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Chapter 1

Quickstart

Edit, compile, run, repeat: familiar to generations of C programmers, this mantra applies to programming in
C, regardless of platform. Architecture. Program loading. Input and Output. These details differ between
your computer and the PIC32. Architecture refers to processor type: your computer’s x86-64 CPU and the
PIC32’s MIPS32 CPU understand different machine code and therefore require different compilers. Your
computer’s operating system allows you to seamlessly run programs; the PIC32’s bootloader writes programs
it receives from your computer to flash memory and executes them when the PIC32 resets.! You interact
directly with your computer via the screen and keyboard; you interact indirectly with the PIC32 using a
terminal emulator to relay information between your computer and the microcontroller. As you can see,
programming the PIC32 requires attention to details that you probably ignore when programming your
computer.

Armed with an overview of the differences between computer programming and microcontroller program-
ming, you are ready to get your hands dirty. The rest of this chapter will guide you through gathering the
hardware and installing the software necessary to program the PIC32. You will then verify your setup by
running two programs on the PIC32. By the end of the chapter, you will be able to compile and run programs
for the PIC32 as easily as you compile and run programs for your computer!

1.1 What You Need

This section explains the hardware and software that you need to program the PIC32. Links to purchase the
hardware and download the software are provided at the book’s website, http://hades.mech.northwestern.
edu/index.php/Pic32book.

1.1.1 Hardware

Although PIC32 microcontrollers integrate many devices on a single chip, they also require external circuitry
to function. The NU32 development board, shown in Figure 1.1, provides this circuitry and more: buttons,
LEDs, breakout pins, USB ports, and virtual USB serial ports. The examples in this book assume that you
use this board. You will also need the following hardware:

1. Computer with a USB port. The host computer is used to create PIC32 programs. The examples
in this book work with the Linux, Windows, and Mac operating systems.

2. USB A to mini—B cable. This cable carries signals between the NU32 board and your computer.

3. AC/DC adapter (6 Volts). This cable provides power to the PIC32 and NU32 board.

1Your computer also has a bootloader. It runs when you turn the computer on and loads the operating system. Also,
operating systems are available for the PIC32, but we will not use them in this book.
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Figure 1.1: A photo of the NU32 development board.

1.1.2 Software

Programming the PIC32 requires various software. You should be familiar with some of the software from
programming your computer in C; if not, refer to Appendix A. For your convenience, we have aggregated the
software you need at the book’s website, http://hades.mech.northwestern.edu/index.php/Pic32book.
You should download and install all of the following software.

1.

The command prompt allows you to control your computer using a text-based interface. This
program, cmd.exe on Windows, Terminal on Mac, and bash on Linux, comes with your operating
system so you should not need to install it. See Appendix A for more information about the command
line.

A text editor allows you to create text files, such as those containing C source code. See Appendix A
for more information.

A native C compiler converts human-readable C source code files into machine code that your
computer can execute. We suggest the free GNU compiler, gcc, which is available for Windows, Mac,
and Linux. See Appendix A for more information.

Make simplifies the build process by automatically executing the instructions required to convert
source code into executables. After manually typing all of the commands necessary create your first
program, you will appreciate make.

The Microchip XC32 compiler converts C source files into machine code that the PIC32 understands.
This compiler is known as a cross compiler because it runs on one processor architecture (e.g., x86-64
CPU) and creates machine code for another (e.g., MIPS32). This compiler installation also includes C
libraries to help you control PIC32-specific features. Note where you install the compiler; we will refer
to this directory as <xc32dir>. If you are asked during installation whether you would like to add xc32
to your path variable, do so.

MPLAB Harmony is Microchip’s collection of libraries and drivers that simplify the task of writing
code targeting multiple PIC32 models. We will use this library only in the more advanced chapters;
however, you should install it now. Note the installation directory, which we will refer to as <harmony>.

The FTDI Virtual COM Port Driver allows you to use a USB port as a “virtual serial commu-
nication (COM) port” to talk to the NU32 board. This driver is already included with most Linux
distributions, but Windows and Mac users will need to install it.

Lynch, Marchuk, and Elwin, Northwestern U. 8 23:27 February 25, 2015
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8. A terminal emulator provides a simple interface to a COM port on your computer, sending keyboard
input to the PIC32 and displaying output from the PIC32. For Windows we recommend PuTTY, and
for Linux/Mac you can use the built-in screen program. On Windows, remember where you download
PuTTY; we refer to this directory as <puttyPath>.

9. The PIC32 quickstart code contains source code and other support files to help you program
the PIC32. Download PIC32quickstart.zip from the book’s website, extract it, and put it in a
directory that you create. We will refer to this directory as <PIC32>. In <PIC32> you will keep the
quickstart code, plus all of the PIC32 code you write, so make sure the directory name makes sense
to you. For example, depending on your operating system, <PIC32> could be /Users/kevin/PIC32
or C:\Users\kevin\Documents\PIC32. In <PIC32>, you should have the following three files and one
directory:

e nuld2utility.c: a program for your computer, used to load PIC32 executable programs from your
computer to the PIC32

e simplePIC.c, talkingPIC.c: PIC32 sample programs that we will test in this chapter

e skeleton: a directory containing

— Makefile: a file that will help us compile future PIC32 programs
— NU32.c, NU32.h: a library of useful functions for the NU32 board
— NU32bootloaded.1ld: a linker script used when compiling programs for the PIC32

We will learn more about each of these shortly.

You should now have code in the following directories (plus, if you are a Windows user, you will have
PuTTY in the directory <puttyPath>):

e <xc32dir>. You will never modify code in this directory. Microchip wrote this code, and there
is no reason for you to change it. Depending on your operating system, your <xc32dir> could look
something like the following;:

— /Applications/microchip/xc32
— C:\Program Files (x86)\Microchip\xc32
e <harmony>. You will never modify code in this directory. Depending on your operating system,
your <harmony> could look something like the following:

— /Users/kevin/microchip/harmony

— C:\microchip\harmony
e <PIC32>. Where PIC32 quickstart code, and code you will write, is stored, as described above.

Now that you have installed all of the necessary software, it is time to program the PIC32. By following
these instructions, not only will you run your first PIC32 program, you will also verify that all of the software
and hardware is functioning properly. Do not worry too much about what all the commands mean, we will
explain the details in subsequent chapters.

Notation: Wherever we write <something>, replace it with the value relevant to your computer. On
Windows, use a backslash (\) and on Linux/Mac use a slash (/) to separate the directories in a path. At the
command line, place paths that contain spaces between quotation marks (i.e. "C:\Program Files"). Enter
the text following a > at the command line. Use a single line, even if the command spans multiple lines in the
book.
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1.2 Compiling The Bootloader Utility

The bootloader utility, located at <PIC32>/nu32utility.c, sends compiled code to the PIC32. To use the
bootloader utility you must compile it. Navigate to the <PIC32> directory by typing:

> cd <PIC32>

Verify that <PIC32>/nu32utility.c exists by executing the following command, which lists all the files in a
directory:

e Windows
> dir

e Linux/Mac
> 1s

Next, compile the bootloader utility using the native C compiler gcc:

e Windows
> gcc nu32utility.c -o nu3d2utility -lwinmm

e Linux/Mac
> gcc nu32utility.c -o nu3d2utility

When you successfully complete this step the file nu32utility will be created. Verify that it exists by listing
the files in <PIC32>.

1.3 Compiling Your First Program

The first program you will load onto your PIC32 is <PIC32>/simplePIC.c, which is listed below. We will
scrutinize the source code in Ch. 3, but reading it now will help you understand how it works. Essentially,
after some setup, the code enters an infinite loop that alternates between delaying and toggling two LEDs.
The delay loops infinitely while the USER button is pressed.

Code Sample 1.1. simplePIC.c. Blinking lights on the NU32, unless the USER button is pressed.

#include <xc.h> // Load the proper header for the processor
void delay(void);

int main(void) {
DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.

TRISA = OxFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear
// bits 4/5 to zero, for output. Others are inputs.

LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...
LATAbits.LATAS = 1; // ... current on NU32, so "high" = "off."
while(1) {

delayQ;

LATAINV = 0x0030; // toggle LED1 and LED2
}
return O;

}

void delay(void) {
int j;
for (j = 0; j < 1000000; j++) { // number is 1 million
while (!PORTDbits.RD13) {
; // Pin D13 is the USER switch, low if pressed.
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To compile this program you will use the xc32-gcc cross compiler, which compiles code for the PIC32’s
MIPS32 processor. This compiler and other Microchip tools are located at <xc32dir>/<xc32ver>/bin, where
<xc32ver> refers to the xc32 version (e.g. 1.34). To find <xc32ver> list the contents of the Microchip XC32
directory, e.g.,

> 1s <xc32dir>

The subdirectory displayed is your <xc32ver> value. If you happen to have installed two or more versions of
XC32, you will always use the most recent version (the largest version number).

Next you will compile simplePIC.c and create the executable hex file. This is a two-step process; first
you create the simplePIC.elf file and then you create the simplePIC.hex file. This will be discussed more
in Chapter 3.

> <xc32dir>/<xc32ver>/bin/xc32-gcc -mprocessor=32MX795F512L
-0 simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c
> <xc32dir>/<xc32ver>/bin/xc32-bin2hex simplePIC.elf

The -Wl is “W ell” not “~-W one.” You can list the contents of <PIC32> to make sure both simplePIC.elf
and simplePIC.hex were created. The hex file contains PIC32 machine code in a format that the PIC32
understands.

If, when you installed XC32, you selected to have xc32 added to your path, then in the two commands
above you could have simply typed

> xc32-gcc -mprocessor=32MX795F512L
-0 simplePIC.elf -W1l,--script=skeleton/NU32bootloaded.ld simplePIC.c
> xc32-bin2hex simplePIC.elf

and your operating system would be able to find these programs without needing the full paths to them.
Next, you will load simplePIC.hex onto the PIC32 using the bootloader utility.

1.4 Loading Your First Program

Loading a program onto the PIC32 from your computer requires communication between the two devices.
When the PIC32 is powered and connected to a USB port, your computer creates two new serial communication
(COM) ports. Depending on your specific system setup, these COM ports will have different names. Therefore,
we will determine the names of your COM ports through experimentation. First, with the PIC32 unplugged,
execute the following command to enumerate the current COM ports, and take note of the names that are
listed:

e Windows:
> mode

e Mac:
> 1s /dev/tty.*

e Linux:
> 1s /dev/ttyUSB*

Next, plug-in the NU32 board to the wall using the AC adapter, turn the power switch on, and verify that
the red “power” LED illuminates. Connect the USB cable from the NU32’s mini B USB jack (next to the
power jack) to a USB port on the host computer. Repeat the steps above, and note that two new COM ports
appear. If they do not appear, make sure that you installed the FTDI driver from the Section 1.1.2. The
names of the ports will differ depending on the operating system; therefore we have listed some typical names:

e Windows: COM4 COM5
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e Mac: /dev/tty.usbserial-00001024A /dev/tty.usbserial-00001024B
e Linux: /dev/ttyUSBO /dev/ttyUSB1

Your computer, upon detecting the NU32 board, has created both of these ports. Your programs use the
lower port, <COMportA>, and the bootloader uses the higher port, <COMportB>.2.34

After identifying the COM ports, place the PIC32 into program receive mode. Locate the RESET button
and the USER button on the NU32 board (Figure 1.1). The RESET button is next to pins B8, B9, B1, on the
board’s bottom left (the power jack is the board’s top) and the USER button is next to pins D5, D6, and
D7 on the board’s bottom right. Press and hold both buttons, release RESET, and then release USER. After
completing this sequence, the PIC32 will flash LED1, indicating that it has entered program receive mode.

Assuming that you are still in the <PIC32> directory, type

e Windows
nu32utility <COMportB> simplePIC.hex

e Linux/Mac
> ./nu32utility <COMportB> simplePIC.hex

to start the loading process. After the utility finishes, LED1 and LED2 will flash back and forth. Hold USER
and notice that the LEDs stop flashing. Release USER and watch the flashing resume. Turn the PIC32 off
and then on. The LEDs resume blinking because you have written the program to the PIC32’s nonvolatile
flash memory. Congratulations, you have successfully programmed the PIC32!

1.5 The Build Process

As you just witnessed, building an executable for the PIC32 requires several steps. Fortunately, you can use
make to simplify this otherwise tedious and error-prone procedure. Using make requires a Makefile, which
contains instructions for building the executable. We have provided a Makefile in <PIC32>/skeleton. Prior
to using make, you need to modify <PIC32>/skeleton/Makefile so that it contains the paths and COM
port specific to your system.

Aside from the paths you have already used, you need your terminal emulator’s location, <termEmu>, and
the Harmony version, <harmVer>. On Windows, <termEmu> is <puttyPath>/putty.exe and for Linux/Mac,
<termEmu> is screen. To find Harmony’s version, <harmVer>, list the contents of the <harmony> directory.
Edit <PIC32>/skeleton/Makefile and update the first six lines as indicated below.

XC32PATH=<xc32dir>/<xc32ver>/bin
HARMONYPATH=<harmony>/<harmVer>
NU32PATH=<PIC32>
PORTA=<COMPortA>
PORTB=<COMPortB>
TERMEMU=<termEmu>

In the Makefile, do not surround paths with quotation marks, even if they contain spaces.

If your computer has more than one USB port, you should always use the same USB port to connect to
your NU32. This is because the names of the COM ports that are created when you connect your NU32 may
change if you use a different USB port. Since you are now creating a Makefile that you will use for all your
projects in the future, you want to make sure that COMPortA and COMPortB are always correct.

After saving the Makefile, you can use the skeleton directory to easily create new PIC32 programs. The
skeleton directory contains not only the Makefile, but also the NU32 library (NU32.h and NU32.c), and the
linker script NU32bootloaded.1d, all of which will be used extensively throughout the book. The Makefile
will automatically compile and link all . c files in the same directory into a single executable; therefore, your
project directory should contain all the C files you need and none that you do not want!

2Windows: write the ports as \\.\COMx rather than COMx
3Mac: the bootloader port ends with “B”.
4Linux: To avoid needing to execute commands as root, add yourself to the group that owns the COM port.
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Each new project you create will have its own directory in <PIC32>, e.g., <PIC32>/<projectdir>. We now
explain how to use the <PIC32>/skeleton directory to create a new project, using <PIC32>/talkingPIC.c
as an example. For this example, we will name the project talkingPIC, so <projectdir> is talkingPIC.
By following this procedure, you will have access to the NU32 library and will be able to avoid repeating the
previous setup steps. First copy the <PIC32>/skeleton directory to the new project directory:

e Windows
> mkdir <projectdir>
> copy <PIC32>\skeleton\*.* <projectdir>

e Linux/Mac
> cp -R <PIC32>/skeleton <projectdir>

Now copy the project source files, in this case just talkingPIC.c, to < PIC32 > / < projectdir >, and
change to that directory:

e Windows
> copy talkingPIC.c <projectdir>
> cd <projectdir>

e Linux/Mac
> cp talkingPIC.c <projectdir>
> cd <projectdir>

Before explaining how to use make, we will examine talkingPIC.c, which accepts input from and prints
output to a terminal emulator running on the host computer. These capabilities facilitate user interaction
and debugging. The source code for talkingPIC.c is listed below:

Code Sample 1.2. talkingPIC.c. The PIC32 echoes any messages sent to it from the host keyboard back
to the host screen.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // config bits, constants, funcs for startup and UART

#define MAX_MESSAGE_LENGTH 200

int main(void) {
char message [MAX_MESSAGE_LENGTH] ;

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

while (1) {
NU32_ReadUART1 (message, MAX_MESSAGE_LENGTH); // get message from computer
NU32_WriteUART1 (message) ; // send message back
NU32_WriteUART1("\r\n"); // carriage return and newline
NU32_LED1 = INU32_LED1; // toggle the LEDs
NU32_LED2 = INU32_LED2;

}

return O;

}

Notice the calls to sprintf. This function acts like printf except it writes to a string rather than the
screen. The NU32 library function NU32_WriteUART1 sends the output of sprintf from the PIC32 to the
computer via the serial port. Likewise, NU32_ReadUART1 allows the PIC32 to read data from the computer
via the serial port. If you removed the calls to NU32_WriteUART1, replaced NU32_ReadUART1 with scanf, and
replaced sprintf with printf, you would be left with a rather simple program that prints what you type!

Now that you know how talkingPIC.c works, it is time to see it in action. First, make sure you are in
the <projectdir> and build the project using make.
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> make

This compiles and assembles all .c files into .o object files, links them into a single out.elf file, and turns
that out.elf file into an executable out.hex file. You can do a directory listing to see all of these files.
Next, put the PIC32 into program receive mode (the RESET and USER buttons) and execute

> make write

to invoke the bootloader utility nu32utility and program the PIC32 with out.hex. When LED1 stops
flashing, the PIC32 has been programmed.

To communicate with talkingPIC, you must connect to the PIC32 using your terminal emulator. Recall
that the terminal emulator communicates with the PIC32 using <COMportA>. Enter the following command:

e Windows
<puttyPath>\putty -serial <COMportA> -sercfg 230400

e Linux/Mac
screen <COMportA> 230400

PuTTY will launch in a new window, whereas screen will use the command prompt window. The number
230400 in the above commands is the baud, the speed at which the PIC32 and computer communicate.

After connecting, press RESET to restart the program. Start typing, and notice that no characters appear
until you hit ENTER. This behavior may seem strange, but it occurs because the terminal emulator only
displays the text it receives from the PIC32. The PIC32 does not send any text to your computer until it
receives a special control character, which you generate by pressing ENTER.”

For example, if you type Hello! ENTER, the PIC32 will receive Hello!\r, write Hello!\r\n to the
terminal emulator, and wait for more input.

When you are done conversing with the PIC32, you can exit the terminal emulator. To exit screen type

CTRL-a k y

Note that CTRL and a should be pressed simultaneously. To exit PuTTY make sure the command prompt
window is focused and type

CTRL-c

Rather then memorizing these rather long commands to connect to the serial port, you can use the
Makefile.
To connect PuTTY to the PIC32 type

> make putty
To use screen type
> make screen

Your system is now configured for PIC32 programming. Although the build process may seem opaque, do
not worry. For now it is only important that you can successfully compile programs and load them onto the
PIC32. Later chapters will explain the details of the build process.

1.6 Chapter Summary

e To start a new project, copy the <PIC32>/skeleton directory to a new location, <projectdir>, and
add your source code.

e In the directory <projectdir>, use make to compile your code.

5Depending on the terminal emulator, ENTER may generate a carriage return (\r), newline (\n) or both. The terminal
emulator moves the cursor to the leftmost column when it recieves a \r and to the next line when it receives a \n.
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e Put the PIC32 into program receive mode by pressing the USER and RESET button simultaneously, then
releasing the RESET button, and finally releasing the USER button. Then use make write to load your
program.

e Use a terminal emulator to communicate with programs running on the PIC32. Typing make putty or
make screen will launch the appropriate terminal emulator and connect it to the PIC32.
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Chapter 2

Looking Under the Hood: Hardware

Now that you have some programs running, it’s time to look under the hood. We begin with the PIC32
hardware by examining the PIC32MX795F512L in detail. We then describe the NU32 development board.

2.1 The PIC32

2.1.1 Pin Functions and Special Function Registers (SFRs)

The PIC32MX795F512L requires a supply voltage between 2.3 and 3.6 V and features a maximum clock
frequency of 80 MHz, 512 KB of program memory (flash), and 128 KB of data memory (RAM). Its peripherals
include a 10-bit analog-to-digital converter (ADC), many digital I/O pins, USB 2.0, Ethernet, two CAN
modules, five I2C and four SPI synchronous serial communication modules, six UARTSs for RS-232 or RS-485
asynchronous serial communication, five 16-bit counter/timers (configurable to give two 32-bit timers and
one 16-bit timer), five pulse-width modulation outputs, and several pins that can generate interrupts based
on external signals. Whew. Don’t worry if you don’t know what all of these peripherals do, much of this
book is dedicated to expaining them.

To cram so much functionality into only 100 pins, many pins serve multiple functions. See the pinout
diagram for the PIC32MX795F512L (Figure 2.1). As an example, pin 21 can be an analog input, a comparator
input, a change notification input (which can generate an interrupt when an input changes state), or a digital
input or output.

Table 2.1 summarizes the pin functions; we indicated some of the most useful for embedded control in
bold.

Which function a particular pin actually serves is determined by Special Function Registers (SFRs). Each
SFR is a 32-bit word that sits at a memory address. The values of the SFR bits, 0 (cleared) or 1 (set), control
the functions of the pins as well as other functions of the PIC32.

For example, pin 78 in Figure 2.1 can serve as OC4 (output compare 4) or RD3 (digital I/O number 3 on
port D). Let’s say we want to use it as a digital output. We can modify the SFRs that control this pin to
disable the OC4 function and to choose the RD3 function as digital output instead of digital input. The
PIC32MXb5xx/6xx/7xx Data Sheet explains the memory addresses and meanings of the SFRs. Be careful,
because it includes information for many different PIC32 models. Looking at the data sheet section on Output
Compare reveals that the 32-bit SFR named “OC4CON” determines whether OC4 is enabled. Specifically,
for bits numbered O ... 31, we see that bit 15 is responsible for enabling or disabling OC4. We refer to this
bit as OC4CON(15). If it is cleared (0), OC4 is disabled, and if it is set (1), OC4 is enabled. So we clear this
bit to 0. (Bits can be “cleared to 0” or simply “cleared,” or “set to 1”7 or simply “set.”) Now, referring to
the I/O Ports section of the Data Sheet, we see that the input/output direction of Port D is controlled by
the SFR TRISD, and bits 0-15 correspond to RD0-15. Bit 3 of the SFR TRISD, i.e., TRISD(3), should be
cleared to 0 to make RD3 (pin 78) a digital output.

In fact, according to the Memory Organization section of the Data Sheet, OC4CON(15) is cleared by
default on reset. On the other hand, TRISD(3) is set to 1 on reset, making pin 78 a digital input by default.
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Figure 2.1: The pinout of the PIC32MX795F512L used on the NU32.

(This is for safety, to make sure the PIC32 does not impose an unwanted voltage on external circuitry upon
startup.)
We will see SFRs again and again as we learn about the PIC32.

2.1.2 PIC32 Architecture

Figure 2.2 depicts the PIC32’s architecture. Of course there is a CPU, program memory, and data memory.
Perhaps most interesting to us, though, is the plethora of peripherals, which are what make microcontrollers
useful for embedded control. From left to right, top to bottom, these peripherals consist of PORTA ... PORTG,
which are digital I/O ports; 22 change notification (CN) pins that generate interrupts when input signals
change; five 16-bit counters (which can be used as one 16-bit counter and two 32-bit counters by chaining) that
can be used for a variety of counting operations, and timing operations by counting clock ticks; five pins for
output pulse-width modulation (PWM) pulse trains (or “output compare” OC); five pins for “input capture”
(IC) which are used to capture timer values or trigger interrupts on rising or falling inputs; four SPI and five
I2C synchronous serial communication modules; a “parallel master port” (PMP) for parallel communication;
an analog-to-digital converter (ADC) multiplexed to 16 input pins; six UARTSs for asynchronous serial
communication (e.g., RS-232, RS-485); a real-time clock and calendar (RTCC) that can maintain accurate
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| Pin Label Function
ANx (x=0-15) analog-to-digital (ADC) inputs
AVDD, AVSS positive supply and ground reference for ADC
((j:iIiV ;) CxIN+, CxOUT comparator negative and positive input and output
CxRX, CxTx (x=1,2) CAN receive and transmit pins
CLKI, CLKO clock input and output (for particular clock modes)
CNx (x=0-21) change notification; voltage changes on these pins can generate interrupts
CVREF-, CVREF+, Lo
CVREFOUT comparator reference voltage low and high inputs, output
D+, D- USB communication lines

EMUCx, EMUDx (x=1,2)

used by an in-circuit emulator (ICE)

ENVREG

enable for on-chip voltage regulator that provides 1.8 V to internal core (on the
NU32 board it is set to VDD to enable the regulator)

ICx (x=1-5) input capture pins for measuring frequencies and pulse widths

INTx (x=0-4) voltage changes on these pins can generate interrupts

MCLR master clear reset pin, resets PIC when low

0Cx (x=1-5) 0}1tput compare pins, usually used to generate pulse trains (pulse-width modula-
tion) or individual pulses

OCFA, OCFB fault protection for out.put. compare pins; if a f:%ult occurs, they can be used to
make OC outputs be high impedance (neither high nor low)

OSC1, OSC2 crystal or resonator connections for different clock modes

PGCx, PGDx (x=1,2)

used with in-circuit debugger (ICD)

PMALL, PMALH

latch enable for parallel master port

PMAx (x=0-15)

parallel master port address

PMDx (x=0-15)

parallel master port data

PMENB, PMRD, PMWR

enable and read/write strobes for parallel master port

Rxy (x=A-G, y=0-15)

digital I/O pins

RTCC

real-time clock alarm output

SCLx, SDAx (x=1-5)

I2C serial clock and data input /output for I°C synchronous serial communication
modules

(SXC_I?Z) SDIx, SDOx serial clock, serial data in, out for SPI synchronous serial communication modules
SS1,SS2 slave select (active low) for SPI communication

TxCK (x=1-5)

input pins for counters when counting external pulses

TCK, TDI, TDO, TMS

used for JTAG debugging

TRCLK, TRDx (x=0-3)

used for instruction trace controller

UxCTS, UxRTS,
UxRX, UxTX (x=1-6)

UART clear to send, request to send, receive input, and transmit output for UART
modules

VDD

positive voltage supply for peripheral digital logic and I/O pins (3.3 V on NU32)

VDDCAP capacitor filter for internal 1.8 V regulator when ENVREG enabled
VDDCORE external 1.8 V supply when ENVREG disabled

VREF-, VREF+ can be used as negative and positive limit for ADC

VSS ground for logic and I/O

VBUS monitors USB bus power

VUSB power for USB transceiver

VBUSON output to control supply for VBUS

USBID USB on-the-go (OTG) detect

Table 2.1: Some of the pin functions on the PIC32. Commonly used functions for embedded control are in
bold. See Section 1 of the Data Sheet for more information.

year-month-day-time without using the CPU; and two comparators, each of which determines which of two
analog inputs has a higher voltage.
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Figure 2.2: The PIC32MX5XX/6XX/7XX architecture.

Note that the peripherals are on two different buses: one is clocked by the system clock SYSCLK,
and the other is clocked by the peripheral bus clock PBCLK. A third clock, USBCLK, is used for USB
communication. The timing generation block that creates these clock signals and other elements of the
architecture in Figure 2.2 are briefly described below.

CPU The central processing unit runs the whole show. It fetches program instructions over its “instruction
side” (IS) bus, reads in data over its “data side” (DS) bus, executes the instructions, and writes out the
results over the DS bus. The CPU can be clocked by SYSCLK at up to 80 MHz, meaning it can execute one
instruction every 12.5 nanoseconds. The CPU is capable of multiplying a 32-bit integer by a 16-bit integer
in one cycle, or a 32-bit integer by a 32-bit integer in two cycles. There is no floating point unit (FPU), so
floating point math is carried out in a series of steps in software, meaning floating point operations are much
slower than integer math.

Lynch, Marchuk, and Elwin, Northwestern U. 22 23:27 February 25, 2015



CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

The CPU also communicates with the interrupt controller, described below.

The CPU is based on the MIPS32® M4K® microprocessor core licensed from Imagination Technologies.
The CPU operates at 1.8 V (provided by a voltage regulator internal to the PIC32, as it’s used on the NU32
board).

Bus Matrix The CPU communicates with other units through the 32-bit bus matrix. Depending on the
memory address specified by the CPU, the CPU can read data from, or write data to, program memory
(flash), data memory (RAM), or SFRs. The memory map is discussed in Section 2.1.3.

Interrupt Controller The job of the interrupt controller is to present “interrupt requests” to the CPU.
An interrupt request (IRQ) may be generated by a variety of sources, such as a changing input on a change
notification pin or by the elapsing of a specified time on one of the timers. If the CPU accepts the request, it
will suspend whatever it is doing and jump to an interrupt service routine (ISR), a function defined in the
program. After completing the ISR, program control returns to where it was suspended. Interrupts are an
extremely important concept in embedded control.

Memory: Program Flash and Data RAM The PIC32 has two types of memory: flash and RAM.
Flash is generally more plentiful on PIC32’s (e.g., 512 KB flash vs. 128 KB RAM on the PIC32MX795F512L),
nonvolatile (meaning that its contents are preserved when powered off, unlike RAM), but slower to read and
write than RAM. Your program is stored in flash memory and your temporary data is stored in RAM. When
you power cycle your PIC32, your program is still there but your data in RAM is lost.!

Because flash is slow, with a max speed of 30 MHz for the PIC32MX795F512L, reading a program
instruction from flash may take three CPU cycles when operating at 80 MHz (see Electrical Characteristics
in the Data Sheet). One job of the prefetch cache module (below) is to minimize or eliminate the need for
the CPU to wait around for program instructions to load.

Prefetch Cache Module You might be familiar with the term cache from your web browser. Your
browser’s cache stores recent documents or pages you have accessed over the web, so the next time you
request them, your browser can provide a local copy immediately, instead of waiting for the download.

The prefetch cache module operates similarly—it stores recently executed program instructions, which are
likely to be executed again soon (as in a program loop), and, in linear code with no branches, it can even run
ahead of the current instruction and predictively prefetch future instructions into the cache. In both cases,
the goal is to have the next instruction requested by the CPU already in the cache. When the CPU requests
an instruction, the cache is first checked. If the instruction at that memory address is in the cache (a cache
hit), the prefetch module provides the instruction to the CPU immediately. If there is a miss, the slower load
from flash memory begins.

In some cases, the prefetch module can provide the CPU with one instruction per cycle, hiding the delays
due to slow flash access. The module can cache all instructions in small program loops, so that flash memory
does not have to be accessed while executing the loop. For linear code, the 128-bit wide data path between
the prefetch module and flash memory allows the prefetch module to run ahead of execution despite the slow
flash load times.

The prefetch cache module can also store constant data.

Clocks and Timing Generation There are three clocks on the PIC32: SYSCLK, PBCLK, and USBCLK.
USBCLK is a 48 MHz clock used for USB communication. SYSCLK clocks the CPU at a maximum frequency
of 80 MHz, adjustable all the way down to 0 Hz. Higher frequency means more calculations per second but
higher power usage, approximately proportional to frequency. PBCLK is used by a number of the peripherals,
and its frequency is set to SYSCLK’s frequency divided by 1, 2, 4, or 8. You might want to set PBCLK’s
frequency lower than SYSCLK'’s if you want to save power. If PBCLK’s frequency is less than SYSCLK’s,
then programs with back-to-back peripheral operations will cause the CPU to wait cycles before issuing the
second peripheral command to ensure that the first one has completed.

1t is also possible to store program instructions in RAM, and to store data in flash, but we set that aside for now.
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All clocks are derived either from an oscillator internal to the PIC32 or an external resonator or oscillator
provided by the user. High-speed operation requires an external circuit, so the NU32 provides an external
8 MHz resonator as a clock source. The NU32 software sets the PIC32’s configuration bits (see Section 2.1.4)
to use a phase-locked loop (PLL) on the PIC32 to multiply this frequency by a factor of 10, generating a
SYSCLK of 80 MHz. The PBCLK is set to the same frequency. The USBCLK is also derived from the
8 MHz resonator by a PLL multiplying the frequency by 6.

Digital Input and Output A digital I/O pin configured as an input can be used to detect whether the
input voltage is low or high. On the NU32, the PIC32 is powered by 3.3 V, so voltages close to 0 V are
considered low and those close to 3.3 V are considered high. Some input pins can tolerate up to 5.5 V, while
voltages over 3.3 V on other pins could damage the PIC32 (see Figure 2.1 for the pins that can tolerate
5.5 V).

A digital I/O pin configured as an output can produce a voltage of 0 or 3.3 V. An output pin can also
be configured as open drain. In this configuration, the pin is connected by an external pull-up resistor to a
voltage of up to 5.5 V. This allows the pin’s output transistor to either sink current (to pull the voltage down
to 0 V) or turn off (allowing the voltage to be pulled up as high as 5.5 V). This increases the range of output
voltages the pin can produce.

Counter/Timers The PIC32 has five 16-bit counters. Each can count from 0 up to 26 — 1, or any preset
value less than 2'® — 1 that we choose, before rolling over. Counters can be configured to count external
events, such as pulses on a TxCK pin, or internal events, like PBCLK ticks. In the latter case, we refer to the
counter as a timer. The counter can be configured to generate an interrupt when it rolls over. This allows
the execution of an ISR on exact timing intervals.

Two 16-bit counters can be configured to make a single 32-bit counter. This can be done with two different
pairs of counters, giving one 16-bit counter and two 32-bit counters.

Analog Input The PIC32 has a single analog-to-digital converter (ADC), but 16 different pins can be
connected to it, one at a time. This allows up to 16 analog voltage values (typically sensor inputs) to be
monitored. The ADC can be programmed to continuously read in data from a sequence of input pins, or to
read in a single value when requested. Input voltages must be between 0 and 3.3 V. The ADC has 10 bits of
resolution, allowing it to distinguish 2'0 = 1024 different voltage levels. Conversions are theoretically possible
at a maximum rate of 1 million samples per second on the PIC32MX795F512L.

Output Compare Output compare pins are used to generate a single pulse of specified duration, or a
continuous pulse train of specified duty cycle and frequency. They work with timers to generate the precise
timing. A common use of output compare pins is to generate PWM (pulse-width modulated) signals as
control signals for motors. Pulse trains can also be low-pass filtered to generate approximate analog outputs.
(There are no analog outputs on the PIC32.)

Input Capture A changing input on an input capture pin can be used to store the current time measured
by a timer. This allows precise measurements of input pulse widths and signal frequencies. Optionally, the
input capture pin can generate an interrupt.

Change Notification A change notification pin can be used to generate an interrupt when the input
voltage changes from low to high or vice-versa.

Comparators A comparator is used to compare which of two analog input voltages is larger. A comparator
can generate an interrupt when one of the inputs exceeds the other.

Real-Time Clock and Calendar The RTCC module is used to maintain accurate time, day, month, and
year over extended periods of time while using little power and requiring no attention from the CPU. It uses
a separate clock, allowing it to run even when the PIC32 is in sleep mode.
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Parallel Master Port The PMP module is used to read data from and write data to external parallel
devices with 8-bit and 16-bit data buses.

DMA Controller The Direct Memory Access controller is useful for data transfer without involving the
CPU. For example, DMA can allow an external device to dump data through a UART directly into PIC32
RAM.

SPI Serial Communication The Serial Peripheral Interface bus provides a simple method for serial
communication between a master device (typically a microcontroller) and one or more slave devices. Each
slave device has four communication pins: a Clock (set by the master), Data In (from the master), Data Out
(to the master), and Select. The slave is selected for communication if the master holds its Select pin low.
The master device controls the Clock, has a Data In and a Data Out line, and one Select line for each slave it
can talk to. Communication rates can be up to tens of megabits per second.

I?C Serial Communication The Inter-Integrated Circuit protocol I?C (pronounced “I squared C”) is a
somewhat more complicated serial communication standard that allows several devices to communicate over
only two shared lines. Any of the devices can be the master at any given time. The maximum data rate is
less than for SPI.

UART Serial Communication The Universal Asynchronous Receiver Transmitter module provides
another method for serial communication between two devices. There is no clock line, hence “asynchronous,”
but the two devices communicating must be set to the same communication rate. Each of the two devices
has a Receive Data line and a Transmit Data line, and typically a Request to Send line (to ask for permission
to send data) and a Clear to Send line (to indicate that the device is ready to receive data). Typical data
rates are 9600 bits per second (9600 baud) up to hundreds of thousands of bits per second.

USB The Universal Serial Bus is a popular asynchronous communication protocol. One master communi-
cates with one or more slaves over a four-line bus: +5 V, ground, D+ and D— (differential data signals).
The PIC32MX795F512L implements USB 2.0 full-speed and low-speed options, and can communicate at
theoretical data rates of up to several megabits per second.

CAN Controller Area Networks are heavily used in electrically noisy environments (particularly industrial
and automotive environments) to allow many devices to communicate over a single two-wire bus. Data rates
of up to 1 megabit per second are possible.

Ethernet The ethernet module uses an external PHY chip (physical layer protocol transceiver chip)
and direct memory access (DMA) to offload from the CPU the heavy processing requirements of ethernet
communication. The NU32 board does not include a PHY chip.

Watchdog Timer If the Watchdog Timer is used by your program, your program must periodically reset
the timer counter. Otherwise, when the counter reaches a specified value, the PIC32 will reset. This is a way
to have the PIC32 restart if your program has entered an unexpected state where it doesn’t pet the watchdog.

2.1.3 The Physical Memory Map

The CPU accesses the peripherals, data, and program instructions in the same way: by writing a memory
address to the bus. The PIC32’s memory addresses are 32-bits long, and each address refers to a byte in the
memory map. This means that the memory map of the PIC32 consists of 4 GB (four gigabytes, or 232 bytes).
Of course most of these addresses are meaningless; there are not nearly that many things to address.

The PIC32’s memory map consists of four main components: RAM, flash, peripheral SFRs that we write
to (to control the peripherals or send outputs) or read from (to get sensor input, for example), and boot flash.
Of these, we have not yet seen “boot flash.” This is extra flash memory, 12 KB on the PIC32MX795F512L,
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that contains program instructions that are executed immediately upon reset of the PIC32.2 The boot flash
instructions typically perform PIC32 initialization and then call the program installed in program flash. For
the PIC32 on the NU32 board, the boot flash contains a “program receive” program that communicates with
your computer when you load a new program on the PIC32. More on this in Chapter 3.

The following table illustrates the PIC32’s physical memory map. It consists of a block of “RAMsize” bytes
of RAM (128 KB for the PIC32MX795F512L), “Hashsize” bytes of flash (512 KB for the PIC32MX795F512L),
1 MB for the peripheral SFRs, and “bootsize” for the boot flash (12 KB for the PIC32MX795F512L):

Physical Memory . .

Start Address Size (bytes) Region
0x00000000 RAMsize (128 KB) Data RAM
0x1D000000 flashsize (512 KB) Program Flash
0x1F800000 1 MB Peripheral SFRs
0x1FC00000 bootsize (12 KB) Boot Flash

The memory regions are not contiguous. For example, the first address of program flash is 480 MB after
the first address of data RAM. An attempt to access an address between the data RAM segment and the
program flash segment would generate an error.

It is also possible to allocate a portion of RAM to hold program instructions.

In Chapter 3, when we discuss programming the PIC32, we will introduce the virtual memory map and
its relationship to the physical memory map.

2.1.4 Configuration Bits

The last four 32-bit words of the boot flash are the Device Configuration Registers, DEVCFGO0 to DEVCFGS3,
containing the configuration bits. The values in these configuration bits choose a number of important
properties of how the PIC32 will function. You can learn more about configuration bits in the Special Features
section of the Data Sheet. For example, DEVCFG1 and DEVCFG2 contain configuration bits that determine
the frequency multiplier converting the external resonator frequency to the SYSCLK frequency, as well as
bits that determine the ratio between the SYSCLK and PBCLK frequencies.

2.2 The NU32 Development Board

The NU32 development board is shown in Figure 2.3, and the pinout is given in Table 2.2. The main purpose
of the NU32 board is to provide easy breadboard access to 82 of the 100 PIC32MX795F512L pins. The NU32
acts like a big 84-pin DIP chip and plugs into two standard prototyping breadboards, straddling the long
rails used for power, as shown in Figure 2.3.

Beyond simply breaking out the pins, the NU32 provides a few other things that make it easy to get
started with the PIC32. For example, to power the PIC32, the NU32 provides a barrel jack that accepts a
2.1 mm inner diameter, 5.5 mm outer diameter “center positive” power plug. The plug should provide DC
6 V or more; the NU32 comes with a 6 V wall wart capable of providing 1 amp. The PIC32 requires a supply
voltage VDD between 2.3 and 3.6 V, and the NU32 provides a 3.3 V voltage regulator providing a stable
voltage source for the PIC32 and other electronics on board. Since it is often convenient to have a 5 V supply
available, the NU32 also has a 5 V regulator. The power plug’s raw input voltage and ground, as well as the
regulated 3.3 V and 5 V supplies, are made available to the user on the power rails running down the center
of the NU32, as illustrated in Figure 2.3. Since the power jack is directly connected to the 6 V and GND
rails, you could power the NU32 by putting 6 V and GND on these rails directly and not connecting the
power jack.

The 3.3 V regulator is capable of providing up to 800 mA and the 5 V regulator is capable of providing
up to 1 amp. However, the wall wart can only provide 1 amp total, and in practice you should stay well
under each of these limits. For example, you should not plan to draw more than 200-300 mA or so from any
of the power rails. Even if you use a higher current power supply, such as a battery, you should respect these

2The last four 32-bit words of the boot flash memory region are Device Configuration Registers. See Section 2.1.4.
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GND rail
3.3Vrail

Figure 2.3: The NU32 development board: photo and PCB silkscreen.

limits, as the current has to flow through the relatively thin traces of the PCB. It is also not recommended to
use high voltage supplies greater than 9 V or so, as the regulators will heat up.

Since motors tend to draw lots of current (even small motors may draw hundreds of mA up to several
amps), do not try to power them using power from the NU32 rails. Use a separate battery or power supply
instead.

In addition to the voltage regulators, the NU32 provides an 8 MHz resonator as the source of the PIC32’s
80 MHz clock signal. It also has a mini B USB jack to connect your computer’s USB port to a dual
USB-to-RS-232 FTDI chip that allows your PIC32 to speak RS-232 to your computer’s USB port. Two
RS-232 channels share the single USB cable—one dedicated to programming the PIC32 and the other allowing
communication with the host computer while a program is running on your PIC32.

A standard A USB jack is provided to allow the PIC32 to talk to another external device, like a smartphone.

The NU32 board also has a power switch which connects or disconnects the input power supply to the
voltage regulators, and two LEDs and two buttons (labeled USER and RESET) allowing very simple input
and output. The two LEDs, LED1 and LED2, are connected at one end by a resistor to 3.3 V and the other
end to digital outputs RA4 and RAS5, respectively, so that they are off when those outputs are high and on
when they are low. The USER and RESET buttons are attached to the digital input RD13 and MCLR pins,
respectively, and both buttons are configured to give 0 V to these inputs when pressed and 3.3 V otherwise.
See Figure 2.4.

While the NU32 comes with a bootloader installed in its flash memory, you have the option to use a
programmer to install a standalone program. The five plated through-holes near the USB jack align with the
pins of devices such as the PICkit 3 programmer (Figure 2.5).
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[ Function [ PIC32 H ” PIC32 [ Function
GND GND G4 9 T5CK/SDI1/C4
33V 3.3V C3 [ 8V T4CK/C3
SCK2/U6TX/U3RTS/CN8/G6 v/ 10 || G6/RTS3 c2 || 7v T3CK/C2
SDA4/SDI2/U3RX/CN9/G7 v/ 11 || G7/RX3 Cl [[ 6V T2CK/C1
SCL4/SD0O2/U3TX/CN10/G8 V12 || G8/TX3 E7 [[ 5/ PMD7/E7
MCLR 13 || MCLR E6 || 4 PMD6/E6
SS2/U6RX/U3CTS/CN11/G9 /14 || G9/CTS3 E5 || 3 PMD5/E5
A0 V17 || A0 E4 [[ 100 / PMD4/E4
INT1/E8 /18 || E8 E3 [[ 99 / PMD3/E3
INT2/E9 V19 || E9 E2 [[ 98/ PMD2/E2
VREF-/CVREF-/A9 28 || A9 El || 94/ PMDI/E1
VREF+4 /CVREF+/A10 29 || AlO EO0 [[ 93/ PMDO/EO
Al /38 || Al Gi5 |[ 1/ G15
SCK4/U5TX/U2RTS/F13 v 39 || F13 G13 || 97 v G13
SS4/U5RX/U2CTS/F12 v 40 || F12 G12 96 / G12
SDA5/SDI4/U2RX/CN17/F4 /49 || F4 Gl4 [[ 95 Gl4
SCL5/SD04/U2TX/CN18/F5 v/ 50 || F5 A7 [[ 92/ A7
USBID/F3 /51 || F3 A6 || 91 A6
SDA3/SDI3/UIRX/F2 V52 || F2/RX1 GO || 90 / C2RX/PMD8/G0
SCL3/SD03/U1TX/F8 V53 || F8/TX1 Gl || 89 v/ C2TX/PMD9/G1
D-/G3 56 || G3 Fl1 || 88/ C1TX/PMD10/F1
D+/G2 57 || G2 FO || 87 / C1IRX/PMDI11/F0
SCL2/A2 v/ 58 || A2 Cl4 || 74 T1CK/CNO0/C14
SDA2/A3 V59 || A3 C13 [[ 73 CN1/C13
Al /60 || A4/L1 Al5 [[ 67 SDA1/INT4/A15
A5 V61 || A5/L2 Al4 || 66 / SCL1/INT3/A14
PGED1/AN0/CN2/B0 25 || BO D15/RTS1 || 48 / SCK3/U4TX/U1RTS/CN21/D15
PGEC1/AN1/CN3/B1 24 || B1 D14/CTS1 || 47 SS3/U4RX/U1CTS/CN20/D14
AN2/C2IN-/CN4/B2 23 || B2 D13/USER || 80 / PMD13/CN19/D13
AN3/C2IN+/CN5/B3 22 || B3 D12 [[ 79 IC5/PMD12/D12
AN4/C1IN-/CN6/B4 21 || B4 DIl || 71 / 1C4/D11
AN5/C1INF/CN7/B5 20 || B5 D10 || 70 / SCK1/IC3/D10
PGEC2/AN6/OCFA/B6 26 || B6/PGC D9 || 69/ SS1/1C2/D9
PGED2/AN7/B7 27 || B7/PGD D8 || 68/ RTCC/IC1/D8
AN8/C10UT/BS8 32 || B8 D7 || 84/ PMD15/CN16/D7
AN9/C20UT/B9 33 || B9 D6 || 83/ PMD14/CN15/D6
AN10/CVREFOUT/B10 34 || B10 D5 || 82/ CN14/D5
AN11/B11 35 || Bll D4 || 81/ OC5/CN13/D4
AN12/B12 41 || B12 D3 || 78/ 0OC4/D3
AN13/B13 42 || B13 D2 [[ 77/ OC3/D2
AN14/B14 43 || B14 D1 || 76 / 0C2/D1
AN15/OCFB/CN12/B15 44 || B15 DO || 72V SDO1/0C1/INT0/D0

Table 2.2: The NU32 pinout (in green, with power jack at top) with PIC32MX795F512L pin numbers. Board
pins in bold should only be used with care, as they are used for other functions by the NU32. Pins marked
with a 4/ are 5.5 V tolerant. Not all pin functions are listed; see Figure 2.1 or the PIC32 Data Sheet.

+33V +33V +33V

RD13 USER
LEDT LED2 1 button,
N N normally
— open
RA4 RA5 .

Figure 2.4: The NU32 connection of pins RA4, RA5, and RD13 to LED1, LED2, and the USER button,
respectively.

2.3 Chapter Summary

e The PIC32 features a 32-bit data bus and a CPU capable of performing some 32-bit operations in a
single clock cycle.
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Figure 2.5: Attaching the PICkit 3 programmer to the NU32 board.

e In addition to nonvolatile flash program memory and RAM data memory, the PIC32 provides periph-
erals particularly useful for embedded control, including analog inputs, digital I/O, PWM outputs,
counter/timers, inputs that generate interrupts or measure pulse widths or frequencies, and pins for a
variety of communication protocols, including RS-232, USB, ethernet, CAN, I1?C, and SPI.

e The functions performed by the pins and peripherals are determined by Special Function Registers.
SFR settings also determine other aspects of the behavior of the PIC32.

e The PIC32 has three main clocks: the SYSCLK that clocks the CPU, the PBCLK that clocks peripherals,
and the USBCLK that clocks USB communication.

e Physical memory addresses are specified by 32 bits. The physical memory map contains four regions:
data RAM, program flash, SFRs, and boot flash. RAM can be accessed in one clock cycle, while flash
access may be slower. The prefetch cache module can be used to minimize delays in accessing program
instructions.

e Four 32-bit configuration words, DEVCFGO0 to DEVCFG3, set behavior of the PIC32 that should not
be changed during execution. For example, these configuration bits determine how an external clock
frequency is multiplied or divided to create the PIC32 clocks.

e The NU32 development board provides voltage regulators for power, includes a resonator for clocking,
breaks out the PIC32 pins to a solderless breadboard, provides a couple of LEDs and buttons for simple
input and output, and makes USB/RS-232 communication and programming simple.

2.4 Exercises

You will need to refer to the PIC32MX5XX/6XX /7XX Data Sheet and PIC32 Reference Manual to answer
some questions.

1. Search for the “Microchip flash products parametric chart” or navigate to it from the Microchip
homepage. You should see a listing of all the PICs made by Microchip. Set the page to show all specs
and limit the display to 32-bit PICs.
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10.

11.

12.

13.

(a) Find PIC32s that meets the following specs: at least 128 KB of flash, at least 32 KB of RAM, and
at least 80 MHz max CPU speed. (You can choose a range of settings within a single parameter by
shift-clicking or ctrl-clicking.) What is the cheapest PIC32 that meets these specs, and what is its
volume price? How many ADC, UART, SPI, and I2C channels does it have? How many timers?

(b) What is the cheapest PIC32 overall? How much flash and RAM does it have, and what is its
maximum clock speed?

(¢) Among all PIC32’s with 512 KB flash and 128 KB RAM, which is the cheapest? How does it
differ from the PIC32MX795F512L7

. Based on C syntax for bitwise operators and bit-shifting, calculate the following and give your results

in hexadecimal.

(a) 0x37 | 0xA8
(b) 0x37 & 0xA8
(¢) ~0x37
(d) 0x37>>3
Describe the four functions that pin 22 of the PIC32MX795F512L can have. Is it 5 V tolerant?

Referring to the Data Sheet section on I/O Ports, what is the name of the SFR you have to modify if
you want to change pins on PORTC from output to input?

The SFR CM1CON controls comparator behavior. Referring to the Memory Organization section of
the Data Sheet, what is the reset value of CM1CON in hexadecimal?

In one sentence each, without going into detail, explain the basic function of the following items shown
in the PIC32 architecture block diagram Figure 2.2: SYSCLK, PBCLK, PORTA...G (and indicate
which of these can be used for analog input on the NU32’s PIC32), Timer 1-5, 10-bit ADC, PWM
0OC1-5, Data RAM, Program Flash Memory, and Prefetch Cache Module.

List the peripherals that are not clocked by PBCLK.

If the ADC is measuring values between 0 and 3.3 V, what is the largest voltage difference that it may
not be able to detect? (It’s a 10-bit ADC.)

Refer to the Reference Manual chapter on the Prefetch Cache. What is the maximum size of a program
loop, in bytes, that can be completely stored in the cache?

Explain why the path between flash memory and the prefetch cache module is 128 bits wide instead of
32, 64, or 256 bits.

Explain how a digital output could be configured to swing between 0 and 4 V, even though the PIC32
is powered by 3.3 V.

PIC32’s have increased their flash and RAM over the years. What is the maximum amount of flash
memory a PIC32 can have before the current choice of base addresses in the physical memory map (for
RAM, flash, peripherals, and boot flash) would have to be changed? What is the maximum amount of
RAM? Give your answers in bytes in hexadecimal.

Check out the Special Features section of the Data Sheet.

(a) If you want your PBCLK frequency to be half the frequency of SYSCLK, which bits of which
Device Configuration Register do you have to modify? What values do you give those bits?

(b) Which bit(s) of which SFR set the watchdog timer to be enabled? Which bit(s) set the postscale
that determines the time interval during which the watchdog must be reset to prevent it from
restarting the PIC327 What values would you give these bits to enable the watchdog and to set
the time interval to be the maximum?
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(¢) The SYSCLK for a PIC32 can be generated in a number of ways. This is discussed in the Oscillator
chapter in the Reference Manual and the Oscillator Configuration section in the Data Sheet. The
PIC32 on the NU32 uses the (external) primary oscillator in HS mode with the phase-locked loop
(PLL) module. Which bits of which device configuration register enable the primary oscillator and
turn on the PLL module?

14. Your NU32 board provides four power rails: GND, regulated 3.3 V, regulated 5 V, and the unregulated
input voltage (e.g., 6 V). You plan to put a load from the 5 V output to ground. If the load is modeled
as a resistor, what is the smallest resistance that would be safe? An approximate answer is fine. In a
sentence, explain how you arrived at the answer.

15. The NU32 could be powered by different voltages. Give a reasonable range of voltages that could be
used, minimum to maximum, and explain the reason for the limits.

16. Two buttons and two LEDs are interfaced to the PIC32 on the NU32. Which pins are they connected
to? Give the actual pin numbers, 1-100, as well as the name of the pin function as it is used on the
NU32. For example, pin 57 on the PIC32MX795F512L could have the function D+ (USB data line) or
RG2 (Port G digital input/output), but only one of these functions could be active at a given time.
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Chapter 3

Looking Under The Hood: Software

In this chapter we explore how a simple C program interacts with the hardware described in the previous
chapter. We begin by introducing the virtual memory map and its relationship to the physical memory map.
We then use the simplePIC.c program from Chapter 1 to explore the compilation process and the XC32
compiler installation.

3.1 The Virtual Memory Map

In the previous chapter we learned about the PIC32’s physical memory map, which allows the CPU to access
any SFR or any location in data RAM, program flash, or boot flash, using a 32-bit address. The PIC32
doesn’t actually have 232 bytes, or 4 GB worth of SFRs and memory; therefore, many physical addresses are
invalid.

In this chapter we focus on the virtual memory map. Software refers to memory and SFRs using virtual
addresses (VAs) rather than physical addresses (PAs). The fixed mapping translation (FMT) unit in the
CPU converts VAs into PAs using the following formula:

PA = VA & 0x1FFFFFFF

This bitwise AND operation clears the three most significant bits of the address; thus multiple VAs map to
the same PA.

If the PIC32 just discards the first three bits, why bother having them? Well, the CPU and the prefetch
cache module we learned about in the previous chapter use them. If the first three bits of the virtual address
are 0b100 (corresponding to an 8 or 9 as the most significant hex digit of the VA), then that instruction can
be cached. If the first three bits are 0b101 (corresponding to an A or B as the most significant hex digit of
the VA), then it cannot be cached. Thus the segment of virtual memory 0x80000000 to 0x9FFFFFFF is
cacheable, while the segment 0xA0000000 to OxBFFFFFFF is noncacheable. The cacheable segment is called
KSEGO (for “kernel segment”) and the noncacheable segment is called KSEG1.!

Figure 3.1 illustrates the relationship between the physical and virtual memory maps. Note that the SFRs
are excluded from the KSEGO cacheable virtual memory segment. SFRS correspond to physical devices (e.g.,
peripherals); therefore their values cannot be cached. Otherwise, the CPU could read outdated SFR, values
because the state of the SFR could change between when it was cached and when it was needed by the CPU.
For instance, if port B were configured as a digitial input port, the SFR PORTB would contain the current
input values of some pins. The voltage on these pins could change at any time; therefore, the only way to
retrieve a reliable value is to read directly from the SFR rather than from the cache.

Also note that program flash and data RAM can be accessed using either cacheable or noncacheable VAs.
Typically, you can ignore this detail because the PIC32 will be configured to access program flash via the
cache (since flash memory is slow), and data RAM without the cache (since RAM is fast).

I Another cacheable segment, USEG (for “user segment”) is available in the lower half of virtual memory. This memory
segment is for “user programs” that run under an operating system installed in a kernel segment. For safety, programs in the
user segment cannot access SFRs or boot flash. We will never use the user segment.
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boot flash
0xBFC00000
KSEGT1
SFRs
noncacheable 0xBF800000
OXFFFFFFFF
KSEG3 boot flach program flash 8D
oot flas 0xBD000000
KSEG2 0xT1FC00000
KSEG1 data RAM
0xA0000000 SFRs > 0xA0000000
KSEGO 0x1F800000
0x80000000
boot flash
0x1DOOOCOD program flash 0x9FC00000
X
USEG
KSEGO
0x20000000 data RAM
0x00000000  cacheable
0x00000000 _ _
Physical Virtual program flash
Memory Memory 0x9D000000
Map Map
data RAM
> 0x80000000

Figure 3.1: (Left) The 4 GB physical and virtual memory maps are divided into 512 MB segments. The
mapping of the valid physical memory addresses to the virtual memory regions KSEG0 and KSEGI1 is
illustrated. The PIC32 does not use the virtual memory segments KSEG2 and KSEG3, which are allowed
by the MIPS architecture, and we will not use the user segment USEG, which sits in the bottom half of
the virtual memory map. (Right) Physical addresses mapped to virtual addresses in cacheable memory
(KSEGO) and noncacheable memory (KSEG1). Note that SFRs are not cacheable. The last four words of boot
flash, 0xBFCO02FF0 to 0xBFCO2FFF in KSEG1, correspond to the device configuration words DEVCFGO to
DEVCFG3. Memory regions are not drawn to scale.

Going forward, we will use virtual addresses like 0x9D000000 and 0xBD000000, and you should realize
that these refer to the same physical address. Since virtual addresses start at 0x80000000, and all physical

addresses are below 0x20000000, there is no possibility of confusing whether we are talking about a VA or a
PA.

3.2 An Example: simplePIC.c

Let’s build the simplePIC.c bootloaded executable from Chapter 1. For convenience, here is the program
again:

Code Sample 3.1. simplePIC.c. Blinking lights, unless the USER button is pressed.

#include <xc.h> // Load the proper header for the processor
void delay(void);

int main(void) {
DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.

TRISA = OxFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear
// bits 4/5 to zero, for output. Others are inputs.
LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...

LATAbits.LATAS5 =

I
-

// ... current on NU32, so "high" = "off."
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while(1) {

delayQ);

LATAINV = 0x0030; // toggle LED1 and LED2
}
return O;

}

void delay(void) {
int j;
for (j = 0; j < 1000000; j++) { // number is 1 million
while (!PORTDbits.RD13) {
; // Pin D13 is the USER switch, low if pressed.
}
}
}

Navigate to the <PIC32> directory. Following the same procedure as in Chapter 77, build simplePIC.hex
and load it onto your NU32. We have reprinted the instructions here (you may need to specify the full path
to these commands):

> xc32-gcc -mprocessor=32MX795F512L

-0 simplePIC.elf -W1l,--script=skeleton/NU32bootloaded.ld simplePIC.c
> xc32-bin2hex simplePIC.elf
> nu32utility <COMPortB> simplePIC.hex

When you have the program running, the NU32’s two LEDs should alternate on and off and stop while you
press the USER button.

Look at the source code: the program refers to SFRs named TRISA, LATAINV, etc. These names align
with the SFR names in the Data Sheet and Reference Manual sections on input/output (I/O) ports. We will
consult the Data Sheet and Reference Manual often when programming the PIC32. We will explain the use
of these SFRs shortly.

3.3 What Happens When You Build?

First, let’s begin to understand what happens when you create simplePIC.hex from tt simplePIC.c. Refer
to Figure 3.2.

First the preprocessor removes comments and inserts #included header files. It also handles other
preprocessor instructions such as #define. You can have multiple .c C source files and .h header files, but
only one C file is allowed to have a main function. The other files may contain helper functions. We will
learn more about this in Chapter 4.

Then the compiler turns the C files into MIPS32 assembly language files, machine commands specific to
the PIC32’s MIPS32 CPU. Basic C code will not vary between processor architectures, but assembly language
may be completely different. These assembly files are readable by a text editor, and it is possible to program
the PIC32 directly in assembly language.

The assembler turns the assembly files into machine-level relocatable object code. This code cannot
be inspected with a text editor. The code is called relocatable because the final memory addresses of the
program instructions and data used in the code are not yet specified. The archiver is a utility that allows
you to package several related .o object files into a single .a library file. We will not be making our own
archived libraries, but we will certainly be using .a libraries that have already been made by Microchip!

Finally, the linker takes one or more object files and combines them into a single executable file, with
all program instructions assigned to specific memory locations. The linker uses a linker script that has
information about the amount of RAM and flash on your particular PIC32, as well as directions about where
in virtual memory to place the data and instructions. The result is an executable and linkable format (.elf)
file, a standard executable file format. This file contains useful debugging information as well as information
that allows tools such as xc32-objdump to disassemble the file, which converts it back into assembly code
(Section 3.8). This extra information adds up; building simplePIC.c results in a .elf file that is hundreds of
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Figure 3.2: The “compilation” process.

kilobytes! A final step creates a stripped-down .hex file of less than 10 KB. This is an ASCII representation
of your executable suitable for sending to the bootloader program on your PIC32 (more on this in the next
section) that writes the program into flash on your PIC32.

Although the entire process consists of several steps, it is often referred to as “compiling” for short. “Build”
or “make” is more accurate.

3.4 What Happens When You Reset the PIC327

Your program is running. You hit the RESET button on the NU32. What happens next?
First the CPU jumps to the beginning of boot flash, address 0xBFC00000, and starts executing instruc-
tions.? For the NU32, the boot flash contains the bootloader, a program used to load other programs onto the

2If you are just powering on your PIC32, it will wait a short period while electrical transients die out, clocks synchronize, etc.,
before jumping to 0xBFC00000.
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Figure 3.3: Port A registers, taken from the PIC32 Data Sheet.

PIC32. The bootloader first checks to see if you are pressing the USER button. If so, it knows that you want
to reprogram the PIC32, so it attempts to communicate with the bootloader utility (nu32utility) on your
computer. With communication established, the bootloader receives the executable .hex file and writes it to
the PIC32’s program flash (see exercise 2). We refer to the virtual address where your program is installed as
_RESET_ADDR.

Note: The PIC32’s reset address 0xBFC00000 is hardwired and cannot be changed. The address where the
bootloader writes your program, however, can be changed in software.

Now assume that you weren’t pressing the USER button when you reset the PIC32. Then the bootloader
jumps to the address _-RESET_ADDR and begins executing the program you previously installed there. Notice
that our program, simplePIC.c, is an infinite loop, so it never stops executing. That is the desired behavior
in embedded control. If your program exits, the PIC32 will just sit in a tight loop, doing nothing until it is
reset.

3.5 Understanding simplePIC.c

Let’s return to understanding simplePIC.c. The main function initializes values of DDPCONDits, TRISA,
and LATADbits, then enters an infinite while loop. Each time through the loop it calls delay() and then
assigns a value to LATAINV. The delay function executes a for loop that iterates one million times. During
each iteration it enters a while loop, which checks the value of (IPORTDbits.RD13). If PORTDbits.RD13 is 0
(FALSE), then the expression (IPORTDbits.RD13) evaluates to TRUE, and the program remains here, doing
nothing except checking the expression ('PORTDbits.RD13). When this expression evaluates to FALSE, the
while loop exits, and the program continues with the for loop. After the for loop finishes, control returns
to main.

Special Function Registers (SFRs) The main difference between simplePIC.c and programs that you
may have written for your computer is how it interacts with the outside world. Rather than via keyboard or
mouse, simplePIC.c accesses SFRs like TRISA, LATA, and PORTD, all of which correspond to peripherals.
3 Specifically, TRISA and LATA correspond to port A, an I/O port, and PORTD corresponds to port D,
another I/0 port. I/O ports allow the PIC32 to read and set the digital voltage on a pin. To discover what
these SFRs control we start by consulting the table in Section 1 of the Data Sheet, which lists the pinout I/0O
descriptions. We see that port A, with pins named RAO to RA15, has 12 pins, and port C, with pins named
RC1 to RC15, has 8 pins. Port B, has 16 pins, labeled RBO to RB15.

We now turn to the Data Sheet section on I/O Ports to for more information. We find that TRISA,
short for “tri-state A,” controls the direction, input or output, of the pins on port A. Each port A pin has a
corresponding bit in TRISA. If this bit is 0, the pin is an output. If the bit is a 1, the pin is an input. (0 =
Output and 1 = I;pyt.) We can make some pins inputs and some outputs, or we can make them all have the
same direction.

If you're curious about which direction the pins are by default, you can consult the Memory Organization
section of the Data Sheet. Tables there list the VAs of many of the SFRs, as well as the values they default to

3DDPCON corresponds to JTAG debugging, which we do not use in this book. The DDPCONbits.JTAGEN = 0 command
disables the JTAG debugger so that pins RA4 and RA5 are available for digital I/O. See the Special Features section of the
Data Sheet.
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upon reset. There are a lot of SFRs! After some searching, you will find that TRISA sits at virtual address
0xBF886000, and its default value upon reset is 0x0000C6FF. (We’ve reproduced part of this table for you in
Figure 3.3.) In binary, this would be

0x0000C6FF = 0000 0000 0000 0000 1100 0110 1111 1111.

The four most significant hex digits (two bytes, or 16 bits) are all 0. This is because those bits, technically,
don’t exist. Microchip calls them “unimplemented.” No I/O port has more than 16 pins, so we don’t need
those bits, which are numbered 16-31. (The 32 bits are numbered 0-31.) Of the remaining bits, since the
0’th bit (least significant bit) is the rightmost bit, we see that bits 0-7, 9-10, and 14-15 are 1, while the rest
are 0. The bits set to 1 correspond precisely to the pins we have available: RA0-7, RA9-10, and RA14-15
(there is no RAS8), meaning that they are inputs. I/O pins are configured as inputs on reset for safety reasons;
when we power on the PIC32, each pin will take its default direction before the program can change it. If an
output pin were connected to an external circuit that is also trying to control the voltage on the pin, the two
devices would fight each other, with damage to one or the other a possibility. No such problems arise if the
pin is configured as an input by default.
So now we understand that the instruction

TRISA = OxFFCF;

clears bits 4 and 5 to 0, implicitly clears bits 16-31 to 0 (which is ignored, since the bits are not implemented),
and sets the rest of the bits to 1. It doesn’t matter that we try to set some unimplemented bits to 1; those
bits are ignored. The result is that port A pins 4 and 5, or RA4 and RA5 for short, are now outputs.

Our PIC32 C compiler allows the use of binary (base 2) representations of unsigned integers using 0b at
the beginning of the number, so if you don’t get lost counting bits, you could have equally written

TRISA = 0b1111111111001111;
The equivalent in base 10 would be
TRISA = 65487;
Another option would have been to use the instructions
TRISAbits.TRISA4 = 0; TRISAbits.TRISA5 = O;
This allows us to change individual bits without worrying about specifying the other bits. We see this kind of
notation later in the program, with LATAbits.LATA4 and PORTDbits.RD13, for example.
The two other basic SFRs in this program are LATA and PORTD. Again consulting the I/O Ports section
of the Data Sheet, we see that LATA, short for “latch A,” is used to write values to the output pins. Thus

LATAbits.LATAS = 1;

sets pin RA5 high. Finally, PORTD contains the digital inputs on the port D pins. (Notice we didn’t
configure port D as input; we relied on the fact that it’s the default.) PORTDbits.RD13 is 0 if 0 V is present
on pin RD13 and 1 if approximately 3.3 V is present. Note that we use the latch when writing pins and the
port when reading pins, for reasons explained in Ch. 77.

Pins RA4, RA5, and RD13 on the NU32 Figure 2.4 shows how pins RA4, RA5, and RD13 are wired
on the NU32 board. LED1 (LED2) is on if RA4 (RA5) is 0 and off if it is 1. When the USER button is
pressed, RD13 registers a 0, and otherwise it registers a 1.

The result of these electronics and the simplePIC.c program is that the LEDs flash alternately, but
remain unchanging while you press the USER button.
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CLR, SET, and INV SFRs So far we have ignored the instruction
LATAINV = 0x0030;

Again consulting the Memory Organization section of the Data Sheet, we see that associated with the
SFR LATA are three more SFRs, called LATACLR, LATASET, and LATAINV. (Indeed, many SFRs have
corresponding CLR, SET, and INV SFRs.) These SFRs are used to easily change some of the bits of LATA
without affecting the others. A write to these registers causes a one-time change to LATA’s bits, but only in
the bits corresponding to bits on the right-hand side that have a value of 1. For example,

LATAINV = 0x30; // flips (inverts) bits 4 and 5 of LATA; all others unchanged
LATAINV = 0b110000; // same as above

LATASET = 0x0005; // sets bits O and 2 of LATA to 1; all others unchanged
LATACLR = 0x0002; // clears bit 1 of LATA to 0O; all others unchanged

A less efficient way to toggle bits 4 and 5 of LATA is
LATAbits.LATA4 = !LATAbits.LATA4; LATAbits.LATA5 = !LATAbits.LATAS5;

We'll look at efficiency in Chapter 5.

You can return to the table in the Data Sheet to see the VA addresses of the CLR, SET, and INV
registers. They are always offset from their base register by 4, 8, and 12 bytes, respectively. Since LATA is at
0xBF886020, LATACLR, LATASET, and LATAINV are at 0xBF886024, 0xBF886028, and 0xBF88602C,
respectively.

You should now understand how simplePIC.c works. But we have been ignoring the fact that we never
declared TRISA, etc., before we started using them. We know you can’t do that in C; these SFRs must be
declared somewhere. The only place they could be declared is in the included file xc.h. We’ve ignored that
#include <xc.h> statement until now. Time to take a look.*

3.5.1 Down the Rabbit Hole

Where do we find xc.h? If our program had the preprocessor command #include "xc.h", the preprocessor
would look for xc.h in the same directory as the C file including it. But we had #include <xc.h>, and the
<...> notation means that the preprocessor will look in directories specified in the include path. For us, the
default include path means that the compiler finds xc.h sitting at

<xc32dir>/<xc32ver>/pic32mx/include/xc.h

You should substitute your install directory in place of <xc32dir>/<xc32ver>.

Including xc.h gives us access to many data types, variables, and constants that MIcrochip has provided
for our convenience. In particular, it provides variable declarations for SFRs like TRISA, allowing us to
access the SFRs from C.

Before we open xc.h, let’s look at the directory structure of the XC32 compiler installation. There’s a
lot here! We certainly don’t need to understand all of it at this point, but let’s try to get a sense of what’s
going on. Let’s start at the level of your XC32 install directory and summarize what’s in the nested set of
directories, without being exhaustive.

1. bin: Contains the actual executable programs that do the compiling, assembling, linking, etc. For
example, xc32-gcc is the C compiler.

2. docs: Some manuals, including the XC32 C Compiler User’s Guide, and other documentation.
3. examples: Some sample code.

4. 1lib: Contains some .h header files and .a library archives containing general C object code.

4Microchip often changes the software it distributes, so there may be differences in details, but the essence of what we describe
here will be the same.
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5. pic32-1libs: This directory contains the source code (.c C files, .h header files, and .S assembly files)
needed to create numerous Microchip-provided libraries. These files are provided for reference and are
not included directly in any of your code.

6. pic32mx: This directory has several files we are interested in because many of them end up in your

project.

(a) 1lib: This directory consists mostly of PIC32 object code and libraries that are linked with our
compiled and assembled source code. For some of these libraries, source code exists in pic32-1ibs;
for others we have only the object code libraries. Some important files in this directory include:

i.

ii.

iii.

iv.

proc/32MX79512L/crt0mips32r2.0: The linker combines this object code with your pro-
gram’s object code when it creates the .elf file. The linker ensures that this “C Runtime
Startup” code is executed first, since it performs various initializations your code needs to
run, such as initializing the values of global variables. Different PIC32 models have different
versions of this file under the appropriate proc/<processor> directory. You can find readable
assembly source code at pic32-1ibs/libpic32/startup/crt0.S.

libc.a: Implementations of functions that are part of the C standard library.

libdsp.a: This library contains MIPS implementations of finite and infinite impulse response
filters, the fast Fourier transform, and various vector math functions.

proc/32MX795F512L/processor.o: This object file gives the SFR virtual memory addresses
for your particular PIC32. We can’t look at it directly with a text editor, but there are utilities
that allow us to examine it. For example, from the command line you could use the xc32-nm
program in the top-level bin directory to see all the SFR VAs:

> xc32-nm processor.o
bf809040 A AD1CHS

b£886000 A TRISA

bf886004 A TRISACLR
b£88600c A TRISAINV
bf886008 A TRISASET

All of the SFRs are printed out, in alphabetical order, with their corresponding VA. The
spacing between SFRs is four, since there are four bytes (32 bits) in an SFR. The “A” means
that these are absolute addresses. The linker must use these addresses when making final
address assignments because the SFR’s are implemented in hardware and can’t be moved! The
listing above indicates that TRISA is located at VA 0xBF886000, agreeing with the Memory
Organization section of the Data Sheet.

proc/32MX795F512L/configuration.data: This file describes some constants used in setting
the configuration bits in DEVCFGO to DEVCFG3 (Chapter 2.1.4). These bits are set by
the bootloader (Section 3.6), so you do not need to worry about them in your programs. It
is possible to use a programmer device to load programs onto the PIC32 without having a
bootloader pre-installed on the PIC32 (that’s how the bootloader got there in the first place!),
in which case you would need to worry about these bits. See Appendix ?? for more information
about programs that do not use a bootloader.

(b) include: This directory contains a number of .h header files.

i.

ii.

cpOdefs.h: This file defines a number of constants and macros that allow us to access functions
of coprocessor 0 (CP0) on the MIPS32 M4K CPU. In particular, it allows us to read and set the
core timer clock that ticks once every two SYSCLK cycles using macros like .CPO_GET_COUNT ()
(see Chapters 5 and 6 for more details). More information on CP0 can be found in the “CPU
for Devices with the M4K Core” section of the Reference Manual.

sys/attribs.h: In the directory sys, the file attribs.h defines the macro syntax __ISR that
we will use for interrupt service routines starting in Chapter 6.
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iii. xc.h: This is the file we’ve been looking for. The most important purpose of xc.h is to include
the appropriate processor-specific header file, in our case include/proc/p32mx795£5121.h.
It does this by checking if __32MX795F512L__ is defined:

#elif defined(__32MX795F512L__)
#include <proc/p32mx795£5121.h>

If you look at the command for compiling simplePIC.c, you may have noticed the op-
tion -mprocessor=32MX795F512L. This option defines the constant __32MX795F512L__ to the
compiler, allowing xc.h to function properly.

iv. proc/p32mx795£5121.h: Open this file in your text editor. Whoa! This file is over 40,000
lines long! It must be important. Time to look at it in more detail.

3.5.2 The Header File p32mx795£f5121.h

The first 30% of p32mx795£5121.h, about 14,000 lines, consists of code like this, with line numbers added to
the left for reference:

1 extern volatile unsigned int TRISA __attribute__((section("sfrs")));

2 typedef union {

3 struct {

4 unsigned TRISAO:1; // TRISAO is bit O (1 bit long), interpreted as an unsigned int
5 unsigned TRISA1:1; // bits are in order, so the next bit, bit 1, is called TRISA1
6 unsigned TRISA2:1; // ...

7 unsigned TRISA3:1;

8 unsigned TRISA4:1;

9 unsigned TRISA5:1;

10 unsigned TRISA6:1;

11 unsigned TRISA7:1;

12 unsigned :1; // don’t give a name to bit 8; it’s unimplemented

13 unsigned TRISA9:1; // bit 9 is called TRISA9

14 unsigned TRISA10:1;

15 unsigned :3; // skip 3 bits, 11-13

16 unsigned TRISA14:1;

17 unsigned TRISA15:1; // later bits are not given names

18 ¥

19 struct {
20 unsigned w:32; // w refers to all 32 bits; the 16 above, and 16 more unimplemented bits
21 };

22 } __TRISAbits_t;
23 extern volatile __TRISAbits_t TRISAbits __asm__ ("TRISA") __attribute__((section("sfrs")));

24 extern volatile unsigned int TRISACLR __attribute__((section("sfrs")));
25 extern volatile unsigned int TRISASET __attribute__((section("sfrs")));
26 extern volatile unsigned int TRISAINV __attribute__((section("sfrs")));

The first line, beginning extern, declares the variable TRISA as an unsigned int. The keyword extern
means that no RAM has to be allocated for it; memory to hold the variable has been allocated for it elsewhere.
In a typical C program, memory for the variable has been allocated by another C file using syntax without
the extern, like volatile unsigned int TRISA;. In this case, however, no RAM has to be allocated for
TRISA because it refers to an SFR, not a word in RAM. The processor.o file is the one that actually
defines the VA of the symbol TRISA, as mentioned earlier.

The volatile keyword, applied to all the SFRs, means that the value of this variable could change
without the CPU knowing it. Thus the compiler should generate assembly code to reload TRISA into the
CPU registers every time it is used, rather than assuming that its value is unchanged just because no C code
has modified it.

Finally, the __attribute__ syntax tells the linker that TRISA is in the sfrs section of memory.

The next section of code, lines 2-22, defines a new data type called __TRISAbits_t. Next, in line 23,
a variable named TRISAbits is declared of type __TRISAbits_t. Again, since it is an extern variable, no
memory is allocated, and the __asm__ ("TRISA") syntax means that TRISAbits is at the same VA as TRISA.

Lynch, Marchuk, and Elwin, Northwestern U. 41 23:27 February 25, 2015



CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

It is worth understanding the new data type __TRISAbits_t. It is a union of two structs. The union
means that the two structs share the same memory, a 32-bit word in this case. Fach struct is called a bit
field, which gives names to specific groups of bits within the 32-bit word. Thus declaring a variable TRISAbits
of type __TRISAbits_t allows us to use syntax like TRISAbits. TRISAO to refer to bit 0 of TRISA.

A named set of bits in a bit field need not be one bit long; for example, TRISAbits.w refers to the entire
unsigned int TRISA, created from all 32 bits. The type __RTCALRMbits_t defined earlier in the file by

typedef union {
struct {
unsigned ARPT:8;
unsigned AMASK:4;

} __RTCALRMbits_t;

has a first field ARPT that is 8 bits long and a second field AMASK that is 4 bits long. Since RTCALRM is
a variable of type __RTCALRMbits_t, a C statement of the form RTCALRMbits.AMASK = 0xB would put the
values 1, 0, 1, 1 in bits 11, 10, 9, 8, respectively, of RTCALRM.

After the declaration of TRISA and TRISAbits, lines 24-26 contain declarations of TRISACLR, TRISASET,
and TRISAINV. These declarations allow simplePIC.c, which uses these variables, to compile successfully.
When the object code of simplePIC.c is linked with the processor.o object code, references to these
variables are resolved to the proper SFR VAs.

With these declarations in p32mx795£5121.h, the simplePIC.c statements

TRISA = OxFFCF;
LATAINV = 0x0030;
while (!PORTDbits.RD13)

finally make sense; these statements write values to, or read values from, SFRs at VAs specified by processor.o.
You can see that p32mx795£5121.h declares a lot of SFRs, but no RAM has to be allocated for them; they
exist at fixed addresses in the PIC32’s hardware.
The next 9% of p32mx795£5121.h is the extern variable declaration of the same SFRs, without the bit
field types, for assembly language. The VAs of each of the SFRs is given, making this a handy reference.
Starting at about 17,800 lines into the file, we see constant definitions like the following:

#define _T1CON_TCS_POSITION 0x00000001
#define _T1CON_TCS_MASK 0x00000002
#define _T1CON_TCS_LENGTH 0x00000001
#define _T1CON_TCKPS_POSITION 0x00000004
#define _T1CON_TCKPS_MASK 0x00000030
#define _T1CON_TCKPS_LENGTH 0x00000002

These refer to the Timer 1 SFR T1CON. Consulting the information about TICON in the Timerl section of
the Data Sheet, we see that bit 1, called TCS, controls whether Timer 1’s clock input comes from the T1CK
input pin or from PBCLK. Bits 4 and 5, called TCKPS for “timer clock prescaler,” control how many times
the input clock has to “tick” before Timer 1 is incremented (e.g., TCKPS = 0b10 means there is one clock
increment per 64 input ticks). The constants defined above are for convenience in accessing these bits. The
POSITION constants indicate the least significant bit location in TCS or TCKPS in TICON—one for TCS
and four for TCKPS. The LENGTH constants indicate that TCS consists of one bit and TCKPS consists of two
bits. Finally, the MASK constants can be used to determine the values of the bits we care about. For example:

unsigned int tckpsval = (T1CON & _T1CON_TCKPS_MASK) >> _T1CON_TCKPS_POSITION;
// AND MASKing clears all bits except 5 and 4, which are unchanged and shifted to positions 1 and 0

The definitions of the POSITION, LENGTH, and MASK constants take up most of the rest of the file. Of
course, there is also a T1ICONbits defined that allows you to access these bits directly (e.g. T1ICONbDits. TCS).
We recommend that you use this method, as it is typically clearer and less error prone than performing direct
bit manipulations.

At the end, some more constants are defined, like below:
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#tdefine _ADC10

#define _ADC10_BASE_ADDRESS 0xBF809000
#define _ADC_IRQ 33

#tdefine _ADC_VECTOR 27

The first is merely a flag indicating to other .h and .c files that the 10-bit ADC is present on this PIC32. The
second indicates the first address of 22 consecutive SFRs related to the ADC (see the Memory Organization
section of the Data Sheet). The third and fourth relate to interrupts. The PIC32MX’s CPU is capable of
being interrupted by up to 96 different events, such as a change of voltage on an input line or a timer rollover
event. Upon receiving these interrupts, it can call up to 64 different interrupt service routines, each identified
by a “vector” corresponding to its address. These two lines say that the ADC’s “interrupt request” line is 33
(out of 0 to 95), and its corresponding interrupt service routine is at vector 27 (out of 0 to 63). Interrupts are
covered in Chapter 6.

Finally, p32mx795£5121.h concludes by including ppic32mx.h, which contains legacy code that is no
longer needed but remains for backward compatibility with old programs.

3.5.3 Other Microchip Software: Harmony

Installed in your Harmony directory is an extensive and complex set of libraries and sample code written by
Microchip. Because of the complexity and abstraction it introduces, we will avoid using Harmony functions
until later in the book, when our programs are complex enough that low-level access to the peripherals
through SFRs no longer suffices to take full advantage of the PIC32’s capabilities.”

3.5.4 The NU32bootloaded.1ld Linker Script

To create the executable .hex file, we needed the C source file simp1ePIC. c and the linker script NU32bootloaded. 1d.
Examining NU32bootloaded.1ld with a text editor, we see the following line near the beginning:

INPUT ("processor.o")

This line tells the linker to load the processor. o file specific to your PIC32. This allows the linker to resolve
references to SFRs (declared as extern variables in p32mx795£5121.h) to actual addresses.

The rest of the NU32bootloaded.1d linker script has information such as the amount of program flash
and data memory available, as well as the virtual addresses where program elements and global data should
be placed. Below is a portion of NU32bootloaded.1d:

_RESET_ADDR = (0xBD0O00000 + 0x1000 + 0x970);

/b ke ok sk ok ke sk sk s sk sk s sk sk s ok sk sk e ksl sk e ok sk s e ok sk sk e ok sk s ke sk sk s ke sk sk s ke sk sk s sk sk s sk sk s s ok sk sk ek sk sk e ok sk ok ek sk ok
* NOTE: What is called boot_mem and program_mem below do not directly
* correspond to boot flash and program flash. For instance, here
ksegO_boot_mem and ksegl_boot_mem both live in program flash memory.
(We leave the boot flash solely to the bootloader.)
The boot_mem names below tell the linker where the startup codes should
go (here, in program flash). The first 0x1000 + 0x970 + 0x490 = 0x1E00
of program flash memory is allocated to the interrupt vector table and
startup codes. The remaining O0x7E200 is allocated to the user’s program.
stk sk s e ok sk s e ok sk s ke ok sk s ke ok sk s ke sk sk sk sk sk s ke sk sk s sk sk s ok sk sk s ksl s e ksl sk ek sk sk ke sk sk sk ke sk sk s sk sk sk sk sk sk ok kok /

* X X X X *

MEMORY
{
/* interrupt vector table */
exception_mem : ORIGIN = 0x9D000000, LENGTH = 0x1000
/* Start-up code sections; some cacheable, some not */
ksegO_boot_mem : ORIGIN = (0x9D000000 + 0x1000), LENGTH = 0x970
ksegl_boot_mem : ORIGIN = (0xBD0O0O0O0OOO + 0x1000 + 0x970), LENGTH = 0x490

5Even though most sample code in the book does not use Harmony, the Makefile asks the linker to link with Harmony files,
just to ensure that the same make process works whether or not you use Harmony. So you should install Harmony.
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/* User’s program is in program flash, ksegO_program_mem, all cacheable */
/* 512 KB flash = 0x80000, or 0x1000 + 0x970 + 0x940 + 0x7E200 */
kseg0O_program_mem (rx) : ORIGIN = (0x9D000000 + 0x1000 + 0x970 + 0x490), LENGTH = 0x7E200
debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = OxFFO

/* Device Configuration Registers (configuration bits) */

config3 : ORIGIN = O0xBFCO2FFO, LENGTH = 0x4

config2 : ORIGIN = OxBFCO2FF4, LENGTH = 0x4

configl : ORIGIN = OxBFCO2FF8, LENGTH = 0x4

config0 : ORIGIN = O0xBFCO2FFC, LENGTH = 0x4

configsfrs : ORIGIN = 0xBFCO2FFO, LENGTH = 0x10

/* all SFRS */

sfrs : ORIGIN = 0xBF800000, LENGTH = 0x100000

/* PIC32MX795F512L has 128 KB RAM, or 0x20000 */

ksegl_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x20000

Converting virtual to physical addresses, we see that the cacheable interrupt vector table (we will learn
more about this in Chapter 6) in exceptionmem is placed in a memory region of length 0x1000 bytes
beginning at PA 0x1D000000 and running to 0x1DO00FFF; cacheable startup code in ksegO_boot_mem is
placed at PAs 0x1D001000 to 0x1D00196F; noncacheable startup code in ksegl_boot_mem is placed at PAs
0x1D001970 to 0x1D0O01DFF; and cacheable program code in ksegO_program_men is allocated the rest of
program flash, PAs 0x1D001E00 to 0x1DO7FFFF. This program code includes the code we write plus other
code that is linked.

The linker script for the NU32 bootloader placed the bootloader completely in the 12 KB boot flash with
little room to spare. Therefore, the linker script for our bootloaded programs should place the programs solely
in program flash. This is why the boot_mem sections above are defined to be in program flash. The label
boot_mem simply tells the linker where the startup code should be placed, just as the label kseg0O_program_mem
tells the linker where the program code should be placed. (For the bootloader program, kseg0_program_mem
was in boot flash.)

If the LENGTH of any given memory region is not large enough to hold all the program instructions or
data for that region, the linker will fail.

Upon reset, the PIC32 always jumps to 0xBFC00000, where the first instruction of the startup code
for the bootloader resides. The last thing the bootloader does is jump to VA 0xBD001970. Since the first
instruction in the startup code for our bootloaded program is installed at the first address in ksegl_boot_mem,
NU32bootloaded.1d must define the ORIGIN of ksegl_boot_mem at this address. This address is also known
as _RESET_ADDR in NU32bootloaded.1d.

3.6 Bootloaded Programs vs. Standalone Programs

It is important to keep in mind that your executable is being installed on the PIC32 by another executable:
the bootloader. The bootloader has been pre-installed in the boot flash portion of flash memory. This
program, which always runs first when the PIC32 is reset, has already defined some of the behavior of the
PIC32, so you didn’t need to specify it in simplePIC.c. In particular, the bootloader code turns on the
prefetch cache module (to allow faster performance) and sets a number of other important properties of the
PIC32 with XC32-specific preprocessor commands such as

#pragma config FWDTEN = OFF // watchdog timer OFF

#pragma config FNOSC = PRIPLL // SYSCLK uses the primary oscillator with phase-locked loop (PLL)
#pragma config POSCMOD = HS // use the high speed crystal mode for the primary oscillator
#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2

#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20

#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1

#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1

#pragma config FSRSSEL = PRIORITY_7 // Shadow Register Set for interrupt priority 7

The commands above
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e turn the PIC32’s watchdog timer off;

e configures the PIC32’s clock generation circuit to take the external 8 MHz resonator as input, divide
this input frequency to a phase-locked loop (PLL) circuit by 2, multiply the frequency by 20, and divide
the output frequency by 1, creating a SYSCLK of 8/2 % 20/1 MHz = 80 MHz;

e set the PBCLK frequency to be SYSCLK divided by 1 (80 MHz); and
e sets the shadow register set to be used for interrupts of priority level 7 (see Chapter 6).

If you decide not to use a bootloader program on the PIC32, and instead use a programmer device like
the PICkit 3 (Figure 2.5) to install a standalone program, you would have to make sure that your program
appropriately sets the configuration bits with commands such as those above, turns on the prefetch cache
module, etc. More information on this process can be found in Appendix ?7.

3.7 Build Summary

Recall that what we colloquially refer to as “compiling” actually consists of multiple steps. You initiated
these steps by invoking the compiler, xc32-gcc, at the command line:

> xc32-gcc -mprocessor=32MX795F512L
-0 simplePIC.elf -W1l,--script=skeleton/NU32bootloaded.ld simplePIC.c

This step creates the .elf file, which then needs to be converted into a .hex file that the bootloader
understands:

> xc32-bin2hex simplePIC.elf

The compiler requires multiple command line options to work. It accepts arguments, as detailed in the XC32
Users Manual, and some important ones are displayed by typing xc32-gcc --help. The arguments we used
were

e -mprocessor=32MX795F512L Tells the compiler what PIC32 model to target. This also causes the
compiler to define __32MX795F512L__ so that the processor model can be detected in header files such
as xc.h.

e -0 simplePIC.elf Specifies that the final output will be named simplePIC.elf.
e -W1l, Tells the compiler that what follows are a comma-separated list of options for the linker.
e —-script=skeleton/NU32bootloaded.1ld A linker option that specifies the linker script to use.

e simplePIC.c The C files that you want compiled and linked are listed. In this case the whole program
is in just one file.

Another option that may be useful when exploring what the compiler does is --save-temps. This option
will save all of the intermediate files generated during the build process.
Here is what happens when you build and load simplePIC.c.

e Preprocessing. The preprocessor (xc32-cpp), among other duties, handles include files. By including
xc.h at the beginning of your program, we get access to variables for all the SFRs. The output of the
preprocessor is a .1i file, which by default is not saved.

e Compiling. After the preprocessor, the compiler (xc32-gcc) turns your C code into assembly language
specific to the PIC32. For convenience, (xc32-gcc) automatically invokes the other commands required
in the build process. The result of the compilation step is an assembly language .S file, containing a
human-readable version of instructions specific to a MIPS32 processor. This output is also not saved by
default.
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e Assembling. The assembler (xc32-as) converts the human-readable assembly code into object files
(.0) that contain machine code instructions. These files cannot be executed directly, however, because
addresses have not been resolved. This step yields simplePIC.o

e Linking. The object code simplePIC. o is linked with the crt0mips32r2.o0 C run-time startup library,
which performs functions such as initializing global variables, and the processor.o object code, which
contains the SFR VAs. The linker script NU32bootloaded.1d provides information to the linker on
the allowable absolute virtual addresses for the program instructions and data, as required by the
bootloader and the specific PIC32 model. Linking yields a self-contained executable in .elf format.

e Hex file. The xc32-bin2hex utility converts .elf files into .hex files. The .hex is a different format
for the executable then the .elf file that the bootloader understands and can load into the PIC32’s
program memory.

e Installing the program. The last step is to use the NU32 bootloader and the host computer’s
bootloader utility to install the executable. By resetting the PIC32 while holding the USER, button, the
bootloader enters a mode where it tries to communicate with the bootload communication utility on
the host computer. When it receives the executable from the host, it writes the program instructions
to the virtual memory addresses specified by the linker. Now every time the PIC32 is reset without
holding the USER button, the bootloader exits and jumps to the newly installed program.

3.8 Useful Command Line Utilities

The bin directory of the XC32 installation contains a number of useful command line utilities. These can be
used directly at the command line and many are invoked by the Makefile. We have already seen the first
two of these utilities, as described in Section 3.7:

xc32-gcec The XC32 version of the gcc compiler is used to compile, assemble, and link, creating the
executable .elf file.

xc32-bin2hex Converts a .elf file to a .hex file suitable for placing directly into PIC32 flash memory.

xc32-ar The archiver can be used to create an archive, list the contents of an archive, or extract object
files from an archive. Example uses include:

xc32-ar -t lib.a // list the object files in lib.a (in current directory)
xc32-ar -x lib.a code.o // extract code.o from lib.a to the current directory

xc32-as The assembler.
xc32-1d This is the actual linker called by xc32-gcc.

xc32-nm Prints the symbols (e.g., global variables) in an object file. Examples:

Xc32-nm processor.o // list the symbols in alphabetical order
xc32-nm -n processor.o // list the symbols in numerical order of their VAs

xc32-objdump Displays the assembly code corresponding to an object or .elf file. This process is
called disassembly. Example:

xc32-objdump -S file.elf > file.dis // send output to the file file.dis
xc32-readelf Displays a lot of information about the .elf file. Example:

xc32-readelf -a filename.elf // output is dominated by SFR definitions
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These utilities correspond to standard “GNU binary utilities” of the same name without the preceding
xc32-. To learn the options available for a command called xc32-cmdname, you can type xc32-cmdname
—--help or read about them in the XC32 compiler reference manual.

3.9 Chapter Summary

OK, that’s a lot to digest. Don’t worry, you can view much of this chapter as reference material; you don’t
have to memorize it to program the PIC32!

e Software refers almost exclusively to the virtual memory map. Virtual addresses map directly to
physical addresses by PA = VA & 0x1FFFFFFF.

e Building an executable .hex file from a source file consists of the following steps: preprocessing,
compiling, assembling, linking, and converting the .elf file to a .hex file.

e Including the file xc.h gives our program access to variables, data types, and constants that significantly
simplify programming by allowing us to access SFRs easily from C code without needing to specify
addresses directly.

e The included file pic32mx/include/proc/p32mx795£5121 .h contains variable declarations, like TRISA,
that allow us to read from and write to the SFRs. We have several options for manipulating these
SFRs. For TRISA, for example, we can directly assign the bits with TRISA=0x30, or we can use bitwise
operations like & and |. Many SFRs have associated CLR, SET, and INV registers which can be used
to efficiently clear, set, or invert certain bits. Finally, particular bits or groups of bits can be accessed
using bit fields. For example, we access bit 3 of TRISA using TRISAbits. TRISA3. The names of the
SFRs and bit fields follow the names in the Data Sheet (particularly the Memory Organization section)
and Reference Manual.

e All programs are linked with pic32mx/1ib/proc/32MX795F512L/crt0 mips32r2.o to produce the final
.hex file. This C run-time startup code executes first, doing things like initializing global variables in

RAM, before jumping to the main function. Other linked object code includes processor.o, with the
VAs of the SFRs.

e Upon reset, the PIC32 jumps to the boot flash address 0xBFC00000. For a PIC32 with a bootloader,
the crt0mips32r2 of the bootloader is installed at this address. When the bootloader completes, it
jumps to an address where the bootloader has previously installed a bootloaded executable.

e The bootloader sets the Device Configuration Registers, turns on the prefetch cache module, and
minimizes the number of CPU wait cycles for instructions to load from flash.

e A bootloaded program is linked with a custom linker script, like NU32bootloaded.1d, to make sure the
flash addresses for the instructions do not conflict with the bootloader’s, and to make sure that the
program is placed at the address where the bootloader jumps.

3.10 Exercises

1. Convert the following virtual addresses to physical addresses, and indicate whether the address is
cacheable or not, and whether it resides in RAM, flash, SFRs, or boot flash. (a) 0x80000020. (b)
0xA0000020. (c) 0xBF800001. (d) 0x9FC00111. (e) 0x9D001000.

2. Look at the linker script used with programs for the NU32. Where does the bootloader install your
program in virtual memory? (Hint: look at the _RESET_ADDR.)

3. Refer to the Memory Organization section of the Data Sheet and Figure 2.1.
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(a) Referring to the Data Sheet, indicate which bits, 0..31, can be used as input/outputs for each of
Ports A through G. For the PIC32MX795F512L in Figure 2.1, indicate which pin corresponds to
bit 0 of port E (this is referred to as REO).

(b) The SFR INTCON refers to “interrupt control.” Which bits, 0..31, of this SFR are unimplemented?
Of the bits that are implemented, give the numbers of the bits and their names.

4. Modify simplePIC.c so that both lights are on or off at the same time, instead of opposite each other.
Turn in only the code that changed.

5. Modify simplePIC.c so that the function delay takes an int cycles as an argument. The for loop
in delay executes cycles times, not a fixed value of 1,000,000. Then modify main so that the first
time it calls delay, it passes a value equal to MAXCYCLES. The next time it calls delay with a value
decreased by DELTACYCLES, and so on, until the value is less than zero, at which time it resets the
value to MAXCYCLES. Use #define to define the constants MAXCYCLES as 1,000,000 and DELTACYCLES as
100,000. Turn in your code.

6. Give the VAs and reset values of the following SFRs. (a) I2C2CON. (b) TRISC.

7. The processor.o file linked with your simplePIC project is much larger than your final .hex file.
Explain how that is possible.

8. The building of a typical PIC32 program makes use of a number of files in the XC32 compiler distribution.
Let’s look at a few of them.

(a) Look at the assembly startup code pic32-1ibs/libpic32/startup/crt0.8S. Although we are not
studying assembly code, the comments help you understand what the startup code does. Based on
the comments, you can see that this code clears the RAM addresses where uninitialized global
variables are stored, for example. Find and list the line(s) of code that call the user’s main function
when the C runtime startup completes.

(b) Using the command xc32-nm -n processor.o, give the names and addresses of the five SFRs
with the highest addresses.

(¢) Open the file p32mx795£5121.h and go to the declaration of the SFR SPI2STAT and its associated
bit field data type -_SPI2STATbits_t. How many bit fields are defined? What are their names and
sizes? Do these coincide with the Data Sheet?

9. Give three C commands, using TRISASET, TRISACLR, and TRISAINV, that set bits 2 and 3 of
TRISA to 1, clear bits 1 and 5, and flip bits 0 and 4.
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Using Libraries

You've used libraries all your life—well, at least as long as you’'ve programmed in C. Want to display text on
the screen? printf. What about determining the length of a string? strlen. Need to sort an array? gsort.
You can find these functions, along with numerous others, in the C standard library. A library consists of a
collection object files (.o), that have been combined into an archive file (.a); for example, the C standard
library libc.a. Using a library requires you to include the associated header files (.h) and link with the
archive file. The header file (e.g., stdio.h) declares the functions, constants, and data types used by the
library while the archive file contains function implementations. Libraries make it easy to share code between
multiple projects, without needing to repeatedly compile the code.

In addition to the C standard library, Microchip provides some other libraries specific to programming
PIC32s. In Chapter 3 we learned about the header file xc.h which includes the processor-specific header
pic32mx795£f5121.h, providing us with definitions for the SFRs. The “archive” file for this library is
processor.o.! Microchip also provides a higher-level framework called Harmony, which contains libraries
and other source code to help you create code that works with multiple PIC32 models; we use Harmony later
in this book.

Libraries can also be distributed as source code: for example, the NU32 library consists of <PIC32>/skeleton/NU32.h
and <PIC32>/skeleton/NU32.c. To use libraries distributed as source code you must include the library
header files, compile your source code and the library code, and link the resulting object files. You can link
as many object files as you want, as long as they do not declare the same symbols (e.g., two C files in one
project cannot both have a main function).

The NU32 library provides initialization and communication functions for the NU32 board. The
talkingPIC.c code in Chapter 1 uses the NU32 library, as will most of the examples throughout the
book. Let’s revisit talkingPIC.c, and examine how it includes libraries during the build process.

4.1 Talking PIC

The talkingPIC.c program, which you compiled in Chapter 1, relies heavily on libraries. All the calls
starting with NU32_ require the NU32 library and calls to sprintf use the C standard library 1ibc.a. Recall
from Chapter 1 that the Makefile will compile and link all .c files in the directory. Since the project
directory, <PIC32>/talkingPIC.c contains NU32.c, this file was compiled along with talkingPIC.c. To see
how this process works, we examine the commands that make issues to build your project.

Navigate to where you created talkingPIC in Chapter 1 (<PIC32>/talkingPIC). Issue the following
command:

> make clean

This command removes the files created when you originally built the project, so we can start fresh. Next,
issue the make command to build the project. Notice that it issues commands similar to:

IThe library consists of only one object file so Microchip did not create an archive, which holds multiple object files.
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> xc32-gcc -g -01 -x ¢ -c -mprocessor=32MX795F512L

-I"<harmonyDir>/<harmonyVer>/framework" -I"<harmonyDir>/<harmonyVer>/framework/peripheral" -o talkingPIC.o talkir

> xc32-gcc -g -01 -x ¢ -c -mprocessor=32MX795F512L

-I"<harmonyDir>/<harmonyVer>/framework" -I"<harmonyDir>/<harmonyVer>/framework/peripheral" -o NU32.o NU32.c

> xc32-gcc -mprocessor=32MX795F512L -o out.elf +talkingPIC.o NU32.0

-L"<harmonyDir>/<harmonyVer>/bin/framework/peripheral" -1:PIC32MX795F512L_peripherals.a
-Wl,--script="NU32bootloaded.1ld",-Map=out.map

> xc32-bin2hex out.elf

> xc32-objdump -S out.elf > out.dis

The first two commands compile the modules necessary to create talkingPIC, using certain options:

e —g Include debugging information. This is extra data added into the object file that helps us to inspect
the generated files later.

e -01 Sets optimization level one. We discuss optimization in Chapter 5.

e -x c Tells the compiler to treat input files as C language files. Typically the compiler can detect the
proper language based on the file extension, but we use this here to be certain.

e —c Compile only, do not link. The output of this command is just an object (.o) file because the linker
is not invoked to create the .elf file.

e -I Gives the compiler additional directories to search for include files. The particular directories contain
the Harmony include files which will be needed in later chapters.

Thus the first two commands create two object files, talkingPIC.o, which contains the main function, and
NU32.0, which includes helper functions that talkingPIC.c calls. The third command tells the compiler to
invoke the linker, because all the “source” files specified are actually object (.o) files. We don’t invoke the
linker xc32-14 directly because the compiler automatically tells the linker to link against some standard
libraries that we need. Notice that make always names its output out.elf, regardless of what you name the
source files.

Some additional options that make provides to the linker are specified after the W1 flag:

e -L Adds the following directory to the library search path; we have added the path to the Harmony
peripheral library.

e -1: Tells the linker to include the following library when linking, in this case, the Harmony peripheral
library PIC32MX795F512L _peripherals.a.

e —Map This option is passed to the linker and tells it to produce a map file, which details the program’s
memory usage. Chapter 5 explains map files.

The next command produces the hex file. The final line, xc32-objdump disassembles out.elf, saving the
results in out.dis. This file contains interspersed C code and the assembly instructions, allowing you to
inspect the assembly instructions that the compiler produces from your C code.

4.2 The NU32 Library

The NU32 library provides several functions that make programming the PIC32 easier. Not only does
talkingPIC.c use this library, but so do most examples in this book. The <PIC32>/skeleton directory
contains the NU32 library files, NU32. c and NU32.h; you copy this directory to create a new project. The
Makefile automatically links all files in the directory, thus NU32.c will be included in your project. By
writing #include "NU32.h" at the beginning of the program, we can access the library. We list NU32.h
below:

Code Sample 4.1. NU32.h. The NU32 header file.
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#ifndef NU32__H

#define NU32__H__

#include<xc.h> // processor SFR definitions
#include<sys/attribs.h> // __ISR macro

#ifdef NU32_STANDALONE // config bits if not set by bootloader

#pragma config DEBUG = OFF // Background Debugger disabled

#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20

#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2

#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1

#pragma config FWDTEN = OFF // WD timer: OFF

#pragma config POSCMOD = HS // Primary Oscillator Mode: High Speed xtal
#pragma config FNOSC = PRIPLL // Oscillator Selection: Primary oscillator w/ PLL
#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1

#pragma config BWP = OFF // Boot write protect: OFF

#pragma config ICESEL = ICS_PGx2 // ICE pins configured on PGx2, Boot write protect OFF.
#pragma config FSOSCEN = OFF // Disable second osc to get pins back

#pragma config FSRSSEL = PRIORITY_7 // Shadow Register Set for interrupt priority 7

#endif // NU32_STANDALONE

#define NU32_LED1 LATAbits.LATA4 // LED1 on the NU32 board
#define NU32_LED2 LATAbits.LATAS5 // LED2 on the NU32 board
#define NU32_USER PORTDbits.RD13 // user button on the NU32 board
#define NU32_SYS_FREQ 80000000ul // 80 million Hz

void NU32_Startup(void);

void NU32_ReadUART1(char * string, int maxLength);
void NU32_WriteUART1(const char * string);
unsigned int NU32_ReadCoreTimer(void) ;

void NU32_WriteCoreTimer (unsigned int value);
unsigned int NU32_EnableInterrupts(void) ;
unsigned int NU32_DisableInterrupts(void);

void NU32_EnableCache(void);

void NU32_DisableCache(void);

#endif // NU32__H__

included twice when compiling any single C file. The test #ifdef NU32_STANDALONE checks to see if the C
file has defined the constant NU32_STANDALONE. If so, the header file sets the device configuration bits (see
Appendix ?7?; if not, the bootloader has already set them. The next few lines include Microchip-provided
headers that you would otherwise need to include in most programs. You have already seen xc.h; we
discuss sys/attribs.h in Chapter 6. The next three lines define aliases for SFRs the control the two LEDs
(NU32_LED1 and NU32_LED2) and the USER button (NU32_USER) on the NU32 board. Using these aliases allow
us to write code like

The NU32__H__ include guard, consisting of the first two lines and the last line, ensure that NU32.h is not

int button = NU32_USER; // button now has 0O if pressed, 1 if not
NU32_LED1 = 0; // turn LED1 on
NU32_LED2 = 1; // turn LED2 off

which is easier than remembering the PIC32 pin that are connected to these devices. The header also defines
the NU32_SYS_FREQ constant, which contains the frequency, in Hz, at which the PIC32 operates. The rest of
NU32.h consists of function prototypes, described below.
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void NU32_Startup(void) Call NU32_Startup() at the beginning of main to setup the PIC32 and
the NU32 library. You will learn about the details of this function as the book progresses, but here
is an overview. First, the function configures the prefetch cache module and flash wait cycles for
maximum performance. Next, it configures the PIC32 for multi-vector interrupt mode. Then it
disables JTAG debugging so that it can use RA4 and RAS5 as digital outputs for LED1 and LED2.
The function then configures UART1 so that the PIC32 can communicate with your computer.
Configuring UART1 allows you to use NU32_WriteUART1() and NU32_ReadUART1() to send strings
between the PIC32 and the computer. The communication occurs at 230,400 baud (bits per
second), with eight data bits, no parity, one stop bit, and hardware flow control with CTS/RTS:
all details of UART communication that we discuss in Chapter ??. Finally, it enables interrupts
(see Chapter 6).

void NU32_ReadUART1(char * string, int maxLength) This function takes a character array
(string) and a maximum input length maxLength. It fills string with characters received from
the host via UART1 until a newline \n or carriage return \r is received. If the string exceeds
maxLength, the new characters wrap around to the beginning of the string. Note that this function
will not exit unless it receives a \n or a \r.

Example:

char message[100] = {}, str[100] = {};

int i = 0;

NU32_ReadUART1 (message, 100);

sscanf (message, "%s %d", str, &i); // if message expected to have a string and int

void NU32_WriteUART1(const char * string) This function sends a string over UART1. The
function does not complete until the transmission has finished. Thus, if the host computer is not
reading the UART, the function will wait to send its data.

Example:

char msg[100] = {};
sprintf (msg, "The value is %d.\r\n",22);
NU32_WriteUART1 (msg) ;

unsigned int NU32_ReadCoreTimer(void) The core timer increments a register every other CPU
cycle (see Chapter 5). This function returns the value of that counter.

void NU32_WriteCoreTimer (unsigned int value) This function sets the core timer counter to the
provided value.

unsigned int NU32_EnableInterrupts(void) Enables all interrupts on the CPU. It returns the
coprocessor 0 (CP0) STATUS register. This register is part of the CPU and contains information
about the state of the processor, including whether interrupts are enabled.

unsigned int NU32_DisableInterrupts(void) Disables all interrupts on the CPU, returning the
value of the CP0O STATUS register prior to disabling interrupts.

void NU32_EnableCache(void) This function makes memory in KSEGO cacheable, allowing program
instructions to be stored in cache.

void NU32_DisableCache(void) This function makes memory in KSEGO uncacheable. This means
that instructions stored in program flash will be read directly from flash memory rather than the
cache.
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4.3 Bootloaded Programs
Throughout the rest of this book, all C files with a main function will begin with something like

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // config bits, constants, funcs for startup and UART

and the first line of code (other than local variable definitions) in main will be
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

While other C files and header files might include NU32.h to gain access to its contents and function prototypes,
no file except the C file with the main function should define NU32_STANDALONE or call NU32_Startup().

Even if the program does not need any NU32 library functions, we use the lines above for consistency. This
convention allows the same code to build correctly regardless of whether it is bootloaded (do not uncomment
the first line) or standalone (uncomment the first line, see Appendix ??). Including "NU32.h" and executing
NU32_Startup() does the following:

e includes <xc.h>, providing SFR definitions

e includes <sys/attribs.h>, which is used when declaring interrupt service routines (ISRs) (see Chap-
ter 6)

e defines the constants NU32_LED1, NU32_LED2, NU32 _USER, and NU32_SYS_FREQ
e declares the NU32 library functions described above

e enables the prefetch cache and sets the minimum flash wait cycles

e configures pins RA4 and RA5 as outputs to control LED1 and LED2

e cnables and configures UART1

e sets the device configuration bits, if NUS2_STANDALONE is defined

4.4 An LCD Library

Dot matrix LCD screens are inexpensive portable devices that can display information to the user. LCD
controllers allow you to more easily display text on the screen; often a screen comes packaged with a
controller. We now discuss a library that allows the PIC32 to control a Hitachi HD44780 (or compatible)
LCD controller connected to a 16x2 LCD screen. You can purchase these components and the associated
support hardware as a pre-built module. The data sheet for this controller is available on the book’s
website, http://hades.mech.northwestern.edu/index.php/Pic32book.

The HD44780 has 16 pins: ground (GND), power (VCC), contrast (VO), backlight anode (A), backlight
cathode (K), register select (RS), read/write (RW), enable strobe (E), and 8 data pins (D0-D7). We show
the pins below.

1 2 3 4 5 6| 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16
GND | VCC | VO | RS |R/W|E | D0 | D1 | D2 | D3| D4 |D5|D6|D7| A |K

Connect the LCD as shown in Figure 77.

The LCD is powered by VCC (5 V) and GND. The resistors R1 and R2 determine the LCD’s brightness
and contrast, respectively. Good guesses for these values are R1 = 1002 and R2 = 10002, but you should
consult the data sheet and experiment. The remaining pins are for communication. The R/W pin controls
the communication direction. From the PIC32’s perspective, R/W = 0 means write and R/W = 1 means
read. The RS pin indicates whether the PIC32 is sending data (i.e. text) or a command (i.e. clear screen).
The pins D0-D7 carry the actual data between the devices; after setting data on these pins the PIC32 pulses
the enable strobe (E) signal to tell the LCD that the data is ready. For every pulse of E, the LCD receives or
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LCD
GND_VDD VO RS R/W E DO D1 D2 D3 D4 D5 D6 D7 A K

R2 R1

D11 D5 D4 EO E1 E2 E3 E4 E5 E6 E7
+5V PIC32 +5V

Figure 4.1: Circuit diagram for the LCD.

Figure 4.2: The NU32 board and the LCD screen.

sends 8 bits of data simultaneously, or in parallel. We delve into this parallel communication scheme more
deeply in Ch. 7?7, where we discuss the parallel master port (PMP), the peripheral that properly coordinates
the signals between the PIC32 and the LCD.

Now we present the LCD library by looking at its interface. The LCD controller has many features such
as the ability to horizontally scroll text, display custom characters, display a larger font on a single line, and
display a cursor. The LCD library contains many functions that enable access to these features; however,
we only discuss the basics. More details can be found in 7?7 which discusses the implementation details.

Code Sample 4.2. LCD.h. The LCD library header file.

#ifndef LCD_H
#define LCD_H

void LCD_Setup(void); // Initialize the LCD
void LCD_Clear(void); // Clear the screen and return to position (0,0)
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void LCD_Move(int line, int col); // Move the position to the given line and column
void LCD_WriteChar(char c); // Write a character at the current position
void LCD_WriteString(const char * string); // Write a string, starting at the current position

void LCD_Home(void); // Move to (0,0) and reset any scrolling

void LCD_Entry(int id, int s); // Control how the display moves after sending a character
void LCD_Display(int d, int c, int b); // Turn the display on/off and change cursor settings

void LCD_Shift(int sc, int rl); // Shift the position of the display

void LCD_Function(int n, int f); // Set the number of lines (0,1) and the font size

void LCD_CustomChar(unsigned char val, const char datal[7]); // Write a custom character to CGRAM
void LCD_Write(int rs, unsigned char db70); // Write a command to the LCD

void LCD_CMove(unsigned char addr); // Move to the given address in CGRAM
unsigned char LCD_Read(int rs); // Read a value from the LCD
#endif

LCD_Setup(void) Initializes the LCD, putting it into 2 line mode and clearing the screen. You should
call this at the beginning of main (), after you call NU32_Startup().

LCD_Clear(void) Clears the screen and returns the cursor to line zero, column zero.

LCD_Move(int line, int col) Causes subsequent text to appear at the given line and column. After
calling LCD_Setup(), the LCD has two lines and 16 columns. Remember, just like C arrays,
numbering starts at zero!

LCD_WriteChar (unsigned char s) Write a character to the current cursor position. The cursor
position will then be incremented.

LCD_WriteString(const char * str) Displays the string, starting at the current position. Remember,
the LCD does not understand control characters like ’\n’; you must use LCD_Move to access the
second line.

The program LCDwrite.c uses both the NU32 and LCD libraries to accept a string from the user’s host
computer and write it to the LCD. To build the executable, copy the <PIC32>/skeleton directory and then
add the files LCDwrite.c, LCD.c, and LCD.h. After building, loading, and running the program, open the
terminal emulator. You can now converse with your LCD!

What do you want to write?

If the user responds Echo!!, the LCD prints

Received 1

where the underscores represent blank spaces. As the user sends more strings, the Received number increments.
The code is given below.

Code Sample 4.3. LCDwrite.c. Takes input from the user and prints it to the LCD screen.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // config bits, constants, funcs for startup and UART
#include "LCD.h"

#define MSG_LEN 20
int main() {

char msg[MSG_LEN];
int nreceived = 1;
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NU32_Startup() ; // cache on, interrupts on, LED/button init, UART init

LCD_Setup() ;

while (1) {

NU32_WriteUART1("What do you want to write? ");
NU32_ReadUART1 (msg, MSG_LEN); // get the response
LCD_Clear(); // clear LCD screen
LCD_Move(0,0) ;
LCD_WriteString(msg) ; // write msg at row O col 0
sprintf (msg, "Received %d", nreceived); // display how many messages received
++nreceived;
LCD_Move(1,3);
LCD_WriteString(msg) ; // write new msg at row O col 2
NU32_WriteUART1("\r\n");

}

return O;

}

4.5 Microchip Libraries

Microchip provides several libraries for PIC32s. Understanding these libraries is rather confusing (as we
began to see in Chapter 3), partially because they are written to support many PIC32 models, and partially
because of the requirement to maintain backwards compatibility, so that code written years ago does not
become obsolete with new library releases.

Historically, people primarily programmed microcontrollers in assembly language, where the interaction
between the code and the hardware is quite direct: typically the CPU executes one assembly instruction per
clock cycle, without any hidden steps. For complex software projects, however, assembly language becomes
cumbersome because it requires manipulating a specific processor directly and doesn’t contain convenient
constructs like loops, if statements, or functions.

The C language, although still low-level, provides a level of portability and abstraction. Much of your C
code works for multiple microcontrollers, provided you have a compiler for the particular microcontroller.
Still, if your code directly manipulates a particular SFR that doesn’t exist on another microcontroller model,
portability is broken.

Microchip software addresses this issue by providing software that allows your code to work for many
PIC32 models. In a simplified hierarchical view, the user’s application may call Microchip middleware
libraries, which provide a high-level of abstraction and keep the user somewhat insulated from the hardware
details. The middleware libraries may interface with lower-level device drivers. Device drivers may interface
with still lower-level peripheral libraries. These peripheral libraries then, finally, read or write the SFRs
associated with your particular PIC32.

Microchip’s most recent software release, Harmony, provides middleware, device drivers, and peripheral
libraries. This permits an abstract programming model, partially insulating the programmer from hardware
details. For some more complicated peripherals, we will use Harmony, which is why we include the options
necessary for it in the Makefile. When beginning, however, we use only the SFR variable declarations
and other definitions in the XC32 distribution to manipulate the hardware directly from C code. Our
philosophy is to stay close to the hardware, similar to assembly language programming, but with the
benefits of the easier higher-level C language. This approach allows you to directly translate from the PIC32
hardware documentation to C code because the SFRs are accessed from C using the same names as the
hardware documentation. If unsure of how to access an SFR from C code, open the processor-specific
header file <xc32dir>/<xc32ver>/pic32mx/proc/p32mx795£5121.h, search for the SFR name, and read the
declarations related to that SFR. Overall, we believe that using this low-level approach to programming the
PIC32 should provide you with a strong foundation in microcontroller programming. Additionally, after
programing using SFRs directly, you should be able to understand the documentation for any Microchip-
provided software and, if you desire, use it in your own projects.
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4.6 Your Libraries

Now that you’ve seen how some libraries function, you can create your own libraries. As you program, try to
think about the interconnections between parts of your code. If you find that some functions are independent
of other functions, you may want to code them in separate .c and .h files. Splitting projects into multiple
files that contain related functions helps increase program modularity. By leaving some definitions out of the
header file and declaring functions and variables as static (meaning that they cannot be used outside the
module), you can hide the implementation details of your code from other code. Once you divide your code
into independent modules, you can think about which of those modules might be useful in other projects:
these files can then be used as libraries.

4.7 Chapter Summary

e A library is a .a archive of .o object files and associated .h header files that give programs access to
function prototypes, constants, macros, data types, and variables associated with the library. Libraries
can also be distributed in source code form and need not be compiled into archive format prior to being
used; in this way they are much like code that you write and split amongst multiple C files.

e For a project with multiple C files, each C file is compiled and assembled independently with the aid of
its included header files. Compiling a C file does not require the actual definitions of helper functions
in other helper C files; only the prototypes are needed. The function calls are resolved to the proper
virtual address when the multiple objects are linked. If multiple object files have functions with the
same name, the linker will fail.

e The NU32 library provides functions for initializing the PIC32 and communicating with the host
computer. The LCD library provides functions to write to a 16x2 character dot matrix LCD screen.

4.8 Exercises

1. Explain what can go wrong if a header file contains the global variable definition int i=2; if that
header file is included by multiple C files in the same project.

2. Identify which, if any, functions, constants, and global variables in NU32.c are private to NU32.c.

3. You will create your own libraries.

(a)

Remove the comments from invest.c in Appendix ?7?. Now modify it to work on the NU32 using
the NU32 library. You will need to replace all instances of printf and scanf with appropriate
combinations of sprintf, sscanf, NU32_ReadUART1 and NU32_WriteUART1. Verify that you can
provide data to the PIC32 with your keyboard and display the results on your computer screen.
Turn in your code for all the files, with comments where you altered the input and output
statements.

Split invest.c into two C files, main.c and helper.c, and one header file, helper.h. helper.c
contains all functions other than main. Which constants, function prototypes, data type definitions,
etc., should go in each file? Build your project and verify that it works. For the safety of future
helper library users, put an include guard in helper.h. Turn in your code and a separate
paragraph justifying your choice for where to put the various definitions.

Break invest.c into three files: main.c, io.c, and calculate.c. Any function which handles
input or output should be in io.c. Think about which prototypes, data types, etc., are needed
for each C file and come up with a good choice of a set of header files and how to include them.
Again, for safety, use include guards in your header files. Verify that your code works. Turn in
your code and a separate paragraph justifying your choice of header files.

If you prefer, you are welcome to first solve the tasks using a C installation on your computer, then
modify the input/output functions for the NU32.
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4. When you try to build and run a program, you could run into (at least) three different kinds of errors: a
compiler error, a linker error, or a run-time error. A compiler or linker error would prevent the building
of an executable, while a run-time error would only become evident when the program doesn’t behave
as expected. Say you’re building a program with no global variables and two C files, exactly one of
which has a main() function. For each of the three types of errors, give simple code that would lead to
it.

5. Write a function, void LCD_ClearLine(int 1n) that clears a single line of the LCD (either line zero

or line one). You can clear a line by writing enough space (’> ) characters to fill it.

6. Write a function, void LCD_print(const char *), that writes a string to the LCD and interprets
control characters. The function should start writing from position (0,0). A carriage return (>\r?)
should reset the cursor to the beginning of the line, and a line feed (*\n’) should move the cursor to
the other line.
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Time and Space

Of course it is a good idea to write “efficient” code. But “efficient” can mean a number of different things,
such as time-efficient (runs fast), RAM-efficient (makes the most of limited RAM), flash-efficient (makes
the most of limited flash), but perhaps most importantly, programmer-time-efficient (minimizes the time
needed to write and debug the code, or for a future programmer to understand it). Often these interests are
in competition with each other. In fact, the XC32 compiler provides a number of compilation options, some
of which are not available in the free version of the compiler, that allow you to explicitly make space-time
tradeoffs. As one example, the compiler could “unroll” loops. If a loop is known to be executed 20 times, for
example, instead of using a small piece of code, incrementing a counter, and checking to see if the count has
reached 20, the compiler could simply write the same block of code 20 times. This may save a little bit of
execution time (no counter increments, no conditional tests, no branches) at the expense of using more flash
to store the program.

The purpose of this chapter is to make you aware of some tools for understanding the time and space
consumed by your program. These will help you squeeze the most out of your PIC32, allowing you to do
more with a given PIC32 or to choose a cheaper PIC32. More importantly, though, they help you understand
how your software works.

5.1 Compiler Optimization

The XC32 compiler provides five levels of optimization. Their availability depends on whether you have a
license for the free version of the compiler, the Standard version, or the Pro version:

Version Label Description
All 00 no optimization
All 01 level 1: attempts to reduce both code size and execution time
Standard, Pro 02 level 2: further reduces code size and execution time beyond 01
Pro 03 level 3: maximum optimization for speed
Pro Os maximum optimization for code size

The greater the optimization, the longer it takes the compiler to produce the assembly code. You can learn
more about compiler optimization in the XC32 C/C++ Compiler User’s Guide.

When you issue a make command with the Makefile from the quickstart code, you see that the compiler
is invoked with optimization level 01, using commands like

xc32-gcc -g -01 -x ¢

-g -01 -x c are compiler flags set in the variable CFLAGS in the Makefile. The -01 means that optimization
level 1 is being requested.

In this chapter we examine the assembly code that the compiler produces from your C code. The mapping
between your C code and the assembly code is relatively direct when no optimization is used, but is less clear
when optimization is invoked. (We will see an example of this in Section 5.2.3.) To create clearer assembly
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code, we will find it useful to be able to make files with no optimization. This can be done by overriding the
CFLAGS variable defined in the Makefile:

> make CFLAGS="-g -x c"
or
> make write CFLAGS="-g -x c"

In these examples, since no optimization level is being specified, the default (no optimization) is applied.
Unless otherwise specified, all examples in this chapter assume that no optimization is applied.

5.2 Time and the Disassembly File

5.2.1 Timing Using a Stopwatch (or an Oscilloscope)

A direct way to time something is to toggle a digital output and look at that digital output using an
oscilloscope or stopwatch. For example:

e // digital output RA4 has been high for some time
LATACLR

= 0x10; // clear RA4 to O (turn on NU32 LED1)
S // some code you want to time
LATASET = 0x10; // set RA4 to 1 (turn off LED1)

The time that RA4 is low (or the NU32’s LED1 is on) is approximately the duration of the code you want to
measure.

If the duration is too short to catch with your scope or stopwatch, you could modify the code to something
like

e // digital output RA4 has been high for some time
LATACLR = 0x10; // clear RA4 to O (turn on NU32 LED1)
for (i=0; i<1000000; i++) { // but modify 1,000,000 to something appropriate for you
// some code you want to time

}
LATASET = 0x10; // set RA4 to 1 (turn off LED1)

Then you can divide the total time by 1,000,000.! Keep in mind, however, that there is overhead to implement
the for loop (incrementing a counter, checking the inequality, etc.). We will see this in Section 5.2.3. If the
code you want to time uses only a few assembly instructions, then the time you actually measure will be
dominated by the implementation of the for loop.

5.2.2 Timing Using the Core Timer

A more accurate time can be obtained using a timer onboard the PIC32. The NU32’s PIC32 has 6 timers: a
32-bit core timer, associated with the MIPS CPU, and five 16-bit peripheral timers. We can use the core
timer for pure timing operations, leaving the much more flexible peripheral timers available for other tasks
(see Chapter 8). The core timer increments once for every two ticks of SYSCLK. For a SYSCLK of 80 MHz,
the timer increments every 25 ns. Because the timer is 32 bits, it rolls over every 232 x 25 ns = 107 seconds.

If you have compiled your program with the NU32 library NU32.{c,h}, you can use statements such as
the following:

unsigned int elapsedticks, elapsedns;

NU32_WriteCoreTimer (0) ; // set the core timer counter to O
cee // some code you want to time

elapsedticks = NU32_ReadCoreTimer(); // read the core timer

elapsedns = elapsedticks * 25; // duration in ns, for 80 MHz SYSCLK

11f you use optimization in compiling your program, however, the compiler might recognize that you are not doing anything
with the results of the loop, and not generate assembly code for the loop at all!
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Writing to and reading from the core timer takes a few processor cycles, and the timer only counts every 2
ticks of SYSCLK. To minimize the uncertainty introduced by these, you can execute the code several times
(just copy and paste it) between the write and read of the core timer. Avoid the overhead of implementing a
loop.

We can actually do a bit better. Since we are concerned about timing, let’s reduce the time to write
to and read from the core timer by eliminating the small overhead of calling and returning from the NU32
functions:

unsigned int elapsedticks, elapsedns;

_CPO_SET_COUNT(0) ; // set the core timer counter to 0O
cee // some code you want to time

elapsedticks = _CPO_GET_COUNT(); // read the core timer

elapsedns = elapsedticks * 25; // duration in ns, for 80 MHz SYSCLK

The macros _CPO_SET_COUNT (val) and _CPO_GET_COUNT() are defined in pic32mx/include/cpOdefs.h, and
are resolved to macros in pic32mx/include/xc.h, which call functions that are built-in to the compiler,
resulting in a minimum number of assembly language commands.

If the core timer is being used to time different things, do not reset the counter to zero. Instead, read the
value initial at the start of the timing, then the value final at the end, and subtract. If final is less than
initial, then a core timer rollover occurred, and the actual number of elapsed ticks (assuming only one
rollover) is 232 + final — initial.

In the next section we look more systematically at the assembly code created by our C code.

5.2.3 Disassembling Your Code

A convenient way to examine the time efficiency of your code is to look at the assembly code produced by
the compiler. The fewer instructions, the faster your code will execute.
In Chapter 3.5, we claimed that the code

LATAINV = 0x30;
is more efficient than
LATAbits.LATA4 = 'LATAbits.LATA4; LATAbits.LATA5 = !LATAbits.LATA5;

Let’s examine that claim by looking at the assembly code of the following program. This program simply
delays by executing a for loop 50 million times, then toggles RA5 (LED2 on the NU32).

Code Sample 5.1. timing.c. RA5 toggles (LED2 on the NU32 flashes).

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // peripheral.h, config bits, constants, functions for startup and UART
#define DELAYTIME 50000000 // 50 million

void delay(void);
void toggleLight (void);

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

while(1) {
delayQ;
toggleLight () ;
}
}
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void delay(void) {
int i;
for (i = 0; i < DELAYTIME; i++) {
; //do nothing
}
}

void toggleLight (void) {
LATAINV = 0x0020; // invert the LED (which is on port A5)
// LATAbits.LATA5 = ILATAbits.LATAS;

}

Put timing. c in a project directory together with the Makefile, NU32.c, NU32.h, and NU32bootloaded.1d,
and nothing else. Then use

> make CFLAGS="-g -x c"

to build with no optimization. The Makefile automatically disassembles the out.elf file to the file out.dis,
but if you wanted to do it manually, you could type

> xc32-objdump -8 out.elf > out.dis

Open out.dis in a text editor. You will see a listing showing the assembly code corresponding to out.hex.
Included in the file is your C code and, below your C statements, the assembly code it generated.? Each
assembly line has the actual virtual address where the assembly instruction is placed in memory, the 32-bit
machine instruction, and the equivalent human-readable (if you know assembly!) assembly code. Let’s look
at the segment of the listing corresponding to the command LATAINV = 0x20. You should see something like

LATAINV = 0x0020; // invert the LED (which is on port A5)
9d002464: 3c02bf88 1lui v0,0xbf88
9d002468: 24030020 1i v1,32
9d00246¢c: ac43602c sw vi1,24620(v0)

// LATAbits.LATA5 = !LATAbits.LATA5;

We see that the LATAINV = 0x20 command has expanded to three assembly statements. Without going into
detail®, the 1i stores the base-10 value 32 (or hex 0x20) in the CPU register v1, which is then written by the
sw command to the memory address corresponding to LATAINV.

If instead we comment out the LATAINV = 0x0020; command and replace it with the bit manipulation
version, we get the following disassembly:

// LATAINV = 0x0020; // invert the LED (which is on port A5)

LATAbits.LATA5 = !LATAbits.LATAS;
9d002464: 3c02bf88 1lui v0,0xbf88
9d002468: 8c426020 1w v0,24608(v0)
9d00246¢c: 30420020 andi v0,v0,0x20
9d002470: 2c420001 sltiu vO,v0,1
9d002474: 304400ff andi a0,v0,0xff
9d002478: 3c03bf88 1lui v1,0xbf88
9d00247c: 8c626020 1w v0,24608(v1)
9d002480: 7c822944 ins v0,a0,0x5,0x1
9d002484: ac626020 sw v0,24608(v1)

The bit manipulation version requires nine assembly statements. Basically the value of LATA is being copied
to a CPU register, manipulated, then stored back in LATA. In contrast, with the LATAINV syntax, there is
no copying the values of LATAINV back and forth.

2The output from the xc32-objdump disassembler is not perfect. While the assembly code should be correct, portions of your
C code may be duplicated for no apparent reason.
3You can look up the MIPS32 assembly instruction set if you’re interested.
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Although one method of manipulating the SFR bit appears three times slower than the other, we don’t
yet know how many CPU cycles each consumes. Assembly instructions are generally performed in a single
clock cycle, but there is still the question of whether the CPU is getting one instruction per cycle. (Recall
the issue of slow program flash.) We will look at this further with the prefetch cache module in Section 5.2.4
below. For now, though, let’s time that delay loop that is executed 50 million times. Here is the disassembly
for delay (), with comments added to the right:

void delay(void) {
9d002408: 27bdfff0 addiu sp,sp,-16 // manipulate the stack pointer on ...

9d00240c: afbe000c sw s8,12(sp) // ... entering the function (see text)
9d002410: 03a0f021 move s8,sp

int i;

for (i = 0; i < DELAYTIME; i++) {
9d002414: afc00000 sw zero,0(s8) // initialization of i in RAM to O
9d002418: 0b40090b j 9d00242c // jump to 9d00242c (skip adding 1 to i), but ...
9d00241c: 00000000 nop // ... "no operation" executed in "delay slot" before jump
9d002420: 8fc20000 1w v0,0(s8) // start of the loop; load RAM i into register vO
9d002424: 24420001 addiu vO0,vO0,1 // add 1 to vO ...
9d002428: afc20000 sw v0,0(s8) // ... and store it to i in RAM
9d00242c: 8fc30000 1w v1,0(s8) // load i into register vl
9d002430: 3c0202fa 1lui v0,0x2fa // load the upper 16 bits and ...
9d002434: 3442f080 ori vO0,v0,0xf080 // ... the lower 16 bits of 50,000,000 into vO
9d002438: 0062102a slt vO0,vi,v0 // store "true" (1) in vO0 if v1 < vO
9d00243c: 1440fff8 bnez v0,9d002420 // if vO does not equal O, branch to top of loop, but ...
9d002440: 00000000 nop // ... branch delay slot is executed before branch

; //do nothing

}
}
9d002444: 03c0e821 move sp,s8 // manipulate the stack pointer on exiting

9d002448: 8fbe000c 1w s8,12(sp)

9d00244c: 27bd0010 addiu sp,sp,16

9d002450: 03e00008 jr ra // jump to return address ra stored by jal, but ...
9d002454: 00000000 nop // ... jump delay slot is executed before jump

There are nine instructions in the delay loop itself, starting with 1w v0,0(s8) and ending with the next
nop. When the LED comes on, these instructions are carried out 50 million times, and then the LED turns
off. (There are a few other instructions to set up the loop, but the duration of these is negligible compared to
the 50 million executions of the loop.) So if one instruction is executed per cycle, we would predict the light
to stay on for approximately 50 million x 9 instructions x 12.5 ns/instruction = 5.625 seconds. When we
time by a stopwatch, we get about 6.25 seconds, which implies 10 CPU (SYSCLK) cycles per loop. So our
cache module has the CPU executing one assembly instruction almost every cycle.

In the code above there are two “jumps” (j for “jump” to the specified address and jr for “jump register’
to jump to the address in the return address register ra, which was set by the calling function) and one
“branch” (bnez for “branch if not equal to zero”). For MIPS32, the command after a jump or branch is
executed before the jump actually occurs. This next command is said to be in the “delay slot” for the jump
or branch. In all three delay slots in this code is a nop command, which stands for “no operation.”

You might notice a few ways you could have written the assembly code for the delay function to use fewer
assembly commands. This is certainly one of the advantages of coding directly in assembly: direct control
of the processor instructions. The disadvantage, of course, is that MIPS32 assembly is a much lower-level
language than C, requiring significantly more knowledge of MIPS32 from the programmer. Until you have
already invested a great deal of time learning the assembly language, programming in assembly fails the
“programmer-time-efficient” criterion! (Not to mention that delay() was designed to waste time, so no need
to minimize assembly lines!)

Another thing you may have noticed in the disassembly of delay() is the manipulation of the stack
pointer (sp) upon entering and exiting the function. The stack is an area of RAM that holds temporary
local variables and parameters. When a function is called, its parameters and local variables are “pushed”
onto the stack. When the function exits, the local variables are “popped” off of the stack by moving the

)
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stack pointer back to its original position before the function was called. A stack overflow occurs if there is
not enough RAM available to the stack to hold all the local variables defined in currently-called functions.
We will see the stack again in Section 5.3.

The overhead due to passing parameters and manipulating the stack pointer on entering and exiting a
function should not discourage you from writing modular code. This should only be a concern when your
code is fully debugged and you are trying to squeeze a final few nanoseconds out of your program execution
time.

Finally, if you compiled timing.c with optimization level 1 (the optimization flag -01, the default for the
Makefile), you would see that delay() is optimized to

void delay(void) {

9d00220c: 3c0202fa 1lui v0,0x2fa // load the upper 16 bits and ...
9d002210: 3442f080 ori v0,v0,0xf080 // ... the lower 16 bits of 50,000,000 into vO
9d002214: 2442ffff addiu vO,v0,-1 // subtract 1 from vO

int i;

for (i = 0; i < DELAYTIME; i++) {
9d002218: 1440ffff bnez v0,9d002218 // if vO !'= 0, branch back to the same line, but ...
9d00221c: 2442ffff addiu vO0,v0,-1 // ... before branch completes, subtract 1 from vO
; //do nothing

}
}
9d002220: 03e00008 jr ra // jump to return address ra stored by jal
9d002224: 00000000 nop // no operation in jump delay slot

No local variables are stored in RAM, and there is no stack pointer manipulation upon entering and exiting
the function. The counter variable is simply stored in a CPU register. The loop itself has only two lines
instead of nine, and it has been designed to count down from 49,999,999 to zero instead of counting up. The
branch delay slot is actually used to implement the counter update instead of having a wasted nop cycle.

More importantly, however, delay() is never called by the assembly code for main in our -01 optimized
code! The compiler has recognized that delay () doesn’t do anything. As a result, the LED toggles so quickly
that you can’t see it by eye. The LED just looks dim.*

5.2.4 The Prefetch Cache Module

In the previous section, we saw that our timing.c program was executing an assembly instruction nearly
every clock cycle. This is because NU32_Startup() optimized performance by turning on the prefetch cache
module and choosing the minimum number of CPU wait cycles for instructions loading from flash.®

Let’s try turning off the prefetch cache module to see the effect on our program timing.c. The prefetch
cache module performs two primary tasks: (1) it keeps recent instructions in the cache, ready if the CPU
requests the instruction at that address again (allowing the cache to completely store small loops); and (2)
for linear code it runs ahead so as to have the instruction ready to go when needed (prefetch). We can disable
each of these functions separately, or we can disable both.

Let’s start by disabling both. Modify timing.c in Code Sample 5.1 by adding

NU32_DisableCache(); // Turn off function (1), storing recent instructions in cache
CHECONCLR = 0x30; // Turn off function (2), prefetch

right after NU32_Startup() in main. Everything else stays the same. The first line is an NU32 function to
turn off storing recent instructions in cache. As for the second line, consulting the section on the prefetch

4To prevent delay() from being optimized away, we could have added a “no operation” _nop(); command inside the delay
loop. Or we could have used a volatile variable inside the loop. Or we could just use polling of the core timer to implement a
desired delay.

5The number of “wait cycles” is the number of extra cycles the CPU is told to wait for instructions to finish loading from
flash if they are not cached. Since the PIC32’s flash operates at a maximum of 30 MHz and the CPU operates at 80 MHz, the
number of wait cycles is configured as two in NU32_Startup(), to allow three total cycles for a flash instruction to load. Fewer
wait cycles would result in an error in operation, and more wait cycles would slow performance unnecessarily.
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cache module in the Reference Manual, we see that bits 4 and 5 of the SFR CHECON determine whether
instructions are prefetched, and that clearing both bits disables predictive prefetch.

Recompiling timing.c with with no compiler optimizations and rerunning, we find that the LED stays
on for approximately 17 seconds, compared to approximately 6.25 seconds before. This corresponds to 27
SYSCLK cycles per delay loop, which we saw earlier has nine assembly commands. These numbers make
sense—since the prefetch cache is completely disabled, it takes three CPU cycles (one request cycle plus two
wait cycles) for each instruction to get from flash to the CPU.

If we comment out the second line, so that (1) the cache of recent instructions is off but (2) the prefetch
is enabled, and rerun, we find that the LED stays on for about 8.1 seconds, or 13 SYSCLK cycles per loop, a
small penalty compared to our original performance of 10 cycles. The prefetch is able to run ahead to grab
future instructions, but it cannot run past the for loop conditional statement, since it does not know the
outcome of the test.

Finally, if we comment out the first line but leave the second line uncommented, so that (1) the cache of
recent instructions is on but (2) the prefetch is disabled, we recover our original performance of approximately
6.25 seconds or 10 SYSCLK cycles per loop. The reason is that the entire loop is stored in the cache, so
prefetch is not necessary.

5.2.5 Math

For real-time systems, it is often critical to perform mathematical operations as quickly as possible. Mathe-
matical expressions should be coded to minimize execution time. We will delve into the speed of various
math operations in the Exercises, but here are a few rules of thumb for efficient math:

e There is no floating point unit on the PIC32MX, so all floating point math is carried out in software.
Integer math is much faster than floating point math. If speed is an issue, perform all math as integer
math, scaling the variables as necessary to maintain precision, and only convert to floating point when
needed.

e Floating point division is slower than multiplication. If you will be dividing by a fixed value many
times, consider taking the reciprocal of the value once and then using multiplication thereafter.

e Functions such as trigonometric functions, logarithms, square roots, etc. in the math library are generally
slower to evaluate than arithmetic functions. Their use should be minimized when speed is an issue.

e Partial results should be stored in variables for future use to avoid performing the same computation
multiple times.

5.3 Space and the Map File

The previous section focused on the time of execution. Now let’s look at how much program memory (flash)
and data memory (RAM) our programs use.

The linker allocates virtual addresses in program flash for all program instructions, and virtual addresses
in data RAM for all global variables. The rest of RAM is allocated to the heap and the stack.

The heap is memory set aside to hold dynamically allocated memory, as allocated by malloc and calloc.
These functions allow you to declare a variable size array, for example, while the program is running, instead
of specifying a (possibly space-wasteful) fixed-sized array in advance.

The stack holds temporary local variables used by functions. When a function is called, space on the
stack is allocated for its local variables. When the function exits, the local variables are thrown away and the
space is made available again by simply moving the stack pointer. The stack grows “down” from the end of
RAM—as local variables are “pushed” onto the stack, the stack pointer address decreases, and when local
variables are ”popped” off the stack after exiting a function, the stack pointer address increases. (See the
assembly listing for delay () in timing.c in Section 5.2.3 for an example of moving the stack pointer when a
function is called and when it exits.)

If your program attempts to put too many local variables on the stack (stack overflow), the error won’t
show up until run time. The linker does not catch this error because it does not explicitly set aside space for
temporary local variables; it assumes they will be handled by the stack.
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To dig a little deeper into how memory is allocated, we can ask the linker to create a “map” file when it
creates the .elf file. The map file indicates where instructions are placed in program memory and where
global variables are placed in data memory. Your Makefile automatically creates an out.map file for you by
including the -Map option to the linker command:

> xc32-gcc [details omitted] -Wl,--script="NU32bootloaded.ld",-Map="out.map"

The map file can be opened with a text editor.
Let’s look at the out.map file for timing.c as shown in Code Sample 5.1, and again compiled with no
optimizations. There’s a lot in this file, but here’s an edited portion of it:

Microchip PIC32 Memory-Usage Report

kseg0 Program-Memory Usage

section address length [bytes] (dec) Description
.text 0x9d001e00 Ox4fc 1276 App’s exec code
.text.general_exception 0x9d0022fc Oxdc 220
.text 0x9d0023d8 Oxac 172 App’s exec code
.text.main_entry 0x9d002484 Ox4c 76
.text._bootstrap_except 0x9d0024d0 0x48 72
.text._general_exceptio 0x9d002518 0x48 72
.text 0x9d002560 0x44 68 App’s exec code
.vector_default 0x9d0025a4 0x38 56
.text 0x9d0025dc 0x18 24 App’s exec code
.dinit 0x9d0025f4 0x10 16
.text._on_reset 0x9d002604 0x8 8
.text._on_bootstrap 0x9d00260c 0x8 8

Total ksegO_program_mem used : 0x814 2068 0.4% of 0x7e200

ksegO Boot-Memory Usage
section address length [bytes] (dec) Description

Total ksegO_boot_mem used : 0 0 <1% of 0x970

Exception-Memory Usage

section address length [bytes] (dec) Description
.app_excpt 0x9d000180 0x10 16 General-Exception
.vector_0 0x9d000200 0x8 8 Interrupt Vector O
.vector_1 0x9d000220 0x8 8 Interrupt Vector 1
[[[ ... snipping long list of vectors ...]]]
.vector_51 0x9d000860 0x8 8 Interrupt Vector 51
Total exception_mem used : 0x1b0 432 10.5% of 0x1000

ksegl Boot-Memory Usage

section address length [bytes] (dec) Description

.reset 0xbd001970 0x1£0 496 Reset handler

.bev_excpt 0xbd001cf0 0x10 16 BEV-Exception
Total ksegl_boot_mem used : 0x200 512 43.8J), of 0x490
Total Program Memory used : 0xbc4 3012 0.6% of 0x80000

The kseg0 program memory usage report tells us that 2068 (or 0x814) bytes are used for the main part
of our program. The first entry is denoted .text, which stands for program instructions. It is the largest
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single section, using 1276 bytes, described as App’s exec code, and installed starting at VA 0x9d001e00.
Searching for this address in the map file, we see that this is the code for NU32.o0, the object code associated
with the NU32 library.

Going down through the subsequent sections of kseg0) program memory, we see that the sections are
packed tightly and in order of decreasing section size. The next section is .text.general_exception, which
corresponds to a routine that is called when the CPU encounters certain types of “exceptions” (run-time
errors). This code was linked from pic32mx/1ib/1libpic32.a. The next .text section, also labeled App’s
exec code, is the obect code timing.o, 172 (or Oxac) bytes long. Searching for timing.o we find the
following text:

.text 0x9d0023d8 Oxac

.text 0x9d0023d8 Oxac timing.o
0x9d0023d8 main
0x9d002408 delay
0x9d002458 toggleLight

Our functions main, delay, and toggleLight of timing.o are stored consecutively in memory. The addresses
agree with our disassembly file from Section 5.2.3.

Continuing, the ksegO boot memory report indicates that no code is placed in this memory region. The
exception memory report indicates that placeholders for instructions corresponding to interrupts occupy
432 bytes. Finally, the ksegl boot memory report indicates that the C runtime startup code installed reset
functions that occupy 512 bytes. The address of the .reset section is the address that the bootloader
(already installed in the 12 K boot flash) jumps to.

In all, 3012 bytes of the 512 KB of program memory are used.

Continuing further in the map file, we see

ksegl Data-Memory Usage

section address length [bytes] (dec) Description
Total ksegl_data_mem used 0 0 <1% of 0x20000
Total Data Memory used : 0 0 <1% of 0x20000

Dynamic Data-Memory Reservation

section address length [bytes] (dec) Description
heap 0xa0000008 0 0 Reserved for heap
stack 0xa0000020 0x1££d8 131032 Reserved for stack

There are no global variables, so no ksegl data memory is used. The heap size is zero, so essentially all data
memory is reserved for the stack.

Now let’s modify our program by adding some useless global variables, just to see what happens to the
map file. Let’s add the following lines just before main:

char my_cat_string[] = "2 cats!";
int my_int = 1;
char my_message_string[] = "Here’s a long message stored in a character array.";

char my_small_string[6], my_big_string[97];
Rebuilding and examining the new map file, we see the following for the data memory report:

ksegl Data-Memory Usage

section address length [bytes] (dec) Description
.sdata 0xa0000000 Oxc 12 Small init data
.sbss 0xa000000c 0x6 6 Small uninit data
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.bss 0xa0000014 0x64 100 Uninitialized data
.data 0xa0000078 0x34 52 1Initialized data
Total ksegl_data_mem used Oxaa 170 0.1% of 0x20000
Total Data Memory used Oxaa 170 0.1% of 0x20000

Our global variables now occupy 170 bytes of data RAM. The global variables have been placed in four
different data memory sections, depending on whether the variable is small or large (according to a command

line option or xc32-gcc default) and whether or not it is initialized:

section name data type variables stored there
.sdata small initialized data my_cat_string, my_int
.sbss small uninitialized data my_small_string
.bss larger uninitialized data my_big_string
.data larger initialized data my_message_string

Searching for the .sdata section further in the map file, we see

.sdata 0xa0000000 Oxc timing.o
0xa0000000 my_cat_string
0xa0000008 my_int
0xa000000c¢ _sdata_end = .

Even though the string my_cat_string uses only 7 bytes, the variable my_int starts 8 bytes after the start
of my_cat_string. This is because variables are aligned on four-byte boundaries. Similarly, the strings
my_message_string, my_small_string, and my_big_string occupy memory to the next four-byte boundary.
You are not saving memory by defining a string as 5 bytes instead of 8 bytes.

Apart from the addition of these sections to the data memory usage report, we see that the global variables
reduce the data memory available for the stack, and the .dinit (global data initialization, from the C runtime
startup code) section of the ksegO program memory report has grown to 112 bytes, meaning that our total
ksegO program memory used is now 2164 bytes instead of 2068.

Now let’s make one last change. Let’s move the definition

char my_cat_string[] = "2 cats!";

inside the main function, so that my_cat_string is now local to main. Building the program again, we find in
the data memory report that the initialized global variable section .sdata has shrunk by 8 bytes, as expected.

ksegl Data-Memory Usage

section address length [bytes] (dec) Description
sdata 0xa0000000 0x4 4 Small init data
sbss 0xa0000004 0x6 6 Small uninit data
.bss 0xa000000c 0x64 100 Uninitialized data
data 0xa0000070 0x34 52 1Initialized data
Total ksegl_data_mem used Oxa2 162 0.1% of 0x20000
Total Data Memory used Oxa2 162 0.1% of 0x20000
Now looking at the kseg0Q program memory report
kseg0 Program-Memory Usage
section address length [bytes] (dec) Description
.text 0x9d001e00 Ox4fc 1276 App’s exec code
.text.general_exception 0x9d0022fc Oxdc 220
.text 0x9d0023d8 Oxc4 196 App’s exec code
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.dinit 0x9d00249c¢ 0x60 96
[[[ ... snipping long ksegO_program_mem report ...]]]
.rodata 0x9d00266¢ 0x8 8 Read-only const
.text._on_reset 0x9d002674 0x8 8
.text._on_bootstrap 0x9d00267c 0x8 8
Total ksegO_program_mem used : 0x884 2180 0.4Y% of 0x7e200

we see that timing.o is now 196 bytes as compared to 172 before. This is because the initialization of
my_cat_string is now taken care of by assembly commands in the code, not by the global variable initialization
in .dinit. A new section, .rodata for “read only data,” appears in the program memory usage, corresponding
to the string "2 cats!". The global data initialization section .dinit shrinks from 112 bytes to 96 bytes
since it is no longer responsible for initializing my_cat_string.

Finally, we might wish to reserve some RAM for dynamic memory allocation using malloc or calloc. By
default, the heap size is set to zero. To set a nonzero heap size, we can pass a linker option to xc32-gcc:

xc32-gcc [details omitted] -Wl,--script="NU32bootloaded.ld",-Map="out.map",--defsym=_min_heap_size=4096
This defines a heap of 4 KB. After building, the map file shows

Dynamic Data-Memory Reservation

section address length [bytes] (dec) Description
heap 0xa00000a8 0x1000 4096 Reserved for heap
stack 0xa00010c0 0x1ef30 126768 Reserved for stack

The heap is allocated at low RAM addresses, close after the global variables, starting in this case at address
0xa00000a8. The stack occupies most of the rest of RAM.

5.4 Chapter Summary

e The CPU’s core timer increments once every two ticks of the SYSCLK, or every 25 ns for an 80 MHz
SYSCLK. The commands NU32_WriteCoreTimer (0) ; and unsigned int dt = NU32_ReadCoreTimer();
can be used to measure the execution time of the code in between to within a few SYSCLK cycles.

e To generate a disassembly listing at the command line, use xc32-objdump -S filename.elf >
filename.dis.

e With the prefetch cache module fully enabled, your PIC32 should be able to execute an assembly
instruction nearly every cycle. The prefetch allows instructions to be fetched in advance for linear code,
but the prefetch cannot run past conditional statements. For small loops, the entire loop can be stored
in the cache.

e The linker assigns specific program flash VAs to all program instructions and data RAM VAs to all
global variables. The remainder of RAM is allocated to the heap, for dynamic memory allocation, and
to the stack, for function parameters and temporary local variables. The heap is zero bytes by default.

e A map file provides a detailed summary of memory usage. To generate a map file at the command line,
use the -Map option to the linker, e.g.,

xc32-gcc [details omitted] -W1,-Map="out.map"

e Global variables can be initialized (assigned a value when they are defined) or uninitialized. Initialized
global variables are stored in RAM memory sections .data and .sdata and uninitialized globals are
stored in RAM memory sections .bss and .sbss. Sections beginning with .s mean that the variables
are “small.” When the program is executed, initialized global variables are assigned their values by C
runtime startup code, and uninitialized global variables are set to zero.
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e Global variables are packed tightly at the beginning of data RAM, 0xA0000000. The heap comes
immediately after. The stack begins at the high end of RAM and grows “down” toward lower RAM
addresses. Stack overflow occurs if the stack pointer attempts to move into an area reserved for the
heap or global variables.

5.5 Exercises
Unless otherwise specified, compile with no optimizations for all problems.

1. Describe two examples of how you can write code differently to either make it execute faster or use less
program memory.

2. Compile and run timing.c, Code Sample 5.1, with no optimizations (make CFLAGS="-g -x c"). With
a stopwatch, verify the time taken by the delay loop. Do your results agree with Section 5.2.37

3. You will look at the disassembly for two programs with a similar function.

(a) Write a short program that uses NU32_WriteCoreTimer (0) and elapsed = NU32_ReadCoreTimer ()
to time a few C statements. Disassemble your executable and look at it. If you assume that
one assembly instruction is executed per clock cycle, how many SYSCLK cycles does it take to
complete the NU32 WriteCoreTimer command? How many cycles does it take to complete the
NU32_ReadCoreTimer command? Approximately how much error will you have in your estimate
of the timed code? (It’s not a sum of the two.)

(b) Now replace the NU32_WriteCoreTimer(0) and elapsed = NU32 ReadCoreTimer () with the
cpOdefs.h macros, as in Section 5.2.2. Disassemble and look at the code, and answer the
same questions.

4. To write time-efficient code, it is important to understand that some mathematical operations are faster
than others. We will look at the disassembly of code that performs simple arithmetic operations on
different data types. Create a program with the following local variables in main:

char c1=5, c2=6, c3;

int i1=5, i2=6, i3;

long long int j1=5, j2=6, j3;
float f1=1.01, £2=2.02, £3;

long double di1=1.01, d2=2.02, d43;

Now write code that performs add, subtract, multiply, and divide for each of the five data types, i.e.,

for chars:
c3 = cl+c2;
c3 = cl-c2;
c3 = cl*c2;
c3 = c1/c2;

Build the program with no optimization and look at the disassembly. For each of the statements, you’ll
notice that some of the assembly code involves simply loading the variables from RAM into CPU
registers and storing the result (also in a register) back to RAM. Also, while some of the statements are
completed by a few assembly commands in sequence, others result in a jump to a software subroutine
to complete the calculation. (These subroutines are provided with our C installation and included in
the linking process.) Answer the following questions.

(a) Which combinations of data types and arithmetic functions result in a jump to a subroutine? From
your disassembly file, copy the C statement and the assembly commands it expands to (including
the jump) for one example.
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(b) For those statements that do not result in a jump to a subroutine, which combination(s) of data
types and arithmetic functions result in the fewest assembly commands? From your disassembly,
copy the C statement and its assembly commands for one of these examples. Is the smallest data
type, char, involved in it? If not, what is the purpose of extra assembly command(s) for the char
data type vs. the int data type? (Hint: the assembly command ANDI takes the bitwise AND of the
second argument with the third argument, a constant, and stores the result in the first argument.
Or you may wish to look up a MIPS32 assembly instruction reference.)

(c) Fill in the following table. Each cell should have two numbers: the number of assembly commands
for the specified operation and data type, and the ratio of this number (greater than or equal to
1.0) to the smallest number of assembly commands in the table. For example, if addition of two
ints takes four assembly commands, and this is the fewest in the table, then the entry in that cell
would be 1.0 (4). This has been filled in below, but you should change it if you get a different
result. If a statement results in a jump to a subroutine, write J in that cell.

’ H char ‘ int ‘ long long ‘ float ‘ long double ‘
+ 1.0 (4)

*

/

(d) From the disassembly, find out the name of any math subroutine that has been added to your
assembly code. Now create a map file of the program. Where are the math subroutines installed in
virtual memory? Approximately how much program memory is used by each of the subroutines?
You can use evidence from the disassembly file and/or the map file. (Hint: You can search
backward from the end of your map file for the name of any math subroutines.)

5. Let’s look at the assembly code for bit manipulation. Create a program with the following local
variables:

unsigned int ul=33, u2=17, u3;

and look at the assembly commands for the following statements:

u3 = ul & u2; // bitwise AND

u3 = ul | u2; // bitwise OR

u3 = u2 << 4; // shift left 4 spaces, or multiply by 274 = 16
ud = ul > 3; // shift right 3 spaces, or divide by 273 = 8

How many commands does each use? For unsigned integers, bit-shifting left and right make for
computationally efficient multiplies and divides, respectively, by powers of 2.

6. Use the core timer to calculate a table similar to that in Problem 4, except with entries corresponding
to the actual execution time in terms of SYSCLK cycles. So if a calculation takes 15 cycles, and the
fastest calculation is 10 cycles, the entry would be 1.5 (15). This table should contain all 20 entries,
even for those that jump to subroutines. (Note: subroutines often have conditional statements, meaning
that the calculation could terminate faster for some operands than for others. You can report the
results for the variable values given in Problem 4.)

To minimize uncertainty due to the setup and reading time of the core timer, and the fact that the
timer only increments once every two SYSCLK cycles, each math statement could be repeated ten or
more times (no loops) between setting the timer to zero and reading the timer. The average number of
cycles, rounded down, should be the number of cycles for each statement. Use the NU32 communication
routines, or any other communication routines, to report the answers back to your computer.

7. Certain math library functions can take quite a bit longer to execute than simple arithmetic functions.
Examples include trigonometric functions, logarithms, square roots, etc. Make a program with the
following local variables:
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10.

11.

12.

13.

float £1=2.07, £2; // four bytes for each float
long double d1=2.07, d2; // eight bytes for each long double

Also be sure to put #include <math.h> at the top of your program to make the math function
prototypes available.

(a) Using methods similar to those in Problem 6, measure how long it takes to perform each of 