

Figure 1: Visualization of the representation of a screw axis. Your figures can be drawn on a computer or carefully hand drawn, as long as it is clear what is going on!

Submitted by: Your name here

Exercise. Here is the text that describes the exercise. You can put an equation inline, like f = ma; you can use superscripts or subscripts, like $\tau = J_s^{\mathrm{T}} \mathcal{F}_s$ or $\mathcal{V}_b = J_b(\theta)\dot{\theta}$; or you can make an equation "displayed" like

$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] =$	a_{11}	a_{12}	a_{13}	$\begin{bmatrix} y_1 \end{bmatrix}$	
	a_{21}	a_{22}	a_{23}	y_2	•
	a_{31}	a_{32}	a_{33}	y_3	

You can google "latex math" or "latex math symbols" to learn more about typesetting math.

Here is the next paragraph of text. You can refer to Figure 1 like this.

Solution. Here's the text of your solution. You can have another figure, like Figure 2, in your solution.

Figure 2: You got the right answer!

 $\mathbf{2}$