fields. An error message will
occur if bit fields are used.

ptrdiff t

Description: The type of the result of subtracting two pointers.

Include: <st ddef . h>

size t

Description: The type of the result of the si zeof operator.

Include: <st ddef . h>

DS51685D-page 28

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

wchar_t
Description: A type that holds a wide character value.
Include: <st ddef . h>

2.13 <STDIO.H> INPUT AND OUTPUT

The header file st di 0. h consists of types, macros and functions that provide support
to perform input and output operations on files and streams. When a file is opened it is
associated with a stream. A stream is a pipeline for the flow of data into and out of files.
Because different systems use different properties, the stream provides more uniform
properties to allow reading and writing of the files.

Streams can be text streams or binary streams. Text streams consist of a sequence of
characters divided into lines. Each line is terminated with a newline (‘\ n’) character. The
characters may be altered in their internal representation, particularly in regards to line
endings. Binary streams consist of sequences of bytes of information. The bytes trans-
mitted to the binary stream are not altered. There is no concept of lines. The file is just
a stream of bytes.

At start-up three streams are automatically opened: st di n, st dout ,and st derr.stdi n
provides a stream for standard input, st dout is standard output and st der r is the stan-
dard error. Additional streams may be created with the f open function. See f open for
the different types of file access that are permitted. These access types are used by

f open and f r eopen.

The type FI LE is used to store information about each opened file stream. It includes
such things as error indicators, end-of-file indicators, file position indicators, and other
internal status information needed to control a stream. Many functions in the st di o use
FI LE as an argument.

There are three types of buffering: unbuffered, line buffered and fully buffered. Unbuf-
fered means a character or byte is transferred one at a time. Line buffered collects and
transfers an entire line at a time (i.e., the newline character indicates the end of a line).
Fully buffered allows blocks of an arbitrary size to be transmitted. The functions set buf
and set vbuf control file buffering.

The st di o. h file also contains functions that use input and output formats. The input
formats, or scan formats, are used for reading data. Their descriptions can be found
under scanf , but they are also used by f scanf and sscanf . The output formats, or print
formats, are used for writing data. Their descriptions can be found under pri nt f.
These print formats are also used by fprintf, sprintf,vfprintf,vprintf and
vsprintf.

2.13.1 Compiler Options

Certain compiler options may affect how standard 1/O performs. In an effort to provide
a more tailored version of the formatted /O routines, the tool chain may convert a call
toaprintf orscanf style function to a different call. The options are summarized
below:

* The - mo- f | oat option, when enabled, will force linking of standard C libraries
that do not support floating-point operations. The functionality is the same as that
of the C standard forms, minus the support for floating-point output. Should a
floating-point format specifier be used, the floating-point limited versions of the
function will consume the value and output the text :(f | oat) to the output stream.

© 2009 Microchip Technology Inc. DS51685D-page 29

32-Bit Language Tools Libraries

e --nsingl e-fl oat will cause the compiler to generate calls to formatted I/O
routines that support doubl e as if it were a f | oat type.

Mixing modules compiled with these options may result in incorrect execution if large
and small double-sized data is shared across modules.

2.13.2 Customizing STDIO

The standard I/O relies on helper functions. There are two modes of operation, Simple
mode and Full mode. Simple mode supports one character at a time 1/O through the
standard streams: st dout , st di n, and st der r . Full mode supports the complete set of
standard I/O operations, such as files opened via the f open() function.

Simple mode uses four helper functions for I/0. These are: _non_put s(),
_mon_write(),_mon_putc(),and_non_get c().Default operation for these functions
are defined in Section 2.13.3 “STDIO Functions”. The default operation may be
over-ridden by defining custom versions of these functions.

Full mode uses additional helper functions. These are: cl ose(), i nk(), | seek(),
open(), read(),unlink() andwite(). Default versions of these functions are not
provided, however the required prototypes and operation are discussed in

Section 2.13.3 “STDIO Functions”.

2.13.3 STDIO Functions

Most of the following prototypes require inclusion of st di o. h, however some require
uni std. h (see Section 2.18 “<unistd.h> Miscellaneous Functions”) orfcntl. h -
particularly those concerned with the low-level implementation of the full STDIO mode.

2.13.4 Types

FILE

Description: Stores information for a file stream.

Include: <stdi 0. h>

fpos_t

Description: Type of a variable used to store a file position.
Include: <stdi 0. h>

size t

Description: The result type of the si zeof operator.
Include: <stdi 0. h>

2.13.5 Constants

_|OFBF

Description: Indicates full buffering.
Include: <stdi 0. h>

Remarks: Used by the function set vbuf .

DS51685D-page 30 © 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

_IOLBF

Description: Indicates line buffering.

Include: <stdi 0. h>

Remarks: Used by the function set vbuf .

_IONBF

Description: Indicates no buffering.

Include: <stdio. h>

Remarks: Used by the function set vbuf .

BUFSIZ

Description: Defines the size of the buffer used by the function set buf .

Include: <stdio. h>

Value: 64

EOF

Description: A negative number indicating the end-of-file has been reached or to
report an error condition.

Include: <stdi 0. h>

Remarks: If an end-of-file is encountered, the end-of-file indicator is set. If an

error condition is encountered, the error indicator is set. Error
conditions include write errors and input or read errors.

FILENAME_MAX

Description: Maximum number of characters in a filename including the null
terminator.

Include: <stdio. h>

Value: 1024

FOPEN_MAX

Description: Defines the maximum number of files that can be simultaneously open

Include: <stdi 0. h>

Value: 16

Remarks: stderr, stdinandstdout areincluded in the FOPEN_MAX count.

L_tmpnam

Description: Defines the number of characters for the longest temporary filename
created by the function t npnam

Include: <stdio. h>

Value: 20

Remarks: L_t npnamis used to define the size of the array used by t mpnam

© 2009 Microchip Technology Inc.

DS51685D-page 31

32-Bit Language Tools Libraries

NULL

Description: The value of a Null Pointer constant

Include: <stdi 0. h>

SEEK_CUR

Description: Indicates that f seek should seek from the current position of the file
pointer

Include: <stdi 0. h>

SEEK_END

Description: Indicates that f seek should seek from the end of the file.

Include: <stdi 0. h>

SEEK_SET

Description: Indicates that f seek should seek from the beginning of the file.

Include: <stdi 0. h>

stderr

Description: File pointer to the standard error stream.

Include: <stdio. h>

stdin

Description: File pointer to the standard input stream.

Include: <stdi 0. h>

stdout

Description: File pointer to the standard output stream.

Include: <stdio. h>

TMP_MAX

Description: The maximum number of unique filenames the function t mpnamcan
generate.

Include: <stdi 0. h>

Value: 99999

DS51685D-page 32 © 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.13.6 Functions and Macros

_mon_getc

Description: Read the next character from st di n.

Include: None.

Prototype: int _non_getc(int canbl ock);

Argument: canbl ock non-zero to indicate that the function should block

Return Value:

Returns the next character from the FlI LE associated with st di n. -1 is
returned to indicate end-of-file.

Remarks: This function as provided always returns -1. This function can be
replaced with one that reads from a UART or other input device.

_mon_putc

Description: Write a character to st dout .

Include: None.

Prototype: void _non_putc(char c);

Argument: c character to be written

Return Value: Writes a character to the FI LE associated with st dout .

Remarks: This function as provided always writes to UART 2 and assumes that
the UART has already been initialized. This function can be replaced
with one that writes to another UART or other output device.

asprintf

Description: Prints formatted text to an allocated string.

Prototype: int asprintf(char **sp, const char *format, ...);

Arguments: sp pointer to the allocated string
f or mat format control string

Return Value:

optional arguments

Returns the number of characters stored in s excluding the terminating
null character. A pointer to the allocated string is written to the first
argument. If the memory allocation fails, -1 is returned by the function,
and null is written to the String Pointer.

Remarks: The String Pointer should be passed to f r ee to release the allocated
memory when it is no longer needed.

clearerr

Description: Resets the error indictor for the stream.

Include: <stdio. h>

Prototype: void clearerr(FILE *stream;

Argument: stream stream to reset error indicators

Remarks: The function clears the end-of-file and error indicators for the given

stream (i.e., f eof and f err or will return false after the function
cl earerr is called).

© 2009 Microchip Technology Inc.

DS51685D-page 33

32-Bit Language Tools Libraries

fclose

Description: Close a stream.

Include: <stdi 0. h>

Prototype: int fclose(FILE *stream;
Argument: stream pointer to the stream to close

Return Value:

Returns 0 if successful, otherwise, returns EOF if any errors were
detected.

Remarks: f cl ose writes any buffered output to the file. f cl ose calls cl ose,
which is not provided by default.

feof

Description: Tests for end-of-file

Include: <stdi 0. h>

Prototype: int feof (FILE *stream;

Argument: stream stream to check for end-of-file

Return Value:

Returns non-zero if stream is at the end-of-file, otherwise, returns zero.

ferror

Description: Tests if error indicator is set.

Include: <stdio. h>

Prototype: int ferror(FILE *streanm;

Argument: stream stream to check for error indicator
stream pointer to FI LE structure

Return Value:

Returns a non-zero value if error indicator is set, otherwise, returns a
zero.

fflush

Description: Flushes the buffer in the specified stream causing all buffer 1O to be
transferred.

Include: <stdi 0. h>

Prototype: int fflush(FILE *stream;

Argument: stream stream to flush

Return Value:

Returns ECF if a write error occurs, otherwise, returns zero for success.

Remarks: If stream is a Null Pointer, all output buffers are written to files. f f | ush
has no effect on an unbuffered stream. This function requires | seek in

full mode, which is not provided by default.

DS51685D-page 34 © 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

fgetc

Description: Get a character from a stream

Include: <stdio. h>

Prototype: int fgetc(FILE *stream;
Argument: stream pointer to the open stream

Return Value:

Returns the character read or EOF if a read error occurs or end-of-file
is reached.

Remarks: The function reads the next character from the input stream, advances
the file-position indicator and returns the character as an unsi gned
char convertedto ani nt.

fgetpos

Description: Gets the stream’s file position.

Include: <stdio. h>

Prototype: int fgetpos(FILE *stream fpos_t *pos);

Arguments: stream target stream
pos position-indicator storage

Return Value:

Returns 0 if successful, otherwise, returns a non-zero value.

Remarks: The function stores the file-position indicator for the given stream in
*pos if successful, otherwise, f get pos sets err no.
fgets
Description: Get a string from a stream
Include: <stdio. h>
Prototype: char *fgets(char *s, int n, FILE *stream;
Arguments: S pointer to the storage string
n maximum number of characters to read
stream pointer to the open stream.

Return Value:

Remarks:

Returns a pointer to the string s if successful, otherwise, returns a Null
Pointer.

The function reads characters from the input stream and stores them
into the string pointed to by s until it has read n-1 characters, stores a
newline character or sets the end-of-file or error indicators. If any
characters were stored, a null character is stored immediately after the
last read character in the next element of the array. If f get s sets the
error indicator, the array contents are indeterminate.

© 2009 Microchip Technology Inc.

DS51685D-page 35

32-Bit Language Tools Libraries

fopen
Description: Opens a file.
Include: <stdi 0. h>
Prototype: FI LE *fopen(const char *filenane, const char *node);
Arguments: filename name of the file
node access mode permitted

Return Value:

Returns a pointer to the open stream. If the function fails a Null Pointer
is returned.

Remarks: Following are the modes of file access:
“re opens an existing text file for reading
“w’ opens an empty text file for writing. (An existing file will
be overwritten.)
“a” opens a text file for appending. (A file is created if it
doesn't exist.)
“rb” opens an existing binary file for reading.
“wb” opens an empty binary file for writing. (An existing file
will be overwritten.)
“ab” opens a binary file for appending. (A file is created if it
doesn't exist.)
“r+” opens an existing text file for reading and writing.
W opens an empty text file for reading and writing. (An
existing file will be overwritten.)
“at” opens a text file for reading and appending. (A file is
created if it doesn't exist.)
“r+b” or “r b+” opens an existing binary file for reading and writing.
“w+b” or “wb+” opens an empty binary file for reading and writing. (An
existing file will be overwritten.)
“a+b” or “ab+” opens a binary file for reading and appending. (A file is
created if it doesn't exist.)
fprintf
Description: Prints formatted data to a stream.
Include: <stdi 0. h>
Prototype: int fprintf(FILE *stream const char *format, ...);
Arguments: stream pointer to the stream in which to output data
f or mat format control string

Return Value:

Remarks:

optional arguments, usually one per format specifier

Returns number of characters generated or a negative number if an
error occurs.

The format argument has the same syntax and use that it has in
print.

DS51685D-page 36

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

fputc

Description: Puts a character to the stream.

Include: <stdi 0. h>

Prototype: int fputc(int c, FILE *strean;

Arguments: c character to be written
stream pointer to the open stream

Return Value:

Returns the character written or EOF if a write error occurs.

Remarks: The function writes the character to the output stream, advances the
file-position indicator and returns the character as an unsi gned char
converted to ani nt .

fputs

Description: Puts a string to the stream.

Include: <stdi 0. h>

Prototype: int fputs(const char *s, FILE *stream;

Arguments: S string to be written
stream pointer to the open stream

Return Value:

Returns a non-negative value if successful, otherwise, returns EOF.

Remarks: The function writes characters to the output stream up to but not
including the null character.

fread

Description: Reads data from the stream.

Include: <stdio. h>

Prototype: size_t fread(void *ptr, size_t size, size_t nelem
FILE *strean);

Arguments: ptr pointer to the storage buffer
si ze size of item
nel em maximum number of items to be read
stream pointer to the stream

Return Value:

Remarks:

Returns the number of complete elements read up to nel emwhose
size is specified by size.

The function reads characters from a given stream into the buffer
pointed to by pt r until the function stores si ze * nel emcharacters
or sets the end-of-file or error indicator. f r ead returns n/size where n is
the number of characters it read. If n is not a multiple of size, the value
of the last element is indeterminate. If the function sets the error
indicator, the file-position indicator is indeterminate.

© 2009 Microchip Technology Inc.

DS51685D-page 37

32-Bit Language Tools Libraries

freopen

Description: Reassigns an existing stream to a new file.

Include: <stdi 0. h>

Prototype: FI LE *freopen(const char *fil enane, const char
*node, FILE *stream;

Arguments: fil enane name of the new file
node type of access permitted
stream pointer to the currently open stream

Return Value:

Returns a pointer to the new open file. If the function fails a Null Pointer
is returned.

Remarks: The function closes the file associated with the stream as though
f cl ose was called. Then it opens the new file as though f open was
called. f r eopen will fail if the specified stream is not open. See f open
for the possible types of file access.

fscanf

Description: Scans formatted text from a stream.

Include: <stdio. h>

Prototype: int fscanf(FILE *stream const char *format, ...);

Arguments: stream pointer to the open stream from which to read data
f or mat format control string

Return Value:

optional arguments

Returns the number of items successfully converted and assigned. If
no items are assigned, a O is returned. EOF is returned if end-of-file is
encountered before the first conversion or if an error occurs.

Remarks: The format argument has the same syntax and use that it has in
scanf .
fseek
Description: Moves file pointer to a specific location.
Include: <stdi 0. h>
Prototype: int fseek(FILE *stream long offset, int node);
Arguments: stream stream in which to move the file pointer.
of f set value to add to the current position
node type of seek to perform

Return Value:

Remarks:

Returns 0 if successful, otherwise, returns a non-zero value and set
errno.

mode can be one of the following:

SEEK_SET - seeks from the beginning of the file

SEEK_CUR - seeks from the current position of the file pointer
SEEK_END — seeks from the end of the file

This function requires | seek, which is not provided by default.

DS51685D-page 38

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

fsetpos

Description: Sets the stream’s file position.

Include: <stdi 0. h>

Prototype: int fsetpos(FILE *stream const fpos_t *pos);
Arguments: stream target stream

Return Value:

pos position-indicator storage as returned by an earlier call
to f get pos

Returns 0 if successful, otherwise, returns a non-zero value.

Remarks: The function sets the file-position indicator for the given stream in * pos
if successful, otherwise, f set pos sets er r no.

ftell

Description: Gets the current position of a file pointer.

Include: <stdi 0. h>

Prototype: long ftell (FILE *stream;

Argument: stream stream in which to get the current file position

Return Value:

Returns the position of the file pointer if successful, otherwise, returns
-1.

Remarks: This function requires | seek, which is not provided by default.
fwrite
Description: Writes data to the stream.
Include: <stdio. h>
Prototype: size_t fwite(const void *ptr, size_t size,
size_t nelem FILE *strean);
Arguments: ptr pointer to the storage buffer
si ze size of item
nel em maximum number of items to be read
stream pointer to the open stream

Return Value:

Returns the number of complete elements successfully written, which
will be less than nel emonly if a write error is encountered.

Remarks: The function writes characters to a given stream from a buffer pointed
to by pt r up to nel emelements whose size is specified by si ze. The
file position indicator is advanced by the number of characters
successfully written. If the function sets the error indicator, the
file-position indicator is indeterminate.

getc

Description: Get a character from the stream.

Include: <stdi 0. h>

Prototype: int getc(FILE *stream;

Argument: stream pointer to the open stream

Return Value:

Remarks:

Returns the character read or EOF if a read error occurs or end-of-file
is reached.

get c is the same as the function f get c.

© 2009 Microchip Technology Inc.

DS51685D-page 39

32-Bit Language Tools Libraries

getchar

Description: Get a character from st di n.
Include: <stdio. h>

Prototype: int getchar(void);

Return Value:

Returns the character read or EOF if a read error occurs or end-of-file
is reached.

Remarks: Same effect as f get ¢ with the argument st di n.
gets

Description: Get a string from st di n.

Include: <stdio. h>

Prototype: char *gets(char *s);

Argument: S pointer to the storage string

Return Value:

Returns a pointer to the string s if successful, otherwise, returns a Null
pointer

Remarks: The function reads characters from the stream st di n and stores them
into the string pointed to by s until it reads a newline character (which is
not stored) or sets the end-of-file or error indicators. If any characters
were read, a null character is stored immediately after the last read
character in the next element of the array. If get s sets the error
indicator, the array contents are indeterminate.

open

Description: Open a file for access, returning a file descriptor

Include: <fentl. h>

Prototype: int open(const char *nanme, int access, int node);

Argument: name filename to open
access access method used to open file
node access mode to use when creating a file

Return Value:

Remarks:

open returns the file descriptor for the newly opened file or -1 to signal
an error. If an error occurs er r no is set. Appropriate values might be
ENFI LE or EACCESS.

This function is not provided by default. This function is required to
support f open and f f r eopen.

The following values for access must be supported at a minimum
(others are available, but not documented here):

« O_APPEND append mode, the file pointer should initially start at the
end of the file

O _BI NARY binary mode, characters are not translated

« O _CREAT create mode, a new file is created if necessary

« O _RDONLY read only mode, file output is not permitted

*« O _RDWR read/ write mode

¢« O WRONLY write only mode, file input is not permitted

DS51685D-page 40

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

perror

Description: Prints an error message to st derr.
Include: <stdi 0. h>

Prototype: voi d perror(const char *s);
Argument: S string to print
Return Value: None.

Remarks: The string s is printed followed by a colon and a space. Then an error
message based on er r no is printed followed by an newline

printf

Description: Prints formatted text to st dout . See also
Section 2.13.2 “Customizing STDIO".

Include: <stdi 0. h>

Prototype: int printf(const char *format, ...);

Arguments: f or mat format control string

Return Value:

Remarks:

optional arguments

Returns number of characters generated, or a negative number if an
error occurs.

There must be exactly the same number of arguments as there are
format specifiers. If there are less arguments than match the format
specifiers, the output is undefined. If there are more arguments than
match the format specifiers, the remaining arguments are discarded.
Each format specifier begins with a percent sign followed by optional
fields and a required type as shown here:

% flags][w dth][.precision][size]type

flags

- left justify the value within a given field width

0 Use 0 for the pad character instead of space (which is the
default)

+ generate a plus sign for positive signed values

space generate a space or signed values that have neither a plus
nor a minus sign

to prefix 0 on an octal conversion, to prefix Ox or 0Xon a
hexadecimal conversion, or to generate a decimal point and
fraction digits that are otherwise suppressed on a
floating-point conversion

wi dt h

specify the number of characters to generate for the conversion. If the

asterisk (*) is used instead of a decimal number, the next argument

(which must be of type i nt) will be used for the field width. If the result

is less than the field width, pad characters will be used on the left to fill

the field. If the result is greater than the field width, the field is

expanded to accommodate the value without padding.

preci sion

The field width can be followed with dot (.) and a decimal integer
representing the precision that specifies one of the following:

- minimum number of digits to generate on an integer conversion

- number of fraction digits to generate on an e, E, or f conversion

- maximum number of significant digits to generate on a g or G
conversion

- maximum number of characters to generate from a C string on an s
conversion

© 2009 Microchip Technology Inc.

DS51685D-page 41

32-Bit Language Tools Libraries

printf (Continued)

If the period appears without the integer the integer is assumed to be

zero. If the asterisk (*) is used instead of a decimal number, the next

argument (which must be of type i nt) will be used for the precision.

si ze

h modifier — used with type d, i, 0, u, X, X; converts the value to a
short int orunsigned short int

h modifier — used with n; specifies that the pointer points to ashor t

int

I modifier— used with type d, i, 0, u, X, X; converts the value to a
I ong int orunsigned |ong int

I modifier— used with n; specifies that the pointer points to a | ong
int

I modifier — used with c; specifies a wide character

I modifier— used with type e, E, f, F, g, G; converts the value to a
doubl e

Il modifier — used with type d, i, 0, u, x, X; converts the value to a
long long int orunsigned long |ong int

Il modifier — used with n; specifies that the pointer points to a | ong
long int

L modifier— used with e, E, f, g, G; converts the value to a | ong
doubl e

type

d,i signed int

o unsi gned i nt in octal

u unsi gned i nt in decimal

X unsi gned i nt in lowercase hexadecimal

X unsi gned i nt in uppercase hexadecimal

e E doubl e in scientific notation

f doubl e decimal notation

g,G doubl e (takes the form of e, E or f as appropriate)

c char - a single character

S string

p value of a pointer

n the associated argument shall be an integer pointer into
which is placed the number of characters written so far.
No characters are printed.

% A % character is printed

putc

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Puts a character to the stream.

<stdi 0. h>

int putc(int ¢, FILE *stream;
c character to be written
stream pointer to FILE structure

Returns the character or EOF if an error occurs or end-of-file is
reached.

put c is the same as the function f put c.

DS51685D-page 42

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

putchar

Description: Put a character to st dout .

Include: <stdi 0. h>

Prototype: int putchar(int c);

Argument: c character to be written

Return Value:

Returns the character or EOF if an error occurs or end-of-file is
reached.

Remarks: Same effect as f put ¢ with st dout as an argument.
puts

Description: Put a string to st dout .

Include: <stdi 0. h>

Prototype: int puts(const char *s);

Argument: S string to be written

Return Value:

Returns a non-negative value if successful, otherwise, returns EOF.

Remarks: The function writes characters to the stream st dout . A newline
character is appended. The terminating null character is not written to
the stream.

remove

Description: Deletes the specified file.

Include: <stdi o. h>

Prototype: int renove(const char *fil enane);

Argument: fil ename name of file to be deleted.

Return Value:

Returns 0 if successful, -1 if not.

Remarks: This function requires a definition of unl i nk. If flename does not exist
or is open, r errove will fail.

rename

Description: Renames the specified file.

Include: <stdi 0. h>

Prototype: int rename(const char *old, const char *new);

Arguments: old pointer to the old name
new pointer to the new name.

Return Value:

Remarks:

Return 0 if successful, non-zero if not.

This function requires definitions of | i nk and unl i nk. The new name
must not already exist in the current working directory, the old name
must exist in the current working directory.

© 2009 Microchip Technology Inc.

DS51685D-page 43

32-Bit Language Tools Libraries

rewind

Description: Resets the file pointer to the beginning of the file.

Include: <stdi 0. h>

Prototype: voi d rewi nd(FILE *streanm);

Argument: stream stream to reset the file pointer

Remarks: The function calls f seek(stream 0L, SEEK SET) and then clears
the error indicator for the given stream.

scanf

Description: Scans formatted text from st di n.

Include: <stdi 0. h>

Prototype: int scanf(const char *format, ...);

Argument: f or mat format control string

Return Value:

Remarks:

optional arguments

Returns the number of items successfully converted and assigned. If

no items are assigned, a O is returned. EOF is returned if an input

failure is encountered before the first assignment.

Each format specifier begins with a percent sign followed by optional

fields and a required type as shown here:
W*1[width][nodifier]type

*

indicates assignment suppression. This will cause the input field to be

skipped and no assignment made.

wi dt h

specify the maximum number of input characters to match for the

conversion not including white space that can be skipped.

nodi fi er

h modifier — used with type d, i, 0, u, X, X; converts the value to a

short int orunsigned short int.
h modifier — used with n; specifies that the pointer points to a shor t

int

| modifier — used with type d, i, 0, u, x, X; converts the value to a
I ong int orunsigned |ong int

I modifier — used with n; specifies that the pointer points to a | ong
int

I modifier — used with c; specifies a wide character

I modifier— used with type e, E, f, F, g, G; converts the value to a
doubl e

Il modifier — used with type d, i, 0, u, X, X; converts the value to a
long long int orunsigned |long |ong int

Il modifier — used with n; specifies that the pointer points to a | ong
I ong int

L modifier— used with e, E, f, g, G; converts the value to a | ong
doubl e

DS51685D-page 44

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

scanf (Continued)

type

d,i signed int

o unsi gned i nt in octal

u unsi gned i nt in decimal

X unsi gned i nt in lowercase hexadecimal

X unsi gned i nt in uppercase hexadecimal

e,E doubl e in scientific notation

f doubl e decimal notation

g,G doubl e (takes the form of e, E or f as appropriate)
c char - a single character

S string

p value of a pointer

n the associated argument shall be an integer pointer into,

which is placed the number of characters read so far.
No characters are scanned.

[...] character array. Allows a search of a set of characters.
A caret () immediately after the left bracket ([) inverts
the scanset and allows any ASCII character except
those specified between the brackets. A dash character
(-) may be used to specify a range beginning with the
character before the dash and ending the character
after the dash. A null character can not be part of the
scanset.

% A % character is scanned

setbuf

Description:

Include:
Prototype:

Arguments:

Remarks:

Defines how a stream is buffered.

<stdi 0. h>

voi d setbuf (FILE *stream char *buf);
stream pointer to the open stream

buf user allocated buffer

set buf must be called after f open but before any other function calls
that operate on the stream. If buf is a Null Pointer, set buf calls the
function set vbuf (stream 0, _I ONBF, BUFSI Z) for no buffering,
otherwise set buf calls set vbuf (stream buf, _| OFBF,

BUFSI 2) for full buffering with a buffer of size BUFSI Z. See set vbuf .

© 2009 Microchip Technology Inc.

DS51685D-page 45

32-Bit Language Tools Libraries

setvbuf
Description: Defines the stream to be buffered and the buffer size.
Include: <stdi 0. h>
Prototype: int setvbuf (FILE *stream char *buf, int node,
size_t size);
Arguments: stream pointer to the open stream
buf user allocated buffer
node type of buffering
si ze size of buffer

Return Value:

Returns 0 if successful

Remarks: set vbuf must be called after f open but before any other function
calls that operate on the stream. For mode use one of the following:
_| OFBF — for full buffering
_| OLBF — for line buffering
_ | ONBF — for no buffering

snprintf

Description: Prints formatted text to a string with maximum length.

Prototype: int snprintf(char *s, size_t n, const char *fornat,

)5

Arguments: S storage string for input
n number of characters to print
f or mat format control string

Return Value:

optional arguments

Returns the number of characters stored in s excluding the terminating
null character.

Remarks: The format argument has the same syntax and use that it has in
printf.

sprintf

Description: Prints formatted text to a string

Include: <stdio. h>

Prototype: int sprintf(char *s, const char *format, ...);

Arguments: S storage string for output
f or mat format control string

Return Value:

Remarks:

optional arguments

Returns the number of characters stored in s excluding the terminating
null character.

The format argument has the same syntax and use that it has in
printf.

DS51685D-page 46

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

sscanf
Description: Scans formatted text from a string
Include: <stdi 0. h>
Prototype: int sscanf(const char *s, const char *format, ...);
Arguments: S storage string for input
f or mat format control string

Return Value:

optional arguments

Returns the number of items successfully converted and assigned. If
no items are assigned, a 0 is returned. EOF is returned if an input error
is encountered before the first conversion.

Remarks: The format argument has the same syntax and use that it has in
scanf .

tmpfile

Description: Creates a temporary file

Include: <stdio. h>

Prototype: FILE *tnpfile(void)

Return Value:

Returns a Stream Pointer if successful, otherwise, returns a Null
Pointer.

Remarks: t mpf i | e creates a file with a unique filename. The temporary file is
opened in wt+b (binary read/write) mode. It will automatically be
removed when exi t is called, otherwise the file will remain in the
directory.

tmpnam

Description: Creates a unique temporary filename

Include: <stdio. h>

Prototype: char *tnpnam(char *s);

Argument: s pointer to the temporary name

Return Value:

Remarks:

Returns a pointer to the filename generated and stores the filename in
s. If it can not generate a filename, the Null Pointer is returned.

The created filename will not conflict with an existing file name. Use
L_t npnamto define the size of array the argument of t npnampoints
to.

© 2009 Microchip Technology Inc.

DS51685D-page 47

32-Bit Language Tools Libraries

ungetc

Description: Pushes character back onto stream.

Include: <stdi 0. h>

Prototype: int ungetc(int c, FILE *strean);

Argument: c character to be pushed back
stream pointer to the open stream

Return Value:

Remarks:

Returns the pushed character if successful, otherwise, returns EOF

The pushed back character will be returned by a subsequent read on
the stream. If more than one character is pushed back, they will be
returned in the reverse order of their pushing. A successful call to a file
positioning function (f seek, f set pos or r ewi nd) cancels any pushed
back characters. Only one character of pushback is guaranteed.
Multiple calls to unget ¢ without an intervening read or file positioning
operation may cause a failure.

viprintf

Description:
Include:

Prototype:

Arguments:

Return Value:

Remarks:

Prints formatted data to a stream using a variable length argument list.
<stdi 0. h>
<stdarg. h>

int vfprintf(FILE *stream const char *fornat,
va_list ap);

pointer to the open stream
format control string

stream
f or mat
ap pointer to a list of arguments

Returns number of characters generated or a negative number if an
error occurs.

The format argument has the same syntax and use that it has in
printf.

To access the variable length argument list, the ap variable must be
initialized by the macro va_st art and may be reinitialized by
additional calls to va_ar g. This must be done before the vf pri nt f
function is called. Invoke va_end after the function returns. For more
details see Section 2.11 “<stdarg.h> Variable Argument Lists”.

DS51685D-page 48

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

vfscanf
Description: Scans formatted text using variable length argument list.
Prototype: int vfscanf(FILE *stream const char *format,
va_list ap);
Arguments: stream pointer to the open stream
f or mat format control string
ap pointer to a list of arguments

Return Value:

Returns the number of items successfully converted and assigned. If
no items are assigned, a 0 is returned. EOF is returned if an input
failure is encountered before the first assignment.

Remarks: The format argument has the same syntax and use that it has in
scanf.
To access the variable length argument list, the ap variable must be
initialized by the macro va_st art and may be reinitialized by
additional calls to va_ar g. This must be done before the vf scanf
function is called. Invoke va_end after the function returns. For more
details see Section 2.11 “<stdarg.h> Variable Argument Lists”.
vprintf
Description: Prints formatted text to st dout using a variable length argument list
Include: <stdi 0. h>
<stdarg. h>
Prototype: int vprintf(const char *fornat, va_list ap);
Arguments: f or mat format control string
ap pointer to a list of arguments

Return Value:

Remarks:

Returns number of characters generated or a negative number if an
error occurs.

The format argument has the same syntax and use that it has in
printf.

To access the variable length argument list, the ap variable must be
initialized by the macro va_st art and may be reinitialized by
additional calls to va_ar g. This must be done before the vpri nt f
function is called. Invoke va_end after the function returns. For more
details see Section 2.11 “<stdarg.h> Variable Argument Lists”.

© 2009 Microchip Technology Inc.

DS51685D-page 49

32-Bit Language Tools Libraries

vscanf

Description: Scans formatted text from st di n using variable length argument list.
Prototype: int vscanf(const char *format, va_list ap);
Arguments: f or mat format control string

Return Value:

Remarks:

ap pointer to a list of arguments

Returns the number of items successfully converted and assigned. If
no items are assigned, a O is returned. EOF is returned if an input
failure is encountered before the first assignment.

The format argument has the same syntax and use that it has in
scanf.

To access the variable length argument list, the ap variable must be
initialized by the macro va_st art and may be reinitialized by
additional calls to va_ar g. This must be done before the vscanf
function is called. Invoke va_end after the function returns. For more
details see Section 2.11 “<stdarg.h> Variable Argument Lists”.

vsnprintf

Description:
Prototype:

Arguments:

Return Value:

Remarks:

Prints formatted text to a string with maximum length using variable
length argument list.

int vsnprintf(char *s, size_t n, const char *format,
va_list ap);

S storage string for input
n number of characters to print

f or mat format control string

ap pointer to a list of arguments

Returns the number of characters stored in s excluding the terminating
null character

The format argument has the same syntax and use that it has in
printf.

To access the variable length argument list, the ap variable must be
initialized by the macro va_st art and may be reinitialized by
additional calls to va_ar g. This must be done before the vsnpri nt f
function is called. Invoke va_end after the function returns. For more
details see Section 2.11 “<stdarg.h> Variable Argument Lists”

DS51685D-page 50

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

vsprintf
Description: Prints formatted text to a string using a variable length argument list
Include: <stdi 0. h>
<stdarg. h>
Prototype: int vsprintf(char *s, const char *format, va_list
ap) ;
Arguments: S storage string for output
f or mat format control string
ap pointer to a list of arguments

Return Value:

Returns number of characters stored in s excluding the terminating null
character.

Remarks: The format argument has the same syntax and use that it has in
printf.
To access the variable length argument list, the ap variable must be
initialized by the macro va_st art and may be reinitialized by
additional calls to va_ar g. This must be done before the vspri nt f
function is called. Invoke va_end after the function returns. For more
details see Section 2.11 “<stdarg.h> Variable Argument Lists”.
vsscanf
Description: Scans formatted text from a string using variable length argument list.
Prototype: int sscanf(const char *s, const char *format,
va_list ap);
Arguments: S storage string for input
f or mat format control string
ap pointer to a list of arguments

Return Value:

Remarks:

Returns the number of items successfully converted and assigned. If
no items are assigned, a O is returned. EOF is returned if an input
failure is encountered before the first assignment.

The format argument has the same syntax and use that it has in
scanf.

To access the variable length argument list, the ap variable must be
initialized by the macro va_st art and may be reinitialized by
additional calls to va_ar g. This must be done before the vsscanf
function is called. Invoke va_end after the function returns. For more
details see Section 2.11 “<stdarg.h> Variable Argument Lists”.

© 2009 Microchip Technology Inc.

DS51685D-page 51

32-Bit Language Tools Libraries

2.14 <STDLIB.H> UTILITY FUNCTIONS

The header file st dl i b. h consists of types, macros and functions that provide text
conversions, memory management, searching and sorting abilities, and other general

utilities.

2141 Types

div_t

Description: A type that holds a quotient and remainder of a signed integer division
with operands of type i nt .

Include: <stdlib. h>

Prototype: typedef struct { int quot, rem } div_t;

Remarks: This is the structure type returned by the function di v.

Idiv_t

Description: A type that holds a quotient and remainder of a signed integer division
with operands of type | ong.

Include: <stdlib. h>

Prototype: typedef struct { long quot, rem } Idiv_t;

Remarks: This is the structure type returned by the function | di v.

ldiv_t

Description: A type that holds a quotient and remainder of a signed integer division
with operands of type | ong.

Include: <stdlib. h>

Prototype: typedef struct { long long quot, rem } lldiv_t;

Remarks: This is the structure type returned by the function | | di v.

size t

Description: The type of the result of the si zeof operator.

Include: <stdlib. h>

wchar_t

Description: A type that holds a wide character value.

Include: <stdlib. h>

DS51685D-page 52

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.14.2 Constants

EXIT_FAILURE

Description: Reports unsuccessful termination.

Include: <stdlib. h>

Remarks: EXI T_FAI LURE is a value for the exi t function to return an

unsuccessful termination status

EXIT_SUCCESS

Description: Reports successful termination

Include: <stdlib. h>

Remarks: EXI T_SUCCESS is a value for the exit function to return a successful
termination status.

MB_CUR_MAX

Description: Maximum number of characters in a multibyte character

Include: <stdlib. h>

Value: 1

NULL

Description: The value of a Null Pointer constant

Include: <stdlib. h>

RAND_MAX

Description: Maximum value capable of being returned by the r and function

Include: <stdlib. h>

Value: 2,147,483,647 (OX7FFFFFFF)

2.14.3 Functions and Macros

abort

Description: Aborts the current process.

Include: <stdlib. h>

Prototype: voi d abort(void);

Remarks: abor t will cause the processor to reset.
abs

Description: Calculates the absolute value.

Include: <stdlib. h>

Prototype: int abs(int i);

Argument: i integer value

Return Value:

Remarks:

Returns the absolute value of i .

A negative number is returned as positive. A positive number is
unchanged.

© 2009 Microchip Technology Inc.

DS51685D-page 53

32-Bit Language Tools Libraries

atexit

Description: Registers the specified function to be called when the program
terminates normally.

Include: <stdlib. h>

Prototype: int atexit(void(*func)(void));

Argument: func function to be called

Return Value:

Returns a zero if successful, otherwise, returns a non-zero value.

Remarks: For the registered functions to be called, the program must terminate
with the exi t function call.

atof

Description: Converts a string to a double precision floating-point value.

Include: <stdlib. h>

Prototype: doubl e atof (const char *s);

Argument: S pointer to the string to be converted

Return Value:

Returns the converted value if successful, otherwise, returns 0.

Remarks: The number may consist of the following:
[whitespace] [sign] digits [.digits]
[{ e| E}[sign]digits]

optional whi t espace, followed by an optional si gn then a sequence
of one or more di gi t s with an optional decimal point, followed by one
or more optional di gi t s and an optional e or E followed by an optional
signed exponent. The conversion stops when the first unrecognized
character is reached. The conversion is the same as
strtod(s, NULL).

atoi

Description: Converts a string to an integer.

Include: <stdlib. h>

Prototype: int atoi (const char *s);

Argument: S string to be converted

Return Value:

Remarks:

Returns the converted integer if successful, otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits
optional whi t espace, followed by an optional si gn then a sequence
of one or more di gi t s. The conversion stops when the first
unrecognized character is reached. The conversion is equivalent to
(int) strtol (s, NULL, 10).

DS51685D-page 54

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

atol

Description: Converts a string to a long integer.
Include: <stdlib. h>

Prototype: l ong atol (const char *s);
Argument: S string to be converted

Return Value:

Returns the converted long integer if successful, otherwise, returns 0

Remarks: The number may consist of the following:
[whitespace] [sign] digits

optional whi t espace, followed by an optional si gn then a sequence
of one or more di gi t s. The conversion stops when the first
unrecognized character is reached. The conversion is equivalent to
strtol (s, NULL, 10).

atoll

Description: Converts a string to a long long integer.

Include: <stdlib. h>

Prototype: long long atoll (const char *s);

Argument: S string to be converted

Return Value:

Remarks:

Returns the converted long long integer if successful, otherwise,
returns 0

The number may consist of the following:

[whitespace] [sign] digits
optional whi t espace, followed by an optional si gn then a sequence
of one or more di gi t s. The conversion stops when the first
unrecognized character is reached. The conversion is equivalent to
strtoll (s, NULL, 10).

bsearch

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:

Performs a binary search
<stdlib. h>

voi d *bsearch(const void *key, const void *base,
size_t nelem size_ t size,
int (*cnp)(const void *ck, const void *ce));

key object to search for

base pointer to the start of the search data

nel em number of elements

si ze size of elements

cnp pointer to the comparison function

ck pointer to the key for the search

ce pointer to the element being compared with the key.

Returns a pointer to the object being searched for if found, otherwise,
returns null.

The value returned by the compare function is <0 if ck is less than ce,
0if ck is equal to ce, or >0 if ck is greater than ce.

bsear ch requires the list to be sorted in increasing order according to
the compare function pointed to by cnp.

© 2009 Microchip Technology Inc.

DS51685D-page 55

32-Bit Language Tools Libraries

calloc
Description: Allocates an array in memory and initializes the elements to 0.
Include: <stdlib. h>
Prototype: void *calloc(size_t nelem size t size);
Arguments: nel em number of elements

si ze length of each element

Return Value:

Returns a pointer to the allocated space if successful, otherwise,
returns a Null Pointer.

Remarks: Memory returned by cal | oc is aligned correctly for any size data
element and is initialized to zero. In order to allocate memory using
cal | oc, a heap must be created by specifying a linker command
option. See Section 5.5 in the MPLAB C Compiler for PIC32MX MCUs
User’s Guide for more information.

div

Description: Calculates the quotient and remainder of two numbers

Include: <stdlib. h>

Prototype: div_t div(int numer, int denon;

Arguments: nuner numerator
denom denominator

Return Value:

Returns the quotient and the remainder.

Remarks: The returned quotient will have the same sign as the numerator divided
by the denominator. The sign for the remainder will be such that the
quotient times the denominator plus the remainder will equal the
numerator (quot * denom + rem = numer). Division by zero will invoke
the math exception error, which by default, will cause an infinite loop.
Write a math error handler to take another application-specific action.

exit

Description: Terminates program after clean up.

Include: <stdlib. h>

Prototype: void exit(int status);

Argument: status exit status

Remarks: exi t calls any functions registered by at exi t in reverse order of
registration, flushes buffers, closes stream, closes any temporary files
created with t npf i | e, and enters an infinite loop.

free

Description: Frees memory.

Include: <stdlib. h>

Prototype: void free(void *ptr);

Argument: ptr points to memory to be freed

Remarks: Frees memory previously allocated with cal | oc, mal | oc, or

real | oc. If fr ee is used on space that has already been deallocated
(by a previous call to f r ee or by r eal | oc) or on space not allocated
with cal | oc, mal | oc, or real | oc, the behavior is undefined.

DS51685D-page 56

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

getenv

Description: Get a value for an environment variable.
Include: <stdlib. h>

Prototype: char *getenv(const char *nane);
Argument: name name of environment variable

Return Value:

Returns a pointer to the value of the environment variable if successful,
otherwise, returns a Null Pointer.

Remarks: In a hosted environment, this function can be used to access environ-
ment variables defined by the host operating system. By default the
32-bit C compiler does not constitute a hosted environment, and as such
this function always returns NULL.

labs

Description: Calculates the absolute value of a long integer.

Include: <stdlib. h>

Prototype: long labs(long i);

Argument: i long integer value

Return Value:

Returns the absolute value of i .

Remarks: A negative number is returned as positive. A positive number is
unchanged.

Idiv

Description: Calculates the quotient and remainder of two long integers.

Include: <stdlib. h>

Prototype: Idiv_t Idiv(long nuner, |ong denom;

Arguments: numner numerator
denom denominator

Return Value:

Returns the quotient and the remainder.

Remarks: The returned quotient will have the same sign as the numerator divided
by the denominator. The sign for the remainder will be such that the
quotient times the denominator plus the remainder will equal the
numerator (quot * denom + rem = numer). If the denominator is zero,
the behavior is undefined.

llabs

Description: Calculates the absolute value of a long long integer.

Include: <stdlib. h>

Prototype: long long labs(long long i);

Arguments: i long long integer value

Return Value:

Remarks:

Returns the absolute value of i.

A negative number is returned as positive. A positive number is
unchanged.

© 2009 Microchip Technology Inc.

DS51685D-page 57

32-Bit Language Tools Libraries

lIdiv

Description: Calculates the quotient and remainder of two long long integers.
Include: <stdlib. h>

Prototype: Ildiv_t Ildiv(long long num I|ong | ong denom;
Arguments: numner numerator

Return Value:

denom denominator
Returns the quotient and remainder.

Remarks: The returned quotient will have the same sign as the numerator divided
by the denominator. The sign for the remainder will be such that the
quotient times the denominator plus the remainder will equal the
numerator (quot * denom + rem = numer). If the denominator is zero,
the behavior is undefined.

malloc

Description: Allocates memory.

Include: <stdlib. h>

Prototype: void *mal | oc(size_t size);

Argument: si ze number of characters to allocate

Return Value:

Returns a pointer to the allocated space if successful, otherwise,
returns a Null Pointer.

Remarks: mal | oc does not initialize memory it returns. In order to allocate
memory using mal | oc, a heap must be created by specifying a linker
command option. See Section 5.5 in the “MPLAB C Compiler for
PIC32MX MCUs User’s Guide” for more information.

mblen

Description: Gets the length of a multibyte character. (See Remarks below.)

Include: <stdlib. h>

Prototype: int nblen(const char *s, size t n);

Arguments: S points to the multibyte character
n number of bytes to check

Return Value:

Remarks:

Returns zero if s points to a null character, otherwise, returns 1.

The 32-bit C compiler does not support multibyte characters with length
greater than 1 byte.

DS51685D-page 58

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

mbstowcs
Description: Converts a multibyte string to a wide character string. (See Remarks
below.)
Include: <stdlib. h>
Prototype: size_t nmbstowcs(wchar _t *wcs, const char *s,
size_t n);
Arguments: WCS points to the wide character string
S points to the multibyte string
n the number of wide characters to convert.

Return Value:

Returns the number of wide characters stored excluding the null
character.

Remarks: nbst owcs converts n number of wide characters unless it encounters
a null wide character first. The 32-bit C compiler does not support
multibyte characters with length greater than 1 byte.

mbtowc

Description: Converts a multibyte character to a wide character. (See Remarks
below.)

Include: <stdlib. h>

Prototype: int nbtowc(wchar_t *pwc, const char *s, size_t n);

Arguments: pwe points to the wide character
S points to the multibyte character
n number of bytes to check

Return Value:

Returns zero if s points to a null character, otherwise, returns 1

Remarks: The resulting wide character will be stored at pwc. The 32-bit C
compiler does not support multibyte characters with length greater than
1 byte.
qgsort
Description: Performs a quick sort.
Include: <stdlib. h>
Prototype: void gsort(void *base, size_t nelem size_t size,
int (*cnp)(const void *el, const void *e2));
Arguments: base pointer to the start of the array
nel em number of elements
si ze size of the elements
cnp pointer to the comparison function
el pointer to the key for the search
e2 pointer to the element being compared with the key
Remarks: gsort overwrites the array with the sorted array. The comparison

function is supplied by the user. gsort sorts the buffer in ascending
order. The comparison function should return negative if the first
argument is less than the second, zero if they are equal, and positive if
the first argument is greater than the second.

© 2009 Microchip Technology Inc.

DS51685D-page 59

32-Bit Language Tools Libraries

rand

Description: Generates a pseudo-random integer.
Include: <stdlib. h>

Prototype: int rand(void);

Return Value:

Returns an integer between 0 and RAND_AX.

Remarks: Calls to this function return pseudo-random integer values in the range
[0,RAND_MAX]. To use this function effectively, you must seed the
random number generator using the sr and function. This function will
always return the same sequence of integers when no seeds are used
or when identical seed values are used.

realloc

Description: Reallocates memory to allow a size change.

Include: <stdlib. h>

Prototype: void *realloc(void *ptr, size_t size);

Arguments: ptr points to previously allocated memory
si ze new size to allocate to

Return Value:

Returns a pointer to the allocated space if successful, otherwise,
returns a Null Pointer.

Remarks: If the existing object is smaller than the new object, the entire existing
object is copied to the new object and the remainder of the new object
is indeterminate. If the existing object is larger than the new object, the
function copies as much of the existing object as will fit in the new
object. If r eal | oc succeeds in allocating a new object, the existing
object will be deallocated, otherwise, the existing object is left
unchanged. Keep a temporary pointer to the existing object since
real | oc will return a Null Pointer on failure.

In order to allocate memory using nr eal | oc, a heap must be created

by specifying a linker command option. See Section 5.5 in the “MPLAB

C Compiler for PIC32MX MCUs User’s Guide” for more information
srand

Description: Set the starting seed for the pseudo-random number sequence.

Include: <stdlib. h>

Prototype: voi d srand(unsi gned int seed);

Argument: seed starting value for the pseudo-random number sequence

Return Value: None

Remarks:

This function sets the starting seed for the pseudo-random number
sequence generated by the r and function. The r and function will
always return the same sequence of integers when identical seed
values are used. If r and is called with a seed value of 1, the sequence
of numbers generated will be the same as if r and had been called
without sr and having been called first.

DS51685D-page 60

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

strtod
Description: Converts a partial string to a floating-point number of type double.
Include: <stdlib. h>
Prototype: doubl e strtod(const char *s, char **endptr);
Arguments: S string to be converted

endptr pointer to the character at which the conversion stopped

Return Value:

Returns the converted number if successful, otherwise, returns 0.

Remarks: The number may consist of the following:
[whitespace] [sign] digits [.digits]
[{ e| E}[sign]digits]
optional whi t espace, followed by an optional si gn, then a sequence
of one or more di gi t s with an optional decimal point, followed by one
or more optional di gi t s and an optional e or E followed by an optional
signed exponent.
st rt od converts the string until it reaches a character that cannot be
converted to a number. endpt r will point to the remainder of the string
starting with the first unconverted character.
If a range error occurs, er r no will be set.
strtof
Description: Converts a partial string to a floating-point number of type float.
Include: <stdlib. h>
Prototype: float strtol (const char *s, char **endptr);
Arguments: S string to be converted
endptr pointer to the character at which the conversion stopped

Return Value:

Remarks:

Returns the converted number if successful, otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits [.digits]

[{ e| E}[sign]digits]

optional whi t espace, followed by an optional si gn, then a sequence
of one or more di gi t s with an optional decimal point, followed by one
or more optional di gi t s and an optional e or E followed by an optional
signed exponent.
strtol converts the string until it reaches a character that cannot be
converted to a number. endpt r will point to the remainder of the string
starting with the first unconverted character.
If a range error occurs, er r no will be set.

© 2009 Microchip Technology Inc.

DS51685D-page 61

32-Bit Language Tools Libraries

strtol
Description: Converts a partial string to a long integer.
Include: <stdlib. h>
Prototype: long strtol (const char *s, char **endptr, int base);
Arguments: S string to be converted
endptr pointer to the character at which the conversion stopped

Return Value:

base number base to use in conversion
Returns the converted number if successful, otherwise, returns 0.

Remarks: If base is zero, st rt ol attempts to determine the base automatically.
It can be octal, determined by a leading zero, hexadecimal, determined
by a leading Ox or 0X, or decimal in any other case. If base is specified
strtol converts a sequence of digits and letters a-z (case
insensitive), where a-z represents the numbers 10-36. Conversion
stops when an out-of-base number is encountered. endpt r will point to
the remainder of the string starting with the first unconverted character.
If a range error occurs, er r no will be set.

strtoll

Description: Converts a partial string to a long long integer.

Include: <stdlib. h>

Prototype: long long strtoll(const char *s, char **endptr, int
base) ;

Arguments: S string to be converted
endptr pointer to the character at which the conversion stopped

Return Value:

Remarks:

base number base to use in conversion
Returns the converted number if successful, otherwise, returns 0.

If base is zero, st rt ol | attempts to determine the base automatically.
It can be octal, determined by a leading zero, hexadecimal, determined
by a leading Ox or 0X, or decimal in any other case. If base is specified
strtol | converts a sequence of digits and letters a-z (case
insensitive), where a-z represents the numbers 10-36. Conversion
stops when an out-of-base number is encountered. endpt r will point to
the remainder of the string starting with the first unconverted character.
If a range error occurs, er r no will be set.

DS51685D-page 62

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

strtoul
Description: Converts a partial string to an unsigned long integer.
Include: <stdlib. h>
Prototype: unsi gned long strtoul (const char *s, char **endptr,
i nt base);
Arguments: S string to be converted
endptr pointer to the character at which the conversion stopped
base number base to use in conversion

Return Value:

Remarks:

Returns the converted number if successful, otherwise, returns 0.

If base is zero, st rt oul attempts to determine the base automatically.
It can be octal, determined by a leading zero, hexadecimal, determined
by a leading Ox or 0X, or decimal in any other case. If base is specified
strtoul converts a sequence of digits and letters a-z (case
insensitive), where a-z represents the numbers 10-36. Conversion
stops when an out-of-base number is encountered. endpt r will point to
the remainder of the string starting with the first unconverted character.
If a range error occurs, er r no will be set.

strtoull

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:

Converts a partial string to an unsigned long long integer.
<stdlib. h>

unsi gned long long strtoull (const char *s, char
**endptr, int base);

S string to be converted

endptr pointer to the character at which the conversion stopped
base number base to use in conversion

Returns the converted number if successful, otherwise, returns 0.

If base is zero, st rt oul | attempts to determine the base
automatically. It can be octal, determined by a leading zero,
hexadecimal, determined by a leading Ox or 0X, or decimal in any other
case. If base is specified st rt oul | converts a sequence of digits and
letters a-z (case insensitive), where a-z represents the numbers 10-36.
Conversion stops when an out-of-base number is encountered.

endpt r will point to the remainder of the string starting with the first
unconverted character. If a range error occurs, er r no will be set.

© 2009 Microchip Technology Inc.

DS51685D-page 63

32-Bit Language Tools Libraries

system

Description: Execute a command.

Include: <stdlib. h>

Prototype: int system(const char *s);
Argument: S command to be executed

Return Value:

Returns zero if a null argument is passed, otherwise, returns -1.

Remarks: In a hosted environment, this function can be used to execute
commands on the host operating system. By default the 32-bit C
compiler does not constitute a hosted environment, and as such this
function does nothing.

wcstombs

Description: Converts a wide character string to a multibyte string. (See Remarks
below.)

Include: <stdlib. h>

Prototype: size_t westonbs(char *s, const wchar_t *wcs,

size_t n);

Arguments: S points to the multibyte string
Wwes points to the wide character string
n the number of characters to convert

Return Value:

Returns the number of characters stored excluding the null character.

Remarks: west onbs converts n number of multibyte characters unless it
encounters a null character first. The 32-bit C compiler does not
support multibyte characters with length greater than 1 character.

wctomb

Description: Converts a wide character to a multibyte character. (See Remarks
below.)

Include: <stdlib. h>

Prototype: int wctonb(char *s, wchar_t wchar);

Arguments: S points to the multibyte character
wchar the wide character to be converted

Return Value:
Remarks:

Returns zero if s points to a null character, otherwise, returns 1.

The resulting multibyte character is stored at s. The 32-bit C compiler
does not support multibyte characters with length greater than 1
character.

DS51685D-page 64

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.15 <STRING.H> STRING FUNCTIONS

The header file st ri ng. h consists of types, macros and functions that provide tools to
manipulate strings.

2.15.1 Types

size t

Description: The type of the result of the si zeof operator.
Include: <string. h>

2.15.2 Functions and Macros

ffs

Description: Find the first bit set.

Include: <string. h>

Prototype: int ffs (int nunm;
Arguments: num the value to be tested

Return Value:

Returns an integer representing the index of the first bit set in num,
starting from the Least Significant bit, which is numbered one.

Remarks: If no bits are set (i.e., the argument is zero) zero is returned.
ffsl

Description: Find the first bit set long.

Include: <string. h>

Prototype: int ffsl (long num;

Arguments: num the value to be tested

Return Value:

Returns an integer representing the index of the first bit set in num,
starting from the Least Significant bit, which is numbered one.

Remarks: If no bits are set (i.e., the argument is zero) zero is returned.
ffsll

Description: Find the first bit set long long.

Include: <string. h>

Prototype: int ffsl (long long num;

Arguments: num the value to be tested

Return Value:

Remarks:

Returns an integer representing the index of the first bit set in num,
starting from the Least Significant bit, which is numbered one.

If no bits are set (i.e., the argument is zero) zero is returned.

© 2009 Microchip Technology Inc.

DS51685D-page 65

32-Bit Language Tools Libraries

memchr
Description: Locates a character in a buffer.
Include: <string. h>
Prototype: voi d *nmenchr(const void *s, int ¢, size t n);
Arguments: S pointer to the buffer
c character to search for
n number of characters to check

Return Value:

Returns a pointer to the location of the match if successful, otherwise,
returns null.

Remarks: nmenchr stops when it finds the first occurrence of ¢ or after searching
n number of characters.

memcmp

Description: Compare the contents of two buffers.

Include: <string. h>

Prototype: int nencnp(const void *sl1l, const void *s2, size_t n);

Arguments: sl first buffer

Return Value:

s2 second buffer
n number of characters to compare

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

Remarks: This function compares the first n characters in s1 to the first n
characters in s2 and returns a value indicating whether the buffers are
less than, equal to or greater than each other.

memcpy

Description: Copies characters from one buffer to another.

Include: <string. h>

Prototype: voi d *nmencpy(void *dst , const void *src , size_t n);

Arguments: dst buffer to copy characters to
src buffer to copy characters from
n number of characters to copy

Return Value:

Remarks:

Returns dst .

mencpy copies n characters from the source buffer sr ¢ to the
destination buffer dst . If the buffers overlap, the behavior is undefined.

DS51685D-page 66

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

memmove
Description: Copies n characters of the source buffer into the destination buffer,
even if the regions overlap.
Include: <string. h>
Prototype: voi d *memove(void *sl1l, const void *s2, size_t n);
Arguments: sl buffer to copy characters to (destination)
s2 buffer to copy characters from (source)
n number of characters to copy from s2 to s1

Return Value:

Returns a pointer to the destination buffer

Remarks: If the buffers overlap, the effect is as if the characters are read first from
s2 then written to s1 so the buffer is not corrupted.

memset

Description: Copies the specified character into the destination buffer.

Include: <string. h>

Prototype: void *menset(void *s, int ¢, size_t n);

Arguments: S buffer
c character to put in buffer
n number of times

Return Value:

Returns the buffer with characters written to it.

Remarks: The character c is written to the buffer n times.

strcasecmp

Description: Compares two strings, ignoring case.

Include: <string. h>

Prototype: int strcasecnp (const char *sl, const char *s2);
Arguments: sl first string

Return Value:

s2 second string

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

Remarks: This function compares successive characters from s1 and s2 until
they are not equal or the null terminator is reached.

strcat

Description: Appends a copy of the source string to the end of the destination string.

Include: <string. h>

Prototype: char *strcat(char *sl, const char *s2);

Arguments: sl null terminated destination string to copy to
s2 null terminated source string to be copied

Return Value:
Remarks:

Returns a pointer to the destination string.

This function appends the source string (including the terminating null
character) to the end of the destination string. The initial character of
the source string overwrites the null character at the end of the
destination string. If the buffers overlap, the behavior is undefined.

© 2009 Microchip Technology Inc.

DS51685D-page 67

32-Bit Language Tools Libraries

strchr
Description: Locates the first occurrence of a specified character in a string.
Include: <string. h>
Prototype: char *strchr(const char *s, int c);
Arguments: S pointer to the string
c character to search for

Return Value:

Returns a pointer to the location of the match if successful, otherwise,
returns a Null Pointer.

Remarks: This function searches the string s to find the first occurrence of the
character c.

strcmp

Description: Compares two strings.

Include: <string. h>

Prototype: int strcnp(const char *sl1, const char *s2);

Arguments: sl first string

Return Value:

s2 second string

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

Remarks: This function compares successive characters from s1 and s2 until
they are not equal or the null terminator is reached.

strcoll

Description: Compares one string to another. (See Remarks below.)

Include: <string. h>

Prototype: int strcoll (const char *sl, const char *s2);

Arguments: sl first string

Return Value:

s2 second string

Using the locale-dependent rules, it returns a positive number if s1 is
greater than s2, zero if s1 is equal to s2, or a negative number if s1 is
less than s2.

Remarks: Since the 32-bit C compiler does not support alternate locales, this
function is equivalent to st r cnp.

strcpy

Description: Copy the source string into the destination string.

Include: <string. h>

Prototype: char *strcpy(char *sl1, const char *s2);

Arguments: sl destination string to copy to
s2 source string to copy from

Return Value:

Remarks:

Returns a pointer to the destination string.

All characters of s2 are copied, including the null terminating character.
If the strings overlap, the behavior is undefined.

DS51685D-page 68

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

strcspn
Description: Calculate the number of consecutive characters at the beginning of a
string that are not contained in a set of characters.
Include: <string. h>
Prototype: size_t strcspn(const char *sl1, const char *s2);
Arguments: sl pointer to the string to be searched
s2 pointer to characters to search for

Return Value:

Returns the length of the segment in s1 not containing characters
found in s2.

Remarks: This function will determine the number of consecutive characters from
the beginning of s1 that are not contained in s2.

strerror

Description: Gets an internal error message.

Include: <string. h>

Prototype: char *strerror(int errcode);

Argument: errcode number of the error code

Return Value:

Returns a pointer to an internal error message string corresponding to
the specified error code er r code.

Remarks: The array pointed to by st r er r or may be overwritten by a
subsequent call to this function.

strlen

Description: Finds the length of a string.

Include: <string. h>

Prototype: size_t strlen(const char *s);

Argument: S the string

Return Value:

Returns the length of a string.

Remarks: This function determines the length of the string, not including the
terminating null character.

strncasecmp

Description: Compares two strings, ignoring case, up to a specified number of
characters.

Include: <string. h>

Prototype: int strncasecnp (const char *sl, const char *s2,
size_t n);

Arguments: sl first string
s2 second string

Return Value:

Remarks:

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

st rncasecnp returns a value based on the first character that differs
between s1 and s2. Characters that follow a null character are not
compared.

© 2009 Microchip Technology Inc.

DS51685D-page 69

32-Bit Language Tools Libraries

strncat
Description: Append a specified number of characters from the source string to the
destination string.
Include: <string. h>
Prototype: char *strncat(char *sl1, const char *s2, size_t n);
Arguments: sl destination string to copy to
s2 source string to copy from
n number of characters to append

Return Value:

Returns a pointer to the destination string.

Remarks: This function appends up to n characters (a null character and
characters that follow it are not appended) from the source string to the
end of the destination string. If a null character is not encountered, then
a terminating null character is appended to the result. If the strings
overlap, the behavior is undefined.

strncmp

Description: Compare two strings, up to a specified number of characters.

Include: <string. h>

Prototype: int strncnp(const char *sl1, const char *s2,

size_t n);

Arguments: sl first string
s2 second string
n number of characters to compare

Return Value:

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

Remarks: st r ncnp returns a value based on the first character that differs
between s1 and s2. Characters that follow a null character are not
compared.

strncpy

Description: Copy characters from the source string into the destination string, up to
the specified number of characters.

Include: <string. h>

Prototype: char *strncpy(char *sl1, const char *s2, size_t n);

Arguments: sl destination string to copy to
s2 source string to copy from
n number of characters to copy

Return Value:

Remarks:

Returns a pointer to the destination string.

Copies n characters from the source string to the destination string. If
the source string is less than n characters, the destination is filled with
null characters to total n characters. If n characters were copied and no
null character was found then the destination string will not be
null-terminated. If the strings overlap, the behavior is undefined.

DS51685D-page 70

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

strpbrk
Description: Search a string for the first occurrence of a character from a specified
set of characters.
Include: <string. h>
Prototype: char *strpbrk(const char *sl1, const char *s2);
Arguments: sl pointer to the string to be searched
s2 pointer to characters to search for

Return Value:

Returns a pointer to the matched character in s1 if found, otherwise,
returns a Null Pointer.

Remarks: This function will search s1 for the first occurrence of a character
contained in s2.

strrchr

Description: Search for the last occurrence of a specified character in a string.

Include: <string. h>

Prototype: char *strrchr(const char *s, int c);

Arguments: S pointer to the string to be searched
c character to search for

Return Value:

Returns a pointer to the character if found, otherwise, returns a Null
Pointer.

Remarks: The function searches the string s, including the terminating null
character, to find the last occurrence of character c.

strspn

Description: Calculate the number of consecutive characters at the beginning of a
string that are contained in a set of characters.

Include: <string. h>

Prototype: size_t strspn(const char *sl1, const char *s2);

Arguments: sl pointer to the string to be searched
s2 pointer to characters to search for

Return Value:

Returns the number of consecutive characters from the beginning of s 1
that are contained in s2.

Remarks: This function stops searching when a character from s1 is not in s2.
strstr
Description: Search for the first occurrence of a string inside another string.
Include: <string. h>
Prototype: char *strstr(const char *sl1l, const char *s2);
Arguments: sl pointer to the string to be searched

s2 pointer to substring to be searched for

Return Value:

Remarks:

Returns the address of the first element that matches the substring if
found, otherwise, returns a Null Pointer.

This function will find the first occurrence of the string s2 (excluding the
null terminator) within the string s1. If s2 points to a zero length string,
sl is returned.

© 2009 Microchip Technology Inc.

DS51685D-page 71

32-Bit Language Tools Libraries

strtok

Description: Break a string into substrings, or tokens, by inserting null characters in
place of specified delimiters.

Include: <string. h>

Prototype: char *strtok(char *sl1, const char *s2);

Arguments: sl pointer to the null terminated string to be searched
s2 pointer to characters to be searched for (used as
delimiters)

Return Value:

Remarks:

Returns a pointer to the first character of a token (the first character in
s1 that does not appear in the set of characters of s2). If no token is
found, the Null Pointer is returned.

A sequence of calls to this function can be used to split up a string into
substrings (or tokens) by replacing specified characters with null
characters. The first time this function is invoked on a particular string,
that string should be passed in s1. After the first time, this function can
continue parsing the string from the last delimiter by invoking it with a
null value passed in s1.

It skips all leading characters that appear in the string s2 (delimiters),
then skips all characters not appearing in s2 (this segment of
characters is the token), and then overwrites the next character with a
null character, terminating the current token. The function st r t ok then
saves a pointer to the character that follows, from which the next
search will start. If st r t ok finds the end of the string before it finds a
delimiter, the current token extends to the end of the string pointed to
by s1. If this is the first call to st r t ok, it does not modify the string (no
null characters are written to s1). The set of characters that is passed
in s2 need not be the same for each call to st rt ok.

If st rt ok is called with a non-null parameter for s1 after the initial call,
the string becomes the new string to search. The old string previously
searched will be lost.

strxfrm

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Transforms a string using the locale-dependent rules. (See Remarks.)
<string. h>

size_t strxfrn(char *sl1l, const char *s2, size_t n);
sl destination string

s2 source string to be transformed

n number of characters to transform

Returns the length of the transformed string not including the
terminating null character. If n is zero, the string is not transformed (s1
may be a point null in this case) and the length of s2 is returned.

If the return value is greater than or equal to n, the content of s1 is
indeterminate. Since the 32-bit C compiler does not support alternate
locales, the transformation is equivalent to st r cpy, except that the
length of the destination string is bounded by n-1.

DS51685D-page 72

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

2.16 <TIME.H> DATE AND TIME FUNCTIONS

The header file ti me. h consists of types, macros and functions that manipulate time.

2.16.1 Types

clock t

Description: Stores processor time values.

Include: <tine. h>

Prototype: unsi gned | ong cl ock_t

Remarks: This value is established by convention, and does not reflect the actual
execution environment. The actual timing will depend upon the helper
function set t i neof day, which is not provided by default.

size t

Description: The type of the result of the si zeof operator.

Include: <st ddef. h>

struct timeval

Description:
Include:
Prototype:

Return Value:

Structure to hold current processor time.
<sys/time. h>
struct tinmeval {
| ong tv_sec;

| ong tv_usec;
}s

Returns the calendar time encoded as a value of ti ne_t .

/* seconds */
/* mcroseconds */

Remarks: Used by helper functions get t i neof day and set t i neof day, which
are not provided by default.

struct tm

Description: Structure used to hold the time and date (calendar time).

Include: <tinme.h>

Prototype: struct tm{

int tmsec;/*seconds after the mnute (0 to 61)*/
/*allows for up to two | eap seconds*/

int tmnin;/*mnutes after the hour (0 to 59)*/
int tmhour;/*hours since mdnight (0 to 23)*/
int tmnday;/*day of nonth (1 to 31)*/

int tmnon;/*month (0 to 11 where January = 0)*/
int tmyear;/*years since 1900*/

int tmwlay;/*day of week (0 to 6 where Sunday = 0
)*!

int tmyday;/*day of year (0 to 365 where January 1
=0)*/

int tm.isdst;/*Daylight Savings Tinme flag*/

}

© 2009 Microchip Technology Inc.

DS51685D-page 73

32-Bit Language Tools Libraries

struct tm (Continued)

Remarks: Ift misdst is apositive value, Daylight Savings is in effect. If it is
zero, Daylight Saving time is not in effect. If it is a negative value, the
status of Daylight Saving Time is not known.

time_t

Description: Represents calendar time values.

Include: <tinme. h>

Prototype: typedef long tinme_t

Remarks: Calendar time is reported in seconds.

2.16.2 Constants

CLOCKS_PER_SEC

Description: Number of processor clocks per second.

Include: <time. h>

Prototype: #defi ne CLOCKS PER_SEC

Value: 1000000

Remarks: This value is established by convention, and may not reflect the actual
execution environment. The actual timing will depend upon helper
function set t i neof day, which is not provided by default.

2.16.3 Functions and Macros

asctime

Description: Converts the time structure to a character string.

Include: <tine. h>

Prototype: char *asctime(const struct tm*tptr);

Argument: tptr time/date structure

Return Value:

Returns a pointer to a character string of the following format:
DDD MW dd hh: nm ss YYYY

DDDis day of the week

MWis month of the year

dd is day of the month

hh is hour

mmis minute

ss is second

YYYY is year

clock

Description: Calculates the processor time.
Include: <tinme.h>

Prototype: clock_t clock(void);

Return Value:

Remarks:

Returns the number of clock ticks of elapsed processor time.

If the target environment cannot measure elapsed processor time, the
function returns -1, cast as a cl ock_t . (i.e. (cl ock_t) -1). This value
is established by convention, and may not reflect the actual execution
environment. The actual timing will depend upon helper function

set t i meof day, which is not provided by default.

DS51685D-page 74

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

ctime

Description: Converts calendar time to a string representation of local time.
Include: <tine. h>

Prototype: char *ctime(const tine_t *tod);

Argument: t od pointer to stored time

Return Value:

Returns the address of a string that represents the local time of the
parameter passed.

Remarks: This function is equivalent to ascti ne(l ocal ti me(tod)).
difftime
Description: Find the difference between two times.
Include: <tinme.h>
Prototype: double difftine(tinme_t t1, tine_t t0);
Arguments: tl ending time

to beginning time

Return Value:

Returns the number of seconds betweent 1 and t 0.

gettimeofday (User Provided)

Description:
Include:
Prototype:
Argument:

Return Value:

Gets the current processor time.

<tine. h>

int gettimeofday(struct tinmeval *tv , void *tz);
tv a structure to contain the current time

tz obsolete argument; should be null

Returns O if successful, -1 on error.

Remarks: This helper function should interact with the target environment and
write the current processor time in seconds and microseconds tot v.
It is not provided by default, but is required by cl ock and ti ne..

gmtime

Description: Converts calendar time to time structure expressed as Universal Time
Coordinated (UTC) also known as Greenwich Mean Time (GMT).

Include: <tinme.h>

Prototype: struct tm*gntinme(const tinme_t *tod);

Argument: t od pointer to stored time

Return Value:

Remarks:

Returns the address of the time structure.

This function breaks down the t od value into the time structure of type
tmagntimeandl ocal ti me are equivalent exceptgnt i me will return
t m i sdst (Daylight Savings Time flag) as zero to indicate that
Daylight Savings Time is not in effect.

© 2009 Microchip Technology Inc.

DS51685D-page 75

32-Bit Language Tools Libraries

localtime

Description: Converts a value to the local time.

Include: <tinme.h>

Prototype: struct tm*localtine(const tinme_t *tod);
Argument: t od pointer to stored time

Return Value:

Returns the address of the time structure.

Remarks: I ocal ti me and gnt i me are equivalent except | ocal ti e will return
t m_ i sdst (Daylight Savings Time flag) as -1 to indicate that the status
of Daylight Savings Time is not known.

mktime

Description: Converts local time to a calendar value.

Include: <time. h>

Prototype: tinme_t nktine(struct tm*tptr);

Argument: tptr a pointer to the time structure

Return Value:

Remarks:

Returns the calendar time encoded as a value of ti ne_t .

If the calendar time cannot be represented, the function returns -1, cast
asatine_t (ie. (tinme_t)-1).

settimeofday (User Provided)

Description:
Include:
Prototype:

Argument:

Return Value:

Sets the current processor time.

<tine. h>

int settinmeofday(const struct timeval *tv , void

“tz);
tv
tz

a structure containing the current time
obsolete argument; should be null

Returns O if successful, -1 on error.

Remarks: This function should interact with the target environment and set the
current time using values specified in t v. It is not required by other
functions.

strftime

Description: Formats the time structure to a string based on the format parameter.

Include: <time. h>

Prototype: size_ t strftinme(char *s, size t n,

const char *format, const struct tm*tptr);

Arguments: S output string
n maximum length of string
f or mat format-control string
tptr pointer to tm data structure

Return Value:

Remarks:

Returns the number of characters placed in the array s if the total
including the terminating null is not greater than n. Otherwise, the
function returns 0 and the contents of array s are indeterminate.

The format parameters follow:

%a abbreviated weekday name
%A full weekday name

DS51685D-page 76

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

strftime (Continued)

%b abbreviated month name

%B full month name

%c appropriate date and time representation
%d day of the month (01-31)

%H hour of the day (00-23)

%I hour of the day (01-12)

%j day of the year (001-366)

%m month of the year (01-12)

%M minute of the hour (00-59)

%p AM/PM designator

%S second of the minute (00-61)
allowing for up to two leap seconds

%U week number of the year where Sunday is the first day of week 1
(00-53)
%w weekday where Sunday is day 0 (0-6)

%W week number of the year where Monday is the first day of week 1
(00-53)

%x appropriate date representation

%X appropriate time representation

%y year without century (00-99)

%Y year with century

%Z time zone (possibly abbreviated) or no characters if time zone is
unavailable

%% percent character %

time

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Calculates the current calendar time.

<tine. h>

time_t time(time_t *tod);

t od pointer to storage location for time

Returns the calendar time encoded as a value of t i me_t .

If the target environment cannot determine the time, the function
returns -1, castas at i me_t . This function requires the helper function
get ti neof day, which is not provided by default. Calendar time will be
returned in seconds.

© 2009 Microchip Technology Inc.

DS51685D-page 77

32-Bit Language Tools Libraries

2.17 <MATH.H> MATHEMATICAL FUNCTIONS

The header file mat h. h consists of a macro and various functions that calculate com-
mon mathematical operations. Error conditions may be handled with a domain error or

range error (see Section 2.5 “<errno.h> Errors”).

A domain error occurs when the input argument is outside the domain over which the
function is defined. The error is reported by storing the value of EDOMin er r no and

returning a particular value defined for each function.

A range error occurs when the result is too large or too small to be represented in the
target precision. The error is reported by storing the value of ERANGE in er r no and
returning HUGE_VAL if the result overflowed (return value was too large) or a zero if the

result underflowed (return value is too small).

Responses to special values, such as NaNs, zeros, and infinities may vary depending
upon the function. Each function description includes a definition of the function’s

response to such values.

2.17.1 Constants

HUGE_VAL is returned by a function on a range error (e.g., the function
tries to return a value too large to be represented in the target

HUGE_VAL
Description:

precision).
Include: <mat h. h>
Remarks:

- HUGE_VAL is returned if a function result is negative and is too large
(in magnitude) to be represented in the target precision. When the
printed result is +/ - HUGE_VAL, it will be represented by +/ - i nf.

2.17.2 Functions and Macros

acos

Description: Calculates the trigonometric arc cosine function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e acos (double x);

Argument: X value between -1 and 1 for which to return the arc cosine

Return Value:

Returns the arc cosine in radians in the range of 0 to pi (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.

acosf

Description: Calculates the trigonometric arc cosine function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float acosf (float x);

Argument: X value between -1 and 1

Return Value:

Remarks:

Returns the arc cosine in radians in the range of 0 to pi (inclusive).
A domain error occurs if x is less than -1 or greater than 1.

DS51685D-page 78

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

asin

Description: Calculates the trigonometric arc sine function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e asin (double x);

Argument: X value between -1 and 1 for which to return the arc sine

Return Value:

Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.

asinf

Description: Calculates the trigonometric arc sine function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float asinf (float Xx);

Argument: X value between -1 and 1

Return Value:

Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: A domain error occurs if X is less than -1 or greater than 1.

asinh

Description: Calculates the hyperbolic arc sine function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e asi nh (doubl e x);

Argument: X floating-point value

Return Value:

Returns the hyperbolic arc sine of x..

atan

Description: Calculates the trigonometric arc tangent function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e atan (double x);

Argument: X value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi/2 to +pi/2
(inclusive).

Remarks: No domain or range error will occur.

atan2

Description: Calculates the trigonometric arc tangent function of y/x.

Include: <mat h. h>

Prototype: doubl e atan2 (doubl e y, double x);

Arguments: y y value for which to return the arc tangent
X x value for which to return the arc tangent

© 2009 Microchip Technology Inc.

DS51685D-page 79

32-Bit Language Tools Libraries

atan2 (Continued)

Return Value:

Returns the arc tangent in radians in the range of -pi to pi (inclusive)
with the quadrant determined by the signs of both parameters.

Remarks: A domain error occurs if both x and y are zero or both x and y are
+/- infinity.

atan2f

Description: Calculates the trigonometric arc tangent function of y/x.

Include: <mat h. h>

Prototype: float atan2f (float y, float Xx);

Arguments: y y value for which to return the arc tangent
X x value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi to pi with the
quadrant determined by the signs of both parameters.

Remarks: A domain error occurs if both x and y are zero or both x and y are
+/- infinity.

atanf

Description: Calculates the trigonometric arc tangent function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float atanf (float Xx);

Argument: X value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi/2 to +pi/2
(inclusive).

Remarks: No domain or range error will occur.

atanh

Description: Calculates the hyperbolic arc tan function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e atanh (doubl e x);

Argument: X floating-point value

Return Value:

Returns the hyperbolic arc tangent of x..

cbrt

Description: Calculates the cube root of a double precision floating-point value.
Include: <mat h. h>

Prototype: doubl e cbrt (double x);

Argument: X a non-negative floating-point value

Return Value:

Returns the cube root of x. If x is +INF, +INF is returned. If x is NaN,
NaN is returned.

DS51685D-page 80

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

ceil

Description: Calculates the ceiling of a value.

Include: <mat h. h>

Prototype: doubl e ceil (doubl e x);

Argument: X a floating-point value for which to return the ceiling.

Return Value:

Returns the smallest integer value greater than or equal to x.

Remarks: No domain or range error will occur. See f | oor .
ceilf

Description: Calculates the ceiling of a value.

Include: <mat h. h>

Prototype: float ceilf(float x);

Argument: X floating-point value.

Return Value:

Returns the smallest integer value greater than or equal to x.

Remarks: No domain or range error will occur. See f | oor f.
copysign

Description: Copies the sign of one floating-point number to another.
Include: <mat h. h>

Prototype: doubl e copysi gn (double x, double y);
Argument: X floating-point value

Return Value:

y floating-point value
Returns x with its sign changed to match the sign of y.

Ccos

Description: Calculates the trigonometric cosine function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e cos (double x);

Argument: X value for which to return the cosine

Return Value:

Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if X is a NaN or infinity.

cosf

Description: Calculates the trigonometric cosine function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float cosf (float x);

Argument: X value for which to return the cosine

Return Value:

Remarks:

Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.
A domain error will occur if x is a NaN or infinity.

© 2009 Microchip Technology Inc.

DS51685D-page 81

32-Bit Language Tools Libraries

cosh

Description: Calculates the hyperbolic cosine function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e cosh (double x);

Argument: X value for which to return the hyperbolic cosine

Return Value:

Returns the hyperbolic cosine of x

Remarks: A range error will occur if the magnitude of x would cause overflow.

coshf

Description: Calculates the hyperbolic cosine function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float coshf (float Xx);

Argument: X value for which to return the hyperbolic cosine

Return Value:

Returns the hyperbolic cosine of x

Remarks: A range error will occur if the magnitude of x would cause overflow.
drem

Description: Calculates the double precision remainder function.

Include: <mat h. h>

Prototype: doubl e dren{doubl e x, double y)

Argument: X floating-point value

Return Value:

y floating-point value

Returns x - [x/y] * y,where[x/y] inthe value x divided by y,
rounded to the nearest integer. If [x/ y] is equidistant between two
integers, round to the even one.

exp

Description: Calculates the exponential function of x (e raised to the power x where
x is a double precision floating-point value).

Include: <mat h. h>

Prototype: doubl e exp (double x);

Argument: X value for which to return the exponential

Return Value:

Remarks:

Returns the exponential of x. On an overflow, exp returns i nf and on
an underflow exp returns 0.

A range error occurs if the magnitude of x would cause overflow.

DS51685D-page 82

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

expf

Description: Calculates the exponential function of x (e raised to the power x where
X is a single precision floating-point value).

Include: <mat h. h>

Prototype: float expf (float x);

Argument: X floating-point value for which to return the exponential

Return Value:

Returns the exponential of x. On an overflow, expf returnsi nf and on
an underflow exp returns 0.

Remarks: A range error occurs if the magnitude of x would cause overflow.
expml

Description: Calculates the exponential function e* - 1.0.

Include: <mat h. h>

Prototype: doubl e expml (double x);

Argument: X floating-point value

Return Value:

Returns e* - 1.0, unless that value is too large to represent in a double,
in which case HUGE_VAL is returned.

Remarks: If a range error occurs, errno will be set.

fabs

Description: Calculates the absolute value of a double precision floating-point value.
Include: <mat h. h>

Prototype: doubl e fabs(doubl e x);

Argument: X floating-point value for which to return the absolute value

Return Value:

Returns the absolute value of x. (A negative number is returned as
positive, a positive number is unchanged.)

Remarks: No domain or range error will occur.

fabsf

Description: Calculates the absolute value of a single precision floating-point value.
Include: <mat h. h>

Prototype: float fabsf(float x);

Argument: X floating-point value for which to return the absolute value

Return Value:

Returns the absolute value of x. (A negative number is returned as
positive, a positive number is unchanged.)

Remarks: No domain or range error will occur.
finite

Description: Test for the value “finite”.

Include: <mat h. h>

Prototype: int finite(double x);
Argument: X floating-point value

Return Value:

Returns a non-zero value if x is neither infinite or “Not a Number”
(NaN), otherwise zero is returned.

© 2009 Microchip Technology Inc.

DS51685D-page 83

32-Bit Language Tools Libraries

floor

Description: Calculates the floor of a double precision floating-point value.
Include: <mat h. h>

Prototype: doubl e fl oor (double x);

Argument: X floating-point value for which to return the floor.

Return Value:

Returns the largest integer value less than or equal to x.

Remarks: No domain or range error will occur. See cei | .

floorf

Description: Calculates the floor of a single precision floating-point value.
Include: <mat h. h>

Prototype: float floorf(float x);

Argument: X floating-point value.

Return Value:

Returns the largest integer value less than or equal to x.

Remarks: No domain or range error will occur. See cei | f.
fmod
Description: Calculates the remainder of x/y as a double precision value.
Include: <mat h. h>
Prototype: doubl e fnod(doubl e x, double y);
Arguments: X a double precision floating-point value.
y a double precision floating-point value.

Return Value:

Returns the remainder of x divided by y.

Remarks: If y = 0, a domain error occurs. If y is non-zero, the result will have the
same sign as x and the magnitude of the result will be less than the
magnitude of y.

fmodf

Description: Calculates the remainder of x/y as a single precision value.

Include: <mat h. h>

Prototype: float frodf(float x, float y);

Arguments: X a single precision floating-point value

Return Value:

Remarks:

y a single precision floating-point value
Returns the remainder of x divided by y.

If y = 0, a domain error occurs. If y is non-zero, the result will have the
same sign as x and the magnitude of the result will be less than the
magnitude of y.

DS51685D-page 84

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

frexp

Description: Gets the fraction and the exponent of a double precision floating-point
number.

Include: <mat h. h>

Prototype: doubl e frexp (double x, int *exp);

Arguments: X floating-point value for which to return the fraction and exponent

Return Value:

exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function
returns O for both the fraction and exponent.

Remarks: The absolute value of the fraction is in the range of 1/2 (inclusive) to 1
(exclusive). No domain or range error will occur.

frexpf

Description: Gets the fraction and the exponent of a single precision floating-point
number.

Include: <mat h. h>

Prototype: float frexpf (float x, int *exp);

Arguments: X floating-point value for which to return the fraction and exponent

Return Value:

exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function
returns O for both the fraction and exponent.

Remarks: The absolute value of the fraction is in the range of 1/2 (inclusive) to 1
(exclusive). No domain or range error will occur.

hypot

Description: Calculates the Euclidean distance function.

Include: <mat h. h>

Prototype: doubl e hypot (double x, double y);

Argument: X floating-point value

Return Value:

y floating-point value

Returns sqrt(x2 +y?), unless that value is too large to represent in a
double, in which case HUGE_VAL is returned. If x ory is +INF or -INF,
INF is returned. If x ory is Nan, NaN is returned.

Remarks: If a range error occurs, er r no will be set.
isinf

Description: Test for the value “infinity.”

Include: <mat h. h>

Prototype: int isinf (double x);

Argument: X floating-point value

Return Value:

Returns -1 if x represents negative infinity, 1 if X represents positive
infinity, otherwise 0 is returned.

© 2009 Microchip Technology Inc.

DS51685D-page 85

32-Bit Language Tools Libraries

isnan

Description: Test for the value “Not a Number” (NaN).
Include: <mat h. h>

Prototype: int isnan (double x);

Argument: X floating-point value

Return Value:

Returns a non-zero value if x represents “Not a Number” (NaN),
otherwise 0 is returned.

Idexp

Description: Calculates the result of a double precision floating-point number
multiplied by an exponent of 2.

Include: <mat h. h>

Prototype: doubl e | dexp(double x, int ex);

Arguments: X floating-point value

Return Value:

ex integer exponent

Returns x * 2”ex. On an overflow, | dexp returns i nf and on an
underflow, | dexp returns O.

Remarks: A range error will occur on overflow or underflow.

Idexpf

Description: Calculates the result of a single precision floating-point number
multiplied by an exponent of 2.

Include: <mat h. h>

Prototype: float |dexpf(float x, int ex);

Arguments: X floating-point value

Return Value:

ex integer exponent

Returns x « 2°%. On an overflow, | dexp returns i nf and on an
underflow, | dexp returns O.

Remarks: A range error will occur on overflow or underflow.

log

Description: Calculates the natural logarithm of a double precision floating-point
value.

Include: <mat h. h>

Prototype: doubl e | og(doubl e x);

Argument: X any positive value for which to return the log

Return Value:

Remarks:

Returns the natural logarithm of x. -i nf is returned if x is 0 and NaN is

returned if x is a negative number.
A domain error occurs if x <0.

DS51685D-page 86

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

log10

Description: Calculates the base-10 logarithm of a double precision floating-point
value.

Include: <mat h. h>

Prototype: doubl e 1 0g10(doubl e x);

Argument: X any double precision floating-point positive number

Return Value:

Returns the base-10 logarithm of x. -i nf is returned if x is 0 and NaN
is returned if x is a negative number.

Remarks: A domain error occurs if x <0.

log10f

Description: Calculates the base-10 logarithm of a single precision floating-point
value.

Include: <mat h. h>

Prototype: float |0glOf(float x);

Argument: X any single precision floating-point positive number

Return Value:

Returns the base-10 logarithm of x. -i nf is returned if x is 0 and NaN
is returned if X is a negative number.

Remarks: A domain error occurs if x <0.

loglp

Description: Calculates the natural logarithm of (1.0 + x).
Include: <mat h. h>

Prototype: doubl e 1 oglp (double x);

Argument: X floating-point value

Return Value:

Returns the natural logarithm of (1.0 + x).

Remarks: If x =-1, a domain error occurs and -INF is returned. If x <-1, a domain
error occurs and NaN is returned. If x is NaN, NaN is returned. If X is
INF, +INF is returned.

logb

Description: Calculates the unbiased exponent of a floating-point number.

Include: <mat h. h>

Prototype: doubl e | ogb(x);

Argument: X floating-point value

Return Value:

Returns a signed integral value (in floating-point format) that represents
the unbiased exponent of x. If x is 0., -INF is returned. If x is INF, +INF
is returned. If x is NaN, NaN is returned.

© 2009 Microchip Technology Inc.

DS51685D-page 87

32-Bit Language Tools Libraries

logf

Description: Calculates the natural logarithm of a single precision floating-point
value.

Include: <mat h. h>

Prototype: float |ogf(float x);

Argument: X any positive value for which to return the log

Return Value:

Returns the natural logarithm of x. -i nf is returned if x is 0 and NaN is
returned if x is a negative number.

Remarks: A domain error occurs if x <0.

modf

Description: Splits a double precision floating-point value into fractional and integer
parts.

Include: <mat h. h>

Prototype: doubl e nodf (doubl e x, double *pint);

Arguments: X double precision floating-point value

Return Value:

pi nt pointer to the stored integer part
Returns the signed fractional part and pi nt points to the integer part.

Remarks: The absolute value of the fractional part is in the range of 0 (inclusive)
to 1 (exclusive). No domain or range error will occur.

modff

Description: Splits a single precision floating-point value into fractional and integer
parts.

Include: <mat h. h>

Prototype: float modff(float x, float *pint);

Arguments: X single precision floating-point value

Return Value:

pi nt pointer to the stored integer part
Returns the signed fractional part and pi nt points to the integer part.

Remarks: The absolute value of the fractional part is in the range of 0 (inclusive)
to 1 (exclusive). No domain or range error will occur.

pow

Description: Calculates x raised to the powery.

Include: <mat h. h>

Prototype: doubl e pow(doubl e x, double y);

Arguments: X the base

Return Value:

Remarks:

y the exponent
Returns x raised to the power y (xy).

Ify is 0, powreturns 1. If x is 0.0 and y is less than 0 powreturns i nf
and a domain error occurs. If the result overflows or underflows, a
range error occurs.

DS51685D-page 88

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

powf

Description: Calculates x raised to the powery.

Include: <mat h. h>

Prototype: float powf (float x, float y);

Arguments: X base
y exponent

Return Value: Returns x raised to the power y (xy).

Remarks: Ify is O, powf returns 1. If x is 0.0 and y is less than O powf returns
i nf and a domain error occurs. If the result overflows or underflows, a
range error oOccurs.

rint

Description: Calculates the integral value nearest to x, in floating-point format.

Include: <mat h. h>

Prototype: doubl e rint (double x);

Argument: X floating-point value

Return Value: Returns the integral value nearest to x, represented in floating-point
format.

Remarks: If x is +INF or -INF, x is returned. If x is Nan, NaN is returned.

sin

Description: Calculates the trigonometric sine function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e sin (double x);

Argument: X value for which to return the sine

Return Value: Returns the sine of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if t x is a NaN or infinity.

sinf

Description: Calculates the trigonometric sine function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float sinf (float x);

Argument: X value for which to return the sine

Return Value: Returns the sin of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if X is a NaN or infinity.

© 2009 Microchip Technology Inc. DS51685D-page 89

32-Bit Language Tools Libraries

sinh

Description: Calculates the hyperbolic sine function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e sinh (double x);

Argument: X value for which to return the hyperbolic sine

Return Value:

Returns the hyperbolic sine of x

Remarks: A range error will occur if the magnitude of x is too large.

sinhf

Description: Calculates the hyperbolic sine function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float sinhf (float x);

Argument: X value for which to return the hyperbolic sine

Return Value:

Returns the hyperbolic sine of x

Remarks: A range error will occur if the magnitude of x is too large.

sqrt

Description: Calculates the square root of a double precision floating-point value.
Include: <mat h. h>

Prototype: doubl e sqgrt(double x);

Argument: X a non-negative floating-point value

Return Value:

Returns the non-negative square root of x.

Remarks: If x is negative, a domain error occurs.

sqrtf

Description: Calculates the square root of a single precision floating-point value.
Include: <mat h. h>

Prototype: float sqrtf(float x);

Argument: X non-negative floating-point value

Return Value:

Returns the non-negative square root of x.

Remarks: If x is negative, a domain error occurs.

tan

Description: Calculates the trigonometric tangent function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e tan (double x);

Argument: X value for which to return the tangent

Return Value:

Remarks:

Returns the tangent of x in radians.
A domain error will occur if X is a NaN or infinity.

DS51685D-page 90

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

tanf

Description: Calculates the trigonometric tangent function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float tanf (float Xx);

Argument: X value for which to return the tangent

Return Value:

Returns the tangent of x

Remarks: A domain error will occur if x is a NaN or infinity.

tanh

Description: Calculates the hyperbolic tangent function of a double precision
floating-point value.

Include: <mat h. h>

Prototype: doubl e tanh (double x);

Argument: X value for which to return the hyperbolic tangent

Return Value:

Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.

Remarks: No domain or range error will occur.

tanhf

Description: Calculates the hyperbolic tangent function of a single precision
floating-point value.

Include: <mat h. h>

Prototype: float tanhf (float Xx);

Argument: X value for which to return the hyperbolic tangent

Return Value:

Remarks:

Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.
No domain or range error will occur.

© 2009 Microchip Technology Inc.

DS51685D-page 91

32-Bit Language Tools Libraries

2.18 <UNISTD.H> MISCELLANEOUS FUNCTIONS

The header file uni st d. h includes prototypes for helper functions that are not provided
by default. These functions must be customized for the target environment.

close

Description: Closes the file associated with f d.

Include: <uni std. h>

Prototype: int close(int fd);

Argument: fd file descriptor of previously opened file.

Return Value:

This function returns 0 if successful and -1 to indicate an error.

Remarks: This function is not provided by the default libraries and is required to
be provided if f cl ose() is used. This function should close a file. A
file need not necessarily be associated with a storage device. This
function should return -1 to signal an error and a strict implementation
will set er r no to some appropriate value such as EBADF or El O

link

Description: Create a new file.

Include: <uni std. h>

Prototype: int link(const char *from const char *to);

Argument: from filename from which to link
to destination filename of link

Return Value:

Zero is returned to indicate success and -1 indicates an error condition.

Remarks: This function is not provided by default. Its purpose, in a file system, is
to create a new filename, t 0, which contains the same data as t he
file named from errno should also be set on error. This function
is used by r enane.

Iseek

Description: Modify the current read or write position within a file.

Include: <uni std. h>

Prototype: _off_t Iseek(int fd, __off_t offset, int whence);

Argument: fd file descriptor (returned by open) for file to seek
of f set amount by which to seek
whence describes how to apply of f set to the current file
position

Return Value:

Remarks:

| seek returns the resulting offset from the start of the file, measured in
bytes. The function returns -1 to indicate an error and sets er r no.
Appropriate values might be EBADF or El NVAL.

This function is not provided by default. This function is required to
support f fl ush, f seek,andftell.

DS51685D-page 92

© 2009 Microchip Technology Inc.

Standard C Libraries with Math Functions

read
Description: Read bytes from an already opened file
Include: <uni std. h>
Prototype: int read(int fd, void *buffer, size_t length);
Argument: fd file from which to read
buf f er storage buffer for at least | engt h bytes
I ength maximum number of bytes to read

Return Value:

Returns the number of bytes read and stores those bytes into memory
pointed to by buf f er. The value -1 is returned to signal an error and
errno is set to indicate the kind of error. Appropriate values may be
EBADF or EI NVAL, among others.

Remarks: This function is not provided by default. It is required to support reading
files in full mode, such as viaf getc, f gets, fread, and get s.

unlink

Description: Low level command to remove a file link.

Include: <uni std. h>

Prototype: int unlink(const char *nane);

Argument: name file to be removed

Return Value: Returns zero if successful and -1 to signify an error.

Remarks: This function is not provided by default and is required for r enove and
r enane. This function deletes a link between a filename and the file
contents. The contents are also deleted when the last link is destroyed.
A file may have multiple links to it if the | i nk function has been used.

write

Description: Low-level support function for writing data to an already opened file.

Include: <uni std. h>

Prototype: int wite(int fd, void *buffer, size_t |ength);

Arguments: fd file descriptor indicating which file should be written
buf f er data to be written
| engt h length, in bytes, of data to write

Return Value:

Remarks:

Returns number of characters written with -1 indicating an error
condition.

This function is not provided by default. In the event that an error
occurs, er r no should be set to indicate the type of error. Suitable
values may be EBADF or El NVAL, among others.

© 2009 Microchip Technology Inc.

DS51685D-page 93

32-Bit Language Tools Libraries

NOTES:

DS51685D-page 94 © 2009 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS

MICROCHIP LIBRARIES

Chapter 3. PIC32DSP Library

3.1 INTRODUCTION
311

The PIC32 DSP library consists of a set of functions applicable to many multimedia
application areas. Most of the functions, like vector operations, filters, and transforms,
are commonly used in many DSP and multimedia applications. Some functions are
designed to be used in specific applications such as video decoding or voice compres-
sion. It is beyond the scope of this manual to describe the operation of such
applications.

Overview

Functions whose performance is considered critical are implemented in assembly and
tuned where appropriate for a particular processor pipeline implementation and instruc-
tion set features. When a function is typically not considered to be performance critical,
or the benefit from an assembly implementation is not significant, it is implemented in
C. Often such functions perform initialization of data structures and are used only once
during the lifetime of an application.

Table 3-1 lists all the functions currently available in the DSP Library, arranged by cat-
egory, with the available implementation versions. All general purpose functions work
with data in 16-bit fractional format, also known as Q15. Some of the functions also
have a version that operates on 32-bit data in Q31 fractional format.

TABLE 3-1: GENERAL PURPOSE DSP LIBRARY FUNCTIONS BY CATEGORY
Category Function Name Description
mips_vec_abs16/32 Compute the absolute value of each Q15/Q31
vector element.
mips_vec_add16/32 Add the corresponding elements of two
@ Q15/Q31 vectors.
2 mips_vec_addc16/32 Add a constant to all elements of a vector.
o
= mips_vec_dotp16/32 Compute dot product of two Q15/Q31 vectors.
i mips_vec_mul16/32 Multiply the corresponding elements of two
5] Q15/Q31 vectors. Can be used for applying
% windows.
*;O) mips_vec_mulc16/32 Multiply all elements of a vector by a constant.
2 mips_vec_sub16/32 Subtract the corresponding elements of two
Q15/Q31 vectors.
mips_vec_sum_squares16/32 | Calculate the sum of squares of elements of a
vector in Q15/Q31 format.
mips_firl6 Applies a block FIR filter to a Q15 vector.
mips_firl6_setup Prepare the filter coefficients for the mips_firl6
» function.
3 mips_iirl6 Single-sample IIR filter.
v mips_iirl6_setup Prepare the filter coefficients for the mips_iirl6
function.
mips_Ims16 Single-sample LMS filter

© 2009 Microchip Technology Inc.

DS51685D-page 95

32-Bit Language Tools Libraries

TABLE 3-1: GENERAL PURPOSE DSP LIBRARY FUNCTIONS BY CATEGORY

Category Function Name Description
mips_fft16 Compute the complex FFT of a vector
containing Q15 complex samples, i.e., 16-bit
fractional real and imaginary parts.
g mips_fft16_setup Create a vector of twiddle factors used by the
§ (deprecated) mips_fft16 function.
o mips_fft32 Compute the complex FFT of a vector
5] - ; .
= containing Q31 complex samples, i.e., 32-bit
fractional real and imaginary parts.
mips_fft32_setup Create a vector of twiddle factors used by the
(deprecated) mips_fft32 function.
mips_h264_iqt Inverse quantization and transform for H.264
decoding.
o mips_h264_igt_setup Create inverse quantization matrix used by the
-g mips_h264_iqt function.
mips_h264_mc_luma 1/4-pixel motion compensation for luma pixels
in H.264 video decoding.

3.1.2 Fixed-Point Types

Input and output data for most functions is represented in 16-bit fractional numbers in
Q15 format. This is the most commonly used data format for signal processing. Some
function may use other data formats internally for increased precision of the intermedi-
ate results. The Q15 data type used by the DSP functions is specified as int16 in the C
header files supplied with the library. This data type is defined in the common
dsplib_def.h header file. Note that within C code care must be taken not to confuse
fixed-point values with integers. To the C compiler, objects declared with int16 type are
integers, not fixed-point, and any arithmetic performed on those objects in C will be
done as integers. Fixed-point values have been declared as intl6 only because the
standard C language does not include intrinsic support for fixed-point data types.

3.1.3 Saturation, Scaling, and Overflow

In the majority of DSP applications, overflow or underflow during computation is not
desirable. It is best to design the data path with appropriate scaling in order to avoid
the possibility of overflow and underflow. However, such scaling often significantly lim-
its the usable data range. Hence many algorithm implementations relax the scaling and
introduce saturation operations that clip the values that would otherwise overflow to the
maximum or minimum limit of the data range.

Some of the functions in the general purpose DSP library module accumulate series of
values before producing the final result. Examples include the vector dot product cal-
culation, the FIR filter, the sum of squared values and even the FFT transform. All of
these functions, with the exception of the FFT, include a parameter that controls the
output scaling, i.e., additional amount of right shift applied when the result is converted
to a Q15 value. The FFT results are automatically scaled down by 2'°92(N),

DS51685D-page 96 © 2009 Microchip Technology Inc.

PIC32 DSP Library

3.14 Array Alignment and Length Restrictions

For the sake of efficiency, most functions require that array pointer arguments be
aligned on 4-byte boundaries. Arrays of the int16 data type declared in C will be cor-
rectly aligned. Furthermore, there are often restrictions on the number of elements that
each function operates on. Typically the number of elements must be a multiple of a
small integer (e.g., four or eight), and must be larger than or equal to a specified mini-
mum. Note that in order to improve performance, the functions do not verify the validity
of their input parameters. Supplying incorrect parameters may lead to unpredictable
results.

© 2009 Microchip Technology Inc. DS51685D-page 97

32-Bit Language Tools Libraries

3.2 VECTOR MATH FUNCTIONS

mips_vec_absl6

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Computes the absolute value of each element of indata and stores it to
outdata. The number of samples to process is given by the parameter
N.
Mathematically,

outdata[n] = abs(indata[N])

dsplib_dsp.h

voi d

m ps_vec_abs16

(
int16 *outdata,
int16 *indata,

int N

)

outdata: Output array of 16-bit fixed-point elements in Q15
format.

indata: Input array with 16-bit fixed-point elements in Q15
format.

N: Number of samples.

None.

« The pointers outdata and indata must be aligned on 4-byte
boundaries.
« N must be larger than or equal to 4 and a multiple of 4.

mips_vec_abs32

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Computes the absolute value of each element of indata and stores it to
outdata. The number of samples to process is given by the parameter
N.
Mathematically,

outdata[n] = abs(indata[N])

dsplib_dsp.h

voi d

m ps_vec_abs32

(
int32 *outdata,
int32 *indata,

int N

);

outdata: Output array of 32-bit fixed-point elements in Q31
format.

indata: Input array with 32-bit fixed-point elements in Q31
format.

N: Number of samples.

None.

« The pointers outdata and indata must be aligned on 4-byte
boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

DS51685D-page 98

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_addl6

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Adds each element of indatal to the corresponding element of indata2.
The number of samples to process is given by the parameter N.
Mathematically,

outdata[n] = indatal[n]+indata2[n]

dsplib_dsp.h

voi d

m ps_vec_addl16

(
int16 *outdata,
int16 *indatal,
int16 *i ndata2,

int N

);

outdata: Output array of 16-bit fixed-point elements in Q15
format.

indatal: First input array with 16-bit fixed-point elements in Q15
format.

indata2: Second input array with 16-bit fixed-point elements in
Q15 format.

N: Number of samples.

None.

¢ The pointers outdata, indatal, and indata2 must be aligned on
4-byte boundaries.

« N must be larger than or equal to 4 and a multiple of 4.

mips_vec_add32

Description:

Include:
Prototype:

Argument:

Return Value:

Adds each element of indatal to the corresponding element of indata2.
The number of samples to process is given by the parameter N.
Mathematically,

outdata[n] = indatal[n]+indata2[n]

dsplib_dsp.h

voi d

m ps_vec_add32

(
int32 *outdata,
int32 *indatal,
int32 *indata2,

int N

);

outdata: Output array of 32-bit fixed-point elements in Q31
format.

indatal: First input array with 32-bit fixed-point elements in Q31
format.

indata2: Second input array with 32-bit fixed-point elements in
Q31 format.

N: Number of samples.

None.

© 2009 Microchip Technology Inc.

DS51685D-page 99

32-Bit Language Tools Libraries

mips_vec_add32 (Continued)

Remarks:

¢ The pointers outdata, indatal, and indata2 must be aligned on
4-byte boundaries.
« N must be larger than or equal to 4 and a multiple of 4.

mips_vec_addcl6

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Adds the Q15 constant c to all elements of indata. The number of
samples to process is given by the parameter N.
Mathematically,

outdata[n] = indata[n]+c

dsplib_dsp.h

voi d

m ps_vec_addc16

(
intl1l6 *outdata,
int16 *indata,

int1l6 c,
int N
);
outdata: Output array of 16-bit fixed-point elements in Q15
format.
indata: Input array with 16-bit fixed-point elements in Q15
format.
c: Constant added to all elements of the vector.
N: Number of samples.

None.

¢ The pointers outdata and indata must be aligned on 4-byte
boundaries.

« N must be larger than or equal to 4 and a multiple of 4.

mips_vec_addc32

Description:

Include:
Prototype:

Argument:

Adds the Q31 constant c to all elements of indata. The number of
samples to process is given by the parameter N.
Mathematically,

outdata[n] = indata[n]+c

dsplib_dsp.h

voi d

m ps_vec_addc32

(
int 32 *outdat a,
int32 *indata,

int32 c,
int N
)
outdata: Output array of 32-bit fixed-point elements in Q31
format.
indata: Input array with 32-bit fixed-point elements in Q31
format.

DS51685D-page 100

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_addc32 (Continued)

c: Constant added to all elements of the vector.
N: Number of samples.
Return Value: None.
Remarks: ¢ The pointers outdata and indata must be aligned on 4-byte
boundaries.

¢ N must be larger than or equal to 4 and a multiple of 4.

mips_vec_dotpl6

Description: Computes the dot product of the Q15 vectors indatal and indata2. The
number of samples to process is given by the parameter N. The scale
parameter specifies the amount of right shift applied to the final result.
Mathematically,

N-1
1 . .
result = —— Z indatal[n] xindata2[n]
oscale
n=0
Include: dsplib_dsp.h
Prototype: intl6
m ps_vec_dot p16
(

int16 *i ndatal,
int16 *i ndata2,

int N,
int scale
)
Argument: indatal: First input array with 16-bit fixed point elements in Q15
format.
indata2: Second input array.
N: Number of samples.
scale: Scaling factor: divide the result by 25¢a€,
Return Value: Scaled result of the calculation in fractional Q15 format.
Remarks: ¢ The pointers outdata and indata must be aligned on 4-byte
boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_dotp32

Description: Computes the dot product of the Q31 vectors indatal and indata2. The
number of samples to process is given by the parameter N. The scale
parameter specifies the amount of right shift applied to the final result.
Mathematically,

IN—L1

1 . .
result = Sscale Z indatal[n] xindata2[n]
n=20

Include: dsplib_dsp.h

© 2009 Microchip Technology Inc. DS51685D-page 101

32-Bit Language Tools Libraries

mips_vec_dotp32 (Continued)

Prototype:

Argument:

Return Value:
Remarks:

int32
m ps_vec_dot p32
(
int32 *indatal,
int32 *indata2,
int N,
int scale
)
indatal: First input array with 32-bit fixed point elements in Q31
format.
indata2: Second input array.
N: Number of samples.
scale: Scaling factor: divide the result by 25¢a€,

Scaled result of the calculation in fractional Q31 format.

« The pointers outdata and indata must be aligned on 4-byte
boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_mull6

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Multiplies each Q15 element of indatal by the corresponding element
of indata2 and stores the results to outdata. The number of samples to
process is given by the parameter N.
Mathematically,

outdata[n] = indata[n] x indata2[n]

dsplib_dsp.h

voi d

m ps_vec_nul 16

(
int16 *outdata,
int16 *indatal,
int16 *i ndata2,

int N

)

outdata: Output array of 16-bit fixed-point elements in Q15
format.

indatal: First input array with 16-bit fixed-point elements in Q15
format.

indata2: Second input array.

N: Number of samples.

None.

* The pointers outdata, indatal, and indata2 must be aligned on
4-byte boundaries.

* N must be larger than or equal to 4 and a multiple of 4.

DS51685D-page 102

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_mul32

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Multiplies each Q31 element of indatal by the corresponding element
of indata2 and stores the results to outdata. The number of samples to
process is given by the parameter N.
Mathematically,

outdata[n] = indatal[n] x indata2[n]

dsplib_dsp.h

voi d

m ps_vec_nul 32

(
int32 *outdata,
int32 *indatal,
int32 *indata2,

int N

)

outdata: Output array of 32-bit fixed-point elements in Q31
format.

indatal: First input array with 32-bit fixed-point elements in Q31
format.

indata2: Second input array.

N: Number of samples.

None.

* The pointers outdata, indatal, and indata2 must be aligned on
4-byte boundaries.
* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_mulcl6

Description:

Include:
Prototype:

Argument:

Return Value:

Multiplies each Q15 element of indata by the Q15 constant ¢ and stores
the results to outdata. The number of samples to process is given by
the parameter N.
Mathematically,

outdata[n] = indatal[n] x c

dsplib_dsp.h

voi d

m ps_vec_nmnul c16

(
int16 *outdata,
int16 *indata,

intl6 c,
int N
)
outdata: Output array of 16-bit fixed-point elements in Q15
format.
indata: Input array with 16-bit fixed-point elements in Q15
format.
c: 16-bit fixed-point constant.
N: Number of samples.
None.

© 2009 Microchip Technology Inc.

DS51685D-page 103

32-Bit Language Tools Libraries

mips_vec_mulcl6 (Continued)

Remarks: ¢ The pointers outdata and indata must be aligned on 4-byte
boundaries.

« N must be larger than or equal to 4 and a multiple of 4.

mips_vec_mulc32

Description: Multiplies each Q31 element of indata by the Q31 constant ¢ and stores
the results to outdata. The number of samples to process is given by
the parameter N.
Mathematically,
outdata[n] = indatal[n] x c

Include: dsplib_dsp.h
Prototype: voi d
m ps_vec_nmul c32
(

int32 *outdata,
int32 *indata,

int32 c,
int N
);
Argument: outdata: Output array of 32-bit fixed-point elements in Q31
format.
indata: Input array with 32-bit fixed-point elements in Q31
format.
c: 32-bit fixed-point constant.
N: Number of samples.
Return Value: None.
Remarks: ¢ The pointers outdata and indata must be aligned on 4-byte
boundaries.

« N must be larger than or equal to 4 and a multiple of 4.

mips_vec_subl6

Description: Subtracts each element of indata2 from the corresponding element of
indatal. The number of samples to process is given by the parameter
N.
Mathematically,
outdata[n] = indatal[n] — indata2[n]

Include: dsplib_dsp.h
Prototype: voi d
m ps_vec_subl6
(

int16 *outdata,
int16 *i ndatal,
int16 *i ndata2,
int N

DS51685D-page 104

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_subl16 (Continued)

Argument:

Return Value:
Remarks:

outdata: Output array of 16-bit fixed-point elements in Q15
format.

indatal: First input array with 16-bit fixed-point elements in Q15
format.

indata2: Second input array with 16-bit fixed-point elements in
Q15 format.

N: Number of samples.

None.

* The pointers outdata, indatal, and indata2 must be aligned on
4-byte boundaries.
« N must be larger than or equal to 4 and a multiple of 4.

mips_vec_sub32

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Subtracts each element of indata2 from the corresponding element of
indatal. The number of samples to process is given by the parameter
N.
Mathematically,

outdata[n] = indatal[n] — indata2[n]

dsplib_dsp.h

voi d

m ps_vec_sub32

(
int32 *outdata,
int32 *indatal,
int32 *indata2,

int N

);

outdata: Output array of 32-bit fixed-point elements in Q31
format.

indatal: First input array with 32-bit fixed-point elements in Q31
format.

indata2: Second input array with 32-bit fixed-point elements in
Q31 format.

N: Number of samples.

None.

¢ The pointers outdata, indatal, and indata2 must be aligned on
4-byte boundaries.

« N must be larger than or equal to 4 and a multiple of 4.

© 2009 Microchip Technology Inc.

DS51685D-page 105

32-Bit Language Tools Libraries

mips_vec_sum_squaresl6

Description:

Include:

Prototype:

Argument:

Return Value:
Remarks:

Computes the sum of squared values of all elements of indata. The
number of samples to process is given by the parameter N. The scale
parameter specifies the amount of right shift applied to the final result.
Mathematically,

N-1
= i 2
result ~scale Z indata[n]
n=0
dsplib_dsp.h
intl6
m ps_vec_sum squar esl16
(
intl6 *indata,
int N,
int scale
)
indata Input array with 16-bit fixed-point elements in Q15
format
N Number of samples
scale Scaling factor: divide the result by 25¢2'€.

Scaled result of the calculation in fractional Q15 format.

¢ The pointer indata must be aligned on a 4-byte boundary.
* N must be larger than or equal to 4 and a multiple of 4.

mips_vec_sum_squares32

Description:

Include:
Prototype:

Argument:

Return Value:

Computes the sum of squared values of all elements of indata. The
number of samples to process is given by the parameter N. The scale
parameter specifies the amount of right shift applied to the final result.
Mathematically,

N-1
= i 2
result ~scale Z indata[n]
n=0
dsplib_dsp.h
int32
m ps_vec_sum squar es32
(
int32 *indata,
int N,
int scale
)
indata: Input array with 32-bit fixed-point elements in Q31
format.
N: Number of samples.
scale: Scaling factor: divide the result by 25¢a€,

Scaled result of the calculation in fractional Q31 format.

DS51685D-page 106

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_vec_sum_squares32 (Continued)

Remarks:

3.3 FILTERING FUNCTIONS

¢ The pointer indata must be aligned on a 4-byte boundary.
« N must be larger than or equal to 4 and a multiple of 4.

mips_firl6

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Notes:

Computes a finite impulse response (FIR) filter with coefficients
specified in coeffs2x over the input data samples in indata. The function
updates the delayline, which is used to initialize the filter the next time
mips_firl6() is called. The number of samples to process is given by
the parameter N and the number of filter coefficients is given by K. The
scale parameter specifies the amount of right shift applied to the final
result.

Mathematically,

K-1
_ 1 .
output[n] = scals Z indata[n —k] x coeffs[K]
k=0
dsplib_dsp.h
voi d
mps_firl6
(
int16 *outdata,
int16 *indata,
int16 *coeffs2x,
int16 *del ayline,
int N,
int K
int scale
);
outdata: Output array with 16-bit fixed-point elements in Q15
format.
indata: Input array with 16-bit fixed-point elements in Q15
format.
coeffs2x: Array of 2K 16-bit fixed-point coefficients prepared by
mips_firl6_setup().
delayline: Delay line array holding the last K input samples.
N: Number of samples.
K: Number of coefficients (filter taps).
scale: Scaling factor: divide the result by 25¢a€,
None.

¢ The pointers outdata, indata, coeffs2x, and delayline must be
aligned on a 4-byte boundary.
* K must be larger than or equal to 4 and a multiple of 4.

The coeffs2x array is twice the size of the original coefficient array,
coeffs. The function mips_firl6_setup() takes the original coefficient
array coeffs and rearranges the coefficients into the coeffs2x array to
enable more efficient processing. All elements of the delayline array
must be initialized to zero before the first call to mips_firl6(). Both
delayline and coeffs2x have implementation-dependent format and
their contents should not be changed directly.

© 2009 Microchip Technology Inc.

DS51685D-page 107

32-Bit Language Tools Libraries

mips_firl6 (Continued)

Example:

int i;
int K= 8;
int N= 32;

nt 16 coeffs[K];
nt 16 coef f s2x[2*K] ;
nt 16 del ayline[K];

nt16 i ndata[N ;
nt 16 outdata[N];

for (i =0; i <K i++4)
del ayline[i] = 0;

/! 1 oad coefficients into coeffs here

m ps_firl6_setup(coeffs2x, coeffs, K);
while (true)
{

/1 load input data into indata

m ps_firl6(outdata, indata, coeffs2x, delayline,
N K 3);

/1 do sonething with outdata

mips_firl6_setup

Description:

Include:
Prototype:

Argument:

Return Value:

Remarks:
Note:

Rearranges the coefficients from the input array, coeffs, into the output
array coeffs2x, which is used by the mips_firl6() function. The number
of coefficients to process is given by the parameter K.
dsplib_dsp.h
voi d
m ps_firl6_setup
(
int16 *coeffs2x,
int1l6 *coeffs,

int K

)

coeffs2x: Output array holding 2K coefficients rearranged for
mips_firl6().

coeffs: Input array holding K 16-bit fixed-point coefficients in
Q15 format.

K: Number of coefficients.

None.

None.

This function is implemented in C.

DS51685D-page 108

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_iirl6

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Notes:

Computes a single-sample infinite impulse response (lIR) filter with
coefficients specified in coeffs. The number of biquad sections
composing the filter is given by the parameter B. The scale parameter
specifies the amount of right shift applied to the input value of each
biquad. Each biquad section is specified by four coefficients—A;, A,
B,, and B,—and has two state variables stored inside delayline.°+ The
output of each biquad section becomes input to the next one. The
output of the final section is returned as result of the mips_iir16()
function.

The operations performed for each biquad section are illustrated below:

input »l oS outpq];;
dsplib_dsp.h
intl6
mps_iirl6
(
int16 in,
int16 *coeffs,
int16 *del ayline,
int B,
int scale
);
in: Input value in Q15 format.
coeffs: Array of 4B 16-bit fixed-point coefficients prepared by
mips_iirl6_setup().
delayline: Delay line array holding 2B state 16-bit state variables.
B: Number of biquad sections.
scale: Scaling factor: divide the input to each biquad by 25¢a€,

IIR filter output value in fractional Q15 format.

* The pointers coeffs and delayline must be aligned on a 4-byte
boundary.

* B must be larger than or equal to 2 and a multiple of 2.

The coeffs array contains four coefficients for each biquad. The
coefficients are conveniently specified in an array of biquadl6
structures, which is converted to the appropriate internal representation
by the mips_iirl6_setup() function. All elements of the delayline array
must be initialized to zero before the first call to mips_iir16(). Both
delayline and coeffs have implementation-dependent format and their
contents should not be changed directly.

© 2009 Microchip Technology Inc.

DS51685D-page 109

32-Bit Language Tools Libraries

mips_iirl6 (Continued)

Example: int i;
int B = 4;

bi quad16 bq[B];

int16 coeffs[4*B];
int16 del ayline[2*B];
int16 indata, outdata;

for (i =0; i < 2*B; i+4)
del ayline[i] = 0;

/1 1oad coefficients into bg here

m ps_iirl6_setup(coeffs, bqg, B);
while (true)
{

/1 get input data value into indata

outdata = mps_iirl6(indata, coeffs, delayline,
B, 2);

/! do sonething with outdata

mips_iirl6_setup

Description: Rearranges the coefficients from the input array, bq, into the output
array coeffs, which is used by the mips_iir16() function. The number of
biguad sections to process is given by the parameter B.

Include: dsplib_dsp.h

Prototype: voi d
mps_iirl6_setup
(

intl6 *coeffs,
bi quadl16 *bq,

int B
)
Argument: coeffs: Output array holding 4B coefficients rearranged for
mips_iirl6().
bq: Input array holding Q15 coefficients for B biquad
sections.
B: Number of biquad sections.
Return Value: None.
Remarks: None.
Notes: This function is implemented in C.

DS51685D-page 110 © 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_Ims16

Description: Computes a Least Mean Squares (LMS) adaptive filter and updates its
coefficients. The new coefficients are computed using the error
between the last filter output and the reference signal ref. The function
takes one input sample in and computes one output sample. The
parameter mu controls the adaptation rate of the filter.

Include: dsplib_dsp.h

Prototype: intl6
m ps_| ms16

(

nt16 in,

nt 16 ref,

nt 16 *coeffs,

nt 16 *del ayl i ne,
ntl1l6 *error,
nt16 K,

nt nu

Argument: in: Input value in Q15 format.
ref: Desired (reference) value in Q15 format.
coeffs: Input/output array of 16-bit fixed-point coefficients.
delayline: Delay line array holding the last K input samples.

error: Input/output value indicating the difference between the
filter output and the reference value.

K: Number of coefficients (filter taps).
mu: Adaptation rate in Q15 format.
Return Value: LMS filter output value in Q15 format.

Remarks: ¢ The pointers coeffs and delayline must be aligned on a 4-byte
boundary.
« K must be larger than or equal to 4 and a multiple of 2.
Notes: The order of the elements of the coeffs and delayline arrays is
implementation dependent. The delayline array must be initialized to
zero before the first call to mips_Ims16().

3.4 FREQUENCY DOMAIN TRANSFORM FUNCTIONS

mips_fftl6

Description: Computes the complex fast Fourier transform (FFT) of the input
sequence din. The number of samples to process is specified by the
parameter log2N: N = 2'992N. The fftc array holds complex coefficients
needed by the FFT algorithm. The scratch hold intermediate data; its
contents are destroyed on each call to mips_fft16().

Mathematically,

N-1 _j27zkn
> din[n] xe N
k=0

1
2log2N

output[n] =

Include: dsplib_dsp.h

© 2009 Microchip Technology Inc. DS51685D-page 111

32-Bit Language Tools Libraries

mips_fft16 (Continued)

Prototype:

Argument:

Return Value:

Remarks:

Notes:

Example:

voi d
mps_fftlé
(
intl6c *dout,
int16¢c *din,
intléc *fftc,
int16¢c *scratch,
int |og2N
);
dout: Output array with 16-bit complex fixed-point elements in
Q15 format.
din: Input array with 16-bit complex fixed-point elements in
Q15 format.
fftc: Input array with 16-bit complex fixed-point twiddle
factors in Q15 format.
scratch: Intermediate results array holding 16-bit complex
fixed-point data.
log2N: Logarithm base 2 of the number of samples: N = 21992,
None.

e The pointers dout, din, fftc, and scratch must be aligned on 4-byte
boundaries.
¢ log2N must be larger than or equal to 3.

The scratch array must be large enough to hold N 16-bit complex data
samples having 16-bit real part and 16-bit imaginary part.

Copying fftc to RAM prior to calling this function can be used to improve
performance.

#include “fftc.h” // pre-conputed coefficients
int log2N = 6; // log2(64) = 6

int N=1 << 1log2N, // N=2"6 = 64

intl6c din[N;

intl16c dout[N];

intl6c scratch[N;

#define fftc fft16¢c64 // fromfftc.h, for N= 64
whil e (true)

{

/1 1oad conplex input data into din

m ps_fft16(dout, din, fftc, scratch, |og2N);
/1 do sonething with dout

mips_fftl6_setup — Function Deprecated

Description:

Include:
Prototype:

Calculates the twiddle factors need to compute an FFT of size N. The
twiddle factors are used by the mips_fft16() function. The number of
samples to process is specified by the parameter log2N: N = 2/092N,
dsplib_dsp.h
voi d
m ps_fft16_setup
(

int16c *tw ddl es,

int | og2N
)

DS51685D-page 112

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_fft16_setup (Continued) — Function Deprecated

Argument:

Return Value:
Remarks:
Notes:

twiddles: Output array containing N 16-bit complex twiddle
factors.

log2N: Logarithm base 2 of the number of samples: N = 2l0g2N,

None.

This function requires floating-point support.
This function is implemented in C.

mips_fft32

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:

Notes:

Computes the complex Fast Fourier Transform (FFT) of the input
sequence din. The number of samples to process is specified by the
parameter log2N: N = 2!°92N_ The fftc array holds complex coefficients
needed by the FFT algorithm. The scratch hold intermediate data; its
contents are destroyed on each call to mips_fft32().

Mathematically,

N-1 5 27kn
= i N
output[n] STog2N z din[n] xe
k=0
dsplib_dsp.h
voi d
m ps_fft32
(
i nt32c *dout,
int32c *din,
int32c *fftc,
int132 *scratch,
int | og2N
);
dout: Output array with 32-bit complex fixed-point elements in
Q31 format.
din: Input array with 32-bit complex fixed-point elements in
Q31 format.
fftc: Input array with 32-bit complex fixed-point twiddle
factors in Q31 format.
scratch: Intermediate results array holding 32-bit complex
fixed-point data.
log2N: Logarithm base 2 of the number of samples: N = 2l0g2N,
None.

¢ The pointers dout, din, fftc, and scratch must be aligned on 4-byte
boundaries.
¢ log2N must be larger than or equal to 3.

The scratch array must be large enough to hold N 32-bit complex data
samples having 32-bit real part and 32-bit imaginary part.

Copying fftc to RAM prior to calling this function can be used to improve
performance.

© 2009 Microchip Technology Inc.

DS51685D-page 113

32-Bit Language Tools Libraries

mips_fft32 (Continued)

Example:

#include “fftc.h” // pre-conputed coefficients
int 1og2N = 6; // 10g2(64) =6

int N=1 << 1log2N, // N=2"6 = 64

int32c din[N;

int32c dout[N];

int32c scratch[N ;

#define fftc fft32c64 // fromfftc.h, for N = 64
while (true)

{

/1 load conplex input data into din

m ps_fft32(dout, din, fftc, scratch, |og2N);
/1 do sonething with dout

mips_fft32_setup — Function Deprecated

Description:

Include:
Prototype:

Argument:

Return Value:
Remarks:
Notes:

Calculates the twiddle factors need to compute an FFT of size N. The
twiddle factors are used by the mips_fft32() function. The number of
samples to process is specified by the parameter log2N: N = 2'°92N,

dsplib_dsp.h
voi d
m ps_fft32_setup
(
int32c *tw ddl es,
int | og2N
)
twiddles: Output array containing N 32-bit complex twiddle
factors.
log2N: Logarithm base 2 of the number of samples: N = 2l0g2N,
None.

This function requires floating-point support.
This function is implemented in C.

3.5 VIDEO PROCESSING FUNCTIONS

mips_h264_iqt
Description: Combined inverse quantization and inverse transform function. The
input DCT coefficients are inverse quantized by multiplying them with
corresponding elements of the inverse quantization matrix. The results
are transformed by a 4x4|-element integer inverse DCT as specified in
the H.264 video compression standard.
Include: dsplib_video.h
Prototype: voi d
m ps_h264_i qt
(
uint8 b[4][4],
intl6 c[4][4],
int16 iq[4][4]
);
Argument: b: Output 4x4-pixel array in 8-bit unsigned integer format.

DS51685D-page 114

© 2009 Microchip Technology Inc.

PIC32 DSP Library

mips_h264_iqt (Continued)

Return Value:
Remarks:
Notes:
Example:

c: Input 4x4-element array of DCT coefficients in signed
16-bit integer format.

iq: Inverse quantization matrix in signed 16-bit integer
format.

None.

The pointers b, ¢, and ig must be aligned on 4-byte boundaries.
The mips_iqgt_setup() function can be used to initialize the iq array.
uint8 b[4][4]

int16 dct_data[4][4];

intl16 ig_matrix[4][4];

/'l quantization paraneter
int QP = 28;

/1 initialize the inverse quantization matrix
m ps_h264_iqt_setup(iq_matrix, m ps_h264_ig_coeffs,
P);

/1 1oad DCT data into dct_data

m ps_h264_iqt (b, dct_data, iq_matrix);

mips_h264 iqt_setup

Description:

Include:

Prototype:

Argument:

Return Value:
Remarks:
Notes:

Computes the inverse quantization matrix used by the mips_iqt()
function. The default inverse quantization coefficient array as specified
by the H.264 video compression standard is provided as
mips_h264_iq_coeffs and can be used in place of the q parameter.

dsplib_video.h

voi d
m ps_h264_iqt_setup
(
intl6 iq[4][4],
intl6 q[6][4][4],
intl6 gp
)
iq: Output 4x4-element inverse quantization matrix in
signed 16-bit integer format.
q: Input 6x4x4-element inverse quantization coefficient
array in signed 16-bit integer format.
gp: Quantization parameter.
None.
None.

This function is implemented in C.

© 2009 Microchip Technology Inc.

DS51685D-page 115

32-Bit Language Tools Libraries

mips_h264_mc_luma

Description:

Include:
Prototype:

Argument:

Return Value:

Remarks:
Example:

This function computes 1/4-pixel motion compensation for luma blocks
as specified by the H.264 video compression standard. The function
performs all necessary interpolations depending on the fractional offset
of the desired block as specified by the dx and dy input parameters.
Note, however, that there is no special handling of cases that cross the
picture edge. It is expected that the image will be enlarged by four
pixels in each direction and the pixels along the edges of the image will
be replicated to the expanded borders.

dsplib_video.h
voi d
m ps_h264_nc_| una
(
uint8 b[4][4],
uint8 *src,
int ystride,
int dx,
int dy
);
b Output 4x4-pixel array in 8-bit unsigned integer format.
src Pointer to the top-left pixel of the source image block.
ystride Vertical stride, i.e., distance in bytes between

corresponding pixels on adjacent rows.

dx, dy Fractional pixel offsets multiplied by four, e.g., dx =1
specifies a 1/4-pixel offset.

None.

The offsets dx and dy must have values between 0 and 3 inclusive.
uint8 b[4][4];

uint8 | uma[HEI GHT] [W DTH] ;

int ystride = WDTH;

/1 obtain 1/ 4-pixel coordinates of desired bl ock
int x4 = ...;
int y4 = ...;

/1 conpute the integer and fractional parts
int x = x4 >> 2;

int y=y4 > 2

int dx4 = x4 & 0x03;

int dy4 = y4 & 0x03;

m ps_h264_nc_l una(b, & uma[y][x], ystride, dx4,
dy4);

DS51685D-page 116

© 2009 Microchip Technology Inc.

PIC32 DSP Library

351 MIPS Technologies Inc.’s DSP Library Notices:

Please note that the following notices apply to MIPS Technologies Inc.’s DSP Library.
Copyright © 2003, 2005, 2006, 2007 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand
other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS
Technologies'). Any copying, reproducing, modifying or use of thisinformation (in whole or in
part) that is not expressly permitted in writing by MI1PS Technologies or an authorized third party
isstrictly prohibited. At a minimum, thisinformation is protected under unfair competition and
copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in amodifiable form such as in FrameMaker or
Microsoft Word format) is subject to use and distribution restrictions that are independent of and
supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY
A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY
IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS
TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to
improve function, design or otherwise. MIPS Technol ogies does not assume any liability arising
out of the application or use of thisinformation, or of any error or omission in such information.
Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as
expressly provided in any written license agreement from MIPS Technologies or an authorized
third party, the furnishing of this document does not give recipient any license to any intellectual
property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or
released, directly or indirectly, in violation of the law of any country or international law,
regulation, treaty, Executive Order, statute, amendments or supplementsthereto. Should aconflict
arise regarding the export, reexport, transfer, or release of the information contained in this
document, the laws of the United States of America shall be the governing law.

Theinformation contained in this document constitutes one or more of the following: commercial
computer software, commercial computer software documentation or other commercial items. If
the user of thisinformation, or any related documentation of any kind, including related technical
data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer
of thisinformation, or any related documentation of any kind, is restricted in accordance with
Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies. The use of thisinformation by the
Government is further restricted in accordance with the terms of the license agreement(s) and/or
applicable contract terms and conditions covering thisinformation from MIPS Technol ogiesor an
authorized third party.

MIPS, MIPS |, MIPS I, MIPS 11, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32,
MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED
POWER logo, MIPS-VERIFIED, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc,
4K Sd, M4K, 5K, 5K ¢, BKf, 20K, 20Kc, 24K, 24K c, 24Kf, 24KE, 24K Ec, 24K Ef, 25Kf, 34K,
34Kc, 34Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.",
BusBridge, CorExtend, CoreFPGA, CorelLV, EC, JALGO, Mata, MDMX, MGB, PDtrace, the
Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are
trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

© 2009 Microchip Technology Inc. DS51685D-page 117

32-Bit Language Tools Libraries

NOTES:

DS51685D-page 118 © 2009 Microchip Technology Inc.

MPLAB® C COMPILER FOR
MICROCHIP PIC32 MCUS USER’S

Chapter 4. PIC32 Debug-Support Library

41 OVERVIEW

This library supports both the Application Input/Output debugging feature and the
PIC32 Starter Kit Debug /O feature.

4.1.1 Application Input/Output with printf() and scanf()

Many PIC32 devices support the APPIN/APPOUT debugging feature. This PIC32 fea-
ture allows the PIC32 application to write text or data to an MPLAB IDE window,
invoked from the Tools menu, without halting the target device. Similarly, you may use
the display window to send text or data back to the target PIC32 device. This feature
requires an MPLAB REAL ICE emulator or MPLAB ICD 3 debugger.

41.2 Starter Kit Debug Print Mechanism with DBPRINTF() and
DBSCANF()

A similar target input/output feature is available for the PIC32 Starter Kit (DM320001)
featuring the PIC32MX360F512L MCU and the PIC32 USB Starter Board (DM320003)
featuring the PIC32MX460F512L MCU.

The print output functionality is routed to the Output window on the MPLAB PIC32MX
tab of the interface window.

For input using the Starter Kit, MPLAB IDE uses a TargetIN window. To send text to the
target, type your text into the Enter Information to be Sent to Target box, and click
Send.

4.2 CONFIGURING DEBUG INPUT/OUTPUT FOR THE TARGET AND TOOL

The debug-support library, for both the APPIN/APPOUT mechanism and the Starter Kit
mechanism, works by providing alternate 1/0 helper functions:

_mon_wite (), _non_putc (), _non_getc() as described in

Section 2.13.2 “Customizing STDIO”. These alternate functions use the
APPIN/APPOUT or Starter Kit mechanism as requested in the project. These
debug-support function implementations override the default helper I/O function
implementations.

You can choose which implementation to use by defining a preprocessor symbol. To
choose the APPIN/APPOUT implementation, pass the - mappi o- debug option to

pi c32-gcc. exe. To choose the PIC32 Starter Kit implementation, pass

- DPI C32_STARTER KI T to the compiler shell. Also use #i ncl ude <p32xxxx. h>to
include the generic header file in your source code.

With one of the above options passed to the compiler and the sys/ appi o. h include file
added to your source code, the debugging-support library provides alternate 1/0 helper
functions to the linker. These alternate I/O helper functions redirect st di n and st dout
to the appropriate debugging mechanism. Standard I/0O functions now use the selected
mechanism.

© 2009 Microchip Technology Inc. DS51686B-page 119

MPLAB® C Compiler for PIC32 MCUs User’s Guide

4.3 <SYS/APPIO.H> PIC32 DEBUGGING SUPPORT

The sys/ appi 0. h header file contains conditional-compilation directives that cause the
compiler to pull in the correct aliased functions. In addition, it provides macros that
simplify enabling and disabling the debugging feature.

DBINIT()

Description: Select the correct mechanism (APPIN/JAPPOUT or Starter Kit)
and initialize buffering as appropriate. When the - mappi o- debug
option is passed to the compiler, the i ni t function initializes the
debug library for APPIN/APPOUT. When the
—DPI C32_STARTER_KI T option is passed to the compiler, the
i ni t function initializes the debug library for the PIC32 Starter
Kit.

The APPIN/APPOUT mechanism disables st di n/st dout
buffering while the PIC32 Starter Kit mechanism uses default
line buffering.

Include: <sys/ appi o. h>

Remarks: Behaves as ((voi d) 0) when APPIO debugging or Starter Kit
I/O debugging is not enabled.

DBPRINTF()

Description: Calls pri ntf () butis enabled only with the - mappi o- debug or
—DPI C32_STARTER_KI T option. When one of these options is not
specified on the compiler command line, DBPRI NTF() behaves
as ((voi d)0) and printf is not called.

Include: <sys/ appi o. h>

Remarks: Behaves as ((voi d) 0) when APPIO debugging or Starter Kit
I/0 debugging is not enabled via the - mappi o- debug or
—DPI C32_STARTER_KI T option. Use this macro to insert
messages that should print only when debugging.

DBSCANF()

Description: Calls scanf () . Available for only the APPIN/APPOUT
mechanism, not for the PIC32 Starter Kit mechanism.

Include: <sys/ appi o. h>

Remarks: Behaves as ((voi d) 0) when APPIN/APPOUT debugging is not

enabled via the - mappi o- debug or —-DPI C32_STARTER KI T
option. Use this macro to read formatted input that should read
only when debugging. PIC32 Starter Kit users should consider
DBGETS instead.

DBGETC(canblock)

Description:
Include:
Remarks:

Get a single char from the input mechanism.
<sys/ appi o. h>
Behaves as ((voi d) 0) when APPIN/APPOUT debugging or

Starter Kit /0 debugging is not enabled via the - mappi o- debug
or —DPI C32_STARTER KI T option.

DS51686B-page 120

© 2009 Microchip Technology Inc.

PIC32 Debug-Support Library

DBGETWORD(int canblock)

Description: Read a 32-bit word from the APPIN mechanism. Available only for the
APPIN/APPOUT mechanism, not for the PIC32 Starter Kit mechanism.

Include: <sys/ appi o. h>

Remarks: Behaves as ((voi d) 0) when APPIN/JAPPOUT debugging is not

enabled via the - mappi o- debug or —DPI C32_STARTER_KI T option.

DBPUTC(char c)

Description: Writes a single char to the output mechanism
Include: <sys/ appi o. h>
Remarks: Behaves as ((voi d) 0) when APPIN/APPOUT debugging or Starter

Kit I/O debugging is not enabled via the - mappi o- debug or
—DPI C32_STARTER KI T option.

DBPUTWORD(int w)

Description: Writes a 32-bit integer word to the APPOUT mechanism. Available only
for the APPIN/APPOUT mechanism, not for the PIC32 Starter Kit
mechanism.

Include: <sys/ appi o. h>

Remarks: Behaves as ((voi d) 0) when APPINJAPPOUT is not enabled via the
- mappi o- debug or —DPI C32_STARTER_KI T option.

Example Code: #i ncl ude <p32xxxx.h>
int main (void)
{ -
int num
char buf[256] ={0};
DBI NI T() ;

whi | e(1)
{
DBPRI NTF ("Hello therel\n");
DBPRI NTF ("Enter a string\n");
#i f defined(__APPI O _DEBUG)
DBSCANF ("%s", &buf[0]);
#elif defined(Pl C32_STARTER KI T)
DBGETS (&buf[0], 128);
#endi f
DBPRI NTF ("Entered \"%s\”\n\n", &buf[0]);

printf ("Prints to UART2 by default or APPOUT
when enabl ed\n");
}

return O;

}

© 2009 Microchip Technology Inc. DS51686B-page 121

MPLAB® C Compiler for PIC32 MCUs User’s Guide

NOTES:

DS51686B-page 122 © 2009 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Appendix A. ASCII Character Set

TABLE A-1: ASCII CHARACTER SET

Most Significant Character

Hex 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 # 3 C S c S
4 EOT | DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F \% f Y
Least
Significant 7 Bell ETB 7 G % g w
Character
8 BS CAN (8 H X h X
9 HT EM) 9 [Y [y
A LF SUB * : J Z j z
B VT | ESC + ; K [k {
C FF FS , < L \ | |
D CR GS - = M] m }
E SO RS . > N A n ~
F Sl us / ? o} B 0 DEL

© 2009 Microchip Technology Inc. DS51685D-page 123

32-Bit Language Tools Libraries

NOTES:

DS51685D-page 124 © 2009 Microchip Technology Inc.

MICROCHIP

32-BIT LANGUAGE TOOLS

LIBRARIES

Appendix B. Types, Constants, Functions and Macros

. _IOFBF
. IOLBF
.+ _IONBF

e _mon_getc
* _Mmon_putc
e abort

e abs

e acos

¢ acosf

e asctime

e asin
 asinf
 asinh

* asprintf

e assert

e atan

e atan2

o atan2f

* atanf

e atanh
 atexit

« atof

* atoi

« atol

* atoll

* bsearch

* BUFSIZ

« calloc

e chrt

* ceil

* ceilf

« CHAR_BIT
e CHAR_MAX
« CHAR_MIN
* clearerr

« clock

« clock _t

« CLOCKS_PER_SEC
* close

* copysign

cos
cosf

cosh

coshf

ctime

DBL_DIG
DBL_EPSILON
DBL_MANT_DIG
DBL_MAX
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN
DBL_MIN_10_EXP
DBL_MIN_EXP
difftime

div

div_t

drem

EBADF

EDOM

EINVAL
ENOMEM

EOF

ERANGE

erro

exit
EXIT_FAILURE
EXIT_SUCCESS
exp

expf

expml

fabs

fabsf

fclose

feof

ferror

fflush

ffs

ffsl

fgetc

fgetpos

fgets

FILE
FILENAME_MAX
finite

floor

floorf

FLT _DIG
FLT_EPSILON
FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MIN_EXP
FLT_RADIX
FLT_ROUNDS
fmod

fmodf

fopen
FOPEN_MAX
fpos_t

fprintf

fputc

fputs

fread

free

freopen

frexp

frexpf

fscanf

fseek

fsetpos

ffsll

ftell

fwrite

getc

getchar

getenv

© 2009 Microchip Technology Inc.

DS51685D-page 125

32-Bit Language Tools Libraries

gets

gettimeofday (User Pro-
vided)

gmtime
HUGE_VAL
hypot

INT_MAX
INT_MIN

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

isinf

islower

isnan

isprint

ispunct

isspace

isupper

isxdigit

jmp_buf
L_tmpnam

labs

LDBL_DIG
LDBL_EPSILON
LDBL_MANT_DIG
LDBL_MAX
LDBL_MAX_10_EXP
LDBL_MAX_EXP
LDBL_MIN
LDBL_MIN_10_EXP
LDBL_MIN_EXP
Idexp

Idexpf

Idiv

Idiv_t

link

llabs

lldiv

lIdiv_t
LLONG_MAX
LLONG_MIN
localtime

log

log10

log10f

loglp

logb

logf
LONG_MAX
LONG_MIN
longjmp
Iseek

malloc
MB_CUR_MAX
MB_LEN_MAX
mblen
mbstowcs
mbtowc
memchr
memcmp
memcpy
memmove
memset
mktime

modf

modff

NULL (stddef.h)
offsetof

open

perror

pow

powf

printf

ptrdiff_t

putc

putchar

puts

gsort

raise

rand
RAND_MAX
read

realloc
remove
rename
rewind

rint

scanf
SCHAR_MAX
SCHAR_MIN
SEEK _CUR
SEEK _END

SEEK_SET
setbuf

setjmp
settimeofday (User Pro-
vided)

setvbuf
SHRT_MAX
SHRT_MIN
sig_atomic_t
SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGFPE
SIGILL
SIGINT

signal
SIGSEGV
SIGTERM

sin

sinf

sinh

sinhf

size_t (stddef.h)
size_t (stdio.h)
size_t (stdlib.h)
size_t (string.h)
size_t (time.h)
snprintf

sprintf

sqrt

sqrtf

srand

sscanf

stderr

stdin

stdout
strcasecmp
strcat

strchr

stremp

strcoll

strcpy

strespn
strerror
strftime

strlen
strncasecmp

DS51685D-page 126

© 2009 Microchip Technology Inc.

Types, Constants, Functions and Macros

* strncat
e strncmp
* strncpy
* strpbrk
* strrchr

* strspn

e strstr

* strtod

« strtof

* strtok

* strtol

« strtoll

* strtoul

« strtoull
« struct timeval
e struct tm
e strxfrm
e system

tan

tanf

tanh

tanhf

time

time_t
TMP_MAX
tmpfile
tmpnam
tolower
toupper
UCHAR_MAX
UINT_MAX
ULLONG_MAX
ULONG_MAX
ungetc

unlink
USHRT_MAX

va_arg
va_end
va_list
va_start
vfprintf
vfscanf
vprintf
vscanf
vsnprintf
vsprintf
vsscanf
wchar_t
wchar_t
wcstombs
wctomb
write

© 2009 Microchip Technology Inc.

DS51685D-page 127

32-Bit Language Tools Libraries

NOTES:

DS51685D-page 128 © 2009 Microchip Technology Inc.

32-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Appendix C. 16-Bit DSP Wrapper Functions

C.1 INTRODUCTION

The PIC32 DSP wrapper functions are intended to help port existing 16-bit application
software using dsPIC® DSP library functions to PIC32 with the least modifications in

the software. The wrapper functions internally call the DSP library functions provided
by MIPS Technologies. The wrapper functions are available for some of the functions
supported by dsPIC DSP library.

Note: The DSP libraries from MIPS Technologies support a variety of signal
processing functions that have applicability in speech compression, echo
cancellation, noise cancellation, channel equalization, audio decoding, and
many other DSP and media applications. It is always advisable for the new
users to use MIPS Technologies DSP libraries.

C.2 PIC32 DSP WRAPPER FUNCTIONS LIST

These functions are supported by the DSP wrapper functions for PIC32 MCUs:

* VectorAdd16

* VectorAdd32

« VectorDotProduct16
« VectorDotProduct32
* VectorMultiply16

« VectorMultiply32

* VectorScalel6

* VectorScale32

* VectorSubtract16

¢ VectorSubtract32

¢ VectorPowerl6

¢ VectorPower32

* FIR

* FFTComplex16

» TwidFactorlnit16

* FFTComplex32

« TwidFactorlnit32

© 2009 Microchip Technology Inc. DS51685D-page 129

32-Bit Language Tools Libraries

C3
LIBRARY

DIFFERENCES BETWEEN WRAPPER FUNCTIONS AND dsPIC® DSP

PIC32 DSP wrapper function names, input parameters and return parameters are
maintained the same as that of dsPIC DSP library. However, these are some

differences:

TABLE C-1:

DIFFERENCES IN WRAPPER FUNCTIONS

PIC32 DSP

Name

Wrapper Function

FIR (int numSamps, TwidFactorlnit16 (int log2N,
short int* dstSamps, fractcomplex16* twidFactors,
short int* srcSamps, int conjFlag)

FIRStruct* filter

TwidFactorInit32 (int log2N,
fractcomplex32* twidFactors,
int conjFlag)

DSP Library

Differences with
Corresponding
Function of dsPIC®

Some of the parameters of the
structure “FIRStruct” are not
necessary for PIC32 library
function. Hence, it's not necessary
to initialize these parameters
before the “FIR” function is called.
These parameters are namely:
filter->coeffsEnd,

filter -> coeffsPage,

filter->delay End,

filter->delay

There is a provision in the
“TwidFactorInit” function of dsPIC
library, either to generate or not
generate a complex conjugates of
twiddles. It is controlled by flag
“conjFlag”. There is no such facility
in the PIC32 DSP library.
“TwidFactorInit16” and
“TwidFactorlnit32” in PIC32 don't
generate a complex conjugate of
twiddles. However, the parameter
is kept in the function prototype of
“TwidFactorlnit” of PIC32 to make
it compatible with dsPIC.

DSP Library

General Comments
Regarding PIC32

Number of coefficients in filter -
(filter->numCoeffs) must be larger
than or equal to 4 and multiple of
4.

Note 1:
2:

P1C32 supports both 16-bit and 32-bit vector math operations.

The current version of PIC32 DSP wrapper functions doesn’t support
floating-point calculations.

For all the vector math operations, the number of samples must be larger
than or equal to 4 or multiple of 4.

log2N must be larger than or equal to 3 for function “FFTComplex16” and
“FFTComplex32”.

All the source and destination pointers used for math operations must be
aligned on 4-byte boundaries.

The include file for these DSP wrapper functions is
mchp_dsp_wrapper.h.

DS51685D-page 130

© 2009 Microchip Technology Inc.

MICROCHIP

32-BIT LANGUAGE TOOLS

LIBRARIES

| ndex
Symbols Y o] 0113 To [USSRR 67,70
A, Caret 45 arccosine
Double Floating Point
Single Floating Point............ccocccevieiiiiieneeces
IOFBF 30, 45, 46 arcsine
Double Floating Point..........c.ccovevviiinieeiieene 79
Single Floating Point..........ccccooeeeviiiennece e 79
TIMON_PULC v esee e esseeese e ees e arctangent
TNSETIMP oo Double Floating Point...........cccccvvveeeiiiiienieeins 79
__’ DASH oo Single Floating Pointccccoveeeeieieiiee e, 80
\f, Form Feed arctangent of y/x
\N, NEWHNE oo, Double Floating Point...........c.cccoeiiiiiiiiieeens 79
\r, Carriage Return Single Floating Point...........cccoeoviiieeniiieen 80
\t, Horizontal Tab Argument List.........coooeeiiiiiiieeeieee, 27,48, 49,51
\v, Vertical Tab Array Alignment and Length Restrictions................. 97
Hf e ASCII Character Set
FHNCIUOE ...t ASCUME ...
0B, PEICENT et ASIN e
. ASINF...oc
Numerics asinh................
(0 PR 14,41, 62, 63 asprintf
A assertcceenne
o) ASSEITN (v
Abnormal Termination Signal...........ccccceeeviviieeneenn. 26 ASSEI oo
DO e 53 Assignment Suppression ...
ADS Lo 53
Absolute Value
Double Floating Pointccccoooeveiiineniiiine 83
[0 1=To o] O PTRR 53
LONG INTEYETeviiiiiiieiiiee e 57
Single Floating Point...........ccccccveeiiiiiiiiee e 83

Absolute Value Function

Alphabetic Character

DefiNnedoovvveieiiiiee e 11

IS A (] PP 11
Alphanumeric Character

DefiNedcooooviieeeeecee e 11

=5 0 (o] 11
AMIPM L 77

FLT _RADIX. ..o, 16, 17,18, 19, 20
Binary

© 2009 Microchip Technology Inc.

DS51685D-page 131

32-Bit Language Tools Libraries

Buffering, See File Buffering
BUFSIZ ...ttt 31,45

C

C LOCAIE ..o
Calendar TiMe.........coovvvevvvcieieeeeeeaens
calloc
Caret ()
Carriage Return...........ccccevvveeeeennee.
(o] o] AP

ceiling
Double Floating Point.........cccccovveiiiiiniee e 81
Single Floating Point..........ccccceveeiiiiiene e, 81
char
Maximum Value
Minimum Value
NUumber Of BitSooeeiiiiiiiieieiiie e
CHAR_BIT oo
CHAR _MAX ..ot
CHAR_MIN....coovierennn.
Character Arrayccoocceeireeee e
Character Case Mapping
Lowercase Alphabetic Character 14
Uppercase Alphabetic Character..................... 14
Character Case Mapping Functions
EOIOWET ... 14
FOUPPET ..ttt s 14
Character Handling, See ctype.h
Character Input/Output Functions

o[- (RSOSSN

PULC ettt
putchar
PULS et
0] 3T 1= (o TP PPTO PR
Character Testing

Alphabetic Character

Alphanumeric Character
Control Character..........ccceveeeeiiiee e
Decimal Digit.......cccoeerveeeiiieeeiieeiece e
Graphical Character
Hexadecimal Digit.....................

Lowercase Alphabetic Character...................... 13
Printable Characterccccoovvveniiiniiee i 13
Punctuation Characterc.ccccevvveeiniieenninenn. 13
Uppercase Alphabetic Character 14
White-Space Character..........ccccovveveiiieeennenennns 13

Character Testing Functions

ISAINUM ... 11
ISAIPNA......iiiii 11
iscntrl
isdigit
ISOIAPN ..o 12
(1] [0V RS 13

K] 0111 | USRI
ispunct
isspace
isupper
isxdigit
Characters
Alphabetic
Alphanumeric ...
(] 011 7] PSPPSR
Convert to Lowercase Alphabetic
Convert to Uppercase Alphabetic
Decimal Digit
Graphical.......cccccoooeeiiinenns
Hexadecimal Digit
Lowercase Alphabeticcccocveeviiieiieeinnenn,
Printable
PUNCtUAtioNcovviiiiiiiieeece e
Uppercase AlphabetiC..........ccccvvvieiiieiiiiinenee
White-SPACE......cceiiiiiiiiiiiciieiiiee e
Classifying Characterscccoceveviieeiiieesniee e
clearerr
Clearing Error Indicatorccocvveiiiieiiieeenne.
ClOCK ..

Common Definitions, See stddef.h

COMPAre SEHNGS «oeovvveierieeeeririe e 68

Comparison FUNCHONcocvviiiiieeiiee e 55, 59

Comparison Functions
MEMCIMIP Lottt 66
SETCIMIP ettt
SOl
strncmp
SEXTTIM Lo

Compiler Options
-fno-short-double...........ccccoiiiini 30
SMSMANT-I0 ... 29

Concatenation Functions

SINCAL .o 70
Control Character
Defined.............
Test for.............
Control Transfers
CONVEISION .t
Convert
Character to Multibyte Character 64
Multibyte Character to Wide Character 59
Multibyte String to Wide Character String......... 59
String to Double Floating Point 54,61
String t0 INtEGEr......oveiiii e 54
String to Long Integer........cccoevveinieeeiienennns 55, 62
String to Unsigned Long Integercccccccou. 63
To Lowercase Alphabetic Character 14
To Uppercase Alphabetic Character 14
Wide Character String to Multibyte String......... 64
Copying Functions
MEMCPY ...eniiiiiiiriiiiiiiiiir e 66
MEMIMOVE ...oiiiiiiieeeeiiiieee et e e 67

DS51685D-page 132

© 2009 Microchip Technology Inc.

SECPY crerveriierieteieie et
strncpy

(o70] 0]V T | FS PRSPPI

cosine
Double Floating Pointcccccooeeeiiieeiiniine 81
Single Floating Point
ClIME oot
ctype.h .o,
isalnum
ISASCIl +veveee e ettt e e
iscntrl
isdigit
ISOIAPN ...
ISIAPhA ...
ISIOWET ..ottt
ispring
ISPUNCE ..
ISSPACE ... eeeiireeeerie et e
isupper
isxdigit
tolower
10010 o] o 1= SR TP U PP PR PR
Current ArgumMEeNtcooeeriimiiee e
Customer Notification Service..
Customer Support.......ccccceeenunee

D

DASh ()t 45
Date and TiMec.ceeiiieriiiee e 77
Date and Time Functions, See time.h
Day of the Month.........cccooiiiiiiiicc 73,74, 77
Day of the WeeKccccoeeiiiiiiiiiieice 73,74,76
Day of the Yearccocove e 73,77
Daylight Savings Timecccoceevveeeeeiinnnennn. 74,75,76
DBGETC(canblock)
DBGETWORD(int canblock)c.ccovvvveveeeinnnnn. 121
(D]) PR
DBL_DIG......ccceenee.
DBL_EPSILON
DBL_MANT_DIG
DBL_MAX ittt
DBL_MAX_10 _EXP .coiiiiiiiieiiieeeiieeeeeee e 16
DBL_MAX_EXP ..ccccvevviveeiiinnns
DBL_MIN ...ocoviieiiiee e
DBL_MIN_10_EXP
DBL_MIN_EXP ...ttt e
DBPRINTF().ccteeeiieiei ettt
DBPUTC(char c) .
DBPUTWORD(INt W)....eeveiiieeriireiieeeiieeseneeesseeees 121
DBSCANF() coovieeeeeie e seieeestieesiee e e e nee e s 120
Deallocate MemOoryccoceevvvveiieeeenrieesnee e 56, 60
Debugging LOgiC Errorscccovveeeeeiviveeeeesiiiieeeen 11
DeCimal.....coovuiiiiiieeiiee e 42, 45,62, 63
Decimal Digit
DefiNedccooieiieie e 12
Number Of ..., 16, 17,19

TSt O ittt 12
Decimal POINt...........oooiiiiiiieree e 41
Default Handlercooeeeiiiiiiiiiiiieeeeeeeeeeeen 25

Diagnostics, See assert.h

Diagnostics, See unistd.h

IfftIME e 75
Digit, Decimal, See Decimal Digit

Digit, Hexadecimal, See Hexadecimal Digit

Direct Input/Output Functions

Divide
INEEOEN ...
Long Integer

Divide by Zero ..o

Documentation
CONVENLIONS ...ttt 2
LAYOUL ..o 1

Double Precision Floating Point
Machine Epsilon...........c.ccceoueee.
Maximum Exponent (base 10)....
Maximum Exponent (base 2)cccccocvveirneennn
Maximum Valueccoociiiiiiiiiiieiieeeeeee
Minimum Exponent (base 10)
Minimum Exponent (base 2)........

Minimum Valuecccoeceernnenn.

Number of Binary DigitScccceevuviiiiieeiniiennnns

Number of Decimal DigitSccccvrrrveeiiinnennns
double Type

Dream FUNCHON........cciiiiiiiiee e

DSP Library Functions by Category
(General PUrPOSE)vveeeiiiieiiie e

Ellipses (...) coeeevverenininnnne
Empty Binary File ..o,
Empty TEXE FIlE ..ooviiiiiiieee e
ENd Of File cocovveieiei s

Indicator

ENOMEM ..ocooiiiiiiiiieee ettt
Environment Function
JELENV oo 57

© 2009 Microchip Technology Inc.

DS51685D-page 133

32-Bit Language Tools Libraries

EINVAL ... 15
ENOMEMcooiiiiiiiiiiice 15
ERANGE

Error COES.....cvvvvveieeeeeeeeeeeeeeee e
Error Conditions
Error HANAIErvvvvviiiiieeiiiieeeeeeeeeeeeee e
Error Handling Functions

(o1 [ST= 1 (=T 4 R

perror
[o] [aTo [[oF=\ (o] AP
Error Indicators
Clearing......ccceevivrenieiee e
End Of File

[=5 S oL TSROt
Error Signalcooviiiiiiiieeccciee e
Errors, See errno.h
Errors, Testing FOr ... 15
EXCEPLION EXTOF ..ooiiiiiieiiieciiee e

EXIT_FAILURE................
EXIT_SUCCESS

EXPML Lo

Exponential Function
Double Floating Point
Single Floating Point..........ccocoviieiiiee e,

FOBIPOS v
FOOLS i
Field Width

File Access Functions
FClOSE . i 34

FOPEN 1
freopen
SEthUT .
setvbuf
File ACCESS MOUESvvvvvieiiiiieieieeeeeeeeeeeeeeeeeeea, 29, 36
File Buffering
Fully Buffered.........coooveieeiiiieeee e 29,30
Line Buffered..........ccoeeeeeeeiiiiiiiiiiiiiieeeeeeeeee 29,31
Unbufferedeeeeieiiiieee e 29,31
File Operations

FILENAME_MAX ...t

File-Position Indicator
Files, Maximum Number Open
NI e —————
Fixed-Point Types ...

DBL_DIG....iiiiiiiieeiie st
DBL_EPSILON.....ccitiiiiieieeniie i
DBL_MANT_DIG.......ccuee..e.
DBL_MAX ..oooiiiirieieceieee
DBL_MAX_10_EXP
DBL_MAX_EXP ...oooiiiiiiiiiiiie et
DBL_MIN . ..eiiiiiiiieeiiee et
DBL_MIN_10_EXP
DBL_MIN_EXP ...oeiiiiiiieiieeieeeeeiee e
FLT_DIG ittt
FLT_EPSILON ...ooiiiiiiiecieeeece e
FLT_MANT_DIG ..coiiiiiieiieiie e
FLT_MAX
FLT_MAX_10_EXP..ooiiiiiiiiiiiiceiee e
FLT_MAX_EXP .ttt
FLT_MIN oo
FLT_MIN_10_EXP
FLT_MIN_EXPccovirrnnn
FLT_RADIX ettt
FLT_ROUNDSooitiiiiieeeiie e
LDBL_DIG....ccceivieieeeieene
LDBL_EPSILON..................
LDBL_MANT_DIG
LDBL_MAX ..ttt
LDBL_MAX_10_EXPccceiiiiiiieiecnie e
LDBL_MAX_EXP
LDBL_MIN ..ottt
LDBL_MIN_10_EXP ...ccocviiiiiiricnieiieeieenie
LDBL_MIN_EXP ...ccvtiiiiiiiiiieiiceiee e
Floating Point

LIMIES et 16

Types, Properties Ofccoocvviiieiiiieenieee e, 16
Floating Point, See float.h
Floating-Point Error Signalccccovvveeiiiieeiniennnns 26

DS51685D-page 134

© 2009 Microchip Technology Inc.

FlOOT o 84
Double Floating Pointcccccevieiviiieieeciie, 84
Single Floating Point..........cccoovvviiiiiiee e 84

FlOOIT e 84

FLT_DIG oottt 17

FLT_EPSILON ..ottt 17

FLT_MANT_DIGoiiiiiiiiriiieiee st 17

FLT_MAX ottt 18

FLT_MAX_10_EXP...ooiiiiiiiieiie e 18

FLT_MAX_EXP ..ottt 18

FLT_MIN ottt 18

FLT_MIN_LO0_EXP ..cociiiiiiiiiiciie it 18

FLT_MIN_EXP ..ot 18

FLT_RADIX ottt 18

FLT_RADIX Digit
Number Of ..., 16, 17,19

FLT_ROUNDS ...ttt 19

FIUSH <o 34,56

MO o 84

FMNOAF . 84

-fno-short-double............ccoiii 30

fOPEN e 29, 36, 40, 46

FOPEN_MAX ...ttt 31

FOrm Feedccoviiiiiiiiccc e 13

Format Specifiers.......ccccvvveeiiiiiiiieeeniieesee 41,44

Formatted 1/0O ROULINES..........ccerviiiiiiiiniic e 29

Formatted Input/Output Functions
FPFINEE e 36
fSCANT oo 38
PN e 41
SCANT L.t 44
SPIINEE e 46
SSCANT L a7
VIDRIINEE o 48
VPIINE e 49
VSPHNT Lo 51

Formatted Text
PrNTING . ..eeeeieeie e 46
SCANNING .veeeiieee et a7

FPOS_t e 30

FRFINET e 29, 36

FPULC e 37

FPULS o 37

fraction and exponent function
Double Floating Pointccccovvveiiiieriiiine 85
Single Floating Point..........cccocviviieiiiiee e 85

Fraction DiIgitSccovieeeiniriieiieee e 41

fread .. 37,93

FrEE e 56

Free MEMOIY 56

frEOPEN ... 29, 38, 40

FTEXD ctee e 85

FEEXPT e 85

FSCANT .o 29,38

FSEEK .ttt 38, 48, 92

FSELPOS ..evveiiiiiee e 39,48

FSILL e 65

FEEIL e 39, 92

FUll BUFFEriNgoooeveeeeeee e 45, 46

Fully Buffered........ccccooviieiiiciceee e 29,30

TWHIEE et e 39
G
BLC 1iiiiei e 39
GEIChAN .. 40
JELENV . 57
OIS i 40, 93
gettimeofday........ccovvevi i 75
GMT e e 75
OMEIME 1o 75,76
Graphical Character
Defined.........coooie e 12
TSt TOr e 12
Greenwich Mean Timeccccoiiiiiiiiiiiiieee e 75
H
N MOdIfier ... 42,44
Handler
Default.......cooiiiiiiiiice e 25
EFTO oo 56
NESIEA. ... 24
SIONAL ..o 25
SIGNAI TYPE oo 25
Handling
Interrupt Signal..........ccco i 27
Header Files
ASSEI.N o 11
CLYPE.N e 11
EIMTNO. N 15,78
Float.n e 16
HMIES. N 21
locale.n.......cooiiiii 23
math.h..........oo e, 78
SEMP.N o 24
SIGNALN ... 25
stdarg.h ..o, 27
stddef.h ..o, 28
SEAIO.N e 29
StAID. N 52
SINGN e 65
SYS/APPI0.N ..o 120
HME.N (e 73
UNISt. N oo 92
Hexadecimalcccoevvieeniiiiniiie e 42, 45,62, 63
Hexadecimal CoNVversionccceeeeeiiiieeeeeseeieeen. 41
Hexadecimal Digit
Defined.........coooiiiir e 14
TESETON e 14
Horizontal Tab........cccoiiieiiiiieie e 13
HOUT oo 73,74, 77
HUGE_VAL ..ooiiiiiee et 78
Hyperbolic Cosine
Double Floating Point..........c.ccovveveiiinieeiieene 82
Single Floating Point..........cccccoeoviiiee e, 82
Hyperbolic Functions
COSN Lo 82
COShT oo 82
SINN Lo —————— 90
SINNF Lo 90
EANN L 91
TANNT .. 91

© 2009 Microchip Technology Inc.

DS51685D-page 135

32-Bit Language Tools Libraries

Hyperbolic Sine

Double Floating Point..........ccccovveeeeiiiiieee e 90

Single Floating Point...........ccccoveee e, 90
Hyperbolic Tangent

Double Floating Point.........cccccovveiieiiniee e 91
hyperbolic tangent

Single Floating Point
NYPOL e

I
Ignore Signal........ccooeviiiee i 25
lllegal Instruction Signalccccoeireeeiiieeneeee 26

Implementation-Defined Limits, See limits.h
Indicator
End Of File

INFINIEY e
Input and Output, See stdio.h
INPUL FOrMALSooeiiiiiiiee e 29
int
Maximum ValUEcccvvvvvveieieieiiieeeeeeeeeeeeeeeeeeans
MinIMUM Valueccoovvviviiirieieieeeeeeeeeeeeeeeeee,
INT_MAX oottt
INT_MIN ..o
Integer LimitS.........c..cvee.
Internal Error Message
Internet Address, MICroChip........ccccevvveeiiieeniiiee e 4
INterrupt Signal........cccooveiiiiiene e 26
Interrupt Signal Handling.........cocovevieeeiiiceece e 27
Inverse Cosine, See arccosine
Inverse Sine, See arcsine
Inverse Tangent, See arctangent

(1Y Y | 12
ISCINTIL .. 12

islapha
islower

5] 11| PSPPI
ispunct
isspace
isupper
isxdigit

L modifier
[0 To [} 1= N

LC COLLATE ..ot
LC CTYPE oo
LC_MONETARY
LC_NUMERIC ...
LC_TIME w.eoeeeeeeeeeeeeee e
Iconv, struct.............
LDBL DIG..............
LDBL_EPSILON.....
LDBL_MANT_DIG
LDBL_MAX ettt
LDBL_MAX_10_EXP
LDBL_MAX_EXP

Leap SECONMcoovviieiiiieiieee e
Left JUSHIY .oooeeee e
Libraries
Standard C......ooouvieiiiiiii e
Standard C Math
Limits
Floating Pointcccoeeeiiiiiiee e,
INEEYEY .o
HMIES. N e
CHAR_BITS....
CHAR_MAX
CHAR_MIN
INT_MAX e
INT_MIN. e
LLONG_MAX ...
LLONG_MIN
LONG_MAX. ittt 22
LONG_MIN. .ooiiiiiiiiiieniiie e 22
MB_LEN_MAX. ..ottt 22
SCHAR_MAX
SCHAR_MIN ..ot
SHRT_MAX .. i en e
SHRT_MIN
UCHAR_MAX.....cooeiiieanne
UINT_MAX. .o
ULLONG_MAX ..iiiiiiiieeiiieeenee e eeee e
ULONG_MAX ..oiiiieeireeiiee e eiee e sieeaeiine e
USHRT_MAX. ..ccoieeiireenee

LLONG_MIN...oiiiiiiieeiie e ceee e e e
Load Exponent Function
Double Floating Point..........ccccoceeiiieiiieeinneen. 86
Single Floating Pointccccccceee i, 86

DS51685D-page 136

© 2009 Microchip Technology Inc.

LOCAl TIME vt 75,76
(o To%= | [T TR 11, 23
Locale, Othercooeeeieeiiieeeecee e 23
locale.N..coo e 23
10CAIECONV ... 23
Localization, See locale.h
[0CAIIME ...t 75,76
Locate Charactercccoccveviieeeiiiee e 68
[OQ -t 86
10910 ... 87
[OGL0F ..o 87
JOGLP et 87
Logarithm Function

Double Floating Pointccccceviiiviiiereesiie, 87

Single Floating Point..........cccoooiviieiiiee e 87
Logarithm Function, Natural

Double Floating Pointccccoovveiiiieniieinn 86

Single Floating Point...........ccccccveeeeiiiiiiee e 88
10D e 87
LOG et 88
Logic Errors, Debuggingccceevvereririiniieenniieens 11
Long Double Precision Floating Point

Machine EpSilonccccovvvieiiieeeiiiee e 19

Maximum Exponent (base 10)..........cccoevvrennen. 19

Maximum Exponent (base 2).........ccccceevvveennnn 19

Maximum Valueccccoevriiieniiee e 19

Minimum Exponent (base 10)..........ccccovvvrennen. 20

Minimum Exponent (base 2).......cccccceevvverennnen. 20

Minimum Valuecccccoriiiiiiiiee 20

Number of Binary DigitS..........cocoeveivieeinnirennen. 19

Number of Decimal DigitSccccovveeivnieennnnn. 19
long int

Maximum Valueccccoooiiiiiiiiiieee e, 22

Minimum Valuecccccooiiiiiiiii e 22
long long int

Maximum Valuecoccoeevriiiiiiiee e 21

MInNIMumM Valueoooviieiiiiiiieeeee e 21
long long unsigned int

Maximum Valueccccoioiiiiiiiieee e 23
long unsigned int

Maximum Valueccccooviiiiiiiiiieee e 23
LONG_MAX ...ttt 22
LONG_MIN ..ttt 22
[ONGJMP oo 24
Lowercase Alphabetic Character

CONVEIT TO o 14

DefiNedcooieiieee e 13

TESETON it 13
ISEEK. ..t 34, 38, 39, 40, 92
M
Machine Epsilon

Double Floating Pointccccceeiviiiiieneecine, 16

Long Double Floating Pointccceevvvvrennee. 19

Single Floating Point...........ccocovvvvieiiiiee e 17
Magnitudecococveirieee e 78,82, 83, 84,90
MAIOC ..cei et 56, 58
Mapping Characters.........cccooveeeeivieeeiiiinieeesiie e 11
Math EXCeption Errorcccovveeeiiieniiiiinieeeniie e 56
MAtN.N L 78

= (o101 PP PP 78

ACOST. et 78
ASIN. 1ttt 79
ASINT e 79
ASINN e 79
= 1= 1 o 79
ALANZ. oo 79
ALAN2S. oo 80
ALANT. e 80
ALANN . 80
(o1 o] o SRR 80
(o7 | DN 81
CIlf ittt 81
[o0] o) VA= o | o F PSP OUPR 81
COS ittt ettt e e e e e e et e e e e e e e e et aaaaaaaans 81
(70 1) TN 81
(o701 SO 82
COSNT e 82
[0 1T 12 OO 82
XD ettt 82
XD e 83
EXPML oo 83
FADS e 83
FADST e 83
FINIEE s 83
FlOOT . 84
FlOOK .. 84
MO e, 84
fMOF e, 84
FEEXP et 85
FTEXPT e 85
HUGE_VAL. ..ooooiiiiiiie et 78
NYPOL ..o 85
(15 | R 85
ISNAN L. 86
[AEXP et 86
IAEXPS <o 86
[0G et s 86
10910 ..o 87
[0GL0F ..o 87
[OGLP et 87
10D . 87
1OGF e 88
070 Yo | TR 88
070 Yo 1 TR 88
POW .ot 88
POWT .o 89
10 TR 89
SN e a e 89
SINT ettt ————————— 89
SINN e ———————— 90
SINNTE e 90
SO ettt 90
SO ettt 90
BAN e 90
BANT s 91
TANN L —————— 91
tANNT s 91
Mathematical Functions, See math.h
Maximum
Multibyte Character...........ccoevvveiiiiiniieeinieeene 53

© 2009 Microchip Technology Inc.

DS51685D-page 137

32-Bit Language Tools Libraries

Maximum Value

Double Floating-Point Exponent (base 10)....... 16
Double Floating-Point Exponent (base 2).......... 17
Long Double Floating-Point Exponent
(basSe 10) ..oevevrriirieie e 19
Long Double Floating-Point Exponent (base 2) 19
Multibyte Character...........c.cccocvvieeeeiiiiiiee e 22
AN .t 53
Single Floating-Point Exponent (base 10)......... 18
Single Floating-Point Exponent (base 2)........... 18
TYPE CHAT . 21
Type DOUDBIE ... 16
TYPE INT ettt 21
Type Long Double.........cccceeeviiiiiniiiiiieeniieee 19
TYPE IONG Nt woiiiiiiiie e 22
Type long 1oNg iNt........cooieiiiiie e 21
Type long long unsigned int...........ccoceeeiienenns 23
Type long unsigned int..........ccccoeveeiiiieeniiinnne 23
Type ShOrtintcvveeeieiee e 22
Type signed charccocceeviiiiiii e 22
TYPE SINGIE ..o 18
Type unsigned Charcccccveeiieeeiiieeenieees 22
Type unsigned iNt.........cocceeeiiiienieee e 23
Type unsigned short int...........ccoeeeeiiieeenieeenns 23
MB_CUR_MAXooiiiiiiiiiiiiieiee st 53
MB_LEN_MAX ..ottt 22
MDBIEN e 58
MBDSTOWES ..t 59
MDTOWC ... 59
MEMCKE L.t 66
MEIMCIMIP .ttt ettt e e e e ns 66
IMNEIMCPY vttt e ettt e e e ettt e e e s e nne e ee e e e b e e e e e e neneeeee s 66
MEMIMOVE ..t e e e e e e 67
Memory
AlOCALE ... 56, 58
DealloCatecccuvririeiiiciie e 56
Fre ..t 56
Reallocatecccoeevieiiicici e 60
MEMSEL ... e 67
Minimum Value
Double Floating-Point Exponent (base 10)....... 17
Double Floating-Point Exponent (base 2).......... 17
Long Double Floating-Point Exponent
(base 10)eeveeeiiieieeeeeee e 20
Long Double Floating-Point Exponent (base 2) 20
Single Floating-Point Exponent (base 10)......... 18
Single Floating-Point Exponent (base 2)........... 18
TYPE Char ..o 21
Type DOUDIE ... 17
TYPE INT ettt 21
Type Long Double..........cccceoviiinieiiiieecieeee 20
TYPEIONG INT oeeiiiiiiie e 22
Type long 1oNg iNt........oooiiiiiii e 21
Type ShOrtintcvveevieicc e 22
Type signed char ... 22
TYPE SINGIE .. 18
MINUEE ... 73,74, 77
MIPS Technologies Inc.’s DSP Library Notices 117
MIPS_FIEL6...cceeieieiee e 111
MIPS_fit16_SEtUP ...covvviiiiiie e 112

MIPS_fEB2 .o 113
Mips_fit32_Setup ...ccoovveeiiiie e 114
MIPS_fIrL6 ..o 107
MIPS_firl6_SetUPoovvieeiiiieeece e 108
MIPS_N264_iqt.....ccveeiiie e 114
Mips_h264_iqt_Setupccooveeeiviiieiiceeeee e 115
mMips_h264_mc_lumacccoevvviiiiiineiieeece e, 116
MIPS_IITL6 .ot 109
MIPS_IIFL6_SEIUP «.evveiieee e 110
MIPS_IMSLO ..o 111
MIPS_VEC_ADSL6ooeiiiiiiiiiiec e 98
MIPS_VEC_aDS32eeiiiiiiiiriiiee e 98
MIPS_VEC_addl6ccceviiiiieiiiiieiiiee e 99
MIPS_VeC_add32cccceiviiieiiiieciiee e 99
MIPS_VEC_addCLlBcccoovvvveiiriieieeenieeee e 100
MIPS_VeC_addC32cccccvvieeiiniieieeeee e 100
MIPS_VEC_AOPLB ...ooevvveeiriieiiiee e 101
MIPS_VEC_dOtP32ooviiiiiiiiee e 101
MIPS_VEC_MUILEoooviiiiiiie e 102
MIPS_VEC_MUI32oooiiiiiiiie e 103
MIPS_VEC_MUICLG.....cocvveiiiieeiiee e 103
MIPS_VEC_MUIC32.....cooieiiiieeie e 104
MIPS_VEC_SUDLOoooiiieiiiiieeiee e 104
MIPS_VEC_SUD32 ...oviiiiiiiiiiieeeiiee e 105
MIpS_vec_sum_squaresl6..........ccccceiiirenieennnnen. 106
MIPS_VEC_SUM_SQUArES32.....cevverureeeeireeenireeenenens 106
MKEIME .. 76
MO e 88
MOAF <o 88
modulus function

Double Floating Point............cccccovvvvvivee i, 88

Single Floating Pointcccoooiiiviiiiiiieeiieens 88
MONTH L. 73,74,77
SMSMAIT-I0 1t 29
Multibyte Characterccccovevvervnrrennne 53, 58, 59, 64

Maximum Number of Bytes..........ccccocvevverinnnnn 22
Multibyte String........cccveevieniiiiieneeeceeseeee 59, 64
N
NAN L 78
Natural Logarithm

Double Floating Point..........ccccoceeviiiennieeinnenn. 86

Single Floating Pointcccoooveeviiieiiieeiieees 88
NDEBUGcutiiiiiiieiiiniiceiee et 11
Nearest Integer Functions

CEIl ettt 81

CeII e 81

FlOOK <. 84

FlOOrT .. 84
Nested Signal Handlerccccoviviiiiee e 24
Newline........cccoeeerviinicnnene. 13, 29, 35, 37,40, 41, 43
NO BUFfEringccoovveeeeiiiiiiie e 29, 31, 45, 46
Non-Local Jumps, See setjmp.h
NSETIMP ..ottt 24
NULL et 28, 32,53
O
OCtAl .o 42,45, 62, 63
Octal CONVEISION........uuiieeiiiiiiiee e eeiiiiee e 41
OffSELOf. ... 28
OPBIN ettt e 40

DS51685D-page 138

© 2009 Microchip Technology Inc.

Index

OULPUL FOIMALS ...ceeeiiiiiiice e 29
Overflow Errors..........eeeveeee..... 15, 78, 82, 83, 86, 88, 89
OVErIAP ovveiiiieecee e 66, 67, 68, 70
P

Pad Charactersooeevvuieiieieieeeeeeeeeeee e 41
Percent

91T 0] SR P USRS PR
PIC32 Debugging Support, See sys/appio.h
PIC32 DSP Library

PIUS SN ..o
Pointer, Temporary
010 1
Power Function
Double Floating Pointccccceeeiivivieieesiine, 88
Single Floating Point............ccccvveeiiiiiiiiee e 89

Power Functions

Printable Character

Defined
Test for
PrN .o

Processor Clocks per Second
Processor TIMEcocovvvvviriririeieiieeeeeeee e
Pseudo-Random Number
Prdiff_t. ...,
Punctuation Character
D=1 {1 T=To 13
=5 0 (o OO
Pushed Back
PULC ceiiiiiiiiie e 42
PULCHAN ... 43
PULS Lo 43
Q
OSOMT ..t 59
QUICK SOt ..o 59
R

Range Error
(Y= (o [T
Reading, Recommended
FEAIIOC ovveveieieieee e

Reallocate Memorycccovvveeeiiiieiieieneeesiee e
Registered FUNCLIONSccoviviiiiieecieeec
Remainder
Double Floating Pointcccceveviviiiereeciie, 84
Single Floating Point...........ccccccveeeiiiiiiiee e 84
Remainder Functions
fMOA .. 84
MO ..o 84

S

Saturation, Scaling, and Overflow...............ccccuvvee... 96
Scan Formats

SCHAR_MAX
SCHAR_MIN ...
Search Functions

strspn
strstr

Seek
From Beginning of File...........ccccceeeeiiiienieens 38
From Current POSItioNcovvvvvieeeiiiiiiiiiieeen, 38
From End Of Fil€.....cvvvvvviiiiiiieieiiiccceeiiins 38
SEEK_CUR
SEEK_END
SEEK_SET......
SEthUf ..o

IMP_BUF e 24
[ONGJMP e 24
SELMP eeeeeitieee e 24
SEHOCAIE ... 23

short int
Maximum Valuecoooovvvveviiiieeeeeeeeeeeeeeen, 22

Minimum Value
SHRT_MAX...oiiiiiiiiiieeees
SHRT_MIN ..ooiiiiiiiie e
sig_atomic_t
SIG_DFL
SIG_ERR
SIG_IGN..........
SIGABRT ...
SIGFPE ...t
SIGILL
5] [1 T
Signal

Abnormal Termination..........ccceeeeeeeeeeeiiiveeninnnnnn. 26

Floating-Point Error
JONOTE .t
lllegal INStrUCIONeeveiiiieeiiiii e
INEEITUPT. ...

© 2009 Microchip Technology Inc.

DS51685D-page 139

32-Bit Language Tools Libraries

REPOMING ..eeeiiiieiiieieece e 27
Termination REQUESE.........ccovvvieviiee e 26
SIGNAL ..o 26, 27
Signal Handler ... 25
Signal Handler TYPe.......coovvvviiiieeiieeee e 25
Signal Handling, See signal.h
SIgNALN oo 25
TAUSE ..eievieree sttt 27
SIQ_AtOMIC_Leeeiiiiiiiiieeiieeeee e 25
SIG_DFL ittt 25
SIG_ERR i 25
SIG_IGN ittt 25
SIGABRT ..ottt 26
SIGFPE ...ttt 26
SIGILL ctiiie et 26
SIGINT it 26
SIGNAL .. 27
SIGSEGV ...ttt 26
SIGTERM....coiiiiiiiiiiciic et 26
signed char
Maximum Valueccccoovieeeniiienieinee e 22
MINIMUM Valuecooeeeiiiiie e 22
SIGSEGV ittt 26
SIGTERM ...oiiiiiiiiitciett et 26
SIN ettt 89
sine
Double Floating Point..........ccccovveiiiiiniee e 89
Single Floating Point...........ccccovee e, 89
SINT e 89
Single Precision Floating Point
Machine EpSilon.........ccccoveeeiiiireniiiiniee e 17
Maximum Exponent (base 10)cccccceerrunenn. 18
Maximum Exponent (base 2)cccccocveernnnenn. 18
Maximum Valueccccoorieeiniiieniiceee e 18
Minimum Exponent (base 10)ccccocoeerrineen. 18
Minimum Exponent (base 2)ccccceevuveeiiinnenn. 18
Minimum Valueccoooveviiiiiicc e 18
Number of Binary DigitSccccevvviiriieeiinnnnns 17
Number of Decimal Digitscccccvvrieeeiineenne 17
SINN L 90
SINNT . 90
SIZE it 42
SIZE bt 28, 30, 52, 65, 73
SIZEOF ..t 28, 30, 52, 65, 73
SNPFNTF Lo 46
Sort, QUICK ..o 59
Source File Name........ccccvvvviiiieeeie e 11
Source Line NUMDETcccveviiiiiiienie e 11
SPACE it 41
Space Character
Defined........ooiiiiiiie e 13
TSt FOr e 13
SPECITIEIS ..vvviieee e 41,44
SPIINEE oo 29, 46
L]0 | £ APPSO PPPPROP 90
SO ettt e 90
Square Root Function
Double Floating Point..........ccccovveiiiiiniiee e 90
Single Floating Pointccccovvee e, 90

Square Root Functions

SO ettt 90
SO ettt 90

L] = [0 PRSPPI 60
SSCANT ... 29,47
Standard C Librarycccoviiiieeiiee e 9
Standard C Locale..........c.ceevcvieiiiiiiienee e 11
Standard ErTOr.......c.ccovoieiieniiciicneesee e 29,32
Standard INPUL.........ceiiiiiiniiee e 29,32
Standard OULPULoocvveeriiiiiiie e 29, 32
SEAM-UD...oeeeeeeee e 29
StAArG.N oo 27
(V- T Lo [P PRSURRR 27

VA BN oo 27
VA_lISt.uiiiiiiiiie e 28
va_Start ..., 28
StAde . N 28
NULL cceceee e 28
OffSELOf i 28
PEAIff_t e 28
SIZE Lt 28
WCNhAr_teeii i 29
SEABIT . 29,31,32,41
SN e 29, 31, 32, 40, 44
SAION . 29
IOFBF.....ociiiiiiiiet e 30
IOLBF ..ottt 31
_AONBF e 31
_MON_PULC ..coiiiiiiiiiiiiiiccc e 33
ASPINTF Lo 33
BUFSIZ ..ot 31
ClEANEIT ..ot 33
EOF .o 31
FClOSE e 34
FEOT e 34
FOITON e 34
FAUSH ..o 34

10 =] (R U PRR 35
FOBIPOS oot 35
FOBLS o 35
FILE . oottt 30
FILENAME_MAXooiiiiiiiiiienieeee e 31
FOPEN 1 36
FOPEN_MAX ..ottt 31
FPOS_t et 30
FRFINEE e 36
FPULC oo 37
FPULS oo 37
fread ..o 37
fIEOPEN ..ot 38
FSCANT....ee i 38
FSEEK .t 38
FSELPOS. ..t 39

Bl e 39
FWITEE et 39
GEIC ittt 39
QELCNAN (i 40
OELS o 40
L_tmpnamcoooorieee e 31
NULL cccteeee e 32

(0] 1] o PP PUPRPUPPPPP 40

DS51685D-page 140

© 2009 Microchip Technology Inc.

8114 (o] SO TP RPN 41
PN e 41
PULC ... 42
PULCNANeiiiiiieie e 43
PULS ... 43
FEMOVE ...ttt e e e e e e e e e e e e e e e e eeesraeaaans 43
FENAME ... cciiiieieeiiiee e ee e e ee e e e e e e e e e e e e eeeerreaaans 43
FEWING ..ottt 44
SCANT e ——— 44
SEEK_CUR ...t 32
SEEK_END....iiiiciiie e 32
SEEK _SET oot 32
SEtOUf ..o 45
SEIVOUT ..o, 46
SIZE T .o 30
SNPFNF Lo 46
SPIINEE e 46
SSCANT ..ot 47
LS (0 [U 32
SEAIN oo 32
1) (o (01U) AU 32
TMP_MAX oot ee e e e 32
IMPFILE oo a7
EMPNAM L 47
UNGEIC evviiiiiriiieriiir et e e e e ee e e e e e e e s e e ess s saennenennenees 48
VIPIINEE e 48
VESCANT Lot 49
VPIINE e 49
VSCANT et 50
VSNPINET (o 50
VSPHNT Lo 51
VSSCANT . et 51
L1001 2 o T 52
F= 010 o USRS 53
ADS e ——— 53
Fo (=) (| APPSR 54
ALOT . i 54
2 (0] U 54
= Lo | SR 55
ALONl . 55
bSEarChcooovieeeeee e, 55
CAllOC. ... 56
AIV e 56
AIV_ T 52
BXIE et —————— 56
EXIT_FAILURE ...t et 53
EXIT_SUCCESScccoe et 53
fTEE 56
JELEINV . 57
[ADS ..o 57
(o 1 O 57
IAIV_ oo 52
ADS v 57
IV 58
HAIV e 52
MANOC ..vviiiiiiiiiiiiieeeee e 58
MB_CUR_MAX ..oieiiie ettt e 53
(0]][] o RN 58
MBDSIOWES ..o 59
1001 0] (0} oSSR 59

NULL cce e 53
OSOMT ettt 59
(7= 10 o PRSP 60
RAND_MAX ..oiiiiiieee et 53
FEAIIOC .o 60
SIZE L 52
SFANG ...t 60
SEEOT .. e 61
SHOF e 61
L] 11 (o PRSI 62
£} 1 (o] | PSSR 62
SEEOUL . 63
SEEOUIL e 63
SYSEEM it 64
WChAI_t .o 52
WCEOMD ... 64
WXSTOMDS Lo 64
SEAOUL ..o 29,31, 32,41, 43
SEICASECIMP ..ceiieiiiiiii ettt 67
SEICAL «eeeieiee et 67
SECRF e 68
SIICMP 68
SO 68
SEICPY ettt 68
LS 1 (01] o] P PP U PP PP 69
SHEAMS ... 29
BINANY ... 29
BUFFEMNG...eeeiie e 46
ClOSING v 34, 56
OPENING .« 36
Reading Fromc.ccooviiiiiiiiiiiee e 39
TOXE et 29
WItING TO. i 39,42
SITITON .t e e eees 69
SHHIME L 76
String
Length.....oveeiii s 69
SEAICH.....ciiiii 71
TransforM.......ccueie i 72
String Functions, See string.h
SHINGN oo 65
BES e 65
TSIl 65
MEMCHT ... 66
MEMCIMP ..o 66
MEMCPY oo 66
MEMIMOVE ..eiiiii e 67
MEMSEL ..ttt 67
S 4= N P 65
SEICASECIMP.....iiiieiee ittt 67
SICAL .. 67
SECRF . 68
SICMP i 68
SECOIL e 68
SEICPY ettt 68
SEICSPIN i 69
(=] (0] P TPPPTN 69
SHIEN . 69
SIINCASECMP...cociiieiiiiii 69
SENCAL .. 70

© 2009 Microchip Technology Inc.

DS51685D-page 141

32-Bit Language Tools Libraries

SENCMP e 70
SENCPY vttt 70
strpbrk ...

strrchr
strspn
strstr.......
strtok
SEEXEIM e,
SHIBN e
SUNCASECMP . vveveiiiee e et e e reee et e e reee e e e neee e eaee s
(07 | AP
strncmp
strnepy.......
SEPDIK e
LS (o] o] USRS
strspn
(5] 1
SO oeveveeiieeeeeeeee e

SIIEOK 1evvieieieiee e
strtol
L) (1 (o | PSRN
L) (1 (01U | ST
strtoull............
struct Iconv
struct timevalcoeeeeeeevvvvvvnnnnns
SEIUCE M e
SEXTIM e
SUDBSINGS .eeviveeeiee e
Subtracting Pointers.........cccccceeuee
Successful Termination
SYS/APPI0.N oo,
DBGETC(canblock)..........cccoevveeeiiiiiiiiiciineen,
DBGETWORD(int canblock)....
DBINIT() teieeeeeieeeeieeesieeeeeeeeeeee s siee e
DBPRINTF().uvvieeiiiiiiiee et
DBPUTC(Char C) ..ccuvvveeieiiiiieie e
DBPUTWORD(INt W)....oeeiriiieeiieeeniiieenieee e
DBSCANF()

tangent
Double Floating Point..........cccccvveeeeeiiiiieeeesiins 90
Single Floating Point

Temporary
File oo
Filename
L0101 (] T SSRR
Termination
Request Signal..........cccceiiieeiiiiienee e 26
SUCCESSTUL . evvvviiiiiiieiiiieeee s
Unsuccessful
TEXEMOAE ..o

gettimeofday
OMEME 1o
[[oTor= 11110 1 [= U
mktime

tmpnamcc.ce.e
TOKENS ..o
EOIOWET ..
TOUPPET vt

Transferring Control

Transform STNG.......ocovevie s
Trigonometric Functions

U

UCHAR _MAX ..ottt 22
UINT_MAX it 23
ULLONG_MAX ..ottt a e 23
ULONG_MAX

Underflow Errorsue..... 15, 78, 82, 83, 86, 88, 89
UNQEIC. ..ciiiiiiiiiii i 48
LU 1S (o 1 o RO 92

DS51685D-page 142

© 2009 Microchip Technology Inc.

Index

UNTINK . e 43, 93
unsigned char

Maximum Valueccceeeeeeiiiiiiieieicceeeeeeees 22
unsigned int

Maximum Valueoooeeeeiiiniiiiiriieeeeeeeeeeeeee 23
unsigned short int

Maximum Valueccceeeeeeiiiiiiiiieiceieeeeeees 23
Unsuccessful Termination...........ccccooeeeeeeeeeiiiiieccnn, 53
Uppercase Alphabetic Character

Convert To

Defined

=5 0 (o U

va_start
Variable Argument Lists, See stdarg.h

Variable Length Argument List.......... 27,28, 48, 49,51
Vertical Tab
VIPINtf Lo .
VESCANT. ...

vsnprintf ...,
vsprintf
vsscanf

W

WChAT T
WCSTOMDS ...ttt

WHhite SPacCe........ccceevivieiiiie e
White-Space Character
DefiNedeoiiieiiiiice

Wide Character String.......cccocevevveeeiieee e,
Wide Character Value............cccceeeeiiiiiviee e

Y
Y A i 73,74,77
Z
ZEIO ..t 78
Zero, divide DYooooiii 26, 56

© 2009 Microchip Technology Inc.

DS51685D-page 143

32-Bit Language Tools Libraries

NOTES:

DS51685D-page 144 © 2009 Microchip Technology Inc.

NOTES:

© 2009 Microchip Technology Inc. DS51685D-page 145

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA

Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

03/26/09

DS51685D-page 146

© 2009 Microchip Technology Inc.

	Preface
	Chapter 1. Library Overview
	1.1 Introduction
	1.2 Start-up Code
	1.3 32-Bit Peripheral Libraries
	1.4 Standard C Libraries (with Math Functions)

	Chapter 2. Standard C Libraries with Math Functions
	2.1 Introduction
	2.2 Using the Standard C Libraries
	2.3 <assert.h> Diagnostics
	2.4 <ctype.h> Character Handling
	2.5 <errno.h> Errors
	2.6 <float.h> Floating-Point Characteristics
	2.7 <limits.h> Implementation-Defined Limits
	2.8 <locale.h> Localization
	2.9 <setjmp.h> Non-Local Jumps
	2.10 <signal.h> Signal Handling
	2.11 <stdarg.h> Variable Argument Lists
	2.12 <stddef.h> Common Definitions
	2.13 <stdio.h> Input and Output
	2.14 <stdlib.h> Utility Functions
	2.15 <string.h> String Functions
	2.16 <time.h> Date and Time Functions
	2.17 <math.h> Mathematical Functions
	2.18 <unistd.h> Miscellaneous Functions

	Chapter 3. PIC32 DSP Library
	3.1 Introduction
	3.2 Vector Math Functions
	3.3 Filtering Functions
	3.4 Frequency Domain Transform Functions
	3.5 Video Processing Functions

	Chapter 4. PIC32 Debug-Support Library
	4.1 Overview
	4.2 Configuring Debug Input/Output for the target and tool
	4.3 <sys/appio.h> PIC32 Debugging Support

	Appendix A. ASCII Character Set
	Appendix B. Types, Constants, Functions and Macros
	Appendix C. 16-Bit DSP Wrapper Functions
	C.1 Introduction
	C.2 PIC32 DSP Wrapper Functions List
	C.3 Differences Between Wrapper Functions and dsPIC® DSP Library

	Index
	Worldwide Sales and Service

