ME 449 Notation and Formula Summary Sheet

Chapter 2

- Grübler's formula for the DOF of mechanisms with N links (including ground) and J joints, where joint i has f_{i} degrees of freedom and $m=3$ for planar mechanisms or $m=6$ for spatial mechanisms:

$$
\operatorname{dof}=m(N-1-J)+\sum_{i=1}^{J} f_{i}
$$

- Pfaffian velocity constraints take the form $A(\theta) \dot{\theta}=0$.

Chapter 3

- An element R of $S O(3)$ satisfies $R^{T} R=I$ and $\operatorname{det} R=1$, and therefore $R^{-1}=R^{T}$. Also $R_{a b}=R_{b a}^{-1}$ and $R_{a b} v_{b}=v_{a}$, while $R_{a b} v_{a}=v_{a}^{\prime}$, which is the original vector v_{a} rotated by the rotation that takes $\{a\}$ to $\{b\}$.
- Let R_{1} be the orientation achieved when rotating about a fixed axis ω $(\|\omega\|=1)$ a distance θ from an initial orientation $R=I$. Then $R_{1} R_{a}$ is the orientation achieved by rotating $\{a\}$ about ω intrepreted as a space frame angular velocity, while $R_{a} R_{1}$ is the orientation achieved by rotating $\{a\}$ about ω interpreted as a body frame angular velocity.
- $\dot{x}(t)=A x(t)$ has solution $x(t)=e^{A t} x_{0} . A$ can be viewed as a constant angular velocity or rigid-body twist (angular and linear velocity), in the body or space frame.
- For $\omega \in \mathbb{R}^{3}$, we have $\omega \times x=[\omega] x$, where

$$
[\omega]=\left[\begin{array}{rrr}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

- Rodrigues' formula, integrating a rotation with an angular velocity ω with $\|\omega\|=1$ for time (or angle) $\theta: e^{[\omega] \theta}=I+\sin \theta[\omega]+(1-\cos \theta)[\omega]^{2} . \omega$ and θ together are called the axis-angle representation of an orientation of an element of $S O(3)$, and $\omega \theta \in \mathbb{R}^{3}$ is the exponential coordinate representation of an an element of $S O(3)$.
- The matrix \log of R, in the general case, is given by: $\theta=\cos ^{-1}((\operatorname{trace}(R)-$ $1) / 2) \in[0, \pi)$ and $[\omega]=\left(R-R^{T}\right) /(2 \sin \theta)$. If $R=I$, then $\theta=0$. If $\operatorname{trace}(R)=-1$, then $\theta=\pi$. We write $\log (R)=[\omega] \theta$.
- A rigid-body configuration is written $T \in S E(3)$ with the form

$$
T=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4}
$$

where $R \in S O$ (3) and $p \in \mathbb{R}^{3}$. Also,

$$
T^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0 & 1
\end{array}\right],
$$

$T_{a b} T_{b c}=T_{a c}, T_{a b}^{-1}=T_{b a}$, and $x_{a}=T_{a b} x_{b}$.

- A spatial velocity, or twist, is written $\mathcal{V}=(\omega, v) \in \mathbb{R}^{6}$, which we can also write in the matrix form

$$
[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} .
$$

- Consider a screw motion following the twist $\mathcal{S}^{\prime}=\left(\omega^{\prime}, v^{\prime}\right)$ for duration 1 . We can write this as $\mathcal{S}^{\prime}=\mathcal{S} \theta$, where $\mathcal{S}=(\omega, v)$ and θ is the "distance" of motion along the screw axis \mathcal{S}. If $\omega^{\prime} \neq 0$, then $\mathcal{S}=\mathcal{S}^{\prime} /\|\omega\|$ and θ is the net rotation about the screw axis. If $\omega^{\prime}=0$, then $\mathcal{S}=\mathcal{S}^{\prime} /\left\|v^{\prime}\right\|$ and θ is the translation along the axis.
The net displacement obtained by motion along the screw axis $[\mathcal{S}]$ by θ from the identity element of $S E(3)$, in either the body or space frame (since they are initially aligned with each other), is

$$
e^{[S] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2} v\right. \\
0 & 1
\end{array}\right] .
$$

For $\omega=0$, i.e., $\mathcal{S}=(0, v)$, then

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
I & v \theta \\
0 & 1
\end{array}\right]
$$

For $T=e^{[\mathcal{S}] \theta}, \mathcal{S} \theta \in \mathbb{R}^{6}$ are the exponential coordinates of T.

- The matrix \log of $T=(R, p)$, for the general case, is given by

$$
\begin{align*}
\theta & =\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right) \in[0, \pi) \\
{[\omega] } & =\frac{1}{2 \sin \theta}\left(R-R^{T}\right) \\
v & =\left(\frac{1}{\theta} I+\frac{1}{2}[\omega]+\left(\frac{1}{\theta}-\frac{1}{2} \cot \frac{\theta}{2}\right)[\omega]^{2}\right) p . \tag{0.1}
\end{align*}
$$

If $R=I$, then $\omega=0, v=p /\|p\|$, and $\theta=\|p\|$. If $\operatorname{trace}(R)=-1$, then $\theta=\pi$. We write $\log (T)=[\mathcal{S}] \theta$.

- The quantity $T^{\prime}=e^{[\mathcal{S}] \theta} T$ is the new configuration after T undergoes a screw motion $\mathcal{S} \theta$ in the space frame. The quantity $T^{\prime}=T e^{[\mathcal{S}] \theta}$ is the new configuration after T undergoes a screw motion $\mathcal{S} \theta$ in the body frame.
- Given frames $\{s\}$ and $\{b\}$, a particular spatial velocity can be represented in these frames as \mathcal{V}_{s} or \mathcal{V}_{b}, and these are related by the Adjoint transformation

$$
\mathcal{V}_{s}=\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)
$$

where $\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)=\left[\operatorname{Ad}_{T_{s b}}\right] \mathcal{V}_{b}$ and

$$
\left[\operatorname{Ad}_{T}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

The expression $\mathcal{V}_{s}=\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)$ is equivalent to $\left[\mathcal{V}_{s}\right]=T_{s b}\left[\mathcal{V}_{b}\right] T_{s b}^{-1}$.

- $\operatorname{Ad}_{T}^{-1}=\operatorname{Ad}_{T^{-1}}$ and $\operatorname{Ad}_{T_{1}}\left(\operatorname{Ad}_{T_{2}}(\mathcal{V})\right)=\operatorname{Ad}_{T_{1} T_{2}}(\mathcal{V})$.
- $\dot{T} T^{-1}=\left[\mathcal{V}_{s}\right]$, the spatial velocity (twist) in space coordinates, and $T^{-1} \dot{T}=$ [$\left.\mathcal{V}_{b}\right]$, the spatial velocity (twist) in body coordinates.
- A wrench in space coordinates is written $\mathcal{F}_{s}=\left(m_{s}, f_{s}\right) \in \mathbb{R}^{6}$ and a wrench in body coordinates is written $\mathcal{F}_{b}=\left(m_{b}, f_{b}\right) . \mathcal{F}_{b}$ and \mathcal{F}_{s} are related by

$$
\begin{aligned}
\mathcal{F}_{b} & =\operatorname{Ad}_{T_{s b}}^{T}\left(\mathcal{F}_{s}\right)=\left[\operatorname{Ad}_{T_{s b}}\right]^{T} \mathcal{F}_{s} \\
\mathcal{F}_{s} & =\operatorname{Ad}_{T_{b s}}^{T}\left(\mathcal{F}_{b}\right)=\left[\operatorname{Ad}_{T_{b s}}\right]^{T} \mathcal{F}_{b}
\end{aligned}
$$

derived from the relationship between space and body velocities and the fact that power, $\mathcal{F}_{s}^{T} \mathcal{V}_{s}$ and $\mathcal{F}_{b}^{T} \mathcal{V}_{b}$, must be the same in both frames.

Chapter 4

- The product of exponentials formula for a serial chain manipulator is

$$
\begin{array}{cl}
\text { space frame: } & T=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M \\
\text { body frame: } & T=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}
\end{array}
$$

where M is the frame of the end-effector in the space frame when the manipulator is at its home position, $\left[\mathcal{S}_{i}\right]$ is the velocity of the space frame in space coordinates when joint i rotates (or translates) at unit speed while all other joints are fixed, and $\left[\mathcal{B}_{i}\right]$ is the velocity of the body frame in body coordinates when all other joints are fixed.

Chapter 5

- For a manipulator end-effector configuration written in coordinates x, the forward kinematics is $x=f(\theta)$, and the differential kinematics is given by $\dot{x}=\frac{\partial f}{\partial \theta} \dot{\theta}=J(\theta) \dot{\theta}$, where $J(\theta)$ is the manipulator Jacobian.
- In spatial velocities, the relation is $\mathcal{V}_{*}=J_{*}(\theta) \dot{\theta}$, where $*$ is either s (space Jacobian) or b (body Jacobian). The columns $J_{s i}$ of the space Jacobian are

$$
J_{s i}(\theta)=\operatorname{Ad}_{e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{i-1}\right] \theta_{i-1}}}\left(\mathcal{S}_{i}\right)
$$

and the columns $J_{b i}$ of the body Jacobian are

$$
J_{b i}(\theta)=\operatorname{Ad}_{e^{-\left[\mathcal{B}_{n}\right] \theta_{n}} \ldots e^{-\left[\mathcal{B}_{i+1}\right] \theta_{i+1}}}\left(\mathcal{B}_{i}\right) .
$$

As expected, the space motion caused by \mathcal{S}_{i} is only altered by the configurations of joints inboard from joint i (between the joint and the space frame), while the body motion caused by \mathcal{B}_{i} is only altered by the configurations of joints outboard from joint i (between the joint and the body frame).
The two Jacobians are related by

$$
J_{b}(\theta)=\operatorname{Ad}_{T_{b s}}(\theta)\left(J_{s}(\theta)\right) \quad, \quad J_{s}(\theta)=\operatorname{Ad}_{T_{s b}}(\theta)\left(J_{b}(\theta)\right)
$$

- Generalized forces at the joints τ are related to wrenches expressed in the space or end-effector body frame by

$$
\tau=J_{*}^{T}(\theta) \mathcal{F}_{*}
$$

where $*$ is s (space frame) or b (body frame).

- Singularities occur at manipulator configurations where the rank of the Jacobian drops below its maximum value. Often we only care about endeffector motions in a particular subspace, and a singularity is defined when the set of feasible motions in that subspace loses rank.

Chapter 6

- The law of cosines states that $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$, where a, b, and c are the lengths of the sides of a triangle and γ is the interior angle opposite side c. This formula is often useful to solve inverse kinematics problems.
- Many inverse problems can be stated as finding θ such that $x=f(\theta)$, where x and θ are vectors. Such problems can have many or no solutions, and often admit no closed-form solution. Newton-Raphson iterative numerical root-finding attempts to find a "close by" solution to an initial guess. Starting with an initial guess $\theta(0)$, the iteration is defined by

$$
\theta(i+1)=\theta(i)+\left(\left.\frac{\partial f}{\partial \theta}\right|_{\theta(i)}\right)^{-1}(x-f(\theta(i))),
$$

where the expression $x-f(\theta(i))$ is the vector from the current guess to the desired value.

- For inverse kinematics with a desired end-effector configuration $X \in S E(3)$, the direction from the current configuration $T(\theta(i))$ to X, expressed in the end-effector body frame, is given by $[\mathcal{S}]=\log T^{-1} X$. The NewtonRaphson iteration beomes

$$
\theta(i+1)=\theta(i)+\underbrace{\left(J_{b}(\theta(i))^{-1} \mathcal{S}\right.}_{\Delta \theta_{i}} .
$$

- If the Jacobian is not square (i.e., the number of joints n differs from the degrees of freedom of the end-effector m), then $J_{b}^{-1}(\theta)$ does not exist. The right generalized inverse $J_{b}^{\text {-right }}=J_{b}^{T}\left(J_{b} J_{b}^{T}\right)^{-1}$ can be used for $n>m$ and the left generalized inverse $J_{b}^{\text {-left }}=\left(J_{b}^{T} J_{b}\right)^{-1} J_{b}^{T}$ can be used for $n<m$.

Chapter 8

- The Lagrangian is the kinetic minus the potential energy, $\mathcal{L}(q, \dot{q})=K(q, \dot{q})-$ $U(q)$.
- The Euler-Lagrange equations are

$$
\tau=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

- The kinetic energy of a mechanical system is $K(q, \dot{q})=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}$, where M is the mass or inertia matrix.
- The equations of motion of a manipulator can be written

$$
\begin{align*}
\tau & =M(\theta) \ddot{\theta}+c(\theta, \dot{\theta})+\frac{\partial U}{\partial \theta} \tag{0.2}\\
& =M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+g(\theta) \tag{0.3}\\
& =M(\theta) \ddot{\theta}+\dot{\theta}^{T} \Gamma(\theta) \dot{\theta}+g(\theta) \tag{0.4}
\end{align*}
$$

where $g(\theta)$ are the potential terms (typically due to gravity) and $c(\theta, \dot{\theta})$ is the vector of quadratic velocity terms (Coriolis and centrifugal terms). These quadratic terms are sometimes written as a Coriolis matrix $C(\theta, \dot{\theta})$ multiplied by the linear velocity $\dot{\theta}$, or more insightfully as a quadratic form in terms of the three-dimensional matrix of Christoffel symbols of the mass matrix.

- The Lie bracket of twists \mathcal{V}_{1} and \mathcal{V}_{2}, i.e., the derivative of \mathcal{V}_{2} in the direction of \mathcal{V}_{1}, is written

$$
\left[\mathcal{V}_{1}, \mathcal{V}_{2}\right]=\operatorname{ad}_{\mathcal{V}_{1}}\left(\mathcal{V}_{2}\right)=\left[\operatorname{ad}_{\mathcal{V}_{1}}\right] \mathcal{V}_{2}
$$

where

$$
[\operatorname{ad} \mathcal{V}]=\left[\begin{array}{cc}
{[\omega]} & 0 \\
{[v]} & {[\omega]}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- The body-frame 6×6 mass matrix of a rigid-body is

$$
\mathcal{G}_{b}=\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]
$$

where \mathcal{I}_{b} is the inertia matrix in the body frame and \mathfrak{m} is the mass.

- The equations of motion of a rigid body, expressed in the body frame, are

$$
\mathcal{F}_{b}=\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{T} \mathcal{G}_{b} \mathcal{V}_{b}
$$

