ME 449 Notation and Formula Summary Sheet

Chapter 2

• Grübler's formula for the DOF of mechanisms with N links (including ground) and J joints, where joint i has f_i degrees of freedom and m=3 for planar mechanisms or m=6 for spatial mechanisms:

$$dof = m(N - 1 - J) + \sum_{i=1}^{J} f_i$$

• Pfaffian velocity constraints take the form $A(\theta)\dot{\theta} = 0$.

Chapter 3

- An element R of SO(3) satisfies $R^TR = I$ and $\det R = 1$, and therefore $R^{-1} = R^T$. Also $R_{ab} = R_{ba}^{-1}$ and $R_{ab}v_b = v_a$, while $R_{ab}v_a = v'_a$, which is the original vector v_a rotated by the rotation that takes $\{a\}$ to $\{b\}$.
- Let R_1 be the orientation achieved when rotating about a fixed axis ω ($\|\omega\| = 1$) a distance θ from an initial orientation R = I. Then R_1R_a is the orientation achieved by rotating $\{a\}$ about ω interpreted as a space frame angular velocity, while R_aR_1 is the orientation achieved by rotating $\{a\}$ about ω interpreted as a body frame angular velocity.
- $\dot{x}(t) = Ax(t)$ has solution $x(t) = e^{At}x_0$. A can be viewed as a constant angular velocity or rigid-body twist (angular and linear velocity), in the body or space frame.
- For $\omega \in \mathbb{R}^3$, we have $\omega \times x = [\omega]x$, where

$$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}.$$

- Rodrigues' formula, integrating a rotation with an angular velocity ω with $\|\omega\| = 1$ for time (or angle) θ : $e^{[\omega]\theta} = I + \sin\theta[\omega] + (1 \cos\theta)[\omega]^2$. ω and θ together are called the axis-angle representation of an orientation of an element of SO(3), and $\omega\theta \in \mathbb{R}^3$ is the exponential coordinate representation of an an element of SO(3).
- The matrix log of R, in the general case, is given by: $\theta = \cos^{-1}((\operatorname{trace}(R) 1)/2) \in [0, \pi)$ and $[\omega] = (R R^T)/(2\sin\theta)$. If R = I, then $\theta = 0$. If $\operatorname{trace}(R) = -1$, then $\theta = \pi$. We write $\log(R) = [\omega]\theta$.

• A rigid-body configuration is written $T \in SE(3)$ with the form

$$T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right] \in \mathbb{R}^{4 \times 4}$$

where $R \in SO(3)$ and $p \in \mathbb{R}^3$. Also,

$$T^{-1} = \left[\begin{array}{cc} R^T & -R^T p \\ 0 & 1 \end{array} \right],$$

 $T_{ab}T_{bc} = T_{ac}, T_{ab}^{-1} = T_{ba}, \text{ and } x_a = T_{ab}x_b.$

• A spatial velocity, or twist, is written $\mathcal{V} = (\omega, v) \in \mathbb{R}^6$, which we can also write in the matrix form

$$[\mathcal{S}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4}.$$

• Consider a screw motion following the twist $\mathcal{S}' = (\omega', v')$ for duration 1. We can write this as $\mathcal{S}' = \mathcal{S}\theta$, where $\mathcal{S} = (\omega, v)$ and θ is the "distance" of motion along the screw axis \mathcal{S} . If $\omega' \neq 0$, then $\mathcal{S} = \mathcal{S}'/\|\omega\|$ and θ is the net rotation about the screw axis. If $\omega' = 0$, then $\mathcal{S} = \mathcal{S}'/\|v'\|$ and θ is the translation along the axis.

The net displacement obtained by motion along the screw axis [S] by θ from the identity element of SE(3), in either the body or space frame (since they are initially aligned with each other), is

$$e^{[\mathcal{S}]\theta} = \left[\begin{array}{cc} e^{[\omega]\theta} & (I\theta + (1-\cos\theta)[\omega] + (\theta-\sin\theta)[\omega]^2)v \\ 0 & 1 \end{array} \right].$$

For $\omega = 0$, i.e., $\mathcal{S} = (0, v)$, then

$$e^{[S]\theta} = \left[\begin{array}{cc} I & v\theta \\ 0 & 1 \end{array} \right].$$

For $T = e^{[S]\theta}$, $S\theta \in \mathbb{R}^6$ are the exponential coordinates of T.

• The matrix log of T = (R, p), for the general case, is given by

$$\theta = \cos^{-1}\left(\frac{\operatorname{trace}(R) - 1}{2}\right) \in [0, \pi)$$

$$[\omega] = \frac{1}{2\sin\theta}(R - R^T)$$

$$v = \left(\frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\omega]^2\right)p. \tag{0.1}$$

If R = I, then $\omega = 0$, $v = p/\|p\|$, and $\theta = \|p\|$. If $\operatorname{trace}(R) = -1$, then $\theta = \pi$, and $[\omega] = \log R$. We write $\log(T) = [S]\theta$.

- The quantity $T' = e^{[S]\theta}T$ is the new configuration after T undergoes a screw motion $S\theta$ in the space frame. The quantity $T' = Te^{[S]\theta}$ is the new configuration after T undergoes a screw motion $S\theta$ in the body frame.
- Given frames $\{s\}$ and $\{b\}$, a particular spatial velocity can be represented in these frames as \mathcal{V}_s or \mathcal{V}_b , and these are related by the Adjoint transformation

$$\mathcal{V}_s = \mathrm{Ad}_{T_{sb}}(\mathcal{V}_b),$$

where $\mathrm{Ad}_{T_{sb}}(\mathcal{V}_b) = [\mathrm{Ad}_{T_{sb}}]\mathcal{V}_b$ and

$$[\mathrm{Ad}_T] = \left[egin{array}{cc} R & 0 \\ [p]R & R \end{array} \right] \in \mathbb{R}^{6 \times 6}.$$

The expression $\mathcal{V}_s = \operatorname{Ad}_{T_{sb}}(\mathcal{V}_b)$ is equivalent to $[\mathcal{V}_s] = T_{sb}[\mathcal{V}_b]T_{sb}^{-1}$.

- $\operatorname{Ad}_{T}^{-1} = \operatorname{Ad}_{T^{-1}}$ and $\operatorname{Ad}_{T_{1}}(\operatorname{Ad}_{T_{2}}(\mathcal{V})) = \operatorname{Ad}_{T_{1}T_{2}}(\mathcal{V}).$
- $\dot{T}T^{-1} = [\mathcal{V}_s]$, the spatial velocity (twist) in space coordinates, and $T^{-1}\dot{T} = [\mathcal{V}_b]$, the spatial velocity (twist) in body coordinates.
- A wrench in space coordinates is written $\mathcal{F}_s = (m_s, f_s) \in \mathbb{R}^6$ and a wrench in body coordinates is written $\mathcal{F}_b = (m_b, f_b)$. \mathcal{F}_b and \mathcal{F}_s are related by

$$\begin{aligned} \mathcal{F}_b &= \operatorname{Ad}_{T_{sb}}^T (\mathcal{F}_s) = [\operatorname{Ad}_{T_{sb}}]^T \mathcal{F}_s \\ \mathcal{F}_s &= \operatorname{Ad}_{T_{bs}}^T (\mathcal{F}_b) = [\operatorname{Ad}_{T_{bs}}]^T \mathcal{F}_b, \end{aligned}$$

derived from the relationship between space and body velocities and the fact that power, $\mathcal{F}_s^T \mathcal{V}_s$ and $\mathcal{F}_b^T \mathcal{V}_b$, must be the same in both frames.

Chapter 4

• The product of exponentials formula for a serial chain manipulator is

space frame:
$$T = e^{[S_1]\theta_1} \dots e^{[S_n]\theta_n} M$$

body frame: $T = M e^{[B_1]\theta_1} \dots e^{[B_n]\theta_n}$

where M is the frame of the end-effector in the space frame when the manipulator is at its home position, $[S_i]$ is the velocity of the space frame in space coordinates when joint i rotates (or translates) at unit speed while all other joints are fixed, and $[S_i]$ is the velocity of the body frame in body coordinates when all other joints are fixed.

Chapter 5

• For a manipulator end-effector configuration written in coordinates x, the forward kinematics is $x = f(\theta)$, and the differential kinematics is given by $\dot{x} = \frac{\partial f}{\partial \theta} \dot{\theta} = J(\theta) \dot{\theta}$, where $J(\theta)$ is the manipulator Jacobian.

• In spatial velocities, the relation is $\mathcal{V}_* = J_*(\theta)\dot{\theta}$, where * is either s (space Jacobian) or b (body Jacobian). The columns J_{si} of the space Jacobian are

$$J_{si}(\theta) = \operatorname{Ad}_{e^{[S_1]\theta_1} - e^{[S_{i-1}]\theta_{i-1}}}(S_i)$$

and the columns J_{bi} of the body Jacobian are

$$J_{bi}(\theta) = \operatorname{Ad}_{e^{-[\mathcal{B}_n]\theta_n} \dots e^{-[\mathcal{B}_{i+1}]\theta_{i+1}}}(\mathcal{B}_i).$$

As expected, the space motion caused by S_i is only altered by the configurations of joints inboard from joint i (between the joint and the space frame), while the body motion caused by B_i is only altered by the configurations of joints outboard from joint i (between the joint and the body frame).

The two Jacobians are related by

$$J_b(\theta) = \operatorname{Ad}_{T_{bs}}(\theta)(J_s(\theta))$$
 , $J_s(\theta) = \operatorname{Ad}_{T_{sb}}(\theta)(J_b(\theta))$.

• Generalized forces at the joints τ are related to wrenches expressed in the space or end-effector body frame by

$$\tau = J_*^T(\theta) \mathcal{F}_*,$$

where * is s (space frame) or b (body frame).

• Singularities occur at manipulator configurations where the rank of the Jacobian drops below its maximum value. Often we only care about endeffector motions in a particular subspace, and a singularity is defined when the set of feasible motions in that subspace loses rank.

Chapter 6

- The law of cosines states that $c^2 = a^2 + b^2 2ab\cos\gamma$, where a, b, and c are the lengths of the sides of a triangle and γ is the interior angle opposite side c. This formula is often useful to solve inverse kinematics problems.
- Many inverse problems can be stated as finding θ such that $x = f(\theta)$, where x and θ are vectors. Such problems can have many or no solutions, and often admit no closed-form solution. Newton-Raphson iterative numerical root-finding attempts to find a "close by" solution to an initial guess. Starting with an initial guess $\theta(0)$, the iteration is defined by

$$\theta(i+1) = \theta(i) + \left(\frac{\partial f}{\partial \theta}|_{\theta(i)}\right)^{-1} (x - f(\theta(i))),$$

where the expression $x - f(\theta(i))$ is the vector from the current guess to the desired value.

• For inverse kinematics with a desired end-effector configuration $X \in SE(3)$, the direction from the current configuration $T(\theta(i))$ to X, expressed in the end-effector body frame, is given by $[S] = \log T^{-1}X$. The Newton-Raphson iteration becomes

$$\theta(i+1) = \theta(i) + \underbrace{(J_b(\theta(i))^{-1}S}_{\Delta\theta_i}.$$

• If the Jacobian is not square (i.e., the number of joints n differs from the degrees of freedom of the end-effector m), then $J_b^{-1}(\theta)$ does not exist. The right generalized inverse $J_b^{-{\rm right}} = J_b^T (J_b J_b^T)^{-1}$ can be used for n > m and the left generalized inverse $J_b^{-{\rm left}} = (J_b^T J_b)^{-1} J_b^T$ can be used for n < m.

Chapter 8

- The Lagrangian is the kinetic minus the potential energy, $\mathcal{L}(q,\dot{q})=K(q,\dot{q})-U(q)$.
- The Euler-Lagrange equations are

$$\tau = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q}.$$

- The kinetic energy of a mechanical system is $K(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q}$, where M is the mass or inertia matrix.
- The equations of motion of a manipulator can be written

$$\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + \frac{\partial U}{\partial \theta}$$
 (0.2)

$$= M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + q(\theta) \tag{0.3}$$

$$= M(\theta)\ddot{\theta} + \dot{\theta}^T \Gamma(\theta)\dot{\theta} + g(\theta) \tag{0.4}$$

where $g(\theta)$ are the potential terms (typically due to gravity) and $c(\theta, \dot{\theta})$ is the vector of quadratic velocity terms (Coriolis and centrifugal terms). These quadratic terms are sometimes written as a Coriolis matrix $C(\theta, \theta)$ multiplied by the linear velocity $\dot{\theta}$, or more insightfully as a quadratic form in terms of the three-dimensional matrix of Christoffel symbols of the mass matrix.

• The Lie bracket of twists V_1 and V_2 , i.e., the derivative of V_2 in the direction of V_1 , is written

$$[\mathcal{V}_1,\mathcal{V}_2]=\mathrm{ad}_{\mathcal{V}_1}(\mathcal{V}_2)=[\mathrm{ad}_{\mathcal{V}_1}]\mathcal{V}_2,$$

where

$$[\mathrm{ad}_{\mathcal{V}}] = \left[\begin{array}{cc} [\omega] & 0 \\ [v] & [\omega] \end{array} \right] \in \mathbb{R}^{6 \times 6}.$$

 \bullet The body-frame 6×6 mass matrix of a rigid-body is

$$\mathcal{G}_b = \left[\begin{array}{cc} \mathcal{I}_b & 0 \\ 0 & \mathfrak{m}I \end{array} \right],$$

where \mathcal{I}_b is the inertia matrix in the body frame and \mathfrak{m} is the mass.

 $\bullet\,$ The equations of motion of a rigid body, expressed in the body frame, are

$$\mathcal{F}_b = \mathcal{G}_b \dot{\mathcal{V}}_b - [\mathrm{ad}_{\mathcal{V}_b}]^T \mathcal{G}_b \mathcal{V}_b.$$