
ME 333: Introduction to Mechatronics

Assignment 4: Towards real-time control with the PIC32

Electronic submission due before 12:30 p.m. on February 8th

All questions asked in this problem set must be typed and submitted via Blackboard.

1 Code efficiency

For questions in this section (unless otherwise noted), you are to run your code with optimiza-
tion level set to zero. Do not submit any code related to this section.

Successful real-time control applications require intimate knowledge of how long a task takes
to complete. The main purpose of this homework assignment is to build your understanding of
how many cycles the PIC processor takes to perform mathematical operations. As you answer
the questions in this section, keep these points in mind:

1. One clock cycle (or simply cycle) is 1/SYSFREQ, so we’re assuming that one instruction
takes 12.5ns on our 80MHz PIC32.

2. You can assume that one assembly-level instruction takes one cycle to complete. This isn’t
entirely true, but it’s a very good approximation for most instructions you are asked to
look at.

3. The PIC has no hardware to compute floating-point operations. This piece of hardware is
known as a floating-point unit or FPU. The calculations are instead performed in software.

1.1 Speed

Questions

(a) How long does it take to add, subtract, multiply, and divide each of the C variable types?
In order to answer this question, create a table similar to Table 1.1 Each entry in the table

char short int long long float double

add (+) 5 (1)
sub (-)
mul (*)
div (/)

Table 1: Average time to compute arithmetic operations for various data types

1We’ve omitted unsigned types from the table because they are equivalent in cycle times to their signed
counterparts. Also, the long data type is not present, because a long and int are the same number of bytes on
the PIC32. This is generally not true on most other platforms, like your PC.

1

will comprise of two numbers. The first number is the average number of cycles 20 copies
of the same arithmetic operation took to complete for a particular data type (see Algorithm
1 in Section 1.4) rounded to the nearest integer. After you’ve filled in the table, add a
second number, in parenthesis, to each cell. The second number is the number of cycles the
operation took to complete (i.e., the first number in the cell) normalized to the entry with
the least number of cycles in the table. For example, in Table 1, 20 char additions took 101
cycles to complete (round(101/20) = 5) and, assuming that it is also the shortest cycle in
the table, we normalize it to 1 (5/shortest cycle) in the parenthesis.

(b) How many cycles does adding two ints and subtracting two long longs take by looking
at the disassembly listing and counting the number of assembly instructions generated from
the two expressions? For integral addition, subtraction, and multiplication, we should get a
pretty good estimate of the number of cycles by looking at the assembly code.

(c) How many cycles does it take to compute sinf(), sin(), sqrtf(), and sqrt()? Again,
write two numbers here for your results. The first is the average number of cycles over 20
repetitions and the second is a parenthetical normalized number (use the same normalization
value as in (a)). Note that sinf() only takes a float as input and sin() only takes a double

as input (same for sqrtf() and sqrt()), make sure to call each function with the correct
data type. Again, the ratio should be relative to the fastest cycle time from your table in
part (a).

(d) How many cycles does it take to left bit shift ints and long longs? Produce a similar table
for bit shifting ints and long longs as in the example table above, repeating each operation
20 times as in part (a). The operations in your columns for this table are performing 1 bit
shift, 10 bit shifts, and 31 bit shifts. Does bit shifting n times take n times as long as bit
shifting once? Verify your results by looking at the generated assembly code. Remember the
syntax for bit shifting is x << n, where x represents the bits to shift and n are the number
of slots to shift each bit over to the left. They must both be integral types. If n = 32, what
value will an int variable have, regardless of its initial value? (Hint: think about what value
is shifted in from the left into bit b0, as the bits are shifted each time.)

1.2 Compiler optimizations

If certain operations aren’t fast enough, we have additional tools at our disposal. We could use
the compiler’s optimization settings to optimize our code (which can make code run faster and
consume less program memory). If an optimization level > 0 is set, then the compiler will rewrite
or eliminate inefficient code without changing our program’s behavior. We will illustrate this
functionality using optimization level 1 on Algorithm 1. You should be aware that Microchip
disables optimization levels >= 2 after a 60 day trial period has elapsed.

(a) Using the code in Algorithm 1, how long does each operation and data type take with
optimization level set to 1? Does the disassembly support your results, why?

(b) Using optimization level 1, what is the return value stored in ans in Algorithm 1? Given
what the code does, is this return value what you would expect? By convention the return
value is placed in register v0, the line in your disassembly window that you are looking for
is right above the statement jr ra in the timeCode() section of the disassembly listing.

2

1.3 Memory vs. speed

Another common practice in speeding up computation is to use a look-up table. An important
consideration in creating a look-up table is how much space in memory the table will occupy.
This often leads to a trade-off between the accuracy of your stored values, the speed at which
the PIC can access the values from memory, and the number of bytes each value requires in
memory. For example, the sin() function is a good candidate to create look-up values for, but
how should we create the table? We could create an array of doubles for our look-up table and
write a function, double mySinFcn(double x), that maps the interval 0 to 2π to the indices
of the array. With a little cleverness on our part, we can save a lot of memory using a fixed-
point representation for the input, x, and use an array of integral types instead. A fixed-point
representation treats an integral type as if it were a real number, you decide after what digit
the decimal point is located. For example, double d = 6.284 can be represented as int i = 6284.
Any arithmetic operations are equivalent —we just have to remember that conceptually there is
a decimal point after the most significant digit in the variable i.

Questions

(a) Define global arrays of 100 elements for the following C data types: char, short, int, long
long, float, and double. How much space in bytes (and in base-10) does each array take
and what are the memory addresses (in base-16) of the first element and last element of each
array? Note that the first element is always located at the start address of each array. You
can find the size of each array underneath the “Allocating common symbols” section of your
map file. The .bss section2 of the same map file under the category “COMMON” is where
you’ll find the start addresses of your arrays in memory. Because the memory addresses
reserved for an array are sequential, you can calculate the address of the last element in the
array using the start address, number of total bytes of the array, and the size of each element
in the array.

(b) Don’t forget that pointers also take up memory when declared. On the PIC32, a pointer
can access up to 4GB of virtual memory. How much space does an array of 100 pointers to
doubles and 100 pointers to ints take up (e.g., double *dbl ptr array[100])? Why does
the double * array take up less memory than an array of 100 doubles from part (a)? Think
about what a pointer represents and why this purpose dictates how many bytes in memory
it should be.

(c) Create a look-up table, call it LookUpTable, with indices 0 to 6,284 (where 6,284 is our fixed-
point approximation of 2π) that can hold values from -10,000 to 10,000. For the elements
in your array, you must choose the smallest data type in bytes that can store these values.
Initialize the array using the built-in sin() function from <math.h> and correctly map
0–6.284 radians to indices 0–6,284 and the output of sin(), -1–1, to -10,000–10,000. Answer
the following questions:

• How much RAM does your array use?

• What is your initialization code? It should be a loop that is about 3–5 lines of C code
total.

• If we are trying to map 0–6.284 radians to discrete index values 0–6,284, what is the
resolution of your inputs into the array (i.e., the indices) in radians?

2If you remember from Assignment 3, the .text section is where program code is placed. The .bss section is
where uninitialized (at least by you) global variables are stored and the C programming language guarantees that
their value will be zero when your program starts.

3

• Determine the time it takes to look up a value in the table. Do this by replacing ans

= a + b in Algorithm 1 with ans = LookUpTable[a] 20 times and making any other
necessary modifications, like making ans the same data type as the elements in your
table. Make sure that the optimization level is zero. How much faster is a look-up
table over calling sin()? Write your answer as a ratio between the average number of
cycles to compute sin() in part 1.1 (c) over the average number of cycles to look up a
value in LookUpTable.

1.4 How to time your code

The following snippet shows how to time each cell in Table 1. Note that buffer is a char array
that you define somewhere in your C program. It needs to be larger than the longest string you
pass to sprintf() (you rarely know this ahead of time, so make a safe guess e.g., 1,024 bytes). On
the other hand, WriteString(...) is defined for you in NU32v2.c. Don’t forget to add NU32v2.h
and NU32v2.c to your MPLAB project (see NU32v2: Serial Communication with the PC).

Algorithm 1 Example of timing your code

int timeCode() {
int ans, a, b;
unsigned int e;
a = 17;
b = 12;
OpenTimer2(T2 ON |T2 SOURCE INT |T2 PS 1 1, 0xFFFF);
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
ans = a + b;
e = ReadTimer2();
sprintf(buffer, “int (+): %f (total: %d)\r\n”, e/20.0, e);
WriteString(UART3, buffer);
return ans;
}

4

http://hades.mech.northwestern.edu/index.php/NU32v2:_Serial_Communication_with_the_PC

2 PWM and counter/timers

In this program you will use OC1 and TMR4’s interrupt service routine to generate the first two
terms of a Fourier Sine Series.

2.1 Baby steps

This section is optional. Before getting to the actual programming assignment, make sure you
can write the programs below.

(a) Write a program with an interrupt service routine that triggers 10,000 times a second using
Timer 4. Each time you enter the routine, you add 1 to a global counter. When the counter
reaches a constant SWITCH TIME, say 5000, the LEDs are toggled and the counter is set back
to zero.

(b) Copy the wiki code for the 20 kHz PWM and verify using your oscilloscope (in analog mode)
that you see the digital PWM output. Change the duty cycle (in range 0–999) and see the
effect on the pulse train. Now attach the low-pass filter to the OC1 output pin. Use your
oscilloscope to view the voltage across the capacitor. What is the cut-off frequency of your
RC low-pass filter?

2.2 Programming assignment

In this assignment, you will be graded on correctness, coding efficiency, program readability, and
program maintainability. When we test your code for correctness, we can change your input
values to make sure your program behaves as expected. There is an accompanying MATLAB file
that you can use as a guide for your program found in the Assignment4 zip file. You can port
(convert code from one language to another) various aspects of the MATLAB code into your C
program.

The inputs: BASEFREQ (Hz), BASEAMP (volts), HARMONIC (integer value > 1), HARMAMP (volts),
PHASE (degrees), MAXSAMPS (maximum number of samples of a sine wave to compute), and
ISRFREQ (Hz)

The output: A sine wave, centered around 1.65V, approximating:

BASEAMP∗sin(2π∗BASEFREQ∗t)+HARMAMP∗sin(2π∗HARMONIC∗BASEFREQ∗t+PHASE∗π/180)

The details:

Write a program that uses a timed interrupt and PWM to “play” a periodic output voltage
waveform. In particular, this waveform will consist of the sum of two sinusoids, one with fre-
quency BASEFREQ and the other at frequency HARMONIC*BASEFREQ, where HARMONIC is an integer
> 1. Based on five inputs defined in your program and the frequency of your interrupt service
routine, you will calculate the elements of an array,

int dutyvec[MAXSAMPLES],

which holds the signal. Your program should:

1. Create a look-up table, dutyvec, given BASEFREQ, BASEAMP, HARMONIC, HARMAMP, PHASE,
MAXSAMPS, and ISRFREQ (see MATLAB code for an example).

5

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000
Duty Cycle vs. sample #, 20 Hz

signal(20, 1.0, 2, 0.5, 45)

signal(20, 1.0, 2, 0, 45)

Figure 1: Output signal for Tuesday’s demo

2. Set up the PWM output using OC1 and create a timed ISR at ISRFREQ using TMR4.

3. In the ISR, add 1 to a global counter, set the counter back to zero when it reaches numsamps
(the number of samples used in the dutyvec array), and set the output PWM duty cycle
to dutyvec[counter]; and

4. Assume all inputs will be >= 0. You must still set reasonable upper-bounds. In your
file header, the comment block you saw at the top of invest.c, effectively convey your
reasoning behind the upper-bounds you have set and list and discuss the RC values you
used in your LPF (make sure to mention the rise-time and cut-off frequency of your filter).

If you are successful, when you low-pass filter the OC output, you should see voltage wave-
forms similar to those in Figure 1. Try different frequencies and amplitudes. Turn in your
code and demo in class, using your oscilloscope, with BASEFREQ = 20 Hz, BASEAMP = 1.0 volt,
HARMONIC = 2, HARMAMP = 0.5 volt, PHASE = 45 degrees, ISRFREQ = 10 kHz, and MAXSAMPS =
1,000.

6

2.3 Using MATLAB to verify your results

The example MATLAB code, signal.m (found in the zip file), generates various waveforms based
on its inputs. The output of the MATLAB code should be the same as the output of OC pin on
your PIC. You can call the program from the MATLAB prompt as follows,

signal(20, 0.5, 2, 0.25, 45)

for example, which corresponds to voltage(t) = 0.5 ∗ sin(2 ∗ π ∗ 20 ∗ t) + 0.25 ∗ sin(2 ∗ π ∗ 2 ∗
20 ∗ t + 45deg). This is converted into a single period of duty cycles, stored in an array. Two
sample outputs are shown in Figure 1. You should note that the MATLAB code, as written with
ISRFREQ = 10,000 and MAXSAMPLES = 1,000, does not allow a BASEFREQ of less than 10 Hz. Your
C program should handle cases like these in a similar fashion.

3 What to turn in

For the questions in Section 1, you must submit typed responses. Place your responses and your
.c file from the programming assignment in a zip file and submit the zip file through Blackboard
before class on the date the assignment is due. The name of the zip file you submit will be
lastname a4.zip. For example, the TA would submit his homework as Rosa a4.zip.

In addition to submitting your assignment via Blackboard, you will also demonstrate your
program to the teaching staff at the beginning of class on the date the assignment is due. For
this assignment you will demo the output waveform with input parameters as specified at the
end of the programming assignment section.

As always, for full credit, you must follow these instructions exactly.

7

	Code efficiency
	Speed
	Compiler optimizations
	Memory vs. speed
	How to time your code

	PWM and counter/timers
	Baby steps
	Programming assignment
	Using MATLAB to verify your results

	What to turn in

