
Contents

I Quickstart 5

1 Quickstart 7

1.1 What You Need . 7

1.1.1 Hardware . 7

1.1.2 Software . 8

1.2 Compiling The Bootloader Utility . 10

1.3 Compiling Your First Program . 10

1.4 Loading Your First Program . 11

1.5 The Build Process . 12

1.6 Chapter Summary . 15

II Fundamentals 17

2 Looking Under the Hood: Hardware 19

2.1 The PIC32 . 19

2.1.1 Pin Functions and Special Function Registers (SFRs) 19

2.1.2 PIC32 Architecture . 20

2.1.3 The Physical Memory Map . 25

2.1.4 Configuration Bits . 26

2.2 The NU32 Development Board . 26

2.3 Chapter Summary . 28

2.4 Exercises . 29

3 Looking Under The Hood: Software 33

3.1 The Virtual Memory Map . 33

3.2 An Example: simplePIC.c . 34

3.3 What Happens When You Build? . 35

3.4 What Happens When You Reset the PIC32? . 36

3.5 Understanding simplePIC.c . 37

3.5.1 Down the Rabbit Hole . 39

3.5.2 The Header File p32mx795f512l.h . 41

3.5.3 Other Microchip Software: Harmony . 43

3.5.4 The NU32bootloaded.ld Linker Script . 43

3.6 Bootloaded Programs vs. Standalone Programs . 44

3.7 Build Summary . 45

3.8 Useful Command Line Utilities . 46

3.9 Chapter Summary . 47

3.10 Exercises . 47

1

CONTENTS

4 Using Libraries 49

4.1 Talking PIC . 49

4.2 The NU32 Library . 50

4.3 Bootloaded Programs . 53

4.4 An LCD Library . 53

4.5 Microchip Libraries . 56

4.6 Your Libraries . 57

4.7 Chapter Summary . 57

4.8 Exercises . 57

5 Time and Space 59

5.1 Compiler Optimization . 59

5.2 Time and the Disassembly File . 60

5.2.1 Timing Using a Stopwatch (or an Oscilloscope) . 60

5.2.2 Timing Using the Core Timer . 60

5.2.3 Disassembling Your Code . 61

5.2.4 The Prefetch Cache Module . 64

5.2.5 Math . 65

5.3 Space and the Map File . 65

5.4 Chapter Summary . 69

5.5 Exercises . 70

6 Interrupts 73

6.1 Overview . 73

6.2 Details . 74

6.3 Steps to Set Up and Use an Interrupt . 80

6.4 Sample Code . 80

6.4.1 Core Timer Interrupt . 80

6.4.2 External Interrupt . 82

6.4.3 Speedup Due to the Shadow Register Set . 83

6.4.4 Sharing Variables with ISRs . 85

6.5 Chapter Summary . 86

6.6 Exercises . 87

III Peripheral Reference 91

7 Digital Input and Output 93

7.1 Overview . 93

7.2 Details . 94

7.3 Sample Code . 95

7.4 Chapter Summary . 96

7.5 Exercises . 96

8 Counter/Timers 99

8.1 Overview . 99

8.2 Details . 101

8.3 Sample Code . 102

8.3.1 A Fixed Frequency ISR . 102

8.3.2 Counting External Pulses . 102

8.3.3 Timing the Duration of an External Pulse . 103

8.4 Chapter Summary . 104

8.5 Exercises . 105

Lynch, Marchuk, and Elwin, Northwestern U. 2 12:38 February 4, 2015

CONTENTS

9 Output Compare 107
9.1 Overview . 107
9.2 Details . 108
9.3 Sample Code . 109

9.3.1 Generating a Pulse Train with PWM . 109
9.3.2 Analog Output . 110

9.4 Chapter Summary . 113
9.5 Exercises . 113

10 Analog Input 117
10.1 Overview . 117
10.2 Details . 119
10.3 Sample Code . 120

10.3.1 Manual Sampling and Conversion . 120
10.3.2 Maximum Possible Sample Rate . 121

10.4 Chapter Summary . 125
10.5 Exercises . 125

IV Mechatronics 127

11 PID Feedback Control 129

12 Feedback Control of LED Intensity 131
12.1 Wiring and Testing the Circuit . 131
12.2 Powering the LED with OC1 . 132
12.3 Playing an Open-loop PWM Waveform . 132

A A Crash Course in C 1
A.1 Quick Start in C . 1
A.2 Overview . 2
A.3 Important Concepts in C . 3

A.3.1 Data Types . 3
A.3.2 Memory, Addresses, and Pointers . 7
A.3.3 Compiling . 8

A.4 C Syntax . 9
A.4.1 Basic Syntax . 17
A.4.2 Program Structure . 18
A.4.3 Preprocessor Commands . 19
A.4.4 Defining Structs and Data Types . 20
A.4.5 Defining Variables . 21
A.4.6 Defining and Calling Functions . 23
A.4.7 Math . 24
A.4.8 Pointers . 25
A.4.9 Arrays and Strings . 25
A.4.10 Relational Operators and TRUE/FALSE Expressions 27
A.4.11 Logical Operators . 28
A.4.12 Bitwise Operators . 28
A.4.13 Conditional Statements . 29
A.4.14 Loops . 29
A.4.15 Some Useful Libraries . 30
A.4.16 Multiple File Programs and Libraries . 34

A.5 Exercises . 39

Lynch, Marchuk, and Elwin, Northwestern U. 3 12:38 February 4, 2015

CONTENTS

Lynch, Marchuk, and Elwin, Northwestern U. 4 12:38 February 4, 2015

Part I

Quickstart

5

Chapter 1

Quickstart

Edit, compile, run, repeat: familiar to generations of C programmers, this mantra applies to programming in
C, regardless of platform. Architecture. Program loading. Input and Output. These details differ between
your computer and the PIC32. Architecture refers to processor type: your computer’s x86-64 CPU and the
PIC32’s MIPS32 CPU understand different machine code and therefore require different compilers. Your
computer’s operating system allows you to seamlessly run programs; the PIC32’s bootloader writes programs
it receives from your computer to flash memory and executes them when the PIC32 resets.1 You interact
directly with your computer via the screen and keyboard; you interact indirectly with the PIC32 using a
terminal emulator to relay information between your computer and the microcontroller. As you can see,
programming the PIC32 requires attention to details that you probably ignore when programming your
computer.

Armed with an overview of the differences between computer programming and microcontroller program-
ming, you are ready to get your hands dirty. The rest of this chapter will guide you through gathering the
hardware and installing the software necessary to program the PIC32. You will then verify your setup by
running two programs on the PIC32. By the end of the chapter, you will be able to compile and run programs
for the PIC32 as easily as you compile and run programs for your computer!

1.1 What You Need

This section explains the hardware and software that you need to program the PIC32. Links to purchase the
hardware and download the software are provided at the book’s website, http://hades.mech.northwestern.
edu/index.php/Pic32book.

1.1.1 Hardware

Although PIC32 microcontrollers integrate many devices on a single chip, they also require external circuitry
to function. The NU32 development board, shown in Figure 1.1, provides this circuitry and more: buttons,
LEDs, breakout pins, USB ports, and virtual USB serial ports. The examples in this book assume that you
use this board. You will also need the following hardware:

1. Computer with a USB port. The host computer is used to create PIC32 programs. The examples
in this book work with the Linux, Windows, and Mac operating systems.

2. USB A to mini–B cable. This cable carries signals between the NU32 board and your computer.

3. AC/DC adapter (6 Volts). This cable provides power to the PIC32 and NU32 board.

1Your computer also has a bootloader. It runs when you turn the computer on and loads the operating system. Also,
operating systems are available for the PIC32, but we will not use them in this book.

7

http://hades.mech.northwestern.edu/index.php/Pic32book
http://hades.mech.northwestern.edu/index.php/Pic32book

CHAPTER 1. QUICKSTART

6 V input

mini USB
to PC power switch

USB to
dual RS232

PIC32

5 V reg
3.3 V reg USER

RESET

LED2
LED1

GND rail
3.3 V rail

5 V rail
6 V input

USB to
external
device

Figure 1.1: A photo of the NU32 development board.

1.1.2 Software

Programming the PIC32 requires various software. You should be familiar with some of the software from
programming your computer in C; if not, refer to Appendix A. For your convenience, we have aggregated the
software you need at the book’s website, http://hades.mech.northwestern.edu/index.php/Pic32book.
You should download and install all of the following software.

1. The command prompt allows you to control your computer using a text-based interface. This
program, cmd.exe on Windows, Terminal on Mac, and bash on Linux, comes with your operating
system so you should not need to install it. See Appendix A for more information about the command
line.

2. A text editor allows you to create text files, such as those containing C source code. See Appendix A
for more information.

3. A native C compiler converts human-readable C source code files into machine code that your
computer can execute. We suggest the free GNU compiler, gcc, which is available for Windows, Mac,
and Linux. See Appendix A for more information.

4. Make simplifies the build process by automatically executing the instructions required to convert
source code into executables. After manually typing all of the commands necessary create your first
program, you will appreciate make.

5. The Microchip XC32 compiler converts C source files into machine code that the PIC32 understands.
This compiler is known as a cross compiler because it runs on one processor architecture (e.g., x86-64
CPU) and creates machine code for another (e.g., MIPS32). This compiler installation also includes C
libraries to help you control PIC32-specific features. Note where you install the compiler; we will refer
to this directory as <xc32dir>. If you are asked during installation whether you would like to add xc32
to your path variable, do so.

6. MPLAB Harmony is Microchip’s collection of libraries and drivers that simplify the task of writing
code targeting multiple PIC32 models. We will use this library only in the more advanced chapters;
however, you should install it now. Note the installation directory, which we will refer to as <harmony>.

7. The FTDI Virtual COM Port Driver allows you to use a USB port as a “virtual serial commu-
nication (COM) port” to talk to the NU32 board. This driver is already included with most Linux
distributions, but Windows and Mac users will need to install it.

Lynch, Marchuk, and Elwin, Northwestern U. 8 12:38 February 4, 2015

http://hades.mech.northwestern.edu/index.php/Pic32book

CHAPTER 1. QUICKSTART

8. A terminal emulator provides a simple interface to a COM port on your computer, sending keyboard
input to the PIC32 and displaying output from the PIC32. For Windows we recommend PuTTY, and
for Linux/Mac you can use the built-in screen program. On Windows, remember where you download
PuTTY; we refer to this directory as <puttyPath>.

9. The PIC32 quickstart code contains source code and other support files to help you program
the PIC32. Download PIC32quickstart.zip from the book’s website, extract it, and put it in a
directory that you create. We will refer to this directory as <PIC32>. In <PIC32> you will keep the
quickstart code, plus all of the PIC32 code you write, so make sure the directory name makes sense
to you. For example, depending on your operating system, <PIC32> could be /Users/kevin/PIC32

or C:\Users\kevin\Documents\PIC32. In <PIC32>, you should have the following three files and one
directory:

• nu32utility.c: a program for your computer, used to load PIC32 executable programs from your
computer to the PIC32

• simplePIC.c, talkingPIC.c: PIC32 sample programs that we will test in this chapter

• skeleton: a directory containing

– Makefile: a file that will help us compile future PIC32 programs

– NU32.c, NU32.h: a library of useful functions for the NU32 board

– NU32bootloaded.ld: a linker script used when compiling programs for the PIC32

We will learn more about each of these shortly.

You should now have code in the following directories (plus, if you are a Windows user, you will have
PuTTY in the directory <puttyPath>):

• <xc32dir>. You will never modify code in this directory. Microchip wrote this code, and there
is no reason for you to change it. Depending on your operating system, your <xc32dir> could look
something like the following:

– /Applications/microchip/xc32

– C:\Program Files (x86)\Microchip\xc32

• <harmony>. You will never modify code in this directory. Depending on your operating system,
your <harmony> could look something like the following:

– /Users/kevin/microchip/harmony

– C:\microchip\harmony

• <PIC32>. Where PIC32 quickstart code, and code you will write, is stored, as described above.

Now that you have installed all of the necessary software, it is time to program the PIC32. By following
these instructions, not only will you run your first PIC32 program, you will also verify that all of the software
and hardware is functioning properly. Do not worry too much about what all the commands mean, we will
explain the details in subsequent chapters.

Notation: Wherever we write <something>, replace it with the value relevant to your computer. On
Windows, use a backslash (\) and on Linux/Mac use a slash (/) to separate the directories in a path. At the
command line, place paths that contain spaces between quotation marks (i.e. "C:\Program Files"). Enter
the text following a > at the command line. Use a single line, even if the command spans multiple lines in the
book.

Lynch, Marchuk, and Elwin, Northwestern U. 9 12:38 February 4, 2015

CHAPTER 1. QUICKSTART

1.2 Compiling The Bootloader Utility

The bootloader utility, located at <PIC32>/nu32utility.c, sends compiled code to the PIC32. To use the
bootloader utility you must compile it. Navigate to the <PIC32> directory by typing:

> cd <PIC32>

Verify that <PIC32>/nu32utility.c exists by executing the following command, which lists all the files in a
directory:

• Windows
> dir

• Linux/Mac
> ls

Next, compile the bootloader utility using the native C compiler gcc:

• Windows
> gcc nu32utility.c -o nu32utility -lwinmm

• Linux/Mac
> gcc nu32utility.c -o nu32utility

When you successfully complete this step the file nu32utility will be created. Verify that it exists by listing
the files in <PIC32>.

1.3 Compiling Your First Program

The first program you will load onto your PIC32 is <PIC32>/simplePIC.c, which is listed below. We will
scrutinize the source code in Ch. 3, but reading it now will help you understand how it works. Essentially,
after some setup, the code enters an infinite loop that alternates between delaying and toggling two LEDs.
The delay loops infinitely while the USER button is pressed.

Code Sample 1.1. simplePIC.c. Blinking lights on the NU32, unless the USER button is pressed.

#include <xc.h> // Load the proper header for the processor

void delay(void);

int main(void) {

DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.

TRISA = 0xFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear

// bits 4/5 to zero, for output. Others are inputs.

LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...

LATAbits.LATA5 = 1; // ... current on NU32, so "high" = "off."

while(1) {

delay();

LATAINV = 0x0030; // toggle LED1 and LED2

}

return 0;

}

void delay(void) {

int j;

for (j = 0; j < 1000000; j++) { // number is 1 million

while(!PORTDbits.RD13) {

; // Pin D13 is the USER switch, low if pressed.

Lynch, Marchuk, and Elwin, Northwestern U. 10 12:38 February 4, 2015

CHAPTER 1. QUICKSTART

}

}

}

To compile this program you will use the xc32-gcc cross compiler, which compiles code for the PIC32’s
MIPS32 processor. This compiler and other Microchip tools are located at <xc32dir>/<xc32ver>/bin, where
<xc32ver> refers to the xc32 version (e.g. 1.34). To find <xc32ver> list the contents of the Microchip XC32
directory, e.g.,

> ls <xc32dir>

The subdirectory displayed is your <xc32ver> value. If you happen to have installed two or more versions of
XC32, you will always use the most recent version (the largest version number).

Next you will compile simplePIC.c and create the executable hex file. This is a two-step process; first
you create the simplePIC.elf file and then you create the simplePIC.hex file. This will be discussed more
in Chapter 3.

> <xc32dir>/<xc32ver>/bin/xc32-gcc -mprocessor=32MX795F512L

-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> <xc32dir>/<xc32ver>/bin/xc32-bin2hex simplePIC.elf

The -Wl is “-W ell” not “-W one.” You can list the contents of <PIC32> to make sure both simplePIC.elf

and simplePIC.hex were created. The hex file contains PIC32 machine code in a format that the PIC32
understands.

If, when you installed XC32, you selected to have xc32 added to your path, then in the two commands
above you could have simply typed

> xc32-gcc -mprocessor=32MX795F512L

-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> xc32-bin2hex simplePIC.elf

and your operating system would be able to find these programs without needing the full paths to them.
Next, you will load simplePIC.hex onto the PIC32 using the bootloader utility.

1.4 Loading Your First Program

Loading a program onto the PIC32 from your computer requires communication between the two devices.
When the PIC32 is powered and connected to a USB port, your computer creates two new serial communication
(COM) ports. Depending on your specific system setup, these COM ports will have different names. Therefore,
we will determine the names of your COM ports through experimentation. First, with the PIC32 unplugged,
execute the following command to enumerate the current COM ports, and take note of the names that are
listed:

• Windows:
> mode

• Mac:
> ls /dev/tty.*

• Linux:
> ls /dev/ttyUSB*

Next, plug-in the NU32 board to the wall using the AC adapter, turn the power switch on, and verify that
the red “power” LED illuminates. Connect the USB cable from the NU32’s mini B USB jack (next to the
power jack) to a USB port on the host computer. Repeat the steps above, and note that two new COM ports
appear. If they do not appear, make sure that you installed the FTDI driver from the Section 1.1.2. The
names of the ports will differ depending on the operating system; therefore we have listed some typical names:

• Windows: COM4 COM5

Lynch, Marchuk, and Elwin, Northwestern U. 11 12:38 February 4, 2015

CHAPTER 1. QUICKSTART

• Mac: /dev/tty.usbserial-00001024A /dev/tty.usbserial-00001024B

• Linux: /dev/ttyUSB0 /dev/ttyUSB1

Your computer, upon detecting the NU32 board, has created both of these ports. Your programs use the
lower port, <COMportA>, and the bootloader uses the higher port, <COMportB>.2.34

After identifying the COM ports, place the PIC32 into program receive mode. Locate the RESET button
and the USER button on the NU32 board (Figure 1.1). The RESET button is next to pins B8, B9, B1, on the
board’s bottom left (the power jack is the board’s top) and the USER button is next to pins D5, D6, and
D7 on the board’s bottom right. Press and hold both buttons, release RESET, and then release USER. After
completing this sequence, the PIC32 will flash LED1, indicating that it has entered program receive mode.

Assuming that you are still in the <PIC32> directory, type

• Windows
nu32utility <COMportB> simplePIC.hex

• Linux/Mac
> ./nu32utility <COMportB> simplePIC.hex

to start the loading process. After the utility finishes, LED1 and LED2 will flash back and forth. Hold USER

and notice that the LEDs stop flashing. Release USER and watch the flashing resume. Turn the PIC32 off
and then on. The LEDs resume blinking because you have written the program to the PIC32’s nonvolatile
flash memory. Congratulations, you have successfully programmed the PIC32!

1.5 The Build Process

As you just witnessed, building an executable for the PIC32 requires several steps. Fortunately, you can use
make to simplify this otherwise tedious and error-prone procedure. Using make requires a Makefile, which
contains instructions for building the executable. We have provided a Makefile in <PIC32>/skeleton. Prior
to using make, you need to modify <PIC32>/skeleton/Makefile so that it contains the paths and COM
port specific to your system.

Aside from the paths you have already used, you need your terminal emulator’s location, <termEmu>, and
the Harmony version, <harmVer>. On Windows, <termEmu> is <puttyPath>/putty.exe and for Linux/Mac,
<termEmu> is screen. To find Harmony’s version, <harmVer>, list the contents of the <harmony> directory.
Edit <PIC32>/skeleton/Makefile and update the first six lines as indicated below.

XC32PATH=<xc32dir>/<xc32ver>/bin

HARMONYPATH=<harmony>/<harmVer>

NU32PATH=<PIC32>

PORTA=<COMPortA>

PORTB=<COMPortB>

TERMEMU=<termEmu>

In the Makefile, do not surround paths with quotation marks, even if they contain spaces.
If your computer has more than one USB port, you should always use the same USB port to connect to

your NU32. This is because the names of the COM ports that are created when you connect your NU32 may
change if you use a different USB port. Since you are now creating a Makefile that you will use for all your
projects in the future, you want to make sure that COMPortA and COMPortB are always correct.

After saving the Makefile, you can use the skeleton directory to easily create new PIC32 programs. The
skeleton directory contains not only the Makefile, but also the NU32 library (NU32.h and NU32.c), and the
linker script NU32bootloaded.ld, all of which will be used extensively throughout the book. The Makefile

will automatically compile and link all .c files in the same directory into a single executable; therefore, your
project directory should contain all the C files you need and none that you do not want!

2Windows: write the ports as \\.\COMx rather than COMx
3Mac: the bootloader port ends with “B”.
4Linux: To avoid needing to execute commands as root, add yourself to the group that owns the COM port.

Lynch, Marchuk, and Elwin, Northwestern U. 12 12:38 February 4, 2015

CHAPTER 1. QUICKSTART

Each new project you create will have its own directory in <PIC32>, e.g., <PIC32>/<projectdir>. We now
explain how to use the <PIC32>/skeleton directory to create a new project, using <PIC32>/talkingPIC.c

as an example. For this example, we will name the project talkingPIC, so <projectdir> is talkingPIC.
By following this procedure, you will have access to the NU32 library and will be able to avoid repeating the
previous setup steps. First copy the <PIC32>/skeleton directory to the new project directory:

• Windows
> mkdir <projectdir>

> copy <PIC32>\skeleton*.* <projectdir>

• Linux/Mac
> cp -R <PIC32>/skeleton <projectdir>

Now copy the project source files, in this case just talkingPIC.c, to < PIC32 > / < projectdir >, and
change to that directory:

• Windows
> copy talkingPIC.c <projectdir>

> cd <projectdir>

• Linux/Mac
> cp talkingPIC.c <projectdir>

> cd <projectdir>

Before explaining how to use make, we will examine talkingPIC.c, which accepts input from and prints
output to a terminal emulator running on the host computer. These capabilities facilitate user interaction
and debugging. The source code for talkingPIC.c is listed below:

Code Sample 1.2. talkingPIC.c. The PIC32 echoes any messages sent to it from the host keyboard back
to the host screen.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

#define MAX_MESSAGE_LENGTH 200

int main(void) {

char message[MAX_MESSAGE_LENGTH];

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

sprintf(message, "Hello World! \r\n");

NU32_WriteUART1(message);

while (1) {

sprintf(message, "Hello? What do you want to tell me? ");

NU32_WriteUART1(message);

NU32_ReadUART1(message, MAX_MESSAGE_LENGTH);

NU32_WriteUART1(message);

NU32_WriteUART1("\r\n");

NU32_LED1 = !NU32_LED1; // toggle the LEDs

NU32_LED2 = !NU32_LED2;

}

return 0;

}

Notice the calls to sprintf. This function acts like printf except it writes to a string rather than the
screen. The NU32 library function NU32 WriteUART1 sends the output of sprintf from the PIC32 to the
computer via the serial port. Likewise, NU32 ReadUART1 allows the PIC32 to read data from the computer

Lynch, Marchuk, and Elwin, Northwestern U. 13 12:38 February 4, 2015

CHAPTER 1. QUICKSTART

via the serial port. If you removed the calls to NU32 WriteUART1, replaced NU32 ReadUART1 with scanf, and
replaced sprintf with printf, you would be left with a rather simple program that prints what you type!

Now that you know how talkingPIC.c works, it is time to see it in action. First, make sure you are in
the <projectdir> and build the project using make.

> make

This compiles and assembles all .c files into .o object files, links them into a single out.elf file, and turns
that out.elf file into an executable out.hex file. You can do a directory listing to see all of these files.

Next, put the PIC32 into program receive mode (the RESET and USER buttons) and execute

> make write

to invoke the bootloader utility nu32utility and program the PIC32 with out.hex. When LED1 stops
flashing, the PIC32 has been programmed.

To communicate with talkingPIC, you must connect to the PIC32 using your terminal emulator. Recall
that the terminal emulator communicates with the PIC32 using <COMportA>. Enter the following command:

• Windows
<puttyPath>\putty -serial <COMportA> -sercfg 230400

• Linux/Mac
screen <COMportA> 230400

PuTTY will launch in a new window, whereas screen will use the command prompt window. The number
230400 in the above commands is the baud, the speed at which the PIC32 and computer communicate.

After connecting, press RESET to restart the program. You should see a message in the terminal. Start
typing, and notice that no characters appear until you hit ENTER. This behavior may seem strange, but it
occurs because the terminal emulator only displays the text it receives from the PIC32. The PIC32 does not
send any text to your computer until it receives a special control character, which you generate by pressing
ENTER.5

For example, when the PIC32 prompts you with a question

Hello? What do you want to tell me?

and you type Everything! ENTER, the PIC32 will receive Everything!\r, write Everything!\r\n to the
terminal emulator, and ask you for more input.

When you are done conversing with the PIC32, you can exit the terminal emulator. To exit screen type

CTRL-a k y

Note that CTRL and a should be pressed simultaneously. To exit PuTTY make sure the command prompt
window is focused and type

CTRL-c

Rather then memorizing these rather long commands to connect to the serial port, you can use the
Makefile.

To connect PuTTY to the PIC32 type

> make putty

To use screen type

> make screen

Your system is now configured for PIC32 programming. Although the build process may seem opaque, do
not worry. For now it is only important that you can successfully compile programs and load them onto the
PIC32. Later chapters will explain the details of the build process.

5Depending on the terminal emulator, ENTER may generate a carriage return (\r), newline (\n) or both. The terminal
emulator moves the cursor to the leftmost column when it recieves a \r and to the next line when it receives a \n.

Lynch, Marchuk, and Elwin, Northwestern U. 14 12:38 February 4, 2015

CHAPTER 1. QUICKSTART

1.6 Chapter Summary

• To start a new project, copy the <PIC32>/skeleton directory to a new location, <projectdir>, and
add your source code.

• In the directory <projectdir>, use make to compile your code.

• Put the PIC32 into program receive mode by pressing the USER and RESET button simultaneously, then
releasing the RESET button, and finally releasing the USER button. Then use make write to load your
program.

• Use a terminal emulator to communicate with programs running on the PIC32. Typing make putty or
make screen will launch the appropriate terminal emulator and connect it to the PIC32.

Lynch, Marchuk, and Elwin, Northwestern U. 15 12:38 February 4, 2015

CHAPTER 1. QUICKSTART

Lynch, Marchuk, and Elwin, Northwestern U. 16 12:38 February 4, 2015

Part II

Fundamentals

17

Chapter 2

Looking Under the Hood: Hardware

Now that you have some programs running, it’s time to look under the hood. We begin with the PIC32
hardware by examining the PIC32MX795F512L in detail. We then describe the NU32 development board.

2.1 The PIC32

2.1.1 Pin Functions and Special Function Registers (SFRs)

The PIC32MX795F512L requires a supply voltage between 2.3 and 3.6 V and features a maximum clock
frequency of 80 MHz, 512 KB of program memory (flash), and 128 KB of data memory (RAM). Its peripherals
include a 10-bit analog-to-digital converter (ADC), many digital I/O pins, USB 2.0, Ethernet, two CAN
modules, five I2C and four SPI synchronous serial communication modules, six UARTs for RS-232 or RS-485
asynchronous serial communication, five 16-bit counter/timers (configurable to give two 32-bit timers and
one 16-bit timer), five pulse-width modulation outputs, and several pins that can generate interrupts based
on external signals. Whew. Don’t worry if you don’t know what all of these peripherals do, much of this
book is dedicated to expaining them.

To cram so much functionality into only 100 pins, many pins serve multiple functions. See the pinout
diagram for the PIC32MX795F512L (Figure 2.1). As an example, pin 21 can be an analog input, a comparator
input, a change notification input (which can generate an interrupt when an input changes state), or a digital
input or output.

Table 2.1 summarizes the pin functions; we indicated some of the most useful for embedded control in
bold.

Which function a particular pin actually serves is determined by Special Function Registers (SFRs). Each
SFR is a 32-bit word that sits at a memory address. The values of the SFR bits, 0 (cleared) or 1 (set), control
the functions of the pins as well as other functions of the PIC32.

For example, pin 78 in Figure 2.1 can serve as OC4 (output compare 4) or RD3 (digital I/O number 3 on
port D). Let’s say we want to use it as a digital output. We can modify the SFRs that control this pin to
disable the OC4 function and to choose the RD3 function as digital output instead of digital input. The
PIC32MX5xx/6xx/7xx Data Sheet explains the memory addresses and meanings of the SFRs. Be careful,
because it includes information for many different PIC32 models. Looking at the data sheet section on Output
Compare reveals that the 32-bit SFR named “OC4CON” determines whether OC4 is enabled. Specifically,
for bits numbered 0 . . . 31, we see that bit 15 is responsible for enabling or disabling OC4. We refer to this
bit as OC4CON〈15〉. If it is cleared (0), OC4 is disabled, and if it is set (1), OC4 is enabled. So we clear this
bit to 0. (Bits can be “cleared to 0” or simply “cleared,” or “set to 1” or simply “set.”) Now, referring to
the I/O Ports section of the Data Sheet, we see that the input/output direction of Port D is controlled by
the SFR TRISD, and bits 0-15 correspond to RD0-15. Bit 3 of the SFR TRISD, i.e., TRISD〈3〉, should be
cleared to 0 to make RD3 (pin 78) a digital output.

In fact, according to the Memory Organization section of the Data Sheet, OC4CON〈15〉 is cleared by
default on reset. On the other hand, TRISD〈3〉 is set to 1 on reset, making pin 78 a digital input by default.

19

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

AERXERR/RG15
VDD

PMD5/RE5
PMD6/RE6
PMD7/RE7
T2CK/RC1

T3CK/AC2TX/RC2
T4CK/AC2RX/RC3

T5CK/SDI1/RC4
ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6

ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7
ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8

MCLR
ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9

VSS

VDD

TMS/RA0
AERXD0/INT1/RE8
AERXD1/INT2/RE9

AN5/C1IN+/VBUSON/CN7/RB5
AN4/C1IN-/CN6/RB4
AN3/C2IN+/CN5/RB3
AN2/C2IN-/CN4/RB2

PGEC1/AN1/CN3/RB1
PGED1/AN0/CN2/RB0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

P
G

E
C

2/
A

N
6/

O
C

FA
/R

B
6

P
G

E
D

2/
A

N
7/

R
B

7
V

R
E

F-
/C

V
R

E
F-

/A
E

R
X

D
2/

P
M

A
7/

R
A

9
V

R
E

F+
/C

V
R

E
F+

/A
E

R
X

D
3/

P
M

A
6/

R
A

10
AV

D
D

AV
S

S

A
N

8/
C

1O
U

T/
R

B
8

A
N

9/
C

2O
U

T/
R

B
9

A
N

10
/C

V
R

E
FO

U
T/

P
M

A
13

/R
B

10
A

N
11

/E
R

X
E

R
R

/A
E

TX
E

R
R

/P
M

A
12

/R
B

11
V

S
S

V
D

D

TC
K

/R
A

1
A

C
1T

X
/S

C
K

4/
U

5T
X

/U
2R

TS
/R

F1
3

A
C

1R
X

/S
S

4/
U

5R
X

/U
2C

TS
/R

F1
2

A
N

12
/E

R
X

D
0/

A
E

C
R

S
/P

M
A

11
/R

B
12

A
N

13
/E

R
X

D
1/

A
E

C
O

L/
P

M
A

10
/R

B
13

A
N

14
/E

R
X

D
2/

A
E

TX
D

3/
P

M
A

LH
/P

M
A

1/
R

B
14

A
N

15
/E

R
X

D
3/

A
E

TX
D

2/
O

C
FB

/P
M

A
LL

/P
M

A
0/

C
N

12
/R

B
15 V
S

S

V
D

D

A
E

TX
D

0/
S

S
3/

U
4R

X
/U

1C
TS

/C
N

20
/R

D
14

A
E

TX
D

1/
S

C
K

3/
U

4T
X

/U
1R

TS
/C

N
21

/R
D

15
S

D
A

5/
S

D
14

/U
2R

X
/P

M
A

9/
C

N
17

/R
F4

S
C

L5
/S

D
O

4/
U

2T
X

/P
M

A
8/

C
N

18
/R

F5

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

VSS

SOSCO/T1CK/CN0/RC14
SOSCI/CN1/RC13
SDO1/OC1/INT0/RD0
EMDC/AEMDC/IC4/PMCS1/PMA14/RD11
SCK1/IC3/PMCS2/PMA15/RD10
SS1/IC2/RD9
RTCC/EMDIO/AEMDIO/IC1/RD8
AETXEN/SDA1/INT4/RA15
AETXCLK/SCL1/INT3/RA14
VSS

OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD

TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
D+/RG2
D-/RG3
VUSB

VBUS

SCL3/SDO3/U1TX/RF8
SDA3/SDI3/U1RX/RF2
USBID/RF3

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

P
M

D
4/

R
E

4
P

M
D

3/
R

E
3

P
M

D
2/

R
E

2
TR

D
0/

R
G

13
TR

D
1/

R
G

12
TR

D
2/

R
G

14
P

M
D

1/
R

E
1

P
M

D
0/

R
E

0
TR

D
3/

R
A

7
TR

C
LK

/R
A

6
C

2R
X

/P
M

D
8/

R
G

0
C

2T
X

/E
TX

E
R

R
/P

M
D

9/
R

G
1

C
1T

X
/E

TX
D

0/
P

M
D

10
/R

F1
C

1R
X

/E
TX

D
/P

M
D

11
/R

F0
V

D
D

V
C

A
P
/V

D
D

C
O

R
E

E
TX

C
LK

/P
M

D
15

/C
N

16
/R

D
7

E
TX

E
N

/P
M

D
14

/C
N

15
/R

D
6

P
M

R
D

/C
N

14
/R

D
5

O
C

5/
P

M
W

R
/C

N
13

/R
D

4
E

TX
D

3/
P

M
D

13
/C

N
19

/R
D

13
E

TX
D

2/
IC

5/
P

M
D

12
/R

D
12

O
C

4/
R

D
3

O
C

3/
R

D
2

O
C

2/
R

D
1

PIC32MX775F256L
PIC32MX775F512L
PIC32MX795F512L

Shaded pins are 5 V tolerant

Figure 2.1: The pinout of the PIC32MX795F512L used on the NU32.

(This is for safety, to make sure the PIC32 does not impose an unwanted voltage on external circuitry upon
startup.)

We will see SFRs again and again as we learn about the PIC32.

2.1.2 PIC32 Architecture

Figure 2.2 depicts the PIC32’s architecture. Of course there is a CPU, program memory, and data memory.
Perhaps most interesting to us, though, is the plethora of peripherals, which are what make microcontrollers
useful for embedded control. From left to right, top to bottom, these peripherals consist of PORTA . . . PORTG,
which are digital I/O ports; 22 change notification (CN) pins that generate interrupts when input signals
change; five 16-bit counters (which can be used as one 16-bit counter and two 32-bit counters by chaining) that
can be used for a variety of counting operations, and timing operations by counting clock ticks; five pins for
output pulse-width modulation (PWM) pulse trains (or “output compare” OC); five pins for “input capture”
(IC) which are used to capture timer values or trigger interrupts on rising or falling inputs; four SPI and five
I2C synchronous serial communication modules; a “parallel master port” (PMP) for parallel communication;
an analog-to-digital converter (ADC) multiplexed to 16 input pins; six UARTs for asynchronous serial
communication (e.g., RS-232, RS-485); a real-time clock and calendar (RTCC) that can maintain accurate

Lynch, Marchuk, and Elwin, Northwestern U. 20 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Pin Label Function

ANx (x=0-15) analog-to-digital (ADC) inputs

AVDD, AVSS positive supply and ground reference for ADC

CxIN-, CxIN+, CxOUT
(x=1,2)

comparator negative and positive input and output

CxRX, CxTx (x=1,2) CAN receive and transmit pins

CLKI, CLKO clock input and output (for particular clock modes)

CNx (x=0-21) change notification; voltage changes on these pins can generate interrupts

CVREF-, CVREF+,
CVREFOUT

comparator reference voltage low and high inputs, output

D+, D- USB communication lines

EMUCx, EMUDx (x=1,2) used by an in-circuit emulator (ICE)

ENVREG
enable for on-chip voltage regulator that provides 1.8 V to internal core (on the
NU32 board it is set to VDD to enable the regulator)

ICx (x=1-5) input capture pins for measuring frequencies and pulse widths

INTx (x=0-4) voltage changes on these pins can generate interrupts

MCLR master clear reset pin, resets PIC when low

OCx (x=1-5)
output compare pins, usually used to generate pulse trains (pulse-width modula-
tion) or individual pulses

OCFA, OCFB
fault protection for output compare pins; if a fault occurs, they can be used to
make OC outputs be high impedance (neither high nor low)

OSC1, OSC2 crystal or resonator connections for different clock modes

PGCx, PGDx (x=1,2) used with in-circuit debugger (ICD)

PMALL, PMALH latch enable for parallel master port

PMAx (x=0-15) parallel master port address

PMDx (x=0-15) parallel master port data

PMENB, PMRD, PMWR enable and read/write strobes for parallel master port

Rxy (x=A-G, y=0-15) digital I/O pins

RTCC real-time clock alarm output

SCLx, SDAx (x=1-5)
I2C serial clock and data input/output for I2C synchronous serial communication
modules

SCKx, SDIx, SDOx
(x=1-4)

serial clock, serial data in, out for SPI synchronous serial communication modules

SS1,SS2 slave select (active low) for SPI communication

TxCK (x=1-5) input pins for counters when counting external pulses

TCK, TDI, TDO, TMS used for JTAG debugging

TRCLK, TRDx (x=0-3) used for instruction trace controller

UxCTS, UxRTS,
UxRX, UxTX (x=1-6)

UART clear to send, request to send, receive input, and transmit output for UART
modules

VDD positive voltage supply for peripheral digital logic and I/O pins (3.3 V on NU32)

VDDCAP capacitor filter for internal 1.8 V regulator when ENVREG enabled

VDDCORE external 1.8 V supply when ENVREG disabled

VREF-, VREF+ can be used as negative and positive limit for ADC

VSS ground for logic and I/O

VBUS monitors USB bus power

VUSB power for USB transceiver

VBUSON output to control supply for VBUS

USBID USB on-the-go (OTG) detect

Table 2.1: Some of the pin functions on the PIC32. Commonly used functions for embedded control are in
bold. See Section 1 of the Data Sheet for more information.

year-month-day-time without using the CPU; and two comparators, each of which determines which of two
analog inputs has a higher voltage.

Lynch, Marchuk, and Elwin, Northwestern U. 21 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

 2009-2011 Microchip Technology Inc. DS61156G-page 31

PIC32MX5XX/6XX/7XX

1.0 DEVICE OVERVIEW This document contains device-specific information for
PIC32MX5XX/6XX/7XX devices.

Figure 1-1 illustrates a general block diagram of the
core and peripheral modules in the
PIC32MX5XX/6XX/7XX family of devices.

Table 1-1 lists the functions of the various pins shown
in the pinout diagrams.

FIGURE 1-1: BLOCK DIAGRAM(1,2)

Note 1: This data sheet summarizes the features
of the PIC32MX5XX/6XX/7XX family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the related section of the
“PIC32 Family Reference Manual”, which
is available from the Microchip web site
(www.microchip.com/PIC32).

2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

Note 1: Some features are not available on all device variants.
2: BOR functionality is provided when the on-board voltage regulator is enabled.

UART1-6

Comparators

PORTA

PORTD

PORTE

PORTF

PORTG

PORTB

CN1-22

JTAG Priority

D
M

A
C

IC
D

MIPS32® M4K®

IS DS

EJTAG INT

Bus Matrix

Prefetch
Data RAM Peripheral Bridge

128

128-bit Wide

Fl
as

h

 32

 32 32
 32 32

Pe
rip

he
ra

l B
us

 C
lo

ck
ed

 b
y

P
B

C
LK

Program Flash Memory

C
on

tro
lle

r

 32

 Module

 32 32

Interrupt
ControllerBSCAN

PORTC

PMP

I2C1-5

SPI1-4

IC1-5

PWM
OC1-5

OSC1/CLKI
OSC2/CLKO

VDD, VSS

Timing
Generation

MCLR

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

Brown-out
Reset

Precision

Reference
Band Gap

FRC/LPRC
Oscillators

Regulator
Voltage

VCAP/VCORE
OSC/SOSC
Oscillators

PLL

Dividers

SYSCLK
PBCLK

Peripheral Bus Clocked by SYSCLK

U
S

B

PLL-USB
USBCLK

 32

RTCC

10-bit ADC

Timer1-5

 32

 32

C
AN

1,
 C

A
N

2

ET
H

ER
N

ET
 32 32

CPU Core

Figure 2.2: The PIC32MX5XX/6XX/7XX architecture.

Note that the peripherals are on two different buses: one is clocked by the system clock SYSCLK,
and the other is clocked by the peripheral bus clock PBCLK. A third clock, USBCLK, is used for USB
communication. The timing generation block that creates these clock signals and other elements of the
architecture in Figure 2.2 are briefly described below.

CPU The central processing unit runs the whole show. It fetches program instructions over its “instruction
side” (IS) bus, reads in data over its “data side” (DS) bus, executes the instructions, and writes out the
results over the DS bus. The CPU can be clocked by SYSCLK at up to 80 MHz, meaning it can execute one
instruction every 12.5 nanoseconds. The CPU is capable of multiplying a 32-bit integer by a 16-bit integer
in one cycle, or a 32-bit integer by a 32-bit integer in two cycles. There is no floating point unit (FPU), so
floating point math is carried out in a series of steps in software, meaning floating point operations are much
slower than integer math.

Lynch, Marchuk, and Elwin, Northwestern U. 22 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

The CPU also communicates with the interrupt controller, described below.
The CPU is based on the MIPS32 R© M4K R© microprocessor core licensed from Imagination Technologies.

The CPU operates at 1.8 V (provided by a voltage regulator internal to the PIC32, as it’s used on the NU32
board).

Bus Matrix The CPU communicates with other units through the 32-bit bus matrix. Depending on the
memory address specified by the CPU, the CPU can read data from, or write data to, program memory
(flash), data memory (RAM), or SFRs. The memory map is discussed in Section 2.1.3.

Interrupt Controller The job of the interrupt controller is to present “interrupt requests” to the CPU.
An interrupt request (IRQ) may be generated by a variety of sources, such as a changing input on a change
notification pin or by the elapsing of a specified time on one of the timers. If the CPU accepts the request, it
will suspend whatever it is doing and jump to an interrupt service routine (ISR), a function defined in the
program. After completing the ISR, program control returns to where it was suspended. Interrupts are an
extremely important concept in embedded control.

Memory: Program Flash and Data RAM The PIC32 has two types of memory: flash and RAM.
Flash is generally more plentiful on PIC32’s (e.g., 512 KB flash vs. 128 KB RAM on the PIC32MX795F512L),
nonvolatile (meaning that its contents are preserved when powered off, unlike RAM), but slower to read and
write than RAM. Your program is stored in flash memory and your temporary data is stored in RAM. When
you power cycle your PIC32, your program is still there but your data in RAM is lost.1

Because flash is slow, with a max speed of 30 MHz for the PIC32MX795F512L, reading a program
instruction from flash may take three CPU cycles when operating at 80 MHz (see Electrical Characteristics
in the Data Sheet). One job of the prefetch cache module (below) is to minimize or eliminate the need for
the CPU to wait around for program instructions to load.

Prefetch Cache Module You might be familiar with the term cache from your web browser. Your
browser’s cache stores recent documents or pages you have accessed over the web, so the next time you
request them, your browser can provide a local copy immediately, instead of waiting for the download.

The prefetch cache module operates similarly—it stores recently executed program instructions, which are
likely to be executed again soon (as in a program loop), and, in linear code with no branches, it can even run
ahead of the current instruction and predictively prefetch future instructions into the cache. In both cases,
the goal is to have the next instruction requested by the CPU already in the cache. When the CPU requests
an instruction, the cache is first checked. If the instruction at that memory address is in the cache (a cache
hit), the prefetch module provides the instruction to the CPU immediately. If there is a miss, the slower load
from flash memory begins.

In some cases, the prefetch module can provide the CPU with one instruction per cycle, hiding the delays
due to slow flash access. The module can cache all instructions in small program loops, so that flash memory
does not have to be accessed while executing the loop. For linear code, the 128-bit wide data path between
the prefetch module and flash memory allows the prefetch module to run ahead of execution despite the slow
flash load times.

The prefetch cache module can also store constant data.

Clocks and Timing Generation There are three clocks on the PIC32: SYSCLK, PBCLK, and USBCLK.
USBCLK is a 48 MHz clock used for USB communication. SYSCLK clocks the CPU at a maximum frequency
of 80 MHz, adjustable all the way down to 0 Hz. Higher frequency means more calculations per second but
higher power usage, approximately proportional to frequency. PBCLK is used by a number of the peripherals,
and its frequency is set to SYSCLK’s frequency divided by 1, 2, 4, or 8. You might want to set PBCLK’s
frequency lower than SYSCLK’s if you want to save power. If PBCLK’s frequency is less than SYSCLK’s,
then programs with back-to-back peripheral operations will cause the CPU to wait cycles before issuing the
second peripheral command to ensure that the first one has completed.

1It is also possible to store program instructions in RAM, and to store data in flash, but we set that aside for now.

Lynch, Marchuk, and Elwin, Northwestern U. 23 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

All clocks are derived either from an oscillator internal to the PIC32 or an external resonator or oscillator
provided by the user. High-speed operation requires an external circuit, so the NU32 provides an external
8 MHz resonator as a clock source. The NU32 software sets the PIC32’s configuration bits (see Section 2.1.4)
to use a phase-locked loop (PLL) on the PIC32 to multiply this frequency by a factor of 10, generating a
SYSCLK of 80 MHz. The PBCLK is set to the same frequency. The USBCLK is also derived from the
8 MHz resonator by a PLL multiplying the frequency by 6.

Digital Input and Output A digital I/O pin configured as an input can be used to detect whether the
input voltage is low or high. On the NU32, the PIC32 is powered by 3.3 V, so voltages close to 0 V are
considered low and those close to 3.3 V are considered high. Some input pins can tolerate up to 5.5 V, while
voltages over 3.3 V on other pins could damage the PIC32 (see Figure 2.1 for the pins that can tolerate
5.5 V).

A digital I/O pin configured as an output can produce a voltage of 0 or 3.3 V. An output pin can also
be configured as open drain. In this configuration, the pin is connected by an external pull-up resistor to a
voltage of up to 5.5 V. This allows the pin’s output transistor to either sink current (to pull the voltage down
to 0 V) or turn off (allowing the voltage to be pulled up as high as 5.5 V). This increases the range of output
voltages the pin can produce.

Counter/Timers The PIC32 has five 16-bit counters. Each can count from 0 up to 216 − 1, or any preset
value less than 216 − 1 that we choose, before rolling over. Counters can be configured to count external
events, such as pulses on a TxCK pin, or internal events, like PBCLK ticks. In the latter case, we refer to the
counter as a timer. The counter can be configured to generate an interrupt when it rolls over. This allows
the execution of an ISR on exact timing intervals.

Two 16-bit counters can be configured to make a single 32-bit counter. This can be done with two different
pairs of counters, giving one 16-bit counter and two 32-bit counters.

Analog Input The PIC32 has a single analog-to-digital converter (ADC), but 16 different pins can be
connected to it, one at a time. This allows up to 16 analog voltage values (typically sensor inputs) to be
monitored. The ADC can be programmed to continuously read in data from a sequence of input pins, or to
read in a single value when requested. Input voltages must be between 0 and 3.3 V. The ADC has 10 bits of
resolution, allowing it to distinguish 210 = 1024 different voltage levels. Conversions are theoretically possible
at a maximum rate of 1 million samples per second on the PIC32MX795F512L.

Output Compare Output compare pins are used to generate a single pulse of specified duration, or a
continuous pulse train of specified duty cycle and frequency. They work with timers to generate the precise
timing. A common use of output compare pins is to generate PWM (pulse-width modulated) signals as
control signals for motors. Pulse trains can also be low-pass filtered to generate approximate analog outputs.
(There are no analog outputs on the PIC32.)

Input Capture A changing input on an input capture pin can be used to store the current time measured
by a timer. This allows precise measurements of input pulse widths and signal frequencies. Optionally, the
input capture pin can generate an interrupt.

Change Notification A change notification pin can be used to generate an interrupt when the input
voltage changes from low to high or vice-versa.

Comparators A comparator is used to compare which of two analog input voltages is larger. A comparator
can generate an interrupt when one of the inputs exceeds the other.

Real-Time Clock and Calendar The RTCC module is used to maintain accurate time, day, month, and
year over extended periods of time while using little power and requiring no attention from the CPU. It uses
a separate clock, allowing it to run even when the PIC32 is in sleep mode.

Lynch, Marchuk, and Elwin, Northwestern U. 24 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Parallel Master Port The PMP module is used to read data from and write data to external parallel
devices with 8-bit and 16-bit data buses.

DMA Controller The Direct Memory Access controller is useful for data transfer without involving the
CPU. For example, DMA can allow an external device to dump data through a UART directly into PIC32
RAM.

SPI Serial Communication The Serial Peripheral Interface bus provides a simple method for serial
communication between a master device (typically a microcontroller) and one or more slave devices. Each
slave device has four communication pins: a Clock (set by the master), Data In (from the master), Data Out
(to the master), and Select. The slave is selected for communication if the master holds its Select pin low.
The master device controls the Clock, has a Data In and a Data Out line, and one Select line for each slave it
can talk to. Communication rates can be up to tens of megabits per second.

I2C Serial Communication The Inter-Integrated Circuit protocol I2C (pronounced “I squared C”) is a
somewhat more complicated serial communication standard that allows several devices to communicate over
only two shared lines. Any of the devices can be the master at any given time. The maximum data rate is
less than for SPI.

UART Serial Communication The Universal Asynchronous Receiver Transmitter module provides
another method for serial communication between two devices. There is no clock line, hence “asynchronous,”
but the two devices communicating must be set to the same communication rate. Each of the two devices
has a Receive Data line and a Transmit Data line, and typically a Request to Send line (to ask for permission
to send data) and a Clear to Send line (to indicate that the device is ready to receive data). Typical data
rates are 9600 bits per second (9600 baud) up to hundreds of thousands of bits per second.

USB The Universal Serial Bus is a popular asynchronous communication protocol. One master communi-
cates with one or more slaves over a four-line bus: +5 V, ground, D+ and D− (differential data signals).
The PIC32MX795F512L implements USB 2.0 full-speed and low-speed options, and can communicate at
theoretical data rates of up to several megabits per second.

CAN Controller Area Networks are heavily used in electrically noisy environments (particularly industrial
and automotive environments) to allow many devices to communicate over a single two-wire bus. Data rates
of up to 1 megabit per second are possible.

Ethernet The ethernet module uses an external PHY chip (physical layer protocol transceiver chip)
and direct memory access (DMA) to offload from the CPU the heavy processing requirements of ethernet
communication. The NU32 board does not include a PHY chip.

Watchdog Timer If the Watchdog Timer is used by your program, your program must periodically reset
the timer counter. Otherwise, when the counter reaches a specified value, the PIC32 will reset. This is a way
to have the PIC32 restart if your program has entered an unexpected state where it doesn’t pet the watchdog.

2.1.3 The Physical Memory Map

The CPU accesses the peripherals, data, and program instructions in the same way: by writing a memory
address to the bus. The PIC32’s memory addresses are 32-bits long, and each address refers to a byte in the
memory map. This means that the memory map of the PIC32 consists of 4 GB (four gigabytes, or 232 bytes).
Of course most of these addresses are meaningless; there are not nearly that many things to address.

The PIC32’s memory map consists of four main components: RAM, flash, peripheral SFRs that we write
to (to control the peripherals or send outputs) or read from (to get sensor input, for example), and boot flash.
Of these, we have not yet seen “boot flash.” This is extra flash memory, 12 KB on the PIC32MX795F512L,

Lynch, Marchuk, and Elwin, Northwestern U. 25 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

that contains program instructions that are executed immediately upon reset of the PIC32.2 The boot flash
instructions typically perform PIC32 initialization and then call the program installed in program flash. For
the PIC32 on the NU32 board, the boot flash contains a “program receive” program that communicates with
your computer when you load a new program on the PIC32. More on this in Chapter 3.

The following table illustrates the PIC32’s physical memory map. It consists of a block of “RAMsize” bytes
of RAM (128 KB for the PIC32MX795F512L), “flashsize” bytes of flash (512 KB for the PIC32MX795F512L),
1 MB for the peripheral SFRs, and “bootsize” for the boot flash (12 KB for the PIC32MX795F512L):

Physical Memory
Start Address

Size (bytes) Region

0x00000000 RAMsize (128 KB) Data RAM

0x1D000000 flashsize (512 KB) Program Flash

0x1F800000 1 MB Peripheral SFRs

0x1FC00000 bootsize (12 KB) Boot Flash

The memory regions are not contiguous. For example, the first address of program flash is 480 MB after
the first address of data RAM. An attempt to access an address between the data RAM segment and the
program flash segment would generate an error.

It is also possible to allocate a portion of RAM to hold program instructions.
In Chapter 3, when we discuss programming the PIC32, we will introduce the virtual memory map and

its relationship to the physical memory map.

2.1.4 Configuration Bits

The last four 32-bit words of the boot flash are the Device Configuration Registers, DEVCFG0 to DEVCFG3,
containing the configuration bits. The values in these configuration bits choose a number of important
properties of how the PIC32 will function. You can learn more about configuration bits in the Special Features
section of the Data Sheet. For example, DEVCFG1 and DEVCFG2 contain configuration bits that determine
the frequency multiplier converting the external resonator frequency to the SYSCLK frequency, as well as
bits that determine the ratio between the SYSCLK and PBCLK frequencies.

2.2 The NU32 Development Board

The NU32 development board is shown in Figure 2.3, and the pinout is given in Table 2.2. The main purpose
of the NU32 board is to provide easy breadboard access to 82 of the 100 PIC32MX795F512L pins. The NU32
acts like a big 84-pin DIP chip and plugs into two standard prototyping breadboards, straddling the long
rails used for power, as shown in Figure 2.3.

Beyond simply breaking out the pins, the NU32 provides a few other things that make it easy to get
started with the PIC32. For example, to power the PIC32, the NU32 provides a barrel jack that accepts a
2.1 mm inner diameter, 5.5 mm outer diameter “center positive” power plug. The plug should provide DC
6 V or more; the NU32 comes with a 6 V wall wart capable of providing 1 amp. The PIC32 requires a supply
voltage VDD between 2.3 and 3.6 V, and the NU32 provides a 3.3 V voltage regulator providing a stable
voltage source for the PIC32 and other electronics on board. Since it is often convenient to have a 5 V supply
available, the NU32 also has a 5 V regulator. The power plug’s raw input voltage and ground, as well as the
regulated 3.3 V and 5 V supplies, are made available to the user on the power rails running down the center
of the NU32, as illustrated in Figure 2.3. Since the power jack is directly connected to the 6 V and GND
rails, you could power the NU32 by putting 6 V and GND on these rails directly and not connecting the
power jack.

The 3.3 V regulator is capable of providing up to 800 mA and the 5 V regulator is capable of providing
up to 1 amp. However, the wall wart can only provide 1 amp total, and in practice you should stay well
under each of these limits. For example, you should not plan to draw more than 200-300 mA or so from any
of the power rails. Even if you use a higher current power supply, such as a battery, you should respect these

2The last four 32-bit words of the boot flash memory region are Device Configuration Registers. See Section 2.1.4.

Lynch, Marchuk, and Elwin, Northwestern U. 26 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

6 V input

mini USB
to PC power switch

USB to
dual RS232

PIC32

5 V reg
3.3 V reg USER

RESET

LED2
LED1

GND rail
3.3 V rail

5 V rail
6 V input

USB to
external
device

Figure 2.3: The NU32 development board: photo and PCB silkscreen.

limits, as the current has to flow through the relatively thin traces of the PCB. It is also not recommended to
use high voltage supplies greater than 9 V or so, as the regulators will heat up.

Since motors tend to draw lots of current (even small motors may draw hundreds of mA up to several
amps), do not try to power them using power from the NU32 rails. Use a separate battery or power supply
instead.

In addition to the voltage regulators, the NU32 provides an 8 MHz resonator as the source of the PIC32’s
80 MHz clock signal. It also has a mini B USB jack to connect your computer’s USB port to a dual
USB-to-RS-232 FTDI chip that allows your PIC32 to speak RS-232 to your computer’s USB port. Two
RS-232 channels share the single USB cable—one dedicated to programming the PIC32 and the other allowing
communication with the host computer while a program is running on your PIC32.

A standard A USB jack is provided to allow the PIC32 to talk to another external device, like a smartphone.

The NU32 board also has a power switch which connects or disconnects the input power supply to the
voltage regulators, and two LEDs and two buttons (labeled USER and RESET) allowing very simple input
and output. The two LEDs, LED1 and LED2, are connected at one end by a resistor to 3.3 V and the other
end to digital outputs RA4 and RA5, respectively, so that they are off when those outputs are high and on
when they are low. The USER and RESET buttons are attached to the digital input RD13 and MCLR pins,
respectively, and both buttons are configured to give 0 V to these inputs when pressed and 3.3 V otherwise.
See Figure 2.4.

While the NU32 comes with a bootloader installed in its flash memory, you have the option to use a
programmer to install a standalone program. The five plated through-holes near the USB jack align with the
pins of devices such as the PICkit 3 programmer (Figure 2.5).

Lynch, Marchuk, and Elwin, Northwestern U. 27 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Function PIC32 PIC32 Function

GND GND C4 9
√

T5CK/SDI1/C4
3.3 V 3.3 V C3 8

√
T4CK/C3

SCK2/U6TX/U3RTS/CN8/G6
√

10 G6/RTS3 C2 7
√

T3CK/C2
SDA4/SDI2/U3RX/CN9/G7

√
11 G7/RX3 C1 6

√
T2CK/C1

SCL4/SDO2/U3TX/CN10/G8
√

12 G8/TX3 E7 5
√

PMD7/E7

MCLR
√

13 MCLR E6 4
√

PMD6/E6

SS2/U6RX/U3CTS/CN11/G9
√

14 G9/CTS3 E5 3
√

PMD5/E5
A0

√
17 A0 E4 100

√
PMD4/E4

INT1/E8
√

18 E8 E3 99
√

PMD3/E3
INT2/E9

√
19 E9 E2 98

√
PMD2/E2

VREF-/CVREF-/A9 28 A9 E1 94
√

PMD1/E1
VREF+/CVREF+/A10 29 A10 E0 93

√
PMD0/E0

A1
√

38 A1 G15 1
√

G15

SCK4/U5TX/U2RTS/F13
√

39 F13 G13 97
√

G13

SS4/U5RX/U2CTS/F12
√

40 F12 G12 96
√

G12
SDA5/SDI4/U2RX/CN17/F4

√
49 F4 G14 95

√
G14

SCL5/SDO4/U2TX/CN18/F5
√

50 F5 A7 92
√

A7
USBID/F3

√
51 F3 A6 91

√
A6

SDA3/SDI3/U1RX/F2
√

52 F2/RX1 G0 90
√

C2RX/PMD8/G0
SCL3/SD03/U1TX/F8

√
53 F8/TX1 G1 89

√
C2TX/PMD9/G1

D-/G3 56 G3 F1 88
√

C1TX/PMD10/F1
D+/G2 57 G2 F0 87

√
C1RX/PMD11/F0

SCL2/A2
√

58 A2 C14 74 T1CK/CN0/C14
SDA2/A3

√
59 A3 C13 73 CN1/C13

A4
√

60 A4/L1 A15 67
√

SDA1/INT4/A15
A5

√
61 A5/L2 A14 66

√
SCL1/INT3/A14

PGED1/AN0/CN2/B0 25 B0 D15/RTS1 48
√

SCK3/U4TX/U1RTS/CN21/D15

PGEC1/AN1/CN3/B1 24 B1 D14/CTS1 47
√

SS3/U4RX/U1CTS/CN20/D14
AN2/C2IN-/CN4/B2 23 B2 D13/USER 80

√
PMD13/CN19/D13

AN3/C2IN+/CN5/B3 22 B3 D12 79
√

IC5/PMD12/D12
AN4/C1IN-/CN6/B4 21 B4 D11 71

√
IC4/D11

AN5/C1IN+/CN7/B5 20 B5 D10 70
√

SCK1/IC3/D10

PGEC2/AN6/OCFA/B6 26 B6/PGC D9 69
√

SS1/IC2/D9
PGED2/AN7/B7 27 B7/PGD D8 68

√
RTCC/IC1/D8

AN8/C1OUT/B8 32 B8 D7 84
√

PMD15/CN16/D7
AN9/C2OUT/B9 33 B9 D6 83

√
PMD14/CN15/D6

AN10/CVREFOUT/B10 34 B10 D5 82
√

CN14/D5
AN11/B11 35 B11 D4 81

√
OC5/CN13/D4

AN12/B12 41 B12 D3 78
√

OC4/D3
AN13/B13 42 B13 D2 77

√
OC3/D2

AN14/B14 43 B14 D1 76
√

OC2/D1
AN15/OCFB/CN12/B15 44 B15 D0 72

√
SDO1/OC1/INT0/D0

Table 2.2: The NU32 pinout (in green, with power jack at top) with PIC32MX795F512L pin numbers. Board
pins in bold should only be used with care, as they are used for other functions by the NU32. Pins marked
with a

√
are 5.5 V tolerant. Not all pin functions are listed; see Figure 2.1 or the PIC32 Data Sheet.

RD13

+3.3 V

USER
button,

normally
open

+3.3 V

RA5

LED2

+3.3 V

RA4

LED1

Figure 2.4: The NU32 connection of pins RA4, RA5, and RD13 to LED1, LED2, and the USER button,
respectively.

2.3 Chapter Summary

• The PIC32 features a 32-bit data bus and a CPU capable of performing some 32-bit operations in a
single clock cycle.

Lynch, Marchuk, and Elwin, Northwestern U. 28 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Figure 2.5: Attaching the PICkit 3 programmer to the NU32 board.

• In addition to nonvolatile flash program memory and RAM data memory, the PIC32 provides periph-
erals particularly useful for embedded control, including analog inputs, digital I/O, PWM outputs,
counter/timers, inputs that generate interrupts or measure pulse widths or frequencies, and pins for a
variety of communication protocols, including RS-232, USB, ethernet, CAN, I2C, and SPI.

• The functions performed by the pins and peripherals are determined by Special Function Registers.
SFR settings also determine other aspects of the behavior of the PIC32.

• The PIC32 has three main clocks: the SYSCLK that clocks the CPU, the PBCLK that clocks peripherals,
and the USBCLK that clocks USB communication.

• Physical memory addresses are specified by 32 bits. The physical memory map contains four regions:
data RAM, program flash, SFRs, and boot flash. RAM can be accessed in one clock cycle, while flash
access may be slower. The prefetch cache module can be used to minimize delays in accessing program
instructions.

• Four 32-bit configuration words, DEVCFG0 to DEVCFG3, set behavior of the PIC32 that should not
be changed during execution. For example, these configuration bits determine how an external clock
frequency is multiplied or divided to create the PIC32 clocks.

• The NU32 development board provides voltage regulators for power, includes a resonator for clocking,
breaks out the PIC32 pins to a solderless breadboard, provides a couple of LEDs and buttons for simple
input and output, and makes USB/RS-232 communication and programming simple.

2.4 Exercises

You will need to refer to the PIC32MX5XX/6XX/7XX Data Sheet and PIC32 Reference Manual to answer
some questions.

1. Search for the “Microchip flash products parametric chart” or navigate to it from the Microchip
homepage. You should see a listing of all the PICs made by Microchip. Set the page to show all specs
and limit the display to 32-bit PICs.

Lynch, Marchuk, and Elwin, Northwestern U. 29 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

(a) Find PIC32s that meets the following specs: at least 128 KB of flash, at least 32 KB of RAM, and
at least 80 MHz max CPU speed. (You can choose a range of settings within a single parameter by
shift-clicking or ctrl-clicking.) What is the cheapest PIC32 that meets these specs, and what is its
volume price? How many ADC, UART, SPI, and I2C channels does it have? How many timers?

(b) What is the cheapest PIC32 overall? How much flash and RAM does it have, and what is its
maximum clock speed?

(c) Among all PIC32’s with 512 KB flash and 128 KB RAM, which is the cheapest? How does it
differ from the PIC32MX795F512L?

2. Based on C syntax for bitwise operators and bit-shifting, calculate the following and give your results
in hexadecimal.

(a) 0x37 | 0xA8

(b) 0x37 & 0xA8

(c) ~0x37

(d) 0x37>>3

3. Describe the four functions that pin 22 of the PIC32MX795F512L can have. Is it 5 V tolerant?

4. Referring to the Data Sheet section on I/O Ports, what is the name of the SFR you have to modify if
you want to change pins on PORTC from output to input?

5. The SFR CM1CON controls comparator behavior. Referring to the Memory Organization section of
the Data Sheet, what is the reset value of CM1CON in hexadecimal?

6. In one sentence each, without going into detail, explain the basic function of the following items shown
in the PIC32 architecture block diagram Figure 2.2: SYSCLK, PBCLK, PORTA...G (and indicate
which of these can be used for analog input on the NU32’s PIC32), Timer 1-5, 10-bit ADC, PWM
OC1-5, Data RAM, Program Flash Memory, and Prefetch Cache Module.

7. List the peripherals that are not clocked by PBCLK.

8. If the ADC is measuring values between 0 and 3.3 V, what is the largest voltage difference that it may
not be able to detect? (It’s a 10-bit ADC.)

9. Refer to the Reference Manual chapter on the Prefetch Cache. What is the maximum size of a program
loop, in bytes, that can be completely stored in the cache?

10. Explain why the path between flash memory and the prefetch cache module is 128 bits wide instead of
32, 64, or 256 bits.

11. Explain how a digital output could be configured to swing between 0 and 4 V, even though the PIC32
is powered by 3.3 V.

12. PIC32’s have increased their flash and RAM over the years. What is the maximum amount of flash
memory a PIC32 can have before the current choice of base addresses in the physical memory map (for
RAM, flash, peripherals, and boot flash) would have to be changed? What is the maximum amount of
RAM? Give your answers in bytes in hexadecimal.

13. Check out the Special Features section of the Data Sheet.

(a) If you want your PBCLK frequency to be half the frequency of SYSCLK, which bits of which
Device Configuration Register do you have to modify? What values do you give those bits?

(b) Which bit(s) of which SFR set the watchdog timer to be enabled? Which bit(s) set the postscale
that determines the time interval during which the watchdog must be reset to prevent it from
restarting the PIC32? What values would you give these bits to enable the watchdog and to set
the time interval to be the maximum?

Lynch, Marchuk, and Elwin, Northwestern U. 30 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

(c) The SYSCLK for a PIC32 can be generated in a number of ways. This is discussed in the Oscillator
chapter in the Reference Manual and the Oscillator Configuration section in the Data Sheet. The
PIC32 on the NU32 uses the (external) primary oscillator in HS mode with the phase-locked loop
(PLL) module. Which bits of which device configuration register enable the primary oscillator and
turn on the PLL module?

14. Your NU32 board provides four power rails: GND, regulated 3.3 V, regulated 5 V, and the unregulated
input voltage (e.g., 6 V). You plan to put a load from the 5 V output to ground. If the load is modeled
as a resistor, what is the smallest resistance that would be safe? An approximate answer is fine. In a
sentence, explain how you arrived at the answer.

15. The NU32 could be powered by different voltages. Give a reasonable range of voltages that could be
used, minimum to maximum, and explain the reason for the limits.

16. Two buttons and two LEDs are interfaced to the PIC32 on the NU32. Which pins are they connected
to? Give the actual pin numbers, 1-100, as well as the name of the pin function as it is used on the
NU32. For example, pin 57 on the PIC32MX795F512L could have the function D+ (USB data line) or
RG2 (Port G digital input/output), but only one of these functions could be active at a given time.

Lynch, Marchuk, and Elwin, Northwestern U. 31 12:38 February 4, 2015

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Lynch, Marchuk, and Elwin, Northwestern U. 32 12:38 February 4, 2015

Chapter 3

Looking Under The Hood: Software

In this chapter we explore how a simple C program interacts with the hardware described in the previous
chapter. We begin by introducing the virtual memory map and its relationship to the physical memory map.
We then use the simplePIC.c program from Chapter 1 to explore the compilation process and the XC32
compiler installation.

3.1 The Virtual Memory Map

In the previous chapter we learned about the PIC32’s physical memory map, which allows the CPU to access
any SFR or any location in data RAM, program flash, or boot flash, using a 32-bit address. The PIC32
doesn’t actually have 232 bytes, or 4 GB worth of SFRs and memory; therefore, many physical addresses are
invalid.

In this chapter we focus on the virtual memory map. Software refers to memory and SFRs using virtual
addresses (VAs) rather than physical addresses (PAs). The fixed mapping translation (FMT) unit in the
CPU converts VAs into PAs using the following formula:

PA = VA & 0x1FFFFFFF

This bitwise AND operation clears the three most significant bits of the address; thus multiple VAs map to
the same PA.

If the PIC32 just discards the first three bits, why bother having them? Well, the CPU and the prefetch
cache module we learned about in the previous chapter use them. If the first three bits of the virtual address
are 0b100 (corresponding to an 8 or 9 as the most significant hex digit of the VA), then that instruction can
be cached. If the first three bits are 0b101 (corresponding to an A or B as the most significant hex digit of
the VA), then it cannot be cached. Thus the segment of virtual memory 0x80000000 to 0x9FFFFFFF is
cacheable, while the segment 0xA0000000 to 0xBFFFFFFF is noncacheable. The cacheable segment is called
KSEG0 (for “kernel segment”) and the noncacheable segment is called KSEG1.1

Figure 3.1 illustrates the relationship between the physical and virtual memory maps. Note that the SFRs
are excluded from the KSEG0 cacheable virtual memory segment. SFRS correspond to physical devices (e.g.,
peripherals); therefore their values cannot be cached. Otherwise, the CPU could read outdated SFR values
because the state of the SFR could change between when it was cached and when it was needed by the CPU.
For instance, if port B were configured as a digitial input port, the SFR PORTB would contain the current
input values of some pins. The voltage on these pins could change at any time; therefore, the only way to
retrieve a reliable value is to read directly from the SFR rather than from the cache.

Also note that program flash and data RAM can be accessed using either cacheable or noncacheable VAs.
Typically, you can ignore this detail because the PIC32 will be configured to access program flash via the
cache (since flash memory is slow), and data RAM without the cache (since RAM is fast).

1Another cacheable segment, USEG (for “user segment”) is available in the lower half of virtual memory. This memory
segment is for “user programs” that run under an operating system installed in a kernel segment. For safety, programs in the
user segment cannot access SFRs or boot flash. We will never use the user segment.

33

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

0x00000000

0x20000000

0xFFFFFFFF

KSEG0

KSEG1

0x80000000

0xA0000000

Physical
Memory

Map

Virtual
Memory

Map

KSEG2

KSEG3

USEG

data RAM

program flash

SFRs

boot flash

data RAM

program flash

boot flash

data RAM

program flash

SFRs

boot flash
0x1FC00000

0x1F800000

0x1D000000

0x00000000

0xBFC00000

0xBF800000

0xBD000000

0xA0000000

0x9FC00000

0x9D000000

0x80000000

KSEG0

KSEG1
noncacheable

cacheable

Figure 3.1: (Left) The 4 GB physical and virtual memory maps are divided into 512 MB segments. The
mapping of the valid physical memory addresses to the virtual memory regions KSEG0 and KSEG1 is
illustrated. The PIC32 does not use the virtual memory segments KSEG2 and KSEG3, which are allowed
by the MIPS architecture, and we will not use the user segment USEG, which sits in the bottom half of
the virtual memory map. (Right) Physical addresses mapped to virtual addresses in cacheable memory
(KSEG0) and noncacheable memory (KSEG1). Note that SFRs are not cacheable. The last four words of boot
flash, 0xBFC02FF0 to 0xBFC02FFF in KSEG1, correspond to the device configuration words DEVCFG0 to
DEVCFG3. Memory regions are not drawn to scale.

Going forward, we will use virtual addresses like 0x9D000000 and 0xBD000000, and you should realize
that these refer to the same physical address. Since virtual addresses start at 0x80000000, and all physical
addresses are below 0x20000000, there is no possibility of confusing whether we are talking about a VA or a
PA.

3.2 An Example: simplePIC.c

Let’s build the simplePIC.c bootloaded executable from Chapter 1. For convenience, here is the program
again:

Code Sample 3.1. simplePIC.c. Blinking lights, unless the USER button is pressed.

#include <xc.h> // Load the proper header for the processor

void delay(void);

int main(void) {

DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.

TRISA = 0xFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear

// bits 4/5 to zero, for output. Others are inputs.

LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...

LATAbits.LATA5 = 1; // ... current on NU32, so "high" = "off."

Lynch, Marchuk, and Elwin, Northwestern U. 34 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

while(1) {

delay();

LATAINV = 0x0030; // toggle LED1 and LED2

}

return 0;

}

void delay(void) {

int j;

for (j = 0; j < 1000000; j++) { // number is 1 million

while(!PORTDbits.RD13) {

; // Pin D13 is the USER switch, low if pressed.

}

}

}

Navigate to the <PIC32> directory. Following the same procedure as in Chapter ??, build simplePIC.hex
and load it onto your NU32. We have reprinted the instructions here (you may need to specify the full path
to these commands):

> xc32-gcc -mprocessor=32MX795F512L

-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> xc32-bin2hex simplePIC.elf

> nu32utility <COMPortB> simplePIC.hex

When you have the program running, the NU32’s two LEDs should alternate on and off and stop while you
press the USER button.

Look at the source code: the program refers to SFRs named TRISA, LATAINV, etc. These names align
with the SFR names in the Data Sheet and Reference Manual sections on input/output (I/O) ports. We will
consult the Data Sheet and Reference Manual often when programming the PIC32. We will explain the use
of these SFRs shortly.

3.3 What Happens When You Build?

First, let’s begin to understand what happens when you create simplePIC.hex from tt simplePIC.c. Refer
to Figure 3.2.

First the preprocessor removes comments and inserts #included header files. It also handles other
preprocessor instructions such as #define. You can have multiple .c C source files and .h header files, but
only one C file is allowed to have a main function. The other files may contain helper functions. We will
learn more about this in Chapter 4.

Then the compiler turns the C files into MIPS32 assembly language files, machine commands specific to
the PIC32’s MIPS32 CPU. Basic C code will not vary between processor architectures, but assembly language
may be completely different. These assembly files are readable by a text editor, and it is possible to program
the PIC32 directly in assembly language.

The assembler turns the assembly files into machine-level relocatable object code. This code cannot
be inspected with a text editor. The code is called relocatable because the final memory addresses of the
program instructions and data used in the code are not yet specified. The archiver is a utility that allows
you to package several related .o object files into a single .a library file. We will not be making our own
archived libraries, but we will certainly be using .a libraries that have already been made by Microchip!

Finally, the linker takes one or more object files and combines them into a single executable file, with
all program instructions assigned to specific memory locations. The linker uses a linker script that has
information about the amount of RAM and flash on your particular PIC32, as well as directions about where
in virtual memory to place the data and instructions. The result is an executable and linkable format (.elf)
file, a standard executable file format. This file contains useful debugging information as well as information
that allows tools such as xc32-objdump to disassemble the file, which converts it back into assembly code
(Section 3.8). This extra information adds up; building simplePIC.c results in a .elf file that is hundreds of

Lynch, Marchuk, and Elwin, Northwestern U. 35 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

C Source Files (*.c)C Source Files (*.c)object file
libraries (*.a)

linker script (*.ld)

Preprocessor

Assembler

Compiler

Linker

Archiver

C Source Files (*.c)C Source Files (*.c)C source files (*.c),
header files (*.h)

C Source Files (*.c)C Source Files (*.c)preprocessed C files

C Source Files (*.c)C Source Files (*.c)assembly files (*.s)

C Source Files (*.c)C Source Files (*.c)relocatable object
files (*.o)

C Source Files (*.c)C Source Files (*.c)assembly source
files (*.S)

xc32-bin2hex

executable linkable
format (*.elf)

executable (*.hex)

Figure 3.2: The “compilation” process.

kilobytes! A final step creates a stripped-down .hex file of less than 10 KB. This is an ASCII representation
of your executable suitable for sending to the bootloader program on your PIC32 (more on this in the next
section) that writes the program into flash on your PIC32.

Although the entire process consists of several steps, it is often referred to as “compiling” for short. “Build”
or “make” is more accurate.

3.4 What Happens When You Reset the PIC32?

Your program is running. You hit the RESET button on the NU32. What happens next?
First the CPU jumps to the beginning of boot flash, address 0xBFC00000, and starts executing instruc-

tions.2 For the NU32, the boot flash contains the bootloader, a program used to load other programs onto the

2If you are just powering on your PIC32, it will wait a short period while electrical transients die out, clocks synchronize, etc.,
before jumping to 0xBFC00000.

Lynch, Marchuk, and Elwin, Northwestern U. 36 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

Figure 3.3: Port A registers, taken from the PIC32 Data Sheet.

PIC32. The bootloader first checks to see if you are pressing the USER button. If so, it knows that you want
to reprogram the PIC32, so it attempts to communicate with the bootloader utility (nu32utility) on your
computer. With communication established, the bootloader receives the executable .hex file and writes it to
the PIC32’s program flash (see exercise 2). We refer to the virtual address where your program is installed as
RESET ADDR.

Note: The PIC32’s reset address 0xBFC00000 is hardwired and cannot be changed. The address where the
bootloader writes your program, however, can be changed in software.

Now assume that you weren’t pressing the USER button when you reset the PIC32. Then the bootloader
jumps to the address RESET ADDR and begins executing the program you previously installed there. Notice
that our program, simplePIC.c, is an infinite loop, so it never stops executing. That is the desired behavior
in embedded control. If your program exits, the PIC32 will just sit in a tight loop, doing nothing until it is
reset.

3.5 Understanding simplePIC.c

Let’s return to understanding simplePIC.c. The main function initializes values of DDPCONbits, TRISA,
and LATAbits, then enters an infinite while loop. Each time through the loop it calls delay() and then
assigns a value to LATAINV. The delay function executes a for loop that iterates one million times. During
each iteration it enters a while loop, which checks the value of (!PORTDbits.RD13). If PORTDbits.RD13 is 0
(FALSE), then the expression (!PORTDbits.RD13) evaluates to TRUE, and the program remains here, doing
nothing except checking the expression (!PORTDbits.RD13). When this expression evaluates to FALSE, the
while loop exits, and the program continues with the for loop. After the for loop finishes, control returns
to main.

Special Function Registers (SFRs) The main difference between simplePIC.c and programs that you
may have written for your computer is how it interacts with the outside world. Rather than via keyboard or
mouse, simplePIC.c accesses SFRs like TRISA, LATA, and PORTD, all of which correspond to peripherals.
3 Specifically, TRISA and LATA correspond to port A, an I/O port, and PORTD corresponds to port D,
another I/O port. I/O ports allow the PIC32 to read and set the digital voltage on a pin. To discover what
these SFRs control we start by consulting the table in Section 1 of the Data Sheet, which lists the pinout I/O
descriptions. We see that port A, with pins named RA0 to RA15, has 12 pins, and port C, with pins named
RC1 to RC15, has 8 pins. Port B, has 16 pins, labeled RB0 to RB15.

We now turn to the Data Sheet section on I/O Ports to for more information. We find that TRISA,
short for “tri-state A,” controls the direction, input or output, of the pins on port A. Each port A pin has a
corresponding bit in TRISA. If this bit is 0, the pin is an output. If the bit is a 1, the pin is an input. (0 =
Output and 1 = Input.) We can make some pins inputs and some outputs, or we can make them all have the
same direction.

If you’re curious about which direction the pins are by default, you can consult the Memory Organization
section of the Data Sheet. Tables there list the VAs of many of the SFRs, as well as the values they default to

3DDPCON corresponds to JTAG debugging, which we do not use in this book. The DDPCONbits.JTAGEN = 0 command
disables the JTAG debugger so that pins RA4 and RA5 are available for digital I/O. See the Special Features section of the
Data Sheet.

Lynch, Marchuk, and Elwin, Northwestern U. 37 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

upon reset. There are a lot of SFRs! After some searching, you will find that TRISA sits at virtual address
0xBF886000, and its default value upon reset is 0x0000C6FF. (We’ve reproduced part of this table for you in
Figure 3.3.) In binary, this would be

0x0000C6FF = 0000 0000 0000 0000 1100 0110 1111 1111.

The four most significant hex digits (two bytes, or 16 bits) are all 0. This is because those bits, technically,
don’t exist. Microchip calls them “unimplemented.” No I/O port has more than 16 pins, so we don’t need
those bits, which are numbered 16–31. (The 32 bits are numbered 0–31.) Of the remaining bits, since the
0’th bit (least significant bit) is the rightmost bit, we see that bits 0–7, 9–10, and 14–15 are 1, while the rest
are 0. The bits set to 1 correspond precisely to the pins we have available: RA0-7, RA9-10, and RA14-15
(there is no RA8), meaning that they are inputs. I/O pins are configured as inputs on reset for safety reasons;
when we power on the PIC32, each pin will take its default direction before the program can change it. If an
output pin were connected to an external circuit that is also trying to control the voltage on the pin, the two
devices would fight each other, with damage to one or the other a possibility. No such problems arise if the
pin is configured as an input by default.

So now we understand that the instruction

TRISA = 0xFFCF;

clears bits 4 and 5 to 0, implicitly clears bits 16–31 to 0 (which is ignored, since the bits are not implemented),
and sets the rest of the bits to 1. It doesn’t matter that we try to set some unimplemented bits to 1; those
bits are ignored. The result is that port A pins 4 and 5, or RA4 and RA5 for short, are now outputs.

Our PIC32 C compiler allows the use of binary (base 2) representations of unsigned integers using 0b at
the beginning of the number, so if you don’t get lost counting bits, you could have equally written

TRISA = 0b1111111111001111;

The equivalent in base 10 would be

TRISA = 65487;

Another option would have been to use the instructions

TRISAbits.TRISA4 = 0; TRISAbits.TRISA5 = 0;

This allows us to change individual bits without worrying about specifying the other bits. We see this kind of
notation later in the program, with LATAbits.LATA4 and PORTDbits.RD13, for example.

The two other basic SFRs in this program are LATA and PORTD. Again consulting the I/O Ports section
of the Data Sheet, we see that LATA, short for “latch A,” is used to write values to the output pins. Thus

LATAbits.LATA5 = 1;

sets pin RA5 high. Finally, PORTD contains the digital inputs on the port D pins. (Notice we didn’t
configure port D as input; we relied on the fact that it’s the default.) PORTDbits.RD13 is 0 if 0 V is present
on pin RD13 and 1 if approximately 3.3 V is present. Note that we use the latch when writing pins and the
port when reading pins, for reasons explained in Ch. ??.

Pins RA4, RA5, and RD13 on the NU32 Figure 2.4 shows how pins RA4, RA5, and RD13 are wired
on the NU32 board. LED1 (LED2) is on if RA4 (RA5) is 0 and off if it is 1. When the USER button is
pressed, RD13 registers a 0, and otherwise it registers a 1.

The result of these electronics and the simplePIC.c program is that the LEDs flash alternately, but
remain unchanging while you press the USER button.

Lynch, Marchuk, and Elwin, Northwestern U. 38 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

CLR, SET, and INV SFRs So far we have ignored the instruction

LATAINV = 0x0030;

Again consulting the Memory Organization section of the Data Sheet, we see that associated with the
SFR LATA are three more SFRs, called LATACLR, LATASET, and LATAINV. (Indeed, many SFRs have
corresponding CLR, SET, and INV SFRs.) These SFRs are used to easily change some of the bits of LATA
without affecting the others. A write to these registers causes a one-time change to LATA’s bits, but only in
the bits corresponding to bits on the right-hand side that have a value of 1. For example,

LATAINV = 0x30; // flips (inverts) bits 4 and 5 of LATA; all others unchanged

LATAINV = 0b110000; // same as above

LATASET = 0x0005; // sets bits 0 and 2 of LATA to 1; all others unchanged

LATACLR = 0x0002; // clears bit 1 of LATA to 0; all others unchanged

A less efficient way to toggle bits 4 and 5 of LATA is

LATAbits.LATA4 = !LATAbits.LATA4; LATAbits.LATA5 = !LATAbits.LATA5;

We’ll look at efficiency in Chapter 5.
You can return to the table in the Data Sheet to see the VA addresses of the CLR, SET, and INV

registers. They are always offset from their base register by 4, 8, and 12 bytes, respectively. Since LATA is at
0xBF886020, LATACLR, LATASET, and LATAINV are at 0xBF886024, 0xBF886028, and 0xBF88602C,
respectively.

You should now understand how simplePIC.c works. But we have been ignoring the fact that we never
declared TRISA, etc., before we started using them. We know you can’t do that in C; these SFRs must be
declared somewhere. The only place they could be declared is in the included file xc.h. We’ve ignored that
#include <xc.h> statement until now. Time to take a look.4

3.5.1 Down the Rabbit Hole

Where do we find xc.h? If our program had the preprocessor command #include "xc.h", the preprocessor
would look for xc.h in the same directory as the C file including it. But we had #include <xc.h>, and the
<...> notation means that the preprocessor will look in directories specified in the include path. For us, the
default include path means that the compiler finds xc.h sitting at

<xc32dir>/<xc32ver>/pic32mx/include/xc.h

You should substitute your install directory in place of <xc32dir>/<xc32ver>.
Including xc.h gives us access to many data types, variables, and constants that MIcrochip has provided

for our convenience. In particular, it provides variable declarations for SFRs like TRISA, allowing us to
access the SFRs from C.

Before we open xc.h, let’s look at the directory structure of the XC32 compiler installation. There’s a
lot here! We certainly don’t need to understand all of it at this point, but let’s try to get a sense of what’s
going on. Let’s start at the level of your XC32 install directory and summarize what’s in the nested set of
directories, without being exhaustive.

1. bin: Contains the actual executable programs that do the compiling, assembling, linking, etc. For
example, xc32-gcc is the C compiler.

2. docs: Some manuals, including the XC32 C Compiler User’s Guide, and other documentation.

3. examples: Some sample code.

4. lib: Contains some .h header files and .a library archives containing general C object code.

4Microchip often changes the software it distributes, so there may be differences in details, but the essence of what we describe
here will be the same.

Lynch, Marchuk, and Elwin, Northwestern U. 39 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

5. pic32-libs: This directory contains the source code (.c C files, .h header files, and .S assembly files)
needed to create numerous Microchip-provided libraries. These files are provided for reference and are
not included directly in any of your code.

6. pic32mx: This directory has several files we are interested in because many of them end up in your
project.

(a) lib: This directory consists mostly of PIC32 object code and libraries that are linked with our
compiled and assembled source code. For some of these libraries, source code exists in pic32-libs;
for others we have only the object code libraries. Some important files in this directory include:

i. proc/32MX79512L/crt0 mips32r2.o: The linker combines this object code with your pro-
gram’s object code when it creates the .elf file. The linker ensures that this “C Runtime
Startup” code is executed first, since it performs various initializations your code needs to
run, such as initializing the values of global variables. Different PIC32 models have different
versions of this file under the appropriate proc/<processor> directory. You can find readable
assembly source code at pic32-libs/libpic32/startup/crt0.S.

ii. libc.a: Implementations of functions that are part of the C standard library.

iii. libdsp.a: This library contains MIPS implementations of finite and infinite impulse response
filters, the fast Fourier transform, and various vector math functions.

iv. proc/32MX795F512L/processor.o: This object file gives the SFR virtual memory addresses
for your particular PIC32. We can’t look at it directly with a text editor, but there are utilities
that allow us to examine it. For example, from the command line you could use the xc32-nm

program in the top-level bin directory to see all the SFR VAs:

> xc32-nm processor.o

bf809040 A AD1CHS

...

bf886000 A TRISA

bf886004 A TRISACLR

bf88600c A TRISAINV

bf886008 A TRISASET

...

All of the SFRs are printed out, in alphabetical order, with their corresponding VA. The
spacing between SFRs is four, since there are four bytes (32 bits) in an SFR. The “A” means
that these are absolute addresses. The linker must use these addresses when making final
address assignments because the SFR’s are implemented in hardware and can’t be moved! The
listing above indicates that TRISA is located at VA 0xBF886000, agreeing with the Memory
Organization section of the Data Sheet.

v. proc/32MX795F512L/configuration.data: This file describes some constants used in setting
the configuration bits in DEVCFG0 to DEVCFG3 (Chapter 2.1.4). These bits are set by
the bootloader (Section 3.6), so you do not need to worry about them in your programs. It
is possible to use a programmer device to load programs onto the PIC32 without having a
bootloader pre-installed on the PIC32 (that’s how the bootloader got there in the first place!),
in which case you would need to worry about these bits. See Appendix ?? for more information
about programs that do not use a bootloader.

(b) include: This directory contains a number of .h header files.

i. cp0defs.h: This file defines a number of constants and macros that allow us to access functions
of coprocessor 0 (CP0) on the MIPS32 M4K CPU. In particular, it allows us to read and set the
core timer clock that ticks once every two SYSCLK cycles using macros like CP0 GET COUNT()

(see Chapters 5 and 6 for more details). More information on CP0 can be found in the “CPU
for Devices with the M4K Core” section of the Reference Manual.

ii. sys/attribs.h: In the directory sys, the file attribs.h defines the macro syntax ISR that
we will use for interrupt service routines starting in Chapter 6.

Lynch, Marchuk, and Elwin, Northwestern U. 40 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

iii. xc.h: This is the file we’ve been looking for. The most important purpose of xc.h is to include
the appropriate processor-specific header file, in our case include/proc/p32mx795f512l.h.
It does this by checking if 32MX795F512L is defined:

#elif defined(__32MX795F512L__)

#include <proc/p32mx795f512l.h>

If you look at the command for compiling simplePIC.c, you may have noticed the op-
tion -mprocessor=32MX795F512L. This option defines the constant 32MX795F512L to the
compiler, allowing xc.h to function properly.

iv. proc/p32mx795f512l.h: Open this file in your text editor. Whoa! This file is over 40,000
lines long! It must be important. Time to look at it in more detail.

3.5.2 The Header File p32mx795f512l.h

The first 30% of p32mx795f512l.h, about 14,000 lines, consists of code like this, with line numbers added to
the left for reference:

1 extern volatile unsigned int TRISA __attribute__((section("sfrs")));

2 typedef union {

3 struct {

4 unsigned TRISA0:1; // TRISA0 is bit 0 (1 bit long), interpreted as an unsigned int

5 unsigned TRISA1:1; // bits are in order, so the next bit, bit 1, is called TRISA1

6 unsigned TRISA2:1; // ...

7 unsigned TRISA3:1;

8 unsigned TRISA4:1;

9 unsigned TRISA5:1;

10 unsigned TRISA6:1;

11 unsigned TRISA7:1;

12 unsigned :1; // don’t give a name to bit 8; it’s unimplemented

13 unsigned TRISA9:1; // bit 9 is called TRISA9

14 unsigned TRISA10:1;

15 unsigned :3; // skip 3 bits, 11-13

16 unsigned TRISA14:1;

17 unsigned TRISA15:1; // later bits are not given names

18 };

19 struct {

20 unsigned w:32; // w refers to all 32 bits; the 16 above, and 16 more unimplemented bits

21 };

22 } __TRISAbits_t;

23 extern volatile __TRISAbits_t TRISAbits __asm__ ("TRISA") __attribute__((section("sfrs")));

24 extern volatile unsigned int TRISACLR __attribute__((section("sfrs")));

25 extern volatile unsigned int TRISASET __attribute__((section("sfrs")));

26 extern volatile unsigned int TRISAINV __attribute__((section("sfrs")));

The first line, beginning extern, declares the variable TRISA as an unsigned int. The keyword extern

means that no RAM has to be allocated for it; memory to hold the variable has been allocated for it elsewhere.
In a typical C program, memory for the variable has been allocated by another C file using syntax without
the extern, like volatile unsigned int TRISA;. In this case, however, no RAM has to be allocated for
TRISA because it refers to an SFR, not a word in RAM. The processor.o file is the one that actually
defines the VA of the symbol TRISA, as mentioned earlier.

The volatile keyword, applied to all the SFRs, means that the value of this variable could change
without the CPU knowing it. Thus the compiler should generate assembly code to reload TRISA into the
CPU registers every time it is used, rather than assuming that its value is unchanged just because no C code
has modified it.

Finally, the attribute syntax tells the linker that TRISA is in the sfrs section of memory.
The next section of code, lines 2–22, defines a new data type called TRISAbits t. Next, in line 23,

a variable named TRISAbits is declared of type TRISAbits t. Again, since it is an extern variable, no
memory is allocated, and the asm ("TRISA") syntax means that TRISAbits is at the same VA as TRISA.

Lynch, Marchuk, and Elwin, Northwestern U. 41 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

It is worth understanding the new data type TRISAbits t. It is a union of two structs. The union

means that the two structs share the same memory, a 32-bit word in this case. Each struct is called a bit
field, which gives names to specific groups of bits within the 32-bit word. Thus declaring a variable TRISAbits
of type TRISAbits t allows us to use syntax like TRISAbits.TRISA0 to refer to bit 0 of TRISA.

A named set of bits in a bit field need not be one bit long; for example, TRISAbits.w refers to the entire
unsigned int TRISA, created from all 32 bits. The type RTCALRMbits t defined earlier in the file by

typedef union {

struct {

unsigned ARPT:8;

unsigned AMASK:4;

...

} __RTCALRMbits_t;

has a first field ARPT that is 8 bits long and a second field AMASK that is 4 bits long. Since RTCALRM is
a variable of type RTCALRMbits t, a C statement of the form RTCALRMbits.AMASK = 0xB would put the
values 1, 0, 1, 1 in bits 11, 10, 9, 8, respectively, of RTCALRM.

After the declaration of TRISA and TRISAbits, lines 24–26 contain declarations of TRISACLR, TRISASET,
and TRISAINV. These declarations allow simplePIC.c, which uses these variables, to compile successfully.
When the object code of simplePIC.c is linked with the processor.o object code, references to these
variables are resolved to the proper SFR VAs.

With these declarations in p32mx795f512l.h, the simplePIC.c statements

TRISA = 0xFFCF;

LATAINV = 0x0030;

while(!PORTDbits.RD13)

finally make sense; these statements write values to, or read values from, SFRs at VAs specified by processor.o.
You can see that p32mx795f512l.h declares a lot of SFRs, but no RAM has to be allocated for them; they
exist at fixed addresses in the PIC32’s hardware.

The next 9% of p32mx795f512l.h is the extern variable declaration of the same SFRs, without the bit
field types, for assembly language. The VAs of each of the SFRs is given, making this a handy reference.

Starting at about 17,800 lines into the file, we see constant definitions like the following:

#define _T1CON_TCS_POSITION 0x00000001

#define _T1CON_TCS_MASK 0x00000002

#define _T1CON_TCS_LENGTH 0x00000001

#define _T1CON_TCKPS_POSITION 0x00000004

#define _T1CON_TCKPS_MASK 0x00000030

#define _T1CON_TCKPS_LENGTH 0x00000002

These refer to the Timer 1 SFR T1CON. Consulting the information about T1CON in the Timer1 section of
the Data Sheet, we see that bit 1, called TCS, controls whether Timer 1’s clock input comes from the T1CK
input pin or from PBCLK. Bits 4 and 5, called TCKPS for “timer clock prescaler,” control how many times
the input clock has to “tick” before Timer 1 is incremented (e.g., TCKPS = 0b10 means there is one clock
increment per 64 input ticks). The constants defined above are for convenience in accessing these bits. The
POSITION constants indicate the least significant bit location in TCS or TCKPS in T1CON—one for TCS
and four for TCKPS. The LENGTH constants indicate that TCS consists of one bit and TCKPS consists of two
bits. Finally, the MASK constants can be used to determine the values of the bits we care about. For example:

unsigned int tckpsval = (T1CON & _T1CON_TCKPS_MASK) >> _T1CON_TCKPS_POSITION;

// AND MASKing clears all bits except 5 and 4, which are unchanged and shifted to positions 1 and 0

The definitions of the POSITION, LENGTH, and MASK constants take up most of the rest of the file. Of
course, there is also a T1CONbits defined that allows you to access these bits directly (e.g. T1CONbits.TCS).
We recommend that you use this method, as it is typically clearer and less error prone than performing direct
bit manipulations.

At the end, some more constants are defined, like below:

Lynch, Marchuk, and Elwin, Northwestern U. 42 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

#define _ADC10

#define _ADC10_BASE_ADDRESS 0xBF809000

#define _ADC_IRQ 33

#define _ADC_VECTOR 27

The first is merely a flag indicating to other .h and .c files that the 10-bit ADC is present on this PIC32. The
second indicates the first address of 22 consecutive SFRs related to the ADC (see the Memory Organization
section of the Data Sheet). The third and fourth relate to interrupts. The PIC32MX’s CPU is capable of
being interrupted by up to 96 different events, such as a change of voltage on an input line or a timer rollover
event. Upon receiving these interrupts, it can call up to 64 different interrupt service routines, each identified
by a “vector” corresponding to its address. These two lines say that the ADC’s “interrupt request” line is 33
(out of 0 to 95), and its corresponding interrupt service routine is at vector 27 (out of 0 to 63). Interrupts are
covered in Chapter 6.

Finally, p32mx795f512l.h concludes by including ppic32mx.h, which contains legacy code that is no
longer needed but remains for backward compatibility with old programs.

3.5.3 Other Microchip Software: Harmony

Installed in your Harmony directory is an extensive and complex set of libraries and sample code written by
Microchip. Because of the complexity and abstraction it introduces, we will avoid using Harmony functions
until later in the book, when our programs are complex enough that low-level access to the peripherals
through SFRs no longer suffices to take full advantage of the PIC32’s capabilities.5

3.5.4 The NU32bootloaded.ld Linker Script

To create the executable .hex file, we needed the C source file simplePIC.c and the linker script NU32bootloaded.ld.
Examining NU32bootloaded.ld with a text editor, we see the following line near the beginning:

INPUT("processor.o")

This line tells the linker to load the processor.o file specific to your PIC32. This allows the linker to resolve
references to SFRs (declared as extern variables in p32mx795f512l.h) to actual addresses.

The rest of the NU32bootloaded.ld linker script has information such as the amount of program flash
and data memory available, as well as the virtual addresses where program elements and global data should
be placed. Below is a portion of NU32bootloaded.ld:

_RESET_ADDR = (0xBD000000 + 0x1000 + 0x970);

/***

* NOTE: What is called boot_mem and program_mem below do not directly

* correspond to boot flash and program flash. For instance, here

* kseg0_boot_mem and kseg1_boot_mem both live in program flash memory.

* (We leave the boot flash solely to the bootloader.)

* The boot_mem names below tell the linker where the startup codes should

* go (here, in program flash). The first 0x1000 + 0x970 + 0x490 = 0x1E00

* of program flash memory is allocated to the interrupt vector table and

* startup codes. The remaining 0x7E200 is allocated to the user’s program.

***/

MEMORY

{

/* interrupt vector table */

exception_mem : ORIGIN = 0x9D000000, LENGTH = 0x1000

/* Start-up code sections; some cacheable, some not */

kseg0_boot_mem : ORIGIN = (0x9D000000 + 0x1000), LENGTH = 0x970

kseg1_boot_mem : ORIGIN = (0xBD000000 + 0x1000 + 0x970), LENGTH = 0x490

5Even though most sample code in the book does not use Harmony, the Makefile asks the linker to link with Harmony files,
just to ensure that the same make process works whether or not you use Harmony. So you should install Harmony.

Lynch, Marchuk, and Elwin, Northwestern U. 43 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

/* User’s program is in program flash, kseg0_program_mem, all cacheable */

/* 512 KB flash = 0x80000, or 0x1000 + 0x970 + 0x940 + 0x7E200 */

kseg0_program_mem (rx) : ORIGIN = (0x9D000000 + 0x1000 + 0x970 + 0x490), LENGTH = 0x7E200

debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = 0xFF0

/* Device Configuration Registers (configuration bits) */

config3 : ORIGIN = 0xBFC02FF0, LENGTH = 0x4

config2 : ORIGIN = 0xBFC02FF4, LENGTH = 0x4

config1 : ORIGIN = 0xBFC02FF8, LENGTH = 0x4

config0 : ORIGIN = 0xBFC02FFC, LENGTH = 0x4

configsfrs : ORIGIN = 0xBFC02FF0, LENGTH = 0x10

/* all SFRS */

sfrs : ORIGIN = 0xBF800000, LENGTH = 0x100000

/* PIC32MX795F512L has 128 KB RAM, or 0x20000 */

kseg1_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x20000

}

Converting virtual to physical addresses, we see that the cacheable interrupt vector table (we will learn
more about this in Chapter 6) in exception mem is placed in a memory region of length 0x1000 bytes
beginning at PA 0x1D000000 and running to 0x1D000FFF; cacheable startup code in kseg0_boot_mem is
placed at PAs 0x1D001000 to 0x1D00196F; noncacheable startup code in kseg1_boot_mem is placed at PAs
0x1D001970 to 0x1D001DFF; and cacheable program code in kseg0_program_mem is allocated the rest of
program flash, PAs 0x1D001E00 to 0x1D07FFFF. This program code includes the code we write plus other
code that is linked.

The linker script for the NU32 bootloader placed the bootloader completely in the 12 KB boot flash with
little room to spare. Therefore, the linker script for our bootloaded programs should place the programs solely
in program flash. This is why the boot_mem sections above are defined to be in program flash. The label
boot_mem simply tells the linker where the startup code should be placed, just as the label kseg0_program_mem
tells the linker where the program code should be placed. (For the bootloader program, kseg0_program_mem
was in boot flash.)

If the LENGTH of any given memory region is not large enough to hold all the program instructions or
data for that region, the linker will fail.

Upon reset, the PIC32 always jumps to 0xBFC00000, where the first instruction of the startup code
for the bootloader resides. The last thing the bootloader does is jump to VA 0xBD001970. Since the first
instruction in the startup code for our bootloaded program is installed at the first address in kseg1_boot_mem,
NU32bootloaded.ld must define the ORIGIN of kseg1_boot_mem at this address. This address is also known
as _RESET_ADDR in NU32bootloaded.ld.

3.6 Bootloaded Programs vs. Standalone Programs

It is important to keep in mind that your executable is being installed on the PIC32 by another executable:
the bootloader. The bootloader has been pre-installed in the boot flash portion of flash memory. This
program, which always runs first when the PIC32 is reset, has already defined some of the behavior of the
PIC32, so you didn’t need to specify it in simplePIC.c. In particular, the bootloader code turns on the
prefetch cache module (to allow faster performance) and sets a number of other important properties of the
PIC32 with XC32-specific preprocessor commands such as

#pragma config FWDTEN = OFF // watchdog timer OFF

#pragma config FNOSC = PRIPLL // SYSCLK uses the primary oscillator with phase-locked loop (PLL)

#pragma config POSCMOD = HS // use the high speed crystal mode for the primary oscillator

#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2

#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20

#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1

#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1

#pragma config FSRSSEL = PRIORITY_7 // Shadow Register Set for interrupt priority 7

The commands above

Lynch, Marchuk, and Elwin, Northwestern U. 44 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

• turn the PIC32’s watchdog timer off;

• configures the PIC32’s clock generation circuit to take the external 8 MHz resonator as input, divide
this input frequency to a phase-locked loop (PLL) circuit by 2, multiply the frequency by 20, and divide
the output frequency by 1, creating a SYSCLK of 8/2 ∗ 20/1 MHz = 80 MHz;

• set the PBCLK frequency to be SYSCLK divided by 1 (80 MHz); and

• sets the shadow register set to be used for interrupts of priority level 7 (see Chapter 6).

If you decide not to use a bootloader program on the PIC32, and instead use a programmer device like
the PICkit 3 (Figure 2.5) to install a standalone program, you would have to make sure that your program
appropriately sets the configuration bits with commands such as those above, turns on the prefetch cache
module, etc. More information on this process can be found in Appendix ??.

3.7 Build Summary

Recall that what we colloquially refer to as “compiling” actually consists of multiple steps. You initiated
these steps by invoking the compiler, xc32-gcc, at the command line:

> xc32-gcc -mprocessor=32MX795F512L

-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

This step creates the .elf file, which then needs to be converted into a .hex file that the bootloader
understands:

> xc32-bin2hex simplePIC.elf

The compiler requires multiple command line options to work. It accepts arguments, as detailed in the XC32
Users Manual, and some important ones are displayed by typing xc32-gcc --help. The arguments we used
were

• -mprocessor=32MX795F512L Tells the compiler what PIC32 model to target. This also causes the
compiler to define 32MX795F512L so that the processor model can be detected in header files such
as xc.h.

• -o simplePIC.elf Specifies that the final output will be named simplePIC.elf.

• -Wl, Tells the compiler that what follows are a comma-separated list of options for the linker.

• --script=skeleton/NU32bootloaded.ld A linker option that specifies the linker script to use.

• simplePIC.c The C files that you want compiled and linked are listed. In this case the whole program
is in just one file.

Another option that may be useful when exploring what the compiler does is --save-temps. This option
will save all of the intermediate files generated during the build process.

Here is what happens when you build and load simplePIC.c.

• Preprocessing. The preprocessor (xc32-cpp), among other duties, handles include files. By including
xc.h at the beginning of your program, we get access to variables for all the SFRs. The output of the
preprocessor is a .i file, which by default is not saved.

• Compiling. After the preprocessor, the compiler (xc32-gcc) turns your C code into assembly language
specific to the PIC32. For convenience, (xc32-gcc) automatically invokes the other commands required
in the build process. The result of the compilation step is an assembly language .S file, containing a
human-readable version of instructions specific to a MIPS32 processor. This output is also not saved by
default.

Lynch, Marchuk, and Elwin, Northwestern U. 45 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

• Assembling. The assembler (xc32-as) converts the human-readable assembly code into object files
(.o) that contain machine code instructions. These files cannot be executed directly, however, because
addresses have not been resolved. This step yields simplePIC.o

• Linking. The object code simplePIC.o is linked with the crt0 mips32r2.o C run-time startup library,
which performs functions such as initializing global variables, and the processor.o object code, which
contains the SFR VAs. The linker script NU32bootloaded.ld provides information to the linker on
the allowable absolute virtual addresses for the program instructions and data, as required by the
bootloader and the specific PIC32 model. Linking yields a self-contained executable in .elf format.

• Hex file. The xc32-bin2hex utility converts .elf files into .hex files. The .hex is a different format
for the executable then the .elf file that the bootloader understands and can load into the PIC32’s
program memory.

• Installing the program. The last step is to use the NU32 bootloader and the host computer’s
bootloader utility to install the executable. By resetting the PIC32 while holding the USER button, the
bootloader enters a mode where it tries to communicate with the bootload communication utility on
the host computer. When it receives the executable from the host, it writes the program instructions
to the virtual memory addresses specified by the linker. Now every time the PIC32 is reset without
holding the USER button, the bootloader exits and jumps to the newly installed program.

3.8 Useful Command Line Utilities

The bin directory of the XC32 installation contains a number of useful command line utilities. These can be
used directly at the command line and many are invoked by the Makefile. We have already seen the first
two of these utilities, as described in Section 3.7:

xc32-gcc The XC32 version of the gcc compiler is used to compile, assemble, and link, creating the
executable .elf file.

xc32-bin2hex Converts a .elf file to a .hex file suitable for placing directly into PIC32 flash memory.

xc32-ar The archiver can be used to create an archive, list the contents of an archive, or extract object
files from an archive. Example uses include:

xc32-ar -t lib.a // list the object files in lib.a (in current directory)

xc32-ar -x lib.a code.o // extract code.o from lib.a to the current directory

xc32-as The assembler.

xc32-ld This is the actual linker called by xc32-gcc.

xc32-nm Prints the symbols (e.g., global variables) in an object file. Examples:

xc32-nm processor.o // list the symbols in alphabetical order

xc32-nm -n processor.o // list the symbols in numerical order of their VAs

xc32-objdump Displays the assembly code corresponding to an object or .elf file. This process is
called disassembly. Example:

xc32-objdump -S file.elf > file.dis // send output to the file file.dis

xc32-readelf Displays a lot of information about the .elf file. Example:

xc32-readelf -a filename.elf // output is dominated by SFR definitions

Lynch, Marchuk, and Elwin, Northwestern U. 46 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

These utilities correspond to standard “GNU binary utilities” of the same name without the preceding
xc32-. To learn the options available for a command called xc32-cmdname, you can type xc32-cmdname

--help or read about them in the XC32 compiler reference manual.

3.9 Chapter Summary

OK, that’s a lot to digest. Don’t worry, you can view much of this chapter as reference material; you don’t
have to memorize it to program the PIC32!

• Software refers almost exclusively to the virtual memory map. Virtual addresses map directly to
physical addresses by PA = VA & 0x1FFFFFFF.

• Building an executable .hex file from a source file consists of the following steps: preprocessing,
compiling, assembling, linking, and converting the .elf file to a .hex file.

• Including the file xc.h gives our program access to variables, data types, and constants that significantly
simplify programming by allowing us to access SFRs easily from C code without needing to specify
addresses directly.

• The included file pic32mx/include/proc/p32mx795f512l.h contains variable declarations, like TRISA,
that allow us to read from and write to the SFRs. We have several options for manipulating these
SFRs. For TRISA, for example, we can directly assign the bits with TRISA=0x30, or we can use bitwise
operations like & and |. Many SFRs have associated CLR, SET, and INV registers which can be used
to efficiently clear, set, or invert certain bits. Finally, particular bits or groups of bits can be accessed
using bit fields. For example, we access bit 3 of TRISA using TRISAbits.TRISA3. The names of the
SFRs and bit fields follow the names in the Data Sheet (particularly the Memory Organization section)
and Reference Manual.

• All programs are linked with pic32mx/lib/proc/32MX795F512L/crt0 mips32r2.o to produce the final
.hex file. This C run-time startup code executes first, doing things like initializing global variables in
RAM, before jumping to the main function. Other linked object code includes processor.o, with the
VAs of the SFRs.

• Upon reset, the PIC32 jumps to the boot flash address 0xBFC00000. For a PIC32 with a bootloader,
the crt0 mips32r2 of the bootloader is installed at this address. When the bootloader completes, it
jumps to an address where the bootloader has previously installed a bootloaded executable.

• The bootloader sets the Device Configuration Registers, turns on the prefetch cache module, and
minimizes the number of CPU wait cycles for instructions to load from flash.

• A bootloaded program is linked with a custom linker script, like NU32bootloaded.ld, to make sure the
flash addresses for the instructions do not conflict with the bootloader’s, and to make sure that the
program is placed at the address where the bootloader jumps.

3.10 Exercises

1. Convert the following virtual addresses to physical addresses, and indicate whether the address is
cacheable or not, and whether it resides in RAM, flash, SFRs, or boot flash. (a) 0x80000020. (b)
0xA0000020. (c) 0xBF800001. (d) 0x9FC00111. (e) 0x9D001000.

2. Look at the linker script used with programs for the NU32. Where does the bootloader install your
program in virtual memory? (Hint: look at the _RESET_ADDR.)

3. Refer to the Memory Organization section of the Data Sheet and Figure 2.1.

Lynch, Marchuk, and Elwin, Northwestern U. 47 12:38 February 4, 2015

CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

(a) Referring to the Data Sheet, indicate which bits, 0..31, can be used as input/outputs for each of
Ports A through G. For the PIC32MX795F512L in Figure 2.1, indicate which pin corresponds to
bit 0 of port E (this is referred to as RE0).

(b) The SFR INTCON refers to “interrupt control.” Which bits, 0..31, of this SFR are unimplemented?
Of the bits that are implemented, give the numbers of the bits and their names.

4. Modify simplePIC.c so that both lights are on or off at the same time, instead of opposite each other.
Turn in only the code that changed.

5. Modify simplePIC.c so that the function delay takes an int cycles as an argument. The for loop
in delay executes cycles times, not a fixed value of 1,000,000. Then modify main so that the first
time it calls delay, it passes a value equal to MAXCYCLES. The next time it calls delay with a value
decreased by DELTACYCLES, and so on, until the value is less than zero, at which time it resets the
value to MAXCYCLES. Use #define to define the constants MAXCYCLES as 1,000,000 and DELTACYCLES as
100,000. Turn in your code.

6. Give the VAs and reset values of the following SFRs. (a) I2C2CON. (b) TRISC.

7. The processor.o file linked with your simplePIC project is much larger than your final .hex file.
Explain how that is possible.

8. The building of a typical PIC32 program makes use of a number of files in the XC32 compiler distribution.
Let’s look at a few of them.

(a) Look at the assembly startup code pic32-libs/libpic32/startup/crt0.S. Although we are not
studying assembly code, the comments help you understand what the startup code does. Based on
the comments, you can see that this code clears the RAM addresses where uninitialized global
variables are stored, for example. Find and list the line(s) of code that call the user’s main function
when the C runtime startup completes.

(b) Using the command xc32-nm -n processor.o, give the names and addresses of the five SFRs
with the highest addresses.

(c) Open the file p32mx795f512l.h and go to the declaration of the SFR SPI2STAT and its associated
bit field data type SPI2STATbits t. How many bit fields are defined? What are their names and
sizes? Do these coincide with the Data Sheet?

9. Give three C commands, using TRISASET, TRISACLR, and TRISAINV, that set bits 2 and 3 of
TRISA to 1, clear bits 1 and 5, and flip bits 0 and 4.

Lynch, Marchuk, and Elwin, Northwestern U. 48 12:38 February 4, 2015

Chapter 4

Using Libraries

You’ve used libraries all your life—well, at least as long as you’ve programmed in C. Want to display text on
the screen? printf. What about determining the length of a string? strlen. Need to sort an array? qsort.
You can find these functions, along with numerous others, in the C standard library. A library consists of a
collection object files (.o), that have been combined into an archive file (.a); for example, the C standard
library libc.a. Using a library requires you to include the associated header files (.h) and link with the
archive file. The header file (e.g., stdio.h) declares the functions, constants, and data types used by the
library while the archive file contains function implementations. Libraries make it easy to share code between
multiple projects, without needing to repeatedly compile the code.

In addition to the C standard library, Microchip provides some other libraries specific to programming
PIC32s. In Chapter 3 we learned about the header file xc.h which includes the processor-specific header
pic32mx795f512l.h, providing us with definitions for the SFRs. The “archive” file for this library is
processor.o.1 Microchip also provides a higher-level framework called Harmony, which contains libraries
and other source code to help you create code that works with multiple PIC32 models; we use Harmony later
in this book.

Libraries can also be distributed as source code: for example, the NU32 library consists of <PIC32>/skeleton/NU32.h
and <PIC32>/skeleton/NU32.c. To use libraries distributed as source code you must include the library
header files, compile your source code and the library code, and link the resulting object files. You can link
as many object files as you want, as long as they do not declare the same symbols (e.g., two C files in one
project cannot both have a main function).

The NU32 library provides initialization and communication functions for the NU32 board. The
talkingPIC.c code in Chapter 1 uses the NU32 library, as will most of the examples throughout the
book. Let’s revisit talkingPIC.c, and examine how it includes libraries during the build process.

4.1 Talking PIC

The talkingPIC.c program, which you compiled in Chapter 1, relies heavily on libraries. All the calls
starting with NU32 require the NU32 library and calls to sprintf use the C standard library libc.a. Recall
from Chapter 1 that the Makefile will compile and link all .c files in the directory. Since the project
directory, <PIC32>/talkingPIC.c contains NU32.c, this file was compiled along with talkingPIC.c. To see
how this process works, we examine the commands that make issues to build your project.

Navigate to where you created talkingPIC in Chapter 1 (<PIC32>/talkingPIC). Issue the following
command:

> make clean

This command removes the files created when you originally built the project, so we can start fresh. Next,
issue the make command to build the project. Notice that it issues commands similar to:

1The library consists of only one object file so Microchip did not create an archive, which holds multiple object files.

49

CHAPTER 4. USING LIBRARIES

> xc32-gcc -g -O1 -x c -c -mprocessor=32MX795F512L

-I"<harmonyDir>/<harmonyVer>/framework" -I"<harmonyDir>/<harmonyVer>/framework/peripheral" -o talkingPIC.o talkingPIC.c

> xc32-gcc -g -O1 -x c -c -mprocessor=32MX795F512L

-I"<harmonyDir>/<harmonyVer>/framework" -I"<harmonyDir>/<harmonyVer>/framework/peripheral" -o NU32.o NU32.c

> xc32-gcc -mprocessor=32MX795F512L -o out.elf talkingPIC.o NU32.o

-L"<harmonyDir>/<harmonyVer>/bin/framework/peripheral" -l:PIC32MX795F512L_peripherals.a

-Wl,--script="NU32bootloaded.ld",-Map=out.map

> xc32-bin2hex out.elf

> xc32-objdump -S out.elf > out.dis

The first two commands compile the modules necessary to create talkingPIC, using certain options:

• -g Include debugging information. This is extra data added into the object file that helps us to inspect
the generated files later.

• -O1 Sets optimization level one. We discuss optimization in Chapter 5.

• -x c Tells the compiler to treat input files as C language files. Typically the compiler can detect the
proper language based on the file extension, but we use this here to be certain.

• -c Compile only, do not link. The output of this command is just an object (.o) file because the linker
is not invoked to create the .elf file.

• -I Gives the compiler additional directories to search for include files. The particular directories contain
the Harmony include files which will be needed in later chapters.

Thus the first two commands create two object files, talkingPIC.o, which contains the main function, and
NU32.o, which includes helper functions that talkingPIC.c calls. The third command tells the compiler to
invoke the linker, because all the “source” files specified are actually object (.o) files. We don’t invoke the
linker xc32-ld directly because the compiler automatically tells the linker to link against some standard
libraries that we need. Notice that make always names its output out.elf, regardless of what you name the
source files.

Some additional options that make provides to the linker are specified after the Wl flag:

• -L Adds the following directory to the library search path; we have added the path to the Harmony
peripheral library.

• -l: Tells the linker to include the following library when linking, in this case, the Harmony peripheral
library PIC32MX795F512L peripherals.a.

• -Map This option is passed to the linker and tells it to produce a map file, which details the program’s
memory usage. Chapter 5 explains map files.

The next command produces the hex file. The final line, xc32-objdump disassembles out.elf, saving the
results in out.dis. This file contains interspersed C code and the assembly instructions, allowing you to
inspect the assembly instructions that the compiler produces from your C code.

4.2 The NU32 Library

The NU32 library provides several functions that make programming the PIC32 easier. Not only does
talkingPIC.c use this library, but so do most examples in this book. The <PIC32>/skeleton directory
contains the NU32 library files, NU32.c and NU32.h; you copy this directory to create a new project. The
Makefile automatically links all files in the directory, thus NU32.c will be included in your project. By
writing #include "NU32.h" at the beginning of the program, we can access the library. We list NU32.h

below:

Code Sample 4.1. NU32.h. The NU32 header file.

Lynch, Marchuk, and Elwin, Northwestern U. 50 12:38 February 4, 2015

CHAPTER 4. USING LIBRARIES

#ifndef NU32__H__

#define NU32__H__

#include<xc.h> // processor SFR definitions

#include<sys/attribs.h> // __ISR macro

#ifdef NU32_STANDALONE // config bits if not set by bootloader

#pragma config DEBUG = OFF // Background Debugger disabled

#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20

#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2

#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1

#pragma config FWDTEN = OFF // WD timer: OFF

#pragma config POSCMOD = HS // Primary Oscillator Mode: High Speed xtal

#pragma config FNOSC = PRIPLL // Oscillator Selection: Primary oscillator w/ PLL

#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1

#pragma config BWP = OFF // Boot write protect: OFF

#pragma config ICESEL = ICS_PGx2 // ICE pins configured on PGx2, Boot write protect OFF.

#pragma config FSOSCEN = OFF // Disable second osc to get pins back

#pragma config FSRSSEL = PRIORITY_7 // Shadow Register Set for interrupt priority 7

#endif // NU32_STANDALONE

#define NU32_LED1 LATAbits.LATA4 // LED1 on the NU32 board

#define NU32_LED2 LATAbits.LATA5 // LED2 on the NU32 board

#define NU32_USER PORTDbits.RD13 // user button on the NU32 board

#define NU32_SYS_FREQ 80000000ul // 80 million Hz

void NU32_Startup(void);

void NU32_ReadUART1(char * string, int maxLength);

void NU32_WriteUART1(const char * string);

unsigned int NU32_ReadCoreTimer(void);

void NU32_WriteCoreTimer(unsigned int value);

unsigned int NU32_EnableInterrupts(void);

unsigned int NU32_DisableInterrupts(void);

void NU32_EnableCache(void);

void NU32_DisableCache(void);

#endif // NU32__H__

The NU32__H__ include guard, consisting of the first two lines and the last line, ensure that NU32.h is not
included twice when compiling any single C file. The test #ifdef NU32_STANDALONE checks to see if the C
file has defined the constant NU32_STANDALONE. If so, the header file sets the device configuration bits (see
Appendix ??; if not, the bootloader has already set them. The next few lines include Microchip-provided
headers that you would otherwise need to include in most programs. You have already seen xc.h; we
discuss sys/attribs.h in Chapter 6. The next three lines define aliases for SFRs the control the two LEDs
(NU32 LED1 and NU32 LED2) and the USER button (NU32 USER) on the NU32 board. Using these aliases allow
us to write code like

int button = NU32_USER; // button now has 0 if pressed, 1 if not

NU32_LED1 = 0; // turn LED1 on

NU32_LED2 = 1; // turn LED2 off

which is easier than remembering the PIC32 pin that are connected to these devices. The header also defines
the NU32 SYS FREQ constant, which contains the frequency, in Hz, at which the PIC32 operates. The rest of
NU32.h consists of function prototypes, described below.

Lynch, Marchuk, and Elwin, Northwestern U. 51 12:38 February 4, 2015

CHAPTER 4. USING LIBRARIES

void NU32 Startup(void) Call NU32 Startup() at the beginning of main to setup the PIC32 and
the NU32 library. You will learn about the details of this function as the book progresses, but here
is an overview. First, the function configures the prefetch cache module and flash wait cycles for
maximum performance. Next, it configures the PIC32 for multi-vector interrupt mode. Then it
disables JTAG debugging so that it can use RA4 and RA5 as digital outputs for LED1 and LED2.
The function then configures UART1 so that the PIC32 can communicate with your computer.
Configuring UART1 allows you to use NU32 WriteUART1() and NU32 ReadUART1() to send strings
between the PIC32 and the computer. The communication occurs at 230,400 baud (bits per
second), with eight data bits, no parity, one stop bit, and hardware flow control with CTS/RTS:
all details of UART communication that we discuss in Chapter ??. Finally, it enables interrupts
(see Chapter 6).

void NU32 ReadUART1(char * string, int maxLength) This function takes a character array
(string) and a maximum input length maxLength. It fills string with characters received from
the host via UART1 until a newline \n or carriage return \r is received. If the string exceeds
maxLength, the new characters wrap around to the beginning of the string. Note that this function
will not exit unless it receives a \n or a \r.

Example:

char message[100] = {}, str[100] = {};

int i = 0;

NU32_ReadUART1(message, 100);

sscanf(message, "%s %d", str, &i); // if message expected to have a string and int

void NU32 WriteUART1(const char * string) This function sends a string over UART1. The
function does not complete until the transmission has finished. Thus, if the host computer is not
reading the UART, the function will wait to send its data.

Example:

char msg[100] = {};

sprintf(msg,"The value is %d.\r\n",22);

NU32_WriteUART1(msg);

unsigned int NU32 ReadCoreTimer(void) The core timer increments a register every other CPU
cycle (see Chapter 5). This function returns the value of that counter.

void NU32 WriteCoreTimer(unsigned int value) This function sets the core timer counter to the
provided value.

unsigned int NU32 EnableInterrupts(void) Enables all interrupts on the CPU. It returns the
coprocessor 0 (CP0) STATUS register. This register is part of the CPU and contains information
about the state of the processor, including whether interrupts are enabled.

unsigned int NU32 DisableInterrupts(void) Disables all interrupts on the CPU, returning the
value of the CP0 STATUS register prior to disabling interrupts.

void NU32 EnableCache(void) This function makes memory in KSEG0 cacheable, allowing program
instructions to be stored in cache.

void NU32 DisableCache(void) This function makes memory in KSEG0 uncacheable. This means
that instructions stored in program flash will be read directly from flash memory rather than the
cache.

Lynch, Marchuk, and Elwin, Northwestern U. 52 12:38 February 4, 2015

CHAPTER 4. USING LIBRARIES

4.3 Bootloaded Programs

Throughout the rest of this book, all C files with a main function will begin with something like

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

and the first line of code (other than local variable definitions) in main will be

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

While other C files and header files might include NU32.h to gain access to its contents and function prototypes,
no file except the C file with the main function should define NU32 STANDALONE or call NU32 Startup().

Even if the program does not need any NU32 library functions, we use the lines above for consistency. This
convention allows the same code to build correctly regardless of whether it is bootloaded (do not uncomment
the first line) or standalone (uncomment the first line, see Appendix ??). Including "NU32.h" and executing
NU32_Startup() does the following:

• includes <xc.h>, providing SFR definitions

• includes <sys/attribs.h>, which is used when declaring interrupt service routines (ISRs) (see Chap-
ter 6)

• defines the constants NU32 LED1, NU32 LED2, NU32 USER, and NU32 SYS FREQ

• declares the NU32 library functions described above

• enables the prefetch cache and sets the minimum flash wait cycles

• configures pins RA4 and RA5 as outputs to control LED1 and LED2

• enables and configures UART1

• sets the device configuration bits, if NU32_STANDALONE is defined

4.4 An LCD Library

Dot matrix LCD screens are inexpensive portable devices that can display information to the user. LCD
controllers allow you to more easily display text on the screen; often a screen comes packaged with a
controller. We now discuss a library that allows the PIC32 to control a Hitachi HD44780 (or compatible)
LCD controller connected to a 16x2 LCD screen. You can purchase these components and the associated
support hardware as a pre-built module. The data sheet for this controller is available on the book’s
website, http://hades.mech.northwestern.edu/index.php/Pic32book.

The HD44780 has 16 pins: ground (GND), power (VCC), contrast (VO), backlight anode (A), backlight
cathode (K), register select (RS), read/write (RW), enable strobe (E), and 8 data pins (D0-D7). We show
the pins below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GND VCC VO RS R/W E D0 D1 D2 D3 D4 D5 D6 D7 A K

Connect the LCD as shown in Figure ??.
The LCD is powered by VCC (5 V) and GND. The resistors R1 and R2 determine the LCD’s brightness

and contrast, respectively. Good guesses for these values are R1 = 100Ω and R2 = 1000Ω, but you should
consult the data sheet and experiment. The remaining pins are for communication. The R/W pin controls
the communication direction. From the PIC32’s perspective, R/W = 0 means write and R/W = 1 means
read. The RS pin indicates whether the PIC32 is sending data (i.e. text) or a command (i.e. clear screen).
The pins D0-D7 carry the actual data between the devices; after setting data on these pins the PIC32 pulses
the enable strobe (E) signal to tell the LCD that the data is ready. For every pulse of E, the LCD receives or

Lynch, Marchuk, and Elwin, Northwestern U. 53 12:38 February 4, 2015

http://hades.mech.northwestern.edu/index.php/Pic32book

CHAPTER 4. USING LIBRARIES

VDD RS R/W E D0 D1 D2 D4D3 D6D5 D7 A KGND V0

E0 E1 E2 E3 E4 E5 E6 E7D11 D5 D4
+5 V

R2 R1

+5 VPIC32

LCD

Figure 4.1: Circuit diagram for the LCD.

Figure 4.2: The NU32 board and the LCD screen.

sends 8 bits of data simultaneously, or in parallel. We delve into this parallel communication scheme more
deeply in Ch. ??, where we discuss the parallel master port (PMP), the peripheral that properly coordinates
the signals between the PIC32 and the LCD.

Now we present the LCD library by looking at its interface. The LCD controller has many features such
as the ability to horizontally scroll text, display custom characters, display a larger font on a single line, and
display a cursor. The LCD library contains many functions that enable access to these features; however,
we only discuss the basics. More details can be found in ?? which discusses the implementation details.

Code Sample 4.2. LCD.h. The LCD library header file.

#ifndef LCD_H

#define LCD_H

void LCD_Setup(void); // Initialize the LCD

void LCD_Clear(void); // Clear the screen and return to position (0,0)

Lynch, Marchuk, and Elwin, Northwestern U. 54 12:38 February 4, 2015

CHAPTER 4. USING LIBRARIES

void LCD_Move(int line, int col); // Move the position to the given line and column

void LCD_WriteChar(char c); // Write a character at the current position

void LCD_WriteString(const char * string); // Write a string, starting at the current position

void LCD_Home(void); // Move to (0,0) and reset any scrolling

void LCD_Entry(int id, int s); // Control how the display moves after sending a character

void LCD_Display(int d, int c, int b); // Turn the display on/off and change cursor settings

void LCD_Shift(int sc, int rl); // Shift the position of the display

void LCD_Function(int n, int f); // Set the number of lines (0,1) and the font size

void LCD_CustomChar(unsigned char val, const char data[7]); // Write a custom character to CGRAM

void LCD_Write(int rs, unsigned char db70); // Write a command to the LCD

void LCD_CMove(unsigned char addr); // Move to the given address in CGRAM

unsigned char LCD_Read(int rs); // Read a value from the LCD

#endif

LCD Setup(void) Initializes the LCD, putting it into 2 line mode and clearing the screen. You should
call this at the beginning of main(), after you call NU32 Startup().

LCD Clear(void) Clears the screen and returns the cursor to line zero, column zero.

LCD Move(int line, int col) Causes subsequent text to appear at the given line and column. After
calling LCD Setup(), the LCD has two lines and 16 columns. Remember, just like C arrays,
numbering starts at zero!

LCD WriteChar(unsigned char s) Write a character to the current cursor position. The cursor
position will then be incremented.

LCD WriteString(const char * str) Displays the string, starting at the current position. Remember,
the LCD does not understand control characters like ’\n’; you must use LCD Move to access the
second line.

The program LCDwrite.c uses both the NU32 and LCD libraries to accept a string from the user’s host
computer and write it to the LCD. To build the executable, copy the <PIC32>/skeleton directory and then
add the files LCDwrite.c, LCD.c, and LCD.h. After building, loading, and running the program, open the
terminal emulator. You can now converse with your LCD!

What do you want to write?

If the user responds Echo!!, the LCD prints

Echo!!__________

____Received___1___

where the underscores represent blank spaces. As the user sends more strings, the Received number increments.
The code is given below.

Code Sample 4.3. LCDwrite.c. Takes input from the user and prints it to the LCD screen.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

#include "LCD.h"

#define MSG_LEN 20

int main() {

char msg[MSG_LEN];

int nreceived = 1;

Lynch, Marchuk, and Elwin, Northwestern U. 55 12:38 February 4, 2015

CHAPTER 4. USING LIBRARIES

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

LCD_Setup();

while (1) {

NU32_WriteUART1("What do you want to write? ");

NU32_ReadUART1(msg, MSG_LEN); // get the response

LCD_Clear(); // clear LCD screen

LCD_Move(0,0);

LCD_WriteString(msg); // write msg at row 0 col 0

sprintf(msg, "Received %d", nreceived); // display how many messages received

++nreceived;

LCD_Move(1,3);

LCD_WriteString(msg); // write new msg at row 0 col 2

NU32_WriteUART1("\r\n");

}

return 0;

}

4.5 Microchip Libraries

Microchip provides several libraries for PIC32s. Understanding these libraries is rather confusing (as we
began to see in Chapter 3), partially because they are written to support many PIC32 models, and partially
because of the requirement to maintain backwards compatibility, so that code written years ago does not
become obsolete with new library releases.

Historically, people primarily programmed microcontrollers in assembly language, where the interaction
between the code and the hardware is quite direct: typically the CPU executes one assembly instruction per
clock cycle, without any hidden steps. For complex software projects, however, assembly language becomes
cumbersome because it requires manipulating a specific processor directly and doesn’t contain convenient
constructs like loops, if statements, or functions.

The C language, although still low-level, provides a level of portability and abstraction. Much of your C
code works for multiple microcontrollers, provided you have a compiler for the particular microcontroller.
Still, if your code directly manipulates a particular SFR that doesn’t exist on another microcontroller model,
portability is broken.

Microchip software addresses this issue by providing software that allows your code to work for many
PIC32 models. In a simplified hierarchical view, the user’s application may call Microchip middleware
libraries, which provide a high-level of abstraction and keep the user somewhat insulated from the hardware
details. The middleware libraries may interface with lower-level device drivers. Device drivers may interface
with still lower-level peripheral libraries. These peripheral libraries then, finally, read or write the SFRs
associated with your particular PIC32.

Microchip’s most recent software release, Harmony, provides middleware, device drivers, and peripheral
libraries. This permits an abstract programming model, partially insulating the programmer from hardware
details. For some more complicated peripherals, we will use Harmony, which is why we include the options
necessary for it in the Makefile. When beginning, however, we use only the SFR variable declarations
and other definitions in the XC32 distribution to manipulate the hardware directly from C code. Our
philosophy is to stay close to the hardware, similar to assembly language programming, but with the
benefits of the easier higher-level C language. This approach allows you to directly translate from the PIC32
hardware documentation to C code because the SFRs are accessed from C using the same names as the
hardware documentation. If unsure of how to access an SFR from C code, open the processor-specific
header file <xc32dir>/<xc32ver>/pic32mx/proc/p32mx795f512l.h, search for the SFR name, and read the
declarations related to that SFR. Overall, we believe that using this low-level approach to programming the
PIC32 should provide you with a strong foundation in microcontroller programming. Additionally, after
programing using SFRs directly, you should be able to understand the documentation for any Microchip-
provided software and, if you desire, use it in your own projects.

Lynch, Marchuk, and Elwin, Northwestern U. 56 12:38 February 4, 2015

CHAPTER 4. USING LIBRARIES

4.6 Your Libraries

Now that you’ve seen how some libraries function, you can create your own libraries. As you program, try to
think about the interconnections between parts of your code. If you find that some functions are independent
of other functions, you may want to code them in separate .c and .h files. Splitting projects into multiple
files that contain related functions helps increase program modularity. By leaving some definitions out of the
header file and declaring functions and variables as static (meaning that they cannot be used outside the
module), you can hide the implementation details of your code from other code. Once you divide your code
into independent modules, you can think about which of those modules might be useful in other projects:
these files can then be used as libraries.

4.7 Chapter Summary

• A library is a .a archive of .o object files and associated .h header files that give programs access to
function prototypes, constants, macros, data types, and variables associated with the library. Libraries
can also be distributed in source code form and need not be compiled into archive format prior to being
used; in this way they are much like code that you write and split amongst multiple C files.

• For a project with multiple C files, each C file is compiled and assembled independently with the aid of
its included header files. Compiling a C file does not require the actual definitions of helper functions
in other helper C files; only the prototypes are needed. The function calls are resolved to the proper
virtual address when the multiple objects are linked. If multiple object files have functions with the
same name, the linker will fail.

• The NU32 library provides functions for initializing the PIC32 and communicating with the host
computer. The LCD library provides functions to write to a 16×2 character dot matrix LCD screen.

4.8 Exercises

1. Explain what can go wrong if a header file contains the global variable definition int i=2; if that
header file is included by multiple C files in the same project.

2. Identify which, if any, functions, constants, and global variables in NU32.c are private to NU32.c.

3. You will create your own libraries.

(a) Remove the comments from invest.c in Appendix ??. Now modify it to work on the NU32 using
the NU32 library. You will need to replace all instances of printf and scanf with appropriate
combinations of sprintf, sscanf, NU32_ReadUART1 and NU32_WriteUART1. Verify that you can
provide data to the PIC32 with your keyboard and display the results on your computer screen.
Turn in your code for all the files, with comments where you altered the input and output
statements.

(b) Split invest.c into two C files, main.c and helper.c, and one header file, helper.h. helper.c
contains all functions other than main. Which constants, function prototypes, data type definitions,
etc., should go in each file? Build your project and verify that it works. For the safety of future
helper library users, put an include guard in helper.h. Turn in your code and a separate
paragraph justifying your choice for where to put the various definitions.

(c) Break invest.c into three files: main.c, io.c, and calculate.c. Any function which handles
input or output should be in io.c. Think about which prototypes, data types, etc., are needed
for each C file and come up with a good choice of a set of header files and how to include them.
Again, for safety, use include guards in your header files. Verify that your code works. Turn in
your code and a separate paragraph justifying your choice of header files.

If you prefer, you are welcome to first solve the tasks using a C installation on your computer, then
modify the input/output functions for the NU32.

Lynch, Marchuk, and Elwin, Northwestern U. 57 12:38 February 4, 2015

CHAPTER 4. USING LIBRARIES

4. When you try to build and run a program, you could run into (at least) three different kinds of errors: a
compiler error, a linker error, or a run-time error. A compiler or linker error would prevent the building
of an executable, while a run-time error would only become evident when the program doesn’t behave
as expected. Say you’re building a program with no global variables and two C files, exactly one of
which has a main() function. For each of the three types of errors, give simple code that would lead to
it.

5. Write a function, void LCD ClearLine(int ln) that clears a single line of the LCD (either line zero
or line one). You can clear a line by writing enough space (’ ’) characters to fill it.

6. Write a function, void LCD print(const char *), that writes a string to the LCD and interprets
control characters. The function should start writing from position (0,0). A carriage return (’\r’)
should reset the cursor to the beginning of the line, and a line feed (’\n’) should move the cursor to
the other line.

Lynch, Marchuk, and Elwin, Northwestern U. 58 12:38 February 4, 2015

Chapter 5

Time and Space

Of course it is a good idea to write “efficient” code. But “efficient” can mean a number of different things,
such as time-efficient (runs fast), RAM-efficient (makes the most of limited RAM), flash-efficient (makes
the most of limited flash), but perhaps most importantly, programmer-time-efficient (minimizes the time
needed to write and debug the code, or for a future programmer to understand it). Often these interests are
in competition with each other. In fact, the XC32 compiler provides a number of compilation options, some
of which are not available in the free version of the compiler, that allow you to explicitly make space-time
tradeoffs. As one example, the compiler could “unroll” loops. If a loop is known to be executed 20 times, for
example, instead of using a small piece of code, incrementing a counter, and checking to see if the count has
reached 20, the compiler could simply write the same block of code 20 times. This may save a little bit of
execution time (no counter increments, no conditional tests, no branches) at the expense of using more flash
to store the program.

The purpose of this chapter is to make you aware of some tools for understanding the time and space
consumed by your program. These will help you squeeze the most out of your PIC32, allowing you to do
more with a given PIC32 or to choose a cheaper PIC32. More importantly, though, they help you understand
how your software works.

5.1 Compiler Optimization

The XC32 compiler provides five levels of optimization. Their availability depends on whether you have a
license for the free version of the compiler, the Standard version, or the Pro version:

Version Label Description
All O0 no optimization
All O1 level 1: attempts to reduce both code size and execution time

Standard, Pro O2 level 2: further reduces code size and execution time beyond O1

Pro O3 level 3: maximum optimization for speed
Pro Os maximum optimization for code size

The greater the optimization, the longer it takes the compiler to produce the assembly code. You can learn
more about compiler optimization in the XC32 C/C++ Compiler User’s Guide.

When you issue a make command with the Makefile from the quickstart code, you see that the compiler
is invoked with optimization level O1, using commands like

xc32-gcc -g -O1 -x c ...

-g -O1 -x c are compiler flags set in the variable CFLAGS in the Makefile. The -O1 means that optimization
level 1 is being requested.

In this chapter we examine the assembly code that the compiler produces from your C code. The mapping
between your C code and the assembly code is relatively direct when no optimization is used, but is less clear
when optimization is invoked. (We will see an example of this in Section 5.2.3.) To create clearer assembly

59

CHAPTER 5. TIME AND SPACE

code, we will find it useful to be able to make files with no optimization. This can be done by overriding the
CFLAGS variable defined in the Makefile:

> make CFLAGS="-g -x c"

or

> make write CFLAGS="-g -x c"

In these examples, since no optimization level is being specified, the default (no optimization) is applied.
Unless otherwise specified, all examples in this chapter assume that no optimization is applied.

5.2 Time and the Disassembly File

5.2.1 Timing Using a Stopwatch (or an Oscilloscope)

A direct way to time something is to toggle a digital output and look at that digital output using an
oscilloscope or stopwatch. For example:

... // digital output RA4 has been high for some time

LATACLR = 0x10; // clear RA4 to 0 (turn on NU32 LED1)

... // some code you want to time

LATASET = 0x10; // set RA4 to 1 (turn off LED1)

The time that RA4 is low (or the NU32’s LED1 is on) is approximately the duration of the code you want to
measure.

If the duration is too short to catch with your scope or stopwatch, you could modify the code to something
like

... // digital output RA4 has been high for some time

LATACLR = 0x10; // clear RA4 to 0 (turn on NU32 LED1)

for (i=0; i<1000000; i++) { // but modify 1,000,000 to something appropriate for you

... // some code you want to time

}

LATASET = 0x10; // set RA4 to 1 (turn off LED1)

Then you can divide the total time by 1,000,000.1 Keep in mind, however, that there is overhead to implement
the for loop (incrementing a counter, checking the inequality, etc.). We will see this in Section 5.2.3. If the
code you want to time uses only a few assembly instructions, then the time you actually measure will be
dominated by the implementation of the for loop.

5.2.2 Timing Using the Core Timer

A more accurate time can be obtained using a timer onboard the PIC32. The NU32’s PIC32 has 6 timers: a
32-bit core timer, associated with the MIPS CPU, and five 16-bit peripheral timers. We can use the core
timer for pure timing operations, leaving the much more flexible peripheral timers available for other tasks
(see Chapter 8). The core timer increments once for every two ticks of SYSCLK. For a SYSCLK of 80 MHz,
the timer increments every 25 ns. Because the timer is 32 bits, it rolls over every 232 × 25 ns = 107 seconds.

If you have compiled your program with the NU32 library NU32.{c,h}, you can use statements such as
the following:

unsigned int elapsedticks, elapsedns;

NU32_WriteCoreTimer(0); // set the core timer counter to 0

... // some code you want to time

elapsedticks = NU32_ReadCoreTimer(); // read the core timer

elapsedns = elapsedticks * 25; // duration in ns, for 80 MHz SYSCLK

1If you use optimization in compiling your program, however, the compiler might recognize that you are not doing anything
with the results of the loop, and not generate assembly code for the loop at all!

Lynch, Marchuk, and Elwin, Northwestern U. 60 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

Writing to and reading from the core timer takes a few processor cycles, and the timer only counts every 2
ticks of SYSCLK. To minimize the uncertainty introduced by these, you can execute the code several times
(just copy and paste it) between the write and read of the core timer. Avoid the overhead of implementing a
loop.

We can actually do a bit better. Since we are concerned about timing, let’s reduce the time to write
to and read from the core timer by eliminating the small overhead of calling and returning from the NU32
functions:

unsigned int elapsedticks, elapsedns;

_CP0_SET_COUNT(0); // set the core timer counter to 0

... // some code you want to time

elapsedticks = _CP0_GET_COUNT(); // read the core timer

elapsedns = elapsedticks * 25; // duration in ns, for 80 MHz SYSCLK

The macros CP0 SET COUNT(val) and CP0 GET COUNT() are defined in pic32mx/include/cp0defs.h, and
are resolved to macros in pic32mx/include/xc.h, which call functions that are built-in to the compiler,
resulting in a minimum number of assembly language commands.

If the core timer is being used to time different things, do not reset the counter to zero. Instead, read the
value initial at the start of the timing, then the value final at the end, and subtract. If final is less than
initial, then a core timer rollover occurred, and the actual number of elapsed ticks (assuming only one
rollover) is 232 + final− initial.

In the next section we look more systematically at the assembly code created by our C code.

5.2.3 Disassembling Your Code

A convenient way to examine the time efficiency of your code is to look at the assembly code produced by
the compiler. The fewer instructions, the faster your code will execute.

In Chapter 3.5, we claimed that the code

LATAINV = 0x30;

is more efficient than

LATAbits.LATA4 = !LATAbits.LATA4; LATAbits.LATA5 = !LATAbits.LATA5;

Let’s examine that claim by looking at the assembly code of the following program. This program simply
delays by executing a for loop 50 million times, then toggles RA5 (LED2 on the NU32).

Code Sample 5.1. timing.c. RA5 toggles (LED2 on the NU32 flashes).

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // peripheral.h, config bits, constants, functions for startup and UART

#define DELAYTIME 50000000 // 50 million

void delay(void);

void toggleLight(void);

int main(void) {

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

while(1) {

delay();

toggleLight();

}

}

Lynch, Marchuk, and Elwin, Northwestern U. 61 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

void delay(void) {

int i;

for (i = 0; i < DELAYTIME; i++) {

; //do nothing

}

}

void toggleLight(void) {

LATAINV = 0x0020; // invert the LED (which is on port A5)

// LATAbits.LATA5 = !LATAbits.LATA5;

}

Put timing.c in a project directory together with the Makefile, NU32.c, NU32.h, and NU32bootloaded.ld,
and nothing else. Then use

> make CFLAGS="-g -x c"

to build with no optimization. The Makefile automatically disassembles the out.elf file to the file out.dis,
but if you wanted to do it manually, you could type

> xc32-objdump -S out.elf > out.dis

Open out.dis in a text editor. You will see a listing showing the assembly code corresponding to out.hex.
Included in the file is your C code and, below your C statements, the assembly code it generated.2 Each
assembly line has the actual virtual address where the assembly instruction is placed in memory, the 32-bit
machine instruction, and the equivalent human-readable (if you know assembly!) assembly code. Let’s look
at the segment of the listing corresponding to the command LATAINV = 0x20. You should see something like

LATAINV = 0x0020; // invert the LED (which is on port A5)

9d002464: 3c02bf88 lui v0,0xbf88

9d002468: 24030020 li v1,32

9d00246c: ac43602c sw v1,24620(v0)

// LATAbits.LATA5 = !LATAbits.LATA5;

We see that the LATAINV = 0x20 command has expanded to three assembly statements. Without going into
detail3, the li stores the base-10 value 32 (or hex 0x20) in the CPU register v1, which is then written by the
sw command to the memory address corresponding to LATAINV.

If instead we comment out the LATAINV = 0x0020; command and replace it with the bit manipulation
version, we get the following disassembly:

// LATAINV = 0x0020; // invert the LED (which is on port A5)

LATAbits.LATA5 = !LATAbits.LATA5;

9d002464: 3c02bf88 lui v0,0xbf88

9d002468: 8c426020 lw v0,24608(v0)

9d00246c: 30420020 andi v0,v0,0x20

9d002470: 2c420001 sltiu v0,v0,1

9d002474: 304400ff andi a0,v0,0xff

9d002478: 3c03bf88 lui v1,0xbf88

9d00247c: 8c626020 lw v0,24608(v1)

9d002480: 7c822944 ins v0,a0,0x5,0x1

9d002484: ac626020 sw v0,24608(v1)

The bit manipulation version requires nine assembly statements. Basically the value of LATA is being copied
to a CPU register, manipulated, then stored back in LATA. In contrast, with the LATAINV syntax, there is
no copying the values of LATAINV back and forth.

2The output from the xc32-objdump disassembler is not perfect. While the assemmbly code should be correct, portions of
your C code may be duplicated for no apparent reason.

3You can look up the MIPS32 assembly instruction set if you’re interested.

Lynch, Marchuk, and Elwin, Northwestern U. 62 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

Although one method of manipulating the SFR bit appears three times slower than the other, we don’t
yet know how many CPU cycles each consumes. Assembly instructions are generally performed in a single
clock cycle, but there is still the question of whether the CPU is getting one instruction per cycle. (Recall
the issue of slow program flash.) We will look at this further with the prefetch cache module in Section 5.2.4
below. For now, though, let’s time that delay loop that is executed 50 million times. Here is the disassembly
for delay(), with comments added to the right:

void delay(void) {

9d002408: 27bdfff0 addiu sp,sp,-16 // manipulate the stack pointer on ...

9d00240c: afbe000c sw s8,12(sp) // ... entering the function (see text)

9d002410: 03a0f021 move s8,sp

int i;

for (i = 0; i < DELAYTIME; i++) {

9d002414: afc00000 sw zero,0(s8) // initialization of i in RAM to 0

9d002418: 0b40090b j 9d00242c // jump to 9d00242c (skip adding 1 to i), but ...

9d00241c: 00000000 nop // ... "no operation" executed in "delay slot" before jump

9d002420: 8fc20000 lw v0,0(s8) // start of the loop; load RAM i into register v0

9d002424: 24420001 addiu v0,v0,1 // add 1 to v0 ...

9d002428: afc20000 sw v0,0(s8) // ... and store it to i in RAM

9d00242c: 8fc30000 lw v1,0(s8) // load i into register v1

9d002430: 3c0202fa lui v0,0x2fa // load the upper 16 bits and ...

9d002434: 3442f080 ori v0,v0,0xf080 // ... the lower 16 bits of 50,000,000 into v0

9d002438: 0062102a slt v0,v1,v0 // store "true" (1) in v0 if v1 < v0

9d00243c: 1440fff8 bnez v0,9d002420 // if v0 does not equal 0, branch to top of loop, but ...

9d002440: 00000000 nop // ... branch delay slot is executed before branch

; //do nothing

}

}

9d002444: 03c0e821 move sp,s8 // manipulate the stack pointer on exiting

9d002448: 8fbe000c lw s8,12(sp)

9d00244c: 27bd0010 addiu sp,sp,16

9d002450: 03e00008 jr ra // jump to return address ra stored by jal, but ...

9d002454: 00000000 nop // ... jump delay slot is executed before jump

There are nine instructions in the delay loop itself, starting with lw v0,0(s8) and ending with the next
nop. When the LED comes on, these instructions are carried out 50 million times, and then the LED turns
off. (There are a few other instructions to set up the loop, but the duration of these is negligible compared to
the 50 million executions of the loop.) So if one instruction is executed per cycle, we would predict the light
to stay on for approximately 50 million × 9 instructions × 12.5 ns/instruction = 5.625 seconds. When we
time by a stopwatch, we get about 6.25 seconds, which implies 10 CPU (SYSCLK) cycles per loop. So our
cache module has the CPU executing one assembly instruction almost every cycle.

In the code above there are two “jumps” (j for “jump” to the specified address and jr for “jump register”
to jump to the address in the return address register ra, which was set by the calling function) and one
“branch” (bnez for “branch if not equal to zero”). For MIPS32, the command after a jump or branch is
executed before the jump actually occurs. This next command is said to be in the “delay slot” for the jump
or branch. In all three delay slots in this code is a nop command, which stands for “no operation.”

You might notice a few ways you could have written the assembly code for the delay function to use fewer
assembly commands. This is certainly one of the advantages of coding directly in assembly: direct control
of the processor instructions. The disadvantage, of course, is that MIPS32 assembly is a much lower-level
language than C, requiring significantly more knowledge of MIPS32 from the programmer. Until you have
already invested a great deal of time learning the assembly language, programming in assembly fails the
“programmer-time-efficient” criterion! (Not to mention that delay() was designed to waste time, so no need
to minimize assembly lines!)

Another thing you may have noticed in the disassembly of delay() is the manipulation of the stack
pointer (sp) upon entering and exiting the function. The stack is an area of RAM that holds temporary
local variables and parameters. When a function is called, its parameters and local variables are “pushed”
onto the stack. When the function exits, the local variables are “popped” off of the stack by moving the

Lynch, Marchuk, and Elwin, Northwestern U. 63 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

stack pointer back to its original position before the function was called. A stack overflow occurs if there is
not enough RAM available to the stack to hold all the local variables defined in currently-called functions.
We will see the stack again in Section 5.3.

The overhead due to passing parameters and manipulating the stack pointer on entering and exiting a
function should not discourage you from writing modular code. This should only be a concern when your
code is fully debugged and you are trying to squeeze a final few nanoseconds out of your program execution
time.

Finally, if you compiled timing.c with optimization level 1 (the optimization flag -O1, the default for the
Makefile), you would see that delay() is optimized to

void delay(void) {

9d00220c: 3c0202fa lui v0,0x2fa // load the upper 16 bits and ...

9d002210: 3442f080 ori v0,v0,0xf080 // ... the lower 16 bits of 50,000,000 into v0

9d002214: 2442ffff addiu v0,v0,-1 // subtract 1 from v0

int i;

for (i = 0; i < DELAYTIME; i++) {

9d002218: 1440ffff bnez v0,9d002218 // if v0 != 0, branch back to the same line, but ...

9d00221c: 2442ffff addiu v0,v0,-1 // ... before branch completes, subtract 1 from v0

; //do nothing

}

}

9d002220: 03e00008 jr ra // jump to return address ra stored by jal

9d002224: 00000000 nop // no operation in jump delay slot

No local variables are stored in RAM, and there is no stack pointer manipulation upon entering and exiting
the function. The counter variable is simply stored in a CPU register. The loop itself has only two lines
instead of nine, and it has been designed to count down from 49,999,999 to zero instead of counting up. The
branch delay slot is actually used to implement the counter update instead of having a wasted nop cycle.

More importantly, however, delay() is never called by the assembly code for main in our -O1 optimized
code! The compiler has recognized that delay() doesn’t do anything. As a result, the LED toggles so quickly
that you can’t see it by eye. The LED just looks dim.4

5.2.4 The Prefetch Cache Module

In the previous section, we saw that our timing.c program was executing an assembly instruction nearly
every clock cycle. This is because NU32 Startup() optimized performance by turning on the prefetch cache
module and choosing the minimum number of CPU wait cycles for instructions loading from flash.5

Let’s try turning off the prefetch cache module to see the effect on our program timing.c. The prefetch
cache module performs two primary tasks: (1) it keeps recent instructions in the cache, ready if the CPU
requests the instruction at that address again (allowing the cache to completely store small loops); and (2)
for linear code it runs ahead so as to have the instruction ready to go when needed (prefetch). We can disable
each of these functions separately, or we can disable both.

Let’s start by disabling both. Modify timing.c in Code Sample 5.1 by adding

NU32_DisableCache(); // Turn off function (1), storing recent instructions in cache

CHECONCLR = 0x30; // Turn off function (2), prefetch

right after NU32 Startup() in main. Everything else stays the same. The first line is an NU32 function to
turn off storing recent instructions in cache. As for the second line, consulting the section on the prefetch

4To prevent delay() from being optimized away, we could have added a “no operation” nop(); command inside the delay
loop. Or we could have used a volatile variable inside the loop. Or we could just use polling of the core timer to implement a
desired delay.

5The number of “wait cycles” is the number of extra cycles the CPU is told to wait for instructions to finish loading from
flash if they are not cached. Since the PIC32’s flash operates at a maximum of 30 MHz and the CPU operates at 80 MHz, the
number of wait cycles is configured as two in NU32 Startup(), to allow three total cycles for a flash instruction to load. Fewer
wait cycles would result in an error in operation, and more wait cycles would slow performance unnecessarily.

Lynch, Marchuk, and Elwin, Northwestern U. 64 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

cache module in the Reference Manual, we see that bits 4 and 5 of the SFR CHECON determine whether
instructions are prefetched, and that clearing both bits disables predictive prefetch.

Recompiling timing.c with with no compiler optimizations and rerunning, we find that the LED stays
on for approximately 17 seconds, compared to approximately 6.25 seconds before. This corresponds to 27
SYSCLK cycles per delay loop, which we saw earlier has nine assembly commands. These numbers make
sense—since the prefetch cache is completely disabled, it takes three CPU cycles (one request cycle plus two
wait cycles) for each instruction to get from flash to the CPU.

If we comment out the second line, so that (1) the cache of recent instructions is off but (2) the prefetch
is enabled, and rerun, we find that the LED stays on for about 8.1 seconds, or 13 SYSCLK cycles per loop, a
small penalty compared to our original performance of 10 cycles. The prefetch is able to run ahead to grab
future instructions, but it cannot run past the for loop conditional statement, since it does not know the
outcome of the test.

Finally, if we comment out the first line but leave the second line uncommented, so that (1) the cache of
recent instructions is on but (2) the prefetch is disabled, we recover our original performance of approximately
6.25 seconds or 10 SYSCLK cycles per loop. The reason is that the entire loop is stored in the cache, so
prefetch is not necessary.

5.2.5 Math

For real-time systems, it is often critical to perform mathematical operations as quickly as possible. Mathe-
matical expressions should be coded to minimize execution time. We will delve into the speed of various
math operations in the Exercises, but here are a few rules of thumb for efficient math:

• There is no floating point unit on the PIC32MX, so all floating point math is carried out in software.
Integer math is much faster than floating point math. If speed is an issue, perform all math as integer
math, scaling the variables as necessary to maintain precision, and only convert to floating point when
needed.

• Floating point division is slower than multiplication. If you will be dividing by a fixed value many
times, consider taking the reciprocal of the value once and then using multiplication thereafter.

• Functions such as trigonometric functions, logarithms, square roots, etc. in the math library are generally
slower to evaluate than arithmetic functions. Their use should be minimized when speed is an issue.

• Partial results should be stored in variables for future use to avoid performing the same computation
multiple times.

5.3 Space and the Map File

The previous section focused on the time of execution. Now let’s look at how much program memory (flash)
and data memory (RAM) our programs use.

The linker allocates virtual addresses in program flash for all program instructions, and virtual addresses
in data RAM for all global variables. The rest of RAM is allocated to the heap and the stack.

The heap is memory set aside to hold dynamically allocated memory, as allocated by malloc and calloc.
These functions allow you to declare a variable size array, for example, while the program is running, instead
of specifying a (possibly space-wasteful) fixed-sized array in advance.

The stack holds temporary local variables used by functions. When a function is called, space on the
stack is allocated for its local variables. When the function exits, the local variables are thrown away and the
space is made available again by simply moving the stack pointer. The stack grows “down” from the end of
RAM—as local variables are “pushed” onto the stack, the stack pointer address decreases, and when local
variables are ”popped” off the stack after exiting a function, the stack pointer address increases. (See the
assembly listing for delay() in timing.c in Section 5.2.3 for an example of moving the stack pointer when a
function is called and when it exits.)

If your program attempts to put too many local variables on the stack (stack overflow), the error won’t
show up until run time. The linker does not catch this error because it does not explicitly set aside space for
temporary local variables; it assumes they will be handled by the stack.

Lynch, Marchuk, and Elwin, Northwestern U. 65 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

To dig a little deeper into how memory is allocated, we can ask the linker to create a “map” file when it
creates the .elf file. The map file indicates where instructions are placed in program memory and where
global variables are placed in data memory. Your Makefile automatically creates an out.map file for you by
including the -Map option to the linker command:

> xc32-gcc [details omitted] -Wl,--script="NU32bootloaded.ld",-Map="out.map"

The map file can be opened with a text editor.
Let’s look at the out.map file for timing.c as shown in Code Sample 5.1, and again compiled with no

optimizations. There’s a lot in this file, but here’s an edited portion of it:

Microchip PIC32 Memory-Usage Report

kseg0 Program-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

.text 0x9d001e00 0x4fc 1276 App’s exec code

.text.general_exception 0x9d0022fc 0xdc 220

.text 0x9d0023d8 0xac 172 App’s exec code

.text.main_entry 0x9d002484 0x4c 76

.text._bootstrap_except 0x9d0024d0 0x48 72

.text._general_exceptio 0x9d002518 0x48 72

.text 0x9d002560 0x44 68 App’s exec code

.vector_default 0x9d0025a4 0x38 56

.text 0x9d0025dc 0x18 24 App’s exec code

.dinit 0x9d0025f4 0x10 16

.text._on_reset 0x9d002604 0x8 8

.text._on_bootstrap 0x9d00260c 0x8 8

Total kseg0_program_mem used : 0x814 2068 0.4% of 0x7e200

kseg0 Boot-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

Total kseg0_boot_mem used : 0 0 <1% of 0x970

Exception-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

.app_excpt 0x9d000180 0x10 16 General-Exception

.vector_0 0x9d000200 0x8 8 Interrupt Vector 0

.vector_1 0x9d000220 0x8 8 Interrupt Vector 1

[[[... snipping long list of vectors ...]]]

.vector_51 0x9d000860 0x8 8 Interrupt Vector 51

Total exception_mem used : 0x1b0 432 10.5% of 0x1000

kseg1 Boot-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

.reset 0xbd001970 0x1f0 496 Reset handler

.bev_excpt 0xbd001cf0 0x10 16 BEV-Exception

Total kseg1_boot_mem used : 0x200 512 43.8% of 0x490

--

Total Program Memory used : 0xbc4 3012 0.6% of 0x80000

--

The kseg0 program memory usage report tells us that 2068 (or 0x814) bytes are used for the main part
of our program. The first entry is denoted .text, which stands for program instructions. It is the largest

Lynch, Marchuk, and Elwin, Northwestern U. 66 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

single section, using 1276 bytes, described as App’s exec code, and installed starting at VA 0x9d001e00.
Searching for this address in the map file, we see that this is the code for NU32.o, the object code associated
with the NU32 library.

Going down through the subsequent sections of kseg0 program memory, we see that the sections are
packed tightly and in order of decreasing section size. The next section is .text.general exception, which
corresponds to a routine that is called when the CPU encounters certain types of “exceptions” (run-time
errors). This code was linked from pic32mx/lib/libpic32.a. The next .text section, also labeled App’s

exec code, is the obect code timing.o, 172 (or 0xac) bytes long. Searching for timing.o we find the
following text:

.text 0x9d0023d8 0xac

.text 0x9d0023d8 0xac timing.o

0x9d0023d8 main

0x9d002408 delay

0x9d002458 toggleLight

Our functions main, delay, and toggleLight of timing.o are stored consecutively in memory. The addresses
agree with our disassembly file from Section 5.2.3.

Continuing, the kseg0 boot memory report indicates that no code is placed in this memory region. The
exception memory report indicates that placeholders for instructions corresponding to interrupts occupy
432 bytes. Finally, the kseg1 boot memory report indicates that the C runtime startup code installed reset
functions that occupy 512 bytes. The address of the .reset section is the address that the bootloader
(already installed in the 12 K boot flash) jumps to.

In all, 3012 bytes of the 512 KB of program memory are used.
Continuing further in the map file, we see

kseg1 Data-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

Total kseg1_data_mem used : 0 0 <1% of 0x20000

--

Total Data Memory used : 0 0 <1% of 0x20000

--

Dynamic Data-Memory Reservation

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

heap 0xa0000008 0 0 Reserved for heap

stack 0xa0000020 0x1ffd8 131032 Reserved for stack

There are no global variables, so no kseg1 data memory is used. The heap size is zero, so essentially all data
memory is reserved for the stack.

Now let’s modify our program by adding some useless global variables, just to see what happens to the
map file. Let’s add the following lines just before main:

char my_cat_string[] = "2 cats!";

int my_int = 1;

char my_message_string[] = "Here’s a long message stored in a character array.";

char my_small_string[6], my_big_string[97];

Rebuilding and examining the new map file, we see the following for the data memory report:

kseg1 Data-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

.sdata 0xa0000000 0xc 12 Small init data

.sbss 0xa000000c 0x6 6 Small uninit data

Lynch, Marchuk, and Elwin, Northwestern U. 67 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

.bss 0xa0000014 0x64 100 Uninitialized data

.data 0xa0000078 0x34 52 Initialized data

Total kseg1_data_mem used : 0xaa 170 0.1% of 0x20000

--

Total Data Memory used : 0xaa 170 0.1% of 0x20000

--

Our global variables now occupy 170 bytes of data RAM. The global variables have been placed in four
different data memory sections, depending on whether the variable is small or large (according to a command
line option or xc32-gcc default) and whether or not it is initialized:

section name data type variables stored there
.sdata small initialized data my_cat_string, my_int
.sbss small uninitialized data my_small_string

.bss larger uninitialized data my_big_string

.data larger initialized data my_message_string

Searching for the .sdata section further in the map file, we see

.sdata 0xa0000000 0xc timing.o

0xa0000000 my_cat_string

0xa0000008 my_int

0xa000000c _sdata_end = .

Even though the string my_cat_string uses only 7 bytes, the variable my_int starts 8 bytes after the start
of my_cat_string. This is because variables are aligned on four-byte boundaries. Similarly, the strings
my_message_string, my_small_string, and my_big_string occupy memory to the next four-byte boundary.
You are not saving memory by defining a string as 5 bytes instead of 8 bytes.

Apart from the addition of these sections to the data memory usage report, we see that the global variables
reduce the data memory available for the stack, and the .dinit (global data initialization, from the C runtime
startup code) section of the kseg0 program memory report has grown to 112 bytes, meaning that our total
kseg0 program memory used is now 2164 bytes instead of 2068.

Now let’s make one last change. Let’s move the definition

char my_cat_string[] = "2 cats!";

inside the main function, so that my cat string is now local to main. Building the program again, we find in
the data memory report that the initialized global variable section .sdata has shrunk by 8 bytes, as expected.

kseg1 Data-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

.sdata 0xa0000000 0x4 4 Small init data

.sbss 0xa0000004 0x6 6 Small uninit data

.bss 0xa000000c 0x64 100 Uninitialized data

.data 0xa0000070 0x34 52 Initialized data

Total kseg1_data_mem used : 0xa2 162 0.1% of 0x20000

--

Total Data Memory used : 0xa2 162 0.1% of 0x20000

--

Now looking at the kseg0 program memory report

kseg0 Program-Memory Usage

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

.text 0x9d001e00 0x4fc 1276 App’s exec code

.text.general_exception 0x9d0022fc 0xdc 220

.text 0x9d0023d8 0xc4 196 App’s exec code

Lynch, Marchuk, and Elwin, Northwestern U. 68 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

.dinit 0x9d00249c 0x60 96

[[[... snipping long kseg0_program_mem report ...]]]

.rodata 0x9d00266c 0x8 8 Read-only const

.text._on_reset 0x9d002674 0x8 8

.text._on_bootstrap 0x9d00267c 0x8 8

Total kseg0_program_mem used : 0x884 2180 0.4% of 0x7e200

we see that timing.o is now 196 bytes as compared to 172 before. This is because the initialization of
my cat string is now taken care of by assembly commands in the code, not by the global variable initialization
in .dinit. A new section, .rodata for “read only data,” appears in the program memory usage, corresponding
to the string "2 cats!". The global data initialization section .dinit shrinks from 112 bytes to 96 bytes
since it is no longer responsible for initializing my cat string.

Finally, we might wish to reserve some RAM for dynamic memory allocation using malloc or calloc. By
default, the heap size is set to zero. To set a nonzero heap size, we can pass a linker option to xc32-gcc:

xc32-gcc [details omitted] -Wl,--script="NU32bootloaded.ld",-Map="out.map",--defsym=_min_heap_size=4096

This defines a heap of 4 KB. After building, the map file shows

Dynamic Data-Memory Reservation

section address length [bytes] (dec) Description

------- ---------- ------------------------- -----------

heap 0xa00000a8 0x1000 4096 Reserved for heap

stack 0xa00010c0 0x1ef30 126768 Reserved for stack

The heap is allocated at low RAM addresses, close after the global variables, starting in this case at address
0xa00000a8. The stack occupies most of the rest of RAM.

5.4 Chapter Summary

• The CPU’s core timer increments once every two ticks of the SYSCLK, or every 25 ns for an 80 MHz
SYSCLK. The commands NU32 WriteCoreTimer(0); and unsigned int dt = NU32 ReadCoreTimer();

can be used to measure the execution time of the code in between to within a few SYSCLK cycles.

• To generate a disassembly listing at the command line, use xc32-objdump -S filename.elf >

filename.dis.

• With the prefetch cache module fully enabled, your PIC32 should be able to execute an assembly
instruction nearly every cycle. The prefetch allows instructions to be fetched in advance for linear code,
but the prefetch cannot run past conditional statements. For small loops, the entire loop can be stored
in the cache.

• The linker assigns specific program flash VAs to all program instructions and data RAM VAs to all
global variables. The remainder of RAM is allocated to the heap, for dynamic memory allocation, and
to the stack, for function parameters and temporary local variables. The heap is zero bytes by default.

• A map file provides a detailed summary of memory usage. To generate a map file at the command line,
use the -Map option to the linker, e.g.,

xc32-gcc [details omitted] -Wl,-Map="out.map"

• Global variables can be initialized (assigned a value when they are defined) or uninitialized. Initialized
global variables are stored in RAM memory sections .data and .sdata and uninitialized globals are
stored in RAM memory sections .bss and .sbss. Sections beginning with .s mean that the variables
are “small.” When the program is executed, initialized global variables are assigned their values by C
runtime startup code, and uninitialized global variables are set to zero.

Lynch, Marchuk, and Elwin, Northwestern U. 69 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

• Global variables are packed tightly at the beginning of data RAM, 0xA0000000. The heap comes
immediately after. The stack begins at the high end of RAM and grows “down” toward lower RAM
addresses. Stack overflow occurs if the stack pointer attempts to move into an area reserved for the
heap or global variables.

5.5 Exercises

Unless otherwise specified, compile with no optimizations for all problems.

1. Describe two examples of how you can write code differently to either make it execute faster or use less
program memory.

2. Compile and run timing.c, Code Sample 5.1, with no optimizations (make CFLAGS="-g -x c"). With
a stopwatch, verify the time taken by the delay loop. Do your results agree with Section 5.2.3?

3. You will look at the disassembly for two programs with a similar function.

(a) Write a short program that uses NU32 WriteCoreTimer(0) and elapsed = NU32 ReadCoreTimer()

to time a few C statements. Disassemble your executable and look at it. If you assume that
one assembly instruction is executed per clock cycle, how many SYSCLK cycles does it take to
complete the NU32 WriteCoreTimer command? How many cycles does it take to complete the
NU32 ReadCoreTimer command? Approximately how much error will you have in your estimate
of the timed code? (It’s not a sum of the two.)

(b) Now replace the NU32 WriteCoreTimer(0) and elapsed = NU32 ReadCoreTimer() with the
cp0defs.h macros, as in Section 5.2.2. Disassemble and look at the code, and answer the
same questions.

4. To write time-efficient code, it is important to understand that some mathematical operations are faster
than others. We will look at the disassembly of code that performs simple arithmetic operations on
different data types. Create a program with the following local variables in main:

char c1=5, c2=6, c3;

int i1=5, i2=6, i3;

long long int j1=5, j2=6, j3;

float f1=1.01, f2=2.02, f3;

long double d1=1.01, d2=2.02, d3;

Now write code that performs add, subtract, multiply, and divide for each of the five data types, i.e.,
for chars:

c3 = c1+c2;

c3 = c1-c2;

c3 = c1*c2;

c3 = c1/c2;

Build the program with no optimization and look at the disassembly. For each of the statements, you’ll
notice that some of the assembly code involves simply loading the variables from RAM into CPU
registers and storing the result (also in a register) back to RAM. Also, while some of the statements are
completed by a few assembly commands in sequence, others result in a jump to a software subroutine
to complete the calculation. (These subroutines are provided with our C installation and included in
the linking process.) Answer the following questions.

(a) Which combinations of data types and arithmetic functions result in a jump to a subroutine? From
your disassembly file, copy the C statement and the assembly commands it expands to (including
the jump) for one example.

Lynch, Marchuk, and Elwin, Northwestern U. 70 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

(b) For those statements that do not result in a jump to a subroutine, which combination(s) of data
types and arithmetic functions result in the fewest assembly commands? From your disassembly,
copy the C statement and its assembly commands for one of these examples. Is the smallest data
type, char, involved in it? If not, what is the purpose of extra assembly command(s) for the char

data type vs. the int data type? (Hint: the assembly command ANDI takes the bitwise AND of the
second argument with the third argument, a constant, and stores the result in the first argument.
Or you may wish to look up a MIPS32 assembly instruction reference.)

(c) Fill in the following table. Each cell should have two numbers: the number of assembly commands
for the specified operation and data type, and the ratio of this number (greater than or equal to
1.0) to the smallest number of assembly commands in the table. For example, if addition of two
ints takes four assembly commands, and this is the fewest in the table, then the entry in that cell
would be 1.0 (4). This has been filled in below, but you should change it if you get a different
result. If a statement results in a jump to a subroutine, write J in that cell.

char int long long float long double

+ 1.0 (4)
−
∗
/

(d) From the disassembly, find out the name of any math subroutine that has been added to your
assembly code. Now create a map file of the program. Where are the math subroutines installed in
virtual memory? Approximately how much program memory is used by each of the subroutines?
You can use evidence from the disassembly file and/or the map file. (Hint: You can search
backward from the end of your map file for the name of any math subroutines.)

5. Let’s look at the assembly code for bit manipulation. Create a program with the following local
variables:

unsigned int u1=33, u2=17, u3;

and look at the assembly commands for the following statements:

u3 = u1 & u2; // bitwise AND

u3 = u1 | u2; // bitwise OR

u3 = u2 << 4; // shift left 4 spaces, or multiply by 2^4 = 16

u3 = u1 >> 3; // shift right 3 spaces, or divide by 2^3 = 8

How many commands does each use? For unsigned integers, bit-shifting left and right make for
computationally efficient multiplies and divides, respectively, by powers of 2.

6. Use the core timer to calculate a table similar to that in Problem 4, except with entries corresponding
to the actual execution time in terms of SYSCLK cycles. So if a calculation takes 15 cycles, and the
fastest calculation is 10 cycles, the entry would be 1.5 (15). This table should contain all 20 entries,
even for those that jump to subroutines. (Note: subroutines often have conditional statements, meaning
that the calculation could terminate faster for some operands than for others. You can report the
results for the variable values given in Problem 4.)

To minimize uncertainty due to the setup and reading time of the core timer, and the fact that the
timer only increments once every two SYSCLK cycles, each math statement could be repeated ten or
more times (no loops) between setting the timer to zero and reading the timer. The average number of
cycles, rounded down, should be the number of cycles for each statement. Use the NU32 communication
routines, or any other communication routines, to report the answers back to your computer.

7. Certain math library functions can take quite a bit longer to execute than simple arithmetic functions.
Examples include trigonometric functions, logarithms, square roots, etc. Make a program with the
following local variables:

Lynch, Marchuk, and Elwin, Northwestern U. 71 12:38 February 4, 2015

CHAPTER 5. TIME AND SPACE

float f1=2.07, f2; // four bytes for each float

long double d1=2.07, d2; // eight bytes for each long double

Also be sure to put #include <math.h> at the top of your program to make the math function
prototypes available.

(a) Using methods similar to those in Problem 6, measure how long it takes to perform each of f2 =

cosf(f1), f2 = sqrtf(f1), d2 = cos(d1), and d2 = sqrt(d1).

(b) Copy and paste the disassembly from a f2 = cosf(f1) statement and a d2 = cos(d1) statement
into your solution set and compare them. Based on the comparison of the assembly codes,
comment on the advantages and disadvantages of using the eight-byte long double floating point
representation compared to the four-byte float representation when you compute a cosine with
the PIC32 compiler.

(c) Make a map file for this program, and search for the references to the math library libm.a in the
map file. There are several libm.a files in your C installation, but which one was used by the
linker when you built your program? Give the directory.

8. Explain what stack overflow is, and give a short code snippet (not a full program) that would result in
stack overflow on your PIC32.

9. In the map file of the original timing.c program, there are several App’s exec code, one corresponding
to timing.o. Explain briefly what each of the others are for. Provide evidence for your answer from
the map file.

10. Create a map file for simplePIC.c from Chapter 3. (a) How many bytes does simplePIC.o use? (b)
Where are the functions main and delay placed in virtual memory? Are instructions at these locations
cacheable? (c) Search the map file for the .reset section. Where is it in virtual memory? Is it
consistent with your NU32bootloaded.ld linker file? (d) Now augment the program by defining short

int, long int, long long int, float, double, and long double global variables. Provide evidence
from the map file indicating how much memory each data type uses.

11. Assume your program defines a global int array int glob[5000]. Now what is the maximum size of
an array of ints that you can define as a local variable for your particular PIC32?

12. Provide global variable definitions (not an entire program) so that the map file has data sections .sdata
of 16 bytes, .sbss of 24 bytes, .data of 0 bytes, and .bss of 200 bytes.

13. If you define a global variable and you want to set its initial value, is it “better” to initialize it when
the variable is defined or to initialize it in a function? Explain any pros and cons.

Lynch, Marchuk, and Elwin, Northwestern U. 72 12:38 February 4, 2015

Chapter 6

Interrupts

Say the PIC32 is attending to some mundane task when an important event occurs. For example, the user
has pressed a button. We want the PIC32 to respond immediately. To do so, we have this event generate
an interrupt, or interrupt request (IRQ), which interrupts the program and sends the CPU to execute some
other code, called the interrupt service routine (ISR). Once the ISR has completed, the CPU returns to its
original task.

Interrupts are a key concept in embedded real-time control, and they can arise from many different events.
This chapter provides a summary of PIC32 interrupt handling.

6.1 Overview

Interrupts can be generated by the processor core, peripherals, and external inputs. Example events include

• a digital input changing its value,

• information arriving on a communication port,

• the completion of some task a PIC32 peripheral was executing in parallel with the CPU, and

• the elapsing of a specified amount of time.

As an example, to guarantee performance in real-time control applications, sensors must be read and new
control signals calculated at a known fixed rate. For a robot arm, a common control loop frequency is 1 kHz.
So we could configure one of the PIC32’s counter/timers to use the peripheral bus clock as input and roll
over every 80,000 ticks × 12.5 ns/tick = 1 ms. This roll-over event generates the interrupt that calls the
feedback control ISR, which reads sensors and produces output. In this case, we would have to make sure
that the control ISR is efficient code that always executes in less than 1 ms. (To check this, you could use the
core timer to measure the time between entering and exiting the ISR.)

Imagine the PIC32 is controlling the robot arm to hold steady at a particular position when it receives a
message from the user over the UART, asking the arm to move to a new position. The arrival of data on the
UART generates an interrupt, and the corresponding ISR reads in the information and stores it in global
variables representing the desired state. These desired states are used in the feedback control ISR.

So what happens if the PIC32 is in the middle of executing the control ISR when the communication
interrupt is generated? Or if the PIC32 is in the middle of the communication ISR and a control interrupt
is generated? We have to choose which has higher priority. If a high priority interrupt occurs while a low
priority ISR is executing, the CPU will jump to the high priority ISR, complete it, and then return to finish
the low priority ISR. If a low priority interrupt occurs while a high priority ISR is executing, the low priority
ISR will remain pending until the high priority ISR is finished executing. When it is finished, the CPU jumps
to the low priority ISR.

In our example, communication could be slow, and we might not have a guarantee as to the duration. To
ensure the stability of the robot arm, we would probably choose the control interrupt to have higher priority

73

CHAPTER 6. INTERRUPTS

than the communication interrupt. But we would also have to ensure that the control ISR executes quickly
enough to allow time for communication and other processes.

Every time an interrupt is generated, the CPU must save the contents of the internal CPU registers,
called the “context,” to the stack (data RAM). It then uses its registers in the execution of the ISR. After
the ISR completes, it copies the context from RAM back to its registers and continues where it left off before
the interrupt. The copying of register data back and forth is called “context save and restore.”

6.2 Details

The address of an ISR in virtual memory is determined by the interrupt vector associated with the IRQ. The
PIC32MX supports up to 64 unique interrupt vectors (and therefore 64 ISRs). For timing.c in Chapter 5.3,
the virtual addresses of the interrupt vectors can be seen in this edited exception memory listing from the
map file (an interrupt is also known as an “exception”):

.vector_0 0x9d000200 0x8 8 Interrupt Vector 0

.vector_1 0x9d000220 0x8 8 Interrupt Vector 1

[[[... snipping long list of vectors ...]]]

.vector_51 0x9d000860 0x8 8 Interrupt Vector 51

If an ISR has been written for the core timer (interrupt vector 0), the code at 0x9D000200 simply contains a
jump to the location in program memory that actually holds the ISR.

Although the PIC32 can have only 64 interrupt vectors, it has up to 96 events (or IRQs) that generate an
interrupt. Therefore some of the IRQs share the same interrupt vector and ISR.

Before interrupts can be used, the CPU has to be enabled to process them in either “single vector mode”
or “multi-vector mode.” In single vector mode, all interrupts jump to the same ISR. This is the default
setting on reset of the PIC32. In multi-vector mode, different interrupt vectors are used for different IRQs.
We typically use multi-vector mode, which is set by NU32 Startup().

After interrupts have been enabled, the CPU jumps to an ISR when three conditions are satisfied: (1) the
specific IRQ has been enabled by setting a bit to 1 in the SFR IECx (one of three Interrupt Enable Control
SFRs, with x equal to 0, 1, or 2); (2) some event causes a 1 to be written to the same bit of the SFR IFSx
(Interrupt Flag Status); and (3) the priority of the interrupt vector, as represented in the SFR IPCy (one of
16 Interrupt Priority Control SFRs, y=0. . . 15), is greater than the current priority of the CPU. If the first
two conditions are satisfied, but not the third, the interrupt waits until the CPU’s priority drops lower.

The “x” in the IECx and IFSx SFRs above can be 0, 1, or 2, corresponding to (3 SFRs) × (32 bits) = 96
interrupt sources. The “y” in IPCy takes values 0. . . 15, and each of the IPCy registers contains the priority
level for four different interrupt vectors, i.e., (16 SFRs) × (four vectors per register) = 64 interrupt vectors.
The priority level for each of the 64 vectors is represented by five bits: three indicating the priority (taking
values 0 to 7, or 0b000 to 0b111; a priority of 0 indicates that the interrupt is disabled) and two indicating
the subpriority (taking values 0 to 3). Thus each IPCy has 20 relevant bits—five for each of the four interrupt
vectors—and 12 unused bits.

The list of interrupt sources (IRQs) and their corresponding bit locations in the IECx and IFSx SFRs, as
well as the bit locations in IPCy of their corresponding interrupt vectors, are are given in the table below,
reproduced from the Interrupts section of the Data Sheet. Consulting this table, we see that the change
notification’s (CN) interrupt has x=1 (for the IRQ) and y=6 (for the vector), so information about this
interrupt is stored in IFS1, IEC1, and IPC6. Specifically, IEC1〈0〉 is its interrupt enable bit, IFS1〈0〉 is its
interrupt flag status bit, IPC6〈20:18〉 are the three priority bits for its interrupt vector, and IPC6〈17:16〉 are
the two subpriority bits.

Lynch, Marchuk, and Elwin, Northwestern U. 74 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

Interrupt Source
(1) IRQ

Number

Vector

Number

Interrupt Bit Location

Flag Enable Priority Sub-Priority

Highest Natural Order Priority
CT – Core Timer Interrupt 0 0 IFS0<0> IEC0<0> IPC0<4:2> IPC0<1:0>
CS0 – Core Software Interrupt 0 1 1 IFS0<1> IEC0<1> IPC0<12:10> IPC0<9:8>
CS1 – Core Software Interrupt 1 2 2 IFS0<2> IEC0<2> IPC0<20:18> IPC0<17:16>
INT0 – External Interrupt 0 3 3 IFS0<3> IEC0<3> IPC0<28:26> IPC0<25:24>

>0:1<1CPI>2:4<1CPI>4<0CEI>4<0SFI441remiT – 1T
IC1 – Input Capture 1 5 5 IFS0<5> IEC0<5> IPC1<12:10> IPC1<9:8>
OC1 – Output Compare 1 6 6 IFS0<6> IEC0<6> IPC1<20:18> IPC1<17:16>
INT1 – External Interrupt 1 7 7 IFS0<7> IEC0<7> IPC1<28:26> IPC1<25:24>

>0:1<2CPI>2:4<2CPI>8<0CEI>8<0SFI882remiT – 2T
IC2 – Input Capture 2 9 9 IFS0<9> IEC0<9> IPC2<12:10> IPC2<9:8>
OC2 – Output Compare 2 10 10 IFS0<10> IEC0<10> IPC2<20:18> IPC2<17:16>
INT2 – External Interrupt 2 11 11 IFS0<11> IEC0<11> IPC2<28:26> IPC2<25:24>

>0:1<3CPI>2:4<3CPI>21<0CEI>21<0SFI21213remiT – 3T
IC3 – Input Capture 3 13 13 IFS0<13> IEC0<13> IPC3<12:10> IPC3<9:8>
OC3 – Output Compare 3 14 14 IFS0<14> IEC0<14> IPC3<20:18> IPC3<17:16>
INT3 – External Interrupt 3 15 15 IFS0<15> IEC0<15> IPC3<28:26> IPC3<25:24>

>0:1<4CPI>2:4<4CPI>61<0CEI>61<0SFI61614remiT – 4T
IC4 – Input Capture 4 17 17 IFS0<17> IEC0<17> IPC4<12:10> IPC4<9:8>
OC4 – Output Compare 4 18 18 IFS0<18> IEC0<18> IPC4<20:18> IPC4<17:16>
INT4 – External Interrupt 4 19 19 IFS0<19> IEC0<19> IPC4<28:26> IPC4<25:24>

>0:1<5CPI>2:4<5CPI>02<0CEI>02<0SFI02025remiT – 5T
IC5 – Input Capture 5 21 21 IFS0<21> IEC0<21> IPC5<12:10> IPC5<9:8>
OC5 – Output Compare 5 22 22 IFS0<22> IEC0<22> IPC5<20:18> IPC5<17:16>
SPI1E – SPI1 Fault 23 23 IFS0<23> IEC0<23> IPC5<28:26> IPC5<25:24>
SPI1RX – SPI1 Receive Done 24 23 IFS0<24> IEC0<24> IPC5<28:26> IPC5<25:24>
SPI1TX – SPI1 Transfer Done 25 23 IFS0<25> IEC0<25> IPC5<28:26> IPC5<25:24>
U1E – UART1 Error

26 24 IFS0<26> IEC0<26> IPC6<4:2> IPC6<1:0>SPI3E – SPI3 Fault
I2C3B – I2C3 Bus Collision Event
U1RX – UART1 Receiver

27 24 IFS0<27> IEC0<27> IPC6<4:2> IPC6<1:0>SPI3RX – SPI3 Receive Done
I2C3S – I2C3 Slave Event
U1TX – UART1 Transmitter

28 24 IFS0<28> IEC0<28> IPC6<4:2> IPC6<1:0>SPI3TX – SPI3 Transfer Done
I2C3M – I2C3 Master Event
I2C1B – I2C1 Bus Collision Event 29 25 IFS0<29> IEC0<29> IPC6<12:10> IPC6<9:8>
I2C1S – I2C1 Slave Event 30 25 IFS0<30> IEC0<30> IPC6<12:10> IPC6<9:8>
I2C1M – I2C1 Master Event 31 25 IFS0<31> IEC0<31> IPC6<12:10> IPC6<9:8>
CN – Input Change Interrupt 32 26 IFS1<0> IEC1<0> IPC6<20:18> IPC6<17:16>
Note 1: Not all interrupt sources are available on all devices. See TABLE 1: “PIC32 USB and CAN – Features”,

TABLE 2: “PIC32 USB and Ethernet – Features” and TABLE 3: “PIC32 USB, Ethernet and CAN –

Features” for the list of available peripherals.

Lynch, Marchuk, and Elwin, Northwestern U. 75 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

AD1 – ADC1 Convert Done 33 27 IFS1<1> IEC1<1> IPC6<28:26> IPC6<25:24>
PMP – Parallel Master Port 34 28 IFS1<2> IEC1<2> IPC7<4:2> IPC7<1:0>

CMP1 – Comparator Interrupt 35 29 IFS1<3> IEC1<3> IPC7<12:10> IPC7<9:8>
CMP2 – Comparator Interrupt 36 30 IFS1<4> IEC1<4> IPC7<20:18> IPC7<17:16>
U3E – UART2A Error
SPI2E – SPI2 Fault
I2C4B – I2C4 Bus Collision Event

37 31 IFS1<5> IEC1<5> IPC7<28:26> IPC7<25:24>

U3RX – UART2A Receiver
SPI2RX – SPI2 Receive Done
I2C4S – I2C4 Slave Event

38 31 IFS1<6> IEC1<6> IPC7<28:26> IPC7<25:24>

U3TX – UART2A Transmitter
SPI2TX – SPI2 Transfer Done
IC4M – I2C4 Master Event

39 31 IFS1<7> IEC1<7> IPC7<28:26> IPC7<25:24>

U2E – UART3A Error
SPI4E – SPI4 Fault
I2C5B – I2C5 Bus Collision Event

40 32 IFS1<8> IEC1<8> IPC8<4:2> IPC8<1:0>

U2RX – UART3A Receiver
SPI4RX – SPI4 Receive Done
I2C5S – I2C5 Slave Event

41 32 IFS1<9> IEC1<9> IPC8<4:2> IPC8<1:0>

U2TX – UART3A Transmitter
SPI4TX – SPI4 Transfer Done
IC5M – I2C5 Master Event

42 32 IFS1<10> IEC1<10> IPC8<4:2> IPC8<1:0>

I2C2B – I2C2 Bus Collision Event 43 33 IFS1<11> IEC1<11> IPC8<12:10> IPC8<9:8>
I2C2S – I2C2 Slave Event 44 33 IFS1<12> IEC1<12> IPC8<12:10> IPC8<9:8>
I2C2M – I2C2 Master Event 45 33 IFS1<13> IEC1<13> IPC8<12:10> IPC8<9:8>
FSCM – Fail-Safe Clock Monitor 46 34 IFS1<14> IEC1<14> IPC8<20:18> IPC8<17:16>
RTCC – Real-Time Clock and
Calendar 47 35 IFS1<15> IEC1<15> IPC8<28:26> IPC8<25:24>

DMA0 – DMA Channel 0 48 36 IFS1<16> IEC1<16> IPC9<4:2> IPC9<1:0>
DMA1 – DMA Channel 1 49 37 IFS1<17> IEC1<17> IPC9<12:10> IPC9<9:8>
DMA2 – DMA Channel 2 50 38 IFS1<18> IEC1<18> IPC9<20:18> IPC9<17:16>
DMA3 – DMA Channel 3 51 39 IFS1<19> IEC1<19> IPC9<28:26> IPC9<25:24>
DMA4 – DMA Channel 4 52 40 IFS1<20> IEC1<20> IPC10<4:2> IPC10<1:0>
DMA5 – DMA Channel 5 53 41 IFS1<21> IEC1<21> IPC10<12:10> IPC10<9:8>
DMA6 – DMA Channel 6 54 42 IFS1<22> IEC1<22> IPC10<20:18> IPC10<17:16>
DMA7 – DMA Channel 7 55 43 IFS1<23> IEC1<23> IPC10<28:26> IPC10<25:24>
FCE – Flash Control Event 56 44 IFS1<24> IEC1<24> IPC11<4:2> IPC11<1:0>
USB – USB Interrupt 57 45 IFS1<25> IEC1<25> IPC11<12:10> IPC11<9:8>
CAN1 – Control Area Network 1 58 46 IFS1<26> IEC1<26> IPC11<20:18> IPC11<17:16>
CAN2 – Control Area Network 2 59 47 IFS1<27> IEC1<27> IPC11<28:26> IPC11<25:24>
ETH – Ethernet Interrupt 60 48 IFS1<28> IEC1<28> IPC12<4:2> IPC12<1:0>
IC1E – Input Capture 1 Error 61 5 IFS1<29> IEC1<29> IPC1<12:10> IPC1<9:8>
IC2E – Input Capture 2 Error 62 9 IFS1<30> IEC1<30> IPC2<12:10> IPC2<9:8>

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Interrupt Source
(1) IRQ

Number

Vector

Number

Interrupt Bit Location

Flag Enable Priority Sub-Priority

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: “PIC32 USB and CAN – Features”,
TABLE 2: “PIC32 USB and Ethernet – Features” and TABLE 3: “PIC32 USB, Ethernet and CAN –

Features” for the list of available peripherals.

Lynch, Marchuk, and Elwin, Northwestern U. 76 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

IC3E – Input Capture 3 Error 63 13 IFS1<31> IEC1<31> IPC3<12:10> IPC3<9:8>
IC4E – Input Capture 4 Error 64 17 IFS2<0> IEC2<0> IPC4<12:10> IPC4<9:8>
IC4E – Input Capture 5 Error 65 21 IFS2<1> IEC2<1> IPC5<12:10> IPC5<9:8>
PMPE – Parallel Master Port Error 66 28 IFS2<2> IEC2<2> IPC7<4:2> IPC7<1:0>
U4E – UART4 Error 67 49 IFS2<3> IEC2<3> IPC12<12:10> IPC12<9:8>

U4RX – UART4 Receiver 68 49 IFS2<4> IEC2<4> IPC12<12:10> IPC12<9:8>
U4TX – UART4 Transmitter 69 49 IFS2<5> IEC2<5> IPC12<12:10> IPC12<9:8>
U6E – UART6 Error 70 50 IFS2<6> IEC2<6> IPC12<20:18> IPC12<17:16>
U6RX – UART6 Receiver 71 50 IFS2<7> IEC2<7> IPC12<20:18> IPC12<17:16>
U6TX – UART6 Transmitter 72 50 IFS2<8> IEC2<8> IPC12<20:18> IPC12<17:16>
U5E – UART5 Error 73 51 IFS2<9> IEC2<9> IPC12<28:26> IPC12<25:24>
U5RX – UART5 Receiver 74 51 IFS2<10> IEC2<10> IPC12<28:26> IPC12<25:24>
U5TX – UART5 Transmitter 75 51 IFS2<11> IEC2<11> IPC12<28:26> IPC12<25:24>
(Reserved) — — — — — —

Lowest Natural Order Priority

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Interrupt Source
(1) IRQ

Number

Vector

Number

Interrupt Bit Location

Flag Enable Priority Sub-Priority

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: “PIC32 USB and CAN – Features”,
TABLE 2: “PIC32 USB and Ethernet – Features” and TABLE 3: “PIC32 USB, Ethernet and CAN –

Features” for the list of available peripherals.

As mentioned earlier, some IRQs share the same vector. For example, IRQs 26, 27, and 28, each
corresponding to UART1 events, all share vector number 24. Priorities and subpriorities are associated with
interrupt vectors, not IRQs.

If the CPU is currently processing an ISR at a particular priority level, and it receives an interrupt request
for a vector (and therefore ISR) at the same priority, it will complete its current ISR before servicing the
other IRQ, regardless of the subpriority. When the CPU has multiple interrupts pending at a higher priority
level than it is currently operating at, the CPU first processes the one with the highest priority level. If
there are more than one at the same highest priority level, the CPU first processes the one with the highest
subpriority. If interrupts have the same priority and subpriority, then their priority is resolved using the
“natural order priority” table given above, where vectors earlier in the table have higher priority.

If the priority of an interrupt vector is zero, then the interrupt is disabled. There are seven enabled
priority levels.

Every ISR should clear the interrupt flag (clear the appropriate bit of IFSx to zero), indicating that the
interrupt has been serviced. By doing so, after the ISR completes, the CPU is free to return to the program
state when the ISR was called.

When setting up an interrupt, you set a bit in IECx to 1 indicating the interrupt is enabled (all bits are
set to zero upon reset) and assign values to the associated IPCy priority bits. (These priority bits default to
zero upon reset, which will keep the interrupt disabled.) You will generally never write code setting an IFSx
bit to 1. Instead, when you set up the device that generates the interrupt (e.g., a UART or counter/timer),
you configure it to set the interrupt flag IFSx upon the appropriate event.

The Shadow Register Set The PIC32MX’s CPU provides an internal shadow register set (SRS), which
is a full extra set of registers. You can take advantage of this extra register set to avoid the time needed for
context save and restore. When processing an ISR using the SRS, the CPU simply switches to this extra set
of internal registers. When it finishes the ISR, it switches back to its original register set, without needing to
save and restore them. We see examples of this in Section 6.4. Obviously we cannot allow one ISR using the
SRS to be interrupted by another ISR using the SRS! An easy way to avoid this is to have only one ISR
written to use the SRS.

The Device Configuration Register DEVCFG3 determines which priority level is assigned to the shadow
register set. The preprocessor command

Lynch, Marchuk, and Elwin, Northwestern U. 77 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

#pragma config FSRSSEL = PRIORITY_7

implemented in NU32.h and the NU32 bootloader sets the shadow register set to priority level 7. This choice
makes sense; the highest priority interrupt should spend the least time jumping to and from the ISR.

External Interrupt Inputs The PIC32 has five digital inputs, INT0–INT4, that can be used to generate
interrupts on rising or falling edges. The enable and flag status bits are in IFS0 and IEC0, respectively, at bits
3, 7, 11, 15, and 19 for INT0, INT1, INT2, INT3, and INT4, respectively. The priority and subpriority bits
are in IPCy〈28:26〉 and IPCy〈25:24〉 for the input INTy. The SFR INTCON bits 0. . . 4 determine whether
the associated interrupt is triggered on a falling edge (bit cleared to 0) or rising edge (bit set to 1).

Special Function Registers

The SFRs associated with interrupts are summarized below. For full details, consult the Reference Manual.

INTCON The interrupt control SFR determines whether the interrupt controller operates in single vector
or multi-vector mode. It also determines whether the five external interrupt pins INT0–INT4 generate
an interrupt on a rising edge or a falling edge.

INTSTAT The interrupt status SFR is read-only and contains information on the address and priority level
of the latest IRQ given to the CPU when in single vector mode. We will not need it.

IPTMR The interrupt proximity timer SFR can be used to implement a delay to queue up interrupt requests
before presenting them to the CPU. For example, upon receiving an interrupt request, the timer starts
counting clock cycles, queuing up any subsequent interrupt requests, until IPTMR cycles have passed.
By default, this timer is turned off by INTCON, and we will typically leave it that way.

IECx, x = 0, 1, or 2 Three 32-bit interrupt enable control SFRs for up to 96 interrupt sources. A 1
enables the interrupt, a 0 disables it.

IFSx, x = 0, 1, or 2 The three 32-bit interrupt flag status SFRs represent the status of up to 96 interrupt
sources. A 1 indicates an interrupt has been requested, a 0 indicates no interrupt is requested.

IPCy, y = 0 to 15 Each of the sixteen interrupt priority control SFRs contains 5-bit priority and subpriority
values for 4 different interrupt vectors (64 vectors total).

In this chapter only, we reproduce some SFR information from the Data Sheet. You should always consult
the appropriate sections from the Reference Manual and the Data Sheet for more information. The Memory
Organization section of the Data Sheet indicates which of the SFRs in the Reference Manual are present on
your PIC32.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Bit

Range

Bit

31/23/15/7

Bit

30/22/14/6

Bit

29/21/13/5

Bit

28/20/12/4

Bit

27/19/11/3

Bit

26/18/10/2

Bit

25/17/9/1

Bit

24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0

— — — — — — — SS0

15:8
U-0 U-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0

— — — MVEC — TPC<2:0>

7:0
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — INT4EP INT3EP INT2EP INT1EP INT0EP

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

• INTCON〈16〉, or INTCONbits.SS0: 1 = use the shadow register set when in single vector mode, 0 =
do not use

Lynch, Marchuk, and Elwin, Northwestern U. 78 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

• INTCON〈12〉, or INTCONbits.MVEC: 1 = interrupt controller in multi-vector mode, 0 = single vector
mode

• INTCON〈10:8〉, or INTCONbits.TPC: control bits for the IPTMR (we leave it at the default of 000 =
IPTMR off)

• INTCON〈x〉, for x = 0 to 4, or INTCONbits.INTxEP: 1 = external interrupt pin x triggers on a rising
edge, 0 = triggers on a falling edge

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Bit

Range

Bit

31/23/15/7

Bit

30/22/14/6

Bit

29/21/13/5

Bit

28/20/12/4

Bit

27/19/11/3

Bit

26/18/10/2

Bit

25/17/9/1

Bit

24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS31 IFS30 IFS29 IFS28 IFS27 IFS26 IFS25 IFS24

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS23 IFS22 IFS21 IFS20 IFS19 IFS18 IFS17 IFS16

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS15 IFS14 IFS13 IFS12 IFS11 IFS10 IFS09 IFS08

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS07 IFS06 IFS05 IFS04 IFS03 IFS02 IFS01 IFS00

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit

definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit

Range

Bit

31/23/15/7

Bit

30/22/14/6

Bit

29/21/13/5

Bit

28/20/12/4

Bit

27/19/11/3

Bit

26/18/10/2

Bit

25/17/9/1

Bit

24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC31 IEC30 IEC29 IEC28 IEC27 IEC26 IEC25 IEC24

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC23 IEC22 IEC21 IEC20 IEC19 IEC18 IEC17 IEC16

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC15 IEC14 IEC13 IEC12 IEC11 IEC10 IEC09 IEC08

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC07 IEC06 IEC05 IEC04 IEC03 IEC02 IEC01 IEC00

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

IFSx〈bit〉: 1 = interrupt has been requested, 0 = no interrupt has been requested. See the Interrupt Controller
section of the Data Sheet, or the table reproduced earlier, for the the register number x in IFSx, and the bit
number, for a particular IRQ source. For example, the change notification interrupt request flag status bit is
IFS1〈0〉.

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Bit

Range

Bit

31/23/15/7

Bit

30/22/14/6

Bit

29/21/13/5

Bit

28/20/12/4

Bit

27/19/11/3

Bit

26/18/10/2

Bit

25/17/9/1

Bit

24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS31 IFS30 IFS29 IFS28 IFS27 IFS26 IFS25 IFS24

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS23 IFS22 IFS21 IFS20 IFS19 IFS18 IFS17 IFS16

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS15 IFS14 IFS13 IFS12 IFS11 IFS10 IFS09 IFS08

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IFS07 IFS06 IFS05 IFS04 IFS03 IFS02 IFS01 IFS00

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit

definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit

Range

Bit

31/23/15/7

Bit

30/22/14/6

Bit

29/21/13/5

Bit

28/20/12/4

Bit

27/19/11/3

Bit

26/18/10/2

Bit

25/17/9/1

Bit

24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC31 IEC30 IEC29 IEC28 IEC27 IEC26 IEC25 IEC24

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC23 IEC22 IEC21 IEC20 IEC19 IEC18 IEC17 IEC16

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC15 IEC14 IEC13 IEC12 IEC11 IEC10 IEC09 IEC08

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

IEC07 IEC06 IEC05 IEC04 IEC03 IEC02 IEC01 IEC00

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

IECx〈bit〉: 1 = interrupt has been enabled so that requests are allowed, 0 = interrupt is disabled. See the
Interrupt Controller section of the Data Sheet, or the table reproduced earlier, for the the register number x
in IECx, and the bit number, for a particular IRQ source. For example, the change notification interrupt
enable bit is IEC1〈0〉.

Lynch, Marchuk, and Elwin, Northwestern U. 79 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit

Range

Bit

31/23/15/7

Bit

30/22/14/6

Bit

29/21/13/5

Bit

28/20/12/4

Bit

27/19/11/3

Bit

26/18/10/2

Bit

25/17/9/1

Bit

24/16/8/0

31:24
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — >0:1<30SI>0:2<30PI—

23:16
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — >0:1<20SI>0:2<20PI—

15:8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — >0:1<10SI>0:2<10PI—

7:0
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — >0:1<00SI>0:2<00PI—

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

Each IPCy, y = 0 to 15, contains five priority and subpriority bits for each of four different interrupt
vectors. For example, consulting the table, we see that IPC6〈20:18〉 are the three priority bits for the change
notification interrupt vector, and IPC6〈17:16〉 are its two subpriority bits.

6.3 Steps to Set Up and Use an Interrupt

Among the other things it does, NU32 Startup() enables the CPU to receive interrupts, and sets the mode
to multi-vector mode by setting INTCONbits.MVEC to 1. After this, there are seven basic steps to set up
and use an interrupt. We recommend your program execute steps 2–7 in the order given below. The details
of the syntax are left to the examples in Section 6.4.

1. Write an ISR with a priority level 1–7 using the syntax IPLnSOFT, for n=1. . . 7, or IPL7SRS. SOFT
indicates software context save and restore, and SRS makes use of the shadow register set. (The
bootloader on the NU32 allows only priority level 7 to use the SRS.) No subpriority is specified in the
ISR function. The ISR must clear the appropriate interrupt flag IFSx〈bit〉.

2. Disable interrupts at the CPU to prevent spurious generation of interrupts while you are configuring.
Although interrupts are disabled by default on reset, NU32_Startup() enables them.

3. Configure the device (e.g., peripheral) to generate interrupts on the appropriate event. This often
involves configuring the SFRs of the particular peripheral.

4. Configure the interrupt priority and subpriority in IPCy. The IPCy priority should match the priority
of the ISR defined in Step 1.

5. Clear the interrupt flag status bit to 0 in IFSx.

6. Set the interrupt enable bit to 1 in IECx.

7. Reenable interrupts at the CPU.

6.4 Sample Code

6.4.1 Core Timer Interrupt

Let’s toggle a digital output once per second based on an interrupt from the CPU’s core timer. To do this,
we place a value in the CPU’s CP0 COMPARE register, and whenever the core timer counter value is equal
to CP0 COMPARE, an interrupt is generated. In the interrupt routine, the core timer counter is reset to 0.
Since the core timer runs at half the frequency of the system clock, setting CP0 COMPARE to 40,000,000
toggles the digital output once per second.

To make the effect visible, let’s toggle pin RA5, which corresponds to LED2 on the NU32 board. We’ll
use priority level 7, subpriority 0, and the shadow register set.

Lynch, Marchuk, and Elwin, Northwestern U. 80 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

Code Sample 6.1. INT core timer.c. A core timer interrupt using the shadow register set.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // peripheral.h, config bits, constants, funcs for startup and UART

#define CORE_TICKS 40000000 // 40 M ticks (one second)

void __ISR(_CORE_TIMER_VECTOR, IPL7SRS) CoreTimerISR(void) { // step 1: the ISR

IFS0CLR = 1; // clear CT int flag IFS0<0>, same as IFS0bits.CTIF=0

LATAINV = 0x20; // invert pin RA5 only

_CP0_SET_COUNT(0); // set core timer counter to 0

_CP0_SET_COMPARE(CORE_TICKS); // must set CP0_COMPARE again after interrupt

}

void main(void) {

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // step 2: disable interrupts at CPU

_CP0_SET_COMPARE(CORE_TICKS); // step 3: CP0_COMPARE register set to 40 M

IPC0bits.CTIP = 7; // step 4: interrupt priority

IPC0bits.CTIS = 0; // step 4: subp is 0, which is the default

IFS0bits.CTIF = 0; // step 5: clear CT interrupt flag

IEC0bits.CTIE = 1; // step 6: enable core timer interrupt

__builtin_enable_interrupts(); // step 7: CPU interrupts enabled

_CP0_SET_COUNT(0); // set core timer counter to 0

while(1) {

; // do nothing

}

}

Following our seven steps to use an interrupt, we have:

Step 1. The ISR.

void __ISR(_CORE_TIMER_VECTOR, IPL7SRS) CoreTimerISR(void) { // step 1: the ISR

IFS0CLR = 1; // clear CT int flag IFS0<0>, same as IFS0bits.CTIF=0

...

}

We are allowed to call our ISR whatever we want, and in this example we call it CoreTimerISR. The ISR

syntax is XC32-specific (not a C standard) and tells the compiler and linker that this function should be
treated as an interrupt handler. The two arguments to this syntax are the interrupt vector for the core
timer, called CORE TIMER VECTOR (defined as 0 in p32mx795f512l.h, which agrees with the table in this
chapter), and the interrupt priority level. The interrupt priority level is specified using the syntax IPLnSRS

or IPLnSOFT, where n is 1 to 7, SRS indicates that the shadow register set should be used, and SOFT indicates
that software context save and restore should be used. Use IPL7SRS if you’d like to use the shadow register
set, as in this example, since the device configuration registers on the NU32’s PIC32 specify priority level 7
for the shadow register set. You don’t specify subpriority in the ISR.

The ISR must clear the interrupt flag in IFS0〈0〉, which the table tells us corresponds to the core timer
interrupt. Specifically for the core timer, a write to CP0 COMPARE is also needed to clear the interrupt.

Step 2. Disabling interrupts. Since NU32 Startup() enables interrupts, we disable them before configur-
ing the core timer interrupt.

__builtin_disable_interrupts(); // step 2: disable interrupts at CPU

Lynch, Marchuk, and Elwin, Northwestern U. 81 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

Disabling interrupts before configuring the device that generates interrupts is good general practice, to avoid
unwanted interrupts during configuration. In many cases it is not strictly necessary, however.

Step 3. Configuring the core timer to interrupt.

_CP0_SET_COMPARE(CORE_TICKS); // step 3: CP0_COMPARE register set to 40 M

This line sets the core timer’s CP0 COMPARE value so that an interrupt is generated when the core timer
counter reaches CORE TICKS. If the interrupt were to be generated by a peripheral, we should consult the
appropriate section of this book, or the Reference Manual, to set the SFRs to generate an IRQ on the
appropriate event.

Step 4. Configuring interrupt priority.

IPC0bits.CTIP = 7; // step 4: interrupt priority

IPC0bits.CTIS = 0; // step 4: subp is 0, which is the default

These two commands set the appropriate bits in IPCy (y=0, according to the table). Consulting the file
p32mx795f512l.h or the Memory Organization section of the Data Sheet shows us that the priority and
subpriority bits of IPC0 are called IPC0bits.CTIP and IPC0bits.CTIS, respectively. Alternatively, we could
have used any other means to manipulate the bits IPC0〈4:2〉 and IPC0〈1:0〉, as indicated in the table, while
leaving all other bits unchanged. The priority must agree with the ISR priority. It is not strictly necessary to
set the subpriority, which defaults to zero in any case.

Step 5. Clearing the interrupt flag status bit.

IFS0bits.CTIF = 0; // step 5: clear CT interrupt flag

This command clears the appropriate bit in IFSx (x=0 here). An alternative would be IFS0CLR = 1;, to
clear the zeroth bit of IFS0, as used in the ISR.

Step 6. Enabling the core timer interrupt.

IEC0bits.CTIE = 1; // step 6: enable core timer interrupt

This command sets the appropriate bit in IECx (x=0 here). An alternative would be IEC0SET = 1; to set
the zeroth bit of IEC0.

Step 7. Reenable interrupts at the CPU.

__builtin_enable_interrupts(); // step 7: CPU interrupts enabled

6.4.2 External Interrupt

Code Sample 6.2 causes the NU32’s LEDs to turn on briefly on a falling edge on the external interrupt input
pin INT0. The IRQ associated with INT0 is 3, and the flag, enable, priority, and subpriority bits can be
found in the table. In this example we use interrupt priority level 2, with software context save and restore.

You can test this program with the NU32 by connecting a wire from the D13/USER pin to the D0/INT0
pin. When the USER button is pressed, there is a falling edge on digital input D13 (see the wiring diagram
in Figure 2.4) and therefore INT0, which causes the LEDs to flash. You might also notice the issue of switch
bounce: when you release the button, nominally creating a rising edge, you might see the LEDs flash again.
This is because there may be a brief period of chattering when mechanical contact between two conductors
is established or broken, creating spurious rising and falling edges. This can be addressed by a debouncing
circuit or software; see Exercise 17.

Code Sample 6.2. INT ext int.c. Using an external interrupt to flash LEDs on the NU32.

Lynch, Marchuk, and Elwin, Northwestern U. 82 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // peripheral.h, config bits, constants, funcs for startup and UART

void __ISR(_EXTERNAL_0_VECTOR, IPL2SOFT) Ext0ISR(void) { // step 1: the ISR

LATACLR = 0x30; // clear RA4 and RA5 low (LED1 and LED2 on)

_CP0_SET_COUNT(0);

while(_CP0_GET_COUNT() < 10000000) {

; // delay for 10 M core ticks, 0.25 s

}

LATASET = 0x30; // set pins RA4 and RA5 high (LED1 and LED2 off)

IFS0CLR = 1 << 3; // clear interrupt flag IFS0<3>

}

void main(void) {

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // step 2: disable interrupts

INTCONCLR = 0x1; // step 3: INT0 triggers on falling edge

IPC0CLR = 0x1F << 24; // step 4: clear the 5 pri and subpri bits

IPC0 |= 9 << 24; // step 4: set priority to 2, subpriority to 1

IFS0bits.INT0IF = 0; // step 5: clear the int flag, or IFS0CLR=1<<3

IEC0SET = 1 << 3; // step 6: enable INT0 by setting IEC0<3>

__builtin_enable_interrupts(); // step 7: enable interrupts

while(1) {

; // do nothing, loop forever

}

}

6.4.3 Speedup Due to the Shadow Register Set

This last example measures the amount of time it takes to enter and exit an ISR using context save and
restore vs. the SRS. We write two identical ISRs; the only difference is that one uses IPL7SOFT and the other
uses IPL7SRS. The two ISRs are based on the external interrupts INT0 and INT1, respectively. To get precise
timing, however, we trigger interrupts in software by setting the appropriate bit of the appropriate SFR.

After setting up the interrupts, the program INT timing.c enters an infinite loop. First the core timer is
reset to zero, then the interrupt flag is set for INT0. The main function then waits until the ISR clears the
flag. The first thing the ISR for INT0 does is log the core timer counter; then it toggles LED2 and clears the
interrupt flag; and the last thing it does before exiting is log the time again. Finally, the main function logs
the time when control is returned. The timing results are written back to the host computer over a serial link
using the NU32 library. Then the main function does the same for INT1 and goes back to the beginning of
the infinite loop.

These are the results (which are repeated over and over):

IPL7SOFT in 16 out 22 total 32 time 800 ns

IPL7SRS in 14 out 20 total 29 time 725 ns

For context save and restore, it takes 16 core clock ticks (about 32 SYSCLK ticks) to begin executing
statements in the ISR; the last ISR statement completes about 6 (12) ticks later; and finally control is
returned to main approximately 32 (64) total ticks, or 800 nanoseconds, after the interrupt flag is set. For the
SRS, the first ISR statement is executed after about 14 (28) ticks; the ISR runs in the same amount of time
(6 core timer ticks, or 12 SYSCLK ticks); and a total of approximately 29 (58) ticks, or 725 nanoseconds,
elapse between the time the interrupt flag is set and control is returned to main.

While the numbers may be different for other ISRs and main functions, depending on the amount of
register context to be saved and restored, a few things can be noted:

• The ISR is not entered immediately after the flag is set. It takes time to respond to the interrupt
request, and instructions in main may be executed after the flag is set.

Lynch, Marchuk, and Elwin, Northwestern U. 83 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

• The SRS saves time in entering and exiting the ISR, approximately 75 nanoseconds total in this case.

• Simple ISRs can be completed in less than a microsecond after the interrupt event occurs.

The sample code is below.

Code Sample 6.3. INT timing.c. Timing the shadow register set vs. typical context save and restore.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded""

#include "NU32.h" // peripheral.h, config bits, constants, funcs for startup and UART

#define DELAYTIME 40000000 // 40 million core clock ticks, or 1 second

void delay();

volatile unsigned int Entered = 0, Exited = 0; // note the qualifier "volatile"

void __ISR(_EXTERNAL_0_VECTOR, IPL7SOFT) Ext0ISR(void) {

Entered = _CP0_GET_COUNT(); // record time ISR begins

IFS0CLR = 1 << 3; // clear the interrupt flag

NU32_LED2 = 1; // turn off LED2

Exited = _CP0_GET_COUNT(); // record time ISR ends

}

void __ISR(_EXTERNAL_1_VECTOR, IPL7SRS) Ext1ISR(void) {

Entered = _CP0_GET_COUNT(); // record time ISR begins

IFS0CLR = 1 << 7; // clear the interrupt flag

NU32_LED2 = 0; // turn on LED2

Exited = _CP0_GET_COUNT(); // record time ISR ends

}

void main(void) {

unsigned int dt = 0;

unsigned int encopy, excopy; // local copies of globals Entered, Exited

char msg[128] = {};

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // step 2: disable interrupts at CPU

INTCONSET = 0x3; // step 3: INT0 and INT1 trigger on rising edge

IPC0CLR = 31 << 24; // step 4: clear 5 priority and subp bits for INT0

IPC0 |= 28 << 24; // step 4: set INT0 to priority 7 subpriority 0

IPC1CLR = 0x1F << 24; // step 4: clear 5 priority and subp bits for INT1

IPC1 |= 0x1C << 24; // step 4: set INT1 to priority 7 subpriority 0

IFS0bits.INT0IF = 0; // step 5: clear INT0 flag status

IFS0bits.INT1IF = 0; // step 5: clear INT1 flag status

IEC0SET = 0x88; // step 6: enable INT0 and INT1 interrupts

__builtin_enable_interrupts(); // step 7: enable interrupts

while(1) {

delay(); // delay, so results sent back at reasonable rate

_CP0_SET_COUNT(0); // start timing

IFS0bits.INT0IF = 1; // artificially set the INT0 interrupt flag

while(IFS0bits.INT0IF) {

; // wait until the ISR clears the flag

}

dt = _CP0_GET_COUNT(); // get elapsed time

__builtin_disable_interrupts(); // good practice before using vars shared w/ISR

encopy = Entered; // copy the shared variables to local copies ...

excopy = Exited; // ... so the time interrupts are off is short

__builtin_enable_interrupts(); // turn interrupts back on quickly!

sprintf(msg,"IPL7SOFT in %3d out %3d total %3d time %4d ns\r\n",encopy,excopy,dt,dt*25);

Lynch, Marchuk, and Elwin, Northwestern U. 84 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

NU32_WriteUART1(msg); // send times to the host

delay(); // same as above, except for INT1

_CP0_SET_COUNT(0);

IFS0bits.INT1IF = 1; // trigger INT1 interrupt

while(IFS0bits.INT1IF) {

; // wait until the ISR clears the flag

}

dt = _CP0_GET_COUNT();

__builtin_disable_interrupts();

encopy = Entered;

excopy = Exited;

__builtin_enable_interrupts();

sprintf(msg," IPL7SRS in %3d out %3d total %3d time %4d ns\r\n",encopy,excopy,dt,dt*25);

NU32_WriteUART1(msg);

}

}

void delay() {

_CP0_SET_COUNT(0);

while(_CP0_GET_COUNT() < DELAYTIME) {

;

}

}

6.4.4 Sharing Variables with ISRs

Code Sample 6.3 was our first to share variables between an ISR and other functions. Namely, Entered and
Exited are used in both ISRs as well as main. This code demonstrates two good practices when sharing
variables with ISRs:

(1) Using the type qualifier volatile. By putting the qualifier volatile in front of the type in the
global variable definition

volatile unsigned int Entered = 0, Exited = 0;

we are telling the compiler that external processes (namely, an ISR that may be triggered at an unknown
time) may need the values of the variables, or may change the values of the variables, at any time. Therefore,
any optimizations the compiler is performing should not take shortcuts in generating assembly code associated
with a volatile variable. For example, if you had code of the form

int i = 0; // global variable shared by functions and an ISR

void myFunc(void) {

i = 1;

// some other code that doesn’t use or affect i

i = 2;

}

a compiler running optimizations might not generate any code for i = 1; at all, believing that the value 1
for i is never used. If an external interrupt triggered during execution of the code between i = 1; and i =

2;, however, and the ISR made use of the value of i, it would use the wrong value (perhaps the originally
initialized value i = 0).

To correct this, the declaration of the global variable i should be

volatile int i = 0;

Lynch, Marchuk, and Elwin, Northwestern U. 85 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

The volatile qualifier assures that the compiler will emit full assembly code for any reads or writes of i
in RAM. The compiler does not assume anything about the value of i or whether it is changed or used by
processes that it does not know about. This is why all SFRs are declared as volatile in p32mx795f512l.h;
their values can be changed by processes external to the CPU.

(2) Enabling and disabling interrupts. Consider a scenario where the main-line code and an ISR share
a 64-bit long double variable. To load the variable into two of the CPU’s 32-bit registers, one assembly
instruction first loads the most significant 32 bits into one register. Then the process is interrupted, the
ISR modifies the variable in RAM, and control returns to the main code. At that point, the next assembly
instruction loads the lower 32 bits of the new value of the long double in RAM into the other CPU register.
Now the CPU registers have neither the variable value from before nor after the ISR.

To prevent data corruption like this, interrupts can be disabled before reading or writing the shared
variables, then reenabled afterward. If an IRQ is generated during the time that the CPU is ignoring
interrupts, the IRQ will simply wait until the CPU is accepting interrupts again.

Interrupts should not be disabled for long, as this defeats the purpose of interrupts. In the sample code,
the time that interrupts are disabled is minimized by simply copying the shared variables to local copies
during this period. This avoids having the interrupts disabled during the sprintf command, which can take
many CPU cycles.

In many cases it is not necessary to disable interrupts before using shared variables. (For example, it was
not necessary in the sample code above.) It is good practice if you are unsure, however. Just minimize the
time that interrupts are disabled.

6.5 Chapter Summary

• The PIC32MX supports 96 interrupt requests (IRQs) and 64 interrupt vectors, and therefore up to 64
interrupt service routines (ISRs). Therefore, some IRQs share the same ISR. For example, all IRQs
related to UART1 (data received, data transmitted, error) have the same interrupt vector.

• The PIC32 can be configured to operate in single vector mode (all IRQs result in a jump to the same
ISR) or in multi-vector mode. NU32 Startup() puts the NU32 in multi-vector mode.

• Priorities and subpriorities are associated with interrupt vectors, and therefore ISRs, not IRQs. The
priority of a vector is defined in an SFR IPCy, y=0. . . 15. In the definition of the associated ISR, the
same priority n should be specified using IPLnSOFT or IPLnSRS. SOFT indicates that software context
save and restore is performed, while SRS means that the shadow register set is used instead, reducing
ISR entry and exit time. The PIC32 on the NU32 is configured by its device configuration registers to
make the SRS available only on priority level 7, so the SRS can only be used with IPL7SRS.

• When an interrupt is generated, it is serviced immediately if its priority is higher than the current
priority. Otherwise it waits until the current ISR is finished.

• In addition to configuring the CPU to accept interrupts, enabling specific interrupts, and setting their
priority, the specific peripherals (such as counter/timers, UARTs, change notification pins, etc.) must
be configured to generate interrupt requests on the appropriate events. These configurations are left for
the chapters covering those peripherals.

• The seven steps to use an interrupt, after putting the CPU in multi-vector mode, are: (1) write the ISR;
(2) disable interrupts; (3) configure a device or peripheral to generate interrupts; (4) set the ISR priority
and subpriority; (5) clear the interrupt flag; (6) enable the IRQ; and (7) enable interrupts at the CPU.

• If a variable is shared with an ISR, it is a good idea to (1) define that variable with the type qualifier
volatile and (2) turn off interrupts before reading or writing it if there is a danger the process could
be interrupted. If interrupts are disabled, they should be disabled for as short a period as possible.

Lynch, Marchuk, and Elwin, Northwestern U. 86 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

6.6 Exercises

1. Interrupts can be used to implement a fixed frequency control loop (e.g., 1 kHz). Another way is polling :
keep checking the core timer, and when some number of ticks has passed, jump to the control routine.
Polling can also be used to check for changes on input pins and other events. Give pros and cons (if
any) of using interrupts vs. polling.

2. You are watching TV. Give an analogy to an IRQ and ISR for your mental attention in this situation.
Also give an analogy to polling.

3. What is the relationship between an interrupt vector and an ISR? What is the maximum number of
ISRs that the PIC32 can handle?

4. (a) What happens if an IRQ is generated for an ISR at priority level 4, subpriority level 2 while the
CPU is in normal execution (not executing an ISR)? (b) What happens if that IRQ is generated while
the CPU is executing a priority level 2, subpriority level 3 ISR? (c) What happens if that IRQ is
generated while the CPU is executing a priority level 4, subpriority level 0 ISR? (d) What happens if
that IRQ is generated while the CPU is executing a priority level 6, subpriority level 0 ISR?

5. An interrupt asks the CPU to stop what it’s doing, attend to something else, and then return to what
it was doing. When the CPU is asked to stop what it’s doing, it needs to remember the “context” of
what it was working on, i.e., the values currently stored in the CPU registers. (a) Assuming no shadow
register set, what is the first thing the CPU must do before executing the ISR and the last thing it
must do upon completing the ISR? (b) How are things different if a shadow register set is used?

6. What is the peripheral and interrupt vector number associated with IRQ 35? What are the SFRs and
bit numbers controlling its interrupt enable, interrupt flag status, and priority and subpriority? Does
IRQ 35 share the interrupt vector with any other IRQ?

7. What peripherals and IRQs are associated with interrupt vector 24? What are the SFRs and bit
numbers controlling the priority and subpriority of the vector and the interrupt enable and flag status
of the associated IRQs?

8. For the problems below, use only the SFRs IECx, IFSx, IPCy, and INTCON, and their CLR, SET,
and INV registers (do not use other registers, nor the bit fields as in IFS0bits.INT0IF). Give valid C
bit manipulation commands to perform the operations without changing any uninvolved bits. Also
indicate, in English, what you are trying to do, in case you have the right idea but wrong C statements.
Do not use any constants defined in Microchip XC32 files; just use numbers.

(a) Enable the Timer2 interrupt, set its flag status to 0, and set its vector’s priority and subpriority
to 5 and 2, respectively.

(b) Enable the Real-Time Clock and Calendar interrupt, set its flag status to 0, and set its vector’s
priority and subpriority to 6 and 1, respectively.

(c) Enable the UART4 receiver interrupt, set its flag status to 0, and set its vector’s priority and
subpriority to 7 and 3, respectively.

(d) Enable the INT2 external input interrupt, set its flag status to 0, set its vector’s priority and
subpriority to 3 and 2, and configure it to trigger on a rising edge.

9. Edit steps 3, 4, and 6 of Code Sample 6.2 so that each line correctly uses the “bits” forms of the SFRs.
In other words, the left-hand sides of the statements should use a form similar to that used in step 5,
except using INTCONbits, IPC0bits, and IEC0bits.

10. Consulting the p32mx795f512l.h file, give the names of the constants, and the numerical values,
associated with the following IRQs: (a) Input Capture 5. (b) SPI3 receive done. (c) USB interrupt.

11. Consulting the p32mx795f512l.h file, give the names of the constants, and the numerical values,
associated wih the following interrupt vectors: (a) Input Capture 5. (b) SPI3 receive done. (c) USB
interrupt.

Lynch, Marchuk, and Elwin, Northwestern U. 87 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

12. True or false? When the PIC32 is in single vector interrupt mode, only one IRQ can trigger an ISR.
Explain your answer.

13. Give the numerical value of the SFR INTCON, in hexadecimal, when it is configured for single vector
mode using the shadow register set; and external interrupt input INT3 triggers on a rising edge while
the rest of the external inputs trigger on a falling edge. The Interrupt Proximity Timer bits are left as
the default.

14. So far we have only seen interrupts generated by the core timer and the external interrupt inputs,
because we first have to learn something about the other peripherals to complete Step 3 of the seven-step
interrupt setup procedure. Let’s jump ahead and see how the Change Notification peripheral could be
configured in Step 3. Consulting the Reference Manual chapter on I/O Ports, name the SFR and bit
number that has to be manipulated to enable Change Notification pins to generate interrupts.

15. Consult Code Sample 6.3. It uses a few different kinds of syntax to perform bit manipulation on SFRs.
For each line of code labeled step 3 to step 6, explain in one sentence what that line of code does and
what the purpose is.

16. Build INT timing.c and open its disassembly file out.dis with a text editor. Starting at the top of the
file, you see the startup code inserted by crt0.o. Continuing down, you see the “bootstrap exception”
section .bev excpt, which handles any exceptions that might occur while executing boot code; the
“general exception” section .app excpt, which the CPU could be set to jump to on an interrupt instead
of using the interrupt table; and finally the interrupt vector sections, labeled .vector x, where x can
take values from 0 to 51 (12 of the possible 64 vectors are not used by the PIC32MX). Each of these
exception vectors simply jumps to another address. (Note that j, jal, and jr are all jump statements
in assembly. Jumps are not executed immediately; the next assembly statement, in the jump delay slot,
executes before the jump completes. The jump j jumps to the address specified. jal jumps to the
address specified, usually corresponding to a function, and stores in a CPU register ra a return address
two instructions [eight bytes] later. jr jumps to an address stored in a register, often ra to return from
a function.)

(a) What addresses do the .vector x sections jump to? What is installed at these addresses?

(b) Find the Ext0ISR and Ext1ISR functions. How many assembly commands are before the first
CP0 GET COUNT() command in each function? How many assembly commands are after the last
CP0 GET COUNT() command in each function? What is the purpose of the commands that account

for the majority of the difference in the number of commands? (Note that sw, short for “store
word,” copies a 32-bit CPU register to RAM, and lw, short for “load word,” copies a 32-bit word
from RAM to a CPU register.) Explain why the two functions are different even though their C
code is essentially identical.

17. Modify Code Sample 6.2 so the USER button is debounced. How can you change the ISR so the LEDs
do not flash if the falling edge comes at the beginning of a very brief, spurious down pulse? Verify that
your solution works. (Hint: Any real button press should last much more than 10 milliseconds, while
the mechanical bouncing period of any decent switch should be much less than 10 milliseconds.)

18. Using your solution to debouncing the USER button (Problem 17), write a stopwatch program using
an ISR based on INT2. Connect a wire from the USER button pin to the INT2 pin so you can use
the USER button as your timing button. Using the NU32 library, your program should send the
following message to the user’s screen: Press the USER button to start the timer. When the
USER button has been pressed, it should send the following message: Press the USER button again

to stop the timer. When the user presses the button again, it should send a message such as 12.505
seconds elapsed. The ISR should either (1) start the core timer at 0 counts or (2) read the current
timer count, depending on whether the program is in the “waiting to begin timing” state or the “timing
state.” Use priority level 7 and the shadow register set. Verify that the timing is accurate. The
stopwatch only has to be accurate for periods of less than the core timer’s rollover time.

You could also try using polling in your main function to write out the current elapsed time (when the
program is in the “timing state”) to the user’s screen every second so the user can see the running time.

Lynch, Marchuk, and Elwin, Northwestern U. 88 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

19. Modify the previous program to use a 16×2 LCD screen instead of the host computer’s display.

20. Write a program that interrupts at a frequency defined interactively by the user. The main function is an
infinite loop that uses the NU32 library to ask the user to specify the integer variable InterruptPeriod.
If the user enters a number greater than an appropriate minimum and less than an appropriate maximum,
this becomes the number of core clock ticks between core timer interrupts. The ISR simply toggles the
LEDs, so the InterruptPeriod is visible. Set the vector priority to 3 and subpriority to 0.

21. (a) Write a program that has two ISRs, one for the core timer and one for the debounced input INT2.
The core timer interrupts every four seconds, and the ISR simply turns on LED1 for two seconds, turns
it off, and exits. The INT2 interrupt turns LED2 on and keeps it on until the user lets go of the button.
Choose interrupt priority level 1 for the core timer and 5 for INT2. Run the program, experiment with
button presses, and see if it agrees with what you expect. (b) Modify the program so the two priority
levels are switched. Run the program, experiment with button presses, and see if it agrees with what
you expect.

Lynch, Marchuk, and Elwin, Northwestern U. 89 12:38 February 4, 2015

CHAPTER 6. INTERRUPTS

Lynch, Marchuk, and Elwin, Northwestern U. 90 12:38 February 4, 2015

Part III

Peripheral Reference

91

Chapter 7

Digital Input and Output

Digital inputs and outputs (DIO) are the simplest of interfaces between the PIC and other electronics, sensors,
and actuators. The PIC32 has many DIO pins, each of which normally takes one of two states: high or low.
The interrupt associated with DIO is change notification—an interrupt can optionally be generated when the
input changes on at least one of up to 22 digital inputs.

7.1 Overview

The PIC32 offers many DIO pins, arranged into “ports” A through G. The pins are labeled Rxy, where x is
the port letter and y is the pin number. For example, pin 5 of port B is named RB5. Ports B and D are full
16-bit ports, with pins 0-15. (Port B can also be used for analog input.) Other ports have a smaller number
of pins, not necessarily sequentially numbered; for example, port C has pins 1-4 and 12-15. All pins labeled
Rxy can be used for input or output, except for RG2 and RG3, which are input only. For more details on the
available pin numbers, see the Data Sheet.

Each pin configured as an output can output 0 or 3.3 V (assuming the PIC32 is powered by 3.3 V). Some
DIO pins can alternatively be configured as “open-drain” outputs. An open-drain output can take one of
two states: 0 V or “floating” (disconnected). This is in contrast to the usual “buffered” output that drives
the pin either low (0 V) or high (3.3 V). An open-drain output allows you to attach an external “pull-up”
resistor from the output to a positive voltage you choose, up to 5 V. Then when the output is left floating
by the PIC, the external pull-up resistor pulls the output up to this voltage (Figure 7.1). Voltages between
3.3 V and 5 V should only be used on 5 V tolerant pins (see, e.g., Figure 2.1 and Table 2.2).

A pin configured as an output should not be expected to source or sink more than about 10 mA. For
example, it would be a mistake to connect a digital input to a 10 ohm resistor to ground. In this case,
creating a digital high output of 3.3 V would require 3.3 V/10 ohms = 330 mA, which a digital output is not
capable of. Instead, the actual output voltage would be much lower, dragged down by the low resistance.

An input pin will read low, or 0, if the input voltage is close to zero, and it will read high, or 1, if it
is close to 3.3 V. Some pins tolerate inputs up to 5 V. Some input pins, those that can also be used for
“change notification” (labeled CNy, y = 0 . . . 21, spread out over several of the ports), can be configured with
an internal pull-up resistor to 3.3 V. If configured this way, the input will read “high” if it is disconnected
(Figure 7.1)). Otherwise, if an input pin is not connected to anything, we cannot be certain what the input
will read.

Input pins have fairly high input impedance—very little current will flow in or out of an input pin, and
therefore connecting an external circuit to an input pin should have little effect on the behavior of the external
circuit.

The interrupt associated with digital I/O is change notification. If any of the 22 CN pins is configured
as a change notification input and the change notification interrupt is enabled, then an interrupt will be
generated when any of those inputs changes value. The ISR must then read the ports of those pins, or else
future input changes will not result in an interrupt. The ISR can compare the new port values to the previous
values to determine which input has changed.

93

CHAPTER 7. DIGITAL INPUT AND OUTPUT

+5 V

PIC32

R > 500 Ω

open-drain
output with

external pull-up
resistor

+3.3 V

input

PIC32

digital input configured
with internal pull-up resistor

Figure 7.1: Left: A digital output configured as an open-drain output with external pull-up resistor to 5 V.
(This should only be done for 5 V tolerant pins.) The resistor should allow no more than 10 mA to flow
into the PIC32 when the PIC32 holds the output low. If the LAT bit controlling the pin has the value 1,
the internal switch is open, and the output reads 5 V. If the bit is a 0, the internal switch is closed and
the output reads 0 V. Right: A digital input configured with an internal pull-up resistor allows a simple
open-close switch to yield digital high when the switch is open and digital low when the switch is closed.

Microchip recommends that unused digital I/O pins be configured as outputs and driven to a logic low
state, though this is not required.

7.2 Details

AD1PCFG The PIC32MX795F512L has one analog-to-digital converter named AD1, and this AD1 pin
configuration SFR determines which of the 16 pins with an analog input function (port B) are
treated as analog inputs and which are treated as DIO pins. The 16 most significant bits (high bits)
AD1PCFG〈31:16〉 are ignored. AD1PCFG〈x〉, or AD1PCFGbits.PCFGx, x = 0 to 15, controls whether
pin ANx is an analog input or not: 0 = analog input, 1 = digital pin. The default on reset is 0, so all
pins on port B are analog inputs by default.

TRISx, x = A to G These tri-state SFRs determine which of the DIO pins of port x are inputs and
which are outputs. For example, TRISAbits.TRISA5 = 0 makes RA5 an output (0 = Output), and
TRISAbits.TRISA5 = 1 makes RA5 an input (1 = Input). Bits of TRISx default to 1 on reset.

LATx, x = A to G A write to the latch chooses the output for pins configured as digital outputs. (Pins
configured as inputs will ignore the write.) For example, if TRISD = 0x0000, making all 16 pins on
port D ouptuts, then LATD = 0x00FF makes pins RD0-7 high and pins RD8-15 low. An individual pin
can be referenced using LATDbits.LATD13. A write of 1 to an open-drain output sets the output to
floating, while a write of 0 sets the output to low.

PORTx, x = A to G PORTD returns the current digital inputs for DIO pins on port D configured as
inputs. PORTDbits.RD6 returns the digital input for RD6.

ODCx, x = A to G The open-drain configuration SFR determines whether outputs are open drain or not.
If TRISDbits.TRISD8 = 0, making RD8 an output, then ODCDbits.ODCD8 = 1 configures RD8 as an
open-drain output, and ODCDbits.ODCD8 = 0 configures RD8 as a typical buffered output. The reset
default for all bits is 0.

CNPUE The relevant bits of the change notification pull-up enable SFR are CNPUE〈21:0〉, and they apply
only to the 22 pins that have a change notification function, CN0 . . . CN21. If CNPUEbits.CNPUE2 =

Lynch, Marchuk, and Elwin, Northwestern U. 94 12:38 February 4, 2015

CHAPTER 7. DIGITAL INPUT AND OUTPUT

1, then CN2/RB0 has the internal pull-up resistor enabled, and if CNPUEbits.CNPUE2 = 0, then it is
disabled. The reset default for all bits is 0. An internal pull-up resistor can be convenient

Other SFRs specific to the interrupt function of the digital I/O peripheral are:

CNCON The change notification control SFR enables CN interrupts if CNCON〈15〉 (or CNCONbits.ON)
equals 1. The default is 0.

CNEN A particular pin CNx is included in the change notification scan if CNEN〈x〉 (or CNENbits.CNENx)
is 1. Otherwise it is not included in the change notification.

A recommended procedure for enabling the CN interrupt is to (1) write an ISR using the vector 26
(also defined as the _CHANGE_NOTICE_VECTOR in p32mx795f512l.h) that both clears the IRQ flag status
IFS1bits.CNIF and reads the pins involved in the CN scan to reenable the interrupt; (2) disable interrupts at
the CPU; (3) set CNCONbits.ON to 1 and CNENbits.CNENx to 1, for each pin x included in the change
notification; (4) choose the vector priority IPC6bits.CNIP (or IPC6〈28:26〉) and subpriority IPC6bits.CNIS
(or IPC6〈25:24〉); (5) clear the IRQ flag status IFS1bits.CNIF (or IFS1〈0〉) to 0; (6) set the IRQ enable bit
IEC1bits.CNIE (or IEC1〈0〉) to 1; and (7) reenable interrupts at the CPU.

7.3 Sample Code

Our first program, simplePIC.c, demonstrated the use of two digital outputs (to control two LEDs) and one
digital input (the USER button).

The example below sets up the following inputs and outputs:

• Pins RB0 and RB1 as digital inputs with internal pull-up resistors enabled.

• Pins RB2 and RB3 as digital inputs without pull-ups.

• Pins RB4 and RB5 as buffered digital outputs.

• Pins RB6 and RB7 as open-drain digital outputs.

• Pins AN8–AN15 as analog inputs.

• Port F as digital input, with RF4 with an internal pull-up.

• Change notification based on pins RB0, RF4, and RF5. Since both ports B and F are involved in the
change notification, both ports must be read inside the ISR to allow the interrupt to be re-enabled.
The ISR toggles one of the NU32 LEDs to indicate that a change has been noticed on pin RB0, RF4,
or RF5.

Code Sample 7.1. DIO sample.c. Digital input, output, and change notification.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // peripheral.h, config bits, constants, funcs for startup and UART

unsigned int oldB = 0, oldF = 0, newB = 0, newF = 0; // to hold the port B and F reads

void __ISR(_CHANGE_NOTICE_VECTOR, IPL3SOFT) CNISR(void) { // INT step 1

newB = PORTB; // since pins on port B and F are being monitored

newF = PORTF; // by CN, must read both to allow continued functioning

// ... do something here with oldB, oldF, newB, newF ...

oldB = newB; // save the current values for future use

oldF = newF;

LATBINV = 0xF0; // toggle buffered RB4, RB5 and open-drain RB6, RB7

NU32_LED1 = !NU32_LED1; // toggle LED1

Lynch, Marchuk, and Elwin, Northwestern U. 95 12:38 February 4, 2015

CHAPTER 7. DIGITAL INPUT AND OUTPUT

IFS1CLR = 1; // clear the interrupt flag

}

int main(void) {

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

AD1PCFG = 0x00FF; // set port B pins 8-15 as analog in, 0-7 as digital pins

TRISB = 0xFF0F; // set port B pins 4-7 as digital outputs, 0-3 as digital inputs

ODCBSET = 0x00C0; // set ODCB bits 6 and 7, so RB6, RB7 are open drain outputs

CNPUEbits.CNPUE2 = 1; // CN2/RB0 input has internal pull-up

CNPUEbits.CNPUE3 = 1; // CN3/RB1 input has internal pull-up

CNPUEbits.CNPUE17 = 1; // CN17/RF4 input has internal pull-up

oldB = PORTB; // bits 0-3 are relevant input

oldF = PORTF; // all pins of port F are inputs, by default

LATB = 0x0050; // RB4 is buffered high, RB5 is buffered low,

// RB6 is floating open drain (could be pulled to 3.3 V by

// external pull-up resistor), RB7 is low

__builtin_disable_interrupts(); // step 1: disable interrupts

CNCONbits.ON = 1; // step 2: configure peripheral: turn on CN

CNEN = (1<<2)|(1<<17)|(1<<18); // listen to CN2/RB0, CN17/RF4, CN18/RF5

IPC6bits.CNIP = 3; // step 3: set interrupt priority

IPC6bits.CNIS = 2; // step 4: set interrupt subpriority

IFS1bits.CNIF = 0; // step 5: clear the interrupt flag

IEC1bits.CNIE = 1; // step 6: enable the _CN interrupt

__builtin_enable_interrupts(); // step 7: CPU enabled for mvec interrupts

while(1) {

; // infinite loop

}

return 0;

}

7.4 Chapter Summary

• The PIC32 has DIO ports A through G. Only ports B and D have all 16 bits. Nearly all of the pins can
be configured to be digital input or digital output. Some of the outputs can be configured to be open
drain. Only port B inputs can be used for analog input.

• Twenty-two pins can be configured as change notification pins. For those pins that are enabled as
change notification pins, any change on their inputs will generate an IRQ. To re-enable the interrupt,
the ISR should both clear the IRQ flag status as well as read the pins involved in the change notification.

• The change notification pins offer an optional internal pull-up resistor so that the input registers as high
when it is left floating. These pull-up resistors can be used regardless of whether change notification is
used on the pins. The internal pull-up resistor allows simple interfacing of pushbuttons, for example.

7.5 Exercises

1. True or false? If an input pin is not connected to anything, it will always read digital low.

2. You are setting up port B to receive analog input and digital input, and to write digital output. Here is
how you would like to configure the port. (Pin x corresponds to RBx.)

• Pin 0 is an analog input.

Lynch, Marchuk, and Elwin, Northwestern U. 96 12:38 February 4, 2015

CHAPTER 7. DIGITAL INPUT AND OUTPUT

• Pin 1 is a “typical” buffered digital output.

• Pin 2 is an open-drain digital output.

• Pin 3 is a “typical” digital input.

• Pin 4 is a digital input with an internal pull-up resistor.

• Pins 5-15 are analog inputs.

• Pin 3 is monitored for change notification, and the change notification interrupt is enabled.

Questions:

(a) Which digital pin would most likely have an external pull-up resistor? What would be a reasonable
range of resistances to use? Explain what factors set the lower bound on the resistance and what
factors set the upper bound on the resistance.

(b) To achieve the configuration described above, give the eight-digit hex values you should write to
AD1PCFG, TRISB, ODCB, CNPUE, CNCON, and CNEN. (Some of these SFRs have unimple-
mented bits 16-31; write 0 for those bits.)

Lynch, Marchuk, and Elwin, Northwestern U. 97 12:38 February 4, 2015

CHAPTER 7. DIGITAL INPUT AND OUTPUT

Lynch, Marchuk, and Elwin, Northwestern U. 98 12:38 February 4, 2015

Chapter 8

Counter/Timers

The basic function of counters is quite simple: they count pulse rising edges. The pulses may come from the
internal peripheral bus clock or external sources. If the pulses come from a fixed frequency clock, they can be
thought of as timers, hence the words counter and timer are often used interchangeably. Since Microchip’s
documentation mostly refers to them as timers, we’ll adopt that terminology. Timers can generate an
interrupt (1) when a preset number of pulses has been counted or (2) on the falling edge of an external pulse
whose duration is being timed.

8.1 Overview

The PIC32 is equipped with five 16-bit peripheral timers, Timer1-5. A timer increments on the rising edge of
a clock signal, which may come from the PBCLK or from an external source of pulses, such as an encoder. If
an external source is used, the input for Timerx is on the pin TxCK. A prescaler N ≥ 1 determines how many
clock pulses must be received before the counter increments. If the prescaler is set to N = 1, the counter
increments on each clock rising edge; if it is set to N = 8, it increments every eighth rising edge. The clock
source type (internal or external) and the prescaler value is chosen by setting the value of the SFR TxCON.

Each 16-bit timer can count from 0 up to a period P ≤ 216 − 1 = 65535 = 0xFFFF. The current count is
stored in the SFR TMRx and the value of P can be chosen by writing to the period register SFR PRx. When
the timer reaches the value P , a period match occurs, and after N more pulses are received, the counter “rolls
over” to 0. If the input to the timer is the 80 MHz PBCLK, with 12.5 ns between rising edges, then the time
between rollovers is T = (P + 1)×N × 12.5 ns. Choosing N = 1 and P = 79, 999, we get T = 1 ms, and
changing N to 8 gives T = 8 ms. By configuring the timer to use the PBCLK and to generate an interrupt
when a period match occurs, the timer can implement a function to run at a fixed frequency (a controller, for
example). See Figure 8.1.

If the period P is set to 0, then once the count reaches zero, the timer will never increment again (it keeps
rolling over). No interrupt can be generated by a period match if P = 0.

There are two types of timer on the PIC32, Type A and Type B, with slightly different features explained
shortly. Only Timer1 is type A; Timers 2-5 are type B. The timers can be used in the following modes, chosen
by the SFR TxCON:

Counting PBCLK pulses. This is the mode described above, and it is often used to generate interrupts
at a desired frequency by appropriate setting of N and P . It could also be used to time the duration of
some code, much like the core timer is used in Chapter 5, except that peripheral timers can be set to
increment once every N PBCLK cycles, including N = 1, not just every 2 SYSCLK cycles.

Synchronous counting of external pulses. For the timer Timerx, an external pulse source is connected
to the pin TxCK. The timer count increments after each rising edge of the external source. This mode
is called “synchronous” because timer increments are synchronized to the PBCLK; the timer does not
actually increment until the rising edge of PBCLK after the rising edge of the external source. If the
external pulses are too fast, the timer will not accurately count them. According to the Electrical

99

CHAPTER 8. COUNTER/TIMERS

16-bit
TMR2

comparePR2

prescaler
divide by

1, 2, 4, 8, 16,
32, 64, or 256

if equal generate
interrupt
if desired

reset
count

pulse
train

reduced
pulse train

Figure 8.1: A simplified block diagram for a typical use of the 16-bit Timer2. The input pulse train, which
can be from the PBCLK or an external source, goes into a prescaler, which produces one output pulse for
every N input pulses, where N could be 1, 2, 4, 8, 16, 32, 64, or 256. These pulses are counted and the count
is stored in the TMR2 SFR. TMR2 resets to zero on the next pulse after its value matches the value in the
period register PR2. By default, the PR2 value is 0xFFFF, so TMR2 counts up to 216 − 1 before rolling
over to zero. Timers 3, 4, and 5 are similar to Timer2, but the prescaler for Timer1 can only take the values
N = 1, 8, 64, 256.

Characteristics section of the Data Sheet, the duration of the high and low portions of a pulse should
be at least 37.5 ns.

Asynchronous counting of external pulses (Type A Timer1 only). The Type A pulse counting cir-
cuit can be configured to increment independently of the PBCLK. Because of this, Timer1 can count
even when the PBCLK is not operating, such as in the power-saving Sleep mode. If there is a period
match, Timer1 can generate an interrupt and wake up the PIC32.

When Timer1 is set up to count external pulses and the Secondary Oscillator is enabled by the
configuration bit FSOSCEN of DEVCFG1, then the secondary oscillator on the pins SOSCO and SOSCI
becomes the timer input. Typically a precise 32.768 kHz oscillator (215 pulses every second) is used on
SOSCO/SOSCI for the Real-Time Clock and Calendar function (Chapter ??).

The Timer1 asynchronous counting mode can count shorter pulses than the synchronous mode, down
to 10 ns high and low durations.

Timing the duration of an external pulse. This is also called “gated accumulation mode.” For Timerx,
when the input on external pin TxCK goes high, the counter starts incrementing according to the
PBCLK and the prescaler N . When the input drops low, the count stops. The timer can also generate
an interrupt when the input drops low, for example signaling an ISR to examine the duration of the
pulse.

Important differences between Timer1 (Type A) and Timer2-5 (Type B) are:

• Only Timer1 can count external pulses asynchronously, as described above.

• Timer1 can have prescalers N = 1, 8, 64, and 256, while Timer2-5 can have prescalers N = 1, 2, 4, 8,
16, 32, 64, and 256.

• Timer2 and Timer3 can be chained to make a single 32-bit timer, called Timer23. Timer4 and Timer5
can similarly be used to make a single 32-bit timer, called Timer45. These combined timers allow
counts up to 232 − 1, or over 4 billion. When two timers are used to make Timerxy (x < y), Timerx is
called the “master” and Timery is the “slave”—only the prescaler and mode information in TxCON are
relevant, while that in TyCON is ignored. When Timerx rolls over from 216 − 1 to 0, it sends a clock
pulse to increment Timery. In Timerxy mode, the 16 bits of TMRy are copied to the most significant
16 bits of the SFR TMRx, so the 32 bits of TMRx contain the full count of Timerxy. Similarly, the 32
bits of PRx contain the 32-bit period match value Pxy. The interrupt associated with a period match
(or a falling input in gated accumulation mode) is actually generated by Timery, so interrupt settings
should be chosen for Timery’s IRQ and vector.

Lynch, Marchuk, and Elwin, Northwestern U. 100 12:38 February 4, 2015

CHAPTER 8. COUNTER/TIMERS

Timers are used in conjunction with digital waveform generation by the Output Compare peripheral
(Chapter 9) and in timing digital input waveforms by the Input Capture peripheral (Chapter ??). A timer
can also be used to repeatedly trigger analog to digital conversions (Chapter 10).

8.2 Details

The following SFRs are associated with the timers. All SFRs default to 0x0000, except the PRx SFRs, which
default to 0xFFFF.

T1CON The Timer1 control SFR configures the behavior of the Type A timer Timer1. Important bits
include

T1CON〈15〉, or T1CONbits.ON: 1 = timer is enabled, 0 = timer is off.

T1CON〈7〉, or T1CONbits.TGATE: 1 = gated time accumulation is enabled, 0 = gated time accumu-
lation is disabled. The gate input is T1CK. (Gated time acculumation mode requires T1CON〈1〉
= 0.)

T1CON〈5:4〉, or T1CONbits.TCKPS: 0b11 = 1:256 prescaler, 0b10 = 1:64 prescaler, 0b01 = 1:8
prescaler, 0b00 = 1:1 prescaler.

T1CON〈2〉, or T1CONbits.TSYNC: 1 = external clock inputs are synchronized with the PBCLK, 0 =
unsynchronized.

T1CON〈1〉, or T1CONbits.TCS: 1 = external clock from T1CK pin, 0 = from PBCLK.

TxCON, x = 2 to 5 These SFRs configure the behavior of the Type B timers Timer2-5.

TxCON〈15〉, or TxCONbits.ON: 1 = timer is enabled, 0 = timer is off.

TxCON〈7〉, or TxCONbits.TGATE: 1 = gated time accumulation is enabled, 0 = gated time accumu-
lation is disabled. The gate input is TxCK. (Gated time acculumation mode requires TxCON〈1〉
= 0.)

TxCON〈6:4〉, or TxCONbits.TCKPS: 0b111 = 1:256 prescaler, 0b110 = 1:64 prescaler, 0b101 = 1:32
prescaler, 0b100 = 1:16 prescaler, 0b011 = 1:8 prescaler, 0b010 = 1:4 prescaler, 0b001 = 1:2
prescaler, 0b000 = 1:1 prescaler.

TxCON〈3〉, or TxCONbits.T32: This bit is only relevant for x = 2 and 4 (Timer2 and Timer4), and
it determines whether Timer3 and Timer5 are chained to make a 32-bit timer, respectively. 1 =
chain Timerx with Timery to make a 32-bit timer Timerxy, 0 = Timerx and Timery are separate
16-bit timers. For a 32-bit timer, TyCON settings are ignored; TMRy is enabled and its clock
comes from the rollover of TMRx after hitting 0xFFFF.

TxCON〈1〉, or TxCONbits.TCS: 1 = external clock from TxCK pin, 0 = from PBCLK.

TMRx, x = 1 to 5 TMRx〈15:0〉 stores the 16-bit count of Timerx. TMRx resets to 0 on the next clock
input (after the prescaler) after TMRx reaches the number stored in PRx. This is called a period
match. In Timerxy 32-bit mode, TMRx contains the 32-bit value of the chained timer, and period
match occurs when TMRx = PRx.

PRx, x = 1 to 5 PRx〈15:0〉 of the period register contains the maximum value of the count of TMRx
before it resets to zero on the next count. An interrupt can be generated on this period match. In
Timerxy 32-bit timer mode, PRx contains the 32-bit value of the period Pxy.

If the timer is enabled (TxCON.ON = 1), the timer can generate an interrupt on the falling edge of the
gate input when it is in gated mode (TxCONbits.TCS = 0 and TxCONbits.TGATE = 1) or a period match
otherwise. To enable the interrupt for Timerx, the interrupt enable bit IEC0bits.TxIE must be set. The
interrupt flag bit IFS0bits.TxIF should be cleared and the priority and subpriority bits IPCxbits.TxIP and
IPCxbits.TxIS must be written. See the the table in Chapter 6 or in the Interrupt Controller section of the
Data Sheet. In 32-bit Timerxy mode, interrupts are generated by Timery; interrupt settings for Timerx are
ignored.

Lynch, Marchuk, and Elwin, Northwestern U. 101 12:38 February 4, 2015

CHAPTER 8. COUNTER/TIMERS

8.3 Sample Code

8.3.1 A Fixed Frequency ISR

To create a 5 Hz ISR with an 80 MHz PBCLK, the interrupt must be triggered every 16 million PBCLK
cycles. The highest a 16-bit timer can count is 216 − 1. Insteaad of wasting two timers to make a 32-bit timer
with a prescaler N = 1, let’s use a single 16-bit timer with a prescaler N = 256. We’ll use Timer1. We should
choose PR1 to satisfy

16000000 = (PR1 + 1) * 256

that is, PR1 = 62499. The ISR in the following code toggles a digital output at 5 Hz, creating a 2.5 Hz
square wave (a flashing LED on the NU32).

Code Sample 8.1. TMR 5Hz.c. Timer1 toggles RA5 five times a second (LED2 on the NU32 flashes).

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) { // INT step 1: the ISR

LATAINV = 0x20; // toggle RA5

IFS0bits.T1IF = 0; // clear interrupt flag

}

void main(void) {

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts at CPU

// INT step 3: setup peripheral

PR1 = 62499; // set period register

TMR1 = 0; // initialize count to 0

T1CONbits.TCKPS = 3; // set prescaler to 256

T1CONbits.TGATE = 0; // not gated input (the default)

T1CONbits.TCS = 0; // PCBLK input (the default)

T1CONbits.ON = 1; // turn on Timer1

IPC1bits.T1IP = 5; // INT step 4: priority

IPC1bits.T1IS = 0; // subpriority

IFS0bits.T1IF = 0; // INT step 5: clear interrupt flag

IEC0bits.T1IE = 1; // INT step 6: enable interrupt

__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU

while (1) {

; // infinite loop

}

}

8.3.2 Counting External Pulses

The following code uses the 16-bit timer Timer2 to count the rising edges on the input T2CK. The 32-bit
Timer45 creates an interrupt at 2 kHz to toggle a digital output, generating a 1 kHz pulse train on RD1 that
acts as input to T2CK. Although a 16-bit timer can certainly generate a 1 kHz pulse train, we use a 32-bit
timer just to show the configuration. In Chapter 9 we will learn about the Output Compare peripheral, a
better way to use a timer to create more flexible waveforms.

To create an IRQ every 0.5 ms (2 kHz), we use a prescaler N = 1 and a period match PR4 = 39,999, so

(PR4 + 1) * N * 12.5 ns = 0.5 ms

Lynch, Marchuk, and Elwin, Northwestern U. 102 12:38 February 4, 2015

CHAPTER 8. COUNTER/TIMERS

The code below displays to your computer’s screen the amount of time that has elapsed since the PIC32
was reset, in milliseconds. If you wait 65 seconds, you’ll see Timer2 roll over.

Code Sample 8.2. TMR external count.c. Timer45 creates a 1 kHz pulse train on RD1, and these external
pulses are counted by Timer2. The elapsed time is periodically reported back to the host computer screen.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

void __ISR(_TIMER_5_VECTOR, IPL4SOFT) Timer5ISR(void) { // INT step 1: the ISR

LATDINV = 0b10; // toggle RD1

IFS0bits.T5IF = 0; // clear interrupt flag

}

int main(void) {

char message[200] = {};

int i = 0;

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts

TRISDbits.TRISD1 = 0; // make D1 an output. connect D1 to C1/T2CK!

// configure Timer2 to count external pulses.

// The remaining settings are left at their defaults

T2CONbits.TCS = 1; // count external pulses

PR2 = 0xFFFF; // enable counting to max value of 2^16 - 1

TMR2 = 0; // set the timer count to zero

T2CONbits.ON = 1; // turn Timer2 on and start counting

// 1 kHz pulses with 2 kHz interrupt from Timer45

T4CONbits.T32 = 1; // INT step 3: set up Timers 4 and 5 as 32-bit Timer45

PR4 = 39999; // rollover at 40,000; 80MHz/40k = 2 kHz

TMR4 = 0; // set the timer count to zero

T4CONbits.ON = 1; // turn the timer on

IPC5bits.T5IP = 4; // INT step 4: priority for Timer5 (int goes with T5)

IFS0bits.T5IF = 0; // INT step 5: clear interrupt flag

IEC0bits.T5IE = 1; // INT step 6: enable interrupt

__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU

while (1) {

// display the elapsed time in ms

sprintf(message,"Elapsed time: %u ms\r\n", TMR2);

NU32_WriteUART1(message);

for(i = 0; i < 10000000; ++i){// loop to delay printing

_nop(); // include nop so loop is not optimized away

}

}

return 0;

}

8.3.3 Timing the Duration of an External Pulse

In this last example we modify our previous code so that Timer45 creates a train of pulses on RD1 that are
high for one second and low for one second (a 0.5 Hz square wave). These pulses are timed by the 32-bit
Timer23 in gated accumulation mode. The accumulated count begins when the T2CK input from RD1 goes

Lynch, Marchuk, and Elwin, Northwestern U. 103 12:38 February 4, 2015

CHAPTER 8. COUNTER/TIMERS

high and stops when the T2CK input drops low. The falling edge calls an ISR that resets the Timer23 count
and displays the count, and the duration in seconds, to the screen. You should find that the count is very
close to 80 million, as expected for the one second pulses generated by Timer45.

Code Sample 8.3. TMR pulse duration.c. Timer45 creates a series of 1 second pulses on RD1. These
pulses are input to T2CK and Timer23 measures their duration.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

void __ISR(_TIMER_5_VECTOR, IPL4SOFT) Timer5ISR(void) { // INT step 1: the ISR

LATDINV = 0b10; // toggle RD1

IFS0bits.T5IF = 0; // clear interrupt flag

}

void __ISR(_TIMER_3_VECTOR, IPL3SOFT) Timer23ISR(void) { // INT step 1: the ISR

char msg[100] = {};

sprintf(msg,"The count was %u, or %10.8f seconds.\r\n", TMR2, TMR2/80000000.0);

NU32_WriteUART1(msg);

TMR2 = 0; // reset Timer23

IFS0bits.T3IF = 0; // clear interrupt flag

}

int main(void) {

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts

TRISDbits.TRISD1 = 0; // make D1 an output. connect D1 to C1/T2CK!

// INT step 3

T2CONbits.T32 = 1; // for T23: combine Timers 2 and 3 to make Timer23

T2CONbits.TGATE = 1; // Timer23 in gated accumulation mode

PR2 = 0xFFFFFFFF; // use the full period of Timer23

T2CONbits.TON = 1; // turn Timer23 on

T4CONbits.T32 = 1; // for T45: enable 32 bit mode Timer45

PR4 = 79999999; // set PR so timer rolls over at 1 Hz

TMR4 = 0; // initialize count to 0

T4CONbits.TON = 1; // turn Timer45 on

IPC5bits.T5IP = 4; // INT step 4: priority for Timer5 (int for Timer45)

IPC3bits.T3IP = 3; // priority for Timer3 (int for Timer23)

IFS0bits.T5IF = 0; // INT step 5: clear interrupt flag for Timer45

IFS0bits.T3IF = 0; // clear interrupt flag for Timer23

IEC0bits.T5IE = 1; // INT step 6: enable interrupt for Timer45

IEC0bits.T3IE = 1; // enable interrupt for Timer23

__builtin_enable_interrupts(); // INT step 7: enable interrupts at the CPU

while (1) {

;

}

}

8.4 Chapter Summary

• All five of the 16-bit PIC32 timers can be used to generate fixed-frequency interrupts, count external
pulses, and time the duration of external pulses. Additionally, the Type A Timer1 can asynchronously

Lynch, Marchuk, and Elwin, Northwestern U. 104 12:38 February 4, 2015

CHAPTER 8. COUNTER/TIMERS

count external pulses even when the PIC32 is in Sleep mode, while the Type B timers Timer2 and
Timer3 can be chained to make the 32-bit timer Timer23. Similarly, Timer4 and Timer5 can be chained
to make the 32-bit timer Timer45.

• For a 32-bit timer Timerxy, the timer configuration information in TxCON is used (TyCON is ignored),
and the interrupt enable, flag status, and priority bits are configured for Timery (this information for
Timerx is ignored). The 32-bit Timerxy count is held in TMRx and the 32-bit period match value is
held in PRx.

• A timer can generate an interrupt when (1) the external pulse being timed falls low (gated accumulation
mode) or (2) the count reaches a value stored in a period register (period match).

8.5 Exercises

1. Assume PBCLK is running at 80 MHz. Give the four-digit hex values for T3CON and PR3 so that
Timer3 is enabled, accepts PBCLK as input, has a 1:64 prescaler, and rolls over (generates an interrupt)
every 16 ms.

2. Using a 32-bit timer (Timer23 or Timer45), what is the longest duration you can time, in seconds,
before the timer rolls over? (Use the prescaler that maximizes this time.)

Lynch, Marchuk, and Elwin, Northwestern U. 105 12:38 February 4, 2015

CHAPTER 8. COUNTER/TIMERS

Lynch, Marchuk, and Elwin, Northwestern U. 106 12:38 February 4, 2015

Chapter 9

Output Compare

“Output compare” refers to the fact that the count of a timer is compared against a fixed value, and when
they are equal, a digital output is set high or low. This can be used to generate a single pulse of specified
duration or a continuous train of pulses. Each mode of operation can generate an interrupt.

Like most microcontrollers, the PIC32 does not come with analog output (digital-to-analog converter, or
DAC). Instead, one way to transmit an analog value is by using the timing of a fixed period pulse train from
a single digital output: the analog value is proportional to the duty cycle of the pulse train, where the duty
cycle is the percentage of the period that the signal is high. This is often called “pulse width modulation”
(PWM). PWM signals are commonly used as input to H-bridge amplifiers that drive motors. High-frequency
PWM can also be low-pass filtered to create a true analog output.

9.1 Overview

The five output compare peripherals can be configured to operate in seven different modes. In all modes, the
module uses either the count of the 16-bit timer Timer2 or Timer3, or the count of the 32-bit timer Timer23,
depending on the Output Compare Control SFR OCxCON (where x = 1. . . 5 refers to the particular output
compare module). We will call the timer Timery, where y = 2, 3, or 23. Timery must be set up with its own
prescaler and period register, which will influence the behavior of the OC peripheral.

The OC peripheral’s operating modes consist of three “single compare” modes, two “dual compare” modes,
and two PWM modes, as chosen by three bits in OCxCON. In the single compare modes, the Timery count
TMRy is compared to the value in OCxR. When they match, the OC output is either set high, cleared
low, or toggled, depending on the mode. The last mode generates a continuous pulse train, with the period
determined by the period register PRy of Timery and the pulse duration determined by OCxR.

In the dual compare modes, TMRy is compared to two values, OCxR and OCxRS. On the first match,
the output is driven high, and on the second the output is driven low. Depending on a bit in OCxCON,
either a single pulse is generated or a continuous pulse train is produced.

The two PWM modes create continuous pulse trains. Each pulse begins (is set high) at rollover of Timery,
as set by the period register PRy. The output is then set low when the timer count reaches OCxR. To change
the value of OCxR, the user’s program may alter the value in OCxRS at any time. This value will then
be transferred to OCxR at the beginning of the new time period. The duty cycle of the pulse train, as a
percentage, is

duty cycle = OCxR/(PRy + 1) x 100%.

One of the two PWM modes offers the use of a fault protection input. If this is chosen, then the OCFA
input pin (corresponding to OC1 through OC4) or the OCFB input pin (corresponding to OC5) must be
high for PWM to operate. If the pin drops to logic low, corresponding to some external fault condition, then
the the PWM output will be high impedance (effectively, the output is turned off, and is neither logic high
nor low) until the fault condition is removed and the PWM mode is reset by a write to OCxCON.

107

CHAPTER 9. OUTPUT COMPARE

9.2 Details

The output compare modules are controlled by the following SFRs. The OCxCON SFRs default to 0x0000
on reset; the OCxR and OCxRS SFR values are unknown after reset.

OCxCON, x = 1 to 5 This output compare control SFR determines the operating mode of OCx.

OCxCON〈15〉, or OCxCONbits.ON: 1 = output compare is enabled, 0 = disabled.

OCxCON〈5〉, or OCxCONbits.OC32: 1 = use the 32-bit timer source Timer23, 0 = use a 16-bit timer
source Timer2 or Timer3.

OCxCON〈4〉, or OCxCONbits.OCFLT: The read-only PWM fault condition status bit. 1 = PWM
fault has occurred, 0 = no fault has occurred.

OCxCON〈3〉, or OCxCONbits.OCTSEL: This timer select bit chooses the timer used for comparison.
1 = Timer3, 0 = Timer2. If the 32-bit timer Timer23 is selected using OCxCONbits.OC32 = 1,
then the OCTSEL bit is ignored.

OCxCON〈2:0〉, or OCxCONbits.OCM: These three bits determine the operating mode:

0b111 PWM mode with fault pin enabled. OCx is set high on the timer rollover, then set low when
the timer value matches OCxR. The SFR OCxRS can be altered at any time, and it is copied
to OCxR at the beginning of the next timer period. (OCxR should be initialized before the
OC module is enabled, to handle the first PWM cycle. After the OC module is enabled, OCxR
is read-only.) The duty cycle of the PWM signal is OCxR/(PRy + 1) × 100%, where PRy is
the period register of the timer. If the fault pin, OCFA for OC1-4 and OCFB for OC5, drops
low, the read-only fault status bit OCxCONbits.OCFLT is set to 1, the OCx output is set
to high impedance, and an interrupt is generated. The fault condition is cleared and PWM
resumes once the fault pin goes high and the OCxCONbits.OCM bits are rewritten. One
possible use of the fault pin is in conjunction with an Emergency Stop button that is normally
high but drops low when the user presses it. If the OCx output is driving an H-bridge that
powers a motor, setting the OCx output to high impedance will signal the H-bridge to stop
sending current to the motor.

0b110 PWM mode with fault pin disabled. Identical to above, without the fault pin.

0b101 Dual compare mode, continuous output pulses. When the module is enabled, OCx is driven
low. OCx is driven high on a match with OCxR and driven low on a match with OCxRS. The
process repeats, creating an output pulse train. An interrupt can be generated when OCx is
driven low.

0b100 Dual compare mode, single output pulse. Same as above, except the OCx pin will remain low
after the match with OCxRS until the OC mode is changed or the module is disabled.

0b011 Single compare mode, continuous pulse train. When the module is enabled, OCx is driven
low. The output is toggled on all future matches with OCxR until a mode change has been
made or the module is disabled. An interrupt can be generated on each toggle.

0b010 Single compare mode, single high pulse. When the module is enabled, OCx is driven high.
OCx will be driven low and an interrupt can be generated on a match with OCxR. OCx will
remain low until the mode is changed or the module disabled.

0b001 Single compare mode, single low pulse. When the module is enabled, OCx is driven low. OCx
will be driven high and an interrupt can be generated on a match with OCxR. OCx will
remain high until the mode is changed or the module disabled.

0b000 The output compare module is disabled but still drawing current, unless OCxCONbits.ON =
0.

OCxR, x = 1 to 5 If OCxCONbits.OC32 = 1, then all 32-bits of OCxR are used for the compare to the
32-bit counter TMR23. Otherwise, only OCxR〈15:0〉 is compared to the 16-bit counter Timer2 or
Timer3, depending on OCxCONbits.OCTSEL.

Lynch, Marchuk, and Elwin, Northwestern U. 108 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

OCxR

1 2 1 2

Timery rolls over, the TyIF interrupt �ag is asserted, the OCx pin is driven high,
and OCxRS is loaded into OCxR.

TMRy matches the value in OCxR and the OCx pin is driven low.

1

2

OCx
output

duty cycle = 100% * OCxR / (PRy + 1)

PRy + 1

Figure 9.1: A PWM waveform from OCx using Timery as the time base.

OCxRS, x = 1 to 5 If OCxCONbits.OC32 = 1, then all 32-bits of OCxRS are used for the compare to
the 32-bit counter TMR23. Otherwise, only OCxRS〈15:0〉 is compared to the 16-bit counter Timer2 or
Timer3, depending on OCxCONbits.OCTSEL. This SFR is not used in the single compare modes.

Timer2, Timer3, or Timer23 (depending on OCxCONbits.OC32 and OCxCONbits.OCTSEL) must be
separately configured. Output compare modules do not affect the behavior of the timers; they simply compare
values in OCxR and OCxRS and alter the digital output OCx on match events.

The interrupt flag status and enable bits for OCx are IFS0bits.OCxIF and IEC0bits.OCxIE, and the
priority and subpriority bits are IPCxbits.OCxIP and IPCxbits.OCxIS.

PWM Modes The most common modes for Output Compare are the PWM modes. They can be used to
drive H-bridges powering motors or to continuously transmit analog values represented by the duty cycle.
Microchip often refers to the duty cycle as the duration OCxR of the high portion of the PWM waveform,
but it is more standard to refer to the duty cycle in the range 0 to 100%. A plot of a PWM waveform is
shown in Figure 9.1.

9.3 Sample Code

9.3.1 Generating a Pulse Train with PWM

Below is sample code using OC1 with Timer2 to generate a 10 kHz PWM signal, initially at 25% duty cycle
and then changed to 50% duty cycle. The fault pin is not used.

Code Sample 9.1. OC PWM.c Generating 10 kHz PWM with 50% duty cycle.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

int main(void) {

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

T2CONbits.TCKPS = 2; // Timer2 prescaler N=4 (1:4)

PR2 = 1999; // period = (PR2+1) * N * 12.5 ns = 100 us, 10 kHz

TMR2 = 0; // initial TMR2 count is 0

Lynch, Marchuk, and Elwin, Northwestern U. 109 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

OC5
R C

RC �lter
“averaged”

output voltage

PWM waveform

Figure 9.2: An RC low-pass filter “averaging” the PWM output from OC3.

OC1CONbits.OCM = 0b110; // PWM mode without fault pin; other OC1CON bits are defaults

OC1RS = 500; // duty cycle = OC1RS/(PR2+1) = 25%

OC1R = 500; // initialize before turning OC1 on; afterward it is read-only

T2CONbits.ON = 1; // turn on Timer2

OC1CONbits.ON = 1; // turn on OC1

_CP0_SET_COUNT(0); // delay 4 seconds so you can see the 25% duty cycle on a ’scope

while(_CP0_GET_COUNT() < 4 * 40000000) {

;

}

OC1RS = 1000; // set duty cycle to 50%

while(1) {

; // infinite loop

}

return 0;

}

9.3.2 Analog Output

DC Analog Output

We can use a PWM signal of constant duty cycle to generate a DC (constant) analog output by low-pass
filtering the PWM. The low-pass filter essentially time-averages the high and low voltages of the waveform,

average voltage = duty cycle * 3.3 V

assuming that the output compare module swings between 0 and 3.3 V (the range may actually be a bit less).
There are many ways to build circuits to low-pass filter a signal, including active filter circuits using

op amps. Here we focus on a simple passive RC filter, as shown in Figure 9.2. The voltage VC across the
capacitor C is the output of the filter. In the limit where R is zero, then the output compare module attempts
to source or sink enough current to allow the capacitor voltage to exactly track the nominal PWM square
wave, and there is no “averaging” effect. As the resistance R is increased, however, the resistor increasingly
limits the current I available to charge or discharge the capacitor, meaning that the capacitor’s voltage
changes more and more slowly, according to the relationship dVC/dt = I/C.

The charging and discharging of the capacitor, and its relationship to the product RC, is shown in
Figure 9.3. During the low portion of the PWM, the voltage across the capacitor decays toward zero according
to the first-order exponential

VC(t) = VC(0) e−t/RC ,

where time t = 0 corresponds to the beginning of the low portion of the PWM. The time constant RC, which
has units of seconds, can be visualized by extending the slope dVC/dt from VC(0) until it crosses VC = 0.
The time between t = 0 and the crossover is equal to RC.

Lynch, Marchuk, and Elwin, Northwestern U. 110 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

PWM

RC time constant

RC �ltered output

Figure 9.3: A close-up of the PWM, the RC filter output (with RC charging/discharging time constant
illustrated), and the true time-averaged output (dashed). If the variation in the RC filtered output is
unacceptably large, a larger value of RC should be chosen.

During the high portion of the PWM, the voltage follows a first-order exponential rise toward 3.3 V.
In Figure 9.3, the RC filter voltage variation during one PWM cycle is rather large. To reduce this

variation, we would choose a larger product RC by increasing the resistance and/or capacitance. The
drawback of a large RC is that the filter’s output voltage changes slowly in response to a change in the PWM
duty cycle. We address this in more detail below.

The PWM OCxR value can range from 0 to PRy + 1, where PRy is the period register of the Timery
base for the OCx module. This means that PRy + 2 different average voltage levels are achievable.

Time-Varying Analog Output

If the PWM duty cycle is changing over time, it is more convenient to think of the RC filter’s action on its input
in terms of the filter’s frequency response. Since the RC filter is linear, any sinusoidal input voltage vin(t) =
A sin ft yields a scaled, phase-shifted sinusoidal output of the same frequency f , vout = G(f)A sin(ft+ φ(f)),
where the filter gain G(f) and phase φ(f) are a function of the frequency f of the input. The gain and phase
response of an RC filter are shown in Figure 9.4. At low input frequencies, the gain is approximately 1 and
the phase is zero. At high frequencies, the gain approaches zero and the phase approaches −90 degrees. At
the cutoff frequency fc = 1/(2πRC), the gain is G(fc) = 1/

√
2 and the phase is φ(fc) = −45◦, as shown in

Figure 9.4. An input signal at the cutoff frequency is reduced to about 71% of its magnitude and is phase
delayed by 45 degrees.

Suppose we want to create a sinusoidal analog output voltage by changing the duty cycle of the PWM.
Let’s call the frequency of this desired analog output fa. Now we have three relevant frequencies: the PWM
frequency fPWM, the RC filter cutoff frequency fc, and the desired analog voltage frequency fa. Examining
the frequency response of the RC filter in Figure 9.4, we could adopt the following rules of thumb for choosing
these three frequencies:

• fPWM ≥ 100fc: The PWM waveform consists of a base frequency at fPWM plus higher harmonics to
create the square wave output. According to the gain response of the filter, only about 1% of the
magnitude of the PWM frequency component at 100fc makes it through the RC filter. This is probably
acceptable.

• fc ≥ 10fa: Again consulting the RC filter frequency response, we see that signals at 10 times less than
fc are relatively unaffected by the RC filter: the phase delay is only a few degrees and the gain is nearly
1.

As an example, if the PWM is at 100 kHz, then we might choose an RC filter cutoff frequency of 1 kHz,
and the highest frequency analog output we should expect to be able to create would be 100 Hz. In other
words, we can vary the PWM duty cycle through a full sinusoid (e.g., from 50% duty cycle to 100% duty
cycle to 0% duty cycle and back to 50% duty cycle) 100 times per second.1 If the desired analog output is
not a sinusoid, then it should be a sum of signals at frequencies less than 100 Hz.

1Note that this creates a signal that is the sum of a 100 Hz sinusoid with a duty cycle amplitude equal to 50% plus a DC
(zero frequency) component of amplitude equal to 50% duty cycle.

Lynch, Marchuk, and Elwin, Northwestern U. 111 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

A

A / 2√

φ = – 45 o
input

output

fc0.1fc0.01fc 10fc 100fc

1

0.1

0.01

0

45

– 90

Fi
lte

r G
ai

n
Fi

lte
r P

ha
se

Frequency

_

Figure 9.4: (Left) The frequency-dependent gain and phase response of an RC low-pass filter, with the gain
and phase indicated at the cutoff frequency fc. (Right) A sine wave input of amplitude A and frequency fc is
phase shifted by −45◦ and reduced in amplitude by a factor of 1/

√
2.

The maximum possible PWM frequency is determined by the 80 MHz PBCLK and the number of bits of
resolution we require of the analog output. For example, if we want 8 bits of resolution in the analog output
levels, this means we need 28 = 256 different PWM duty cycles. Therefore the maximum PWM frequency
is 80 MHz / 256 = 312.5 kHz.2 On the other hand, if we require 210 = 1024 voltage levels, the maximum
PWM frequency is 78.125 kHz. Thus there is a fundamental tradeoff between the voltage resolution and
the maximum PWM frequency (and therefore the maximum analog output frequency fa). While higher
resolution analog output is generally desirable, there are limits to the value of increasing resolution beyond a
certain point, because (1) the device receiving the analog input may have a limit to its analog input sensing
resolution, and (2) the transmission lines for an analog signal may be subject to electromagnetic noise that
create voltage variations larger than the analog output resolution.

Below is code to generate PWM at 78.125 kHz with a duty cycle determined by OC3R in the range 0 to
1024. The timer base is Timer2. With a suitable resistor and capacitor attached to OC3, the voltage across
the capacitor reflects the analog voltage requested by the user. Because the voltage does not change quickly
in this example, it is fine to choose fc significantly lower than 781.25 Hz.

Code Sample 9.2. OC analog out.c Using Timer2, OC3, and an RC low-pass filter to create analog output.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

#define PERIOD 1024 // this is PR2 + 1

#define MAXVOLTAGE 3.3 // corresponds to max high voltage output of PIC32

int getUserPulseWidth(void) {

char msg[100] = {};

float f = 0.0;

sprintf(msg, "Enter the desired voltage, from 0 to %3.1f (volts): ", MAXVOLTAGE);

NU32_WriteUART1(msg);

2Technically this yields 257 possible duty cycle levels, since OCxR = 0 corresponds to 0% duty cycle and OCxR = 256
corresponds to 100% duty cycle.

Lynch, Marchuk, and Elwin, Northwestern U. 112 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

NU32_ReadUART1(msg,10);

sscanf(msg, "%f", &f);

// clamp the input voltage to the appropriate range

if (f > MAXVOLTAGE) {

f = MAXVOLTAGE;

} else if (f < 0.0) {

f = 0.0;

}

sprintf(msg, "\r\nCreating %5.3f volts.\r\n", f);

NU32_WriteUART1(msg);

return PERIOD * (f / MAXVOLTAGE); // convert volts to counts

}

int main(void) {

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

PR2 = PERIOD - 1; // Timer2 is the base for OC3, PR2 defines PWM frequency, 78.125 kHz

TMR2 = 0; // initialize value of Timer2

T2CONbits.ON = 1; // turn Timer2 on, all defaults are fine (1:1 divider, etc.)

OC3CONbits.OCTSEL = 0; // use Timer2 for OC3

OC3CONbits.OCM = 0b110; // PWM mode with fault pin disabled

OC3CONbits.ON = 1; // Turn OC3 on

while (1) {

OC3RS = getUserPulseWidth();

}

return 0;

}

9.4 Chapter Summary

• Output Compare modules pair with Timer2, Timer3, or the 32-bit Timer23 to generate a single timed
pulse or a continuous pulse train with controllable duty cycle. Microcontrollers commonly control
motors using pulse-width modulation (PWM) to drive H-bridge amplifiers that power the motors.

• Low-pass filtering of PWM signals, perhaps using an RC filter with a cutoff frequency fc, allows the
generation of analog outputs. There is a fundamental tradeoff between the resolution of the analog
output and the maximum possible frequency component fa of the generated analog signal. If the PWM
frequency is fPWM, then generally the frequencies should satisfy fPWM � fc � fa.

9.5 Exercises

1. Enforce the constraints fPWM ≥ 100fc and fc ≥ 10fa. Given that PBCLK is 80 MHz, provide a formula
for the maximum fa given that you require n bits of resolution in your DC analog voltage outputs.
Provide a formula for RC in terms of n.

2. You will use PWM and an RC low-pass filter to create a time-varying analog output waveform that is
the sum of a constant offset and two sinusoids of frequency f and kf , where k is an integer greater than
1. The PWM frequency will be 10 kHz and f satisfies 50 Hz ≥ f ≥ 10 Hz. Use OC1 and Timer2 to
create the PWM waveform, and set PR2 to 999 (so the PWM waveform is 0% duty cycle when OC1R
= 0 and 100% duty cycle when OC1R = 1000). You can break this program into the following pieces:

Lynch, Marchuk, and Elwin, Northwestern U. 113 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000
Duty Cycle vs. sample #, 20 Hz

signal(20, 1.0, 3, 0.5, 0)

Figure 9.5: An example analog output waveform from Problem 2, plotted as the duration 0 to 1000 of the
high portion of the PWM waveform, which has a period of 1000.

(a) Write a function that forms a sampled approximation of a single period of the waveform

Vout(t) = C +A1 sin(2πft) +A2 sin(2πkft+ φ),

where the constant C is 1.65 V (half of the full range 0 to 3.3 V), A1 is the amplitude of the
sinusoid at frequency f , A2 is the amplitude of the sinusoid at frequency kf , and φ is the phase
offset of the higher frequency component. Typically values of A1 and A2 would be 1 V or less
so the analog output is not saturated at 0 or 3.3 V. The function takes A1, A2, k, f , and φ
as input and creates an array dutyvec, of appropriate length, where each entry is a value 0 to
1000 corresponding to the voltage range 0 to 3.3 V. Each entry of dutyvec corresponds to a time
increment of 1/10 kHz = 0.1 ms, and dutyvec holds exactly one cycle of the analog waveform,
meaning that it has n = 10 kHz/f elements. A Matlab implementation is given below. You
can experiment plotting waveforms or just use the function for reference. A reasonable call of
the function is signal(20, 0.5, 2, 0.25, 45), where the phase 45 is in degrees. An example
waveform is shown in Figure 9.5.

function signal(BASEFREQ,BASEAMP,HARMONIC,HARMAMP,PHASE)

% This function calculates the sum of two sinusoids of different

% frequencies and populates an array with the values. The function

% takes the arguments

%

% * BASEFREQ: the frequency of the low frequency component (Hz)

% * BASEAMP: the amplitude of the low frequency component (volts)

% * HARMONIC: the other sinusoid is at HARMONIC*BASEFREQ Hz; must be

% an integer value > 1

% * HARMAMP: the amplitude of the other sinusoid (volts)

% * PHASE: the phase of the second sinusoid relative to

% base sinusoid (degrees)

%

% Example matlab call: signal(20,1,2,0.5,45);

Lynch, Marchuk, and Elwin, Northwestern U. 114 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

% some constants:

MAXSAMPS = 1000; % no more than MAXSAMPS samples of the signal

ISRFREQ = 10000; % frequency of the ISR setting the duty cycle; 10kHz

% Now calculate the number of samples in your representation of the

% signal; better be less than MAXSAMPS!

numsamps = ISRFREQ/BASEFREQ;

if (numsamps>MAXSAMPS)

disp(’Warning: too many samples needed; choose a higher base freq.’);

disp(’Continuing anyway.’);

end

numsamps = min(MAXSAMPS,numsamps); % continue anyway

ct_to_samp = 2*pi/numsamps; % convert counter to time

offset = 2*pi*(PHASE/360); % convert phase offset to signal counts

for i=1:numsamps % in C, we should go from 0 to NUMSAMPS-1

ampvec(i) = BASEAMP*sin(i*ct_to_samp) + ...

HARMAMP*sin(HARMONIC*i*ct_to_samp + offset);

dutyvec(i) = 500 + 500*ampvec(i)/1.65; % duty cycle values,

% 500 = 1.65 V is middle of 3.3V

% output range

if (dutyvec(i)>1000) dutyvec(i)=1000;

end

if (dutyvec(i)<0) dutyvec(i)=0;

end

end

% ampvec is in volts; dutyvec values are in range 0...1000

plot(dutyvec);

hold on;

plot([1 1000],[500 500]);

axis([1 numsamps 0 1000]);

title([’Duty Cycle vs. sample #, ’,int2str(BASEFREQ),’ Hz’]);

hold off;

(b) Write a function using the NU32 library that prompts the user for A1, A2, k, f , and φ. The array
dutyvec is then updated based on the input.

(c) Use Timer2 and OC1 to create a PWM signal at 10 kHz. Enable the Timer2 interrupt, which
generates an IRQ at every Timer2 rollover (10 kHz). The ISR for Timer2 should update the PWM
duty cycle with the next entry in the dutyvec array. When the last element of the dutyvec array
is reached, wrap around to the beginning of dutyvec. Use the shadow register set for the ISR.

(d) Choose reasonable values for RC for your RC filter. Justify your choice.

(e) The main function of your program should sit in an infinite loop, asking the user for new parameters.
In the meantime, the old waveform continues to be “played” by the PWM. For the values given in
Figure 9.5, use your oscilloscope to confirm that your analog waveform looks correct.

Your code will be graded on organization, comments, simplicity/elegance, and correctness. Turn
in your C file for testing.

Lynch, Marchuk, and Elwin, Northwestern U. 115 12:38 February 4, 2015

CHAPTER 9. OUTPUT COMPARE

Lynch, Marchuk, and Elwin, Northwestern U. 116 12:38 February 4, 2015

Chapter 10

Analog Input

The PIC32 has a single analog-to-digital converter (ADC) that, through the use of multiplexers, can be used
to sample the analog voltage at up to 16 different pins (Port B). The ADC has 10-bit resolution, which means
it can distinguish 210 = 1024 different voltage values, usually in the range 0 to 3.3 V, the voltage used to
power the PIC32. This yields 3.3 V/1024 = 3 mV resolution. The ADC can take up to one million analog
readings per second. The ADC is typically used in conjunction with sensors that produce analog voltage
values.

10.1 Overview

A block diagram of the ADC peripheral, adapted from the Reference Manual, is shown in Figure 10.1. There
is a lot going on in this figure, but let’s start at the differencing amp. Some control logic (determined by
SFRs) selects the + input of the differencing amp from the analog input pins AN0 to AN15. Other control
logic selects the − input to be either AN1 or VREFL, the low reference voltage to the ADC selected by the
bits VCFG. (This reference VREFL can be chosen to be either VREF-, a voltage provided on an external pin,
or AVSS, the PIC32’s GND line, also known as VSS.) For proper operation, the − input voltage VINL should
be less than or equal to the + input voltage VINH.

The difference between the two input voltages, VSHA = VINH − VINL, is sent to the Sample and Hold
Amplifier (SHA). During the sampling (or acquisition) stage, a 4.4 pF internal holding capacitor is charged or
discharged to hold the voltage difference VSHA. Once the sampling period has ended, the SHA is disconnected
from the inputs. This allows VSHA to be constant during the conversion stage, even if the voltages on
the inputs are changing. The Successive Approximation Register (SAR) ADC converts VSHA to a 10-bit
result depending on its relationship to the low and high reference voltages VREFL and VREFH. VREFL was
mentioned earlier, and VREFH can be chosen from a voltage reference on the external pin VREF+ or from
the PIC32’s power supply rail AVDD (also called VDD). If VSHA = VREFL, the 10-bit result is 0. If VSHA =
VREFH, the 10-bit result is 210 − 1 = 1023. For a voltage VSHA that is x% of the way from VREFL to VREFH,
the 10-bit result is 1023 × x/100. (See the Reference Manual for more details on the ADC transfer function.)
The 10-bit conversion result is written to the buffer ADC1BUF which is read by your program. If you don’t
read the result right away, ADC1BUF can store up to 16 results (in the SFRs ADC1BUF0, ADC1BUF1, . . . ,
ADC1BUFF) before the ADC begins overwriting old results.

Sampling and Conversion Timing The two main stages of an ADC read are sampling/acquisition and
conversion. During the sampling stage, we must allow sufficient time for the internal holding capacitor to
converge to the difference VINH − VINL. According to the Electrical Characteristics section of the Data
Sheet, this is 132 ns when the SAR ADC uses the external voltage references VREF- and VREF+ as its low
and high references. The minimum sampling time is 200 ns when using AVSS and AVDD as the low and high
references.

Once the sampling stage has concluded, the SAR ADC requires 12 ADC clock cycles to accomplish the
conversion: one cycle for each of the 10 bits, plus two more. This can be understood by the fact that the

117

CHAPTER 10. ANALOG INPUT

Data
Formatting

Data Bus32

differencing
amp

VINL

VINH

VSHA

Figure 10.1: A simplified schematic of the ADC module.

ADC uses successive approximation to find the digital representation of the voltage. In this method, VSHA

is iteratively compared to a test voltage produced by an internal digital-to-analog converter (DAC). The
DAC takes a 10-bit number and produces a test voltage in the range [VREFL, VREFH], where 0x000 produces
VREFL and 0x3FF produces VREFH. In the first cycle of the conversion process, the test value to the DAC is
0x200 = 0b1000000000, which produces a voltage in the middle of the reference voltage range. If VSHA is
greater than this DAC voltage, the first bit of the conversion result is 1, otherwise it is zero. On the next
cycle, the DAC’s most significant bit is set to the result from the first test, and the second most significant
bit is set to 1 for the next test. The process continues until all 10 bits of the result are determined. This
process is a binary search. The entire process takes 10 cycles, plus 2 more, or 12 ADC clock cycles.

The ADC clock is derived from PBCLK. According to the Electrical Characteristics section of the Data
Sheet, the ADC clock period (TAD, or Tad) must be at least 65 ns to allow time for the conversion of a
single bit. The ADC SFR AD1CON3 allows us to choose the ADC clock period as 2 × k × Tpb, where Tpb
is the PBCLK period and k is any integer from 1 to 256. Since Tpb is 12.5 ns for the NU32, to meet this
specification, we can choose k = 3, or Tad = 75 ns.

The minimum time between samples is the sum of the sampling time and the conversion time. If the
ADC is set up to take samples automatically, we have to choose the sampling time to be an integer multiple
of Tad. The shortest time we can choose is 2 × Tad = 150 ns to satisfy the 132 ns minimum sampling time.
Thus the fastest we can read from an analog input is

minimum read time = 150 ns + 12 * 75 ns = 1050 ns

or just over 1 microsecond. We can take almost a million samples per second, theoretically.

Lynch, Marchuk, and Elwin, Northwestern U. 118 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

Multiplexers Two multiplexers determine which of the analog input pins to connect to the differencing
amp. These two multiplexers are called MUX A and MUX B. MUX A is the default active multiplexer, and
the SFR AD1CON3 contains CH0SA bits that determine which of AN0-AN15 is connected to the + input
and CH0NA bits that determine which of AN1 and VREF- is connected to the − input. It is possible to
alternate between MUX A and MUX B, but you are unlikely to need this.

Options The ADC peripheral provides a bewildering array of options, some of which are described here.
No need to remember them all! The sample code should provide a good starting point.

• Data format: The result of the conversion is stored in a 32-bit word, and it can be represented as a
signed integer, unsigned integer, fractional value, etc. Typically we would use a 16-bit or 32-bit unsigned
integer.

• Sampling and conversion initiation events: Sampling can be initiated by a software command, or
immediately after the previous conversion has completed (auto sample). Conversion can be initiated by
(1) a software command, (2) the expiration of a specified sampling period (auto convert), (3) a period
match with Timer3, or (4) a signal change on the INT0 pin. If sampling and conversion are being done
automatically (not through software commands), the conversion results will be placed in the ADC1BUF
in successively higher addresses, before returning to the first address in ADC1BUF after a specified
number of conversions.

• Input scan and alternating modes: You can read in a single analog input at a time, you can scan
through a list of analog inputs using MUX A, or you can alternate between two inputs, one from MUX
A and one from MUX B.

• Voltage reference: The ADC can be configured to use reference voltages 0 and 3.3 V (the power rails of
the PIC32). If you are interested in voltages in a different range, say 1.0 V to 2.0 V, for example, you
can instead set up the ADC so 0x000 corresponds to 1.0 V and 0x3FF corresponds to 2.0 V, to get
better resolution in this smaller range: (2 V − 1 V)/1024 = 1 mV resolution. These reference voltage
limits are VREF- and VREF+ and must be provided to the PIC32 externally. (These must be limited to
the range 0 to 3.3 V.)

• Unipolar differential mode: Any of the analog inputs (say AN5) can be compared to AN1, so you read
the difference between the voltage on AN5 and AN1 (where the voltage on AN5 should not be less than
the voltage on AN1).

• Interrupts: An interrupt may be generated after a specified number of conversions.

• ADC clock period: The ADC clock period Tad can range from 2 times the PB clock period up to 512
times the PB clock period, in integer multiples of two. You may also choose Tad to be the period of the
ADC internal RC clock.

• Dual buffer mode for reading and writing conversion results: When an ADC conversion is complete, it
is written into the output buffer ADC1BUF. After a series of one or more conversions is complete, an
interrupt flag is set, indicating that the results are available for the program to read. If the program is
too slow to respond, however, the next set of conversions may begin to overwrite the previous results.
To make this less likely, we can divide the 16-word ADC1BUF into two buffers, each consisting of 8
words: one in which the current conversions are being written, and one from which the program should
read the previous results.

10.2 Details

The operation of the ADC peripheral is determined by the following SFRs:

AD1PCFG Only the least significant 16 bits are relevant. If a bit is 0, the associated pin on port B is
configured as an analog input. If a bit is 1, it is digital I/O. The default on reset is all zeroes (analog
inputs).

Lynch, Marchuk, and Elwin, Northwestern U. 119 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

AD1CON1 Determines whether the ADC is on or off; the output format of the conversion; the “start
conversion” signal generator; whether the ADC continually does conversions or just does one sequence
of samples; and whether sampling begins again immediately after the previous conversion ends, or waits
for a signal from the user. Also indicates if the most recent conversion is finished.

AD1CON2 Determines the voltage references for the ADC (positive reference could be 3.3 V or VREF+,
negative reference could be GND or VREF-); whether or not inputs will be scanned; whether MUX A
and MUX B will be used in alternating mode; whether dual buffer mode is selected; and the number of
conversions to be done before generating an interrupt.

AD1CON3 Determines whether Tad is generated from the ADC internal RC clock or the PB clock; the
number of Tad cycles to sample the signal; and the number of Tad cycles allowed for conversion of each
bit (must be at least 65 ns).

AD1CHS This SFR determines which pins will be sampled (the “positive” inputs) and what they will be
compared to (i.e., VREF- or AN1). When in scan mode, the sample pins specified in this SFR are
ignored.

AD1CSSL Bits set to 1 in this SFR indicate which analog inputs will be sampled in scan mode (if AD1CON2
has configured the ADC for scan mode). Inputs will be scanned from lower number inputs to higher
numbers.

Apart from these SFRs, the ADC module has bits associated with the ADC interrupt in IFS1bits.AD1IF,
IEC1bits.AD1IE, IPC6bits.AD1IP, and IPC6bits.AD1IS.

For more details, see the Reference Manual.

10.3 Sample Code

10.3.1 Manual Sampling and Conversion

There are many ways to read the analog inputs, but the sample code below is perhaps the simplest. This
code reads in analog inputs AN14 and AN15 every half second and sends their values to the user’s terminal.
It also logs the time it takes to do the two samples and conversions, which is a bit under 5 microseconds
total. In this program we set the ADC clock period Tad to be 6 × Tpb = 75 ns, and the acquisition time to
be at least 250 ns. There are two places in this program where we are just sitting around waiting: during the
sampling and during the conversion. If speed were an issue, we could use more advanced settings to let the
ADC do the work in the background and let us know via an interrupt when the samples are ready.

Code Sample 10.1. ADC Read2.c Reading two analog inputs with manual initialization of sampling
initialization and conversion.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

#define VOLTS_PER_COUNT (3.3/1024)

#define CORE_TICK_TIME 25 // nanoseconds between core ticks

#define SAMPLE_TIME 10 // 10 core timer ticks = 250 ns

#define DELAY_TICKS 20000000 // delay 1/2 sec, 20 M core ticks, between messages

unsigned int adc_sample_convert(int pin) { // sample and convert the value on the given adc pin

// the pin should be configured as an analog input in

// AD1PCFG

unsigned int elapsed = 0, finish_time = 0;

AD1CHSbits.CH0SA = pin; // connect pin AN14 to MUXA for sampling

AD1CON1bits.SAMP = 1; // start sampling

elapsed = _CP0_GET_COUNT();

Lynch, Marchuk, and Elwin, Northwestern U. 120 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

finish_time = elapsed + SAMPLE_TIME;

while (_CP0_GET_COUNT() < finish_time) {

; // sample for more than 250 ns

}

AD1CON1bits.SAMP = 0; // stop sampling and start converting

while (!AD1CON1bits.DONE) {

; // wait for the conversion process to finish

}

return ADC1BUF0; // read the buffer with the result

}

int main(void) {

unsigned int sample14 = 0, sample15 = 0, elapsed = 0;

char msg[100] = {};

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

AD1PCFGbits.PCFG14 = 0; // AN14 is an adc pin

AD1PCFGbits.PCFG15 = 0; // AN15 is an adc pin

AD1CON3bits.ADCS = 2; // ADC clock period is Tad = 2*(ADCS+1)*Tpb =

// 2*3*12.5ns = 75ns

AD1CON1bits.ADON = 1; // turn on A/D converter

while (1) {

_CP0_SET_COUNT(0); // set the core timer count to zero

sample14 = adc_sample_convert(14); // sample and convert pin 14

sample15 = adc_sample_convert(15); // sample and convert pin 15

elapsed = _CP0_GET_COUNT(); // how long it took to do two samples

// send the results over serial

sprintf(msg, "Time elapsed: %5u ns AN14: %4u (%5.3f volts)"

"AN15: %4u (%5.3f volts) \r\n",

elapsed * CORE_TICK_TIME,

sample14, sample14 * VOLTS_PER_COUNT,

sample15, sample15 * VOLTS_PER_COUNT);

NU32_WriteUART1(msg);

_CP0_SET_COUNT(0); // delay to prevent a flood of messages

while(_CP0_GET_COUNT() < DELAY_TICKS) {

;

}

}

return 0;

}

10.3.2 Maximum Possible Sample Rate

The program ADC_max_rate.c reads from a single analog input, AN0, at the maximum speed that fits the
PIC32 Electrical Characteristics and the 80 MHz PBCLK (Tpb = 12.5 ns). We choose

Tad = 6 * Tpb = 75 ns

as the smallest time that is an even integer multiple of Tpb and greater than the 65 ns required in the
Electrical Characteristics section of the Data Sheet. We choose the sample time to be

Tsamp = 2 * Tad = 150 ns,

the smallest integer multiple of Tad that meets the minimum spec of 132 ns in the Data Sheet. The ADC is
set up to auto-sample and auto-convert 8 samples, then generate an interrupt. The ISR reads in 8 samples
from ADCBUF0-7 or ADCBUF8-F while the ADC is busily filling the other 8-word section. The ISR must

Lynch, Marchuk, and Elwin, Northwestern U. 121 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

finish reading in one 8-word section before the other 8-word section is filled. Otherwise, the ADC results will
start overwriting the unread results.

After reading in 1000 samples, the ADC interrupt is disabled to free up the CPU from servicing the ISR,
and the data points are written to the user’s terminal, along with the average time it took to get each sample.
Theoretically the time is 150 ns + (12 * 75 ns) = 1050 ns, but on average we get an extra 75 ns (6 Tpb) for
1125 ns. This is 888.89 kHz sampling.1

High-speed sampling requires that pin RA9/VREF- be connected to ground and pin RA10/VREF+ be
connected to 3.3 V. These are the external low and high voltage references for analog input in high speed
mode. Actually, in the Reference Manual, Microchip says that VREF- should be attached to ground through a
10 ohm resistor and VREF+ should be attached to two capacitors in parallel to ground (0.1 µF and 0.01 µF)
as well as a 10 ohm resistor to 3.3 V.

To provide input to the ADC, this code sets up OC1 using Timer2 as a base to output a square wave at 5
kHz and 25% duty cycle. The program also uses Timer45 to time the duration between ISR entries. The first
1000 analog input samples are written to the screen, as well as the time they were taken, confirming that the
samples correspond to 889 kHz sampling of a 5 kHz 25% duty cycle waveform. The ISR that reads eight
samples from ADCBUF also toggles an LED once every million times it is entered, allowing the time to take
eight million samples to be measured with a stopwatch (about nine seconds).

The output to your computer’s screen should look something like

... (earlier output snipped)

928 1019 3.284

929 1015 3.271

930 1015 3.271

931 1015 3.271

932 1015 3.271

933 4 0.013

934 4 0.013

935 4 0.013 9.0000 us; 1.1250 us/read for last 8 reads

... (later output snipped)

showing the sample number, the ADC counts, and the corresponding actual voltage for samples 0 to 999. The
high output voltage from OC1 is measured as approximately 3.27 V, and the low output voltage is measured
as approximately 0.01 V. You can also see that the output is high for 45 consecutive samples and low for 135
consecutive samples, corresponding to the 25% duty cycle of OC1. In the snippet above, OC1’s switch from
high to low is measured at sample 933.

Code Sample 10.2. ADC max rate.c Reading a single analog input at the maximum possible rate to meet
the Electrical Characteristics section of the Data Sheet, given that the PBCLK is 80 MHz.

// ADC_max_rate.c

//

// This program reads from a single analog input, AN0, at the maximum speed

// that fits the PIC32 Electrical Characteristics and the 80 MHz PBCLK

// (Tpb = 12.5 ns). The input to AN0 is a 5 kHz 25% duty cycle PWM from

// OC1. The results of 1000 analog input reads is sent to the user’s

// terminal. An LED on the NU32 also toggles every 8 million samples.

//

// RA9/VREF- must be connected to ground and RA10/VREF+ connected to 3.3 V.

//

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // config bits, constants, funcs for startup and UART

1The Electrical Characteristics section of the Data Sheet lists 132 ns as the minimum sampling time for an analog input
coming from a source with 500 ohm output impedance. If the source is a much lower output impedance, it may be possible to
reduce the sampling time to, say, 1 * Tad = 75 ns. Accounting for the extra 75 ns, we get 1050 ns sample time or 952.38 kHz
sampling. This seemed to work fine in tests with low impedance outputs.

Lynch, Marchuk, and Elwin, Northwestern U. 122 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

#define NUM_ISRS 125 // the number of 8-sample ISR results to be printed

#define NUM_SAMPS (NUM_ISRS*8) // the number of samples stored

#define LED_TOGGLE 1000000 // toggle the LED every 1M ISRs (8M samples)

// these variables are static because they are not needed outside this C file

// volatile because they are written to by ISR, read in main

static volatile int storing = 1; // if 1, currently storing data to print; if 0, done

static volatile unsigned int trace[NUM_SAMPS]; // array of stored analog inputs

static volatile unsigned int isr_time[NUM_ISRS]; // time of ISRs from Timer45

void __ISR(_ADC_VECTOR, IPL7SRS) ADCHandler(void) { // interrupt every 8 samples

static unsigned int isr_counter = 0; // the number of times the isr has been called

// "static" means the variable maintains its value

// in between function (ISR) calls

static unsigned int sample_num = 0; // current analog input sample number

if (isr_counter <= NUM_ISRS) {

isr_time[isr_counter] = TMR4; // keep track of Timer45 time the ISR is entered

}

if (AD1CON2bits.BUFS) { // 1=ADC now filling BUF8-BUFF, 0=filling BUF0-BUF7

trace[sample_num++] = ADC1BUF0; // all ADC samples must be read in, even

trace[sample_num++] = ADC1BUF1; // if we don’t want to store them, so that

trace[sample_num++] = ADC1BUF2; // the interrupt can be cleared

trace[sample_num++] = ADC1BUF3;

trace[sample_num++] = ADC1BUF4;

trace[sample_num++] = ADC1BUF5;

trace[sample_num++] = ADC1BUF6;

trace[sample_num++] = ADC1BUF7;

}

else {

trace[sample_num++] = ADC1BUF8;

trace[sample_num++] = ADC1BUF9;

trace[sample_num++] = ADC1BUFA;

trace[sample_num++] = ADC1BUFB;

trace[sample_num++] = ADC1BUFC;

trace[sample_num++] = ADC1BUFD;

trace[sample_num++] = ADC1BUFE;

trace[sample_num++] = ADC1BUFF;

}

if (sample_num >= NUM_SAMPS) {

storing = 0; // done storing data

sample_num = 0; // reset sample number

}

++isr_counter; // increment ISR count

if (isr_counter == LED_TOGGLE) { // toggle LED every 1M ISRs (8M samples)

LATAINV = 0x20;

isr_counter = 0; // reset ISR counter

}

IFS1bits.AD1IF = 0; // clear interrupt flag

}

int main(void) {

int i = 0, j = 0, ind = 0; // variables used for indexing

float tot_time = 0.0; // time between 8 samples

Lynch, Marchuk, and Elwin, Northwestern U. 123 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

char msg[100] ={}; // buffer for writing messages to uart

unsigned int prev_time = 0; // used for calculating time differences

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts

// configure OC1 to use T2 to make 5 kHz 25% DC

PR2 = 15999; // (15999+1)*12.5ns = 200us period = 5kHz

T2CONbits.ON = 1; // turn on Timer2

OC1CONbits.OCM = 0b110; // OC1 is PWM with fault pin disabled

OC1R = 4000; // hi for 4000 counts, lo for rest (25% DC)

OC1RS = 4000;

OC1CONbits.ON = 1; // turn on OC1

// set up Timer45 to count every pbclk cycle

T4CONbits.T32 = 1; // configure 32-bit mode

PR4 = 0xFFFFFFFF; // rollover at the maximum possible period, the default

T4CONbits.TON = 1; // turn on Timer45

// INT step 3: configure ADC generating interrupts

AD1PCFGbits.PCFG0 = 1; // make RB0/AN0 an analog input

AD1CON3bits.SAMC = 2; // sample for 2 Tad

AD1CON3bits.ADCS = 2; // Tad = 6*Tpb

AD1CON2bits.VCFG = 3; // external Vref+ and Vref- for VREFH and VREFL

AD1CON2bits.SMPI = 7; // interrupt after every 8th conversion

AD1CON2bits.BUFM = 1; // adc buffer is two 8-word buffers

AD1CON1bits.FORM = 0b100; // unsigned 32 bit integer output

AD1CON1bits.ASAM = 1; // autosampling begins after conversion

AD1CON1bits.SSRC = 0b111; // conversion starts when sampling ends

AD1CON1bits.ON = 1; // turn on the ADC

IPC6bits.AD1IP = 7; // INT step 4: IPL7, to use shadow register set

IFS1bits.AD1IF = 0; // INT step 5: clear ADC interrupt flag

IEC1bits.AD1IE = 1; // INT step 6: enable ADC interrupt

__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU

TMR4 = 0; // start timer 4 from zero

while(storing) {

; // wait until first NUM_SAMPS samples taken

}

IEC1bits.AD1IE = 0; // disable ADC interrupt

sprintf(msg,"Values of %d analog reads\r\n",NUM_SAMPS);

NU32_WriteUART1(msg);

NU32_WriteUART1("Sample # Value Voltage Time");

for (i = 0; i < NUM_ISRS; ++i) {// write out NUM_SAMPS analog samples

for (j = 0; j < 8; ++j) {

ind = i * 8 + j; // compute the index of the current sample

sprintf(msg,"\r\n%5d %10d %9.3f ", ind, trace[ind], trace[ind]*3.3/1024);

NU32_WriteUART1(msg);

}

tot_time = (isr_time[i] - prev_time) *0.0125; // total time elapsed, in microseconds

sprintf(msg,"%9.4f us; %6.4f us/read for last 8 reads",tot_time, tot_time/8.0);

NU32_WriteUART1(msg);

prev_time = isr_time[i];

}

NU32_WriteUART1("\r\n");

IEC1bits.AD1IE = 1; // enable ADC interrupt. won’t print the information again,

Lynch, Marchuk, and Elwin, Northwestern U. 124 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

// but you can see the light blinking

while(1) {

;

}

return 0;

}

10.4 Chapter Summary

• The ADC peripheral converts an analog voltage to a 10-bit digital value, where 0x000 corresponds
to an input voltage at VREFL (typically GND) and 0x3FF corresponds to an input voltage at VREFH

(typically 3.3 V). There is a single ADC on the PIC32, AD1, but it can be multiplexed to sample from
any or all of the 16 pins on Port B.

• Getting an analog input is a two-step process: sampling and conversion. Sampling requires a minimum
time to allow the sampling capacitor to stabilize its voltage. Once the sampling terminates, the capacitor
is isolated from the input so its voltage does not change during conversion. The conversion process
is performed by a Successive Approximation Register (SAR) ADC which carries out a 10-step binary
search, comparing the capacitor voltage to a new reference voltage at each step.

• The ADC provides a huge array of options which are only touched on in this chapter. The sample code
in this chapter provides a manual method for taking a single ADC reading in the range 0 to 3.3 V in
just over 2 microseconds. For details on how to use other reference value ranges, sample and convert in
the background and use interrupts to announce the end of a sequence of conversions, etc., consult the
long section in the Reference Manual.

10.5 Exercises

Lynch, Marchuk, and Elwin, Northwestern U. 125 12:38 February 4, 2015

CHAPTER 10. ANALOG INPUT

Lynch, Marchuk, and Elwin, Northwestern U. 126 12:38 February 4, 2015

Part IV

Mechatronics

127

Chapter 11

PID Feedback Control

129

CHAPTER 11. PID FEEDBACK CONTROL

Lynch, Marchuk, and Elwin, Northwestern U. 130 12:38 February 4, 2015

Chapter 12

Feedback Control of LED Intensity

In this project you will use feedback control to control the brightness of an LED. This project makes use of
counter/timer, output compare, and analog input peripherals.

Figure 12.1 shows the LED and sensor circuits and their connection to the OC1 output and the AN0
analog input. A PWM waveform from OC1 turns the LED on and off at 20 kHz, too fast for the eye to
see, yielding an apparent averaged brightness between off and full on. The phototransistor is activated by
the LED’s light, creating an emitter current proportional to the incident light. The resistor R turns this
current into a sensed voltage. The 1 µF capacitor in parallel with R creates a low-pass filter with a time
constant τ = RC, filtering out high-frequency components due to the rapidly switching PWM signal and
instead giving a time-averaged voltage. This is similar to the low-pass filtering of your visual perception,
which does not allow you to see the LED turning on and off rapidly.

A block diagram of the control system is shown in Figure 12.2. The PIC32 reads the analog voltage from
the phototransistor circuit, calculates the error as the desired intensity (in ADC counts) minus the measured
voltage in ADC counts, and uses a proportional-integral (PI) controller to generate a new PWM duty cycle
on OC1. This in turn changes the average brightness of the LED, which is sensed by the phototransistor
circuit. This is a typical control system block diagram: the plant is the system we are trying to control, and
the sensor provides the feedback that allows us to close the feedback control loop.

Your PIC32 program will generate a reference waveform, the desired light intensity (measured in ADC
counts) as a function of time. Then a 1 kHz control loop will read the sensor voltage (in ADC counts) and
update the duty cycle of the 20 kHz OC1 PWM signal in an effort to make the measured ADC counts track
the reference waveform.

This is a significant project, so it is useful to break it down into smaller pieces and make sure each of
those pieces functions properly.

12.1 Wiring and Testing the Circuit

1. LED diode drop. Connect the LED anode to 3.3 V, the cathode to a 330 Ω resistor, and the other
end of the resistor to ground. This is the LED at its max brightness. Use your multimeter to record
the forward bias voltage drop across the LED. Calculate or measure the current through the LED. Is
this current safe for the PIC32 to provide?

2. Choose R. Wire up the circuit as shown in Figure 12.1, except for the connection from the LED to
OC1. The LED and phototransistor should be pointing toward each other, with approximately one
inch separation, as shown in Figure 12.3. Now choose R so that the voltage Vout at the phototransistor
emitter is close to 3 V when the LED anode is connected to 3.3 V (maximum LED brightness) and
close to 0 V when the LED anode is disconnected (the LED is off). (Something in the 10 kΩ range may
work.) Record your value of R. Now connect the anode of the LED to OC1 for the rest of the project.

131

CHAPTER 12. FEEDBACK CONTROL OF LED INTENSITY

3.3 V
OC1

AN0

red super
bright
LED

SFH 310 NPN
phototransistor

330 Ω
R 105

1 μFPIC32

C

B

E
Vout

Figure 12.1: The LED control circuit. The long leg of the LED (anode) is connected to OC1 and the short
leg (cathode) is connected to the 330 Ω resistor. The short leg of the phototransistor (collector) is attached
to 3.3 V and the long leg (emitter) is attached to AN0, the resistor R, and the 1 µF capacitor.

reference intensity
in ADC counts

Σ
plant

(LED circuit)

sensor
(phototransistor circuit)ADC

PI
controller

error

ADC counts

light intensity

voltage

PWMOC1

AN0PIC32

+
_

Figure 12.2: A block diagram of the LED intensity control system.

12.2 Powering the LED with OC1

1. PWM calculation. You will use Timer3 as the timer base for OC1. You want a 20 kHz PWM on
OC1. Timer3 takes the PBCLK as input and uses a prescaler of 1. What should PR3 be?

2. PWM program. Write a program that uses your previous result to create a 20 kHz PWM output on
OC1 (with no fault pin) using Timer3. Set the duty cycle to 75%. Get the following screenshots from
your scope, setting the time scale to show 2-4 periods:

(a) The OC1 waveform. Verify that this looks like what you expect.

(b) The sensor voltage Vout.

(c) Now remove the 1 µF capacitor and get another screenshot of Vout. Explain the difference with
the previous waveform.

Insert the 1 µF capacitor back into the circuit for the rest of the project.

12.3 Playing an Open-loop PWM Waveform

Now you will modify your program to generate a waveform stored in an int array. This will eventually be
the reference intensity waveform for your feedback controller, but not yet. Modify your program to define a
constant NUMSAMPS and the global volatile int array Waveform by putting the following code near the top
of the program:

Lynch, Marchuk, and Elwin, Northwestern U. 132 12:38 February 4, 2015

CHAPTER 12. FEEDBACK CONTROL OF LED INTENSITY

Figure 12.3: The phototransistor (left) and LED (right) pointed toward each other.

#define NUMSAMPS 1000

volatile int Waveform[NUMSAMPS];

Then create a function makeWaveform() to store a square wave in Waveform[] and call it near the
beginning of main:

void makeWaveform() {

int i, center=2000, A=1000; // square wave, amplitude A centered at center

for (i=0; i<NUMSAMPS; i++) {

if (i<NUMSAMPS/2) Waveform[i] = center + A;

else Waveform[i] = center - A;

}

}

Now set up Timer2 to call an ISR at a fixed frequency of 1 kHz. This ISR will eventually implement
the controller that reads the ADC and calculates the new duty cycle of the PWM. For now we will use it
to modify the duty cycle according to the waveform in Waveform[]. Call the ISR Controller and make it
interrupt priority level 5. It will make use of a static local int that counts the number of entries into the
ISR and resets to zero after 1000 entries.1 In other words, the ISR should be of the form

void __ISR(_TIMER_2_VECTOR, IPL5SOFT) Controller { // _TIMER_2_VECTOR = 8 (p32mx795f512l.h)

static int counter = 0; // initialize counter once

counter++; // add one to counter every time ISR is entered

if (counter==NUMSAMPS) counter = 0; // roll the counter over when needed

// rest of your ISR code...

}

In addition to clearing the interrupt flag, your Controller ISR should simply set OC1RS to be equal to
Waveform[counter]. Since your ISR is called every 1 ms, and the period of the square wave in Waveform[]

is 1000 cycles, your PWM duty cycle will undergo a square wave period every 1 s. You should see your LED
become bright and dim once each second.

Depending on your choice of R and your value of PR3 used by Timer3 used with OC1, you might have to
change the amplitude A and the center value center of the square wave.

1. Get a screenshot of your scope trace of Vout showing 2-4 periods of what should be an approximately
square-wave sensor reading.

1Recall that a static local variable is only initialized once, not upon every entry to the function, and the value of the variable
is retained between calls of the function.

Lynch, Marchuk, and Elwin, Northwestern U. 133 12:38 February 4, 2015

CHAPTER 12. FEEDBACK CONTROL OF LED INTENSITY

2. Expressed as percentages, what are the PWM duty cycles represented by the array Waveform[]?

3. Turn in your code.

More coming...

Lynch, Marchuk, and Elwin, Northwestern U. 134 12:38 February 4, 2015

Appendix A

A Crash Course in C

This appendix gives a brief introduction to C for beginners who have some programming experience in a
high-level language such as MATLAB. It is not intended as a complete reference; there are lots of great C
resources and references out there for a more complete picture. This appendix is also not specific to the
Microchip PIC. In fact, I recommend that you start by programming your laptop or desktop so you can
experiment with C without needing extra equipment like a PIC32 board.

A.1 Quick Start in C

To get started with C, you need three things: a desktop or laptop, a text editor, and a C compiler. You
use the text editor to create your C program, which is a plain text file with a name ending with the postfix
.c, such as myprog.c. Then you use the C compiler to convert this program into machine code that your
computer can execute. There are many free C compilers available. I recommend the gcc C compiler, which
is part of the free GNU Compiler Collection (GCC, found at http://gcc.gnu.org). GCC is available for
Windows, Mac OS, and Linux. For Windows, you can download the GCC collection in MinGW.1 (If the
installation asks you about what tools to install, make sure to include the make tools.) For Mac OS, you can
download the full Xcode environment from the Apple Developers site. This installation is multiple gigabytes,
however; you can instead opt to install only the “Command Line Tools for Xcode,” which is much smaller
and more than sufficient for getting started with C (and for this appendix).

Many C installations come with an Integrated Development Environment (IDE) complete with text editor,
menus, graphical tools, and other things to assist you with your programming projects. Each IDE is different,
however, and the things we cover in this appendix do not require a sophisticated IDE. Therefore we will use
only command line tools, meaning that we initiate the compilation of the program, and run the program, by
typing at the command line. In Mac OS, the command line can be accessed from the Terminal program. In
Windows, you can access the command line (also known as MS-DOS or Disk Operating System) by searching
for cmd or command prompt.

To work from the command line, it is useful to learn a few command line instructions. The Mac operating
system is built on top of Unix, which is almost identical to Linux, so Mac/Unix/Linux use the same syntax.
Windows is similar but slightly different. See the table of a few useful commands below. You can find more
information online on how to use these commands as well as others by searching for command line commands
in Unix, Linux, or DOS (disk operating system, for Windows).

1You are also welcome to use Visual C from Microsoft. The command line compile command will look a bit different than
what you see in this appendix.

1

APPENDIX A. A CRASH COURSE IN C

function Mac/Unix/Linux Windows
show current directory pwd cd

list directory contents ls dir

make subdirectory newdir mkdir newdir mkdir newdir

change to subdirectory newdir cd newdir cd newdir

move “up” to parent directory cd .. cd ..

copy file to filenew cp file filenew copy file filenew

delete file file rm file del file

delete directory dir rmdir dir rmdir dir

help on using command cmd man cmd cmd ?

Following the long-established programming tradition, your first C program will simply print “Hello
world!” to the screen. Use your text editor to create the file HelloWorld.c:

#include <stdio.h>

int main(void) {

printf("Hello world!\n");

return(0);

}

Your text editor could be Notepad in Windows or TextEdit on the Mac. You could even use Microsoft Word
if you insisted. I personally prefer emacs, but it’s not easy to get started with! Text editors packaged with
IDEs help enforce a consistent look to your programs. Whichever editor you use, you should save your file as
plain text, not rich text or any other formatted text.

To compile your program, navigate from the command line to the directory where the program sits. Then,
assuming your command prompt appears as >, type the following at the prompt:

> gcc HelloWorld.c -o HelloWorld

This should create the executable file HelloWorld in the same directory. (The argument after the -o output
flag is the name of the executable file to be created from HelloWorld.c.) Now to execute the program, type

> HelloWorld

The response should be

Hello world!

>

If the response is instead command not found or similar, your computer didn’t know where to look for the
executable HelloWorld. On Mac/Unix/Linux, you can type

> ./HelloWorld

where the “.” is shorthand for “current directory,” telling your computer to look in the current directory for
HelloWorld.

If you’ve succeeded in getting this far, you have a working C installation and you are ready for the rest of
this appendix. If not, time to get help from friends or the web.

A.2 Overview

If you are familiar with a high-level language like MATLAB, you have some idea of loops, functions, program
modularity, etc. You’ll see that C syntax is different, but that’s not a big deal. Let’s start instead by focusing
on important concepts you must master in C which you don’t have to worry about in MATLAB:

• Memory, addresses, and pointers. A variable is stored at a particular address in memory as 0’s
and 1’s. In C, unlike MATLAB, it is often useful to have access to the memory address where a variable
is located. We will learn how to generate a pointer to a variable, which contains the address of the
variable, and how to access the contents of an address, i.e., the pointee.

Lynch, Marchuk, and Elwin, Northwestern U. 2 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

• Data types. In MATLAB, you can simply type a = 1; b = [1.2 3.1416]; c = [1 2; 3 4]; s =

’a string’. MATLAB figures out that a is a scalar, b is a vector with two elements, c is a 2×2 matrix,
and s is a string, and automatically keeps track of the type of the variable (e.g., a list of numbers for a
vector or a list of characters for a string) and sets aside, or allocates, enough memory to store them.
In C, on the other hand, you have to first define the variable before you ever use it. For a vector, for
example, you have to say what data type the elements of the vector will be—integers or numbers with a
decimal point (floating point)—and how long the vector will be. This allows the C compiler to allocate
enough memory to hold the vector, and to know that the binary representations (0’s and 1’s) at those
locations in memory should be interpreted as integers or floating point numbers.

• Compiling. MATLAB programs are typically run as interpreted programs—the commands are
interpreted, converted to machine-level code, and executed while the program is running. C programs,
on the other hand, are compiled in advance. This process consists of several steps, but the point is to
turn your C program into machine-executable code before the program is ever run. The compiler can
identify some errors and warn you about other questionable code. Compiled code typically runs faster
than interpreted code, since the translation to machine code is done in advance.

Each of these concepts is described in Section A.3 without going into detail on C syntax. In Section A.4
we will look at sample programs to introduce the syntax, then follow up with a more detailed explanation of
the syntax.

A.3 Important Concepts in C

We begin our discussion of C with this caveat:

Important! C consists of an evolving set of standards for a programming language, and any specific C
installation is an “implementation” of C. While C standards require certain behavior from all implementations,
a number of details are left as implementation-dependent. For example, the number of bytes used for some
data types is not fully standard. C wonks like to point out when certain behavior is required and when it is
implementation-dependent. While it is good to know that differences may exist from one implementation to
another, in this appendix I will often blur the line between what is required and what is common. I prefer to
keep this introduction succinct instead of overly precise.

A.3.1 Data Types

Binary and hexadecimal. On a computer, programs and data are represented by sequences of 0’s and 1’s.
A 0 or 1 may be represented by two different voltage levels (low and high) held by a capacitor and controlled
by a transistor, for example. Each of these units of memory is called a bit.

A sequence of 0’s and 1’s may be interpreted as a base-2 or binary number, just as a sequence of digits
in the range 0 to 9 is commonly treated as a base-10 or decimal number. In the decimal numbering system,
a multi-digit number like 793 is interpreted as 7 ∗ 102 + 9 ∗ 101 + 3 ∗ 100; the rightmost column is the 100

(or 1’s) column, the next column to the left is the 101 (or 10’s) column, the next column to the left is the
102 (or 100’s) column, and so on. Similarly, the rightmost column of a binary number is the 20 column,
the next column to the left is the 21 column, etc. Converting the binary number 00111011 to its decimal
representation, we get

0 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 32 + 16 + 8 + 2 + 1 = 59.

We can clarify that a sequence of digits is base-2 by writing it as 001110112 or 0b00111011, where the b

stands for “binary.”
To convert a base-10 number x to binary:

1. Initialize the binary result to all zeros and k to a large integer, such that 2k is known to be larger than
x.

Lynch, Marchuk, and Elwin, Northwestern U. 3 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

2. If 2k ≤ x, place a 1 in the 2k column of the binary number and set x to x− 2k.

3. If x = 0 or k = 0, we’re finished. Else set k to k − 1 and go to line 2.

The leftmost digit in a multi-digit number is called the most significant digit, and the rightmost digit,
corresponding to the 1’s column, is called the least significant digit. For binary representations, these are
often called the most significant bit (msb) and least significant bit (lsb), respectively.

Compared to base-10, base-2 has a more obvious connection to the actual hardware representation. Binary
can be inconvenient for human reading and writing, however, due to the large number of digits. Therefore we
often use base-16, or hexadecimal (hex), representations. A single hex digit represents four binary digits
using the numbers 0..9 and the letters A..F:

base-2 base-16 base-10 base-2 base-16 base-10
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Thus we can write the eight-digit binary number 00111011, or 0011 1011, more succinctly in hex as 3B, or
3B16 or 0x3B to clarify that it is a hex number. The corresponding decimal number is 3 ∗ 161 + 11 ∗ 160 = 59.

Bits, bytes, and data types. Bits of memory are grouped together in groups of eight called bytes. A
byte can be written equivalently in binary or hex (e.g., 00111011 or 3B), and can represent values between 0
and 28 − 1 = 255 in base-10. Sometimes the four bits represented by a single hex digit are referred to as a
nibble. (Get it?)

A word is a grouping of multiple bytes. The number of bytes depends on the processor, but four-byte
words are common, as with the PIC32. A word 01001101 11111010 10000011 11000111 in binary can be
written in hex as 4DFA83C7. The msb is the leftmost bit of the leftmost byte, a 0 in this case.

A byte is the smallest unit of memory that has its own address. The address of the byte is a number
that represents where the byte is in memory. Suppose your computer has 4 gigabytes (GB)2, or 4× 230 = 232

bytes, of RAM. Then to find the value stored in a particular byte, you need at least 32 binary digits (8 hex
digits or 4 bytes) to specify the address.

An example showing the first eight addresses in memory is shown below.

 7 6 5 4 3 2 1 0 address

11001101 00100111 01110001 01010111 01010011 00011110 10111011 01100010 value
...

Now assume that the byte at address 4 is part of the representation of a variable. Do these 0’s and 1’s
represent an integer, or part of an integer? A number with a fractional component? Something else?

The answer lies in the data type of the variable at that address. In C, before you use a variable, you
have to define it and its type. This tells the compiler how many bytes to set aside for the variable and how
to write or interpret 0’s and 1’s at the address(es) used by that variable. The most common data types come
in two flavors: integers and floating point numbers (numbers with a decimal point). Of the integers, the two
most common types are char3, often used to represent keyboard characters, and int. Of the floating point
numbers, the two most common types are float and double. As we will see shortly, a char uses 1 byte and
an int usually uses 4, so two possible interpretations of the data held in the eight memory addresses could be

2In common usage, a kilobyte (KB) is 210 = 1024 bytes, a megabyte (MB) is 220 = 1, 048, 576 bytes, a gigabyte is
230 = 1, 073, 741, 824 bytes, and a terabyte (TB) is 240 = 1, 099, 511, 627, 776 bytes. To remove confusion with the common SI
prefixes that use powers of 10 instead of powers of 2, these are sometimes referred to instead as kibibyte, mebibyte, gibibyte, and
tebibyte, where the “bi” refers to “binary.”

3char is derived from the word “character.” People pronounce char variously as “car” (as in “driving the car”), “care” (a
shortening of “character”), and “char” (as in charcoal), and some just punt and say “character.” Up to you.

Lynch, Marchuk, and Elwin, Northwestern U. 4 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

 7 6 5 4 3 2 1 0 address

11001101 00100111 01110001 01010111 01010011 00011110 10111011 01100010 value
...

charint

where byte 0 is used to represent a char and bytes 4-7 are used to represent an int, or

 7 6 5 4 3 2 1 0 address

11001101 00100111 01110001 01010111 01010011 00011110 10111011 01100010 value
...

char int

where bytes 0-3 are used to represent an int and byte 4 represents a char. Fortunately we don’t usually
have to worry about how variables are packed into memory.

Below are descriptions of the common data types. While the number of bytes used for each type is not the
same for every processor, the numbers given are common. (Differences for the PIC32 are noted in Table A.1.)
Example syntax for defining variables is also given. Note that most C statements end with a semicolon.

char

Example definition:
char ch;

This syntax defines a variable named ch to be of type char. chars are the smallest common data type, using
only one byte. They are often used to represent keyboard characters. You can do a web search for “ASCII
table” (pronounced “ask-key”) to find the American Standard Code for Information Interchange, which
maps the values 0 to 127 to keyboard characters and other things. (The values 128 to 255 may map to an
“extended” ASCII table.) For example, the values 48 to 57 map to the characters ’0’ to ’9’, 65 to 90 map to
the uppercase letters ’A’ to ’Z’, and 97 to 122 map to the lowercase letters ’a’ to ’z’. The assignments

ch = ’a’;

and

ch = 97;

are equivalent, as C equates characters inside single quotes to their ASCII table numerical value.
Depending on the C implementation, char may be treated by default as unsigned, i.e., taking values

from 0 to 255, or signed, taking values from −128 to 127. If you plan to use the char to represent a standard
ASCII character, you don’t need to worry about this. If you plan to use the char data type for integer
math on small integers, however, you may want to use the specifier signed or unsigned, as appropriate. For
example, we could use the following definitions, where everything after // is a comment:

unsigned char ch1; // ch1 can take values 0 to 255

signed char ch2; // ch2 can take values -128 to 127

int (also known as signed int or signed)

Example definition:
int i,j;

signed int k;

signed n;

ints are typically four bytes (32 bits) long, taking values from −(231) to 231 − 1 (approximately ±2 billion).
In the example syntax, each of i, j, k, and n are defined to be the same data type.

We can use specifiers to get the following integer data types: unsigned int or simply unsigned, a
four-byte integer taking nonnegative values from 0 to 232 − 1; short int, short, signed short, or signed

Lynch, Marchuk, and Elwin, Northwestern U. 5 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

bytes on # bytes on
type my laptop PIC32

char 1 1
short int 2 2

int 4 4
long int 8 4

long long int 8 8
float 4 4

double 8 4
long double 16 8

Table A.1: Data type sizes on two different machines.

short int, a two-byte integer taking values from −(215) to 215−1 (i.e., −32, 768 to 32, 767); unsigned short

int or unsigned short, a two-byte integer taking nonnegative values from 0 to 216 − 1 (i.e., 0 to 65, 535);
long int, long, signed long, or signed long int, often consisting of eight bytes and representing values
from −(263) to 263−1; and unsigned long int or unsigned long, an eight-byte integer taking nonnegative
values from 0 to 264 − 1. A long long int data type may also be available.

float

Example definition:
float x;

This syntax defines the variable x to be a four-byte “single-precision” floating point number.

double

Example definition:
double x;

This syntax defines the variable x to be an eight-byte “double-precision” floating point number. The data
type long double (quadruple precision) may also be available, using 16 bytes (128 bits). These types allow
the representation of larger numbers, to more decimal places, than single-precision floats.

The sizes of the data types, both on my laptop and the PIC32, are summarized in Table A.1. Note the
differences; C does not enforce a strict standard.

Using the data types. If your program calls for floating point calculations, you can choose between float,
double, and long double data types. The advantages of smaller types are that they use less memory and
computations with them (e.g., multiplies, square roots, etc.) may be faster. The advantage of the larger
types is the greater precision in the representation (e.g., smaller roundoff error).

If your program calls for integer calculations, you are better off using integer data types than floating
point data types due to the higher speed of integer math and the ability to represent a larger range of
integers for the same number of bytes.4 You can decide whether to use signed or unsigned chars, or
{signed/unsigned} {short/long} ints. The considerations are memory usage, possibly the time of the
computations5, and whether or not the type can represent a sufficient range of integer values. For example, if
you decide to use unsigned chars for integer math to save on memory, and you add two of them with values
100 and 240 and assign to a third unsigned char, you will get a result of 84 due to integer overflow. This
example is illustrated in the program overflow.c in Section A.4.

As we will see shortly, functions have data types, just like variables. For example, a function that calculates

4Just as a four-byte float can represent fractional values that a four-byte int cannot, a four-byte int can represent more
integers than a four-byte float can. See the type conversion example program typecast.c in Section A.4 for an example.

5Computations with smaller data types are not always faster than with larger data types. It depends on the architecture.

Lynch, Marchuk, and Elwin, Northwestern U. 6 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

the sum of two doubles and returns a double should be defined as type double. Functions that don’t return
a value are defined of type void.

Representations of data types. A simple representation for integers is the sign and magnitude represen-
tation. In this representation, the msb represents the sign of the number (0 = positive, 1 = negative), and
the remaining bits represent the magnitude of the number. The sign and magnitude method represents zero
twice (positive and negative zero) and is not often used.

A much more common representation for integers is called two’s complement. This method also uses the
msb as a sign bit, but it only has a single representation of zero. The two’s complement representation of an
8-bit char is given below:

binary signed char, base-10 unsigned char, base-10
00000000 0 0
00000001 1 1
00000010 2 2
00000011 3 3

...
01111111 127 127
10000000 −128 128
10000001 −127 129

...
11111111 −1 255

As the binary representation is incremented, the two’s complement (signed) interpretation of the binary
number also increments, until it “wraps around” to the most negative value when the msb becomes 1 and all
other bits are 0. The signed value then resumes incrementing until it reaches −1 when all bits are 1.

Another representation choice is endianness. The little-endian representation of an int stores the least
significant byte at ADDRESS and the most significant byte at ADDRESS+3, while the big-endian convention is
the opposite.6 The convention used depends on the processor. For definiteness in this appendix, we will use
the little-endian representation, which is also used by the PIC32.

floats, doubles, and long doubles are commonly represented in the IEEE 754 floating point format
(−1)s ∗b∗2c, where one bit is used to represent the sign (s = 0 or 1); m = 23/52/112 bits are used to represent
the significand b in the range 1 to 2− 2−m; and n = 8/11/15 bits are used to represent the exponent c in
the range −(2n−1) + 2 to 2n−1 − 1, where n and m depend on whether the type uses 4/8/16 bytes. Certain
exponent and significand combinations are reserved for representing zero, positive and negative infinity, and
“not a number” (NaN).

It is rare that you need to worry about the specific bit-level representation of the different data types:
endianness, two’s complement, IEEE 754, etc. You tell the compiler to store values and retrieve values, and
it takes care of implementing the representations.

A.3.2 Memory, Addresses, and Pointers

Consider the following C syntax:

int i;

int *ip;

or equivalently

int i, *ip;

6These phrases come from Gulliver’s Travels, where Lilliputians fanatically divide themselves according to which end of a
soft-boiled egg they crack open.

Lynch, Marchuk, and Elwin, Northwestern U. 7 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

These definitions appear to define the variables i and *ip of type int. The character * is not allowed as part
of a variable name, however. The variable name is actually ip, and the special character * means that ip is a
pointer to something of type int. The purpose of a pointer is to hold the address of a variable it “points”
to. I often use the words “address” and “pointer” interchangeably.

When the compiler sees the definition int i, it allocates four bytes of memory to hold the integer i.
When the compiler sees the definition int *ip, it creates the variable ip and allocates to it whatever amount
of memory is needed to hold an address. The compiler also remembers the data type that ip points to, int in
this case, so if later you use ip in a context that requires a pointer to a different variable type, the compiler
will generate a warning or an error. Technically, the type of ip is “pointer to type int.”

Important! Defining a pointer only allocates memory to hold the pointer. It does not allocate memory for
a pointee variable to be pointed at. Also, simply defining a pointer does not initialize it to point to anything
valid.

When we have a variable and we want the address of it, we apply the reference operator to the variable,
which returns a “reference” (i.e., a pointer to the variable, or the address). In C, the reference operator is
written &. Thus the following command makes sense:

ip = &i; // ip now holds the address of i

The reference operator always returns the lowest address of a multi-byte type. For example, if the four-byte
int i occupies addresses 0x0004 to 0x0007 in memory, &i will return 0x0004.7

If we have a pointer (an address) and we want the contents at that address, we apply the dereference
operator to the pointer. In C, the dereference operator is written *. Thus the following command makes
sense:

i = *ip; // i now holds the contents at the address ip

However, you should never dereference a pointer until it has been initialized to point at something using a
statement such as ip = &i.

As an analogy, consider the pages of a book. A page number can be considered a pointer, while the
text on the page can be considered the contents of a variable. So the notation &text would return the page
number (pointer or address) of the text, while *page_number would return the text on that page (but only
after page number is initialized to point at a page of text).

Even though we are focusing on the concept of pointers, and not C syntax, let’s go ahead and look at
some sample C code, remembering that everything after // on the same line is a comment:

int i,j,*ip; // define i, j as type int, as well as ip as type "pointer to type int"

ip = &i; // set ip to the address of i (& references i)

i = 100; // put the value 100 in the location allocated by the compiler for i

j = *ip; // set j to the contents of the address ip (* dereferences ip), i.e., 100

j = j+2; // add 2 to j, making j equal to 102

i = *(&j); // & references j to get the address, then * gets contents; i is set to 102

*(&j) = 200; // content of the address of j (j itself) is set to 200; i is unchanged

The use of pointers can be powerful, but also dangerous. For example, you may accidentally try to access
an illegal memory location. The compiler is unlikely to recognize this during compilation, and you may end
up with a “segmentation fault” when you execute the code.8 This kind of bug can be difficult to track down,
and dealing with it is a C rite of passage. More on pointers in Section A.4.8.

A.3.3 Compiling

The process loosely referred to as “compilation” actually consists of four steps:

7This is the right way to think about it conceptually, but in fact the computer may automatically translate the value of &i to
an actual physical address.

8A good name for a program like this is coredumper.c.

Lynch, Marchuk, and Elwin, Northwestern U. 8 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

1. Preprocessing. The preprocessor takes the program.c source code and produces an equivalent .c

source code, performing operations such as stripping out comments. The preprocessor is discussed in
more detail in Section A.4.3.

2. Compiling. The compiler turns the preprocessed code into assembly code for the specific processor.
This process converts the code from standard C syntax into a set of commands that can be understood
natively by the processor. The compiler can be configured with a number of options that impact the
assembly code generated. For example, the compiler can be instructed to generate assembly code
that trades off time of execution with the amount of memory needed to store the code. Assembly
code generated by a compiler can be inspected with a standard text editor. In fact, coding directly in
assembly is still a popular, if painful, way to program microcontrollers.

3. Assembling. The assembler takes the assembly code and produces processor-dependent machine-level
binary object code. This code cannot be examined using a text editor. Object code is called relocatable,
in that the exact memory addresses for the data and program statements are not specified.

4. Linking. The linker takes one or more object codes and produces a single executable file. For example,
if your code includes pre-compiled libraries, such as printout functions in the stdio library (described
in Sections A.4.3 and A.4.15), this code is included in the final executable. The data and program
statements in the various object codes are assigned to specific memory locations.

In our HelloWorld.c program, this entire process is initiated by the single command line statement

> gcc HelloWorld.c -o HelloWorld

If our HelloWorld.c program used any mathematical functions in Section A.4.7, the compilation would be
initiated by

> gcc HelloWorld.c -o HelloWorld -lm

where the -lm flag tells the linker to link the math library, which may not be linked by default like other
libraries are.

If you want to see the intermediate results of the preprocessing, compiling, and assembling steps, Problem 40
gives an example.

For more complex projects requiring compilation of several files into a single executable or specifying
various options to the compiler, it is common to create a makefile that specifies how the compilation is
to be done, and to then use the command make to actually create the executable. The use of makefiles is
beyond the scope of this appendix. Section A.4.16 gives a simple example of compiling multiple C files to
make a single executable program.

A.4 C Syntax

So far we have seen only glimpses of C syntax. Let’s begin our study of C syntax with a few simple programs.
We will then jump to a more complex program, invest.c, that demonstrates many of the major elements of
C structure and syntax. If you can understand invest.c and can create programs using similar elements,
you are well on your way to mastering C. We will defer the more detailed descriptions of the syntax until
after introducing invest.c.

Printing to screen. Because it is the simplest way to see the results of a program, as well as the most
useful tool for debugging, let’s start with the function printf for printing to the screen. We have already
seen it in HelloWorld.c. Here’s a slightly more interesting example. Let’s call this program file printout.c.

#include <stdio.h>

int main(void) {

Lynch, Marchuk, and Elwin, Northwestern U. 9 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

int i; float f; double d; char c;

i = 32; f = 4.278; d = 4.278; c = ’k’; // or, by ASCII table, c = 107;

printf("Formatted output:\n");

printf(" i = %4d c = ’%c’\n",i,c);

printf(" f = %19.17f\n",f);

printf(" d = %19.17lf\n",d);

return(0);

}

The 17lf in the last printf statement is “seventeen ell eff.”
The first line of the program

#include <stdio.h>

tells the preprocessor that the program will use functions from the “standard input and output” library,
one of many code libraries provided in standard C installations that extend the power of the language. The
stdio.h function used in printout.c is printf, covered in more detail in Section A.4.15.

The next line

int main(void) {

starts the block of code that defines the main function. The main code block is closed by the final closing
brace }. Each C program has exactly one main function. The type of main is int, meaning that the function
should end by returning a value of type int. In our case, it returns a 0, which indicates that the program
has terminated successfully.

The next line defines and allocates memory for four variables of four different types, while the line after
assigns values to those variables. The printf lines will be discussed after we look at the output.

Now that you have created printout.c, you can create the executable file printout and run it from the
command line. Make sure you are in the directory containing printout.c, then type the following:

> gcc printout.c -o printout

> printout

(Again, you may have to use ./printout to tell your computer to look in the current directory.) On my
laptop, here is the output:

Formatted output:

i = 32 c = ’k’

f = 4.27799987792968750

d = 4.27799999999999958

The main point of this program is to demonstrate formatted output from the code

printf("Formatted output:\n");

printf(" i = %4d c = ’%c’\n",i,c);

printf(" f = %19.17f\n",f);

printf(" d = %19.17lf\n",d);

Inside a printf statement, everything inside the double quotes is printed to the screen, but some character
sequences have special meaning. The \n sequence creates a newline (carriage return). The % is a special
character, indicating that some data will be printed, and for each % in the double quotes, there must be a
variable or other expression in the comma-separated list at the end of the printf statement. The %4d means
that an int type variable is expected, and it will be displayed right-justified using 4 spaces. (If the number is
more than 4 digits, it will take as much space as is needed.) The %c means that a char is expected. The
%19.17f means that a float will be printed right-justified over 19 spaces with 17 spaces after the decimal
point. The %19.17lf means that a double (or “long float”) will be printed right-justified over 19 spaces,
with 17 after the decimal point. More details on printf can be found in Section A.4.15.

The output of the program also shows that neither the float f nor the double d can represent 4.278
exactly, though the double-precision representation comes closer.

Lynch, Marchuk, and Elwin, Northwestern U. 10 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

Data sizes. Since we have focused on data types, our next program measures how much memory is used
by different data types. Create a file called datasizes.c that looks like the following:

#include <stdio.h>

int main(void) {

char a, *bp; short c; int d; long e;

float f; double g; long double h, *ip;

printf("Size of char: %2ld bytes\n",sizeof(a));// "% 2 ell d"

printf("Size of char pointer: %2ld bytes\n",sizeof(bp));

printf("Size of short int: %2ld bytes\n",sizeof(c));

printf("Size of int: %2ld bytes\n",sizeof(d));

printf("Size of long int: %2ld bytes\n",sizeof(e));

printf("Size of float: %2ld bytes\n",sizeof(f));

printf("Size of double: %2ld bytes\n",sizeof(g));

printf("Size of long double: %2ld bytes\n",sizeof(h));

printf("Size of long double pointer: %2ld bytes\n",sizeof(ip));

return(0);

}

The first two lines in the main function define nine variables, telling the compiler to allocate space for these
variables. Two of these variables are pointers. The sizeof() operator returns the number of bytes allocated
in memory for its argument.

Here is the output of the program:

Size of char: 1 bytes

Size of char pointer: 8 bytes

Size of short int: 2 bytes

Size of int: 4 bytes

Size of long int: 8 bytes

Size of float: 4 bytes

Size of double: 8 bytes

Size of long double: 16 bytes

Size of long double pointer: 8 bytes

We see that, on my laptop, ints and floats use 4 bytes, short ints 2 bytes, long ints and doubles 8
bytes, and long doubles 16 bytes. Regardless of whether it points to a char or a long double, a pointer
(address) uses 8 bytes, meaning we can address a maximum of (28)8 = 2568 bytes of memory. Considering
that corresponds to almost 18 quintillion bytes, or 18 billion gigabytes, we should have enough available
addresses for a laptop!

Overflow. Now let’s try the program overflow.c, which demonstrates the issue of integer overflow
mentioned in Section A.3.1.

#include <stdio.h>

int main(void) {

char i = 100, j = 240, sum;

unsigned char iu = 100, ju = 240, sumu;

signed char is = 100, js = 240, sums;

sum = i+j; sumu = iu+ju; sums = is+js;

printf("char: %d + %d = %3d or ASCII %c\n",i,j,sum,sum);

printf("unsigned char: %d + %d = %3d or ASCII %c\n",iu,ju,sumu,sumu);

printf("signed char: %d + %d = %3d or ASCII %c\n",is,js,sums,sums);

return(0);

}

Lynch, Marchuk, and Elwin, Northwestern U. 11 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

In this program we initialize the values of some of the variables when they are defined. You might also notice
that we are assigning a signed char a value of 240, even though the range for that data type is −128 to 127.
So something fishy is going on. When I compile and run the program, I get the output

char: 100 + -16 = 84 or ASCII T

unsigned char: 100 + 240 = 84 or ASCII T

signed char: 100 + -16 = 84 or ASCII T

One thing we notice is that, with my C compiler at least, chars are the same as signed chars. Another thing
is that even though we assigned the value of 240 to js and j, they contain the value −16. This is because
the binary representation of 240 has a 1 in the 27 column, but for the two’s complement representation of a
signed char, this column indicates whether the value is positive or negative. Finally, we notice that the
unsigned char ju is successfully assigned the value 240 (since its range is 0 to 255), but the addition of iu
and ju leads to an overflow. The correct sum, 340, has a 1 in the 28 (or 256) column, but this column is not
included in the 8 bits of the unsigned char. Therefore we see only the remainder of the number, 84. The
number 84 is assigned the character T in the standard ASCII table.

Type conversion. Continuing our focus on the importance of understanding data types, we try one more
simple program that illustrates what can happen when you mix data types in a mathematical expression.
This is also our first program that uses a helper function beyond the main function. Call this program
typecast.c.

#include <stdio.h>

void printRatio(int numer, int denom) {

double ratio;

ratio = numer/denom;

printf("Ratio, %1d/%1d: %5.2f\n",numer,denom,ratio);

ratio = numer/((double) denom);

printf("Ratio, %1d/((double) %1d): %5.2f\n",numer,denom,ratio);

ratio = ((double) numer)/((double) denom);

printf("Ratio, ((double) %1d)/((double) %1d): %5.2f\n",numer,denom,ratio);

}

int main(void) {

int num = 5, den = 2;

printRatio(num,den);

return(0);

}

The helper function printRatio is of type void since it does not return a value. It takes two ints as input
arguments and calculates their ratio in three different ways. In the first, the two ints are divided and the
result is assigned to a double. In the second, the integer denom is typecast or cast as a double before the
division occurs, so an int is divided by a double and the result is assigned to a double.9 In the third, both
the numerator and denominator are cast as doubles before the division, so two doubles are divided and the
result is assigned to a double.

The main function simply defines two variables, num and den, and passes their values to printRatio,
where those values are copied to numer and denom, respectively. The variables num and den are only available
to main, and the variables numer and denom are only available to printRatio, since they are defined inside
those functions.

Execution of any C program always begins with the main function, regardless of where it appears in the
file.

After compiling and running, we get the output

9The typecasting does not change the variable denom itself; it simply creates a temporary double version of denom which is
lost as soon as the division is complete.

Lynch, Marchuk, and Elwin, Northwestern U. 12 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

Ratio, 5/2: 2.00

Ratio, 5/((double) 2): 2.50

Ratio, ((double) 5)/((double) 2): 2.50

The first answer is “wrong,” while the other two answers are correct. Why?
The first division, numer/denom, is an integer division. When the compiler sees that there are ints on

either side of the divide sign, it assumes you want integer math and produces a result that is an int by
simply truncating any remainder (rounding toward zero). This value, 2, is then converted to the floating
point number 2.0 to be assigned to the variable ratio. On the other hand, the expression numer/((double)

denom), by virtue of the parentheses, first produces a double version of denom before performing the division.
The compiler recognizes that you are dividing two different data types, so it temporarily coerces the int to
a double so it can perform a floating point division. This is equivalent to the third and final division, except
that the typecast of the numerator to double is explicit in the code for the third division.

Thus we have two kinds of type conversions:

• Implicit type conversion, or coercion. This occurs, for example, when a type has to be converted to
carry out a variable assignment or to allow a mathematical operation. For example, dividing an int by
a double will cause the compiler to treat the int as a double before carrying out the division.

• Explicit type conversion. An explicit type conversion is coded using a casting operator, e.g., (double)
<expression> or (char) <expression>, where <expression> may be a variable or mathematical
expression.

Certain type conversions may result in a change of value. For example, assigning the value of a float to
an int results in truncation of the fractional portion; assigning a double to a float may result in roundoff
error; and assigning an int to a char may result in overflow. Here’s a less obvious example:

float f;

int i = 16777217;

f = i; // f now has the value 16,777,216, not 16,777,217!

It turns out that 16,777,217 = 224 + 1 is the smallest positive integer that cannot be represented by a 32-bit
float. On the other hand, a 32-bit int can represent all integers in the range −231 to 231 − 1.

Some type conversions, called promotions, never result in a change of value because the new type can
represent all possible values of the original type. Examples include converting a char to an int or a float

to a long double.
We will see more on use of parentheses (Section A.4.1), the scope of variables (Section A.4.5), and defining

and calling helper functions (Section A.4.6).

A more complete example: invest.c. Until now we have been dipping our toes in the C pool. Now
let’s dive in headfirst.

Our next program is called invest.c, which takes an initial investment amount, an expected annual
return rate, and a number of years, and returns the growth of the investment over the years. After performing
one set of calculations, it prompts the user for another scenario, and continues this way until the data entered
is invalid. The data is invalid if, for example, the initial investment is negative or the number of years to
track is outside the allowed range.

The real purpose of invest.c, however, is to demonstrate the syntax and a number of useful features of
C.

Here’s an example of compiling and running the program. The only data entered by the user are the
three numbers corresponding to the initial investment, the growth rate, and the number of years.

> gcc invest.c -o invest

> invest

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 5

Valid input? 1

RESULTS:

Lynch, Marchuk, and Elwin, Northwestern U. 13 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

Year 0: 100.00

Year 1: 105.00

Year 2: 110.25

Year 3: 115.76

Year 4: 121.55

Year 5: 127.63

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 200

Valid input? 0

Invalid input; exiting.

>

Before we look at the full invest.c program, let’s review two principles that should be adhered to when
writing a longer program: modularity and readability.

• Modularity. You should break your program into a set of functions that perform specific, well-defined
tasks, with a small number of inputs and outputs. As a rule of thumb, no function should be longer than
about 20 lines. (Experienced programmers often break this rule of thumb, but if you are a novice and
are regularly breaking this rule, you’re likely not thinking modularly.) Almost all variables you define
should be “local” to (i.e., only recognizable by) their particular function. Global variables, which can
be accessed by all functions, should be minimized or avoided altogether, since they break modularity,
allowing one function to affect the operation of another without the information passing through the
well-defined “pipes” (input arguments to a function or its returned results). If you find yourself typing
the same (or similar) code more than once, that’s a good sign you should figure out how to write a
single function and just call that function from multiple places. Modularity makes it much easier to
develop large programs and track down the inevitable bugs.

• Readability. You should use comments to help other programmers, and even yourself, understand the
purpose of the code you have written. Variable and function names should be chosen to indicate their
purpose. Be consistent in how you name variables and functions. Any “magic number” (constant)
used in your code should be given a name and defined at the beginning of the program, so if you ever
want to change this number, you can just change it at one place in the program instead of every place
it is used. Global variables and constants should be written in a way that easily distinguishes them
from more common local variables; for example, you could WRITE CONSTANTS IN UPPERCASE
and Capitalize Globals. You should use whitespace (blank lines, spaces, tabbing, etc.) consistently to
make it easy to read the program. Use a fixed-width font (e.g., Courier) so that the spacing/tabbing
is consistent. Modularity (above) also improves readability.

The program invest.c demonstrates readable modular code using the structure and syntax of a typical
C program. The line numbers to the left are not part of the program; they are there for reference. In the
program’s comments, you will see references of the form ==SecA.4.3== that indicate where you can find
more information in the review of syntax that follows the program.

/**1

* PROGRAM COMMENTS (PURPOSE, HISTORY)2

**/3

4

/*5

* invest.c6

*7

* This program takes an initial investment amount, an expected annual8

* return rate, and the number of years, and calculates the growth of9

* the investment. The main point of this program, though, is to10

* demonstrate some C syntax.11

*12

* References to further reading are indicated by ==SecA.B.C==13

*14

Lynch, Marchuk, and Elwin, Northwestern U. 14 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

* HISTORY:15

* Dec 20, 2011 Created by Kevin Lynch16

* Jan 4, 2012 Modified by Kevin Lynch (small changes, altered comments)17

*/18

19

/**20

* PREPROCESSOR COMMANDS ==SecA.4.3==21

**/22

23

#include <stdio.h> // input/output library24

#define MAX_YEARS 100 // Constant indicating max number of years to track25

26

/**27

* DATA TYPE DEFINITIONS (HERE, A STRUCT) ==SecA.4.4==28

**/29

30

typedef struct {31

double inv0; // initial investment32

double growth; // growth rate, where 1.0 = zero growth33

int years; // number of years to track34

double invarray[MAX_YEARS+1]; // investment array ==SecA.4.9==35

} Investment; // the new data type is called Investment36

37

/**38

* GLOBAL VARIABLES ==SecA.4.2, A.4.5==39

**/40

41

// no global variables in this program42

43

/**44

* HELPER FUNCTION PROTOTYPES ==SecA.4.2==45

**/46

47

int getUserInput(Investment *invp); // invp is a pointer to type ...48

void calculateGrowth(Investment *invp); // ... Investment ==SecA.4.6, A.4.8==49

void sendOutput(double *arr, int years);50

51

/**52

* MAIN FUNCTION ==SecA.4.2==53

**/54

55

int main(void) {56

57

Investment inv; // variable definition, ==SecA.4.5==58

59

while(getUserInput(&inv)) { // while loop ==SecA.4.14==60

inv.invarray[0] = inv.inv0; // struct access ==SecA.4.4==61

calculateGrowth(&inv); // & referencing (pointers) ==SecA.4.6, A.4.8==62

sendOutput(inv.invarray, // passing a pointer to an array ==SecA.4.9==63

inv.years); // passing a value, not a pointer ==SecA.4.6==64

}65

return(0); // return value of main ==SecA.4.6==66

} // ***** END main *****67

68

/**69

* HELPER FUNCTIONS ==SecA.4.2==70

**/71

72

/* calculateGrowth73

Lynch, Marchuk, and Elwin, Northwestern U. 15 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

*74

* This optimistically-named function fills the array with the investment75

* value over the years, given the parameters in *invp.76

*/77

void calculateGrowth(Investment *invp) {78

79

int i;80

81

// for loop ==SecA.4.14==82

for (i=1; i <= invp->years; i=i+1) { // relational operators ==SecA.4.10==83

// struct access ==SecA.4.4==84

invp->invarray[i] = invp->growth * invp->invarray[i-1];85

}86

} // ***** END calculateGrowth *****87

88

89

/* getUserInput90

*91

* This reads the user’s input into the struct pointed at by invp,92

* and returns TRUE (1) if the input is valid, FALSE (0) if not.93

*/94

int getUserInput(Investment *invp) {95

96

int valid; // int used as a boolean ==SecA.4.10==97

98

// I/O functions in stdio.h ==SecA.4.15==99

printf("Enter investment, growth rate, number of yrs (up to %d): ",MAX_YEARS);100

scanf("%lf %lf %d", &(invp->inv0), &(invp->growth), &(invp->years));101

102

// logical operators ==SecA.4.11==103

valid = (invp->inv0 > 0) && (invp->growth > 0) &&104

(invp->years > 0) && (invp->years <= MAX_YEARS);105

printf("Valid input? %d\n",valid);106

107

// if-else ==SecA.4.13==108

if (!valid) { // ! is logical NOT ==SecA.4.11==109

printf("Invalid input; exiting.\n");110

}111

return(valid);112

} // ***** END getUserInput *****113

114

115

/* sendOutput116

*117

* This function takes the array of investment values (a pointer to the first118

* element, which is a double) and the number of years (an int). We could119

* have just passed a pointer to the entire investment record, but we decided120

* to demonstrate some different syntax.121

*/122

void sendOutput(double *arr, int yrs) {123

124

int i;125

char outstring[100]; // defining a string ==SecA.4.9==126

127

printf("\nRESULTS:\n\n");128

for (i=0; i<=yrs; i++) { // ++, +=, math in ==SecA.4.7==129

sprintf(outstring,"Year %3d: %10.2f\n",i,arr[i]);130

printf("%s",outstring);131

}132

Lynch, Marchuk, and Elwin, Northwestern U. 16 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

printf("\n");133

} // ***** END sendOutput *****134

A.4.1 Basic Syntax

Comments. Everything after a /* and before the next */ is a comment. Comments are stripped out in
the preprocessing step of compilation. They are only there to make the purpose of the program, function,
loop, or statement clear to yourself or other programmers. Keep the comments neat and concise for program
readability. Some programmers use extra asterisks or other characters to make the comments pretty (see the
examples in invest.c), but all that matters is that /* starts the comment and the next */ ends it.

If your comment is short, you can use // instead. Everything after // and before the next carriage return
will be ignored.

Semicolons. A code statement must be completed by a semicolon. Some exceptions to this rule include
preprocessor commands (see PREPROCESSOR COMMANDS in the program and Section A.4.3) and statements
that end with blocks of code enclosed by braces { }. A single code statement may extend over multiple lines
of the program listing until it is terminated by a semicolon (see, for example, the assignment to valid in the
function getUserInput).

Braces and blocks of code. Blocks of code are enclosed in braces { }. Examples include entire functions
(see the definition of the main function and the helper functions), blocks of code executed inside of a while

loop (in the main function) or for loop (in the calculateGrowth and sendOutput functions), as well as
other examples. In invest.c, braces are placed as shown here

while (<expression>) {

/* block of code */

}

but this style is equivalent

while (<expression>)

{

/* block of code */

}

as is this

while (<expression>) { /* block of code */ }

Which brings us to...

Whitespace. Whitespace, such as spaces, tabs, and carriage returns, is only required where it is needed
to recognize keywords and other syntax. The whole program invest.c could be written without carriage
returns after the semicolons, for example. Indentations and carriage returns should be used consistently,
however, to make the program readable. Carriage returns should be used after each semicolon, statements
within the same code block should be left-justified with each other, and statements in a code block nested
within another code block should be indented with respect to the parent code block. Text editors should
use a fixed-width font so that alignment is clear. Most IDE editors provide fixed-width fonts and automatic
indentation to enhance readability.

Lynch, Marchuk, and Elwin, Northwestern U. 17 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

Parentheses. C has a set of rules defining the order in which operations in an expression are evaluated,
much like standard math rules that say 3 + 5 ∗ 2 evaluates to 3 + (10) = 13, not (8) ∗ 2 = 16. If you are
uncertain of the default order of evaluation, use parentheses () to enclose sub-expressions to enforce the
evaluation order you want. More deeply nested parenthetical expressions will be evaluated first. For example,
3 + (40/(4 ∗ (3 + 2))) evaluates to 3 + (40/(4 ∗ 5)) = 3 + (40/20) = 3 + 2 = 5. Parentheses can be used to
control the order of evaluation for non-mathematical statements, too. An example is shown in getUserInput

of invest.c:

valid = (invp->inv0 > 0) && (invp->growth > 0) &&

(invp->years > 0) && (invp->years <= MAX_YEARS);

Each relational expression using > and <= (Section A.4.10) is evaluated before applying the logical AND
operators && (Section A.4.11).

A.4.2 Program Structure

invest.c demonstrates a typical structure for a program written in one .c file. When you write larger
programs, you may wish to break your program into multiple files. In this case, exactly one of these files
must contain a main function, and you have some choices as to which variables and functions in one file are
visible to other files. In this appendix we will focus on programs that consist of a single file (apart from any
C libraries you may include, as we will discuss in Section A.4.3). Section A.4.16 gives a simple example of a
program broken up into multiple C files.

Let’s consider the seven major sections of the program in order of appearance. PROGRAM COMMENTS

describe the purpose of the program and its revision history. PREPROCESSOR COMMANDS define constants and
“header” files that should be included, giving the program access to library functions that extend the power of
the C language. This is described in more detail in Section A.4.3. In some programs, it may be helpful to
define a new data type, as shown in DATA TYPE DEFINITIONS. In invest.c, several variables are packaged
together in a single record or struct data type, as described in Section A.4.4. Any GLOBAL VARIABLES are
then defined. These are variables that are available for use by all functions in the program. Because of this
special status, the names of global variables could be Capitalized or otherwise written in a way to remind the
programmer that they are not local variables (Section A.4.5).

The next section of the program contains the HELPER FUNCTION PROTOTYPES of the various helper
functions. A prototype of a function declares the name of the function that will be defined later, its data
type, and the data types of the arguments passed to the function. As an example, the function printRatio

is of type void, since it does not return a value, and takes two arguments, each of type int. The function
getUserInput takes a single argument which is a pointer to a variable of type Investment, a data type
which is defined a few lines above, and returns an int.

The next section of the program, MAIN FUNCTION, is where the main function is defined. Every program
has exactly one main function, and it is where the program starts execution. The main function is of type
int, and by convention it returns a 0 if it executes successfully, and otherwise returns a nonzero value.
In invest.c, main takes no arguments, hence the void in the argument list. On the other hand, when a
program is run from the command line, it is possible to specify arguments to main. For example, we could
have written invest.c to be run with a command such as this:

> invest 100.0 1.05 5

To allow this, main would have been defined with the following syntax:

int main(int argc, char **argv) {

Then when the program is invoked as above, the integer argc would be set to 4, the number of whitespace-
separated strings on the command line, and argv would point to a vector of 4 strings, where the string
argv[0] is ’invest’, argv[1] is ’100.0’, etc. You can learn more about arrays and strings in Section A.4.9.

Finally, the last section of the program is the definition of the HELPER FUNCTIONS whose prototypes were
given earlier. It is not strictly necessary that the helper functions have prototypes, but if not, every function
should be defined before it is used by any other function. For example, none of the helper functions uses

Lynch, Marchuk, and Elwin, Northwestern U. 18 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

another helper function, so they could have all been defined before the main function, in any order, and
their function prototypes eliminated. The names of the variables in a function prototype and in the actual
definition of the function need not be the same; for example, the prototype of sendOutput uses variables
named arr and years, whereas the actual function definition uses arr and yrs. What matters is that the
prototype and actual function definition have the same number of arguments, of the same types, and in the
same order. In fact, in the arguments of the function prototypes, you can leave out variable names altogether,
and just keep the comma separated list of argument data types.

A.4.3 Preprocessor Commands

In the preprocessing stage of compilation, all comments are stripped out of the program. In addition, the
preprocessor encounters the following preprocessor commands, recognizable by the # character:

#include <stdio.h> // input/output library

#define MAX_YEARS 100 // Constant indicating max number of years to track

Constants. The second line defines the constant MAX YEARS to be equal to 100. The preprocessor searches
for each instance of MAX YEARS in the program and replaces it with 100. If we later decide that the maximum
number of years to track investments should be 200, we can simply change the definition of this constant, in
one place, instead of in several places. Since MAX YEARS is a constant, not a variable, it can never be assigned
another value somewhere else in the program. To indicate that it not a variable, a common convention is to
write constants in UPPERCASE. This is not required by C, however.

Included libraries. The first line of the preprocessor commands in invest.c indicates that the program
will use the standard C input/output library. The file stdio.h is called a header file for the library. This
file is readable by a text editor and contains a number of constants that are made available to the program,
as well as a set of function prototypes for input and output functions. The preprocessor replacea the
#include <stdio.h> command with the header file stdio.h.10 Examples of function prototypes that are
included are

int printf(const char *Format, ...);

int sprintf(char *Buffer, const char *Format, ...);

int scanf(const char *Format, ...);

Each of these three functions is used in invest.c. If the program were compiled without including stdio.h,
the compiler would generate a warning or an error due to the lack of function prototypes. See Section A.4.15
for more information on using the stdio input and output functions.

During the linking stage, the object code of invest.c is linked with the object code for printf, sprintf,
and scanf in your C installation. Libraries like stdio provide access to functions beyond the basic C syntax.
Other useful libraries are briefly described in Section A.4.15.

Macros. One more use of the preprocessor is to define simple function-like macros that you may use in
more than one place in your program. Here’s an example that converts radians to degrees:

#define RAD_TO_DEG(x) ((x) * 57.29578)

The preprocessor will search for any instance of RAD TO DEG(x) in the program, where x can be any expression,
and replace it with ((x) * 57.29578). For example, the initial code

angle_deg = RAD_TO_DEG(angle_rad);

is replaced by

10This assumes that our preprocessor can find the header file somewhere in the “include path” of directories to search for
header files. If the header file header.h sits in the same directory as invest.c, we would write #include "header.h" instead of
#include <header.h>.

Lynch, Marchuk, and Elwin, Northwestern U. 19 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

angle_deg = ((angle_rad) * 57.29578);

Note the importance of the outer parentheses in the macro definition. If we had instead used the preprocessor
command

#define RAD_TO_DEG(x) (x) * 57.29578 // don’t do this!

then the code

answer = 1.0 / RAD_TO_DEG(3.14);

would be replaced by

answer = 1.0 / (3.14) * 57.29578;

which is very different from

answer = 1.0 / ((3.14) * 57.29578);

Moral: if the expression you are defining is anything other than a single constant, enclose it in parentheses,
to tell the compiler to evaluate the expression first. You can even enclose a single constant in parentheses; it
doesn’t cost you anything.

As a second example, the macro

#define MAX(A,B) ((A) > (B) ? (A):(B))

returns the maximum of two arguments. The ? is the ternary operator in C, which has the form

<test> ? return_value_if_test_is_true : return_value_if_test_is_false

The preprocessor replaces

maxval = MAX(13+7,val2);

with

maxval = ((13+7) > (val2) ? (13+7):(val2));

Why define a macro instead of just writing a function? One reason is that the macro may execute slightly
faster, since no passing of control to another function and no passing of variables is needed.

A.4.4 Defining Structs and Data Types

In most programs you write, you will do just fine with the data types int, char, float, double, and
variations. Occasionally, though, you will find it useful to define a new data type. You can do this with the
following command:

typedef <type> newtype;

where <type> is a standard C data type and newtype is the name of your new data type, which will be the
same as <type>. Then you can define a new variable x of type newtype by

newtype x;

For example, you could write

typedef int days_of_the_month;

days_of_the_month day;

Lynch, Marchuk, and Elwin, Northwestern U. 20 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

You might find it satisfying that your variable day (taking values 1 to 31) is of type days of the month, but
the compiler will still treat it as an int.

A more useful example is when you have several variables that are always used together. You might like to
package these variables together into a single record, as we do with the investment information in invest.c.
This packaging can be done with a struct. The invest.c code

typedef struct {

double inv0; // initial investment

double growth; // growth rate, where 1.0 = zero growth

int years; // number of years to track

double invarray[MAX_YEARS+1]; // investment values

} Investment; // the new data type is called Investment

replaces the data type int in our previous typedef example with struct {...}. This syntax creates a new
data type Investment with a record structure, with fields named inv0 and growth of type double, years of
type int, and invarray, an array of doubles. (Arrays are discussed in Section A.4.9.) With this new type
definition, we can define a variable named inv of type Investment:

Investment inv;

This definition allocates sufficient memory to hold the two doubles, the int, and the array of doubles. We
can access the contents of the struct using the “.” operator:

int yrs;

yrs = inv.years;

inv.growth = 1.1;

An example of this kind of usage is seen in main.
Referring to the discussion of pointers in Sections A.3.2 and A.4.8, if we are working with a pointer invp

that points to inv, we can use the “->” operator to access the contents of the record inv:

Investment inv; // allocate memory for inv, an investment record

Investment *invp; // invp will point to something of type Investment

int yrs;

invp = &inv; // invp points to inv

inv.years = 5; // setting one of the fields of inv

yrs = invp->years; // inv.years, (*invp).years, and invp->years are all identical

invp->growth = 1.1;

Examples of this usage are seen in calculateGrowth() and getUserInput().

A.4.5 Defining Variables

Variable names. Variable names can consist of uppercase and lowercase letters, numbers, and underscore
characters ’ ’. You should generally use a letter as the first character; var, Var2, and Global Var are all valid
names, but 2var is not. C is case sensitive, so the variable names var and VAR are different. A variable name
cannot conflict with a reserved keyword in C, like int or for. Names should be succinct but descriptive. The
variable names i, j, and k are often used for integers, and pointers often begin with ptr , such as ptr var,
or end with p, such as varp, to remind you that they are pointers. These are all to personal taste, however.

Scope. The scope of a variable refers to where it can be used in the program. A variable may be global,
i.e., usable by any function, or local to a specific function or piece of a function. A global variable is one that
is defined in the GLOBAL VARIABLES section, outside of and before any function that uses it. Such variables
can be referred to or altered in any function.11 Because of this special status, global variables are often
Capitalized. Global variable usage should be minimized for program modularity and readability.

11You could also define a variable outside of any function definition but after some of the function definitions. This quasi-global
variable would be available to all functions defined after the variable is defined, but not those before. This practice is discouraged,
as it makes the code harder to read.

Lynch, Marchuk, and Elwin, Northwestern U. 21 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

A local variable is one that is defined in a function. Such a variable is only usable inside that function,
after the definition.12 If you choose a local variable name var that is also the name of a global variable,
inside that function var will refer to the local variable, and the global variable will not be available. It is
not good practice to choose local variable names to be the same as global variable names, as it makes the
program confusing to understand.

A local variable can be defined in the argument list of a function definition, as in sendOutput at the end
of invest.c:

void sendOutput(double *arr, int yrs) { // ...

Otherwise, local variables are defined at the beginning of the function code block by syntax similar to that
shown in the function main.

int main(void) {

Investment inv; // Investment is a variable type we defined

// ... rest of the main function ...

Since this definition appears within the function, inv is local to main. Had this definition appeared before
any function definition, inv would be a global variable.

Definition and initialization. When a variable is defined, memory for the variable is allocated. In general,
you cannot assume anything about the contents of the variable until you have initialized it. For example, if
you want to define a float x with value 0.0, the command

float x;

is insufficient. The memory allocated may have random 0’s and 1’s already in it, and the allocation of memory
does not generally change the current contents of the memory. Instead, you can use

float x = 0.0;

to initialize the value of x when you define it. Equivalently, you could use

float x;

x = 0.0;

Static local variables. Each time a function is called, its local variables are allocated space in memory.
When the function completes, its local variables are thrown away, freeing memory. If you want to keep the
results of some calculation by the function after the function completes, you could either return the results
from the function or store them in a global variable. An alternative is to use the static modifier in the local
variable definition, as in the following program:

#include <stdio.h>

void myFunc(void) {

static char ch=’d’; // this local variable is static, allocated and initialized

// only once during the entire program

printf("ch value is %d, ASCII character %c\n",ch,ch);

ch = ch+1;

}

int main(void) {

myFunc();

myFunc();

myFunc();

return 0;

}

12Since we recommend that each function be brief, you can define all local variables in that function at the beginning of the
function, so we can see in one place what local variables the function uses. Some programmers prefer instead to define variables
just before their first use, to minimize their scope. Older C specifications required that all local variables be defined at the
beginning of a code block enclosed by braces { }.

Lynch, Marchuk, and Elwin, Northwestern U. 22 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

The static modifier in the definition of ch in myFunc means that ch is only allocated, and initialized to ’d’,
the first time myFunc is called during the execution of the program. This allocation persists after the function
is exited, and the value of ch is remembered. The output of this program is

ch value is 100, ASCII character d

ch value is 101, ASCII character e

ch value is 102, ASCII character f

Numerical values. Just as you can assign an integer a base-10 value using commands like ch=100, you
can assign a number written in hexadecimal notation by putting “0x” at the beginning of the digit sequence,
e.g.,

unsigned char ch = 0x4D;

This form may be convenient when you want to directly control bit values. This is often useful in microcontroller
applications.

A.4.6 Defining and Calling Functions

A function definition consists of the function’s data type, the function name, a list of arguments that the
function takes as input, and a block of code. Allowable function names follow the same rules as variables.
The function name should make clear the purpose of the function, such as getUserInput in invest.c.

If the function does not return a value, it is defined as type void, as with calculateGrowth. If it does
return a value, such as getUserInput which returns an int, the function should end with the command

return(val);

or

return val;

where val is a variable of the same type as the function. The main function is of type int and should return
0 upon successful completion.

The function definition

void sendOutput(double *arr, int yrs) { // ...

indicates that sendOutput returns nothing and takes two arguments, a pointer to type double and an int.
When the function is called with the statement

sendOutput(inv.invarray, inv.years);

the invarray and years fields of the inv structure in main are copied to sendOutput, which now has its
own local copies of these variables, stored in arr and yrs. The difference is that yrs is simply data, while
arr is a pointer, specifically the address of the first element of invarray, i.e., &(inv.invarray[0]). (Arrays
will be discussed in more detail in Section A.4.9.) Since sendOutput now has the memory address of the
beginning of this array, it can directly access, and potentially change, the original array seen by main. On the
other hand, sendOutput cannot by itself change the value of inv.years in main, since it only has a copy of
that value, not the actual memory address of main’s inv.years. sendOutput takes advantage of its direct
access to the inv.invarray to print out all the values stored there, eliminating the need to copy all the
values of the array from main to sendOutput.

The function calculateGrowth, which is called with a pointer to main’s inv data structure, takes
advantage of its direct access to the invarray field to change the values stored there.

When a function is called with a pointer argument, it is sometimes called a call by reference; the call sends
a reference (address, or pointer) to data. When a function is called with non-pointer data, it is sometimes
called a call by value; data is copied over, but not an address.

If a function takes no arguments and returns no value, we can define it as void myFunc(void) or
void myFunc(). The function is called using

myFunc();

Lynch, Marchuk, and Elwin, Northwestern U. 23 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

A.4.7 Math

Standard binary math operators (operators on two operands) include +, -, *, and /. These operators take
two operands and return a result, as in

ratio = a/b;

If the operands are the same type, then the CPU carries out a division (or add, subtract, multiply) specific
for that type and produces a result of the same type. In particular, if the operands are integers, the result
will be an integer, even for division (fractions are rounded toward zero). If one operand is an integer type
and the other is a floating point type, the integer type will generally be coerced to a floating point to allow
the operation (see the typecast.c program description of Section A.4).

The modulo operator % takes two integers and returns the remainder of their division, i.e.,

int i;

i = 16%7; // i is now equal to 2

C also provides +=, -=, *=, /=, %= to simplify some expressions, as shown below:

x = x * 2; y = y + 7; // this line of code is equivalent...

x *= 2; y += 7; // ...to this one

Since adding one to an integer or subtracting one from an integer are common operations in loops, these have
a further simplification. For an integer i, we can write

i++; // adds 1 to i, equivalent to i = i+1;

i--; // equivalent to i = i-1;

In fact we also have the syntax ++i and --i. If the ++ or -- come in front of the variable, the variable is
modified before it is used in the rest of the expression. If they come after, the variable is modified after the
expression has been evaluated. So

int i=5,j;

j = (++i)*2; // after this line, i is 6 and j is 12

but

int i=5,j;

j = (i++)*2; // after this line, i is 6 and j is 10

But your code would be much more readable if you just wrote i++ before or after the j=i*2 line.
If your program includes the C math library with the preprocessor command #include <math.h>, you

have access to a much larger set of mathematical operations, some of which are listed here:

int abs (int x); // integer absolute value

double fabs (double x); // floating point absolute value

double cos (double x); // all trig functions work in radians, not degrees

double sin (double x);

double tan (double x);

double acos (double x); // inverse cosine

double asin (double x);

double atan (double x);

double atan2 (double y, double x); // two-argument arctangent

double exp (double x); // base e exponential

double log (double x); // natural logarithm

double log2 (double x); // base 2 logarithm

double log10 (double x); // base 10 logarithm

double pow (double x, double y); // raise x to the power of y

double sqrt (double x); // square root of x

Lynch, Marchuk, and Elwin, Northwestern U. 24 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

These functions also have versions for floats. The names of those functions are identical, except with an ’f’
appended to the end, e.g., cosf.

When compiling programs using math.h, remember to include the linker flag -lm, e.g.,

gcc myprog.c -o myprog -lm

The math library is not linked by default like most other libraries.

A.4.8 Pointers

It’s a good idea to review the introduction to pointers in Section A.3.2 and the discussion of call by reference
in Section A.4.6. In summary, the operator & references a variable, returning a pointer to (the address of)
that variable, and the operator * dereferences a pointer, returning the contents of the address.

These statements define a variable x of type float and a pointer ptr to a variable of type float:

float x;

float *ptr;

At this point, the assignment

*ptr = 10.3;

would result in an error, because the pointer ptr does not currently point to anything. The following code
would be valid:

ptr = &x; // assign ptr to the address of x; x is the "pointee" of ptr

*ptr = 10.3; // set the contents at address ptr to 10.3; now x is equal to 10.3

*(&x) = 4 + *ptr; // the * and & on the left cancel each other; x is set to 14.3

Since ptr is an address, it is an integer (technically the type is “pointer to type float”), and we can add
and subtract integers from it. For example, say that ptr contains the value n, and then we execute the
statement

ptr = ptr + 1; // equivalent to ptr++;

If we now examined ptr, we would find that it has the value n+ 4. Why? Because the compiler knows that
ptr points to the type float, so when we add 1 to ptr, the assumption is that we want to increment one
float in memory, not one byte. Since a float occupies four bytes, the address ptr must increase by 4 to
point to the next float. The ability to increment a pointer in this way can be useful when dealing with
arrays, next.

A.4.9 Arrays and Strings

One-dimensional arrays. An array of five floats can be defined by

float arr[5];

We could also initialize the array at the time we define it:

float arr[5] = {0.0, 10.0, 20.0, 30.0, 40.0};

Each of these definitions allocates five floats in memory, accessed by arr[0] (initialized to 0.0 above)
through arr[4] (initialized to 40.0). The assignment

arr[5] = 3.2;

Lynch, Marchuk, and Elwin, Northwestern U. 25 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

is a mistake, since only arr[0..4] have been allocated. This statement would likely compile just fine, because
compilers typically do not check for indexing arrays out of bounds. The best result at this point would be
for your program to crash, to alert you to the fact that you are overwriting memory that may be allocated
for another purpose. More insidiously, the program could seem to run just fine, but with difficult-to-debug
erratic behavior. Bottom line: never access arrays out of bounds!

In the expression arr[i], i is an integer called the index, and arr[i] is of type float. The variable arr

by itself is actually a pointer to the first element of the array, equivalent to &(arr[0]). The address &(arr[i])
is located at the address arr plus i*4 bytes, since the elements of the array are stored consecutively, and
a float uses four bytes. Both arr[i] and *(arr+i) are correct syntax to access the i’th element of the
array. Since the compiler knows that arr is a pointer to the four-byte type float, the address represented by
(arr+i) is i*4 bytes higher than the address arr.

Consider the following code snippet:

float arr[5] = {0.0, 10.0, 20.0, 30.0, 40.0};

float *ptr;

ptr = arr + 3;

// arr[0] contains 0.0 and ptr[0] = arr[3] = 30.0

// arr[0] is equivalent to *arr; ptr[0] is equivalent to *ptr and *(arr+3);

// ptr is equivalent to &(arr[3])

If we’d like to pass the array arr to a function that initializes each element of the array, we could call

arrayInit(arr,5);

or

arrayInit(&(arr[0]),5);

The function definition for arrayInit might look like

void arrayInit(float *vals, int length) {

int i;

for (i=0; i<length; i++) vals[i] = i*10.0;

// equivalently, we could substitute the line below for the line above

// for (i=0; i<length; i++) {*vals = i*10.0; vals++;}

}

The pointer vals in arrayInit is set to point to the same location as arr in the calling function. Therefore
vals[i] refers to the same memory contents that arr[i] does.

Note that arr does not carry any information on the length of the array. This is why we have to separately
send the length of the array to arrayInit.

Strings. A string is an array of chars. The definition

char s[100];

allocates memory for 100 chars, s[0] to s[99]. We could initialize the array with

char s[100] = "cat"; // note the double quotes

This places a ’c’ (integer value 99) in s[0], an ’a’ (integer value 97) in s[1], a ’t’ (integer value 116) in
s[2], and a value of 0 in s[3], corresponding to the NULL character and indicating the end of the string.
(You could also do this, less elegantly, by initializing just those four elements using braces as we did with the
float array above.)

You notice that we allocated more memory than was needed to hold “cat.” Perhaps we will append
something to the string in future, so we might want to allocate that extra space just in case. But if not, we
could have initialized the string using

Lynch, Marchuk, and Elwin, Northwestern U. 26 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

char s[] = "cat";

and the compiler would only assign the minimum memory needed.
The function sendOutput in invest.c shows an example of constructing a string using sprintf, a

function provided by stdio.h. Other functions for manipulating strings are provided in string.h. Both of
these libraries are described briefly in Section A.4.15.

Multi-dimensional arrays. The definition

int mat[2][3];

allocates memory for 6 ints, mat[0][0] to mat[1][2], which can be thought of as a two-dimensional array,
or matrix. These occupy a contiguous region of memory, with mat[0][0] at the lowest memory location,
followed by mat[0][1], mat[0][2], mat[1][0], mat[1][1], and mat[1][2]. This matrix can be initialized
using nested braces,

int mat[2][3] = {{0, 1, 2}, {3, 4, 5}};

Higher-dimensional arrays can be created by simply adding more indexes. In memory, a “row” of the
rightmost index is completed before incrementing the next index to the left.

Static vs. dynamic memory allocation. A command of the form float arr[5] is called static memory
allocation. This means that the size of the array is known at compile time. Another option is dynamic
memory allocation, where the size of the array can be chosen at run time.13 With the C library stdlib.h

included using the preprocessor command #include <stdlib.h>, the syntax

float *arr; // arr is a pointer to float, but no memory has been allocated for the array

int i=5;

arr = (float *) malloc(i * sizeof(float)); // allocate the memory

allocates arr[0..4], and

free(arr);

releases the memory when it is no longer needed.14 If malloc cannot allocate the requested memory, perhaps
because the computer is out of memory, it returns a NULL pointer (i.e., arr will have value 0).

A.4.10 Relational Operators and TRUE/FALSE Expressions

== equal
!= not equal

>, >= greater than, greater than or equal to
<, <= less than, less than or equal to

Relational operators operate on two values and evaluate to 0 or 1. A 0 indicates that the expression is FALSE
and a 1 indicates that the expression is TRUE. For example, the expression (3>=2) is TRUE, so it evaluates
to 1, while (3<2) evaluates to 0, or FALSE.

The most common mistake is using = to test for equality instead of ==. For example, using the if

conditional syntax (Section A.4.13), the test

int i=2;

if (i=3) printf("Test is true.");

13Dynamic memory is allocated from the heap, a portion of memory set aside for dynamic allocation (and therefore is not
available for statically allocated variables and program code). You may have to adjust linker options setting the size of the heap.

14Bookkeeping has kept track of the size of the block associated with the address arr, so you don’t need to tell free how
much memory to release.

Lynch, Marchuk, and Elwin, Northwestern U. 27 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

will always evaluate to TRUE, because the expression (i=3) assigns the value of 3 to i, and the expression
evaluates to 3. Any nonzero value is treated as logical TRUE. If the condition is written (i==3), it will
operate as intended, evaluating to 0 (FALSE).

Be aware of potential pitfalls in checking equality of floating point numbers. Cconsider the following
program:

#include <stdio.h>

#define VALUE 3.1

int main(void) {

float x = VALUE;

double y = VALUE;

if (x==VALUE) printf("x is equal to %lf.\n",VALUE);

else printf("x is not equal to %lf!\n",VALUE);

if (y==VALUE) printf("y is equal to %lf.\n",VALUE);

else printf("y is not equal to %lf!\n",VALUE);

return 0;

}

You might be surprised to see that your program says that x is not equal while y is! In fact, neither x nor y
are exactly 3.1 due to roundoff error in the floating point representation. However, by default, the constant
3.1 is treated as a double, so the double y carries the identical (wrong) value. If you want a constant to be
treated explicitly as a float, you can write it as 3.1F, and if you want it to be treated as a long double,
you can write it as 3.1L.

A.4.11 Logical Operators

Logical operators include AND, OR, and NOT, written as &&, ||, and !, respectively. Here are some examples:

(3>2) && (4!=0) // (TRUE) AND (TRUE) evaluates to TRUE

(3>2) || (4==0) // (TRUE) OR (FALSE) evaluates to TRUE

!(3>2) || (4==0) // NOT(TRUE) OR (FALSE) evaluates to FALSE

Another example is given in getUserInput, where four expressions are AND’ed. As always, if you are unsure
of the order of evaluating a string of logical expressions, use parentheses to enforce the order you want.

A.4.12 Bitwise Operators

∼ bitwise NOT
& bitwise AND
| bitwise OR
∧ bitwise XOR
>> shift bits to the right (shifting in 0’s from the left)
<< shift bits to the left (shifting in 0’s from the right)

Bitwise operators act directly on the bits of the operand(s), as in the following example:

unsigned char a=0xC, b=0x6, c; // in binary, a is 0b00001100 and b is 0b00000110

c = ~a; // NOT; c is 0xF3 or 0b11110011

c = a & b; // AND; c is 0x04 or 0b00000100

c = a | b; // OR; c is 0x0E or 0b00001110

c = a ^ b; // XOR; c is 0x0A or 0b00001010

c = a >> 3; // SHIFT RT 3; c is 0x01 or 0b00000001, one 1 is shifted off the right end

c = a << 3; // SHIFT LT 3; c is 0x60 or 0b01100000, 1’s shifted to more significant digits

Much like the math operators, we also have the assignment expressions &=, |=, ^=, >>=, and <<=, so a &= b

is equivalent to a = a&b.

Lynch, Marchuk, and Elwin, Northwestern U. 28 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

A.4.13 Conditional Statements

If-Else. The basic if-else construct takes this form:

if (<expression>) {

// execute this code block if <expression> is TRUE, then exit

}

else {

// execute this code block if <expression> is FALSE

}

If the code block is a single statement, the braces are not necessary. The else and the block after it can be
eliminated if no action needs to be taken when <expression> is FALSE.

if-else statements can be made into arbitrarily long chains:

if (<expression1>) {

// execute this code block if <expression1> is TRUE, then exit this if-else chain

}

else if (<expression2>) {

// execute this code block if <expression2> is TRUE, then exit this if-else chain

}

else {

// execute this code block if both expressions above are FALSE

}

An example if statement is in getUserInput.

Switch. If you would like to check if the value of a single expression is one of several possibilities, a switch

may be simpler than a chain of if-else statements. Here is an example:

char ch;

// ... omitting code that sets the value of ch ...

switch (ch) {

case ’a’: // execute these statements if ch has value ’a’

<statement>;

<statement>;

break; // exit the switch statement

case ’b’:

// ... some statements

break;

case ’c’:

// ... some statements

break;

default: // execute this code if none of the previous cases applied

// ... some statements

}

A.4.14 Loops

for loop. A for loop has the following syntax:

for (<initialization>; <test>; <update>) {

// code block

}

If the code block consists of only one statement, the surrounding braces can be eliminated.
The sequence is as follows: at the beginning of the loop, the <initialization> statement is executed.

Then the <test> is evaluated. If it is TRUE, then the code block is executed, the <update> is performed,
and we return to the <test>. If it is FALSE, the for loop is exited.

The following for loop is in calculateGrowth:

Lynch, Marchuk, and Elwin, Northwestern U. 29 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

for (i=1; i <= invp->years; i=i+1) {

invp->invarray[i] = invp->growth*invp->invarray[i-1];

}

The <initialization> step sets i=1. The <test> is TRUE if i is less than or equal to the number of years
we will calculate growth in the investment. If it is TRUE, the value of the investment in year i is calculated
from the value in year i-1 and the growth rate. The <update> adds 1 to i. In this example, the code block
is executed for i values of 1 to invp->years.

It is possible to perform more than one statement in the <initialization> and <update> steps by
separating the statements by commas. For example, we could write

for (i=1,j=10; i <= 10; i++, j--) { /* code */ };

if we want i to count up and j to count down.

while loop. A while loop has the following syntax:

while (<test>) {

// code block

}

First, the <test> is evaluated, and if it is FALSE, the while loop is exited. If it is TRUE, the code block is
executed and we return to the <test>.

In main of invest.c, the while loop executes until the function getUserInput returns 0, i.e., FALSE.
getUserInput collects the user’s input and returns an int that is 0 if the user’s input is invalid and 1 if it is
valid.

do-while loop. This is similar to a while loop, except the <test> is executed at the end of the code block.

do {

// code block

} while (<test>);

break and continue. If anywhere in the loop’s code block the command break is encountered, the program
will exit the loop. If the command continue is encountered, the rest of the commands in the code block will
be skipped, and control will return to the <update> in a for loop or the <test> in a while or do-while

loop. Examples:

while (<test1>) {

if (<test2>) break; // jump out of the while loop

// ...

}

while (<test1>) {

if (<test2>) continue; // skip the rest of the loop and go back to <test1>

x = x+3;

}

A.4.15 Some Useful Libraries

Libraries can be used in your C program if you include the .h header file that defines the library function
prototypes.15 We have already seen examples of functions in header files such as stdio.h, which contains
input/output functions; math.h in Section A.4.7; and stdlib.h in Section A.4.9.

It is well beyond our scope to provide details on the standard libraries in C. If you are interested, try a
web search on “standard libraries in C.” Here we highlight a few particularly useful functions in stdio.h,
string.h, and stdlib.h.

15Reminder: if you include <math.h>, you should also compile your program with the -lm flag, so the math library is linked
during the linking stage.

Lynch, Marchuk, and Elwin, Northwestern U. 30 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

Input and Output: stdio.h

int printf(const char *Format, ...);

The function printf is used to print to the “standard output,” which, for a PC, is typically the screen.
It takes a formatting string Format and a variable number of extra arguments, determined by the formatting
string, as indicated by the ... notation. The keyword const means that printf cannot change the string
Format.

An example comes from our program printout.c:

int i; float f; double d; char c;

i = 32; f = 4.278; d = 4.278; c = ’k’;

printf("Formatted string: i = %4d c = ’%c’\n",i,c);

printf("f = %25.23f d = %25.23lf\n",f,d);

which produces the output

Formatted string: i = 32 c = ’k’

f = 4.27799987792968750000000 d = 4.27799999999999958077979

The formatting strings consist of plain text, the special character \n that prints a newline, and directives of
the form %4d and %25.23f. Each directive indicates that printf will be looking for a corresponding variable
in the argument list to insert into the output. A non-exhaustive list of directives is given here:

%d Print an int. Corresponding argument should be an int.
%u Print an unsigned int. Corresponding argument should be an integer data type.
%ld Print a long int.
%f Print a float.
%lf Print a double, or “long float.”
%c Print a character according to the ASCII table. Argument should be char.
%s Print a string. Argument should be a pointer to a char (first element of a string).
%X Print an unsigned int as a hex number.

The directive %d can be written instead as %4d, for example, meaning that four spaces are allocated to write
the integer, which will be right-justified in that space with unused spaces blank. The directive %f can be
written instead as %6.3f, indicating that six spaces are reserved to write out the variable, with one of those
spaces being the decimal point and three of the spaces after the decimal point.

int sprintf(char *str, const char *Format, ...);

Instead of printing to the screen, sprintf prints to the string str. An example of this is in sendOutput.

int scanf(const char *Format, ...);

The function scanf is a formatted read from the “standard input,” which is typically the keyboard.
Arguments to scanf consist of a formatting string and pointers to variables where the input should be stored.
Typically the formatting string consists of directives like %d, %f, etc., separated by whitespace. The directives
are similar to those for printf, except they don’t accept spacing modifiers (like the 5 in %5d).

For each directive, scanf expects to see a pointer to a variable of that type in the argument list. A very
common mistake is the following:

int i;

scanf("%d",i); // WRONG! We need a pointer to the variable.

scanf("%d",&i); // RIGHT.

The pointer allows scanf to put the input into the right place in memory.
getUserInput uses the statement

scanf("%lf %lf %d", &(invp->inv0), &(invp->growth), &(invp->years));

Lynch, Marchuk, and Elwin, Northwestern U. 31 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

to read in two doubles and an integer and place them into the appropriate spots in the investment data
structure. scanf ignores the whitespace (tabs, newlines, spaces, etc.) between the inputs.

int sscanf(char *str, const char *Format, ...);

Instead of scanning from the keyboard, scanf scans the string pointed to by str.

FILE* fopen(const char *Path, const char *Mode);

int fclose(FILE *Stream);

int fscanf(FILE *Stream, const char *Format, ...);

int fprintf(FILE *Stream, const char *Format, ...);

These commands are for reading from and writing to files. Say you’ve got a file named inputfile, sitting
in the same directory as the program, with information your program needs. The following code would read
from it and then write to the file outputfile.

int i;

double x;

FILE *input, *output;

input = fopen("inputfile","r"); // "r" means you will read from this file

output = fopen("outputfile","w"); // "w" means you will write to this file

fscanf(input,"%d %lf",&i,&x);

fprintf(output,"I read in an integer %d and a double %lf.\n",i,x);

fclose(input); // these streams should be closed ...

fclose(output); // ... at the end of the program

int fputc(int character, FILE *stream);

int fputs(const char *str, FILE *stream);

int fgetc(FILE *stream);

char* fgets(char *str, int num, FILE *stream);

int puts(const char *str);

char* gets(char *str);

These commands get a character or string from a file, write (put) a character or string to a file, put a
string to the screen, or get a string from the keyboard.

String Manipulation: string.h

char* strcpy(char *destination, const char *source);

Given two strings, char destination[100],source[100], we cannot simply copy one to the other using
the assignment destination = source. Instead we use strcpy(destination,source), which copies the
string source (until reaching the string terminator character, integer value 0) to destination. The string
destination must have enough memory allocated to hold the source string.

char* strcat(char *destination, const char *source);

Appends the string in source to the end of the string destination.

int strcmp(const char *s1, const char *s2);

Returns 0 if the two strings are identical, a positive integer if the first unequal character in s1 is greater
than s2, and a negative integer if the first unequal character in s1 is less than s2.

size t strlen(const char *s);

The type size t is an unsigned integer type. strlen returns the length of the string s, where the end of

Lynch, Marchuk, and Elwin, Northwestern U. 32 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

the string is indicated by the string terminator character (value 0).

void* memset(void *s, int c, size t len);

memset writes len bytes of the value c (converted to an unsigned char) starting at the beginning of the
string s. So

char s[10];

memset(s,’c’,5);

would fill the first five characters of the string s with the character ’c’ (or integer value 99). This can be a
convenient way to initialize a string.

General Purpose Functions in stdlib.h

void* malloc(size t objectSize)

malloc is used for dynamic memory allocation. An example use is in Section A.4.9.

void free(void *objptr)

free is used to release memory allocated by malloc. An example use is in Section A.4.9.

int rand()

It is sometimes useful to generate random numbers, particularly for games. The code

int i;

i = rand();

places in i a pseudo-random number between 0 and RAND MAX, a constant which is defined in stdlib.h

(2,147,483,647 on my laptop). To convert this to an integer between 1 and 10, you could follow with

i = 1 + (int) ((10.0*i)/(RAND_MAX+1.0));

One drawback of the code above is that calling rand multiple times will lead to the same sequence of
random numbers every time the program is run. The usual solution is to “seed” the random number algorithm
with a different number each time, and this different number is often taken from a system clock. The srand

function is used to seed rand, as in the example below:

#include <stdio.h> // allows use of printf()

#include <stdlib.h> // allows use of rand() and srand()

#include <time.h> // allows use of time()

int main(void) {

int i;

srand(time(NULL)); // seed the random number generator with the current time

for (i=0; i<10; i++) printf("Random number: %d\n",rand());

return 0;

}

If we take out the line with srand, this program produces the same ten “random” numbers every time we
run it. Note that this program includes the time.h library to allow the use of the time function.

void exit(int status)

When exit is invoked, the program exits with the exit code status. stdlib.h defines EXIT SUCCESS

with value 0 and EXIT FAILURE with value −1, so that a typical call to exit might look like

exit(EXIT_SUCCESS);

Lynch, Marchuk, and Elwin, Northwestern U. 33 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

A.4.16 Multiple File Programs and Libraries

Our programs have been making use of the stdio library, which provides a number of functions allowing
printing to the screen and reading input from the keyboard. We gain access to these functions because of two
things:

1. The preprocessor command #include <stdio.h> inserts the header file stdio.h consisting of function
prototypes that declare functions such as printf, allowing you to use printf in your program.

2. The linker links in the pre-compiled library object code for stdio functions like printf.

Thus a library consists of a header file and object code. We could also loosely define a library to consist of a
header file and a C file (without a main function) containing source code for the library functions.

The purpose of a library is to gather together functions that are likely to be useful in many programs, so
you don’t have to rewrite the code for each program. Let’s look at a simple example.

A Simple Example: the rad2volume Library

Say you plan to write a number of programs that all need a function to calculate the volume of a sphere given
its radius. Instead of putting the same function into a bunch of different C files, you decide to write one
helper C file, rad2volume.c, with a function double radius2Volume(double r) that you make available
to other C files. For good measure, you decide to make the constant MY PI available also. To test your new
rad2volume library consisting of rad2volume.c and rad2volume.h, you create a main.c file that uses it.
The three files are given below.

// ***** file: rad2volume.h *****

#ifndef RAD2VOLUME_H // "include guard"; don’t include twice in one compilation

#define RAD2VOLUME_H // second line of the "include guard"

#define MY_PI 3.1415926 // constant available to files including rad2Volume.h

double radius2Volume(double r); // prototype available to files including rad2Volume.h

#endif // third line, and end, of "include guard"

// ***** file: rad2volume.c *****

#include <math.h> // for the function pow

#include "rad2volume.h" // if the header is in the same directory, use "quotes"

double cuber(double x) { // this function is not available externally

return(pow(x,3.0));

}

double radius2Volume(double rad) { // function definition

return((4.0/3.0)*MY_PI*cuber(rad));

}

// ***** file: main.c *****

#include <stdio.h>

#include "rad2volume.h"

int main(void) {

double radius = 3.0, volume;

volume = radius2Volume(radius);

printf("Pi is approximated as %25.23lf.\n",MY_PI);

printf("The volume of the sphere is %8.4lf.\n",volume);

return 0;

}

Lynch, Marchuk, and Elwin, Northwestern U. 34 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

The C file rad2volume.c contains two functions, cuber and radius2Volume. The function cuber is
only meant for internal, private use by rad2volume.c, so there is no prototype in rad2volume.h. On
the other hand, the function radius2Volume is meant for public use by other C files, so a prototype for
radius2Volume is included in the library header file rad2volume.h. The constant MY PI is also meant for
public use, so it is defined in rad2volume.h. Now radius2Volume and MY PI are available to any file that
includes rad2volume.h. In this case, they are available to main.c and rad2volume.c.

Each of main.c and rad2volume.c is compiled independently to create the object codes main.o and
rad2volume.o. These object codes are then linked to create the final executable. main.c compiles successfully
because it expects that, during the linking stage, MY PI and rad2Volume will be properly linked (in this case,
to main.o).

Note the three lines making up the include guard in rad2volume.h. During preprocessing of a C file, if
rad2volume.h is included, the flag RAD2VOLUME H is defined. If the same C file tries to include rad2volume.h

again, the include guard will recognize that RAD2VOLUME H already exists and therefore skip the prototype
and constant definition, down to the #endif. Without include guards, if we wrote a .c file including both
header1.h and header2.h, for example, not knowing that header2.h already includes header1.h, we would
get a compilation error due to duplicate declarations.

The two C files can be compiled into object codes using the commands

gcc -c rad2volume.c -o rad2volume.o

gcc -c main.c -o main.o

where the -c flag indicates that the code should be compiled and assembled, but not linked. The result is the
object codes rad2volume.o and main.o. The two object codes can be linked into a final executable using

gcc rad2volume.o main.o -o myprog

Alternatively, the single command

gcc rad2volume.c main.c -o myprog

could be used in place of the preceding three lines to compile and link without writing the object files.
Executing myprog, the output is

Pi is approximated as 3.14159260000000006840537.

The volume of the sphere is 113.0973.

Generalizing

Generalizing the simple example above, a header file defines constants, macros, new data types, and function
prototypes that are needed by the files that #include them. A header file can be included by C source files
or other header files. Figure A.1 illustrates a project consisting of one C source file with a main function
and two helper C source files without a main function. (Every C project has exactly one .c file with a main

function.) Each of the helper C files has its own header file, and a “library,” in our simplified context, is a C
helper file together with its header file. This project also has one other header file, general.h, without an
associated C file. This header is for general constant, macro, and data type definitions that are not specific
to either library nor the main C file. The arrows indicate that the pointed-to file includes the pointed-from
header file.

Assuming all the files are in the same directory, the project in Figure A.1 can be built by the following
four command-line commands, which create three object files (one for each source file) and link them together
into myprog:

gcc -c main.c -o main.o

gcc -c helper1.c -o helper1.o

gcc -c helper2.c -o helper2.o

gcc main.o helper1.o helper2.o -o myprog

Lynch, Marchuk, and Elwin, Northwestern U. 35 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

main.c helper2.chelper1.c

helper2.h

general.h

helper1.h

Figure A.1: An example project consisting of three C files and three header files. Arrows point from header
files to files that include them.

main.c

helper2.h

general.h

helper1.h

helper1.c

helper1.h

general.h

helper2.c

helper2.h

general.h

main.ohelper2.ohelper1.o

link

myprog

preprocess,
compile,

assemble

preprocess,
compile,

assemble

preprocess,
compile,

assemble

Figure A.2: The building of the project in Figure A.1.

The build is illustrated in Figure A.2. Each C file is compiled independently and requires the constants,
macros, data types, and function prototypes needed to successfully compile and assemble into an object file.
During compilation of a single C file, the compiler does not have (nor need) access to the source code for
functions in other C files. If main.c uses a function in helper1.c, for example, it needs only a prototype of
the function, provided by helper1.h, so the compiler knows the type of the function and what arguments it
takes. Calls to the function from main.o are linked to the actual function in helper1.o at the linker stage.

Most libraries, once finalized, should not be changed, so it is usually not necessary to re-create helper1.o

from helper1.c. Instead, your project can just use the object code helper1.o at the linking stage.

Lynch, Marchuk, and Elwin, Northwestern U. 36 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

According to Figures A.1 and A.2, main.c has the following preprocessor commands:

#include "general.h" // use "quotes" for header files that live in the same directory

#include "helper1.h"

#include "helper2.h"

The preprocessor replaces these commands with copies of the files general.h, helper1.h, and helper2.h.
But when it includes helper1.h, it finds that helper1.h tries to include a second copy of general.h (see
Figure A.1; helper1.h has a #include "general.h" command). Since general.h has already been copied
in, it should not be copied again; otherwise we would have multiple copies of the same function prototypes,
constant definitions, etc. To prevent this kind of error, header files should have include guards, as in our
simple example above.

In summary, the general.h, helper1.h, and helper2.h header files contain definitions that are made
public to files including them. We might see the following items in the helper1.h header file, for example:

• an include guard

• other include files

• constants and macros made public (and which may also be used by helper1.c)

• new data types (which may also be used by helper1.c)

• function prototypes of those functions in helper1.c which are meant to be used by other files

• possibly global variables that are defined (space allocated) in helper1.c but made available to other
files by an extern declaration in helper1.h

If a variable, function prototype, or constant is private to one C file, you can just define and use it in that C
file without including it in a header file.

A header file like helper1.h could also have the declaration

extern int Helper1_Global_Var; // no space is allocated by this declaration

where helper1.c has the global variable definition

int Helper1_Global_Var; // space is allocated by this definition

Then any file including helper1.h would have access to the global variable Helper1 Global Var allocated
by helper1.c. Global variables defined in helper1.c that do not have extern declarations in helper1.h

are private to helper1.c and cannot be accessed by other files. Global variables should not be defined (space
allocated) in a header file that could be included by more than one C file in a project.

Makefiles

When you are ready to build your executable, you can type the gcc commands at the command line, as we
have seen previously. A makefile simplifies the process, particularly for multi-file projects, by specifying the
dependencies and commands needed to build the project. A makefile for our rad2volume example is shown
below, where everything after a # is a comment.

***** file: makefile *****

Comment: This is the simplest of makefiles!

Here is a template:

[target]: [dependencies]

[tab] [command to execute]

The thing to the left of the colon in the first line is what is created,

and the thing(s) to the right of the colon are what it depends on. The second

line is the action to create the target. If the things it depends on

haven’t changed since the target was last created, no need to do the action.

Note: The tab spacing in the second line is important! You can’t just use

Lynch, Marchuk, and Elwin, Northwestern U. 37 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

individual spaces.

"make myprog" or "make" links to create the executable

myprog: main.o rad2volume.o

gcc main.o rad2volume.o -o myprog

"make main.o" produces main.o object code

main.o: main.c rad2volume.h

gcc -c main.c -o main.o

"make rad2volume.o" produces rad2volume.o object code

rad2volume.o: rad2volume.c rad2volume.h

gcc -c rad2volume -o rad2volume.o

"make clean" throws away any object files to ensure make from scratch

clean:

rm *.o

With this makefile in the same directory as your other files, you should be able to type the command
make [target]16, where [target] is myprog, main.o, rad2volume.o, or clean. If the target depends on
other files, make will make sure those are up to date first, and if not, it will call the commands needed to
make them. For example, make myprog triggers a check of main.o, which triggers a check of main.c and
rad2volume.h. If either of those have changed since the last time main.o was made, then main.c is compiled
and assembled to create a new main.o before the linking step.

The command make with no target specified will make the first target (which is myprog in this case).
Make sure your makefile is saved without any extensions (e.g., .txt) and that the commands are

preceded by a tab (not spaces).
There are many more sophisticated uses of makefiles which you can learn about from other sources.

16In some C installations make is named differently, like nmake for Visual Studio or mingw32-make. If you can find no version
of make, you may not have selected the make tools installation option when you performed the C installation.

Lynch, Marchuk, and Elwin, Northwestern U. 38 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

A.5 Exercises

1. Install C, create the HelloWorld.c program, and compile and run it.

2. Explain what a pointer variable is, and how it is different from a non-pointer variable.

3. Explain the difference between interpreted and compiled code.

4. Write the following hexadecimal (base-16) numbers in eight-digit binary (base-2) and three-digit decimal
(base-10). Also, for each of the eight-digit binary representations, give the value of the most significant
bit. (a) 0x1E. (b) 0x32. (c) 0xFE. (d) 0xC4.

5. What is 33310 in binary and 10111101112 in hexadecimal? What is the maximum value, in decimal,
that a 12-bit number can hold?

6. Assume that each byte of memory can be addressed by a 16-bit address, and every 16-bit address has a
corresponding byte in memory. How many total bits of memory do you have?

7. (Consult an ASCII table.) Let ch be of type char. (a) The assignment ch = ’k’ can be written
equivalently using a number on the right side. What is that number? (b) The number for ’5’? (c) For
’=’? (d) For ’?’?

8. What is the range of values for an unsigned char, short, and double data type?

9. How many bits are used to store a char, short, int, float, and double?

10. Explain the difference between unsigned and signed integers.

11. (a) For integer math, give the pros and cons of using chars vs. ints. (b) For floating point math, give
the pros and cons of using floats vs. doubles. (c) For integer math, give the pros and cons of using
chars vs. floats.

12. The following signed short ints, written in decimal, are stored in two bytes of memory using the
two’s complement representation. For each, give the four-digit hexadecimal representation of those two
bytes. (a) 13. (b) 27. (c) −10. (d) −17.

13. The smallest positive integer that cannot be exactly represented by a four-byte IEEE 754 float is
224 + 1, or 16,777,217. Explain why.

14. Technically the data type of a pointer to a double is “pointer to type double.” Of the common integer
and floating point data types discussed in this chapter, which is the most similar to this pointer type?
Assume pointers occupy eight bytes.

15. To keep things simple, let’s assume we have a microcontroller with only 28 = 256 bytes of RAM, so
each address is given by a single byte. Now consider the following code defining four local variables:

unsigned int i, j, *kp, *np;

Let’s assume that the linker places i in addresses 0xB0..0xB3, j in 0xB4..0xB7, kp in 0xB8, and np in
0xB9. The code continues as follows:

// (a) the initial conditions, all memory contents unknown

kp = &i; // (b)

j = *kp; // (c)

i = 0xAE; // (d)

np = kp; // (e)

*np = 0x12; // (f)

j = *kp; // (g)

Lynch, Marchuk, and Elwin, Northwestern U. 39 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

For each of the comments (a)-(g) above, give the contents (in hexadecimal) at the address ranges
0xB0..0xB3 (the unsigned int i), 0xB4..0xB7 (the unsigned int j), 0xB8 (the pointer kp), and
0xB9 (the pointer np), at that point in the program, after executing the line containing the comment.
The contents of all memory addresses are initially unknown or random, so your answer to (a) is
“unknown” for all memory locations. If it matters, assume little-endian representation.

16. Invoking the gcc compiler with a command like gcc myprog.c -o myprog actually initiates four steps.
What are the four steps called, and what is the output of each step?

17. What is main’s data type, and what is the meaning of its return value?

18. Give the printf statement that will print out a double d with eight digits to the right of the decimal
point and four spaces to the left.

19. Consider three unsigned chars, i, j, and k, with values 60, 80, and 200, respectively. Let sum also be
an unsigned char. For each of the following, give the value of sum after performing the addition. (a)
sum = i+j; (b) sum = i+k; (c) sum = j+k;

20. For the variables defined as

int a=2, b=3, c;

float d=1.0, e=3.5, f;

give the values of the following expressions. (a) f = a/b; (b) f = ((float) a)/b; (c) f = (float)

(a/b); (d) c = e/d; (e) c = (int) (e/d); (f) f = ((int) e)/d;

21. In each snippet of code in (a)-(d), there is an arithmetic error in the final assignment of ans. What is
the final value of ans in each case?

(a) char c = 17;

float ans = (1 / 2) * c;

(b) unsigned int ans = -4294967295;

(c) double d = pow(2, 16);

short ans = (short) d;

(d) double ans = ((double) -15 * 7) / (16 / 17) + 2.0;

22. Truncation isn’t always bad. Say you wanted to store a list of percentages rounded down to the nearest
percent, but you were tight on memory and cleverly used an array of chars to store the values. For
example, pretend you already had the following snippet of code:

char percent(int a, int b) {

// assume a <= b

char c;

c = ???;

return c;

}

You can’t simply write c = a / b. If a
b = 0.77426 or a

b = 0.778, then the correct return value is c =
77. Finish the function definition by writing a one-line statement to replace c = ???.

23. Explain why global variables work against modularity.

24. What are the seven sections of a typical C program?

25. You’ve written a large program with a number of functions. Your program compiles without errors,
but when you run the program with input for which you know the correct output, you discover that
your program returns a wrong result. What do you do next? Describe your systematic strategy for
debugging.

Lynch, Marchuk, and Elwin, Northwestern U. 40 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

26. Erase all the comments in invest.c, recompile, and run the program to make sure it still functions
correctly. You should be able to recognize what is a comment and what is not. Turn in your modified
invest.c code.

27. The following problems refer to the program invest.c. For all problems, you should modify the original
code (or the code without comments from the previous problem) and run it to make sure you get the
expected behavior. For each problem, turn in the modified portion of the code only.

(a) Using if, break and exit. Include the header file stdlib.h so we have access to the exit function
(Section A.4.15). Change the while loop in main to be an infinite loop by inserting an expression
<expr> in while(<expr>) that always evaluates to 1 (TRUE). (What is the simplest expression
that evaluates to 1?) Now the first command inside the while loop gets the user’s input. if the
input is not valid, exit the program; otherwise continue. Next, change the exit command to a
break command, and see the different behavior.

(b) Accessing fields of a struct. Alter main and getUserInput to set inv.invarray[0] in getUserInput,
not main.

(c) Using printf. In main, before sendOutput, echo the user’s input to the screen. For example, the
program could print out You entered 100.00, 1.05, and 5.

(d) Altering a string. After the sprintf command of sendOutput, try setting an element of outstring
to 0 before the printf command. For example, try setting the third element of outstring to 0.
What happens to the output when you run the program? Now try setting it to ’0’ instead and
see the behavior.

(e) Relational operators. In calculateGrowth, eliminate the use of <= in favor of an equivalent
expression that uses !=.

(f) Math. In calculateGrowth, replace i=i+1 with an equivalent statement using +=.

(g) Data types. Change the fields inv0, growth, and invarray[] to be float instead of double in
the definition of the Investment data type. Make sure you make the correct changes everywhere
else in the program.

(h) Pointers. Change sendOutput so that the second argument is of type int *, i.e., a pointer to an
integer, instead of an integer. Make sure you make the correct changes everywhere else in the
program.

(i) Conditional statements. Use an else statement in getUserInput to print Input is valid if the
input is valid.

(j) Loops. Change the for loop in sendOutput to an equivalent while loop.

(k) Logical operators. Change the assignment of valid to an equivalent statement using || and !,
and no &&.

28. Consider this array definition and initialization:

int x[4] = {4, 3, 2, 1};

For each of the following, give the value or write “error/unknown” if the compiler will generate an error
or the value is unknown. (a) x[1] (b) *x (c) *(x+2) (d) (*x)+2 (e) *x[3] (f) x[4] (g) *(&(x[1]) +

1)

29. For the (strange) code below, what is the final value of i? Explain why.

int i,k=6;

i = 3*(5>1) + (k=2) + (k==6);

30. As the code below is executed, give the value of c in hex at the seven break points indicated, (a)-(g).

Lynch, Marchuk, and Elwin, Northwestern U. 41 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

unsigned char a=0x0D, b=0x03, c;

c = ~a; // (a)

c = a & b; // (b)

c = a | b; // (c)

c = a ^ b; // (d)

c = a >> 3; // (e)

c = a << 3; // (f)

c &= b; // (g)

31. In your C installation, or by searching on the web, find a listing of the header file stdio.h. Find the
function prototype for one function provided by the library, but not mentioned in this appendix, and
describe what that function does.

32. Write a program to generate the ASCII table for values 33 to 127. The output should be two columns:
the left side with the number and the right side with the corresponding character. Turn in your code
and the output of the program.

33. We will write a simple bubble sort program to sort a string of text in ascending order according to the
ASCII table values of the characters. A bubble sort works as follows. Given an array of n elements
with indexes 0 to n− 1, we start by comparing elements 0 and 1. If element 0 is greater than element 1,
we swap them. If not, leave them where they are. Then we move on to elements 1 and 2 and do the
same thing, etc., until finally we compare elements n− 2 and n− 1. After this, the largest value in the
array has “bubbled” to the last position. We now go back and do the whole thing again, but this time
only comparing elements 0 up to n− 2. The next time, elements 0 to n− 3, etc., until the last time
through we only compare elements 0 and 1.

Although this simple program bubble.c could be written in one function (main), we are going to break
it into some helper functions to get used to using them. The function getString will get the input
from the user; the function printResult will print the sorted result; the function greaterThan will
check if one element is greater than another; and the function swap will swap two elements in the array.
With these choices, we start with an outline of the program that looks like this.

#include <stdio.h>

#include <string.h>

#define MAXLENGTH 100 // max length of string input

void getString(char *str); // helper prototypes

void printResult(char *str);

int greaterThan(char ch1, char ch2);

void swap(char *str, int index1, int index2);

int main(void) {

int len; // length of the entered string

char str[MAXLENGTH]; // input should be no longer than MAXLENGTH

// here, any other variables you need

getString(str);

len = strlen(str); // get length of the string, from string.h

// put nested loops here to put the string in sorted order

printResult(str);

return(0);

}

// helper functions go here

Here’s an example of the program running. Everything after the first colon is entered by the user.
Blank spaces are written using an underscore character, since scanf assumes that the string ends at
the first whitespace.

Lynch, Marchuk, and Elwin, Northwestern U. 42 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

Enter the string you would like to sort: This_is_a_cool_program!

Here is the sorted string: !T____aacghiilmoooprrss

Complete the following steps in order. Do not move to the next step until the current step is successful.

(a) Write the helper function getString to ask the user for a string and place it in the array passed
to getString. You can use scanf to read in the string. Write a simple call in main to verify that
getString works as you expect before moving on.

(b) Write the helper function printResult and verify that it works correctly.

(c) Write the helper function greaterThan and verify that it works correctly.

(d) Write the helper function swap and verify that it works correctly.

(e) Now define the other variables you need in main and write the nested loops to perform the sort.
Verify that the whole program works as it should.

Turn in your final documented code and an example of the output of the program.

34. A more useful sorting program would take a series of names (e.g., Doe John) and scores associated with
them (e.g., 98) and then list the names and scores in two columns in descending order. Modify your
bubble sort program to do this. The user enters a name string and a number at each prompt. The user
indicates that there are no more names by entering 0 0.

Your program should define a constant MAXRECORDS which contains the maximum number of records
allowable. You should define an array, MAXRECORDS long, of struct variables, where each struct has
two fields: the name string and the score. Write your program modularly so that there is at least a
sort function and a readInput function of type int that returns the number of records entered.

Turn in your code and example output.

35. Modify the previous program to read the data in from a file using fscanf and write the results out to
another file using fprintf. Turn in your code and example output.

36. Consider the following lines of code:

int i, tmp, *ptr, arr[7] = {10, 20, 30, 40, 50, 60, 70};

ptr = &arr[6];

for(i = 0; i < 4; i++) {

tmp = arr[i];

arr[i] = *ptr;

*ptr = tmp;

ptr--;

}

(a) How many elements does the array arr have?

(b) How would you access the middle element of arr and assign its value to the variable tmp? Do this
two ways, once indexing into the array using [] and the other with the dereferencing operator and
some pointer arithmetic. Your answer should only be in terms of the variables arr and tmp.

(c) What are the contents of the array arr before and after the loop?

37. The following questions pertain to the code below. For your responses, you only need to write down
the changes you would make using valid C code. You should verify that your modifications actually
compile and run correctly. Do not submit a full C program for this question. Only write the changes
you would make using legitimate C syntax.

Lynch, Marchuk, and Elwin, Northwestern U. 43 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

#include <stdio.h>

#define MAX 10

void MyFcn(int max);

int main(void) {

MyFcn(5);

return(0);

}

void MyFcn(int max) {

int i;

double arr[MAX];

if(max > MAX) {

printf("The range requested is too large. Max is %d.\n", MAX);

return;

}

for(i = 0; i < max; i++) {

arr[i] = 0.5 * i;

printf("The value of i is %d and %d/2 is %f.\n", i, i, arr[i]);

}

}

(a) while loops and for loops are essentially the same thing. How would you write an equivalent
while loop that replicates the behavior of the for loop?

(b) How would you modify the main function so that it reads in an integer value from the keyboard
and then passes the result to MyFcn? (This replaces the statement MyFcn(5);.) If you need to use
extra variables, make sure to define them before you use them in your snippet of code.

(c) Change main so that if the input value from the keyboard is between −MAX and MAX, you call
MyFcn with the absolute value of the input. If the input is outside this range, then you simply call
MyFcn with the value MAX. How would you make these changes using conditional statements?

(d) In C, you will often find yourself writing nested loops (a loop inside a loop) to accomplish a task.
Modify the for loop to use nested loops to set the ith element in the array arr to half the sum of

the first i− 1 integers, i.e., arr[i] = 1
2

i−1∑
j=0

j. (You can easily find a formula for this that doesn’t

require the inner loop, but you should use nested loops for this problem.) The same loops should
print the value of each arr[i] to 2 decimal places using the %f formatting directive.

38. If there are n people in a room, what is the chance that two of them have the same birthday? If n = 1,
the chance is zero, of course. If n > 366, the chance is 100%. Under the assumption that births are
distributed uniformly over the days of the year, write a program that calculates the chances for values
of n = 2 to 100. What is the lowest value n∗ such that the chance is greater than 50%? (The surprising
result is sometimes called the “birthday paradox.”) If the distribution of births on days of the year is
not uniform, will n∗ increase or decrease? Turn in your answer to the questions as well as your C code
and the output.

39. In this problem you will write a C program that solves a “puzzler” that was presented on NPR’s
CarTalk radio program. In a direct quote of their radio transcript, found here http://www.cartalk.

com/content/hall-lights?question, the problem is described as follows:

RAY: This puzzler is from my “ceiling light” series. Imagine, if you will, that you have a
long, long corridor that stretches out as far as the eye can see. In that corridor, attached to
the ceiling are lights that are operated with a pull cord.

There are gazillions of them, as far as the eye can see. Let’s say there are 20,000 lights in a
row.

Lynch, Marchuk, and Elwin, Northwestern U. 44 12:38 February 4, 2015

http://www.cartalk.com/content/hall-lights?question
http://www.cartalk.com/content/hall-lights?question

APPENDIX A. A CRASH COURSE IN C

They’re all off. Somebody comes along and pulls on each of the chains, turning on each one
of the lights. Another person comes right behind, and pulls the chain on every second light.

TOM: Thereby turning off lights 2, 4, 6, 8 and so on.

RAY: Right. Now, a third person comes along and pulls the cord on every third light. That
is, lights number 3, 6, 9, 12, 15, etc. Another person comes along and pulls the cord on lights
number 4, 8, 12, 16 and so on. Of course, each person is turning on some lights and turning
other lights off.

If there are 20,000 lights, at some point someone is going to come skipping along and pull
every 20,000th chain.

When that happens, some lights will be on, and some will be off. Can you predict which
lights will be on?

You will write a C program that asks the user the number of lights n and then prints out which of the
lights are on, and the total number of lights on, after the last (nth) person goes by. Here’s an example
of what the output might look like if the user enters 200:

How many lights are there? 200

You said 200 lights.

Here are the results:

Light number 1 is on.

Light number 4 is on.

...

Light number 196 is on.

There are 14 total lights on!

Your program lights.c should follow the template outlined below. Turn in your code and example
output.

/**

* lights.c

*

* This program solves the light puzzler. It uses one main function

* and two helper functions: one that calculates which lights are on,

* and one that prints the results.

*

***/

#include <stdio.h>

#include <stdlib.h> // allows the use of the "exit()" function

#define MAX_LIGHTS 1000000 // maximum number of lights allowed

// here’s a prototype for the light toggling function

// here’s a prototype for the results printing function

int main(void) {

// Define any variables you need, including for the lights’ states

// Get the user’s input.

// If it is not valid, say so and use "exit()" (stdlib.h, Sec 1.2.16).

// If it is valid, echo the entry to the user.

// Call the function that toggles the lights.

// Call the function that prints the results.

Lynch, Marchuk, and Elwin, Northwestern U. 45 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

return(0);

}

// definition of the light toggling function

// definition of the results printing function

40. We have been preprocessing, compiling, assembling, and linking programs with commands like

gcc HelloWorld.c -o HelloWorld

The gcc command recognizes the first argument, HelloWorld.c, is a C file based on its .c extension.
It knows you want to create an output file called HelloWorld because of the -o option. And since you
didn’t specify any other options, it knows you want that output to be an executable. So it performs all
four of the steps to take the C file to an executable.

We could have used options to stop after each step if we wanted to see the intermediate files produced.
Below is a sequence of commands you could try, starting with your HelloWorld.c code. Don’t type
the “comments” to the right of the commands!

> gcc HelloWorld.c -E > HW.i // stop after preprocessing, dump into file HW.i

> gcc HW.i -S -o HW.s // compile HW.i to assembly file HW.s and stop

> gcc HW.s -c -o HW.o // assemble HW.s to object code HW.o and stop

> gcc HW.o -o HW // link with stdio printf code, make executable HW

At the end of this process you have HW.i, the C code after preprocessing (.i is a standard extension
for C code that should not be preprocessed); HW.s, the assembly code corresponding to HelloWorld.c;
HW.o, the unreadable object code; and finally the executable code HW. The executable is created from
linking your HW.o object code with object code from the stdio (standard input and output) library,
specifically object code for printf.

Try this and verify that you see all the intermediate files, and that the final executable works as
expected.

If our program used any math functions, the final linker command would be

> gcc HW.o -o HW -lm // link with stdio and math libraries, make executable HW

Most libraries, like stdio, are linked automatically, but often the math library is not, requiring the
extra -lm option.

The HW.i and HW.s files can be inspected with a text editor, but the object code HW.o and executable
HW cannot. We can try the following commands to make viewable versions:

> xxd HW.o v1.txt // can’t read obj code; this makes viewable v1.txt

> xxd HW v2.txt // can’t read executable; make viewable v2.txt

The utility xxd just turns the first file’s string of 0’s and 1’s into a string of hex characters, represented
as text-editor-readable ASCII characters 0..9, A..F. It also has an ASCII sidebar: when a byte (two
consecutive hex characters) has a value corresponding to a printable ASCII character, that character is
printed. You can even see your message “Hello world!” buried there!

Take a quick look at the HW.i, HW.s, and v1.txt and v2.txt files. No need to understand these
intermediate files any further. If you don’t have the xxd utility, you could create your own program
hexdump.c instead:

Lynch, Marchuk, and Elwin, Northwestern U. 46 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

#include <stdio.h>

#define BYTES_PER_LINE 16

int main(void) {

FILE *inputp, *outputp; // ptrs to in and out files

int c, count = 0;

char asc[BYTES_PER_LINE+1], infile[100];

printf("What binary file do you want the hex rep of? ");

scanf("%s",infile); // get name of input file

inputp = fopen(infile,"r"); // open file as "read"

outputp = fopen("hexdump.txt","w"); // output file is "write"

asc[BYTES_PER_LINE] = 0; // last char is end-string

while ((c=fgetc(inputp)) != EOF) { // get byte; end of file?

fprintf(outputp,"%x%x ",(c >> 4),(c & 0xf)); // print hex rep of byte

if ((c>=32) && (c<=126)) asc[count] = c; // put printable chars in asc

else asc[count] = ’.’; // otherwise put a dot

count++;

if (count==BYTES_PER_LINE) { // if BYTES_PER_LINE reached

fprintf(outputp," %s\n",asc); // print ASCII rep, newline

count = 0;

}

}

if (count!=0) { // print last (short) line

for (c=0; c<BYTES_PER_LINE-count; c++) // print extra spaces

fprintf(outputp," ");

asc[count]=0; // add end-string char to asc

fprintf(outputp," %s\n",asc); // print ASCII rep, newline

}

fclose(inputp); // close files

fclose(outputp);

printf("Printed hexdump.txt.\n");

return(0);

}

Lynch, Marchuk, and Elwin, Northwestern U. 47 12:38 February 4, 2015

APPENDIX A. A CRASH COURSE IN C

Lynch, Marchuk, and Elwin, Northwestern U. 48 12:38 February 4, 2015

	I Quickstart
	Quickstart
	What You Need
	Hardware
	Software

	Compiling The Bootloader Utility
	Compiling Your First Program
	Loading Your First Program
	The Build Process
	Chapter Summary

	II Fundamentals
	Looking Under the Hood: Hardware
	The PIC32
	Pin Functions and Special Function Registers (SFRs)
	PIC32 Architecture
	The Physical Memory Map
	Configuration Bits

	The NU32 Development Board
	Chapter Summary
	Exercises

	Looking Under The Hood: Software
	The Virtual Memory Map
	An Example: simplePIC.c
	What Happens When You Build?
	What Happens When You Reset the PIC32?
	Understanding simplePIC.c
	Down the Rabbit Hole
	The Header File p32mx795f512l.h
	Other Microchip Software: Harmony
	The NU32bootloaded.ld Linker Script

	Bootloaded Programs vs. Standalone Programs
	Build Summary
	Useful Command Line Utilities
	Chapter Summary
	Exercises

	Using Libraries
	Talking PIC
	The NU32 Library
	Bootloaded Programs
	An LCD Library
	Microchip Libraries
	Your Libraries
	Chapter Summary
	Exercises

	Time and Space
	Compiler Optimization
	Time and the Disassembly File
	Timing Using a Stopwatch (or an Oscilloscope)
	Timing Using the Core Timer
	Disassembling Your Code
	The Prefetch Cache Module
	Math

	Space and the Map File
	Chapter Summary
	Exercises

	Interrupts
	Overview
	Details
	Steps to Set Up and Use an Interrupt
	Sample Code
	Core Timer Interrupt
	External Interrupt
	Speedup Due to the Shadow Register Set
	Sharing Variables with ISRs

	Chapter Summary
	Exercises

	III Peripheral Reference
	Digital Input and Output
	Overview
	Details
	Sample Code
	Chapter Summary
	Exercises

	Counter/Timers
	Overview
	Details
	Sample Code
	A Fixed Frequency ISR
	Counting External Pulses
	Timing the Duration of an External Pulse

	Chapter Summary
	Exercises

	Output Compare
	Overview
	Details
	Sample Code
	Generating a Pulse Train with PWM
	Analog Output

	Chapter Summary
	Exercises

	Analog Input
	Overview
	Details
	Sample Code
	Manual Sampling and Conversion
	Maximum Possible Sample Rate

	Chapter Summary
	Exercises

	IV Mechatronics
	PID Feedback Control
	Feedback Control of LED Intensity
	Wiring and Testing the Circuit
	Powering the LED with OC1
	Playing an Open-loop PWM Waveform

	A Crash Course in C
	Quick Start in C
	Overview
	Important Concepts in C
	Data Types
	Memory, Addresses, and Pointers
	Compiling

	C Syntax
	Basic Syntax
	Program Structure
	Preprocessor Commands
	Defining Structs and Data Types
	Defining Variables
	Defining and Calling Functions
	Math
	Pointers
	Arrays and Strings
	Relational Operators and TRUE/FALSE Expressions
	Logical Operators
	Bitwise Operators
	Conditional Statements
	Loops
	Some Useful Libraries
	Multiple File Programs and Libraries

	Exercises

