
Circuit Building and Programming with  
The Adafruit Itsy Bitsy M0 Express 

Nick Marchuk 
9/6/2018 

A digital version of this document can be found at 
http://hades.mech.northwestern.edu/images/0/01/CircuitsAndProgrammingWithCircuitPythonM0-2018.pdf  
 
Tutorial Parts List: 
Breadboard 
6 colors of 24 gauge solid core wire 
Wire strippers 
Itsy Bitsy M0 Express​ with pins already soldered on 
Micro USB cable 
(​USB C to USB2 adapter​) 
Neopixel breakout board 
10k potentiometer 
330Ω​, ​10kΩ​ resistors 
Red​, ​green​ LEDs 
Micro RC Servo​ with header pins stuck in the plug 
Accelerometer 
Speaker 
 
Software for the Itsy Bitsy M0: 
Install ​Mu​. With your board plugged into your computer, open Mu, and select “Adafruit CircuitPython”. 

 
 
Immediately copy the main.py file from the file drive that appears when you plug the USB cable in, save it 
somewhere you’ll remember it, just in case you need to refer back to it later. 
  

1 

https://www.adafruit.com/product/239
https://www.mcmaster.com/#8251t1/=1c2ovp2
https://www.adafruit.com/product/147
https://www.adafruit.com/product/3727
https://www.digikey.com/products/en?keywords=Q853-ND
https://www.amazon.com/dp/B01GGKYYT0/ref=pe_2640190_232748420_TE_item
https://www.adafruit.com/product/1312
https://www.adafruit.com/product/356
http://www.digikey.com/product-detail/en/CF14JT330R/CF14JT330RTR-ND/1741399
http://www.digikey.com/product-detail/en/CF14JT10K0/CF14JT10K0TR-ND/1741265
https://www.digikey.com/product-detail/en/kingbright/WP132XID/754-1211-ND/1747610
https://www.digikey.com/product-detail/en/kingbright/WP132XGD/754-1210-ND/1747609
https://www.adafruit.com/product/169
https://www.adafruit.com/product/2809
https://www.adafruit.com/product/1890
https://codewith.mu/en/download


Electronics: Cut and strip a wire 
 

 
 
Practice using your wire strippers to cut a few 1” long wires. Remove about ¼” of insulation from both ends of 
the wire, using the 26 AWG stripper hole. ¼” of exposed wire is about the right length to be plugged into the 
breadboard without leaving any exposed wire to accidentally touch other exposed wires (the breadboard is 
about ¼” deep). 
 

  
Too much wire exposed (left), too little (right), goldilocks (center) 

 
  

2 



Electronics: How a breadboard works 
 

                   
 
A breadboard is a collection of conducting clips that make it easy to connect wires to components like 
resistors, LEDs, and Itsy Bitsy Express pins. Along the outer edges of the breadboard are long columns of clips 
called rails. In the middle section of the breadboard are rows of 5 connected holes. The left and right side of 
the center channel are not connected. 
 
When a component like the Itsy Bitsy Express is plugged into the breadboard, the rows become connected to 
the microcontroller pins and give several access points to each pin. 
 

 
 
  

3 



Circuits usually need many access points to power and ground, so wire is used to connect the rails to the 
power rows to gain more power and ground holes. Make some wires to connect the left ​+​ rail to ​3.3V​, the right 
+​ rail to ​5V​,​ and the right ​-​ rail to ​GND​ (0V). The color convention is to use ​red wire​ for 5V, ​green wire​ for 
3.3V, and ​black wire​ for Ground, so that you can quickly look at a circuit and debug it later.  
 
Note that the Itsy Bitsy Express is supplied with 5V from the computer using the USB cable, and now the 
breadboard has access to the computer’s 5V line. The computer would be very unhappy if you shorted it’s 5V 
(no damage, but the USB port would be disabled and only reenabled by a reboot). Applying a voltage to the 5V 
connection, say from a 6V pack of AA batteries, would damage the computer’s motherboard, so extra care 
should always be taken when using power from both the computer and an external source. 
 
Also note that the Itsy Bitsy itself runs on 3.3V, not 5V, so be careful to only apply a maximum of 3.3V to any 
pin. 
 
Bonus points​ for wires that are flush to the board. 

    vs    
                                    Flush = good                                                                      Loopy = ok 
 
Extra bonus points​ for connecting the left and right ​-​ rails along the bottom of the board, so that you have 
access to Ground on both sides! 
 

 
 
 
 
  

4 



Electronics: Power an LED 
 

 
 
An LED will light when current flows through it, from the positive leg (longer wire) to the negative leg (shorter 
wire). A resistor in series with the LED is necessary to reduce the current through the LED and prevent it from 
overheating. 

 
It is important to draw a circuit schematic before building the circuit. The schematic 
is the the reference for what you were supposed to build, and your guide when 
debugging.  
 
Build this circuit somewhere on your breadboard. What happens when you replace 
the 330Ω resistor with the 10kΩ? 
 
  

5 



The schematic does not tell you how to make the connections on the breadboard; there are infinite ways to do 
that. Use whatever construction you are comfortable with! You can also trim the legs of the LED and resistor to 
make them less likely to fall out, but try to leave the positive leg of the LED a little longer so you remember 
which way is positive. 
 

 
 
  

6 



Electronics: Turn on an LED with a button 
 

Edit your circuit so that the LED is on only when a push button is pushed. 
 
Do the order of the components matter? 
 
How could you redesign the circuit so that the LED is on only when the button is 
not pushed? 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
Note that the pushbutton has funny feet that do not fit in the breadboard. Cut them off! 
 
Why does the following circuit not function? 

       
  

7 



Circuit Python programming: Using REPL 
 
We prefer not to build circuits like the one above because they are inflexible. To get different functionality, the 
circuit must be redesigned. A more flexible approach is to build simple circuits, linked through code and a 
microcontroller. Changing code is easy and free! This will vastly improve your prototyping ability. 
 
Open Mu (“Moo”), set the Mode to Adafruit CircuitPython, and open main.py on the drive that appeared when 
you plugged in your Itsy Bitsy Express. This file has lots of examples in it, make a copy and save it somewhere 
on your computer, it will be helpful later. 
 
What makes the Itsy Bitsy Express tick? It is running a Python interpreter, capable of running your main.py file, 
as well as controlling the physical input and output pins of the microcontroller. You can communicate with the 
board over Serial communication by clicking the Serial button. When you do, text will appear at the bottom of 
the screen, because the default code is already running. 
 
On your keyboard, press Ctrl-C, and then any key, and you will enter REPL mode (Read-Eval-Print-Loop). Just 
like when running Python on your computer, you can interact with your code through REPL. When you want to 
go back to running main.py, press Ctrl-D. 
 
An interesting thing you can do in REPL is find out which module libraries are installed. Type help(“modules”) 
to see what libraries are available for import. Type import math, then dir(math), to see all the available 
functions in the math library. Sometimes you can help the functions, like help(math.pi), but usually this does 
not yield any helpful information, but you can search online once you know the name of the function. 
 
Try investigating some of the libraries, then exit REPL. 
 
  

8 



Circuit Python programming: Blink an LED 
 
The default main.py contains lots of examples. Let’s pare it down and start with the basics. 
 
We start with importing the libraries necessary to make the board work: 

● The pins are defined in the board module, so you need to import board. 
● Time functions, like sleep, are in the time module, so you need to import time. 
● Pin functions, like stating direction and getting value, are in the digitalio module, and we specifically 

want to set the pin that is being used and in which direction, so we need to import DigitalInOut and 
Direction from digitalio. 

 
To blink the red LED that is already on the Itsy Bitsy Express pin D13, we need to make a variable to represent 
the pin: 

● led = DigitalInOut(board.D13) 
Then we need to set the pin to Output: 

● led.direction = Direction.OUTPUT 
 
Now we create in infinite loop, turn the LED on, then wait, then turn the LED off, then wait, and continue: 
While True: 

Led.value = True 
time.sleep(1) # in seconds 
Led.value = False 
time.sleep(1) 

 
Overall, it looks like: 
import board # pin definitions 

import time # sleep function 

from digitalio import DigitalInOut, Direction 

 

# Built in red LED on D13 

led = DigitalInOut(board.D13) 

led.direction = Direction.OUTPUT 

 

######################### MAIN LOOP ############################## 

while True: 

    led.value = True 

    time.sleep(1) # in seconds 

    led.value = False 

    time.sleep(1) 

  

Save the code, and make sure the LED blinking rate corresponds to the code. Change the delay time and 
make sure the board updates. 
 
 
 

 
 
  

9 



Circuit Python programming: Read a button and turn on an LED 
 

The following push button circuit is the typical button built for a 
microcontroller. The input pin is by default True, and becomes 
False when pushed. The Itsy Bitsy Express contains the 10k 
resistor inside of the pin, and it can be turned on in code, by also 
importing the Pull function from digitalio. Edit your code so that you 
have a variable called button, on pin D9, that is an input pin, and 
the pullup resistor is enabled using button.pull = Pull.UP. 
 
In the infinite loop, add an if statement that determines if D9 is 
tapped to Ground using a wire, and if it is, turn on the LED, 
otherwise turn off the LED. Remove any delays so the code loops 
as often as possible. 
 
How fast is the code running? One way to try to find out is to make 
a variable, add one to it every time the loop iterates and the button 
is pushed, and print the value if the button is pushed. Then, when 
you tap the button, you will see how fast the variable increments, 
and have a better idea for how fast the loops runs. 
 
Declare a variable called i and set it to zero before the infinite loop 
starts. In your if statement, set i = i + 1 if the button is pushed, and 
print the value using print(“i = “ + str(i)). Notice that you could use 

print(i), but not print(“i = “ + i). Why is that? 
 
 
 
 
 
  

10 



Arduino programming: Read a potentiometer and print the voltage to the computer 
 
A potentiometer is a variable resistor knob with three legs. When the bottom and top legs are attached to 
Ground and 3.3V, the middle leg will output a voltage from 0V to 3.3V that is proportional to the angle of the 
knob. Potentiometers are usually limited to 180 degrees of rotation. 
 

 
 
The Itsy Bitsy Express can read voltages from 0V to 3.3V on pins that begin with A (A1 to A5). Build the 
potentiometer circuit and connect the output voltage to pin A1. 
 
To read an analog value, import AnalogIn from the module analogio. Create a variable for the pin, and set it to 
pin A1. This should look like: 
from analogio import AnalogIn 

analog1in = AnalogIn(board.A1) 

 
Edit the infinite loop so that if the button is pushed, the value of the analog pin, analog1in.value, is printed to 
the computer (without any extra text). What is the range of numbers as you turn the knob? Can you add math 
so that the voltage is printed instead? 
 
The Itsy Bitsy Express is so fast that the numbers are choking the computer. Add a 0.01s delay to the inifinte 
loop to slow things down. 
 
In addition to the Serial monitor, Mu has a plotting tool. To see the number plotted, the print statement can’t 
just be analog1in.value, it must be (analog1in.value,). If you want to plot several numbers, you can add them to 
the list, and end it with a comma. 
  

11 



Circuit Python programming: Read a potentiometer and set the brightness of an LED 
 
Most microcontroller boards lack the ability to output analog voltages (voltages that are between 0V and 3.3V. 
Actually the Itsy Bitsy Express can do this on pin A0, but it is meant for low power music signals). Instead they 
actually output a square wave at a high frequency, blinking the pin so fast that it appears to be analog (this is 
typically called pulse width modulation, or PWM). You can use PWM on the pins that have a white dash next to 
them on the board (5, 7, 9, 10, 11, 12, 13).  
 
The module is called pulseio, and we’ll reuse the red LED on pin 13 to try it out. Comment out the LED part of 
your code, and replace the pin initialization with led = pulseio.PWMOut(board.D13, frequency=5000, 
duty_cycle=0), and the value with something like led.duty_cycle = analog1in or led.duty_cycle = 0. The 
duty_cycle is the percentage that the pin is on, where 65535 is 100% on. 
 
Edit the code and turn the knob while pressing the button, does the red LED change intensity with the knob 
angle? 
 
  

12 



Circuit Python programming: Control the position of an RC servo 
 
A Remote Control style Servomotor is an inexpensive way to get position control of a motor. The RC servo has 
a built in controller, brushed DC motor, gears, and potentiometer. It reads its own position and forces it to 
match the commanded position told to it by the Itsy Bitsy Express. 
 

   

       
 
Connect the black wire of the servo to Ground and the red wire to 5V. The orange/white wire goes to a PWM 
capable pin on the Itsy Bitsy Express. Larger RC servos can draw more current than USB can supply and need 
an external power supply, usually 4.8-6V. 
 
The servo module comes from the manufacturer of the Itsy Bitsy Express 
from adafruit_motor import servo 

 
It uses PWM at 50Hz, and a special servo type of variable: 
servo_pwm = pulseio.PWMOut(board.D12, frequency=50) 

servo = servo.Servo(servo_pwm) 

 
Then, you can set servo.angle anywhere in you code, from 0 to 180, and the motor will match and hold that 
angle. 
 
Edit your code so that the servo follows the angle of your knob. 
  

13 



Circuit Python programming: Control the color of addressable RGB LEDs 
 
The WS2812B is an addressable RGB LED that is commonly known as a NeoPixel. Using one pin from the 
Itsy Bitsy Express, you can control the brightness and color of hundreds of NeoPixels. We only have two, but 
you can purchase NeoPixels on flexible tape, stiff lines, arcs, panels, or a variety of different configurations, 
and make cool displays and lighting effects. 

 
Each NeoPixel requires a connection to 5V on +, Ground on G, and a pin to the In pin. NeoPixels can be 
chained from their O pin to the next In pin, and so on. Connect your NeoPixels together. 
 
Import the neopixel module, and make a variable to control the colors: 
neopixels = neopixel.NeoPixel(board.D7, 2, brightness=0.2, auto_write=False) 

 
In this case, the first NeoPixel is connected to pin 7, and there are 2 NeoPixels on the strip. 
 
To set their colors, use something like: 
neopixels[0] = [0,int(analog1in.value/256),0] # the first pixel on the strip 

neopixels[1] = [0,0,int(analog1in.value/256)] # the second pixel 

 
The values are [RED, GREEN, BLUE], from 0-255. 
 
 
 
 
 
  

14 



Circuit Python programming: Playing Sound 
 
The Itsy Bitsy Express can play a short audio clip on pin A0. Connect A0 to a 1uF capacitor (labeled 105z), the 
capacitor to one end of the speaker, and the other end of the speaker to Ground. The sound will not be very 
loud. You can add a variety of different audio amplifiers to get more sound. 
 
The servo module seems to have a bug that prevents the audio from working, so comment out the servo parts 
of your code. 
 
Import the audioio module, and add a variable for the .wav files already on the Itsy Bitsy Express: 
audiofiles = ["rimshot.wav", "laugh.wav"] 

 
Copy this function that will play a .wav file: 
def play_file(filename): 

    print("") 

    print("----------------------------------") 

    print("playing file "+filename) 

    f = open(filename, "rb") 

    a = audioio.AudioOut(board.A0, f) 

    a.play() 

    while a.playing: 

        pass 

    print("finished") 

    print("----------------------------------") 

 
In your infinite loop, you can call the function and the sound will play (but the code will wait there until the 
sound is done): 
play_file(audiofiles[0]) 

play_file(audiofiles[1]) 

 
  

15 



More information: 
 
See the ​examples on the Adafruit website 

16 

https://learn.adafruit.com/circuitpython-essentials/circuitpython-essentials?preview_token=hBVvTKWl_ifgsJckceOXFg

