ME 449 Notation and Formula Summary Sheet

Chapter 2

Griibler’s formula for the DOF of mechanisms with N links (including
ground) and J joints, where joint ¢ has f; degrees of freedom and m = 3
for planar mechanisms or m = 6 for spatial mechanisms:

J
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Pfaffian velocity constraints take the form A(#)6 = 0.

Chapter 3

An element R of SO(3) satisfies RTR = I and det R = 1, and therefore
Rt = RT. Also Ry, = R;," and Rapvp = v,, while Rupv, = vl), which is

the original vector v, rotated by the rotation that takes {a} to {b}.

Let R; be the orientation achieved when rotating about a fixed axis w
(Jw]l = 1) a distance € from an initial orientation R = I. Then Ry R, is
the orientation achieved by rotating {a} about w intrepreted as a space
frame angular velocity, while R, R; is the orientation achieved by rotating
{a} about w interpreted as a body frame angular velocity.

#(t) = Ax(t) has solution z(t) = e**zy. A can be viewed as a constant
angular velocity or rigid-body twist (angular and linear velocity), in the
body or space frame.

For w € R3, we have w x z = [w]z, where
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Rodrigues’ formula, integrating a rotation with an angular velocity w with
|lw|| = 1 for time (or angle) 0: e“1? = I 4sin Aw]+ (1 —cos #)[w]?. w and @
together are called the axis-angle representation of an orientation of an el-
ement of SO(3), and wf € R? is the exponential coordinate representation
of an an element of SO(3).

The matrix log of R, in the general case, is given by: 6 = cos™!((trace(R)—
1)/2) € [0,7) and [w] = (R — RT)/(2sinf). If R = I, then § = 0. If
trace(R) = —1, then 6 = m. We write log(R) = [w]6.



e A rigid-body configuration is written 7' € SE(3) with the form
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where R € SO(3) and p € R3. Also,
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TopTpe = Tae, Ta_bl = Tya, and x4 = Topxyp.
e A spatial velocity, or twist, is written V = (w,v) € RS, which we can also
write in the matrix form

5] = { ki } e RV,

e Consider a screw motion following the twist &’ = (w’,v’) for duration 1.
We can write this as &’ = S0, where S = (w,v) and 0 is the “distance” of
motion along the screw axis S. If w’ # 0, then § = §'/||w|| and 6 is the
net rotation about the screw axis. If w’ = 0, then S = &’/||v'|| and @ is
the translation along the axis.

The net displacement obtained by motion along the screw axis [S] by 6
from the identity element of SE(3), in either the body or space frame
(since they are initially aligned with each other), is
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For w =0, i.e., S = (0,v), then
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For T = €l51?, S € RS are the exponential coordinates of T

e The matrix log of T'= (R, p), for the general case, is given by

6 — cos™! (““‘3(3‘)_1> € [0,7)

2
1
lw] = 2sinf " RY)
v = <;I - %[w] + (% - %cot Z)[w]2>p. (0.1)

If R =1, then w = 0, v = p/||p|l,and 6 = ||p||. If trace(R) = —1, then
0 = m, and [w] = log R. We write log(T) = [S]6.



e The quantity 77 = e!51T is the new configuration after 7' undergoes a
screw motion S6 in the space frame. The quantity 77 = TS is the new
configuration after T' undergoes a screw motion S in the body frame.

e Given frames {s} and {b}, a particular spatial velocity can be represented
in these frames as V, or Vj, and these are related by the Adjoint transfor-
mation

VS = Adeb (Vb)7
where Adr,,(Vy) = [Adr,, ]V} and

narl=[ g | <%

The expression V; = Adr,, (V) is equivalent to [Vs] = T [Vo] T
o Ad;' = Adg-: and Adg, (Adr, (V) = Adr, 1, (V).

o« TT- ' = [Vs], the spatial velocity (twist) in space coordinates, and 71T =
[Vs], the spatial velocity (twist) in body coordinates.

e A wrench in space coordinates is written F5 = (ms, fs) € RS and a wrench
in body coordinates is written F, = (my, fp). Fp and Fs are related by
Fy = Adp (F) =[Adr,]" F,
Fs = Adp (F) = [Adg,]"F,

derived from the relationship between space and body velocities and the
fact that power, FI'V; and F! V,, must be the same in both frames.

Chapter 4

e The product of exponentials formula for a serial chain manipulator is

space frame: T = elS1101  elSnlOnpp

body frame: T = MelBilo  lBnlon

where M is the frame of the end-effector in the space frame when the
manipulator is at its home position, [S;] is the velocity of the space frame
in space coordinates when joint i rotates (or translates) at unit speed while
all other joints are fixed, and [B;] is the velocity of the body frame in body
coordinates when all other joints are fixed.

Chapter 5

e For a manipulator end-effector configuration written in coordinates x, the
forward kinematics is x = f(¢), and the differential kinematics is given by
= %9 = J(6)0, where J(0) is the manipulator Jacobian.



e In spatial velocities, the relation is V, = .J,(#)0, where  is either s (space
Jacobian) or b (body Jacobian). The columns Jg; of the space Jacobian
are

Jsi(g) = Ade[sl]el,,,e[si—l]gi—l (Si)

and the columns Jp; of the body Jacobian are
Jbi(g) = Adef[sn]en“'67[814.1]91'4_1 (Bz)

As expected, the space motion caused by S; is only altered by the con-
figurations of joints inboard from joint ¢ (between the joint and the space
frame), while the body motion caused by B; is only altered by the config-
urations of joints outboard from joint i (between the joint and the body
frame).

The two Jacobians are related by

Jb(e) = AdTbs (9)(J8(9)) ’ Js(e) = Adeb (0)(Jb(9))

e Generalized forces at the joints 7 are related to wrenches expressed in the
space or end-effector body frame by

T=JI(O)F,,
where * is s (space frame) or b (body frame).

e Singularities occur at manipulator configurations where the rank of the
Jacobian drops below its maximum value. Often we only care about end-
effector motions in a particular subspace, and a singularity is defined when
the set of feasible motions in that subspace loses rank.

Chapter 6

e The law of cosines states that ¢ = a?+b%> —2abcos~, where a, b, and ¢ are
the lengths of the sides of a triangle and ~ is the interior angle opposite
side ¢. This formula is often useful to solve inverse kinematics problems.

e Many inverse problems can be stated as finding 6 such that z = f(0),
where x and 6 are vectors. Such problems can have many or no solutions,
and often admit no closed-form solution. Newton-Raphson iterative nu-
merical root-finding attempts to find a “close by” solution to an initial
guess. Starting with an initial guess 6(0), the iteration is defined by

006+ 1) = 000) + (Gl )@= 100D,

where the expression = — f(6(4)) is the vector from the current guess to
the desired value.



e For inverse kinematics with a desired end-effector configuration X € SE(3),
the direction from the current configuration T'(0(i)) to X, expressed in
the end-effector body frame, is given by [S] = log7T~!X. The Newton-
Raphson iteration beomes

0(i + 1) = 0(i) + (J(0(i)) 'S
AG;

e If the Jacobian is not square (i.e., the number of joints n differs from the
degrees of freedom of the end-effector m), then .J; ' (9) does not exist. The
right generalized inverse Jb_right = JI(JyJI)~! can be used for n > m and
the left generalized inverse J, % = (J]'J,) "' JI can be used for n < m.

Chapter 8
e The Lagrangian is the kinetic minus the potential energy, £(q, ¢) = K(q, ¢)—
Ulq)-
e The Euler-Lagrange equations are
d oL 0L
T=—— - —.
dt 9¢  0Oq

e The kinetic energy of a mechanical system is K(q, ¢) = %qTM(q)q7 where
M is the mass or inertia matrix.

e The equations of motion of a manipulator can be written

7= M(0)0 + c(0,0) + % (0.2)
= M(0)0 + C(0,0)0 + g(0) (0.3)
= M(0)6 +6T(0)0 + 9(0)

where g(#) are the potential terms (typically due to gravity) and 0(9,9)
is the vector of quadratic velocity terms (Coriolis and centrifugal terms).
These quadratic terms are sometimes written as a Coriolis matrix C(6, 9)
multiplied by the linear velocity 6, or more insightfully as a quadratic
form in terms of the three-dimensional matrix of Christoffel symbols of

the mass matrix.

e The Lie bracket of twists V; and Vs, i.e., the derivative of V5 in the
direction of Vq, is written

[Vla VQ} = adVl (VQ) = [a’dvl}v27

where

bl = [ 1]y em



e The body-frame 6 x 6 mass matrix of a rigid-body is

[z o
gb_|:0 mI:|7

where Zj, is the inertia matrix in the body frame and m is the mass.

e The equations of motion of a rigid body, expressed in the body frame, are

Fy = GV — [ady, TGy V.



