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Chapter 1

Preview

As an academic discipline, robotics is a relatively young field with highly am-
bitious goals, the ultimate one being the creation of machines that behave and
think like humans. This attempt to create intelligent machines naturally leads
us to first examine ourselves—to ask, for example, why our bodies are designed
the way they are, how our limbs are coordinated, and how we learn and re-
fine complex motions. The sense that the fundamental questions in robotics
are ultimately questions about ourselves is part of what makes robotics such a
fascinating and engaging endeavor.

In contrast to the lofty goals set by robotics researchers, the aims of this
textbook are more modest. Our focus will be on the mechanics, planning and
control of robot mechanisms. Robot arms are one familiar example. So are
wheeled platforms, as are robot arms mounted on wheeled platforms. Basically,
a mechanism is constructed by connecting rigid bodies, called links, together
with joints, so that relative motion between adjacent links becomes possible.
Actuation of the joints, typically by electric motors, then causes the robot to
move and exert forces in desired ways.

The links of a robot mechanism can be arranged in serial fashion, like the
familiar serial-chain arm shown in Figure 1.1(a). Robot mechanisms can also
have closed loops, such as the Stewart-Gough platform shown in Figure 1.1(b).
In the case of a serial chain, all of the joints are actuated, while in the case of
mechanisms with closed loops only a subset of the joints may be actuated.

Let us examine more closely the current technology behind robot mecha-
nisms. The links are moved by actuators, which are typically electrically driven
(e.g., DC or AC servo motors, stepper motors, even shape memory alloys), or
by pneumatic or hydraulic cylinders, or even by internal combustion engines. In
the case of rotating electric motors, they should ideally be lightweight, operate
at relatively low rotational speeds (e.g., in the range of hundreds of RPM) and
be able to generate large forces and torques. Since most currently available mo-
tors operate in the range of thousands of RPM, speed reduction devices with low
slippage and backlash are often required. Belts, sprockets, and spur gears are
usually not well-suited for this purpose; instead, specially designed low backlash
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2 Preview

gears, harmonic drives, and ball screws are used to simultaneously reduce speed
and amplify the delivered torque. Brakes may also be attached to quickly stop
the robot or to maintain a stationary posture.

Robots are also equipped with sensors to measure the position and velocity at
the joints. For both revolute and prismatic joints, optical encoders measure the
displacement, while tachometers measure their velocity. Forces at the links or at
the tip can be measured using various types of force-torque sensors. Additional
sensors may be used depending on the nature of the task, e.g., cameras, sonar
and laser range finders to locate and measure the position and orientation of
objects.

This textbook is about the mechanics, motion planning, and control of such
robots. We now provide a preview of the later chapters.

Chapter 2: Configuration Space

(a) An open chain industrial manipulator. (b) Stewart-Gough platform.

Figure 1.1: Open chain and closed chain robot mechanisms.

At its most basic level, a robot consists of rigid bodies connected by joints,
with the joints driven by actuators. In practice the links may not be completely
rigid, and the joints may be affected by factors such as elasticity, backlash,
friction, and hysteresis. In this book we ignore these effects and assume all links
are rigid. The most commonly found joints are revolute joints (allowing for
rotation about the joint axis) and prismatic joints (allowing for linear translation
along the joint axis). Revolute and prismatic joints have one degree of freedom
(either rotation or translation); other joints, such as the spherical joint (also
called the ball-in-socket joint), have higher degrees of freedom.

In the case of a serial chain robot such as the industrial manipulator of Fig-
ure 1.1(a), all of the joints are independently actuated. This is the essential idea
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behind the degrees of freedom of a robot: it is the sum of all the indepen-
dently actuated degrees of freedom of the joints. For serial chains the degrees of
freedom is obtained simply by adding up all the degrees of freedom associated
with the joints.

For closed chains like the Stewart-Gough platform shown in Figure 1.1(b),
the situation is somewhat more complicated. First, joints with multiple degrees
of freedom like the spherical joint are quite common. Second, it is usually
not possible to independently actuate all of the joints—fixing a certain set of
joints to prescribed values automatically determines the values of the remaining
joints. For even more complicated closed chains with multiple loops and different
joint types, determining the degrees of freedom may not be straightforward or
intuitive.

A more abstract but equivalent definition of the degrees of freedom of a robot
begins with the notion of its configuration space: a robot’s configuration
is a complete specification of the positions and orientations of each link of a
robot, and its configuration space is the set of all possible configurations of the
robot. The degrees of freedom, then, is the minimum number of independent
parameters required to specify the position and orientation of each of the links.
Based on this definition we obtain a formula—Grübler’s formula—that relates
the number of links and joints (including the degrees of freedom of each joint)
comprising a robot with its degrees of freedom.

Robot motion planning and control both begin by choosing coordinates that
parametrize the robot’s configuration space. Often the coordinates of choice
are the joint variables, and the configuration space can be parametrized either
explicitly or implicitly in terms of these joint variables. Also, to grasp and
manipulate objects, a robot is typically equipped with an end-effector, e.g., a
mechanical hand or gripper. The task space, also called the workspace, is the
configuration space of a frame attached to the end-effector. In this chapter we
study the various ways in which the configuration and task spaces of a robot
can be parametrized.

Chapter 3: Rigid-Body Motions

This chapter addresses the problem of how to mathematically describe the mo-
tion of a rigid body moving in three-dimensional physical space. One convenient
way is to attach a reference frame to the rigid body, and to develop a way to
quantitatively describe the frame’s position and orientation as it moves. As
a first step, we cover some preliminaries on the analysis of velocities and ac-
celerations of particles with respect to moving frames. We then introduce the
3 × 3 matrix representation for describing a frame’s orientation; such a matrix
is referred to as a rotation matrix. Two well-known three-parameter repre-
sentations for rotation matrices, the Euler angles and roll-pitch-yaw angles, are
described.

We then introduce the exponential representation for rotations. This rep-
resentation, which can also be identified with the familiar angle-axis represen-
tation for rotations, is derived in a somewhat roundabout way as the solution
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to a certain linear vector differential equation. Doing so allows us to, among
other things, proceed directly to the exponential description of general rigid
body motions, which forms the cornerstone for our later kinematic analysis of
serial chains.

The exponential description of rigid body motions can also be identified with
classical screw theory. In addition to the basic rules for the matrix representa-
tion and manipulation of rigid body motions, we also cover in detail the linear
algebraic constructs of screw theory, including the unified description of linear
and angular velocities as six-dimensional spatial velocities. Analogously, it
is also natural to combine three-dimensional forces and moments into a six-
dimensional spatial force.

Chapter 4: Forward Kinematics

For an open chain, the position and orientation of the end-effector are uniquely
determined from the joint positions. This is precisely the forward kinematics
problem for a robot: given a set of input joint values, find the output position
and orientation of the reference frame attached to the end-effector. In this chap-
ter we study two methods for describing the forward kinematics of open chains:
the Denavit-Hartenberg (D-H) representation and the product-of-exponentials
(PoE) formula. The D-H representation uses a fewer number of parameters,
but requires that reference frames be attached to each link. The PoE formula
requires more parameters, but there is no need to attach reference frames to
each link. Instead it relies solely on information about the location of each joint
axis—essentially, a line in space—making this the preferred forward kinematic
representation for our subsequent analysis in the later chapters.

Chapter 5: Velocity Kinematics and Statics

Velocity kinematics refers to the relationship between joint rates and the linear
and angular velocities of the end-effector frame. Central to velocity kinematics is
the Jacobian of the forward kinematics. By multiplying the vector of joint rates
by this matrix, the linear and angular velocities of the end-effector frame can be
obtained for any given robot configuration. Kinematic singularities, which
are configurations in which the end-effector frame loses the ability to move or
rotate in one or more directions—imagine, for example, a two-link planar chain
with its two links folded over each other—correspond to those configurations at
which the Jacobian matrix fails to have maximal rank. The closely related and
more general notion of the manipulability ellipsoid, whose shape indicates
the ease with which the robot can move in various directions, is also derived
from the Jacobian.

Finally, the Jacobian is also central to static force analysis. In static equilib-
rium settings, the Jacobian is used to determine what forces and torques need
to be exerted at the input joints in order for the end-effector to apply a certain
force or moment. In this chapter we show how to obtain the Jacobian for general
serial chains, and its many practical uses in the above and other settings.
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Chapter 6: Inverse Kinematics

The inverse kinematics problem is to determine the set of joint positions
that achieves a desired end-effector configuration. For serial chain robots, the
inverse kinematics is in general more involved than the forward kinematics: for
a given set of joint values there usually exists a unique end-effector position and
orientation, but for a particular end-effector position and orientation, there may
exist multiple solutions, or even none at all.

In this chapter we first examine a special class of six-dof serial chain struc-
tures whose inverse kinematics admits a closed-form analytic solution. Iterative
numerical algorithms are then derived for solving the inverse kinematics of gen-
eral six-dof serial chains. We also examine the inverse kinematics of redundant
serial chains (that is, those with more than seven degrees of freedom) in the con-
text of tracking a desired end-effector trajectory. For this problem, we present
a solution for obtaining the corresponding input joint rates that relies on the
generalized inverse of the forward kinematics Jacobian.

Chapter 7: Kinematics of Closed Chains

While serial chains have unique forward kinematics solutions, closed chains often
have multiple forward kinematics solutions. Also, because closed chains possess
both actuated and passive joints, the kinematic singularity analysis of closed
chains presents unusual subtleties not encountered in serial chains. In this
chapter we study the basic concepts and tools for the kinematic analysis of
closed chains. We begin with a detailed case study of mechanisms like the
planar five-bar linkage and the Stewart-Gough Platform. These results are then
generalized into a systematic methodology for the kinematic analysis of more
general closed chains.

Chapter 8: Dynamics of Open Chains

This chapter derives the dynamic equations for serial chains. As a first step, the
dynamic equations for a single rigid body are derived in terms of spatial veloc-
ities, accelerations, and forces. The dynamics for a serial chain robot are then
derived by applying the single body equation to each link of the robot. Analo-
gous to the notions of forward and inverse kinematics, the forward dynamics
problem involves determining the resulting joint trajectory for a given input joint
torque profile. Similarly, the inverse dynamics problem is concerned with de-
termining the input joint torque profile for a desired joint trajectory. The main
result of this chapter is a set of recursive algorithms for the forward and inverse
dynamics problem. Unlike traditional methods that rely on a separate analysis
of the linear and angular components of the dynamic equations, our algorithms
are formulated entirely in terms of six-dimensional spatial quantities, and rely
upon the product-of-exponentials formula to model the kinematics.
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Chapter 9: Trajectory Generation

What sets a robot apart from an automated machine is that it should be easily
reprogrammable for different tasks. Different tasks require different motions,
and it would be unreasonable to expect the user to specify the entire time-history
of each joint for every task; clearly it would be desirable for the computer to
“fill in the details” from a small set of task input data.

This chapter is concerned with the automatic generation of joint trajectories
from this set of task input data. Often this input data is given in the form of an
ordered set of joint values, called control points, together with a corresponding
set of control times. Based on this data the trajectory generation algorithm
produces a smooth trajectory for each joint that satisfies various user-supplied
conditions.

We study some popular algorithms for trajectory generation that were orig-
inally developed for computer-aided curve design applications. Algorithms that
are of particular interest are cubic splines and Bézier curves. Versions of these
algorithms are offered for the generation of trajectories in both joint space and
end-effector space. In the latter case, algorithms are presented for interpolating
through an ordered set of end-effector reference frames.

Chapter 10: Motion Planning

This chapter addresses the problem of finding a collision-free path for a robot
through a cluttered workspace. The most intuitive approach is to work in config-
uration space, which because of the workspace obstacles have forbidden regions.
We begin with the most basic of planning algorithms involving grid search. A
convenient way to navigate through such cluttered regions is through the use
of artificial potential fields. Briefly, in these methods the obstacles generate
artificial forces that repel the robot should it venture too near. When they
work, these methods have the advantage of being able to generate collision-
free trajectories in real-time. There are a number of subtleties associated with
these methods, however, e.g., the possibility of getting “stuck” in local equi-
libria without reaching the goal configuration, and we discuss some methods
to overcome these difficulties. We also cover a basic randomized algorithm for
planning collision-free paths, based on rapidly-exploring random trees.

Chapter 11: Robot Control

A robot arm can exhibit a number of different behaviors depending on the task
and its environment. It can act as a source of programmed motions for tasks
such as moving an object from one place to another, or tracing a trajectory for
manufacturing applications. It can act as a source of forces, for example when
grinding or polishing a workpiece. In tasks such as writing on a chalkboard, it
must control forces in some directions (the force pressing the chalk against the
board) and motions in others (motion in the plane of the board). In certain
applications, e.g., haptic displays, we may want the robot to act like a spring,
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damper, or mass, controlling its position, velocity, or acceleration in response
to forces applied to it.

In each of these cases, it is the job of the robot controller to convert the
task specification to forces and torques at the actuators. Control strategies
to achieve the behaviors described above are known as motion (or position)
control, force control, hybrid motion-force control, and impedance con-
trol. Which of these behaviors is appropriate depends on both the task and
the environment. For example, a force control goal makes sense when the end-
effector is in contact with something, but not when it is moving in free space. We
also have a fundamental constraint imposed by mechanics, irrespective of the
environment: the robot cannot independently control both motions and forces
in the same direction. If the robot imposes a motion, then the environment
determines the force, and vice versa.

Most robots are driven by actuators that apply a force or torque to each
joint. Hence, to precisely control a robot would require an understanding of
the relationship between joint forces and torques and the motion of the robot;
this is the domain of dynamics. Even for simple robots, however, the dynamic
equations are usually very complex, Also, to accurately derive the dynamics
requires, among other things, precise knowledge of the mass and inertia of each
link, which may not be readily available. Even if they were, the dynamic equa-
tions would still not reflect physical phenomena like friction, elasticity, backlash,
and hysteresis.

Most practical control schemes compensate for these errors by using feed-
back. One effective method of industrial robot control is to neglect the robot’s
dynamics, and instead model each actuator as a scalar second-order linear sys-
tem. As such we first introduce basic concepts from linear control, and show
how they can be used to effectively control complex multi-dof robots.

This chapter also introduces some basic robot control techniques that as-
sume a dynamic model of the robot is available; such feedforward control
techniques use the dynamic model of the robot and its environment to deter-
mine actuator control inputs that achieve the desired task. Because of modeling
and other errors, feedforward control is rarely used by itself, but is often used
in conjunction with feedback control. After considering feedback and forward
strategies for model-based motion control, we then examine force control, hybrid
motion-force control, and impedance control.

Chapter 12: Grasping and Manipulation

The focus of the previous chapters has been mostly on the internal characteriza-
tion of the robot—its kinematics and dynamics, as well as methods for motion
planning and control. In this chapter we now explicitly consider physical inter-
actions between the robot and its environment. The first order of business is to
characterize the nature of contacts between the robot and objects, or more gen-
erally, contact constraints between rigid bodies. As such it becomes necessary
to consider friction, which we considered earlier in the chapter on force closure,
at least in the case for point contacts. We examine the equations of motion for
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rigid body mechanics with friction, formulate the general problem of manipula-
tion plannning and grasping, and examine simplifications and assumptions that
lead to certain basic solutions.

Chapter 13: Wheeled Mobile Robots

This chapter addresses the kinematics, motion planning, and control of wheeled
robots that are subject to no-slip rolling constraints. Such constraints are funda-
mentally different from the loop closure constraints found in closed chains—the
former are holonomic, the latter nonholonomic—and as such we begin with
a discussion of nonholonomic constraints. We then examine the kinematics
of some popular wheeled robots: car-like, differential drive, Dubins, and om-
nidirectional robots. The controllability problem of determining whether a
wheeled robot is able to move from a given initial configuration to an arbitrary
final configuration is then examined. The chapter concludes with a discussion
of motion planning and control algorithms for wheeled robots, including the
problem of characterizing and finding optimal paths, and feedback control of
wheeled robots.



Chapter 2

Configuration Space

A typical robot is mechanically constructed from several bodies, or links, that
are connected by various types of joints. The robot moves when actuators
(such as electric motors) deliver forces or torques to the joints. Usually an end-
effector, such as a gripper or hand for grasping and manipulating objects, is
attached to some link of the robot. All of the robots considered in this book
have links that can be modeled as rigid bodies.

Given a particular robot, perhaps the most fundamental question one can
ask is “where is the robot?”1 The answer to this question is the robot’s con-
figuration—a specification of the positions of all points of the robot. Since
the robot’s links are rigid and of known shape, only a few numbers are needed
to represent the configuration.2 For example, to represent the configuration of
a door, we need only one number, the angle θ that the door rotates about its
hinge. The configuration of a point on a plane can be described by two coordi-
nates, (x, y). To represent the configuration of a coin lying heads up on a flat
table, we need three coordinates: two specifying the location (x, y) on the table
of a particular point on the coin, and one specifying the coin’s orientation, θ.
(See Figure 2.1.)

The minimum number of real-valued coordinates needed to represent the
configuration is the number of degrees of freedom (dof) of the robot. Thus
a coin (viewed as a robot) lying on a table has three degrees of freedom. If the
coin could lie heads up or tails up, the configuration space still has only three
degrees of freedom, since the fourth variable, representing which side of the coin
is up, can only take values in the discrete set {heads, tails}; it does not take a
continuous range of real values as required by our definition.

Definition 2.1. The configuration of a robot is a complete specification of
the positions of every point of the robot. The minimum number n of real-valued
coordinates needed to represent the configuration is the number of degrees of
freedom (dof) of the robot. The n-dimensional space containing all possible

1In the sense of “where are the links of the robot situated?”
2Compare with trying to represent the configuration of a pillow.

9
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θ
ŷ
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x̂

θ

(x, y)ŷ

x̂

    (a)       (b)     (c)

Figure 2.1: (a) The configuration of a door is described by its angle θ. (b) The
configuration of a point in a plane is described by coordinates (x, y). (c) The
configuration of a coin on a table is described by (x, y, θ).

configurations of the robot is called the configuration space (or C-space for
short).

In this chapter we study the C-space and degrees of freedom of general
robots. Since our robots are constructed of rigid bodies, we first examine the
degrees of freedom of a rigid body. We then examine the number of degrees
of freedom of general robots. Next we discuss the shape of curved C-spaces
and general issues in representing these spaces. The chapter concludes with a
discussion of the C-space of a robot’s end-effector, or its task space. In the
next chapter we study in more detail the various mathematical representations
for the C-space of rigid bodies.

2.1 Degrees of Freedom of a Rigid Body

Continuing with the example of the coin lying on the table, choose three points
A, B, and C fixed to the coin (Figure 2.2(a)). Once we attach a coordinate
frame x̂-ŷ to the plane, the positions of these points in the plane are written
(xA, yA), (xB , yB), and (xC , yC). If these points could be placed independently
anywhere in the plane, the coin would have have six degrees of freedom—two
for each of the three points. However, according to the definition of a rigid
body, the distance between point A and point B, denoted d(A,B), is always
constant regardless of the configuration of the coin; similarly, the distances
d(B,C) and d(A,C) must be constant. The following equality constraints are
therefore imposed on the coordinates (xA, yA), (xB , yB), and (xC , yC):

d(A,B) =
√

(xA − xB)2 + (yA − yB)2 = dAB

d(B,C) =
√

(xB − xC)2 + (yB − yC)2 = dBC

d(A,C) =
√

(xA − xC)2 + (yA − yC)2 = dAC .

To determine the number of degrees of freedom of the coin, we first choose
the position of point A in the plane (Figure 2.2(b)). We may choose it to be
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ŷ
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Figure 2.2: (a) Choosing three points fixed to the penny. (b) Once the location
of A is chosen, B must lie on a circle of radius dAB centered at A. Once the
location of B is chosen, C must lie at the intersection of circles centered at
A and B. Only one of these two intersections corresponds to the “heads up”
configuration. (c) The configuration of a penny in three-dimensional space is
given by the three coordinates of A, two angles to the point B on the sphere of
radius dAB centered at A, and one angle to the point C on the circle defined by
the intersection of the a sphere centered at A and a sphere centered at B.

anything we want, so we have two degrees of freedom to specify, (xA, yA). Once
this is specified, however, the constraint d(A,B) = dAB restricts the choice of
(xB , yB) to those points on the circle of radius dAB centered at A. A point on
this circle can be specified by a single parameter, e.g., the angle specifying the
location of B on the circle centered at A; let’s call this angle φAB , and define it

to be the angle that the vector
−−→
AB makes with the x̂-axis.

Finally, once we have chosen the location of point B, there are only two
possible locations of C: at the intersections of the circle of radius dAC centered
at A and the circle of radius dBC centered at B (Figure 2.2(b)). These two
solutions correspond to heads or tails. In other words, once we have placed
A and B and chosen heads or tails, the two constraints d(A,C) = dAC and
d(B,C) = dBC eliminate the two apparent freedoms provided by (xC , yC), and
the location of C is fixed. The coin has exactly three degrees of freedom in the
plane, which can be specified by (xA, yA, φAB).

Suppose we were to choose an additional point on the coin, D, thus in-
troducing three additional constraints: d(A,D) = dAD, d(B,D) = dBD, and
d(C,D) = dCD. One of these constraints is redundant, and adds no new
information—only two of the three constraints are independent. The two free-
doms apparently introduced by the coordinates (xD, yD) are immediately elim-
inated by the two independent constraints. The same would hold for any other
point on the coin, so there is no need to consider additional points.

We have been applying the following general rule for determining the number
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of degrees of freedom of a system:

Degrees of freedom = (Sum of freedoms of the points) −
(Number of independent constraints). (2.1)

This rule can also be expressed in terms of the number of variables and inde-
pendent equations that describe the system:

Degrees of freedom = (Number of variables) −
(Number of independent equations). (2.2)

We can use this general rule to determine the number of freedoms of a rigid
body in three dimensions as well. For example, assume our coin is no longer
confined to the table (Figure 2.2(c)). The three points A, B, and C are now
defined by (xA, yA, zA), (xB , yB , zB), and (xC , yC , zC). Point A can be placed
freely (three degrees of freedom). The location of point B is subject to the
constraint d(A,B) = dAB , meaning it must lie on the sphere of radius dAB
centered at A. Thus we have 3 − 1 = 2 freedoms to specify, which can be
expressed as the latitude and longitude for the point on the sphere. Finally, the
location of point C must lie at the intersection of spheres centered at A and B
of radius dAC and dBC , respectively. The intersection of two spheres is a circle,
and thus the location of point C can be described by an angle that parametrizes
this circle. Point C therefore adds 3−2 = 1 freedom. Once the position of point
C is chosen, the coin is fixed in space.

In summary, a rigid body in three-dimensional space has six freedoms, which
can be described by the three coordinates parametrizing point A, the two an-
gles parametrizing point B, and one angle parametrizing point C. Other six-
parameter representations for the six freedoms of a rigid body are discussed in
Chapter 3.

We have just established that a rigid body moving in three-dimensional
space, which we call a spatial rigid body, has six degrees of freedom. Similarly,
a rigid body moving in a two-dimensional plane, which we henceforth call a
planar rigid body, has three degrees of freedom. This latter result can also
be obtained by considering the planar rigid body to be a spatial rigid body with
six degrees of freedom, but with the three independent constraints zA = zB =
zC = 0.

Since our robots are constructed of rigid bodies, we express Equation (2.1)
as follows:

Degrees of freedom = (Sum of freedoms of the bodies) −
(Number of independent constraints). (2.3)

Equation (2.3) forms the basis for determining the degrees of freedom of general
robots, which is the topic of the next section.
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2.2 Degrees of Freedom of a Robot

Consider once again the door example of Figure 2.1(a), consisting of a single
rigid body connected to the wall by a hinge joint. From the previous section we
know that the door has only one degree of freedom, conveniently represented
by the hinge joint angle θ. Without the hinge joint, the door is free to move in
three-dimensional space and has six degrees of freedom. By connecting the door
to the wall via the hinge joint, five independent constraints are imposed on the
motion of the door, leaving only one independent coordinate (θ). Alternatively,
we can view the door from above and regard it as a planar body, which has three
degrees of freedom. The hinge joint then imposes two independent constraints,
again leaving only one indepedent coordinate (θ). Its C-space is represented by
some range in the interval [0, 2π) over which θ is allowed to vary.

In both cases we see that joints have the effect of constraining the motion
of the rigid body, and thus reducing the overall degrees of freedom. It seems
plausible that a formula can be obtained for determining the degrees of freedom
of a robot, simply by counting the number of rigid bodies and joints. This is in
fact the case, and in this section we derive Grübler’s formula for determining
the degrees of freedom of planar and spatial robots.

2.2.1 Degrees of Freedom of a Robot

Robot Joints

Figure 2.3 illustrates the basic joints found in typical robots. Every joint con-
nects exactly two links; we do not allow joints that simultaneously connect three
or more links. The revolute joint (R), also called a hinge joint, allows for ro-
tational motion about the joint axis. The prismatic joint (P), also called a
sliding or linear joint, allows for translational (or rectilinear) motion along the
direction of the joint axis. The screw joint (H), also called a helical joint, allows
simultaneous rotation and translation about a screw axis. Revolute, prismatic,
and screw joints all have one degree of freedom.

Joints can also have multiple degrees of freedom. The cylindrical joint
(C) is a two-dof joint that allows for independent translations and rotations
about a single fixed joint axis. The universal joint (U) is another two-dof
joint constructed by serially connecting a pair of revolute joints so that their
joint axes are orthogonal. The spherical joint (S), also called a ball-and-socket
joint, has three degrees of freedom and functions much like our shoulder joint.

A joint can be viewed as providing freedoms to allow one rigid body to move
relative to another, or it can be viewed as providing constraints on the possible
motions of the two rigid bodies it connects. For example, a revolute joint can
be viewed as allowing one freedom of motion between two rigid bodies in space,
or it can be viewed as providing five constraints on the motion of one rigid body
relative to the other. Generalizing, the number of degrees of freedom of a rigid
body (three for planar bodies and six for spatial bodies) minus the number of
constraints provided by a joint must equal the number of freedoms provided by
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Figure 2.3: Typical robot joints.

constraints constraints
between two between two

joint type dof planar spatial
rigid bodies rigid bodies

revolute (R) 1 2 5
prismatic (P) 1 2 5

screw (H) 1 N/A 5
cylindrical (C) 2 N/A 4

universal (U) 2 N/A 4
spherical (S) 3 N/A 3

Table 2.1: The number of degrees of freedom and constraints provided by com-
mon joints.

the joint.
The freedoms and constraints provided by the various joint types are sum-

marized in Table 2.1.

Grübler’s Formula

The number of degrees of freedom of a mechanism with links and joints can be
calculated using Grübler’s formula, an expression of Equation (2.3).

Proposition 2.1. Consider a robot consisting of N links, where ground is also
regarded as a link. Let J be the number of joints, m be the number of degrees
of freedom of a rigid body (three for planar mechanisms and six for spatial
mechanisms), fi be the number of freedoms provided by joint i, and ci be the
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Figure 2.4: (a) Four-bar linkage. (b) Slider-crank mechanism.

number of constraints provided by joint i (where fi + ci = m). Then Grübler’s
formula for the number of degrees of freedom (dof) of the robot is

dof = m(N − 1)︸ ︷︷ ︸
rigid body freedoms

−
J∑
i=1

ci︸ ︷︷ ︸
joint constraints

= m(N − 1)−
J∑
i=1

(m− fi)

= m(N − 1− J) +

J∑
i=1

fi. (2.4)

This formula only holds if all joint constraints are independent. If they may
not be independent, then the formula provides a lower bound on the number of
degrees of freedom.

Below we apply Grübler’s formula to several planar and spatial mechanisms.
We distinguish two types of mechanisms: open-chain mechanisms (also
known as serial mechanisms) and closed-chain mechanims (also known
as parallel mechanisms). A closed-chain mechanism is any mechanism that
has a closed loop; an example is the closed loop from the ground, to your right
leg, to your waist, to your left leg, to the ground when you are standing with
both feet on the ground. An open-chain mechanism is any mechanism without
a closed loop; an example is your arm when your hand is in free space.

Example 2.1. Four-bar linkage and slider-crank mechanism
Consider the four-bar linkage shown in Figure 2.4(a). This planar closed-chain
mechanism consists of four links—one of them ground—connected in a single
closed loop by four revolute joints. Since the mechanism and the rigid bodies
are planar, m = 3. Subsituting N = 4, J = 4, and fi = 1, i = 1, . . . , 4, into
Grübler’s formula, it can be determined that the four-bar linkage has one degree
of freedom.

The slider-crank closed-chain mechanism of Figure 2.4(b) can be analyzed in
two ways: (i) the mechanism consists of three revolute joints and one prismatic
joint (J = 4, and each fi = 1) and four links (N = 4, including the ground



16 Configuration Space

Figure 2.5: (a) k-link planar serial chain. (b) Five-bar planar linkage. (c)
Stephenson six-bar linkage. (d) Watt six-bar linkage.

link), or (ii) the mechanism consists of two revolute joints (fi = 1) and one RP
joint (the RP joint is a concatenation of a revolute and prismatic joint, so that
fi = 2) and three links (N = 3; remember that each joint connects precisely
two bodies). In both cases the mechanism has one degree of freedom.

Example 2.2. Some classical planar mechanisms
Let us now apply Grübler’s formula to several classical planar mechanisms. The
k-link planar serial chain of revolute joints in Figure 2.5(a) (called a kR robot
for its k revolute joints) has N = k + 1 (k links plus ground) and J = k, and
since all the joints are revolute, each fi = 1. Therefore,

dof = 3((k + 1)− 1− k) + k = k

as expected. For the five-bar linkage of Figure 2.5(b), N = 5 (four links plus
ground), J = 5, and since all joints are revolute, each fi = 1. Therefore,

dof = 3(5− 1− 5) + 5 = 2.

For the Stephenson six-bar linkage of Figure 2.5(c), we have N = 6, J = 7, and
fi = 1 for all i, so that

dof = 3(6− 1− 7) + 7 = 1.
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Figure 2.6: A planar mechanism with two overlapping joints.

Finally, for the Watt six-bar linkage of Figure 2.5(d), we have N = 6, J = 7,
and fi = 1 for all i, so that like the Stephenson six-bar linkage,

dof = 3(6− 1− 7) + 7 = 1.

Example 2.3. A planar mechanism with overlapping joints
Consider the planar mechanism illustrated in Figure 2.6. Again, there is more
than one way to derive the number of degrees of freedom using Grübler’s for-
mula. If all the joints are regarded as either revolute or prismatic, then the
mechanism consists of eight links (N = 8), eight revolute joints, and one pris-
matic joint. (Note that three bodies meet at a single point on the right. Recall-
ing that a joint connects exactly two links, the joint at this intersection point
should not be regarded as a single revolute joint. Rather, it should be correctly
interpreted as two revolute joints overlapping each other.) Substituting into
Grübler’s formula,

dof = 3(8− 1− 9) + 9(1) = 3.

Alternatively, the revolute-prismatic pair connected to the body can be regarded
as a single two-dof joint. In this case the number of links is N = 7, with seven
revolute joints and a single two-dof revolute-prismatic pair. For this interpreta-
tion, Grübler’s formula yields

dof = 3(7− 1− 8) + 7(1) + 1(2) = 3.

Example 2.4. Grübler’s formula and singularities
Consider the parallelogram linkage of Figure 2.7(a). Here N = 5, J = 6, and fi=
1 for each link, and from Grübler’s formula, the number of degrees of freedom
is given by 3(5 − 1 − 6) + 6 = 0. A mechanism with zero degrees of freedom
is by definition a rigid structure. However, if the three parallel links are of the
same length and the two horizontal rows of joints are collinear as implied by the
figure, the mechanism can in fact move, with one degree of freedom. Any one
of the three parallel links is redundant with the other two.
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Figure 2.7: (a) A parallelogram linkage; (b) The five-bar linkage in a regular
and singular configuration.

Figure 2.8: The Stewart-Gough Platform.

A similar situation occurs for the five-bar linkage of Figure 2.7(b). If the two
joints connected to ground are fixed, then the five-bar linkage should become
a rigid structure, given that the mechanism has two degrees of freedom by
Grübler’s formula. Note, however, that if the two middle links overlap each
other as shown in the figure, then these links are able to rotate freely about the
two overlapping joints. Of course, the link lengths need to be chosen in such a
way that this configuration is feasible. If a different pair of joints is fixed, then
the mechanism does become a rigid structure as expected.

Grübler’s formula provides a lower bound for the number of degrees of free-
dom for singular cases like those just described. Configuration space singu-
larities arising in closed chains are discussed in detail in the later chapter on
closed-chain kinematics.

Example 2.5. Stewart-Gough Platform
The Stewart-Gough platform of Figure 2.8 consists of two platforms—the lower
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Figure 2.9: The 3× UPU platform.

one stationary, the upper one mobile—connected by six legs. Each leg consists
of a universal-prismatic-spherical (UPS) joint arrangement. The total number
of links (including the fixed lower platform, which is regarded as the ground link)
in this closed-chain mechanism is 14 (N = 14). There are six universal joints
(each with two degrees of freedom, fi = 2), six prismatic joints (each with
a single degree of freedom, fi = 1), and six spherical joints (each with three
degrees of freedom, fi = 3). The total number of joints is 18. Substituting
these values into Grübler’s formula with m = 6,

dof = 6(14− 1− 18) + 6(1) + 6(2) + 6(3) = 6.

In some versions of the Stewart-Gough platform the six universal joints are
replaced by spherical joints. Grübler’s formula then indicates that this mecha-
nism has twelve degrees of freedom. This result may seem surprising but it is
in fact correct; replacing each universal joint by a spherical joint introduces an
extra degree of freedom in each leg, allowing torsional rotations about the leg
axis. Note however that this torsional rotation has no effect on the motion of
the mobile platform.

Example 2.6. 3× UPU platform
The next example, shown in Figure 2.9, is also a closed-chain platform structure,
in which the two platforms are connected by three UPU legs. The total number
of links is N = 8. There are six universal joints and three prismatic joints,
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making for a total of J = 9 joints. Substituting these values into Grübler’s
formula leads to

dof = 6(8− 1− 9) + 3(1) + 6(2) = 3.

The 3 × UPU mechanism has three degrees of freedom according to Grübler’s
formula, but constructed prototypes of this mechanism reveal extra degrees of
freedom not predicted by Grübler’s formula. These and other subtle aspects of
the 3× UPU platform are further discussed in Chapter 7.

2.3 Configuration Space: Topology and Represen-
tation

2.3.1 Configuration Space Topology

Until now we have been focusing on one important aspect of a robot’s C-space—
its dimension, or the number of degrees of freedom. However, the shape of the
space is also important.

Consider a point moving on the surface of a sphere. The point’s C-space is
two-dimensional, as the configuration can be described by two coordinates, e.g.,
latitude and longitude. As another example, a point moving on a plane also
has a two-dimensional C-space, with coordinates (x, y). While both a plane and
the surface of a sphere are two-dimensional, clearly they do not have the same
shape—the plane extends infinitely while the sphere wraps around.

On the other hand, a larger sphere has the same shape as the original sphere,
in that it wraps around in the same way. Only its size is different. For that mat-
ter, an oval-shaped American football also wraps around similarly to a sphere.
The only difference between a football and a sphere is that the football has been
stretched in one direction.

The idea that the two-dimensional surfaces of a small sphere, a large sphere,
and a football all have the same kind of shape, which is different from the shape
of a plane, is expressed by the topology of the surfaces. We do not attempt a
rigorous treatment3, but we say that two spaces are topologically equivalent
if one can be continuously deformed into the other without cutting or gluing.
A sphere can be deformed into a football simply by stretching, without cutting
or gluing, so those two spaces are topologically equivalent. You cannot turn a
sphere into a plane without cutting it, however, so a sphere and a plane are
not topologically equivalent. The topology of a space is independent of how we
choose to represent the space.

Topologically distinct one-dimensional spaces include the line, a closed in-
terval of the line, and a circle. The line can be written E or E1, indicating a
one-dimensional Euclidean “flat” space. Since a point in E1 is so commonly
represented by a real number (after choosing an origin and a length scale), it is

3For those familiar with concepts in topology, all spaces we consider can be viewed as
embedded in a higher-dimensional Euclidean space, inheriting the Euclidean topology of that
space.
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Figure 2.10: An open interval of the real line, denoted (a, b), can be deformed
to an open semicircle. This open semicircle can then be deformed to the real
line by the mapping illustrated: beginning from a point at the center of the
semicircle, draw a ray that intersects the semicircle and then a line above the
semicircle. These rays show that every point of the semicircle can be stretched
to exactly one point on the line, and vice-versa. Thus an open interval can be
continuously deformed to a line, so an open interval and a line are topologically
equivalent.

often written R or R1 instead. A closed interval of the line, which contains its
endpoints, can be written [a, b] ⊂ R1. (An open interval (a, b) does not include
the endpoints a and b and is topologically equivalent to a line, since the open
interval can be stretched to a line, as shown in Figure 2.10. A closed interval is
not topologically equivalent to a line, since a line does not contain endpoints.)
The circle is written S or S1.

In higher dimensions, Rn is the n-dimensional Euclidean space and Sn is the
n-dimensional surface of a sphere in (n + 1)-dimensional space. For example,
S2 is the two-dimensional surface of a sphere in three-dimensional space.

Some C-spaces can be expressed as the Cartesian product of lower-dimensional
spaces, meaning that points in the C-space can be represented as the union of
the representation of points in the lower-dimensional spaces. For example:

• The C-space of a rigid body in the plane can be written as R2 × S1,
since the configuration can be represented as the concatenation of the
coordinates (x, y) ∈ R2 and θ ∈ S1.

• The C-space of a PR robot arm can be written R1×S1. (Typically we will
not worry about joint limits when expressing the topology of the C-space.)

• The C-space of a 2R robot arm can be written as S1 × S1 = T 2, where
Tn is the n-dimensional surface of a torus in an (n+1)-dimensional space.
(See Table 2.2.) Note that S1 × S1 × . . .× S1 (n copies of S1) is equal to
Tn, not Sn; for example, a sphere S2 is not topologically equivalent to a
torus T 2.

• The C-space of a planar rigid body (e.g., the chassis of a mobile robot)
with a 2R robot arm can be written as R2 × S1 × T 2 = R2 × T 3.

• As we saw in Section 2.1 when we counted the degrees of freedom of a
rigid body in three dimensions, the configuration of a rigid body can be
described by a point in R3, plus a point on a two-dimensional sphere
S2, plus a point on a one-dimensional circle S1, for a total C-space of
R3 × S2 × S1.
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system C-space sample representation

x

y

point on a plane E2 R2

longitude

latitude

-90o

90o

-180o 180o

tip of spherical pendulum 2-sphere S2 [−180◦, 180◦)× [−90◦, 90◦]

θ1

θ2

0

2π

0 2π

2R robot arm 2-torus T 2 = S1 × S1 [0, 2π)× [0, 2π)

x

θ

......
2π

0

rotating sliding knob cylinder R1 × S1 R1 × [0, 2π)

Table 2.2: Four topologically different two-dimensional C-spaces and exam-
ple coordinate representations. In the latitude-longitude representation of the
sphere, the latitudes −90◦ and 90◦ each correspond to a single point (the South
Pole and the North Pole, respectively), and the longitude parameter wraps
around at 180◦ and −180◦: the edges with the arrows are glued together. Sim-
ilarly, the coordinate representations of the torus and cylinder wrap around at
the edges marked with identical arrows. To turn the torus into its coordinate
representation (a subset of R2), the torus can be cut along the small circle
shown (representing the range of angles θ2 of the second joint while θ1 = 0) and
straightened out to make a cylinder, then cut along the length of the cylinder
(representing the range of angles of the first joint while θ2 = 0) and flattened.

2.3.2 Configuration Space Representation

To perform computations, we must have a numerical representation of the space,
consisting of a set of real numbers. We are familiar with this idea from linear
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algebra—a vector is a natural way to represent a point in a Euclidean space.
It is important to keep in mind that the representation of a space involves a
choice, and therefore it is not as fundamental as the topology of the space itself,
which is independent of the representation. For example, the same point in a
3D space can have different coordinate representations depending on the choice
of the reference frame (the origin and the direction of the coordinate axes) and
the choice of length scale, but the topology of the underlying space is the same
regardless of our choice.

While it is natural to choose a reference frame and length scale and use
a vector to represent points in a Euclidean space, representing a point on a
curved space, like a sphere, is less obvious. One solution for a sphere is to use
latitude and longitude coordinates. A choice of n coordinates, or parameters,
to represent an n-dimensional space is called an explicit parametrization of
the space. The explicit parametrization is valid for a particular range of the
parameters (e.g., [−90◦, 90◦] for latitude and [−180◦, 180◦) for longitude for a
sphere, where, on Earth, negative values correspond to “South” and “West,”
respectively).

The latitude-longitude representatation of a sphere is dissatisfying if you
are walking near the North Pole (latitude equals 90◦) or South Pole (latitude
equals −90◦), where taking a very small step can result in a large change in the
coordinates. The North and South Poles are singularities of the representation,
and the existence of singularities is a result of the fact that a sphere does not have
the same topology as a plane. The location of these singularities has nothing to
do with the space itself (which looks the same everywhere), and everything to
do with the chosen representation of it. Singularities of the parametrization are
particularly problematic when representing velocities as the time rate of change
of coordinates, since these representations may tend to infinity near singularities
even if the point on the sphere is moving at constant speed.

If you assume that the configuration never approaches a singularity of the
representation, you can ignore this issue. If you cannot make this assumption,
there are two ways to overcome the problem:

• Define more than one coordinate chart on the space, where each co-
ordinate chart is an explicit parametrization covering only a portion of
the space. Within each chart, there is no singularity. For example,
we could define two coordinate charts on the sphere: the usual latitude
φ ∈ [−90◦, 90◦] and longitude ψ ∈ [−180◦, 180◦), and alternative coordi-
nates (φ′, ψ′) in a rotated coordinate frame, where the alternative latitude
φ′ is 90◦ at the “East Pole” and −90◦ at the “West Pole.” Then the
first coordinate chart can be used when −90◦ + ε < φ < 90◦ − ε, for
some small ε > 0, and the second coordinate chart can be used when
−90◦ + ε < φ′ < 90◦ − ε.
If we define a set of singularity-free coordinate charts that overlap each
other and cover the entire space, like the two charts above, the charts are
said to form an atlas of the space, much like an atlas of the Earth consists
of several maps that together cover the Earth. An advantage of using



24 Configuration Space

an atlas of coordinate charts is that the representation always uses the
minimum number of numbers. A disadvantage is the extra bookkeeping
required to switch the representation between coordinate charts to avoid
singularities. (Note that Euclidean spaces can be covered by a single
coordinate chart without singularities.)

• Instead of using an explicit parametrization, use an implicit represen-
tation of the space. An implicit representation views the n-dimensional
space as embedded in a Euclidean space of more than n dimensions, just
like a one-dimensional unit circle can be viewed as a curve embedded
in a two-dimensional Euclidean space. An implicit representation uses
the coordinates of the higher-dimensional space (e.g., (x, y) in the two-
dimensional space), but subjects these coordinates to constraints that re-
duce the number of degrees of freedom (e.g., x2 + y2 = 1 for the unit
circle).

A disadvantage of this approach is that the representation has more num-
bers than the number of degrees of freedom. An advantage is that there are
no singularities in the representation—a point moving smoothly around
the circle is represented by a smoothly changing (x, y), a single represen-
tation over the whole circle.

Another advantage is that while it may be very difficult to construct an
explicit parametrization, or atlas, for a closed-chain mechanism, it is easy
to find an implicit representation: the set of all joint coordinates subject
to the loop-closure equations that define the closed loops (Section 2.4).
C-spaces of closed-chain mechanisms can have complex geometry and may
not even have constant dimension. An example is the mechanism of Fig-
ure 2.7(b), which gains a degree of freedom at the singularity shown.

We use implicit representations throughout the book, beginning in the
next chapter. In particular, we use nine numbers, subject to six con-
straints, to represent the three orientation freedoms of a rigid body in
space. This is called a rotation matrix. In addition to being singularity-free
(unlike three-parameter representations such as roll-pitch-yaw angles4),
the rotation matrix representation has the benefit of allowing us to use
linear algebra to perform computations such as (1) rotating a rigid body
or (2) changing the reference frame in which the orientation of a rigid
body is expressed.5

In summary, the non-Euclidean shape of many C-spaces motivates the use
of implicit representations of C-space throughout this book. We return to this
topic in the next chapter.

4Roll-pitch-yaw angles and Euler angles use three parameters for the space of rotations
S2 × S1 (two for S2 and one for S1), and therefore are subject to singularities as discussed
above.

5Another singularity-free implicit representation of orientations, the unit quaternion, uses
only four numbers subject to the constraint that the four-vector be unit length. In fact, this
representation is a double covering of the set of orientations: for every orientation, there are
two unit quaternions.
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Figure 2.11: The four-bar linkage.

2.4 Configuration and Velocity Constraints

For robots containing one or more closed loops, usually an implicit represen-
tation is more easily obtained than an explicit parametrization. For example,
consider the planar four-bar linkage of Figure 2.11, which has one degree of free-
dom. The fact that the four links always form a closed loop can be expressed
in the form of the following three equations:

L1 cos θ1 + L2 cos(θ1 + θ2) + . . .+ L4 cos(θ1 + . . .+ θ4) = 0

L1 sin θ1 + L2 sin(θ1 + θ2) + . . .+ L4 sin(θ1 + . . .+ θ4) = 0

θ1 + θ2 + θ3 + θ4 − 2π = 0.

These equations are obtained by viewing the four-bar linkage as a serial chain
with four revolute joints, in which (i) the tip of link L4 always coincides with
the origin and (ii) the orientation of link L4 is always horizontal.

These equations are sometimes referred to as loop-closure equations. For
the four-bar linkage they are given by a set of three equations in four unknowns.
The set of all solutions forms a curve in the four-dimensional joint space and
constitutes the C-space.

For general robots containing one or more closed loops, the configuration
space can be implicitly represented by θ = (θ1, . . . , θn) ∈ Rn and loop-closure
equations of the form

g(θ) =

 g1(θ1, . . . , θn)
...

gk(θ1, . . . , θn)

 = 0, (2.5)

where g : Rn → Rk is a set of k independent equations, with k ≤ n. Such
constraints are known as holonomic constraints, constraints that reduce the
dimension of the C-space, such as the rigid-body constraints discussed earlier
when deriving the degrees of freedom of a rigid body. The C-space can be
viewed as a surface of dimension n−k (assuming all constraints are independent)
embedded in Rn.
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x^
y^

z^ θ

(x, y)
φ

Figure 2.12: A coin rolling on a plane without slipping.

Suppose a closed-chain robot with loop-closure equations g(θ) = 0, g : Rn →
Rk, is in motion, following the time trajectory θ(t). Differentiating both sides
of g(θ(t)) = 0 with respect to t, we obtain

d

dt
g(θ(t)) = 0

∂g1
∂θ1

(θ)θ̇1 + . . .+ ∂g1
∂θn

(θ)θ̇n
...

∂gk
∂θ1

(θ)θ̇1 + . . .+ ∂gk
∂θn

(θ)θ̇n

 = 0


∂g1
∂θ1

(θ) · · · ∂g1
∂θn

(θ)
...

. . .
...

∂gk
∂θ1

(θ) · · · ∂gk
∂θn

(θ)


 θ̇1

...

θ̇n

 = 0

∂g

∂θ
(θ)θ̇ = 0. (2.6)

Here θ̇i denotes the time derivative of θi with respect to time t, ∂g
∂θ (θ) ∈ Rk×n,

and θ, θ̇ ∈ Rn. From the above we see that the joint velocity vector θ̇ ∈ Rn
cannot be arbitrary, but must always satisfy

∂g

∂θ
(θ)θ̇ = 0. (2.7)

These constraints can be written in the form

A(θ)θ̇ = 0, (2.8)

where A(θ) ∈ Rk×n. Velocity constraints of this form are called Pfaffian con-
straints. For the case of A(θ) = ∂g

∂θ (θ), one could regard g(θ) as being the
“integral” of A(θ); for this reason, holonomic constraints of the form g(θ) = 0
are also called integrable constraints—the velocity constraints that they im-
ply can be integrated to give equivalent configuration constraints.
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We now consider another class of Pfaffian constraints that is fundamentally
different from the holonomic type. To illustrate with a concrete example, con-
sider an upright coin of radius r rolling on the plane as shown in Figure 2.12.
The configuration of the coin is given by the contact point (x, y) on the plane,
the steering angle φ, and the angle of rotation (see Figure 2.12). The C-space of
the coin is therefore R2×T 2, where T 2 is the two-dimensional torus parametrized
by the angles φ and θ. This C-space is four-dimensional.

Let us now express, in mathematical form, the fact that the coin rolls without
slipping. The coin must always roll in the direction indicated by (cosφ, sinφ),
with forward speed rθ̇: [

ẋ
ẏ

]
= rθ̇

[
cosφ
sinφ

]
. (2.9)

Collecting the four C-space coordinates into a single vector q = (q1, q2, q3, q4) =
(x, y, φ, θ) ∈ R2×T 2, the above no-slip rolling constraint can then be expressed
in the form [

1 0 0 −r cos q3

0 1 0 −r sin q3

]
q̇ = 0. (2.10)

These are Pfaffian constraints of the form A(q)q̇ = 0, A(q) ∈ R2×4.
These constraints are not integrable; that is, for the A(q) given in (2.10),

there does not exist any differentiable g : R4 → R2 such that ∂g
∂q = A(q). To see

why, there would have to exist a differentiable g1(q) that satisfied the following
four equalities:

∂g1
∂q1

= 1 −→ g1(q) = q1 + h1(q2, q3, q4)
∂g1
∂q2

= 0 −→ g1(q) = h2(q1, q3, q4)
∂g1
∂q3

= 0 −→ g1(q) = h3(q1, q2, q4)
∂g1
∂q4

= −r cos q3 −→ g1(q) = −rq4 cos q3 + h4(q1, q2, q3),

for some hi, i = 1, . . . , 4, differentiable in each of its variables. By inspection
it should be clear that no such g1(q) exists. Similarly, it can be shown that
g2(q) does not exist, so that the constraint (2.10) is nonintegrable. A Pfaffian
constraint that is nonintegrable is called a nonholonomic constraint. Such
constraints reduce the dimension of the feasible velocities of the system, but
do not reduce the dimension of the reachable C-space. The rolling coin can
reach any point in its four-dimensional C-space despite the two constraints on
its velocity.6

Nonholonomic constraints arise in a number of robotics contexts that involve
conservation of momentum and rolling without slipping, e.g., wheeled vehicle
kinematics and grasp contact kinematics. We examine nonholonomic constraints
in greater detail in the later chapter on wheeled robots.

6Some texts define the number of degrees of freedom of a system to be the dimension of
the feasible velocities, e.g., two for the rolling coin. We uniformly refer to the dimension of
the C-space as the number of degrees of freedom.
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Figure 2.13: Examples of task spaces for various robots: (a) a planar 2R open
chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R
orienting mechanism.

2.5 Workspace and Task Space

We introduce two more concepts relating to the configuration of a robot: the
task space and the workspace. Both relate to the configuration of the end-
effector of the robot, not the configuration of the entire robot.

The task space is a space in which the robot’s task can be naturally ex-
pressed. For example, if the robot’s task is to plot with a pen on a piece of paper,
the task space would be R2. If the task is to manipulate rigid bodies, a natural
representation of the task space is the C-space of a rigid body, representing the
position and orientation of a frame attached to the robot’s end-effector. This is
the default representation of task space. The decision of how to define the task
space is driven by the task, independent of the robot.

The workspace is a specification of the configurations the end-effector of
the robot can reach. The definition of the workspace is primarily driven by the
robot’s structure, independent of the task.

Both the task space and the workspace involve a choice by the user; in
particular, the user may decide that some freedoms of the end-effector (e.g., its
orientation) do not need to be represented.
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The task space and the workspace are distinct from the robot’s C-space. A
point in the task space or the workspace may be achievable by more than one
robot configuration, meaning that the point is not a full specification of the
robot’s configuration. For example, for an open-chain robot with seven joints,
the six-dof position and orientation of its end-effector cannot fully specify the
robot’s configuration.

Some points in task space may not be reachable at all by the robot, e.g., a
point on a chalkboard that the robot cannot reach. By definition, all points in
the workspace are reachable by at least one configuration of the robot.

Two mechanisms with different C-spaces may have the same workspace. For
example, considering the end-effector to be the Cartesian tip of the robot (e.g.,
the location of a plotting pen) and ignoring orientations, the planar 2R open
chain with links of equal length three (Figure 2.13(a)) and the planar 3R open
chain with links of equal length two (Figure 2.13(b)) have the same workspace
despite having different C-spaces.

Two mechanisms with the same C-space may also have different workspaces.
For example, taking the end-effector to be the Cartesian tip of the robot and
ignoring orientations, the 2R open chain of Figure 2.13(a) has a planar disk as
its workspace, while the 2R open chain of Figure 2.13(c) has the surface of a
sphere as its workspace.

Attaching a coordinate frame to the tip of the tool of the 3R open chain
“wrist” mechanism of Figure 2.13(d), we see that the frame can achieve any
orientation by rotating the joints, but the Cartesian position of the tip is always
fixed. This can be seen by noting that the three joint axes always intersect at
the tip. For this mechanism, we would likely define the workspace to be the
three-dof space of orientations of the frame, S2×S1, which is different from the
C-space T 3. The task space depends on the task; if the job is to point a laser
pointer, then rotations about the axis of the laser beam are immaterial, and the
task space would be S2, the set of directions the laser can point.

Example 2.7. The SCARA robot of Figure 2.14 is an RRRP open chain that
is widely used for tabletop pick-and-place tasks. The end-effector configuration
is completely described by the four parameters (x, y, z, φ), where (x, y, z) de-
notes the Cartesian position of the end-effector center point, and φ denotes the
orientation of the end-effector in the x-y plane. Its task space would typically be
defined as R3×S1, and its workspace would typically be defined as the reachable
points in (x, y, z) Cartesian space, since all orientations φ ∈ S1 can be achieved
at all reachable points.

Example 2.8. A standard 6R industrial manipulator can be adapted to spray-
painting applications as shown in Figure 2.15. The paint spray nozzle attached
to the tip can be regarded as the end-effector. What is important to the task
is the Cartesian position of the spray nozzle, together with the direction in
which the spray nozzle is pointing; rotations about the nozzle axis (which points
in the direction in which paint is being sprayed) do not matter. The nozzle
configuration can therefore be described by five coordinates: (x, y, z) for the
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φ

Figure 2.14: SCARA robot.

Figure 2.15: A spray-painting robot.

Cartesian position of the nozzle and spherical coordinates (θ, φ) to describe
the direction in which the nozzle is pointing. The task space can be written
as R3 × S2. The workspace could be the reachable points in R3 × S2, or, to
simplify visualization, the user could define the workspace to be the subset of
R3 corresponding to the reachable Cartesian positions of the nozzle.
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2.6 Summary

• A robot is mechanically constructed from links that are connected by
various types of joints. The links are usually modeled as rigid bodies.
An end-effector such as a gripper is attached to some link of the robot.
Actuators deliver forces and torques to the joints, thereby causing motion
of the robot.

• The most widely used one-dof joints are the revolute joint, which allows
for rotation about the joint axis, and the prismatic joint, which allows
for translation in the direction of the joint axis. Some common two-dof
joints include the cylindrical joint, which is constructed by serially con-
necting a revolute and prismatic joint, and the universal joint, which is
constructed by orthogonally connecting two revolute joints. The spheri-
cal joint, also known as ball-in-socket joint, is a three-dof joint whose
function is similar to the human shoulder joint.

• The configuration of a rigid body is a specification of the location of all
of its points. For a rigid body moving in the plane, three independent
parameters are needed to specify the configuration. For a rigid body
moving in three-dimensional space, six independent parameters are needed
to specify the configuration.

• The configuration of a robot is a specification of the configuration of all of
its links. The robot’s configuration space is the set of all possible robot
configurations. The dimension of the C-space is the number of degrees
of freedom of a robot.

• The number of degrees of freedom of a robot can be calculated using
Grübler’s formula,

dof = m(N − 1− J) +

J∑
i=1

fi,

where m is three for planar mechanisms or six for spatial mechanisms,
N is the number of links (including the ground link), J is the number of
joints, and fi is the number of degrees of freedom of joint i.

• A robot’s C-space can be parametrized explicitly or represented implicitly.
For a robot with n degrees of freedom, an explicit parametrization uses
n coordinates, the minimum necessary. An implicit representation
involves m coordinates with m ≥ n, with the m coordinates subject to
m− n constraint equations. With the implicit parametrization, a robot’s
C-space can be viewed as a surface of dimension n embedded in a space
of higher dimension m.

• The C-space of an n-dof robot whose structure contains one or more closed
loops can be implicitly represented using k loop-closure equations of
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the form g(θ) = 0, where θ ∈ Rm and g : Rm → Rk. Such constraint
equations are called holonomic constraints. Assuming θ(t) varies with
time t, the holonomic constraints g(θ(t)) = 0 can be differentiated with
respect to t to yield

∂g

∂θ
(θ)θ̇ = 0,

where ∂g
∂θ (θ) is a k ×m matrix.

• A robot’s motion can also be subject to velocity constraints of the form

A(θ)θ̇ = 0,

where A(θ) is a k×m matrix that cannot be expressed as the differential
of some function g(θ), i.e., there does not exist any g(θ), g : Rm → Rk,
such that

A(θ) =
∂g

∂θ
(θ).

Such constraints are said to be nonholonomic constraints, or nonin-
tegrable constraints. These constraints reduce the feasible velocities
of the system but do not reduce the dimension of the reachable C-space.
Nonholonomic constraints arise in robot systems subject to conservation
of momentum or rolling without slipping.

• A robot’s task space is the C-space of its end-effector, or a subspace of
the C-space as needed for the particular task.

Notes and References

In the classical kinematics literature, structures that consist of links connected
by joints are called mechanisms or linkages. The degrees of freedom of mech-
anisms is treated in most texts on mechanism analysis and design, e.g., [9]. In
general, a robot’s kinematic configuration space has the mathematical struc-
ture of a differentiable manifold. Some accessible introductions to differential
geometry are [22], [8]. Configuration spaces are further examined in a motion
planning context in [14], [5].
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2.7 Exercises

1. Use the planar version of Grübler’s formula to determine the mobility of the
mechanisms shown in Figure 2.16.

(a) (b)

(c) (d)

(e) (f)

Figure 2.16: A collection of planar mechanisms.

2. (a) Use an appropriate version of Grübler’s formula to determine the mobility
of the 6×RUS platform of Figure 2.17.
(b) What happens to the mobility if the universal joints are replaced by spherical
joints?
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Figure 2.17: 6×RUS platform.

3. Use Grübler’s formula to determine the mobility of the six parallel mecha-
nisms shown in Figure 2.18.

4. Three identical open chain SRS arms are grasping an object as shown in
Figure 2.19.
(a) Find the mobility of this system of cooperating robots.
(b) Suppose there are now a total of n 7-dof open chain arms grasping the
object. What is the mobility of this system of robots?
(c) Suppose the spherical wrist joint in each of the n seven degree of freedom
open chains is replaced by a universal joint. What is the mobility of the overall
system?

5. Determine the mobility of the chain formed by the human arm and robot
arm as shown in Figure 2.20.

6. Consider a spatial parallel mechanism consisting of a moving plate connected
to the fixed plate by n identical open chains. In order for the moving plate to
have mobility six, how many kinematic degrees of freedom should each leg have,
as a function of n? For example, if n = 3, then the moving plate and fixed
plate are connected by three open chains; how many degrees of freedom should
each open chain have in order for the moving plate to move with six degrees of
freedom? Solve the above for arbitrary n.

7. Consider the parallel mechanism shown in Figure 2.21, in which six legs
of identical length are connected to a fixed and moving platform via spherical
joints. Determine the mobility of this mechanism using Grübler’s formula, and
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(a) (b)

(c) (d)

(e) (f)

Figure 2.18: A collection of spatial parallel mechanisms.

illustrate all possible motion types of the upper platform.

8. The mobile manipulator of Figure 2.22 consists of a 6R arm and multifin-
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Figure 2.19: Three cooperating open chain arms grasping a common object.

Figure 2.20: Human-robot cooperating device.

gered hand mounted on a mobile base with a single-wheel. The wheel rotates
without slip, and its axis of rotation is always parallel to the ground.
(a) Ignoring the multifingered hand, describe the configuration space of the
mobile manipulator.
(b) Now suppose the robot hand rigidly grasps the refrigerator door handle, and
opens the door using only its arm. Assume the wheel is locked in place, so that
the mobile base does not move. After the door has been opened, what is the
mobility of the mechanism formed by the arm and open door?
(c) A second identical mobile manipulator comes along, and after parking its
mobile base, also rigidly grasps the refrigerator door handle. What is the mo-
bility of the mechanism formed by the two arms and the open referigerator
door?

9. In this exercise we consider the configuration space of the four-bar linkage
of Figure 2.23, this time projected onto the space of the two joints attached to
the ground link. Label the joints and link lengths, and attach a fixed reference
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Figure 2.21: A 6× SS platform.

Figure 2.22: Mobile manipulator for Exercise 9.

frame as shown in the figure. It follows that

A(θ) = (a cos θ, a sin θ)T

B(ψ) = (g + b cosψ, b sinψ)T

From ‖A(θ)−B(ψ)‖2 = h2 for all values of θ and ψ, we get

b2 + g2 + 2gb cosψ + a2 − 2(a cos θ(g + b cosψ) + ab sin θ sinψ) = h2

Grouping the coefficients of cosψ and sinψ, the above equation can be expressed
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Figure 2.23: Planar four-bar linkage.

in the form
α(θ) cosψ + β(θ) sinψ = γ(θ),

where

α(θ) = 2gb− 2ab cos θ

β(θ) = −2ab sin θ

γ(θ) = h2 − g2 − b2 − a2 + 2ag cos θ.

We wish to obtain ψ as a function of θ. To do so, first divide both sides of
Equation 9 by

√
α2 + β2 to obtain

α√
α2 + β2

cosψ +
β√

α2 + β2
sinψ =

γ√
α2 +B2

Now, referring to Figure 2.23-(b), the angle φ is given by φ = tan−1(βα ), and
Equation 9 becomes

cos(ψ − φ) =
γ√

α2 + β2
.

Therefore,

ψ = tan−1(
β

α
)± cos−1

(
γ√

α2 + β2

)
.

(a) Note that a solution exists only if γ2 ≤ α2 + β2. What are the physical
implications if this constraint is not satisfied?
(b) Note that for each value of input angle θ, there exists two possible values of
the output angle ψ. What do these two solutions look like?
(c) Draw the configuration space of the mechanism in θ-ψ space for the following
link length values: a = b = g = h = 1.
(d) Repeat (c) for the following link length values: a = 1, b = 2, h =

√
5, g = 2.

(e) Repeat (c) for the following link length values: a = 1, b = 1, h = 1, g =
√

3.
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Figure 2.24: The 3× PUP platform.

10. Figure 2.24 shows a 3× PUP platform, in which three identical PUP legs
connect a fixed base to a moving platform. The P joints on both the fixed
base and moving platform are arranged symmetrically as shown. Recalling that
the U joint consists of two revolute joints connected orthogonally, each R joint
connected to the moving platform has its joint axis aligned in the same direction
as the platform P joint. The R joint connected to the fixed base has its joint
axis orthogonal to the base P joint.
(a) Use an appropriate version of Grübler’s formula to find the mobility.
(b) Reasoning intuitively, determine whether the mobility you obtained in part
(a) is correct. If not, try to explain the discrepancy without resorting to a
detailed kinematic analysis.

11. Figure 2.25 shows a spherical four-bar linkage, in which four links (one
of the links is the ground link) are connected by four revolute joints to form a
single loop closed chain. The four revolute joints are arranged so that they lie
on a sphere, and such that their joint axes intersect at a common point.
(a) Use appropriate version of Grübler’s formula to find the mobility.
(b) Describe the configuration space.
(c) Assuming a reference frame is attached to the center link, describe its task
space.

12. Consider the two-link planar open chain of Figure 2.26, whose tip coordi-
nates are given by

x = 2 cos θ1 + cos(θ1 + θ2)

y = 2 sin θ1 + sin(θ1 + θ2).
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Figure 2.25: The spherical four-bar linkage.

Figure 2.26: Two-link planar RR open chain.

(a) What is its configuration space?
(b) What is the set of all points the tip can reach?
(c) Suppose there is an infinitely long wall at x = 1 and x = −1. What is its
free space?

13. Consider the slider-crank mechanism of Figure ??. A rotational motion at
the revolute joint fixed to ground (the “crank”) causes a translational motion
at the prismatic joint (the “slider”). Suppose the two links connected to the
crank and slider are of equal length. Determine the configuration space of this
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mechanism, and draw its projected version on the space defined by the crank
and slider joint variables.

14. (a) Consider a planar 3R open chain with link lengths (starting from the
fixed base joint) 5, 2, and 1, respectively. Considering only the Cartesian point
of the tip, draw its task space.
(b) Now consider a planar 3R open chain with link lengths (starting from the
fixed base joint) 1, 2, and 5, respectively. Considering only the Cartesian point
of the tip, draw its task space. Which of these two chains has a larger task
space?
(c) A not so clever designer claims that he can make the task space of any planar
open chain larger simply by increasing the length of the last link. Explain the
fallacy behind this claim.

15. Determine if the following differential constraints are holonomic or non-
holonomic:
(a)

(1 + cos q1)q̇1 + (1 + cos q2)q̇2 + (cos q1 + cos q2 + 4)q̇3 = 0.

(b)

−q̇1 cos q2 + q̇3 sin(q1 + q2)− q̇4 cos(q1 + q2) = 0

q̇3 sin q1 − q̇4 cos q1 = 0.

16. (a) Determine the task space for a robot arm writing on a blackboard.
(b) Determine the task space for a robot arm twirling a baton.
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Chapter 3

Rigid-Body Motions

In the previous chapter, we saw that a minimum of six numbers are needed
to specify the position and orientation of a rigid body in three-dimensional
physical space. We established this by selecting three points on a rigid body,
and arguing that the distances between any pair of these three points must
always be preserved regardless of where the rigid body is located. This led
to three constraints, which when imposed on the nine Cartesian coordinates—
(x, y, z) coordinates for each of the three points—led us to conclude that only
six of these nine coordinates could be independently chosen.

In this chapter we develop a more systematic way to describe the position
and orientation of a rigid body. Rather than choosing three points on a body,
we instead attach a reference frame to the body, and represent the configuration
of this frame with respect to a fixed reference frame as a 4 × 4 matrix. This
is an example of an implicit representation of the C-space, as discussed in the
previous chapter: the actual six-dimensional space of rigid-body configurations
is obtained by applying ten constraints to the sixteen-dimensional space of 4×4
real matrices.

Such a matrix not only represents the configuration of a frame, but it also
can be used to (1) translate and rotate a vector or a frame or (2) change the
representation of a vector or a frame from coordinates in one frame (e.g., {a})
to coordinates in another frame (e.g., {b}). These operations can be performed
by simple linear algebra, which is a major reason we choose to represent a
configuration as a 4× 4 matrix.

The non-Euclidean (non-“flat”) nature of the C-space of position and orien-
tations leads us to use the matrix representation. A velocity, however, can be
represented simply as a point in R6: three angular velocities and three linear
velocities, which together we call a spatial velocity. To see that the feasible ve-
locities at any configuration form a Euclidean space, even though the C-space is
non-Euclidean, consider motions on the sphere S2: although the C-space is not
flat, the velocity at any configuration can be represented by two real numbers
(an element of R2), such as the rate of change of the latitude and the longitude.
At any point on the sphere, you can think of the space of velocities as the plane
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(a Euclidean space) tangent to that point on the sphere.
Any rigid-body configuration can be achieved by starting from the fixed

(home) reference frame and integrating a constant spatial velocity for a specified
time. Such a motion resembles the motion of a screw, rotating about and
translating along the same fixed axis. The observation that all configurations
can be achieved by a screw motion motivates a six-parameter representation of
the configuration called the exponential coordinates. The six parameters can be
divided into parameters to describe the direction of the screw axis and a scalar
to indicate how far the screw motion must be followed to achieve the desired
configuration.

This chapter concludes with a discussion of forces. Just as angular and linear
velocities are packaged together into a single vector in R6, moments (torques)
and forces are packaged together into a six-vector called a spatial force.

To illustrate the concepts and to provide a synopsis of the chapter, we begin
with a motivating planar example. Before doing so, we make some remarks
about vector notation.

A Word about Vectors and Reference Frames

A free vector is a geometric quantity with a length and a direction. Think
of it as an arrow in Rn. It is called “free” because it is not necessarily rooted
anywhere; only its length and direction matter. A linear velocity can be viewed
as a free vector: the length of the arrow is the speed and the direction of the
arrow is the direction of the velocity. A free vector is denoted by a regular text
symbol, e.g., v.

If a reference frame and length scale have been chosen for the underlying
space in which v lies, then this free vector can be moved so the base of the arrow
is at the origin, without changing the orientation. The free vector v can then be
represented as a column vector in the coordinates of the reference frame. This
vector is written in italics, v ∈ Rn, where v is at the “head” of the arrow in the
frame’s coordinates. If a different reference frame and length scale are chosen,
then v will change, but the underlying free vector v is unchanged.

In other words, we say that v is coordinate free; it refers to a physical quantity
in the underlying space, and it does not care how we represent it. On the other
hand, v is a representation of v that depends on a choice of a coordinate frame.

A point p in physical space can also be represented as a vector. Given a
choice of reference frame and length scale for physical space, the point p can
be represented as a vector from the reference frame origin to p; its column
vector representation is denoted in italics by p ∈ Rn. Here, as before, a different
choice of reference frame and length scale for physical space leads to a different
column vector representation p ∈ Rn for the same point p in physical space. See
Figure 3.1.

In the rest of this book, a choice of length scale will always be assumed, but
we will be dealing with reference frames at different positions and orientations.
A reference frame can be placed anywhere in space, and any reference frame
leads to an equally valid representation of the underlying space and objects
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y^1

x^1
{1}

y^2

x^2
{2}

p

p1

p2

Figure 3.1: The point p exists in physical space, and it does not care how we
represent it. If we fix a reference frame {1}, with unit coordinate axes x̂1 and ŷ1,
we can represent p as p1 = (1, 2). If we fix a reference frame {2} at a different
location, a different orientation, and a different length scale, we can represent p
as p2 = (4,−2).

in it. However, we always assume that exactly one stationary fixed frame, or
space frame, denoted {s} (for “stationary” or “space”), has been defined. This
might be attached to a corner of a room, for example. Similarly, we assume that
at least one moving frame, or body frame, denoted {b}, has been attached
to some moving rigid body, such as the body of a quadrotor flying in the room.
While it is common to attach the origin of the {b} frame to some important
point on the body, such as its center of mass, this is not required. The origin
of the {b} frame might not even be on the physical body itself, as long as
its location relative to the body, viewed from an observer on the body that is
stationary relative to the body, is constant.

3.1 A Motivating Example

Consider the planar body of Figure 3.2, whose motion is confined to the plane.
Suppose a length scale and a fixed reference frame have been chosen as shown.
We call the fixed reference frame the fixed frame, or the space frame, denoted
{s}, and label its unit axes x̂s and ŷs. (Throughout this book, the ˆ notation
indicates a unit vector.) Similarly, we attach a reference frame with unit axes
x̂b and ŷb to the planar body. Because this frame moves with the body, it is
called the moving frame, or body frame, and is denoted {b}.

To describe the configuration of the planar body, only the position and ori-
entation of the body frame with respect to the fixed frame needs to be specified.
The body frame origin p can be expressed in terms of the coordinate axes of
{s} as

p = pxx̂s + pyŷs. (3.1)

You are probably more accustomed to writing this vector as simply p = (px, py);
this is fine when there is no possibility of ambiguity about reference frames, but
writing p as in Equation (3.1) clearly indicates the reference frame with respect
to which (px, py) is defined.
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y^b

x^b

{b}
y^s

x^s{s}

θ

p

Figure 3.2: The body frame {b} in fixed-frame coordinates {s} is represented
by the vector p and the direction of the unit axes x̂b and ŷb expressed in {s}.
In this example, p = (2, 1)T and θ = 60◦, so x̂b = (cos θ, sin θ)T = (0.5, 1/

√
2)T

and ŷb = (− sin θ, cos θ)T = (−1/
√

2, 0.5)T .

The simplest way to describe the orientation of the body frame {b} relative
to the fixed frame {s} is by specifying the angle θ as shown in Figure 3.2.
Another (admittedly less simple) way is to specify the directions of the unit
axes x̂b and ŷb of {b} relative to {s}, in the form

x̂b = cos θ x̂s + sin θ ŷs (3.2)

ŷb = − sin θ x̂s + cos θ ŷs. (3.3)

At first sight this seems a rather inefficient way to represent the body frame
orientation. However, imagine the body were to move arbitrarily in three-
dimensional space; a single angle θ alone clearly would not suffice to describe
the orientation of the displaced reference frame. We would in fact need three
angles, but it is not yet clear how to define an appropriate set of three angles.
On the other hand, expressing the directions of the coordinate axes of {b} in
terms of coefficients of the coordinate axes of {s}, as we have done above for
the planar case, is straightforward.

Assuming we agree to express everything in terms of {s}, then just as the
point p can be represented as a column vector p ∈ R2 of the form

p =

[
px
py

]
, (3.4)

the two vectors x̂b and ŷb can also be written as column vectors and packaged
into the following 2× 2 matrix P ,

P = [x̂b ŷb] =

[
cos θ − sin θ
sin θ cos θ

]
. (3.5)

The matrix P is an example of a rotation matrix. Although P is constructed
of four numbers, they are subject to three constraints, and the one remaining
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y^b

x^b

{b}

y^s

x^s{s}

p

θ

φ
q

r
y^c

x^c
{c}

ψ

Figure 3.3: The frame {b} in {s} is given by (P, p), and the frame {c} in {b}
is given by (Q, q). From these we can derive the frame {c} in {s}, described by
(R, r). The numerical values of the vectors p, q, and r, and the coordinate axis
directions of the three frames, are evident from the grid of unit squares.

degree of freedom is parametrized by θ. Together, the pair (P, p) provides a
description of the orientation and position of {b} relative to {s}.

Now refer to the three frames in Figure 3.3. Repeating the above approach,
and expressing {c} in {s} as the pair (R, r), we can write

r =

[
rx
ry

]
, R =

[
cosφ − sinφ
sinφ cosφ

]
. (3.6)

We could also describe the frame {c} relative to {b} (that is, pretend {b} is
now the fixed frame). Letting q denote the vector from the origin of {b} to the
origin of {c} expressed in {b} coordinates, and letting Q denote the orientation
of {c} relative to {b}, we can write {c} relative to {b} as the pair (Q, q), where

q =

[
qx
qy

]
, Q =

[
cosψ − sinψ
sinψ cosψ

]
. (3.7)

If we know (Q, q) (the configuration of {c} relative to {b}) and (P, p) (the
configuration of {b} relative to {s}), we can compute the configuration of {c}
relative to {s} as follows:

R = PQ (convert Q to the {s} frame) (3.8)

r = Pq + p (convert q to the {s} frame and vector sum with p). (3.9)

Thus (P, p) not only represents a configuration of {b} in {s}; it can also be used
to convert the representation of a point or frame from {b} coordinates to {s}
coordinates.
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{b,d’}

{s,d}

p
r

{c}Pr

Pr+p

{c’}

2

1

p

{d’}

{d}

{c}

{c’}

β

s

(a)                        (b)

Figure 3.4: (a) The frame {d}, fixed to an elliptical rigid body and initially coin-
cident with {s}, is displaced to {d′} (coincident with the stationary frame {b}),
by first rotating according to P then translating according to p, where (P, p) is
the representation of {b} in {s}. The same transformation takes the frame {c},
also attached to the rigid body, to {c′}. The transformation marked 1© rigidly
rotates {c} about the origin of {s}, and then transformation 2© translates the
frame by p expressed in {s}. (b) Instead of viewing this displacement as a rota-
tion followed by a translation, both rotation and translation can be performed
simultaneously. The displacement can be viewed as a rotation of β = 90◦ about
a fixed point s.

Now consider a rigid body with two frames attached to it, {d} and {c}.
The frame {d} is initially coincident with {s}, and {c} is initially described by
(R, r) in {s} (Figure 3.4(a)). Then the body is moved so that {d} moves to {d′},
coincident with the stationary frame {b} described by (P, p) in {s}. Where does
{c} end up after this motion? Denoting (R′, r′) as the configuration of the new
frame {c′}, you can verify that

R′ = PR (3.10)

r′ = Pr + p, (3.11)

very similar to Equations (3.8) and (3.9). The difference is that (P, p) is ex-
pressed in the same frame as (R, r) (unlike (Q, q)), so the equations are not
viewed as a change of coordinates, but instead as a rigid-body displacement
(also known as a rigid-body motion) that (1) rotates {c} according to P and
(2) translates it by p in {s}. See Figure 3.4(a).
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Figure 3.5: Mathematical description of position and orientation.

Thus we see that a rotation matrix-vector pair such as (P, p) can be used to
do three things:

(i) Represent a configuration of a rigid body in {s} (Figure 3.2).

(ii) Change the reference frame in which a vector or frame is represented
(Figure 3.3).

(iii) Displace a vector or a frame (Figure 3.4(a)).

We make one final observation. Referring to Figure 3.4(b), note that the
rigid-body motion illustrated in Figure 3.4(a), expressed as a rotation followed
by a translation, can be obtained by simply rotating the body about a fixed
point s by an angle β. This is a planar example of a screw motion.1 The
displacement can therefore be parametrized by the three coordinates (β, sx, sy),
where (sx, sy) denote the coordinates for the point s (i.e., the screw axis) in the
fixed-frame {s}.

In the remainder of this chapter we generalize the concepts above to three-
dimensional rigid-body motions. For this purpose consider a rigid body occu-
pying three-dimensional physical space as shown in Figure 3.5. Assume that a
length scale for physical space has been chosen, and that both the fixed frame
{s} and body frame {b} have been chosen as shown. Throughout this book
all reference frames are right-handed, i.e., the unit axes {x̂, ŷ, ẑ} always satisfy
x̂ × ŷ = ẑ. Denote the unit axes of the fixed frame by {x̂s, ŷs, ẑs} and the unit
axes of the body frame by {x̂b, ŷb, ẑb}. Let p denote the vector from the fixed
frame origin to the body frame origin. In terms of the fixed frame coordinates,
p can be expressed as

p = p1x̂s + p2ŷs + p3ẑs. (3.12)

1If the displacement is a pure translation without rotation, then s lies at infinity.
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The axes of the body frame can also be expressed as

x̂b = r11x̂s + r21ŷs + r31ẑs (3.13)

ŷb = r12x̂s + r22ŷs + r32ẑs (3.14)

ẑb = r13x̂s + r23ŷs + r33ẑs. (3.15)

Defining p ∈ R3 and R ∈ R3×3 as

p =

 p1

p2

p3

 , R = [x̂b ŷb ẑb] =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (3.16)

the twelve parameters given by (R, p) then provide a description of the position
and orientation of the rigid body relative to the fixed frame.

Since a minimum of six parameters are required to describe the configuration
of a rigid body, if we agree to keep the three parameters in p as they are, then
of the nine parameters in R, only three can be chosen independently. As with
the exponential coordinates of planar rigid-body motion, the three exponential
coordinates of spatial rotation can describe any orientation by an axis of rotation
and the distance rotated about that axis from the home orientation. We leave
other popular representations of orientations (three-parameter Euler angles
and roll-pitch-yaw angles, and the unit quaternions that use four variables
subject to one constraint) to an appendix.

We then examine six-parameter exponential coordinates for the configuration
of a rigid body that arise from integrating a six-dimensional spatial velocity
consisting of the body’s angular and linear velocity. This representation follows
from the Chasles-Mozzi theorem that states that every rigid-body displacement
can be described as a finite rotation and translation about a fixed screw axis.

We conclude with a discussion of forces and moments. Rather than treat
these as separate three-dimensional quantities, we merge the moment and force
vectors into a six-dimensional spatial force. The spatial velocity and spatial
force, and rules for manipulating them, form the basis for the kinematic and
dynamic analyses in the subsequent chapters.

3.2 Rotations and Angular Velocities

3.2.1 Rotation Matrices

We argued earlier that of the nine entries in the rotation matrixR, only three can
be chosen independently. We begin by deriving a set of six explicit constraints
on the entries of R. Recall that the three columns of R correspond to the
body frame’s unit axes {x̂b, ŷb, ẑb}. The following conditions must therefore be
satisfied:
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(i) Unit norm condition: x̂b, ŷb, and ẑb are all of unit norm, or

r2
11 + r2

21 + r2
31 = 1

r2
12 + r2

22 + r2
32 = 1 (3.17)

r2
13 + r2

23 + r2
33 = 1.

(ii) Orthogonality condition: x̂b · ŷb = x̂b · ẑb = ŷb · ẑb = 0 (here · denotes the
inner product), or

r11r12 + r21r22 + r31r32 = 0

r12r13 + r22r23 + r32r33 = 0 (3.18)

r11r13 + r21r23 + r31r33 = 0.

These six constraints can be expressed more compactly as a single constraint
on the matrix R:

RTR = I, (3.19)

where RT denotes the transpose of R and I denotes the identity matrix.
There is still the matter of accounting for the fact that the frame is right-

handed (i.e., x̂b × ŷb = ẑb, where × denotes the cross-product) rather than
left-handed (i.e., x̂b × ŷb = −ẑb); our six equality constraints above do not dis-
tinguish between right- and left-handed frames. We recall the following formula
for evaluating the determinant of a 3×3 matrix M : denoting the three columns
of M by a, b, and c, respectively, its determinant is given by

detM = aT (b× c) = cT (a× b) = bT (c× a). (3.20)

Substituting the columns for R into this formula then leads to the constraint

detR = 1. (3.21)

Note that if the frame had been left-handed, we would have detR = −1. In
summary, the six equality constraints represented by (3.19) imply that detR =
±1; imposing the additional constraint detR = 1 means that only right-handed
frames are allowed. The constraint detR = 1 does not change the number of
independent continuous variables needed to parametrize R.

The set of 3× 3 rotation matrices forms the Special Orthogonal Group
SO(3), which we now formally define:

Definition 3.1. The Special Orthogonal Group SO(3), also known as the
group of rotation matrices, is the set of all 3× 3 real matrices R that satisfy (i)
RTR = I and (ii) detR = 1.

The set of 2 × 2 rotation matrices is a subgroup of SO(3), and is denoted
SO(2).

Definition 3.2. The Special Orthogonal Group SO(2) is the set of all 2×2
real matrices R that satisfy (i) RTR = I and (ii) detR = 1.
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From the definition it follows that every R ∈ SO(2) can be viewed as the
top-left 2× 2 submatrix of an element of SO(3) and can be written

R =

[
r11 r12

r21 r22

]
=

[
cos θ − sin θ
sin θ cos θ

]
,

where θ ∈ [0, 2π).

3.2.1.1 Properties of Rotation Matrices

We now list some basic properties of rotation matrices. First, the identity I is
a trivial example of a rotation matrix. The inverse of a rotation matrix is also
a rotation matrix:

Proposition 3.1. The inverse of a rotation matrix R ∈ SO(3) is also a rotation
matrix, and it is equal to the transpose of R, i.e., R−1 = RT .

Proof. The condition RTR = I implies that R−1 = RT and RRT = I. Since
detRT = detR = 1, RT is also a rotation matrix.

Proposition 3.2. The product of two rotation matrices is a rotation matrix.

Proof. Given R1, R2 ∈ SO(3), their product R1R2 satisfies (R1R2)T (R1R2) =
RT2 R

T
1 R1R2 = RT2 R2 = I. Further, detR1R2 = detR1 ·detR2 = 1. Thus R1R2

satisfies the conditions for a rotation matrix.

Proposition 3.3. Multiplication of rotation matrices is associative, (R1R2)R3 =
R1(R2R3), but generally not commutative, R1R2 6= R2R1. For the special case
of rotation matrices in SO(2), rotations commute.

Proof. Associativity and non-commutativity follows from properties of matrix
multiplication in linear algebra. Commutativity for planar rotations follows
from a direct calculation.

Proposition 3.4. For any vector x ∈ R3 and R ∈ SO(3), the vector y = Rx
is of the same length as x.

Proof. This follows from ‖y‖2 = yT y = (Rx)TRx = xTRTRx = xTx = ‖x‖2.

3.2.1.2 Uses of Rotation Matrices

Analogous to Section 3.1, there are three major uses for a rotation matrix R:

(i) Represent an orientation.

(ii) Change the reference frame in which a vector or a frame is represented.

(iii) Rotate a vector or a frame.
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x^c

z^c
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Figure 3.6: The same space and the same point p represented in three different
frames with different orientations.

In the first use, R is thought of as representing a frame; in the second and third
uses, R is thought of as an operator that acts on a vector or frame (changing
its reference frame or rotating it).

To illustrate these uses, we refer to Figure 3.6, which shows three different
coordinate frames—{a}, {b}, and {c}—representing the same space.2 These
frames have the same origin, since we are only representing orientations, but
to make the axes clear, the figure shows the same space drawn three times. A
point p in the space is also shown. Not shown is a fixed space frame, which is
aligned with {a}. The orientations of the three frames can be written

Ra =

 1 0 0
0 1 0
0 0 1

 , Rb =

 0 −1 0
1 0 0
0 0 1

 , Rc =

 0 −1 0
0 0 −1
1 0 0

 ,
and the location of the point p in these frames can be written

pa =

 1
1
0

 , pb =

 1
−1

0

 , pc =

 0
−1
−1

 .
Note that {b} is obtained by rotating {a} about ẑa by 90◦, and {c} is obtained
by rotating {b} about ŷb by −90◦.

Representing an orientation. When we write Rc, we are implicitly referring
to the orientation of frame {c} relative to the fixed frame {s}. We can be more
explicit about this by writing it as Rsc: we are representing the frame of the
second subscript, {c}, relative to the frame of the first subscript, {s}. This
notation allows us to express a frame relative to a frame that is not {s}; for
example, Rbc is the orientation of {c} relative to {b}.

If there is no possibility of confusion regarding the frames involved, we may
simply write R.

2In the rest of the book, all coordinate frames will use the same length scale; only their
position and orientation may be different.
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Inspecting Figure 3.6, we see that

Rac =

 0 −1 0
0 0 −1
1 0 0

 , Rca =

 0 0 1
−1 0 0

0 −1 0

 .
A simple calculation shows that RacRca = I, i.e., Rac = R−1

ca , or, equivalently,
from Proposition 3.1, Rac = RTca. In fact, for any two frames {d} and {e},

Rde = R−1
ed = RTed.

You can prove this for two arbitrary frames, or you can test this fact using any
two frames in Figure 3.6.

Changing the reference frame. The rotation matrix Rab represents the
orientation of {b} in {a}, and Rbc represents the orientation of {c} in {b}.
A straightforward calculation shows that the orientation of {c} in {a} can be
computed as

Rac = RabRbc.

In the previous equation, Rbc can be viewed as a representation of an orientation,
while Rab can be viewed as a mathematical operator that changes the reference
frame from {b} to {a}, i.e.,

Rac = RabRbc = change reference frame from {b} to {a} (Rbc).

A subscript cancellation rule helps to remember this property. When multi-
plying two rotation matrices, if the second subscript of the first matrix matches
the first subscript of the second matrix, the two subscripts cancel and a change
of reference frame is achieved:

RabRbc = R
a�b
R
�bc

= Rac.

A rotation matrix is just a collection of three unit vectors, so the reference
frame of a vector can also be changed by a rotation matrix using a modified
version of the subscript cancellation rule:

Rabpb = R
a�b
p
�b

= pa.

Verify these properties using the frames and points in Figure 3.6.

Rotating a vector or a frame. The last use of a rotation matrix is to
rotate a vector or a frame. Figure 3.7 shows an {x̂, ŷ, ẑ} frame that is rotated
about a unit axis ω̂ (expressed in the {x̂, ŷ, ẑ} coordinates) by an amount θ.
(The direction of positive rotation about an axis, θ > 0, is determined by the
direction the fingers of your right hand curl about the axis when you point the
thumb of your right hand along the axis.) The resulting frame {x̂′, ŷ′, ẑ′} is



3.2. Rotations and Angular Velocities 55

x^

z^

ω^ θ

x’^

z’^

y,^ y’^

Figure 3.7: (a) A coordinate frame with axes {x̂, ŷ, ẑ} is rotated an amount θ
about a unit axis ω̂ (which is aligned with −ŷ in this figure). The orientation
of the final frame, with axes {x̂′, ŷ′, ẑ′}, is written as R relative to the original
frame.

expressed as R relative to {x̂, ŷ, ẑ}. Emphasizing our view of R as a rotation
operator, instead of as an orientation, we can write

R = Rot(ω̂, θ).

As we will see in Section 3.2.3, any R ∈ SO(3) can be obtained by rotating by
some θ about some ω̂.

Now say Rsb represents {b} relative to {s}, and we want to rotate it by
a given R = Rot(ω̂, θ). To be clear about what we mean, we have to specify
whether the axis of rotation ω̂ is expressed in {s} coordinates or {b} coordi-
nates. Depending on our choice, the same numerical ω̂ (and therefore the same
numerical R) corresponds to different rotation axes in the underlying space un-
less the {s} and {b} frames are aligned. Letting {b′} be the new frame after
rotating by θ about ω̂s = ω̂ (the rotation axis ω̂ is considered to be in the fixed
{s} frame), and {b′′} be the new frame after rotating by θ about ω̂b = ω̂ (the
rotation axis ω̂ is considered to be in the body {b} frame), representations of
these new frames can be calculated as

Rsb′ = rotate by R in {s} frame (Rsb) = RRsb (3.22)

Rsb′′ = rotate by R in {b} frame (Rsb) = RsbR. (3.23)

In other words, premultiplying by R yields a rotation about ω in the fixed frame
and postmultiplying by R yields a rotation about ω in the body frame.

Rotating by R in the {s} frame and the {b} frame is illustrated in Figure 3.8.
To rotate a vector v, note that there is only one frame involved, the frame

that v is represented in, and therefore ω̂ must be interpreted in this frame. The
rotated vector v′, in that same frame, is

v′ = Rv.

3.2.1.3 Other Representations of Rotations

Other popular representations of rotations include Euler angles, roll-pitch-yaw
angles, and unit quaternions. These representations, and their relation to rota-
tion matrices, are discussed in Appendix B.
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Figure 3.8: (Top) A rotation operator R defined as R = Rot(ẑ, 90◦), the orienta-
tion of the right frame in the left frame. (Bottom) On the left are shown a fixed
frame {s} and a body frame {b}, expressed as Rsb. The quantity RRsb rotates
{b} to {b′} by rotating by 90◦ about the fixed frame axis ẑs. The quantity RsbR
rotates {b} to {b′′} by rotating by 90◦ about the body frame axis ẑb.

3.2.2 Angular Velocity

Referring to Figure 3.9(a), suppose a body frame with unit axes {x̂, ŷ, ẑ} is
attached to a rotating body. Let us determine the time derivatives of these unit
axes. Beginning with ˙̂x, first note that x̂ is of unit length; only the direction
of x̂ can vary with time (the same goes for ŷ and ẑ). If we examine the body
frame at times t and t + ∆t—since what’s relevant for us is the orientation of
the body frame, for better visualization we draw the frame at the two instants
with coinciding origins—the change in frame orientation from t to t+∆t can be
described as a rotation of angle ∆θ about some unit axis ŵ passing through the
origin. The axis ŵ is coordinate free; it is not yet represented in any particular
reference frame.

In the limit as ∆t approaches zero, the ratio ∆θ
∆t becomes the rate of rotation

θ̇, and ŵ can similarly be regarded as the instantaneous axis of rotation. In fact,
ŵ and θ̇ can be put together to define the angular velocity w as follows:

w = ŵθ̇. (3.24)
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Figure 3.9: (Left) The instantaneous angular velocity vector. (Right) Calculat-
ing ˙̂x.

Referring to Figure 3.9(b), it should be evident that

˙̂x = w× x̂ (3.25)
˙̂y = w× ŷ (3.26)
˙̂z = w× ẑ. (3.27)

To express these equations in coordinates, we have to choose a reference
frame in which to represent w. We can choose any reference frame, but two
natural choices are the fixed frame {s} and the body frame {b}. Let us start
with fixed frame {s} coordinates. Let R(t) be the rotation matrix describing
the orientation of the body frame with respect to the fixed frame at time t; Ṙ(t)
is its time rate of change. The first column of R(t), denoted r1(t), describes x̂
in fixed frame coordinates; similarly, r2(t) and r3(t) respectively describe ŷ and
ẑ in fixed frame coordinates. At a specific time t, let ωs ∈ R3 be the angular
velocity w expressed in fixed frame coordinates. Then Equations (3.25)–(3.27)
can be expressed in fixed frame coordinates as

ṙi = ωs × ri, i = 1, 2, 3.

These three equations can be rearranged into the following single 3× 3 matrix
equation:

Ṙ = [ωs × r1 | ωs × r2 | ωs × r3] = ωs ×R. (3.28)

To eliminate the cross product in Equation (3.28), we introduce some new
notation and rewrite ωs × R as [ωs]R, where [ωs] is a 3 × 3 skew-symmetric
matrix representation of ωs ∈ R3:

Definition 3.3. Given a vector x = (x1, x2, x3)T ∈ R3, define

[x] =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (3.29)



58 Rigid-Body Motions

The matrix [x] is a 3× 3 skew-symmetric matrix representation of x; that is,

[x] = −[x]T .

The set of all 3× 3 real skew-symmetric matrices is called so(3).

A useful property involving rotations and skew-symmetric matrices is the
following:

Proposition 3.5. Given any ω ∈ R3 and R ∈ SO(3), the following always
holds:

R[ω]RT = [Rω]. (3.30)

Proof. Letting rTi be the ith row of R,

R[ω]RT =

 rT1 (ω × r1) rT1 (ω × r2) rT1 (ω × r3)
rT2 (ω × r1) rT2 (ω × r2) rT2 (ω × r3)
rT3 (ω × r1) rT3 (ω × r2) rT3 (ω × r3)


=

 0 −rT3 ω rT2 ω
rT3 ω 0 −rT1 ω
−rT2 ω rT1 ω 0


= [Rω],

(3.31)

where the second line makes use of the determinant formula for 3× 3 matrices,
i.e., if M is a 3 × 3 matrix with columns {a, b, c}, then detM = aT (b × c) =
cT (a× b) = bT (c× a).

With the skew-symmetric notation, we can rewrite Equation (3.28) as

[ωs]R = Ṙ. (3.32)

We can post-multiply both sides of Equation (3.32) by R−1 to get

[ωs] = ṘR−1. (3.33)

Now let ωb be w expressed in body frame coordinates. To see how to obtain
ωb from ωs and vice versa, we explicitly write R as Rsb. Then ωs and ωb are
two different vector representations of the same angular velocity w, and by our
subscript cancellation rule, ωs = Rsbωb. Therefore

ωb = R−1
sb ωs = R−1ωs = RTωs. (3.34)

Let us now express this relation in skew-symmetric matrix form:

[ωb] = [RTωs]
= RT [ωs]R (by Proposition 3.5)

= RT (ṘRT )R

= RT Ṙ = R−1Ṙ.

(3.35)

In summary, we have the following two equations that relate R and Ṙ to the
angular velocity w:
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Proposition 3.6. Let R(t) denote the orientation of the rotating frame as seen
from the fixed frame. Denote by w the angular velocity of the rotating frame.
Then

ṘR−1 = [ωs] (3.36)

R−1Ṙ = [ωb], (3.37)

where ωs ∈ R3 is the fixed frame vector representation of w and [ωs] ∈ so(3)
is its 3 × 3 matrix representation, and ωb ∈ R3 is the moving frame vector
representation of w and [ωb] ∈ so(3) is its 3× 3 matrix representation.

It is important to note that ωb is not the angular velocity of the moving
frame relative to the moving frame; that must be zero, since the moving frame
is always coincident with itself! Instead, ωb is the angular velocity relative to a
stationary frame that is coincident with {b}.

It is also important to note that the fixed-frame angular velocity ωs does not
depend on the choice of the body frame. Similarly, the body-frame angular veloc-
ity ωb does not depend on the choice of the fixed frame. While Equations (3.36)
and (3.37) may appear to depend on both frames (since R and Ṙ individually
depend on both {s} and {b}), the product ṘR−1 is independent of {b} and the
product R−1Ṙ is independent of {s}.

Finally, an angular velocity expressed in an arbitrary frame {d} can be
represented in another frame {c} if we know the rotation that takes {c} to {d}:

ωc = Rcdωd.

3.2.3 Exponential Coordinate Representation of Rotation

We now introduce a three-parameter representation for rotations, the expo-
nential coordinates for rotation. The exponential coordinates parametrize
a rotation matrix in terms of a rotation axis (represented by a vector ω̂ of unit
length), together with an angle of rotation θ about that axis; the vector ω̂θ ∈ R3

then serves as the three-parameter exponential coordinate representation of the
rotation. This representation is also called the axis-angle representation of a
rotation, but we prefer to use the term “exponential coordinates” to emphasize
the connection to the upcoming exponential coordinates for rigid-body trans-
formations.

The exponential coordinates for a rotation can be viewed as a rotation axis
ω̂ rotated about by an angle θ, or they can be viewed equivalently as an angular
velocity ω̂θ (in rad/s) that is integrated for one second. This latter view, that
a rotation is the integral of an angular velocity for one second, suggests that
we view exponential coordinates in the setting of linear differential equations.
Below we briefly review some key results from linear differential equations.

3.2.3.1 Essential Results from Linear Differential Equations

Let us begin with the simple scalar linear differential equation

ẋ(t) = ax(t), (3.38)
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where x(t) ∈ R, a ∈ R is constant, and the initial condition x(0) = x0 is assumed
given. Equation (3.38) has solution

x(t) = eatx0.

It is also useful to remember the series expansion of the exponential function:

eat = 1 + at+
(at)2

2!
+

(at)3

3!
+ . . .

Now consider the vector linear differential equation

ẋ(t) = Ax(t) (3.39)

where x(t) ∈ Rn, A ∈ Rn×n is constant, and the initial condition x(0) = x0 is
given. From the earlier scalar result, one can conjecture a solution of the form

x(t) = eAtx0 (3.40)

where the matrix exponential eAt now needs to be defined in a meaningful way.
Again mimicking the scalar case, we define the matrix exponential to be

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ . . . (3.41)

The first question to be addressed is under what conditions this series converges,
so that the matrix exponential is well-defined. It can be shown that if A is
constant and finite, this series is always guaranteed to converge to a finite limit;
the proof can be found in most texts on ordinary linear differential equations
and is not covered here.

The second question is whether Equation (3.40), using Equation (3.41), is
indeed a solution to Equation (3.39). Taking the time derivative of x(t) = eAtx0,

ẋ(t) =

(
d

dt
eAt
)
x0

=
d

dt

(
I +At+

A2t2

2!
+
A3t3

3!
+ . . .

)
x0

=

(
A+A2t+

A3t2

2!
+ . . .

)
x0 (3.42)

= AeAtx0

= Ax(t),

which proves that x(t) = eAtx0 is indeed a solution. That this is a unique
solution follows from the basic existence and uniqueness result for linear ordinary
differential equations, which we invoke here without proof.

While AB 6= BA for arbitrary square matrices A and B, it is always true
that

AeAt = eAtA (3.43)
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for any square A and scalar t. You can verify this directly using the series
expansion for the matrix exponential. Therefore, in line four of Equation (3.42),
A could also have been factored to the right, i.e.,

ẋ(t) = eAtAx0.

While the matrix exponential eAt is defined as an infinite series, closed-
form expressions are often available. For example, if A can be expressed as
A = PDP−1 for some D ∈ Rn×n and invertible P ∈ Rn×n, then

eAt = I +At+
(At)2

2!
+ . . .

= I + (PDP−1)t+ (PDP−1)(PDP−1)
t2

2!
+ . . .

= P (I +Dt+
(Dt)2

2!
+ . . .)P−1 (3.44)

= PeDtP−1.

If moreover D is diagonal, i.e., D = diag{d1, d2, . . . , dn}, then its matrix expo-
nential is particularly simple to evaluate:

eDt =


ed1t 0 · · · 0

0 ed2t · · · 0
...

...
. . .

...
0 0 · · · ednt

 . (3.45)

We summarize the above results in the following proposition.

Proposition 3.7. The linear differential equation ẋ(t) = Ax(t) with initial
condition x(0) = x0, where A ∈ Rn×n is constant and x(t) ∈ Rn, has solution

x(t) = eAtx0 (3.46)

where

eAt = I + tA+
t2

2!
A2 +

t3

3!
A3 + . . . . (3.47)

The matrix exponential eAt further satisifies the following properties:

(i) d
dte

At = AeAt = eAtA.

(ii) If A = PDP−1 for some D ∈ Rn×n and invertible P ∈ Rn×n, then
eAt = PeDtP−1.

(iii) If AB = BA, then eAeB = eA+B.

(iv) (eA)−1 = e−A.
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The third property can be established by expanding the exponentials and
comparing terms. The fourth property follows by setting B = −A in the third
property.

A final linear algebraic result useful in finding closed-form expressions for
eAt is the Cayley-Hamilton Theorem, which we state here without proof:

Proposition 3.8. Let A ∈ Rn×n be constant, with characteristic polynomial

p(s) = det(sI −A) = sn + cn−1s
n−1 + . . .+ c1s+ c0,

and define p(A) as

p(A) = An + cn−1A
n−1 + . . .+ c1A+ c0I.

Then p(A) = 0.

3.2.3.2 Exponential Coordinates of Rotations

The exponential coordinates of a rotation can be viewed equivalently as (1) a
unit axis of rotation ω̂ (ω ∈ R3, ‖ω‖ = 1) together with a rotation angle about
the axis θ ∈ R, or (2) as the three-vector obtained by multiplying the two
together, ω̂θ ∈ R3. When we represent the motion of a robot joint in the next
chapter, the first view has the advantage of separating the joint axis from the
motion θ about the axis.

Referring to Figure 3.10, suppose a three-dimensional vector p(0) is rotated
by θ about ω̂ to p(θ); here we assume all quantities are expressed in fixed frame
coordinates. This rotation can be achieved by imagining that p(0) is rotating
at a constant rate of 1 rad/s (since ω̂ is unit), from time t = 0 to t = θ. Let
p(t) denote this path. The velocity of p(t), denoted ṗ, is then given by

ṗ = ω̂ × p. (3.48)

To see why this is true, let φ be the angle between p(t) and ω̂. Observe that p
traces a circle of radius ‖p‖ sinφ about the ω̂-axis. Then ṗ = ω̂ × p is tangent
to the path with magnitude ‖p‖ sinφ, which is exactly Equation (3.48).

The differential equation (3.48) can be expressed as

ṗ = [ω̂]p (3.49)

with initial condition p(0). This is a linear differential equation of the form
ẋ = Ax that we studied earlier; its solution is given by

p(t) = e[ω̂]tp(0).

Since t and θ are interchangeable as a result of assuming that p(t) rotates at a
constant rate of 1 rad/s (after t seconds, p(t) will have rotated t radians), the
equation above can also be written

p(θ) = e[ω̂]θp(0).
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Figure 3.10: The vector p(0) is rotated by an angle θ about the axis ω̂, to p(θ).

We now derive a closed-form expression for e[ω̂]θ. Here we make use of the
Cayley-Hamilton Theorem. First, the characteristic polynomial associated with
the 3× 3 matrix [ω̂] is given by

p(s) = det(sI − [ω̂]) = s3 + s.

The Cayley-Hamilton Theorem then implies [ω̂]3 + [ω̂] = 0, or

[ω̂]3 = −[ω̂].

Let us now expand the matrix exponential e[ω̂]θ in series form. Replacing [ω̂]3

by −[ω̂], [ω̂]4 by −[ω̂]2, [ω̂]5 by −[ω̂]3 = [ω̂], and so on, we obtain

e[ω̂]θ = I + [ω̂]θ + [ω̂]2
θ2

2!
+ [ω̂]3

θ3

3!
+ . . .

= I +

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
[ω̂] +

(
θ2

2!
− θ4

4!
+
θ6

6!
− · · ·

)
[ω̂]2.

Now recall the series expansions for sin θ and cos θ:

sin θ = θ − θ3

3!
+
θ5

5!
− . . .

cos θ = 1− θ2

2!
+
θ4

4!
− . . .

The exponential e[ω̂]θ therefore simplifies to the following:

Proposition 3.9. Given a vector ω̂θ ∈ R3, such that θ is any scalar and ω̂ ∈ R3

is a unit vector,

e[ω̂]θ = I + sin θ [ω̂] + (1− cos θ)[ω̂]2 ∈ SO(3). (3.50)

This formula provides the matrix exponential of [ω̂]θ ∈ so(3).
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This formula is also known as Rodrigues’ formula for rotations.
We have shown how to use the matrix exponential to construct a rotation

matrix from a rotation axis ω̂ and an angle θ. Further, the quantity e[ω̂]θp
amounts to rotating p ∈ R3 about the fixed-frame axis ω̂ by an angle θ. Sim-
ilarly, considering that a rotation matrix R consists of three column vectors,
the rotation matrix R′ = e[ω̂]θR is the orientation achieved by rotating R by θ
about the axis ω̂ in the fixed frame. Reversing the order of matrix multiplica-
tion, R′′ = Re[ω̂]θ is the orientation achieved by rotating R by θ about ω̂ in the
body frame.

Example 3.1. The frame {b} in Figure 3.11 is obtained by rotating from
an initial orientation aligned with the fixed frame {s} about a unit axis ω̂ =
(0, 0.866, 0.5)T by an angle of θ = 30◦ = 0.524 rad. The rotation matrix repre-
sentation of {b} can be calculated as

R = e[ω̂]θ

= I + sin θ[ω̂] + (1− cos θ)[ω̂]2

= I + 0.5

 0 −0.5 0.866
0.5 0 0

−0.866 0 0

+ 0.134

 0 −0.5 0.866
0.5 0 0

−0.866 0 0

2

=

 0.866 −0.250 0.433
0.250 0.967 0.058
−0.433 0.058 0.900

 .
The frame {b} can be represented by R or by its exponential coordinates ω̂ =
(0, 0.866, 0.5)T and θ = 0.524 rad, i.e., ω̂θ = (0, 0.453, 0.262)T .

If {b} is then rotated by −θ = −0.524 rad about the same fixed-frame axis
ω̂, i.e.,

R′ = e−[ω̂]θR,

then we would find R′ = I, as expected; the frame has rotated back to the
identity (aligned with the {s} frame). On the other hand, if {b} were to be
rotated by −θ about ω̂ in the body frame (this axis is different from ω̂ in the
fixed frame), the new orientation would not be aligned with {s}:

R′′ = Re−[ω̂]θ 6= I.

Our next task is to show that for any rotation matrix R ∈ SO(3), one can
always find a unit vector ω̂ and scalar θ such that R = e[ω̂]θ.

3.2.3.3 Matrix Logarithm of Rotations

If ω̂θ ∈ R3 represents the exponential coordinates of a rotation matrix R, then
the skew-symmetric matrix [ω̂θ] = [ω̂]θ is the matrix logarithm of the rotation
R. The matrix logarithm is the inverse of the matrix exponential. Just as the
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y^sx^s

z^s

ω^
30θ = 

y^b
x^b

z^b

{b}

Figure 3.11: The frame {b} is obtained by rotating from {s} by θ = 30◦ about
ω̂ = (0, 0.866, 0.5)T .

matrix exponential “integrates” the matrix representation of an angular velocity
[ω̂]θ ∈ so(3) for one second to give an orientation R ∈ SO(3), the matrix
logarithm “differentiates” an R ∈ SO(3) to find the matrix representation of
a constant angular velocity [ω̂]θ ∈ so(3) which, if integrated for one second,
rotates a frame from I to R. In other words,

exp : [ω̂]θ ∈ so(3) → R ∈ SO(3)
log : R ∈ SO(3) → [ω̂]θ ∈ so(3)

To derive the matrix logarithm, let us expand each of the entries for e[ω̂]θ in
Equation (3.50): cθ + ω̂2

1(1− cθ) ω̂1ω̂2(1− cθ)− ω̂3sθ ω̂1ω̂3(1− cθ) + ω̂2sθ
ω̂1ω̂2(1− cθ) + ω̂3sθ cθ + ω̂2

2(1− cθ) ω̂2ω̂3(1− cθ)− ω̂1sθ
ω̂1ω̂3(1− cθ)− ω̂2sθ ω̂2ω̂3(1− cθ) + ω̂1sθ cθ + ω̂2

3(1− cθ)

 , (3.51)

where ω̂ = (ω̂1, ω̂2, ω̂3)T , and we use the shorthand notation sθ = sin θ and
cθ = cos θ. Setting the above equal to the given R ∈ SO(3) and subtracting the
transpose from both sides leads to the following:

r32 − r23 = 2ω̂1 sin θ

r13 − r31 = 2ω̂2 sin θ

r21 − r12 = 2ω̂3 sin θ.

Therefore, as long as sin θ 6= 0 (or equivalently, θ is not an integer multiple of
π), we can write

ω̂1 =
1

2 sin θ
(r32 − r23)

ω̂2 =
1

2 sin θ
(r13 − r31)

ω̂3 =
1

2 sin θ
(r21 − r12).

The above equations can also be expressed in skew-symmetric matrix form as

[ω̂] =

 0 −ω̂3 ω̂2

ω̂3 0 −ω̂1

−ω̂2 ω̂1 0

 =
1

2 sin θ

(
R−RT

)
. (3.52)
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Recall that ω̂ represents the axis of rotation for the given R. Because of the
sin θ term in the denominator, [ω̂] is not well defined if θ is an integer multiple
of π.3 We address this situation next, but for now let us assume this is not
the case and find an expression for θ. Setting R equal to (3.51) and taking the
trace of both sides (recall that the trace of a matrix is the sum of its diagonal
entries),

trR = r11 + r22 + r33 = 1 + 2 cos θ. (3.53)

The above follows since ω̂2
1 + ω̂2

2 + ω̂2
3 = 1. For any θ satisfying 1 + 2 cos θ = trR

such that θ is not an integer multiple of π, R can be expressed as the exponential
e[ω̂]θ with [ω̂] as given in Equation (3.52).

Let us now return to the case θ = kπ, where k is some integer. When k
is an even integer (corresponding to θ = 0,±2π,±4π, . . .) we have tr R = 3,
or equivalently R = I, and it follows straightforwardly that θ = 0 is the only
possible solution. When k is an odd integer (corresponding to θ = ±π,±3π, . . .,
which in turn implies trR = −1), the exponential formula (3.50) simplifies to

R = e[ω̂]π = I + 2[ω̂]2. (3.54)

The three diagonal terms of Equation (3.54) can be manipulated to

ω̂i = ±
√
rii + 1

2
, i = 1, 2, 3. (3.55)

These may not always lead to a feasible unit-norm solution ω̂. The off-diagonal
terms lead to the following three equations:

2ω̂1ω̂2 = r12

2ω̂2ω̂3 = r23 (3.56)

2ω̂1ω̂3 = r13,

From Equation (3.54) we also know that R must be symmetric: r12 = r21,
r23 = r32, r13 = r31. Both Equations (3.55) and (3.56) may be necessary to
obtain a feasible solution. Once a solution ω̂ has been found, then R = e[ω̂]kπ,
k = ±π,±3π, . . ..

From the above it can be seen that solutions for θ exist at 2π intervals. If
we restrict θ to the interval [0, π], then the following algorithm can be used to
compute the matrix logarithm of the rotation matrix R ∈ SO(3):

Algorithm: Given R ∈ SO(3), find a θ ∈ [0, π] and a unit rotation axis
ω̂ ∈ R3, ‖ω̂ = 1‖, such that e[ω̂]θ = R. The vector ω̂θ ∈ R3 comprises the
exponential coordinates for R and the skew-symmetric matrix [ω̂]θ ∈ so(3) is a
matrix logarithm of R.

(i) If R = I, then θ = 0 and ω̂ is undefined.

3A singularity such as this is unavoidable for any three-parameter representation of rota-
tion. Euler angles and roll-pitch-yaw angles suffer similar singularities.
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θ

Figure 3.12: SO(3) as a solid ball of radius π.

(ii) If tr R = −1, then θ = π, and set ω̂ to any of the following three vectors
that is a feasible solution:

ω̂ =
1√

2(1 + r33)

 r13

r23

1 + r33

 (3.57)

or

ω̂ =
1√

2(1 + r22)

 r12

1 + r22

r32

 (3.58)

or

ω̂ =
1√

2(1 + r11)

 1 + r11

r21

r31

 . (3.59)

(iii) Otherwise θ = cos−1
(

tr R−1
2

)
∈ [0, π) and

[ω̂] =
1

2 sin θ
(R−RT ). (3.60)

Since every R ∈ SO(3) satisfies one of the three cases in the algorithm, for
every R there exists a set of exponential coordinates ω̂θ.

The formula for the logarithm suggests a picture of the rotation group SO(3)
as a solid ball of radius π (see Figure 3.12): given a point r ∈ R3 in this solid
ball, let ω̂ = r/‖r‖ be the unit axis in the direction from the origin to r and
and θ = ‖r‖ be the distance from the origin to r, so that r = ω̂θ. The rotation
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matrix corresponding to r can then be regarded as a rotation about the axis ω̂
by an angle θ. For any R ∈ SO(3) such that trR 6= −1, there exists a unique r
in the interior of the solid ball such that e[r] = R. In the event that trR = −1,
logR is given by two antipodal points on the surface of this solid ball. That
is, if there exists some r such that R = e[r], then ‖r‖ = π, and R = e[−r] also
holds; both r and −r correspond to the same rotation R.

3.3 Rigid-Body Motions and Spatial Velocities

In this section we derive representations for rigid-body configurations and ve-
locities that extend, but otherwise are analogous to, those in Section 3.2 for
rotations and angular velocities. In particular, the homogeneous transforma-
tion matrix T is analogous to R; a screw axis S is analogous to a rotation axis
ω̂; a spatial velocity V can be expressed as S θ̇ and is analogous to an angular
velocity ω = ω̂θ̇; and exponential coordinates Sθ ∈ R6 for rigid-body motions
are analogous to exponential coordinates ω̂θ ∈ R3 for rotations.

3.3.1 Homogeneous Transformation Matrices

We now consider representations for the combined orientation and position of
a rigid body. A natural choice would be to use a rotation matrix R ∈ SO(3)
to represent the orientation of {b} in {s} and a vector p ∈ R3 to represent the
origin of {b} in {s}. Rather than identifying R and p separately, we package
them into a single matrix as follows.

Definition 3.4. The Special Euclidean Group SE(3), also known as the
group of rigid-body motions or homogeneous transformations in R3, is
the set of all 4× 4 real matrices T of the form

T =

[
R p
0 1

]
=


r11 r12 r13 p1

r21 r22 r23 p2

r31 r32 r33 p3

0 0 0 1

 , (3.61)

where R ∈ SO(3), p ∈ R3 is a column vector, and 0 denotes a row vector of
three zeros.

An element T ∈ SE(3) will sometimes be denoted as (R, p). We begin this
section by establishing some basic properties of SE(3), and explaining why we
package R and p into this matrix form.

From the definition it should be apparent that six coordinates are needed to
parametrize SE(3). The most obvious choice might be to use the three expo-
nential coordinates for the rotation R and the usual three Cartesian coordinates
in R3 to parametrize the position p. Instead, we derive a six-dimensional version
of exponential coordinates on SE(3) that turns out to have several advantages
over other parametrizations.
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Many of the robotic mechanisms we have encountered thus far are planar.
With planar rigid-body motions in mind, we make the following definition:

Definition 3.5. The Special Euclidean Group SE(2) is the set of all 3× 3
real matrices T of the form

T =

[
R p
0 1

]
, (3.62)

where R ∈ SO(2), p ∈ R2, and 0 denotes a row vector of two zeros.

A matrix T ∈ SE(2) is always of the form

T =

 r11 r12 p1

r21 r22 p2

0 0 1

 =

 cos θ − sin θ p1

sin θ cos θ p2

0 0 1

 ,
where θ ∈ [0, 2π).

3.3.1.1 Properties of Transformation Matrices

We now list some basic properties of transformation matrices, which can be
proven by calculation. First, the identity I is a trivial example of a transfor-
mation matrix. The inverse of a transformation matrix is also a transformation
matrix:

Proposition 3.10. The inverse of a transformation matrix T ∈ SE(3) is also
a transformation matrix, and has the following form

T−1 =

[
R p
0 1

]−1

=

[
RT −RT p
0 1

]
. (3.63)

Proposition 3.11. The product of two transformation matrices is also a trans-
formation matrix.

Proposition 3.12. Multiplication of transformation matrices is associative,
(T1T2)T3 = T1(T2T3), but generally not commutative, T1T2 6= T2T1.

Before stating the next proposition, we note that just as in Section 3.1,
it is often useful to calculate the quantity Rx + p, where x ∈ R3 and (R, p)
represents T . If we append a ‘1’ to x, making it a four-dimensional vector, this
computation can be performed as a single matrix multiplication:

T

[
x
1

]
=

[
R p
0 1

] [
x
1

]
=

[
Rx+ p

1

]
. (3.64)

The vector (xT , 1)T is the representation of x in homogeneous coordinates,
and accordingly T ∈ SE(3) is called a homogenous transformation. When, by
an abuse of notation, we write Tx, we mean Rx+ p.
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Proposition 3.13. Given T = (R, p) ∈ SE(3) and x, y ∈ R3, the following
hold:

(i) ‖Tx−Ty‖ = ‖x− y‖, where ‖ · ‖ denotes the standard Euclidean norm in

R3, i.e., ‖x‖ =
√
xTx.

(ii) 〈Tx−Tz, Ty−Tz〉 = 〈x− z, y− z〉 for all z ∈ R3, where 〈·, ·〉 denotes the
standard Euclidean inner product in R3, i.e., 〈x, y〉 = xT y.

In Proposition 3.13, T is regarded as a transformation on points in R3, i.e.,
T transforms a point x to Tx. The first property then asserts that T pre-
serves distances, while the second asserts that T preserves angles. Specifically,
if x, y, z ∈ R3 represent the three vertices of a triangle, then the triangle formed
by the transformed vertices {Tx, Ty, Tz} has the same set of lengths and angles
as those of the triangle {x, y, z} (the two triangles are said to be isometric). One
can easily imagine taking {x, y, z} to be the points on a rigid body, in which
case {Tx, Ty, Tz} represents a displaced version of the rigid body. It is in this
sense that SE(3) can be identified with the rigid-body motions.

3.3.1.2 Uses of Transformation Matrices

As with rotation matrices, there are three major uses for a transformation matrix
T :

(i) Represent the configuration (position and orientation) of a rigid body.

(ii) Change the reference frame in which a vector or frame is represented.

(iii) Displace a vector or frame.

In the first use, T is thought of as representing the configuration of a frame; in
the second and third uses, T is thought of as an operator that acts to change
the reference frame or to move a vector or a frame.

To illustrate these uses, we refer to the three reference frames {a}, {b},
and {c}, and the point x, in Figure 3.13. These frames are chosen so that the
alignment of their axes is clear, allowing visual confirmation of calculations.

Representing a configuration. The fixed frame {s} is coincident with {a},
and the frames {a}, {b}, and {c}, represented by Tsa = (Rsa, psa), Tsb =
(Rsb, psb), Tsc = (Rsc, psc), respectively, can be expressed relative to {s} by the
rotations

Rsa =

 1 0 0
0 1 0
0 0 1

 , Rsb =

 0 0 1
0 −1 0
1 0 0

 , Rsc =

 −1 0 0
0 0 1
0 1 0

 ,
and the location of the origin of each frame relative to {s} can be written

psa =

 0
0
0

 , psb =

 0
−2

0

 , psc =

 −1
1
0

 .
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z^a

x^c

y^c

z^c
{a}

{b}

{c}

x^b

y^b

z^b pab
pbc

pac
v

Figure 3.13: Three reference frames in space, and a point v that can be repre-
sented in {b} as vb = (0, 0, 1.5)T .

Since {a} is collocated with {s}, the transformation matrix Tsa constructed from
(Rsa, psa) is the identity matrix.

Any frame can be expressed relative to any other frame, not just {s}; for
example, Tbc = (Rbc, pbc) represents {b} relative to {c}:

Rbc =

 0 1 0
0 0 −1
−1 0 0

 , pbc =

 0
−3
−1

 .
It can also be shown, using Proposition 3.10, that

Tde = T−1
ed

for any two frames {d} and {e}.

Changing the reference frame of a vector or a frame. By a subscript
cancellation rule analogous to that for rotations, for any three reference frames
{a}, {b}, and {c}, and any vector v expressed in {b} as vb,

TabTbc = T
a�b
T
�bc

= Tac

Tabvb = T
a�b
v
�b

= va.

Displacing (rotating and translating) a vector or a frame. A transfor-
mation matrix T , viewed as the pair (R, p) = (Rot(ω̂, θ), p), can act on a frame
Tsb by rotating it by θ about an axis ω̂ and translating it by p. Whether we
pre-multiply or post-multiply Tsb by the operator T determines whether the ω̂
axis and p are interpreted in the fixed frame {s} or the body frame {b}:

Tsb′ = TTsb =

[
R p
0 1

] [
Rsb psb
0 1

]
=

[
RRsb Rpsb + p

0 1

]
(fixed frame)

(3.65)

Tsb′′ = TsbT =

[
Rsb psb
0 1

] [
R p
0 1

]
=

[
RsbR Rsbp+ psb

0 1

]
(body frame).

(3.66)
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The fixed-frame transformation (pre-multiplication by T ) can be interpreted as
first rotating the {b} frame about ω̂ in the {s} frame, then translating it by
p in the {s} frame. The body-frame transformation (post-multiplication by T )
can be interpreted as first translating {b} by p in the {b} frame, then rotating
about ω̂ in the {b} frame. Fixed-frame and body-frame transformations are
illustrated in Figure 3.14 for a transformation T with ω̂ = (0, 0, 1)T , θ = 90◦,
and p = (0, 2, 0)T , for

T =


0 −1 0 0
1 0 0 2
0 0 1 0
0 0 0 1

 .
Beginning with the frame {b} represented by

Tsb =


0 0 1 0
0 −1 0 −2
1 0 0 0
0 0 0 1

 ,
the new frame {b′} achieved by a fixed-frame transformation TTsb and the new
frame {b′′} achieved by a body-frame transformation TsbT are

TTsb = Tsb′ =


0 1 0 2
0 0 1 2
1 0 0 0
0 0 0 1

 , TsbT = Tsb′′ =


0 0 1 0
−1 0 0 −4

0 −1 0 0
0 0 0 1

 .

Example 3.2. Figure 3.15 shows a robot arm mounted on a wheeled mobile
platform, and a camera fixed to the ceiling. Frames {b} and {c} are respectively
attached to the wheeled platform and the end-effector of the robot arm, and
frame {d} is attached to the camera. A fixed frame {a} has been established,
and the robot must pick up the object with body frame {e}. Suppose that
the transformations Tdb and Tde can be calculated from measurements obtained
with the camera. The transformation Tbc can be calculated using the arm’s
joint angle measurements. The transformation Tad is assumed to be known in
advance. Suppose these known transformations are given as follows:

Tdb =


0 0 −1 250
0 −1 0 −150
−1 0 0 200

0 0 0 1



Tde =


0 0 −1 300
0 −1 0 100
−1 0 0 120

0 0 0 1
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y^b’ z^b’{b’}
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{b}
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y^b
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Figure 3.14: Fixed-frame and body-frame transformations corresponding to ω̂ =
(0, 0, 1)T , θ = 90◦, and p = (0, 2, 0)T . (Left) The frame {b} rotated by 90◦

about ẑs and then translated by two units in ŷs, resulting in the new frame
{b′}. (Right) The frame {b} translated by two units in ŷb and then rotated by
90◦ about ẑb, resulting in the new frame {b′′}.

Figure 3.15: Assignment of reference frames.

Tad =


0 0 −1 400
0 −1 0 50
−1 0 0 300

0 0 0 1
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Tbc =


0 −1/

√
2 −1/

√
2 30

0 1/
√

2 −1/
√

2 −40
1 0 0 25
0 0 0 1

 .
In order to calculate how to move the robot arm to pick up the object, Tce must
be determined. We know that

TabTbcTce = TadTde,

where the only quantity besides Tce not given to us directly is Tab. However,
since Tab = TadTdb, we can determine Tce as follows:

Tce = (TadTdbTbc)
−1
TadTde.

From the given transformations,

TadTde =


1 0 0 280
0 1 0 −50
0 0 1 0
0 0 0 1



TadTdbTbc =


0 −1/

√
2 −1/

√
2 230

0 1/
√

2 −1/
√

2 160
1 0 0 75
0 0 0 1



(TadTdbTbc)
−1

=


0 0 1 −75

−1/
√

2 1/
√

2 0 70/
√

2

−1/
√

2 −1/
√

2 0 390/
√

2
0 0 0 1


from which Tce is evaluated to be

Tce =


0 0 1 −75

−1/
√

2 1/
√

2 0 −260/
√

2

−1/
√

2 −1/
√

2 0 130/
√

2
0 0 0 1

 .
3.3.2 Spatial Velocity

We now consider both the linear and angular velocity of a moving frame. As
before, denote by {s} and {b} the fixed (space) and moving (body) frames,
respectively, and let

Tsb(t) = T (t) =

[
R(t) p(t)

0 1

]
(3.67)

denote the homogeneous transformation of {b} as seen from {s} (to keep the
notation uncluttered, for the time being we write T instead of the usual Tsb).
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In Section 3.2.2 we discovered that pre- or post-multiplying Ṙ by R−1 re-
sults in a skew-symmetric representation of the angular velocity vector, either
in fixed or body frame coordinates. One might reasonably ask if a similar prop-
erty carries over to Ṫ , i.e., whether T−1Ṫ and Ṫ T−1 carry similar physical
interpretations.

Let us first see what happens when we pre-multiply Ṫ by T−1:

T−1Ṫ =

[
RT −RT p
0 1

] [
Ṙ ṗ
0 0

]
=

[
RT Ṙ RT ṗ

0 0

]
(3.68)

=

[
[ωb] vb
0 0

]
. (3.69)

Recall that RT Ṙ = [ωb] is just the skew-symmetric matrix representation of the
angular velocity expressed in moving frame coordinates. Also, ṗ is the linear
velocity of the moving frame origin expressed in fixed frame coordinates, and
RT ṗ = vb is this linear velocity expressed in moving frame coordinates. Putting
these two observations together, we can conclude that T−1Ṫ represents the
linear and angular velocity of the moving frame relative to a stationary frame
currently aligned with the moving frame.

The previous calculation of T−1Ṫ suggests that it is reasonable to merge
ωb and vb into a single six-dimensional velocity vector. We define the spatial
velocity in the body frame to be

Vb =

[
ωb
vb

]
∈ R6. (3.70)

Just as it is convenient to have a skew-symmetric matrix representation of an
angular velocity vector, it is convenient to have a matrix representation of a spa-
tial velocity vector, as shown in Equation (3.69). We overload the [·] notation,
writing

T−1Ṫ = [Vb] =

[
[ωb] vb
0 0

]
∈ se(3), (3.71)

where [ωb] ∈ so(3) and vb ∈ R3. The set of all 4 × 4 matrices of this form is
called se(3), the matrix representation of velocities associated with the rigid-
body configurations SE(3).

Now that we have a physical interpretation for T−1Ṫ , let us evaluate Ṫ T−1:

Ṫ T−1 =

[
Ṙ ṗ
0 0

] [
RT −RT p
0 1

]
=

[
ṘRT ṗ− ṘRT p

0 0

]
(3.72)

=

[
[ωs] vs
0 0

]
.
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Figure 3.16: Physical interpretation of vs. The initial (solid line) and displaced
(dotted line) configurations of a rigid body.

Observe that the skew-symmetric matrix [ωs] = ṘRT is the angular velocity
expressed in fixed frame coordinates, but that vs = ṗ− ṘRT p is not the linear
velocity of the moving frame origin expressed in the fixed frame (that quantity
would simply be ṗ). On the other hand, if we write vs as

vs = ṗ− ωs × p = ṗ+ ωs × (−p), (3.73)

the physical meaning of vs can now be inferred: imagining the moving frame is
attached to an infinitely large rigid body, vs is the instantaneous velocity of the
point on this body corresponding to the fixed frame origin (see Figure 3.16).

As we did for ωb and vb, we merge ωs and vs into a six-dimensional spatial
velocity:

Vs =

[
ωs
vs

]
∈ R6, [Vs] =

[
[ωs] vs
0 0

]
= Ṫ T−1 ∈ se(3), (3.74)

where [Vs] is the 4 × 4 matrix representation of Vs. We call Vs the spatial
velocity in the fixed frame.

If we regard the moving body as being infinitely large, there is an appealing
and natural symmetry between Vs = (ωs, vs) and Vb = (ωb, vb):

(i) ωb is the angular velocity relative to a stationary frame aligned with the
moving frame;

(ii) ωs is the angular velocity in fixed frame coordinates;

(iii) vb is the linear velocity of the moving frame origin, in a stationary
coordinate frame coincident with the moving frame;
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(iv) vs is the linear velocity of a point on the infinitely large moving body
currently at the fixed frame origin, in fixed frame coordinates.

Vb can be obtained from Vs as follows:

[Vb] = T−1Ṫ
= T−1 [Vs]T.

(3.75)

Going the other way,
[Vs] = T [Vb]T−1. (3.76)

Writing out the terms of Equation (3.76), we get

Vs =

[
R[ωb]R

T −R[ωb]R
T p+Rvb

0 0

]
which, using R[ω]RT = [Rω] (Proposition 3.5) and [ω]p = −[p]ω for p, ω ∈ R3,
can be manipulated into the following relation between Vb and Vs:[

ωs
vs

]
=

[
R 0

[p]R R

] [
ωb
vb

]
.

Because the 6× 6 matrix pre-multiplying Vb is useful for changing the frame of
reference for spatial velocities and forces, as we will see shortly, we give it its
own name.

Definition 3.6. Given T = (R, p) ∈ SE(3), its adjoint representation [AdT ]
is

[AdT ] =

[
R 0

[p]R R

]
∈ R6×6.

For any V ∈ R6, the adjoint map associated with T is

V ′ = [AdT ]V,

also sometimes written as
V ′ = AdT (V).

In terms of the matrix form [V] ∈ se(3) of V ∈ R6,

[V ′] = T [V]T−1.

The adjoint map satisfies the following properties, verifiable by direct calcu-
lation:

Proposition 3.14. Let T1, T2 ∈ SE(3), and V = (ω, v). Then

AdT1
(AdT2

(V)) = [AdT1
][AdT2

]V = [AdT1T2
]V. (3.77)

Also, for any T ∈ SE(3) the following holds:

[Ad−1
T ] = [AdT−1 ], (3.78)

The second property follows from the first by choosing T1 = T−1 and T2 = T ,
so that

AdT−1 (AdT (V)) = AdT−1T (V) = AdI(V) = V. (3.79)
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3.3.2.1 Summary of Results on Spatial Velocities

The main results on spatial velocities derived thus far are summarized in the
following proposition:

Proposition 3.15. Given a fixed (space) frame {s} and moving (body) frame
{b}, let Tsb(t) ∈ SE(3) be differentiable, where

Tsb(t) =

[
R(t) p(t)

0 1

]
. (3.80)

Then

T−1
sb Ṫsb = [Vb] =

[
[ωb] vb
0 0

]
∈ se(3) (3.81)

is the matrix representation of spatial velocity in body coordinates, and

ṪsbT
−1
sb = [Vs] =

[
[ωs] vs
0 0

]
∈ se(3) (3.82)

is the matrix representation of the spatial velocity in fixed (space) coordi-
nates. The spatial velocity vectors Vs and Vb are related by

Vs =

[
ωs
vs

]
=

[
R 0

[p]R R

] [
ωb
vb

]
= [AdTsb ]Vb (3.83)

Vb =

[
ωb
vb

]
=

[
RT 0
−RT [p] RT

] [
ωs
vs

]
= [AdTbs ]Vs. (3.84)

Similarly, for any two frames {a} and {b}, a spatial velocity represented as Va
in {a} is related to the representation Vb in {b} by

Va = [AdTab ]Vb, Vb = [AdTba ]Va.

Again analogous to angular velocities, it is important to realize that for a
given spatial velocity, its fixed-frame representation Vs does not depend on the
choice of the body frame {b}, and its body-frame representation Vb does not
depend on the choice of the fixed frame {s}. It is also important to realize
that Vb is the spatial velocity relative to a stationary frame instantaneously
coincident with {b}; it is not the velocity of the moving frame relative to the
moving frame, which would always be zero.

Example 3.3. Figure 3.17 shows a top view of a car with a single front wheel
driving on a plane. The ẑb-axis of the body frame {b} is into the page and the
ẑs-axis of the fixed frame {s} is out of the page. The angle of the front wheel
of the car causes the car’s motion to be a pure angular velocity w = 2 rad/s
about an axis out of the page, at the point r in the plane. Inspecting the figure,
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y^b
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Figure 3.17: The spatial velocity corresponding to the instantaneous motion of
the chassis of a three-wheel vehicle can be visualized as an angular velocity w
about the point r.

we can write r as rs = (2,−1, 0)T or rb = (2,−1.4, 0)T ; w as ωs = (0, 0, 2)T or
ωb = (0, 0,−2)T ; and Tsb as

Tsb =

[
Rsb psb
0 1

]
=


−1 0 0 4

0 1 0 0.4
0 0 −1 0
0 0 0 1

 .
From the figure and simple geometry, we get

vs = ωs × (−rs) = rs × ωs = (−2,−4, 0)T

vb = ωb × (−rb) = rb × ωb = (2.8, 4, 0)T

to get the spatial velocity Vs and Vb:

Vs =

[
ωs
vs

]
=


0
0
2
−2
−4

0

 , Vb =

[
ωb
vb

]
=


0
0
−2
2.8

4
0

 .

To confirm these results, try calculating Vs = [AdTsb ]Vb.

3.3.2.2 The Screw Interpretation of Spatial Velocity

Just as an angular velocity ω can be viewed as ω̂θ̇, where ω̂ is the unit rotation
axis and θ̇ is the rate of rotation about that axis, a spatial velocity V can be
interpreted as a screw axis S and a velocity θ̇ about the screw axis.

A screw axis represents the familiar motion of a screw: rotation about the
axis while also translating along the axis. One representation of a screw axis
S is the collection {q, ŝ, h}, where q ∈ R3 is any point on the axis; ŝ is a unit
vector in the direction of the axis; and h is the screw pitch, which defines the
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Figure 3.18: A screw axis S represented by a point q, a unit direction ŝ, and a
pitch h.

ratio of the linear velocity along the screw axis to the angular velocity θ̇ about
the screw axis (Figure 3.18).

Using Figure 3.18 and geometry, we can write the spatial velocity V = (ω, v)
corresponding to an angular velocity θ̇ about S (represented by {q, ŝ, h}) as

V =

[
ω
v

]
=

[
ŝθ̇

−ŝθ̇ × q + hŝθ̇

]
.

Note that the linear velocity v is the sum of two terms: one due to translation
along the screw axis, hŝθ̇, and one due to the linear motion at the origin induced
by rotation about the axis, −ŝθ̇×q. The first term is in the direction of ŝ, while
the second term is in the plane orthogonal to ŝ. It is not hard to show that, for
any V = (ω, v) where ω 6= 0, there exists an equivalent screw axis {q, ŝ, h} and
velocity θ̇, where ŝ = ω/‖ω‖, θ̇ = ‖ω‖, h = ω̂T v/θ̇, and q is chosen so that the
term −ŝθ̇ × q provides the portion of v orthogonal to the screw axis.

If ω = 0, then the pitch h of the screw is infinite. So ŝ is chosen as v/‖v‖,
and θ̇ is interpreted as the linear velocity ‖v‖ along ŝ.

Instead of representing the screw axis S using the cumbersome collection
{q, ŝ, h}, with the possibility that h may be infinite and the non-uniqueness of
q (any q along the screw axis may be used), we instead define the screw axis S
using a normalized version of any spatial velocity V = (ω, v) along/about the
axis:

(i) If ω 6= 0: S = V/‖ω‖ = (ω/‖ω‖, v/‖ω‖). The screw axis S is simply
V normalized by the length of the angular velocity vector. The angular
velocity about the screw axis is θ̇ = ‖ω‖, such that S θ̇ = V.

(ii) If ω = 0: S = V/‖v‖ = (0, v/‖v‖). The screw axis S is simply V normal-
ized by the length of the linear velocity vector. The linear velocity along
the screw axis is θ̇ = ‖v‖, such that S θ̇ = V.

This leads to the following definition of a “unit” screw axis:
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Definition 3.7. For a given reference frame, a screw axis S is written

S =

[
ω
v

]
∈ R6,

where either (i) ‖ω‖ = 1 or (ii) ω = 0 and ‖v‖ = 1. If (i) ‖ω‖ = 1, then
v = −ω×q+hω, where q is a point on the axis of the screw and h is the pitch of
the screw (h = 0 for a pure rotation about the screw axis). If (ii) ‖ω‖ = 0 and
‖v‖ = 1, the pitch of the screw is h =∞ and the spatial velocity is a translation
along the axis defined by v.

The 4× 4 matrix representation [S] of S is

[S] =

[
[ω] v
0 0

]
∈ se(3), [ω] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3), (3.85)

where the bottom row of [S] consists of all zeros.

Important: Although we use the pair (ω, v) for both screw axes (where one
of ‖ω‖ or ‖v‖ must be unit) and general spatial velocities, their meaning should
be clear from context.

Since a screw axis S is just a normalized spatial velocity, a screw axis rep-
resented as Sa in a frame {a} is related to the representation Sb in a frame {b}
by

Sa = [AdTab ]Sb, Sb = [AdTba ]Sa.

3.3.3 Exponential Coordinate Representation of Rigid-Body
Motions

3.3.3.1 Exponential Coordinates of Rigid-Body Motions

In the planar example in Section 3.1, we saw that any planar rigid-body dis-
placement can be achieved by rotating the rigid body about some fixed point
in the plane (for a pure translation, this point lies at infinity). A similar re-
sult also exists for spatial rigid-body displacements: called the Chasles-Mozzi
Theorem, it states that every rigid-body displacement can be expressed as a
twist about a fixed screw axis S in space.

By analogy to the exponential coordinates ω̂θ for rotations, we define the six-
dimensional exponential coordinates of a homogeneous transformation
T as Sθ ∈ R6, where S is the screw axis and θ is the distance that must be
traveled along/about the screw axis to take a frame from the origin I to T . If
the pitch of the screw axis S = (ω, v) is finite, then ‖ω‖ = 1 and θ corresponds
to the angle of rotation about the screw axis. If the pitch of the screw is infinite,
then ω = 0 and ‖v‖ = 1, and θ corresponds to the linear distance traveled along
the screw axis.

Also by analogy to the rotations, we define a matrix exponential and matrix
logarithm:

exp : [S]θ ∈ se(3) → T ∈ SE(3)
log : T ∈ SE(3) → [S]θ ∈ se(3)
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We begin by deriving a closed-form expression for the matrix exponential
e[S]θ. Expanding the matrix exponential in series form leads to

e[S]θ = I + [S]θ + [S]2
θ2

2!
+ [S]3

θ3

3!
+ . . .

=

[
e[ω]θ G(θ)v

0 1

]
, G(θ) = Iθ + [ω]

θ2

2!
+ [ω]2

θ3

3!
+ . . . (3.86)

Noting the similarity between G(θ) and the series definition for e[ω]θ, it is tempt-
ing to write I + G(θ)[ω] = e[ω]θ, and to conclude that G(θ) = (e[ω]θ − I)[ω]−1.
This is wrong: [ω]−1 does not exist (try computing det[ω]).

Instead we make use of the result [ω]3 = −[ω] that was obtained from the
Cayley-Hamilton Theorem. In this case G(θ) can be simplified to

G(θ) = Iθ + [ω]
θ2

2!
+ [ω]2

θ3

3!
+ . . .

= Iθ +

(
θ2

2!
− θ4

4!
+
θ6

6!
− . . .

)
[ω] +

(
θ3

3!
− θ5

5!
+
θ7

7!
− . . .

)
[ω]2

= Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2. (3.87)

Putting everything together,

Proposition 3.16. Let S = (ω, v) be a screw axis. If ‖ω‖ = 1, then for any
distance θ ∈ R traveled along the axis,

e[S]θ =

[
e[ω]θ

(
Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2

)
v

0 1

]
. (3.88)

If ω = 0 and ‖v‖ = 1, then

e[S]θ =

[
I vθ
0 1

]
. (3.89)

The latter result of the proposition can be verified directly from the series
expansion of e[S]θ with ω set to zero.

3.3.3.2 Matrix Logarithm of Rigid-Body Motions

The above derivation essentially provides a constructive proof of the Chasles-
Mozzi Theorem. That is, given an arbitrary (R, p) ∈ SE(3), one can always
find a screw axis S = (ω, v) and a scalar θ such that

e[S]θ =

[
R p
0 1

]
. (3.90)

In the simplest case, if R = I, then ω = 0, and the preferred choice for v is
v = p/‖p‖ (this makes θ = ‖p‖ the translation distance). If R is not the identity
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matrix and trR 6= −1, one solution is given by

[ω] =
1

2 sin θ
(R−RT ) (3.91)

v = G−1(θ)p, (3.92)

where θ satisfies 1 + 2 cos θ = tr R. We leave as an exercise the verification of
the following formula for G−1(θ):

G−1(θ) =
1

θ
I − 1

2
[ω] +

(
1

θ
− 1

2
cot

θ

2

)
[ω]2. (3.93)

Finally, if tr R = −1, we choose θ = π, and [ω] can be obtained via the matrix
logarithm formula on SO(3). Once [ω] and θ have been determined, v can then
be obtained as v = G−1(θ)p.

Algorithm: Given (R, p) written as T ∈ SE(3), find a θ ∈ [0, π] and a screw
axis S = (ω, v) ∈ R6 such that e[S]θ = T . The vector Sθ ∈ R6 comprises the
exponential coordinates for T and the matrix [S]θ ∈ se(3) is a matrix logarithm
of T .

(i) If R = I, then set ω = 0, v = p/‖p‖, and θ = ‖p‖.

(ii) If trR = −1, then set θ = π, and [ω] = logR as determined by the matrix
logarithm formula on SO(3) for the case tr R = −1. v is then given by
v = G−1(θ)p.

(iii) Otherwise set θ = cos−1
(

tr R−1
2

)
∈ [0, π) and

[ω] =
1

2 sin θ
(R−RT ) (3.94)

v = G−1(θ)p, (3.95)

where G−1(θ) is given by Equation (3.93).

Example 3.4. As an example, we consider the special case of planar rigid-
body motions and examine the matrix logarithm formula on SE(2). Suppose
the initial and final configurations of the body are respectively represented by
the SE(2) matrices in Figure 3.19:

Tsb =

 cos 30◦ − sin 30◦ 1
sin 30◦ cos 30◦ 2

0 0 1


Tsc =

 cos 60◦ − sin 60◦ 2
sin 60◦ cos 60◦ 1

0 0 1

 .
For this example, the rigid-body displacement occurs in the x-y plane. The
corresponding screw motion therefore has its screw axis in the direction of the
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x^b

y^b

{b}

y^s

x^s{s}

x^c
y^c

{c}

q = (3.37, 3.37)

θ

v = (3.37, –3.37)

ω  = 1 rad/s3

Figure 3.19: Two frames in a plane.

z-axis, and is of zero pitch. The screw axis S = (ω, v), expressed in {s}, is of
the form

ω = (0, 0, ω3)T

v = (v1, v2, 0)T .

Using this reduced form, we seek the screw motion that displaces the frame at
Tsb to Tsc, i.e., Tsc = e[S]θTsb, or

TscT
−1
sb = e[S]θ,

where

[S] =

 0 −ω3 v1

ω3 0 v2

0 0 0

 .
We can apply the matrix logarithm algorithm directly to TscT

−1
sb to obtain [S]

(and therefore S) and θ as follows:

[S] =

 0 −1 3.37
1 0 −3.37
0 0 0

 , S =

 ω3

v1

v2

 =

 1
3.37
−3.37

 , θ = π/6 rad (or 30◦).

The value of S means that the constant screw axis, expressed in the fixed frame
{s}, is represented by an angular velocity of 1 rad/s about ẑs and a linear velocity
of a point attached to the moving frame, but currently at the origin of {s}, of
(3.37,−3.37) expressed in the {s} frame.

Alternatively, we can observe that the displacement is not a pure translation—
Tsb and Tsc have rotation components that differ by an angle of 30◦—and quickly
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{a}

f

r

{b}

rb

ra

Figure 3.20: Relation between a spatial force represented as Fa and Fb.

determine that θ = 30◦ and ω3 = 1. We can also graphically determine the point
q = (qx, qy) in the x̂s-ŷs plane that the screw axis must pass through; for our
example this point is given by q = (3.37, 3.37).

3.4 Spatial Forces

Consider a linear force f acting on a rigid body at a point r. Defining a refer-
ence frame {a}, the point r can be represented as ra ∈ R3, the force f can be
represented as fa ∈ R3, and this force creates a torque or moment ma ∈ R3 in
the {a} frame:

ma = ra × fa.

Note that the point of application of the force along the line of action of the
force is immaterial.

Just as with spatial velocities, we can merge the moment and force into a
single six-dimensional spatial force expressed in the {a} frame, Fa:

Fa =

[
ma

fa

]
∈ R6. (3.96)

A spatial force is also known as a wrench. If more than one spatial force acts
on a rigid body, the total spatial force on the body is simply the vector sum
of the individual spatial forces. A spatial force with zero linear component is
called a pure moment.

A spatial force in the {a} frame can be represented in another frame {b} if
Tba is known (Figure 3.20). One way to derive the relationship between Fa and
Fb is to derive the appropriate transformations between the individual force and
moment vectors based on techniques we have already used.

A simpler and more insightful way to derive the relationship between Fa and
Fb is to (1) use the results we have already derived relating the representations
Va and Vb of the same spatial velocity, and (2) use the fact that the power
generated (or dissipated) by an (F ,V) pair must be the same regardless of the
frame they are represented in. (Imagine if we could create power simply by
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changing our choice of a reference frame!) Recall that the dot product of a force
and a velocity is power, and power is a frame-independent quantity. Because of
this, we know

VTb Fb = VTa Fa. (3.97)

From Proposition 3.15 we know that Va = [AdTab ]Vb, and therefore Equa-
tion (3.97) can be rewritten as

VTb Fb = ([AdTab ]Vb)TFa
= VTb [AdTab ]

TFa.

Since this must hold for all Vb, this simplifies to

Fb = [AdTab ]
TFa. (3.98)

Similarly,
Fa = [AdTba ]TFb. (3.99)

Proposition 3.17. Given a reference frame {a}, let fa ∈ R3 and ma = ra×fa ∈
R3 represent a spatial force in frame {a} coordinates, where ra ∈ R3 is the
vector from the {a} frame origin to r, also expressed in {a} frame coordinates.
Similarly, given another reference frame {b}, let fb ∈ R3 and mb = rb×fb ∈ R3

be representations of the same spatial force, where rb ∈ R3 is the vector from
the {b} frame origin to r, also expressed in {b} frame coordinates. Defining the
spatial forces Fa = (ma, fa) and Fb = (mb, fb), Fa and Fb are related by

Fb = AdTTab(Fa) = [AdTab ]
TFa (3.100)

Fa = AdTTba(Fb) = [AdTba ]TFb. (3.101)

3.5 Summary

The following table succinctly summarizes some of the key concepts from the
chapter, as well as the parallelism between rotations and rigid-body motions.
For more details, consult the appropriate section of the chapter.
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Rotations Rigid-Body Motions

R ∈ SO(3) : 3× 3 matrices satisfying T ∈ SE(3) : 4× 4 matrices

RTR = I, detR = 1 T =

[
R p
0 1

]
,

where R ∈ SO(3), p ∈ R3

R−1 = RT T−1 =

[
RT −RT p
0 1

]
RabRbc = Rac, Rabvb = va TabTbc = Tac, Tabvb = va

R = Rot(ω̂, θ) T =

[
Rot(ω̂, θ) p

0 1

]
Rsb′ = RRsb: rotate θ about ω̂s = ω̂ Tsb′ = TTsb: rotate θ about ω̂s = ω̂,

translate by p in {s}
Rsb′′ = RsbR: rotate θ about ω̂b = ω̂ Tsb′′ = TsbT : translate by p in {b},

rotate θ about ω̂b = ω̂

unit rotation axis is ω̂ ∈ R3, “unit” screw axis is S =

[
ω
v

]
∈ R6,

where ‖ω̂‖ = 1 where either (i) ‖ω‖ = 1 or
(ii) ω = 0 and ‖v‖ = 1

for a screw axis {q, ŝ, h} with finite h,

S =

[
ω
v

]
=

[
ŝ

−ŝ× q + hŝ

]
angular velocity can be written ω = ω̂θ̇ spatial velocity can be written V = S θ̇

for ω ∈ R3, for V =

[
ω
v

]
∈ R6,

[ω] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3) [V] =

[
[ω] v
0 0

]
∈ se(3)

(the same holds for any three-vector, (the pair (ω, v) can be a spatial velocity
angular velocity or not) V or a “unit” screw axis S,

depending on the context)

ṘR−1 = [ωs], R−1Ṙ = [ωb] Ṫ T−1 = [Vs], T−1Ṫ = [Vb]

[AdT ] =

[
R 0

[p]R R

]
∈ R6×6

ω̂a = Rabω̂b, ωa = Rabωb Sa = [AdTab ]Sb, Va = [AdTab ]Vb
ω̂θ ∈ R3 are exp coords for R ∈ SO(3) Sθ ∈ R6 are exp coords for T ∈ SE(3)

exp : [ω̂]θ ∈ so(3)→ R ∈ SO(3) exp : [S]θ ∈ se(3)→ T ∈ SE(3)

R = e[ω̂]θ = I + sin θ[ω̂] + (1− cos θ)[ω̂]2 T = e[S]θ =

[
e[ω̂]θ ∗

0 1

]
where ∗ =

(Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2)v

log : R ∈ SO(3)→ [ω̂]θ ∈ so(3) log : T ∈ SE(3)→ [S]θ ∈ se(3)
algorithm in Section 3.2.3.3 algorithm in Section 3.3.3.2

ma = Rabmb Fa = [AdTba ]TFb
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3.6 Notes and References

More detailed coverage of the various parametrizations of SO(3) can be found in,
e.g., [32] and the references cited there. The treatment of the matrix exponential
representation for screw motions is based on the work of Brockett [4], and a more
mathematically detailed discussion can be found in [25]. Classical screw theory
is presented in its original form in R. Ball’s treatise [2]. More modern (algebraic
and geometric) treatments can be found in, e.g., Bottema and Roth [3], Angeles
[1], and McCarthy [20].
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3.7 Exercises

1. Given a fixed frame {X̂, Ŷ , Ẑ} for physical space, let p be a point whose co-
ordinates are ( 1√

3
,− 1√

6
, 1√

2
). Suppose p is rotated about the fixed frame X̂-axis

by 30 degrees, then about the fixed frame Ŷ -axis by 135 degrees, and finally
about the fixed frame Ẑ-axis by -120 degrees.
(a) What are the coordinates of the point p following these three rotations?
(b) Find the rotation matrix R such that Rp are the coordinates you obtained
in (a).

2. (a) Derive a procedure for finding the ZXZ Euler angles of a rotation matrix.
(b) Using the results of (a), find the ZXZ Euler angles for the following rotation
matrix:  −

1√
2

1√
2

0

− 1
2 − 1

2
1√
2

1
2

1
2

1√
2

 .

3. Show that rotation matrices of the form r11 r12 0
r21 r22 r23

r31 r32 r33


can be parametrized using just two parameters θ and φ as follows: cos θ − sin θ 0

sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

 .
What should the range of values be for θ and φ?

4. (a) Show that the three eigenvalues of a rotation matrix R ∈ SO(3) each have
unit magnitude, and conclude that they can always be written {µ+iν, µ−iν, 1},
where µ2 + ν2 = 1.
(b) Show that a rotation matrix R ∈ SO(3) can always be factored in the form

R = A

 µ ν 0
−ν µ 0

0 0 1

A−1,

where A ∈ SO(3) and µ2 + ν2 = 1. (Hint: Denote the eigenvector associated
with the eigenvalue µ+ iν by x+ iy, x, y ∈ R3, and the eigenvector associated
with the eigenvalue 1 by z ∈ R3. For the purposes of this problem you may
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assume that the set of vectors {x, y, z} can always be chosen to be linearly
independent.)

5. (a) Find the general solution to the differential equation ẋ = Ax, where

A =

[
−2 1
0 −1

]
.

What happens to the solution x(t) as t→∞?
(b) Do the same for

A =

[
2 −1
1 2

]
.

What happens to the solution x(t) as t→∞?

6. Let x ∈ R2, A ∈ R2×2, and consider the linear differential equation ẋ(t) =
Ax(t). Suppose that

x(t) =

[
e−3t

−3e−3t

]
is a solution for the initial condition x(0) = (1,−3), and

x(t) =

[
et

et

]
.

is a solution for the initial condition x(0) = (1, 1). Find A and eAt.

7. Given a differential equation of the form ẋ = Ax + f(t), where x ∈ Rn and
f(t) is a given differentiable function of t. Show that the general solution can
be written

x(t) = eAtx(0) =

∫ t

0

eA(t−s)f(s) ds.

(Hint: Define z(t) = e−Atx(t), and evaluate ż(t).)

8. (a) Prove the matrix identity MeAM−1 = eMAM−1

.
(b) Under what conditions on A,B ∈ Rn×n is the following matrix identity
true?

eAeB = eA+B .

9. Consider a wrist mechanism with two revolute joints θ1 and θ2, in which the
end-effector frame orientation R ∈ SO(3) is given by

R = e[w1]θ1e[w2]θ2 ,

with ω1 = (0, 0, 1) and ω2 = (0, 1√
2
,− 1√

2
). Determine whether the following

orientation is reachable (that is, find, if it exists, a solution (θ1, θ2) for the
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following R):

R =

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2



Figure 3.21: A three degree of freedom wrist mechanism.

10. Figure 3.21 shows a three degree of freedom wrist mechanism in its zero
position (that is, with all its joints set to zero).
(a) Express the tool frame orientation R03 = R(α, β, γ) as a product of three
rotation matrices.
(b) Find all possible angles (α, β, γ) for the two values of R03 given below. If
no solution exists, explain why in terms of the analogy between SO(3) and the
solid ball of radius π.

(i) R03 =

 0 1 0
1 0 0
0 0 −1

 .
(ii) R03 = e[w]π2 , where w = (0, 1√

5
, 2√

5
).

11. (a) Suppose we seek the logarithm of a rotation matrix R whose trace is
-1. From the exponential formula

e[ω]θ = I + sin θ[ω] + (1− cos θ)[ω]2, ‖ω‖ = 1,
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and recalling that trR = −1 implies θ = π, the above equation simplifies to

R = I + 2[ω]2 =

 1− 2(ω2
2 + ω2

3) 2ω1ω2 2ω1ω3

2ω1ω2 1− 2(ω2
1 + ω2

3) 2ω2ω3

2ω1ω2 2ω2ω3 1− 2(ω2
1 + ω2

2)


Using the fact that ω2

1 + ω2
2 + ω2

3 = 1, is it correct to conclude that

ω1 =

√
r11 + 1

2
, ω2 =

√
r22 + 1

2
, ω3 =

√
r33 + 1

2
.

is also a solution?
(c) Using the fact that [ω]3 = −[ω], the identity R = I + 2[ω]2 can also be
written in the alternative form

R− I = 2[ω]2

[ω] (R− I) = 2 [ω]
3

= −2 [ω]

[ω] (R+ I) = 0.

The resulting equation is a system of three linear equations in (ω1, ω2, ω3). What
is the relation between the solution to this linear system and the logarithm of
R?

12. (a) Given a rotation matrix A = Rot(ẑ, α), where Rot(ẑ, α) indicates a
rotation about the ẑ-axis by an angle α, find all rotation matrices R ∈ SO(3)
that satisfy AR = RA.
(b) Given rotation matrices A = Rot(ẑ, α) and B = Rot(ẑ, β), with α 6= β, find
all rotation matrices R ∈ SO(3) that satisfy AR = RB.
(c) Given arbitrary rotation matrices A,B ∈ SO(3), find all solutionsR ∈ SO(3)
to the equation AR = RB.

13. (a) Exploiting all of the known properties of rotation matrices, determine
the minimum number of arithmetic operations (multiplication and division, ad-
dition and subtraction) required to multiply two rotation matrices.
(b) Due to finite arithmetic precision, the numerically obtained product of two
rotation matrices is not necessarily a rotation matrix; that is, the resulting
rotation A may not exactly satisfy ATA = I as desired. Devise an iterative
numerical procedure that takes an arbitrary matrix A ∈ R3×3, and produces a
matrix R ∈ SO(3) that minimizes

‖A−R‖2 = tr (A−R)(A−R)T .

14. (a) Verify the formula for obtaining the unit quaternion representation of
a rotation R ∈ SO(3).
(b) Verify the formula for obtaining the rotation matrix R given a unit quater-
nion q ∈ S3.
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(c) Verify the product rule for two unit quaternions; that is, given two unit
quaternions q, p ∈ S3 corresponding respectively to the rotations R,Q ∈ SO(3),
find a formula for the unit quaternion representation of the product RQ ∈
SO(3).
(d) Compare the number of arithmetic operations for multiplying two rotation
matrices versus two unit quaternions. Which requires fewer arithmetic opera-
tions?

Figure 3.22: Four reference frames defined in a robot’s work environment.

15. Consider the robot of Figure 3.22, in which four reference frames are
depicted: the fixed frame {a}, the end-effector frame effector {b}, camera frame
{c}, and workpiece frame {d}.
(a) Find Tad and Tcd in terms of the dimensions given in the figure.
(b) Find Tab given that

Tbc =


1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1

 .

16. Consider a robot arm mounted on a spacecraft as shown in Figure 3.23,
in which frames are attached to the earth {e}, satellite {s}, the spacecraft {a},
and the robot arm {r}, respectively.
(a) Given Tea, Tar, and Tes, find Trs.
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Figure 3.23: A robot arm mounted on a spacecraft.

(b) Suppose the frame {s} origin as seen from {e} is (1, 1, 1). Suppose further-
more that

Ter =


−1 0 0 1

0 1 0 1
0 0 −1 1
0 0 0 1

 .
Write down the coordinates of the frame {s} origin as seen from frame {r}.

Figure 3.24: A classical bicycle with a larger front wheel.

17. Consider the classical bicycle of Figure 3.24, in which the diameter of the
front wheel is twice that of the rear wheel. Frames {a} and {b} are attached to
the centers of each wheel, and frame {c} is attached to the top of the front wheel.
Assuming the bike moves forward in the ŷ direction, find Tac as a function of
the front wheel’s rotation angle θ (assume θ = 0 at the instant shown in the
figure).
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Figure 3.25: A laser tracking a moving target.

18. A target moves along a circular path at constant angular velocity ω rad/sec
as shown in Figure 3.25. The target is tracked by a laser mounted on a moving
platform, rising vertically at constant speed v. Assume the laser and the plat-
form start at L1 at t = 0, while the target starts at frame T1.
(a) Derive frames T01, T12, T03 as a function of t.
(b) Using your results from part (a), derive T23 as a function of t.

Figure 3.26: Spacecraft and space station.

19. Suppose the space station of Figure 18 is in circular orbit around the earth,
and at the same time rotates about an axis always pointing toward the north
star. A spacecraft heading toward the space station is unable to locate the
docking port due to an instrument malfunction. An earth-based ground station
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sends the following information to the spacecraft:

Tab =


0 −1 0 −100
1 0 0 300
0 0 1 500
0 0 0 1

 , pa =

 0
800
0

 ,

where pa is the vector ~p expressed in {a} frame coordinates.
(a) From the given information, find rb, the vector ~r expressed in {b} frame
coordinates.
(b) Determine Tbc at the instant shown in the figure. Assume here that the ŷ
and ẑ axes of the {a} and {c} frames are coplanar with the docking port.

Figure 3.27: Two toy cars on a round table.

20. Two toy cars are moving on a round table as shown in Figure 3.27. Car 1
moves at a constant speed v1 along the circumference of the table, while car 2
moves at a constant speed v2 along a radius; the positions of the two vehicles
at t = 0 are shown in the figure.
(a) Find T01, T02 as a function of t.
(b) Find T12 as a function of t.

21. Figure 3.28 shows the configuration, at t = 0, of a robot arm whose first
joint is a screw joint of pitch h = 2. The arm’s link lengths are L1 = 10,
L2 = L3 = 5, and L4 = 3. Suppose all joint angular velocities are constant,
with values ω1 = π

4 , ω2 = π
8 , w3 = −π4 rad/sec. Find Tsb(4) ∈ SE(3), i.e., the

end-effector frame {b} ∈ SE(3) relative to the fixed frame {s}, at time t = 4.

22. A cube undergoes two different screw motions from frame {1} to frame {2}
as shown in Figure 3.29. In both cases (a) and (b), the initial configuration of
the cube is

T01 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .
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Figure 3.28: A robot arm with a screw joint.

(a) a (b) b

Figure 3.29: A cube undergoing two different screw motions.

(a) For each case (a) and (b), find the screw parameter S = (ω, v) such that
T02 = e[S]T01, where no constraints are placed on ω or v.
(b) Repeat (a), this time with the constraint that ‖ω‖ ∈ [−π, π].

23. A particle starts from the origin, and undergoes a radially increasing cir-
cular spiral motion in the ŷ direction as illustrated in Figure 3.30. For every
translation of 10 units in the ŷ direction, the particle completes one revolution.
Attaching a moving frame to the particle, the motion of this moving frame can
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Figure 3.30: A particle undergoing a screw motion.

be expressed in the form
T (θ) = e[Sa]θe[Sb]θ,

for some Sa = (ωa, va), Sb = (ωa, vb). Find Sa and Sb.

24. Given ω ∈ R3, ‖ω‖ = 1, and θ ∈ R, show that

(
Iθ + (1− cos θ)[ω] + (1− sin θ)[ω]2

)−1
= I−θ

2
[ω]+

(
1− θ

2
(sec θ + cot θ)

)
[ω]2.

Under what conditions, if any, will the inverse fail to exist? (Hint: Express the
inverse as a quadratic matrix polynomial in [ω], and determine the coefficients.
The quadratic polynomial assumption can be justified via the identity [ω]3 =
−[ω].)

25. Given two reference frames {a} and {b} in physical space, and a fixed frame
{o}, define the distance between frames {a} and {b} as

dist(Toa, Tob) ≡
√
θ2 + ||pab||2

where Rab = e[ω]θ. Suppose the fixed frame is displaced to another frame {o′},
and that To′a = SToa, To′b = STo′b for some constant S = (Rs, ps) ∈ SE(3).
(a) Evaluate dist(To′a, To′b) using the above distance formula.
(b) Under what conditions on S does dist(Toa, Tob) = dist(To′a, To′b)?

26. Two frames {a} and {b} are attached to a moving rigid body. Show that
the spatial velocity of {a} in space frame coordinates is the same as the spatial
velocity of {b} in space frame coordinates.



Chapter 4

Forward Kinematics

The forward kinematics of a robot refers to the calculation of the position and
orientation of its end-effector frame from its joint values. Figure 4.1 illustrates
the forward kinematics problem for a 3R planar open chain. Starting from the
base link, the link lengths are L1, L2, and L3. Choose a fixed frame {0} with
origin located at the base joint as shown, and assume an end-effector frame {4}
has been attached to the tip of the third link. The Cartesian position (x, y)
and orientation φ of the end-effector frame as a function of the joint angles
(θ1, θ2, θ3) are then given by

x = L1 cos θ1 + L2 cos(θ1 + θ2) + L3 cos(θ1 + θ2 + θ3) (4.1)

y = L1 sin θ1 + L2 sin(θ1 + θ2) + L3 sin(θ1 + θ2 + θ3) (4.2)

φ = θ1 + θ2 + θ3. (4.3)

If one is only interested in the (x, y) position of the end-effector, the robot’s task
space is then taken to be the x-y plane, and the forward kinematics would consist
of Equations (4.1)-(4.2) only. If the end-effector’s position and orientation both
matter, the forward kinematics would consist of the three equations (4.1)-(4.3).

While the above analysis can be done using only basic trigonometry, it is
not difficult to imagine that for more general spatial chains, the analysis can
become considerably more complicated. A more systematic method of deriving
the forward kinematics would be to first attach reference frames to each of the
links; in Figure 4.1 the three link reference frames are respectively labeled {1},
{2}, and {3}. The forward kinematics can then be written as a product of four
homogeneous transformation matrices,

T04 = T01T12T23T34, (4.4)

99
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Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the
x̂ and ŷ axes are shown, and the ẑ axes are parallel and out of the page.

where

T01 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1

 , T12 =


cos θ2 − sin θ2 0 L1

sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1



T23 =


cos θ3 − sin θ3 0 L2

sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

 , T34 =


1 0 0 L3

0 1 0 0
0 0 1 0
0 0 0 1

 . (4.5)

Observe that T34 is constant, and that each remaining Ti−1,i depends only on
the joint variable θi.

As an alternative to this approach, let us define M to be the position and
orientation of frame {4} when all joint angles are set to zero (the “home” or
“zero” position of the robot). Then

M =


1 0 0 L1 + L2 + L3

0 1 0 0
0 0 1 0
0 0 0 1

 , (4.6)

Now consider each of the revolute joint axes to be a zero-pitch screw axis. If
θ1 and θ2 are held at their zero position, then the screw axis corresponding to
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rotating about joint three can be expressed in the {0} frame as

S3 =

[
ω
v

]
=


0
0
1
0

−(L1 + L2)
0


or

[S3] =

[
[ω] v
0 0

]
=


0 −1 0 0
1 0 0 −(L1 + L2)
0 0 0 0
0 0 0 0

 .
Therefore, for any θ3, the matrix exponential representation for screw motions
from the previous chapter allows us to write

T04 = e[S3]θ3M (for θ1 = θ2 = 0). (4.7)

Now, for θ1 = 0 and any fixed (but arbitrary) θ3, rotation about joint two can
be viewed as applying a screw motion to the rigid (link two)/(link three) pair,
i.e.,

T04 = e[S2]θ2e[S3]θ3M (for θ1 = 0), (4.8)

where [S3] and M are as defined previously, and

[S2] =


0 −1 0 0
1 0 0 −L1

0 0 0 0
0 0 0 0

 . (4.9)

Finally, keeping θ2 and θ3 fixed, rotation about joint one can be viewed as
applying a screw motion to the entire rigid three-link assembly. We can therefore
write, for arbitrary values of (θ1, θ2, θ3),

T04 = e[S1]θ1e[S2]θ2e[S3]θ3M, (4.10)

where

[S1] =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (4.11)

Thus the forward kinematics can be expressed as a product of matrix exponen-
tials, each corresponding to a screw motion. Note that this latter derivation of
the forward kinematics does not make use of any link reference frames; only {0}
and M must be defined.

In this chapter we consider the forward kinematics of general open chains.
One widely used representation for the forward kinematics of open chains relies
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Figure 4.2: Illustration of the PoE formula for an n-link spatial open chain.

on the Denavit-Hartenberg parameters (D-H parameters), which corre-
sponds to Equation (4.4). Another representation relies on the Product of
Exponentials (PoE) formula, which corresponds to Equation (4.10). The ad-
vantage of the D-H representation is that it is a minimal representation, in that
it requires the smallest number of parameters to describe the the robot’s kine-
matic structure. The PoE representation is not minimal, in that the number of
parameters needed to describe the screw axes of a robot is larger than the num-
ber of parameters needed in the D-H representation, but it has other advantages
over the D-H representation (e.g., no link frames are necessary) and it is our
preferred choice of forward kinematics representation. The D-H representation,
and its relationship to the PoE representation, is given in Appendix C.

4.1 Product of Exponentials Formula

4.1.1 First Formulation: Screw Axes Expressed in Base Frame

The key concept behind the PoE formula is to regard each joint as applying a
screw motion to all the outward links. To illustrate, consider a general spatial
open chain like the one shown in Figure 4.2, consisting of n one-dof joints that
are connected serially. To apply the PoE formula, you must choose a fixed base
frame and an end-effector frame attached to the last link. Place the robot in
its zero position by setting all joint values to zero, with the direction of positive
displacement (rotation for revolute joints, translation for prismatic joints) for
each joint specified. Let M ∈ SE(3) denote the configuration of the end-effector
frame relative to the fixed base frame when the robot is in its zero position.
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Now suppose joint n is displaced to some joint value θn. The end-effector
frame M then undergoes a displacement of the form

T = e[Sn]θnM, (4.12)

where T ∈ SE(3) is the new configuration of the end-effector frame, and Sn =
(ωn, vn) is the screw axis of joint n, as expressed in the fixed base frame. If joint
n is revolute (corresponding to a screw motion of zero pitch), then ωn ∈ R3 is a
unit vector in the positive direction of joint axis n; vn = −ωn× qn, with qn any
arbitrary point on joint axis n as written in coordinates in the fixed base frame;
and θn is the joint angle. If joint n is prismatic, then ωn = 0; vn ∈ R3 is a unit
vector in the direction of positive translation; and θn represents the prismatic
extension/retraction.

If we assume joint n − 1 is also allowed to vary, then this has the effect of
applying a screw motion to link n− 1 (and by extension to link n, since link n
is connected to link n− 1 via joint n). The end-effector frame thus undergoes a
displacement of the form

T = e[Sn−1]θn−1

(
e[Sn]θnM

)
. (4.13)

Continuing with this reasoning and now allowing all the joints (θ1, . . . , θn) to
vary, it follows that

T = e[S1]θ1 · · · e[Sn−1]θn−1e[Sn]θnM. (4.14)

This is the product of exponentials formula describing the forward kinematics
of an n-dof open chain. Specifically, we call Equation (4.14) the space form
of the product of exponentials formula, referring to the fact that the screw axes
are expressed in the fixed space frame.

To summarize, to calculate the forward kinematics of an open chain using
the space form of the PoE formula (4.14), we need the following elements:

(i) The end-effector configuration M ∈ SE(3) when the robot is at its home
position.

(ii) The screw axes S1 . . .Sn, expressed in the fixed base frame, corresponding
to the joint motions when the robot is at its home position.

(iii) The joint variables θ1 . . . θn.

Unlike with the D-H representation, no link reference frames need to be defined.
Further advantages will come to light when we examine the velocity kinematics
in the next chapter.

4.1.2 Examples

We now derive the forward kinematics for some common spatial open chains
using the PoE formula.
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Figure 4.3: A 3R spatial open chain.

Example: 3R Spatial Open Chain

Consider the 3R open chain of Figure 4.3, shown in its home position (all joint
variables set equal to zero). Choose the fixed frame {0} and end-effector frame
{3} as indicated in the figure, and express all vectors and homogeneous trans-
formations in terms of the fixed frame. The forward kinematics will be of the
form

T = e[S1]θ1e[S2]θ2e[S3]θ3M,

where M ∈ SE(3) is the end-effector frame configuration when the robot is in
its zero position. By inspection M can be obtained as

M =


0 0 1 L1

0 1 0 0
−1 0 0 −L2

0 0 0 1

 .
The screw axis S1 = (ω1, v1) for joint axis 1 is then given by ω1 = (0, 0, 1)
and v1 = (0, 0, 0) (the fixed frame origin (0,0,0) is a convenient choice for the
point q1 lying on joint axis 1). To determine the screw axis S2 for joint axis 2,
observe that joint axis 2 points in the −ŷ0 axis direction, so that ω2 = (0,−1, 0).
Choose q2 = (L1, 0, 0), in which case v2 = −ω2 × q2 = (0, 0,−L1). Finally, to
determine the screw axis S3 for joint axis 3, note that ω3 = (1, 0, 0). Choosing
q3 = (0, 0,−L2), it follows that v3 = −ω3 × q3 = (0,−L2, 0).

In summary, we have the following 4×4 matrix representations for the three
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Figure 4.4: PoE forward kinematics for the 6R open chain.

joint screw axes S1, S2, and S3:

[S1] =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 1



[S2] =


0 0 −1 0
0 0 0 0
1 0 0 −L1

0 0 0 1



[S3] =


0 0 0 0
0 0 −1 −L2

0 1 0 0
0 0 0 1

 .
It will be more convenient to list the screw axes in the following tabular form:

i ωi vi

1 (0, 0, 1) (0, 0, 0)
2 (0,−1, 0) (0, 0,−L1)
3 (1, 0, 0) (0, L2, 0)

Example: 6R Spatial Open Chain

We now derive the forward kinematics of the 6R open chain of Figure 4.4. The
zero position and the direction of positive rotation for each joint axis are as
shown in the figure. A fixed frame {0} and end-effector frame {6} are also
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Figure 4.5: The RRPRRR spatial open chain.

assigned as shown. The end-effector frame M in the zero position is then

M =


1 0 0 0
0 1 0 3L
0 0 1 0
0 0 0 1

 (4.15)

The screw axis for joint 1 is in the direction ω1 = (0, 0, 1). The most convenient
choice for point q1 lying on joint axis 1 is the origin, so that v1 = (0, 0, 0). The
screw axis for joint 2 is in the ŷ direction of the fixed frame, so ω2 = (0, 1, 0).
Choosing q2 = (0, 0, 0), we have v2 = (0, 0, 0). The screw axis for joint 3 is
in the direction ω3 = (−1, 0, 0). Choosing q3 = (0, 0, 0) leads to v3 = (0, 0, 0).
The screw axis for joint 4 is in the direction ω4 = (−1, 0, 0). Choosing q4 =
(0, L, 0) leads to v4 = (0, 0, L). The screw axis for joint 5 is in the direction
ω5 = (−1, 0, 0); choosing q5 = (0, 2L, 0) leads to v5 = (0, 0, 2L). The screw
axis for joint 6 is in the direction ω6 = (0, 1, 0); choosing q6 = (0, 0, 0) leads
to v6 = (0, 0, 0). In summary, the screw axes Si = (ωi, vi), i = 1, . . . 6 are as
follows:

i ωi vi

1 (0, 0, 1) (0, 0, 0)
2 (0, 1, 0) (0, 0, 0)
3 (−1, 0, 0) (0, 0, 0)
4 (−1, 0, 0) (0, 0, L)
5 (−1, 0, 0) (0, 0, 2L)
6 (0, 1, 0) (0, 0, 0)
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Example: An RRPRRR Spatial Open Chain

In this example we consider the six degree-of-freedom RRPRRR spatial open
chain of Figure 4.5. The end-effector frame in the zero position is given by

M =


1 0 0 0
0 1 0 L1 + L2

0 0 1 0
0 0 0 1

 .
The screw axes Si = (ωi, vi) are listed in the following table:

i ωi vi

1 ( 0, 0, 1) (0, 0, 0)
2 ( 1, 0, 0) (0, 0, 0)
3 ( 0, 0, 0) (0, 1, 0)
4 ( 0, 1, 0) (0, 0, 0)
5 ( 1, 0, 0) (0, 0, −L1)
6 ( 0, 1, 0) (0, 0, 0)

Note that the third joint is prismatic, so that ω3 = 0 and v3 is a unit vector in
the direction of positive translation.

4.1.3 Second Formulation: Screw Axes Expressed in End-Effector
Frame

The matrix identity eM
−1PM = M−1ePM (Proposition 3.7) can also be ex-

pressed as MeM
−1PM = ePM . Beginning with the rightmost term of the pre-

viously derived product of exponentials formula, if we repeatedly apply this
identity, after n iterations we obtain

T = e[S1]θ1 · · · e[Sn]θnM

= e[S1]θ1 · · ·MeM
−1[Sn]Mθn

= e[S1]θ1 · · ·MeM
−1[Sn−1]Mθn−1eM

−1[Sn]Mθn

= MeM
−1[S1]Mθ1 · · · eM

−1[Sn−1]Mθn−1eM
−1[Sn]Mθn

= Me[B1]θ1 · · · e[Bn−1]θn−1e[Bn]θn , (4.16)

where each [Bi] = M−1[Si]M = [AdM−1 ]Si, i = 1, . . . , n. Equation (4.16) is an
alternative form of the product of exponentials formula, representing the joint
axes as screw axes Bi in the end-effector (body) frame when the robot is at
its zero position. We call Equation (4.16) the body form of the product of
exponentials formula.

Before concluding this chapter, it is worth considering the order of the trans-
formations expressed in the space form PoE formula (Equation (4.14)) and in
the body form formula (Equation (4.16)). In the space form, M is first trans-
formed by the most distal joint, progressively moving inward to more proximal
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joints. Note that the fixed space-frame representation of the screw axis for a
more proximal joint is not affected by the joint displacement at a distal joint
(e.g., joint three’s displacement does not affect joint two’s screw axis represen-
tation in the space frame). In the body form, M is first transformed by the
first joint, progressively moving outward to more distal joints. The body-frame
representation of the screw axis for a more distal joint is not affected by the joint
displacement at a proximal joint (e.g., joint two’s displacement does not affect
joint three’s screw axis representation in the body frame.) Therefore, it makes
sense that we need only determine the screw axes at the robot’s zero position:
any Si is unaffected by the more distal transformations that came earlier, and
any Bi is unaffected by the more proximal transformations that came earlier.

Example: 6R Spatial Open Chain

We now express the forward kinematics for the same 6R open chain of Figure 4.4
in the second form

T = Me[B1]θ1e[B2]θ2 · · · e[B6]θ6 .

Assume the same fixed and end-effector frames and zero position as the previous
example. M is still the same as in Equation (4.15), obtained as the end-effector
frame as seen from the fixed frame with the chain in its zero position. The
screw axis for each joint axis, however, is now expressed with respect to the
end-effector frame in its zero position:

i ωi vi

1 (0, 0, 1) (−3L, 0, 0)
2 (0, 1, 0) (0, 0, 0)
3 (−1, 0, 0) (0, 0,−3L)
4 (−1, 0, 0) (0, 0,−2L)
5 (−1, 0, 0) (0, 0,−L)
6 (0, 1, 0) (0, 0, 0)

4.2 Summary

• Given an open chain with a reference frame attached to some point on
its last link—this frame is denoted the end-effector frame—the forward
kinematics is the mapping from the joint values to the position and ori-
entation of the end-effector frame.

• In the Denavit-Hartenberg representation, the forward kinematics of
an open chain is described in terms of relative displacements between
reference frames attached to each link. If the link frames are sequentially
labeled {0}, . . . , {n}, where {0} is the fixed frame and {n} is the end-
effector frame, then the forward kinematics is expressed as

T0n = T01(θ1) · · ·Tn−1,n(θn)

where θi denotes the joint i variable.
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• The Denavit-Hartenberg convention requires that reference frames as-
signed to each link obey a strict convention (see Appendix C). Following
this convention, the link frame transformation Ti−1,i between link frames
{i−1} and {i} can be parametrized using a minimum of four parameters,
the Denavit-Hartenberg parameters.

• The forward kinematics can also be expressed as the following product
of exponentials (the space form),

T0n = e[S1]θ1 · · · e[Sn]θnM,

where Si = (ωi, vi) denotes the screw axis associated with joint i expressed
in fixed frame coordinates, θi is the joint i variable, and M ∈ SE(3) de-
notes the position and orientation of the end-effector frame when the robot
is in its zero position. A choice of fixed frame and end-effector frame, to-
gether with a specification of the robot’s zero position and direction of
positive rotation or translation of each of the robot’s joints, then com-
pletely specifies the product of exponentials formula.

• The product of exponentials formula can also be written in the equivalent
body form,

T0n = Me[B1]θ1 · · · e[Bn]θn ,

where [B]i = [AdM−1 ]Si, i = 1, . . . , n. Bi = (ωi, vi) is the screw axis
corresponding to joint axis i, expressed in terms of the end-effector frame
with the robot in its zero position.

Notes and References

The product of exponentials formula is first presented by Brockett in [4]. Com-
putational aspects of the product of exponentials formula are also discussed in
[27].
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4.3 Exercises

1. (a) For each given T ∈ SE(3)(3) below, find, if it exists, (α, a, d, φ) that
satisfies

T = Rot(x̂, α)Trans(x̂, a)Trans(ẑ, d)Rot(ẑ, φ).

(a) T =


0 1 1 3
1 0 0 0
0 1 0 1
0 0 0 1

.

(b) T =


cosβ sinβ 0 1
sinβ − cosβ 0 0

0 0 −1 −2
0 0 0 1

.

(c) T =


0 −1 0 −1
0 0 −1 0
1 0 0 2
0 0 0 1

.

2. Let T1, T2 ∈ SE(3), and suppose T1 = e[A1], T2 = e[A2] for some A1 =
(ω1, v1), A2 = (ω2, v2). Under what conditions onA1 andA2 does T1T2 = T2T1?

Figure 4.6: A RRRP robot for performing pick-and-place operations.

3. The RRRP spatial open chain of Figure 4.6 is shown in its zero position.
(a) Choose appropriate link reference frames, and derive the corresponding
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Denvait-Hartenberg parameters (use the given fixed frame.)
(b) Find T04.

Figure 4.7: A RRPPRR open chain robot.

4. The RRPPRR spatial open chain of Figure 4.7 is shown in its zero position.
Using the fixed reference frame given in the figure, choose appropriate link
reference frames and derive the Denavit-Hartenberg parameters.

5. The robot with a screw joint in Figure 4.8 is shown in its zero position. Using
the given fixed frame, choose appropriate link reference frames and derive the
Denavit-Hartenberg parameters.

6. The spatial RPRRR open chain of Figure 4.9 is shown in its zero position.
Using the given fixed reference frame, choose appropriate link reference frames
and derive the Denavit-Hartenberg parameters.

7. The RRPRRR spatial open chain of Figure 4.10 is shown in its zero position
(all joints lie on the same plane).
(a) Using the given fixed frame, choose appropriate link reference frames and
derive the Denavit-Hartenberg parameters.
(b) Set θ5 = π and all the other joint variables to zero, and find T60.

8. The PRRRRR spatial open chain of Figure 4.11 is shown in its home
position. Using the given fixed and end-effector frames, and the direction of
positive rotation or translation for each joint, derive its forward kinematics in
the following product of exponentials form:

e[S1]θ1e[S2]θ2 · · · e[S6]θ6M
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Figure 4.8: A robot with a screw joint.

Figure 4.9: An RPRRR spatial open chain.
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Figure 4.10: An RRPRRR spatial open chain.

Figure 4.11: A PRRRRR spatial open chain.

9. For the same open chain of Figure 4.11, express the forward kinematics in
the following product of exponentials form:

Me[B∞]θ1e[B2]θ2 · · · e[B6]θ6 .

10. The spatial RRPPRR open chain of Figure 4.12 is shown in its zero
position.
(a) Derive its forward kinematics in the form e[S1]θ1e[S2]θ2 · · · e[S6]θ6M .
(b) Derive its forward kinematics in the form Me[B∞]θ1e[B2]θ2 · · · e[B6]θ6 .

11. The spatial RRRPRR open chain of Figure 4.13 is shown in its zero posi-
tion.
(a) Choose appropriate link frames and derive the corresponding Denavit-Hartenberg
parameters.
(b) Express its forward kinematics in the form e[S1]θ1e[S2]θ2 · · · e[S6]θ6M .
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Figure 4.12: A spatial RRPPRR open chain with prescribed fixed and end-
effector frames.

Figure 4.13: A spatial RRPRRR open chain with prescribed fixed and end-
effector frames.

12. The spatial RRRRPR open chain of Figure 4.14 is shown in its zero posi-
tion, with fixed and end-effector frames chosen as shown.
(a) Choose appropriate link frames and derive the corresponding Denavit-Hartenberg
parameters.
(b) Express its forward kinematics in the form e[S1]θ1e[S2]θ2 · · · e[S6]θ6M .
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Figure 4.14: A spatial RRRRPR open chain.
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Chapter 5

Velocity Kinematics and
Statics

In the previous chapter we saw how to calculate the robot end-effector frame’s
position and orientation for a given set of joint positions. In this chapter we ex-
amine the related problem of calculating the end-effector frame’s spatial velocity
from a given set of joint positions and velocities.

Before we get to a representation of the end-effector spatial velocity as
V ∈ R6 starting in Section 5.1, let us consider the case where the end-effector
configuration is represented by a minimal set of coordinates x ∈ Rn and the
velocity is given by ẋ ∈ Rn. In this case, the forward kinematics can be written
as

x(t) = f(θ(t)),

where θ ∈ Rm is a set of joint variables. By the chain rule, the time derivative
at time t is

ẋ =
∂f

∂θ
(θ)θ̇

= J(θ)θ̇,

where J(θ) ∈ Rn×m is called the Jacobian. The Jacobian matrix represents
the linear sensitivity of the end-effector velocity ẋ to the joint velocity θ̇, and it
is a function of the joint variables θ.

To provide a concrete example, consider a 2R planar open chain (right side
of Figure 5.1) with forward kinematics given by

x1 = L1 cos θ1 + L2 cos(θ1 + θ2)

x2 = L1 sin θ1 + L2 sin(θ1 + θ2).

Differentiating both sides with respect to time t yields

ẋ1 = −L1θ̇1 sin θ1 − L2(θ̇1 + θ̇2) sin(θ1 + θ2)

ẋ2 = L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2),

117



118 Velocity Kinematics and Statics

AB A B

C
C

D D

L 1

L 2

θ1

θ2

Figure 5.1: Mapping the set of possible joint velocities, represented as a square
in the θ̇1-θ̇2 space, through the Jacobian to find the parallelogram of possible
end-effector velocities. The extreme points A, B, C, and D in the joint velocity
space map to the extreme points A, B, C, and D in the end-effector velocity
space.

which can be rearranged into a linear equation of the form ẋ = J(θ)θ̇:[
ẋ1

ẋ2

]
=

[
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

] [
θ̇1

θ̇2

]
. (5.1)

Writing the two columns of J(θ) as J1(θ) and J2(θ), and the tip velocity ẋ
as vtip, Equation (5.1) can be written

vtip = J1(θ)θ̇1 + J2(θ)θ̇2.

As long as J1(θ) and J2(θ) are not collinear, it is possible to generate a tip
velocity vtip in any arbitrary direction in the x1-x2 plane by choosing appropriate

joint velocities θ̇1 and θ̇2. Since J1(θ) and J2(θ) depend on the joint values θ1

and θ2, one may ask if there are any configurations at which J1(θ) and J2(θ)
become collinear. For our example the answer is yes: if θ2 is 0◦ or 180◦, then
regardless of the value of θ1, J1(θ) and J2(θ) will be collinear, and the Jacobian
J(θ) becomes a singular matrix. Such configurations are called singularities;
they are characterized by the robot tip being unable to generate velocities in
certain directions.

The Jacobian can be used to map bounds on the rotational speed of the joints
to bounds on vtip, as illustrated in Figure 5.1. Instead of mapping a polygon
of joint velocities through the Jacobian, we could instead map a unit circle of
joint velocities in the θ1-θ2 plane. This circle represents an “iso-effort” contour
in the joint velocity space, where total actuator effort is considered to be the
sum of squares of the joint velocities. This circle maps through the Jacobian
to an ellipse in the space of tip velocities, and this ellipse is referred to as the
manipulability ellipsoid.1 Figure 5.2 shows examples of this mapping for two

1A two-dimensional ellipsoid, as in our example, is commonly referred to as an ellipse.
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Figure 5.2: Manipulability ellipsoids for two different postures of the 2R planar
open chain.

different postures of the 2R arm. As the manipulator configuration approaches
a singularity, the ellipse collapses to a line segment, since the ability of the tip
to move in one direction is lost.

Using the manipulability ellipsoid, one can quantify how close a given pos-
ture is to a singularity. For example, we can compare the lengths of the major
and minor principal semi-axes of the manipulability ellipsoid, respectively de-
noted `max and `min. The closer the ellipsoid is to a circle—meaning the ratio
`max/`min is close to 1—the more easily the tip can move in arbitrary direc-
tions, and thus the more removed it is from a singularity. The ratio `max/`min is
known as the condition number, and it offers a quantitative measure of how
close a robot configuration is to a singularity.

The Jacobian also plays a central role in static analysis. Suppose an external
force is applied to the robot tip; what are the joint torques required to resist
this external tip force and maintain static equilibrium (that is, to keep all links
of the robot stationary)?

This question can be answered via a conservation of power argument. As-
suming there is no power loss due to joint friction, and that the robot is at
equilibrium (no power is used to move the robot), the power measured at the
robot’s tip must equal the power generated at the joints. Denoting the tip
force vector generated by the robot as ftip and the joint torque vector by τ ,
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Figure 5.3: Mapping joint torque bounds to tip force bounds.

conservation of power then requires that

fTtipvtip = τT θ̇,

for all arbitrary joint velocities θ̇. Since vtip = J(θ)θ̇, the equality

fTtipJ(θ)θ̇ = τT θ̇

must hold for all possible θ̇.2 This can only be true if

τ = JT (θ)ftip. (5.2)

The joint torque τ needed to create the tip force ftip is calculated from the
equation above.

For our two-link planar chain example, J(θ) is a square matrix dependent
on θ. If the configuration θ is not a singularity, then both J(θ) and its tranpose
are invertible, and Equation (5.2) can be written

ftip = ((J(θ))T )−1τ = J−T (θ)τ. (5.3)

Using the equation above, one can now determine, under the same static equilib-
rium assumption, what input torques are needed to generate a desired tip force,
e.g., to determine the joint torques needed for the robot tip to push against
a wall with a specified normal force. For a given posture θ of the robot at
equilibrium, and given a set of joint torque limits such as

−1 Nm ≤ τ1 ≤ 1 Nm

−1 Nm ≤ τ2 ≤ 1 Nm,

Equation (5.3) can be used to generate the set of all possible tip forces as shown
in Figure 5.3.

2Since the robot is at equilibrium, the joint velocity θ̇ is technically zero. This can be
considered the limiting case as θ̇ approaches zero. To be more formal, we could invoke the
“principle of virtual work” which deals with infinitesimal joint displacements instead of joint
velocities.
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Figure 5.4: Force ellipsoids for two different postures of the 2R planar open
chain.

Similar to the manipulability ellipsoid, a force ellipsoid can be drawn by
mapping a unit circle “iso-effort” contour in the τ1-τ2 plane to an ellipsoid in the
f1-f2 tip force plane via the Jacobian transpose inverse J−T (θ) (see Figure 5.4).
This illustrates how easily the robot can generate forces in different directions.
As evident from the manipulability and force ellipsoids, if it is easy to generate
a tip velocity in a given direction, then it is difficult to generate force in that
same direction, and vice-versa (Figure 5.5). This is because the power must be
equivalent whether the forces and velocities are represented in joint space or
tip space; the power for any joint torque/velocity pair is bounded by one; and
therefore the power for any tip force/velocity pair must also be bounded by one.

At a singularity, the manipulability ellipsoid collapses to a line segment. The
force ellipsoid, on the other hand, becomes infinitely long in a direction orthogo-
nal to the manipulability ellipsoid line segment (i.e., the direction of the aligned
links) and skinny in the orthogonal direction. Consider, for example, carrying
a heavy mass with your arm. It is much easier if your arm hangs straight down
in gravity (with your elbow fully straightened, at a singularity), because the
force you must support passes directly through your joints, therefore requiring
no torques about the joints. The joint structure itself must bear the load, not
muscles to generate torques. Unlike the manipulability ellipsoid, which loses di-
mension at a singularity (from two to one in our example) and therefore its area
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Figure 5.5: Left column: Manipulability ellipsoids at two different arm configu-
rations. Right column: Force ellipsoids at the the same two arm configurations.

drops to zero, the manipulability ellipsoid’s area goes to infinity. (Assuming the
joints can support the load!)

In this chapter we present methods for deriving the Jacobian for general open
chains, where the configuration of the end-effector is expressed as T ∈ SE(3)
and its velocity is expressed as a spatial velocity V in the fixed base frame
or the end-effector body frame. We also examine how the Jacobian can be
used for velocity and static analysis, including the identification of kinematic
singularities and determining the manipulability and force ellipsoids. Later
chapters on inverse kinematics, motion planning, dynamics and control make
extensive use of the Jacobian and related notions introduced in this chapter.

5.1 Manipulator Jacobian

In the 2R planar open chain example, we saw that for any joint configuration θ,
the tip velocity vector vtip and joint velocity vector θ̇ are linearly related via the

Jacobian matrix J(θ), i.e., vtip = J(θ)θ̇. The tip velocity vtip depends on the
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coordinates of interest for the tip, which in turn determines the specific form
of the Jacobian. For example, in the most general case, vtip can be taken to
be the six-dimensional spatial velocity of the end-effector frame, while for pure
orienting devices like a wrist, vtip is usually taken to be the angular velocity
of the end-effector frame. Other choices for vtip lead to different formulations
for the Jacobian. We begin with the general case where vtip is taken to be the
six-dimensional end-effector spatial velocity expressed in the fixed frame.

5.1.1 Space Jacobian

In this section we derive the relationship between an open chain’s joint velocity
vector θ̇ and the end-effector’s spatial velocity Vs. We first recall a few basic
properties from linear algebra and linear differential equations: (i) if A,B ∈
Rn×n are both invertible, then (AB)−1 = B−1A−1; (ii) if A ∈ Rn×n is constant
and θ(t) is a scalar function of t, then d

dte
Aθ = AeAθ θ̇ = eAθAθ̇; (iii) (eAθ)−1 =

e−Aθ.
Consider an n-link open chain whose forward kinematics is expressed in the

following product of exponentials form:

T (θ1, . . . , θn) = e[S1]θ1e[S2]θ2 · · · e[Sn]θnM. (5.4)

The spatial velocity of the end-effector frame with respect to the fixed frame,
Vs, is given by [Vs] = Ṫ T−1, where

Ṫ =

(
d

dt
e[S1]θ1

)
· · · e[Sn]θnM + e[S1]θ1

(
d

dt
e[S2]θ2

)
· · · e[Sn]θnM + . . .

= [S1]θ̇1e
[S1]θ1 · · · e[Sn]θnM + e[S1]θ1 [S2]θ̇2e

[S2]θ2 · · · e[Sn]θnM + . . .

Also,
T−1 = M−1e−[Sn]θn · · · e−[S1]θ1 .

Calculating Ṫ T−1,

[Vs] = [S1]θ̇1 + e[S1]θ1 [S2]e−[S1]θ1 θ̇2 + e[S1]θ1e[S2]θ2 [S3]e−[S2]θ2e−[S1]θ1 θ̇3 + . . . .

The above can also be expressed in vector form by means of the adjoint mapping:

Vs = S1︸︷︷︸
Vs1

θ̇1 + Ade[S1]θ1 (S2)︸ ︷︷ ︸
Vs2

θ̇2 + Ade[S1]θ1e[S2]θ2 (S3)︸ ︷︷ ︸
Vs3

θ̇3 + . . . (5.5)

Observe that Vs is a sum of n spatial velocities of the form

Vs = Vs1(θ)θ̇1 + . . .+ Vsn(θ)θ̇n, (5.6)

where each Vsi(θ) = (ωsi(θ), vsi(θ)) depends explictly on the joint values θ ∈ Rn
for i = 2, . . . , n. In matrix form,

Vs =
[
Vs1(θ) Vs2(θ) · · · Vsn(θ)

]  θ̇1

...

θ̇n


= Js(θ)θ̇.

(5.7)
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The matrix Js(θ) is said to be the Jacobian in fixed (space) frame coordinates,
or more simply the space Jacobian.

Definition 5.1. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = e[S1]θ1 · · · e[Sn]θnM. (5.8)

The space Jacobian Js(θ) ∈ R6×n relates the joint rate vector θ̇ ∈ Rn to the
end-effector spatial velocity Vs via

Vs = Js(θ)θ̇. (5.9)

The ith column of Js(θ) is

Vsi(θ) = Ad
e[S1]θ1 ···e[Si−1]θi−1 (Si), (5.10)

for i = 2, . . . , n, with the first column Vs1(θ) = S1. �

To understand the physical meaning behind the columns of Js(θ), observe
that the ith column is of the form AdTi−1

(Si), where Ti−1 = e[S1]θ1 · · · e[Si−1]θi−1 ;
recall that Si is the screw axis describing the ith joint axis in terms of the fixed
frame with the robot in its zero position. AdTi−1

(Si) is therefore the screw
axis describing the ith joint axis after it undergoes the rigid body displacement
Ti−1. Physically this is the same as moving the first i− 1 joints from their zero
position to the current values θ1, . . . , θi−1. Therefore, the ith column Vsi(θ) of
Js(θ) is simply the screw vector describing joint axis i, expressed in fixed frame
coordinates as a function of the joint variables θ1, . . . , θi−1.

In summary, the procedure for determining the columns of Js(θ) is similar to
that for deriving the Si in the product of exponentials formula e[S1]θ1 · · · e[Sn]θnM :
each column Vsi(θ) is the screw vector describing joint axis i, expressed in fixed
frame coordinates, but for arbitrary θ rather than θ = 0.

Example: Space Jacobian for a Spatial RRRP Chain

We now illustrate the procedure for finding the space Jacobian for the spatial
RRRP chain of Figure 5.6. Denote the ith column of Js(θ) by Vi = (ωi, vi).
The [AdTi−1

] matrices are implicit in our calculations of the screw axes of the
displaced joint axes.

• Observe that ω1 is constant and in the ẑs-direction: ω1 = (0, 0, 1). Picking
q1 to be the origin, v1 = (0, 0, 0).

• ω2 is also constant in the ẑs-direction, so ω2 = (0, 0, 1). Pick q2 to be the
point (L1c1, L1s1, 0), where c1 = cos θ1, s1 = sin θ1. Then v2 = −ω2×q2 =
(L1s1,−L1c1, 0).

• The direction of ω3 is always fixed in the ẑs-direction regardless of the
values of θ1 and θ2, so ω3 = (0, 0, 1). Picking q3 = (L1c1 + L2c12, L1s1 +
L2s12, 0), where c12 = cos(θ1 + θ2), s12 = sin(θ1 + θ2), it follows that
v3 = (L1s1 + L2s12,−L1c1 − L2c12, 0).



5.1. Manipulator Jacobian 125

Figure 5.6: Space Jacobian for a spatial RRRP chain.
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Figure 5.7: Space Jacobian for the spatial RRPRRR chain.

• Since the final joint is prismatic, ω4 = (0, 0, 0), and the joint axis direction
is given by v4 = (0, 0, 1).

The space Jacobian is therefore

Js(θ) =


0 0 0 0
0 0 0 0
1 1 1 0
0 L1s1 L1s1 + L2s12 0
0 −L1c1 −L1c1 − L2c12 0
0 0 0 1

 .

Example: Space Jacobian for Spatial RRPRRR Chain

We now derive the space Jacobian for the spatial RRPRRR chain of Figure 5.7.
The base frame is chosen as shown in the figure.
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• The first joint axis is in the direction ω1 = (0, 0, 1). Picking q1 = (0, 0, L1),
we get v1 = −ω1 × q1 = (0, 0, 0).

• The second joint axis is in the direction ω2 = (−c1,−s1, 0). Picking q2 =
(0, 0, L1), we get v2 = −ω2 × q2 = (L1s1,−L1c1, 0).

• The third joint is prismatic, so ω3 = (0, 0, 0). The direction of the pris-
matic joint axis is given by

v3 = Rot(ẑ, θ1)Rot(x̂,−θ2)

 0
1
0

 =

 −s1c2

c1c2

−s2

 .
• Now consider the wrist portion of the chain. The wrist center is located

at the point

qw =

 0
0
L1

+Rot(ẑ, θ1)Rot(x̂,−θ2)

 0
L1 + θ3

0

 =

 −(L2 + θ3)s1c2

(L2 + θ3)c1c2

L1 − (L2 + θ3)s2

 .
Observe that the directions of the wrist axes depend on θ1, θ2, and the
preceding wrist axes. These are

ω4 = Rot(ẑ, θ1)Rot(x̂,−θ2)

 0
0
1

 =

 −s1s2

c1s2

c2


ω5 = Rot(ẑ, θ1)Rot(x̂,−θ2)Rot(ẑ, θ4)

 −1
0
0

 =

 −c1c4 + s1c2s4

−s1c4 − c1c2s4

s2s4


ω6 = Rot(ẑ, θ1)Rot(x̂,−θ2)Rot(ẑ, θ4)Rot(x̂,−θ5)

 0
1
0


=

 −c5(s1c2c4 + c1s4) + s1s2s5

c5(c1c2c4 − s1s4)− c1s2s5

−s2c4c5 − c2s5

 .
The space Jacobian can now be computed and written in matrix form as follows:

Js(θ) =

[
ω1 ω2 0 ω4 ω5 ω6

0 −ω2 × q2 v3 −ω4 × qw −ω5 × qw −ω6 × qw

]
.

Note that we were able to obtain the entire Jacobian directly, without having
to explicitly differentiate the forward kinematic map.

5.1.2 Body Jacobian

In the previous section we derived the relationship between the joint rates and
[Vs] = Ṫ T−1, the end-effector’s spatial velocity expressed in fixed frame coordi-
nates. Here we derive the relationship between the joint rates and [Vb] = T−1Ṫ ,
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the end-effector spatial velocity in end-effector frame coordinates. For this pur-
pose it will be more convenient to express the forward kinematics in the alternate
product of exponentials form:

T (θ) = Me[B1]θ1e[B2]θ2 · · · e[Bn]θn . (5.11)

Computing Ṫ ,

Ṫ = Me[B1]θ1 · · · e[Bn−1]θn−1(
d

dt
e[Bn]θn) +Me[B1]θ1 · · · ( d

dt
e[Bn−1]θn−1)e[Bn]θn + . . .

= Me[B1]θ1 · · · e[Bn]θn [Bn]θ̇n +Me[B1]θ1 · · · e[Bn−1]θn−1 [Bn−1]e[Bn]θn θ̇n−1 + . . .

+Me[B1]θ1 [B1]e[B2]θ2 · · · e[Bn]θn θ̇1.

Also,
T−1 = e−[Bn]θn · · · e−[B1]θ1M−1.

Evaluating T−1Ṫ ,

[Vb] = [Bn]θ̇n + e−[Bn]θn [Bn−1]e[Bn]θn θ̇n−1 + . . .

+e−[Bn]θn · · · e−[B2]θ2 [B1]e[B2]θ2 · · · e[Bn]θn θ̇1,

or in vector form,

Vb = Bn︸︷︷︸
Vbn

θ̇n + Ade−[Bn]θn (Bn−1)︸ ︷︷ ︸
Vb,n−1

θ̇n−1 + . . .+ Ade−[Bn]θn ···e−[B2]θ2 (B1)︸ ︷︷ ︸
Vb1

θ̇1. (5.12)

Vb can therefore be expressed as a sum of n spatial velocities, i.e.,

Vb = Vb1(θ)θ̇1 + . . .+ Vbn(θ)θ̇n, (5.13)

where each Vbi(θ) = (ωbi(θ), vbi(θ)) depends explictly on the joint values θ for
i = 1, . . . , n− 1. In matrix form,

Vb =
[
Vb1(θ) Vb2(θ) · · · Vbn(θ)

]  θ̇1

...

θ̇n


= Jb(θ)θ̇.

(5.14)

The matrix Jb(θ) is the Jacobian in the end-effector (or body) frame coordinates,
or more simply the body Jacobian.

Definition 5.2. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = Me[B1]θ1 · · · e[Bn]θn . (5.15)

The body Jacobian Jb(θ) ∈ R6×n relates the joint rate vector θ̇ ∈ Rn to the
end-effector spatial velocity Vb = (ωb, vb) via

Vb = Jb(θ)θ̇. (5.16)
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The ith column of Jb(θ) is

Vbi(θ) = Ad
e−[Bn]θn ···e−[Bi+1]θi+1 (Bi), (5.17)

for i = n− 1, . . . , 1, with Vbn(θ) = Bn. �

Analogous to the columns of the space Jacobian, a similar physical interpre-
tation can be given to the columns of Jb(θ): each column Vbi(θ) = (ωbi(θ), vbi(θ))
of Jb(θ) is the screw vector for joint axis i, expressed in coordinates of the end-
effector frame rather than the fixed frame. The procedure for determining the
columns of Jb(θ) is similar to the procedure for deriving the forward kinemat-
ics in the product of exponentials form Me[B1]θ1 · · · e[Bn]θn , the only difference
being that each of the joint screws are derived for arbitrary θ rather than θ = 0.

5.1.3 Relationship between the Space and Body Jacobian

Denoting the fixed frame by {s} and the end-effector frame by {b}, the forward
kinematics can be written Tsb(θ). The spatial velocity of the end-effector frame
can be written in terms of the fixed and end-effector frame coordinates as

[Vs] = ṪsbT
−1
sb

[Vb] = T−1
sb Ṫsb,

with Vs and Vb related by Vs = AdTsb(Vb) and Vb = AdTbs(Vs). Vs and Vb are
also related to their respective Jacobians via

Vs = Js(θ)θ̇ (5.18)

Vb = Jb(θ)θ̇. (5.19)

Equation (5.18) can therefore be written

AdTsb(Vb) = Js(θ)θ̇. (5.20)

Applying [AdTbs ] to both sides of Equation (5.20), and using the general prop-
erty [AdX ][AdY ] = [AdXY ] of the adjoint map, we obtain

AdTbs(AdTsb(Vb)) = AdTbsTsb(Vb) = Vb = AdTbs(Js(q)θ̇).

Since we also have Vb = Jb(θ)θ̇ for all θ̇, it follows that Js(θ) and Jb(θ) are
related by

Jb(θ) = AdTbs (Js(θ)) = [AdTbs ]Js(θ). (5.21)

The space Jacobian can in turn be obtained from the body Jacobian via

Js(θ) = AdTsb (Jb(θ)) = [AdTsb ]Jb(θ). (5.22)

The fact that the space and body Jacobians, and space and body velocities, are
similarly related by the adjoint map should not be surprising, since each column
of the space and body Jacobian corresponds to a spatial velocity.

One of the important implications of Equation (5.22) is that Jb(θ) and Js(θ)
always have the same rank; this is shown explicitly in the later section on
singularity analysis.
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5.1.4 Alternative Notions of the Jacobian

The space and body Jacobians derived above are matrices that relate joint rates
to the spatial velocity of the end-effector. There exist alternative notions of the
Jacobian that are based on a representation of the end-effector configuration
using a minimum set of coordinates q. Such representations are particularly
relevant when the task space is considered to be a subspace of SE(3). For
example, the configuration of the end-effector of a planar robot could be treated
as q = (x, y, θ) ∈ R3 instead of as an element of SE(2).

When using a minimum set of coordinates, the end-effector velocity is not
given by a spatial velocity V but by the time-derivative of the coordinates q̇,
and the Jacobian Ja in the velocity kinematics q̇ = Ja(θ)θ̇ is sometimes called
the analytic Jacobian, as opposed to the geometric Jacobian in space and
body form, as described above.

For an SE(3) task space, a typical choice of the minimal coordinates q ∈ R6

includes three coordinates for the origin of the end-effector frame in the fixed
base frame, and three coordinates for the orientation of the end-effector frame
in the fixed base frame. Example coordinates for the orientation include Euler
angles (see Appendix B) and exponential coordinates for rotation.

Example: Analytic Jacobian with Exponential Coordinates for Rotation

In this example, we find the relationship between the geometric Jacobian Jb in
the body frame and an analytic Jacobian Ja that uses exponential coordinates
r = ω̂θ to represent orientation. (Recall that ‖ω̂‖ = 1 and θ ∈ [0, π].)

First, consider an open chain with n joints with body Jacobian

Vb = Jb(θ)θ̇,

where Jb(θ) ∈ R6×n. The angular and linear velocity components of Vb =
(ωb, vb) can be written explicitly as

Vb =

[
ωb
vb

]
= Jb(θ)θ̇ =

[
Jω(θ)
Jv(θ)

]
θ̇,

where Jω is the 3× n matrix corresponding to the top three rows of Jb and Jv
is the 3× n matrix corresponding to the bottom three rows of Jb.

Now suppose our minimal set of coordinates q ∈ R6 is given by q = (r, x),
where x ∈ R3 is the position of the origin of the end-effector frame and r = ω̂θ ∈
R3 is the exponential coordinate representation for the rotation. The coordinate
time-derivative ẋ is related to vb by a rotation to get vb in the fixed coordinates,

ẋ = Rsbvb = RsbJv(θ)θ̇,

where Rsb = e[r] = e[ω̂]θ.
The time-derivative ṙ is related to the body angular velocity ωb by

ωb = A(r)ṙ

A(r) = I − 1− cos ‖r‖
‖r‖2

[r] +
‖r‖ − sin ‖r‖
‖r‖3

[r]2.
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(The derivation of this formula is explored in Exercise 16.) Provided the matrix
A(r) is invertible, ṙ can be obtained from ωb as

ṙ = A−1(r)ωb = A−1(r)Jω(θ)θ̇.

Putting these together,

q̇ =

[
ṙ
ẋ

]
=

[
A−1(r) 0

0 Rsb

] [
ωb
vb

]
, (5.23)

i.e., the analytic Jacobian Ja is related to the body Jacobian Jb by

Ja(θ) =

[
A−1(r) 0

0 Rsb

] [
Jω(θ)
Jv(θ)

]
=

[
A−1(r) 0

0 Rsb

]
Jb(θ). (5.24)

5.1.5 Inverse Velocity Kinematics

The sections above answer the question “What spatial velocity results from a
given set of joint velocities?” The answer, written independently of the frame
in which spatial velocities are represented, is given by

V = J(θ)θ̇.

Often we are interested in the inverse question: given a desired spatial veloc-
ity V, what joint velocities θ̇ are needed? This is a question of inverse velocity
kinematics, which is discussed in more detail in Chapter 6. In brief, if J(θ) is
square (the number of joints n is equal to six, the number of elements of the
spatial velocity) and full rank, then θ̇ = J−1(θ)V. If n 6= 6, however, then
J(θ) is not invertible. In the case n < 6, arbitrary spatial velocities V can-
not be achieved—the robot does not have enough joints. If n > 6, then we
call the robot redundant. In this case, a desired spatial velocity V places six
constraints on the joint rates, and the remaining n− 6 freedoms correspond to
internal motions of the robot that are not evident in the motion of the end-
effector. As an example, if you consider your arm, from your shoulder to your
palm, as a seven-joint open chain, when you place your palm at a fixed con-
figuration in space (e.g., on the surface of a table), you still have one internal
degree of freedom, corresponding to the position of your elbow.

5.2 Statics of Open Chains

Using our familiar principle of conservation of power,

power at the joints = (power to move the robot) + (power at end-effector),

and considering the robot to be at static equilibrium (no power is used to move
the robot, because external forces at the end-effector immobilize the robot), we
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can equate the power at the joints to the power at the end-effector3,

τT θ̇ = FTb Vb,

where τ is the set of joint torques. Using the identity Vb = Jb(θ)θ̇, we get

τ = JTb (θ)Fb

relating the joint torques to the end-effector spatial force written in the end-
effector frame. Similarly,

τ = JTs (θ)Fs
in the fixed space frame. Leaving out the choice of the frame, we can simply
write

τ = JT (θ)F . (5.25)

Thus if we are given a desired end-effector spatial force F and the joint angles
θ, we can calculate the joint torques τ needed to generate F . This is important
in force control of a robot, for example.

One could also ask the opposite question, namely, what is the spatial force
at the tip generated by a given joint torque? If JT is a square invertible matrix,
then clearly F = J−T (θ)τ . However, if the number of joints n is not equal to
six, then JT is not invertible. In particular, if the robot is redundant (n > 6),
then even if the end-effector is held stationary, the joint torques may cause
internal motions of the links, so that the static equilibrium condition is no
longer satisfied.

5.3 Singularity Analysis

The Jacobian allows us to identify postures at which the robot’s end-effector
loses the ability to move instantaneously in one or more directions. Such a
posture is called a kinematic singularity, or simply a singularity. Math-
ematically a singular posture is one in which the Jacobian J(θ) fails to be of
maximal rank. To understand why, consider the body Jacobian Jb(θ), whose
columns are denoted Vbi, i = 1, . . . , n. Then

Vb =
[
Vb1(θ) Vb2(θ) · · · Vbn(θ)

]  θ̇1

...

θ̇n


= Vb1(θ)θ̇1 + . . .+ Vbn(θ)θ̇n.

Thus, the set of all possible instantaneous spatial velocities of the tip frame
is given by a linear combination of the Vbi. As long as n ≥ 6, the maximum
rank that Jb(θ) can attain is six. Singular postures correspond to those values

3We are considering the limiting case as θ̇ goes to zero, consistent with our assumption
that the robot is at equilibrium.
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Figure 5.8: Kinematic singularities are invariant with respect to choice of fixed
and end-effector frames. (a) Choosing a different fixed frame, which is equivalent
to relocating the base of the robot arm; (b) Choosing a different end-effector
frame.

of θ at which the rank of Jb(θ) drops below the maximum possible value; at
such postures the tip frame loses to the ability to generate instantaneous spatial
velocities in in one or more dimensions.

The mathematical definition of a kinematic singularity is independent of the
choice of body or space Jacobian. To see why, recall the relationship between
Js(θ) and Jb(θ): Js(θ) = AdTsb (Jb(θ)) = [AdTsb ]Jb(θ), or more explicitly,

Js(θ) =

[
Rsb 0

[psb]Rsb Rsb

]
Jb(θ).

We now claim that the matrix [AdTsb ] is always invertible. This can be estab-
lished by examining the linear equation[

Rsb 0
[psb]Rsb Rsb

] [
x
y

]
= 0.

Its unique solution is x = y = 0, implying that the matrix [AdTsb ] is invertible.
Since multiplying any matrix by an invertible matrix does not change its rank,
it follows that

rank Js(θ) = rank Jb(θ),

as claimed; singularities of the space and body Jacobian are one and the same.
Kinematic singularities are also independent of the choice of fixed frame. In

some sense this is rather obvious—choosing a different fixed frame is equivalent
to simply relocating the robot arm, which should have absolutely no effect on
whether a particular posture is singular or not. This obvious fact can be verified
by referring to Figure 5.8(a). The forward kinematics with respect to the original
fixed frame is denoted T (θ), while the forward kinematics with respect to the
relocated fixed frame is denoted T ′(θ) = PT (θ), where P ∈ SE(3) is constant.
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Figure 5.9: A kinematic singularity in which two joint axes are collinear.

Then the body Jacobian of T ′(θ), denoted J ′b(θ), is obtained from T ′−1Ṫ ′. A
simple calculation reveals that

T ′−1Ṫ ′ = (T−1P−1)(PṪ ) = T−1Ṫ ,

i.e., J ′b(θ) = Jb(θ), so that the singularities of the original and relocated robot
arms are the same.

Somewhat less obvious is the fact that kinematic singularities are also inde-
pendent of the choice of end-effector frame. Referring to Figure 5.8(b), suppose
the forward kinematics for the original end-effector frame is given by T (θ), while
the forward kinematics for the relocated end-effector frame is T ′(θ) = T (θ)Q,
where Q ∈ SE(3) is constant. This time looking at the space Jacobian—recall
that singularities of Jb(θ) coincide with those of Js(θ)—let J ′s(θ) denote the
space Jacobian of T ′(θ). A simple calculation reveals that

Ṫ ′T ′−1 = (ṪQ)(Q−1T−1) = Ṫ T−1,

i.e., J ′s(θ) = Js(θ), so that kinematic singularities are invariant with respect to
choice of end-effector frame.

In the remainder of this section we consider some common kinematic singu-
larities that occur in six-dof open chains with revolute and prismatic joints. We
now know that either the space or body Jacobian can be used for our analysis;
we use the space Jacobian in the examples below.

Case I: Two Collinear Revolute Joint Axes

The first case we consider is one in which two revolute joint axes are collinear
(see Figure 5.9). Without loss of generality these joint axes can be labeled 1
and 2. The corresponding columns of the Jacobian are

Vs1(θ) =

[
ω1

−ω1 × q1

]
, Vs2(θ) =

[
ω2

−ω2 × q2

]
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q3q2

Figure 5.10: A kinematic singularity in which three revolute joint axes are
parallel and coplanar.

Since the two joint axes are collinear, we must have ω1 = ±ω2; let us assume the
positive sign. Also, ωi×(q1−q2) = 0 for i = 1, 2. Then Vs1 = Vs2, which implies
that Vs1 and Vs2 lie on the same line in six-dimensional space. Therefore, the
set {Vs1,Vs2, . . . ,Vs6} cannot be linearly independent, and the rank of Js(θ)
must be less than six.

Case II: Three Coplanar and Parallel Revolute Joint Axes

The second case we consider is one in which three revolute joint axes are parallel,
and also lie on the same plane (three coplanar axes—see Figure 5.10). Without
loss of generality we label these as joint axes 1, 2, and 3. In this case we choose
the fixed frame as shown in the figure; then

Js(θ) =

[
ω1 ω1 ω1 · · ·
0 −ω1 × q2 −ω1 × q3 · · ·

]
and since q2 and q3 are points on the same unit axis, it is not difficult to verify
that the above three vectors cannot be linearly independent.

Case III: Four Revolute Joint Axes Intersecting at a Common Point

Here we consider the case where four revolute joint axes intersect at a common
point (Figure 5.11). Again, without loss of generality label these axes from 1
to 4. In this case we choose the fixed frame origin to be the common point of
intersection, so that q1 = . . . = q4 = 0. In this case

Js(θ) =

[
ω1 ω2 ω3 ω4 · · ·
0 0 0 0 · · ·

]
.

The first four columns clearly cannot be linearly independent; one can be writ-
ten as a linear combination of the other three. Such a singularity occurs, for
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A1

A2

A3

A4

Figure 5.11: A kinematic singularity in which four revolute joint axes intersect
at a common point.

example, when the wrist center of an elbow-type robot arm is directly above
the shoulder.

Case IV: Four Coplanar Revolute Joints

Here we consider the case in which four revolute joint axes are coplanar. Again,
without loss of generality label these axes from 1 to 4. Choose a fixed frame
such that the joint axes all lie on the x-y plane; in this case the unit vector
ωi ∈ R3 in the direction of joint axis i is of the form

ωi =

 ωix
ωiy
0

 .
Similarly, any reference point qi ∈ R3 lying on joint axis i is of the form

qi =

 qix
qiy
0

 ,
and subsequently

vi = −ωi × qi =

 0
0

ωiyqix − ωixqiy

 .
The first four columns of the space Jacobian Js(θ) are

ω1x ω2x ω3x ω4x

ω1y ω2y ω3y ω4y

0 0 0 0
0 0 0 0
0 0 0 0

ω1yq1x − ω1xq1y ω2yq2x − ω2xq2y ω3yq3x − ω3xq3y ω4yq4x − ω4xq4y

 .
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which clearly cannot be linearly independent.

Case V: Six Revolute Joints Intersecting a Common Line

The final case we consider is six revolute joint axes intersecting a common line.
Choose a fixed frame such that the common line lies along the ẑ-axis, and select
the intersection between this common line and joint axis i as the reference point
qi ∈ R3 for axis i; each qi is thus of the form qi = (0, 0, qiz), and

vi = −ωi × qi = (ωiyqiz,−ωixqiz, 0)

i = 1, . . . , 6. The space Jacobian Js(θ) thus becomes

Js(θ) =


ω1x ω2x ω3x ω4x ω5x ω6x

ω1y ω2y ω3y ω4y ω5y ω6y

ω1z ω2z ω3z ω4z ω5z ω6z

ω1yq1z ω2yq2z ω3yq3z ω4yq4z ω5yq5z ω6yq6z

−ω1xq1z −ω2xq2z −ω3xq3z −ω4xq4z −ω5xq5z −ω6xq6z

0 0 0 0 0 0

 ,

which is clearly singular.

5.4 Manipulability

In the previous section we saw that at a kinematic singularity, a robot’s end-
effector loses the ability to move or rotate in one or more directions. A kinematic
singularity is a binary proposition—a particular configuration is either kinemat-
ically singular, or it is not—and it is reasonable to ask whether it is possible to
quantify the proximity of a particular configuration to a singularity. The answer
is yes; in fact, one can even do better and quantify not only the proximity to a
singularity, but also determine the directions in which the end-effector’s ability
to move is diminished, and to what extent. The manipulability ellipsoid al-
lows one to geometrically visualize the directions in which the end-effector can
move with the least “effort”; directions that are orthogonal to these directions
in contrast require the greatest effort.

Manipulability ellipsoids are illustrated for a 2R planar arm in Figure 5.2.
The Jacobian is given by Equation (5.1).

For a general n-joint open chain and a task space with coordinates q ∈
Rm, where m ≤ n, the manipulability ellipsoid corresponds to the end-effector
velocities for joint rates θ̇ satisfying ‖θ̇‖ = 1, a unit hypersphere in the n-
dimensional joint velocity space. Assuming J is invertible, the unit joint velocity
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v1v2

v3

λ1λ2

λ3

Figure 5.12: An ellipsoid visualization of q̇TA−1q̇ = 1 in the q̇ space R3, where
the principal semi-axis lengths are the square roots of the eigenvalues λi of A
and the directions of the principal semi-axes are the eigenvectors vi.

condition can be written

1 = θ̇T θ̇

= (J−1q̇)T (J−1q̇)

= q̇TJ−TJ−1q̇

= q̇T (JJT )−1q̇

= q̇TA−1q̇.

If J is full rank (rank m), the matrix A = JJT ∈ Rm×m is square, symmetric,
and positive definite. Let v1, . . . , vm be the eigenvectors of A and λ1, . . . , λm be
the corresponding eigenvalues. Then the manipulability ellipsoid corresponding
to unit joint velocities has principal semi-axes aligned with the eigenvectors vi
of lengths

√
λi (Figure 5.12).4

For the geometric Jacobian J (either Jb in the end-effector frame or Js in
the fixed frame), we can express the 6× n Jacobian as

J(θ) =

[
Jω(θ)
Jv(θ)

]
,

where Jω is the top three rows of J and Jv is the bottom three rows of J . It
makes sense to separate the two, because the units of angular velocity and lin-
ear velocity are different. This leads to two three-dimensional manipulability
ellipsoids, one for angular velocities and one for linear velocities. The manipu-
lability ellipsoids are given by principal semi-axes aligned with the eigenvectors
of A with lengths given by the square roots of the eigenvalues, where A = JωJ

T
ω

for the angular velocity manipulability ellipsoid and A = JvJ
T
v for the linear

velocity manipulability ellipsoid.
When calculating the linear velocity manipulability ellipsoid, it generally

makes more sense to use the body Jacobian Jb instead of the space Jacobian Js,

4The ellipsoid interpretation of a positive-definite quadratic form can be found in linear
algebra textbooks.
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since we are usually interested in the linear velocity of a point at the origin of
the end-effector frame, rather than the linear velocity of a point at the origin of
the fixed space frame.

A manipulability measure is given by the ratio of the longest semi-axis of
the manipulability ellipsoid to the shortest semi-axis,

κ =

√
λmax

λmin
.

When the condition number κ is close to one, then the manipulability ellipsoid
is nearly spherical or isotropic, meaning that it is equally easy to move in any
direction. This is generally a desirable situation. When κ becomes large, then
it is easy to move in one direction but difficult to move in another. As the robot
approaches a singularity, κ approaches infinity.

A force ellipsoid can also be drawn for joint torques τ satisfying ‖τ‖ = 1.
Beginning from τ = JT (θ)F , we arrive at a similar result as above, except now
it is the eigenvectors and the square roots of eigenvalues of A−1 = (JJT )−1 that
define the force ellipsoid.

5.5 Summary

• Let the forward kinematics of an n-link open chain be expressed in the
following product of exponentials form:

T = e[S1]θ1 · · · e[Sn]θnM.

The space Jacobian Js(θ) ∈ R6×n relates the joint rate vector θ̇ ∈ Rn
to the end-effector spatial velocity Vs via Vs = Js(θ)θ̇. The ith column of
Js(θ) is

Vsi(θ) = Ad
e[S1]θ1 ···e[Si−1]θi−1 (Si), (5.26)

for i = 2, . . . , n, with the first column Vs1(θ) = S1. Vsi is the screw vector
for joint i expressed in space frame coordinates, with the joint values θ
assumed to be arbitrary rather than zero.

• Let the forward kinematics of an n-link open chain be expressed in the
following product of exponentials form:

T = Me[B1]θ1 · · · e[Bn]θn . (5.27)

The body Jacobian Jb(θ) ∈ R6×n relates the joint rate vector θ̇ ∈ Rn to
the end-effector spatial velocity Vb = (ωb, vb) via

Vb = Jb(θ)θ̇. (5.28)

The ith column of Jb(θ) is given by

Vb,i(θ) = Ad
e−[Bn]θn ···e−[Bi+1]θi+1 (Bi), (5.29)
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for i = n − 1, . . . , 1, with Vbn(θ) = Bn. Vbi is the screw vector for joint i
expressed in body frame coordinates, with the joint values θ assumed to
be arbitrary rather than zero. The body Jacobian is related to the space
Jacobian via the relation

Js(θ) = [AdTsb ]Jb(θ)

Jb(θ) = [AdTbs ]Js(θ)

where Tsb = T .

• Consider a spatial open chain with n one-dof joints that is also assumed
to be in static equilibrium. Let τ ∈ Rn denote the vector of joint torques
and forces, and F ∈ R6 be the spatial force applied at the end-effector, in
either space or body frame coordinates. Then τ and F are related by

τ = JTb (θ)Fb = JTs (θ)Fs.

• A kinematically singular configuration for an open chain, or more simply
a kinematic singularity, is any configuration θ ∈ Rn at which the rank
of the Jacobian (either Js(θ) or Jb(θ)) is not maximal. For spatial open
chains of mobility six consisting of revolute and prismatic joints, some
common singularities include (i) two collinear revolute joint axes; (ii) three
coplanar and parallel revolute joint axes; (iii) four revolute joint axes
intersecting at a common point; (iv) four coplanar revolute joints, and (v)
six revolute joints intersecting a common line.

5.6 Notes and References

The terms spatial velocity and spatial force were first coined by Roy Feath-
erstone [10], and are also referred to in the literature as twists and wrenches,
respectively. There is a well developed calculus of twists and wrenches that is
covered in treatments of classical screw theory, e.g., [3], [2]. Singularities of
closed chains are discussed in the later chapter on closed chain kinematics. Ma-
nipulability ellipsoids and their dual, force ellipsoids, are discussed in greater
detail in [30].
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Figure 5.13: Polar coordinates.

5.7 Exercises

1. Given a particle moving in the plane, define a moving reference frame {êr, êθ}
such that its origin is fixed to the origin of the fixed frame, and its êr axis always
points toward the particle (Figure 5.13). Let (r, θ) be the polar coordinates for
the particle position, i.e., r is the distance of the particle from the origin, and θ
is the angle from the horizontal line to the êr axis. The particle position ~p can
then be written

~p = rêr,

and its velocity ~v is given by

~v = ṙêr + r ˙̂er.

The acceleration ~v is the time derivative of ~v.
(a) Express ˙̂er in terms of êr and êθ.
(b) Show that ~v and ~a are given by

~v = ṙêr + rθ̇êθ

~a = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ.

2. Let {Î , Ĵ} denote the unit axes of the fixed frame, and let

~p = X(t)Î + Y (t)Ĵ

denote the position of a particle moving in the plane (see Figure 5.14). Suppose
the path traced by the particle has nonzero curvature everywhere, so that for
every point on the path there exists some circle tangent to the path; the center
of this circle is called the center of curvature, while its radius is the radius
of curvature. Clearly both the center and radius of curvature vary along the
path, and are well-defined only at points of nonzero curvature (or, at points
where the curvature is zero, the center of curvature can be regarded to lie at
infinity).
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Figure 5.14: Tangential-normal coordinates.

Now attach a moving reference frame {êt, ên} to the particle, in such a way
that that êt always points in the same direction as the velocity vector; ên then
points toward the center of curvature. Since the speed of the particle is given
by

v =
√
Ẋ2 + Ẏ 2.

and êt always points in the direction of the velocity vector, it follows that the
velocity vector ~v of the particle can be written

~v = vêt,

while its acceleration is given by

~a = v̇êt + v ˙̂et.

(a) Show that ˙̂et = ‖ ˙̂et‖ên, or

ên =
˙̂et

‖ ˙̂et‖
,

and that consequently the acceleration ~a is

~a = v̇êt + v‖ ˙̂et‖ên.

(b) The radius of curvature ρ can be found from the following formula:

ρ =
v3

ẌẎ − Ÿ Ẋ

=
(Ẋ2 + Ẏ 2)3/2

ẊŸ − Ẏ Ẍ
.
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Figure 5.15: A cannon mounted on a 2R rotating platform.

Using the formula, show that the acceleration ~a can be written

~a = v̇êt +
v2

ρ
ên.

3. In standard treatments of particle kinematics using moving frames, two
moving particles, A and B, are assumed, with a moving frame {x̂, ŷ, ẑ} attached
to particle A. Writing the position of particle B as

~pB = ~pA + ~pB|A,

where ~pB|A denotes the vector from A to B, the following formulas for the
velocity and acceleration of B are usually provided:

~vB = ~vA +
(
~̇pB|A

)
xyz

+ ~ω × ~pB|A

~aB = ~aA +
(
~̈pB|A

)
xyz

+ 2~ω ×
(
~̇pB|A

)
xyz

+ ~α× ~pB|A + ~ω × (~ω × ~pB|A),

where ~ω and ~α respectively denote the angular velocity and angular acceler-

ation vector of the moving frame, and
(
~̇pB|A

)
xyz

(
~̈pB|A

)
xyz

are certain time

derivatives of ~pB|A. Writing ~pA and ~pB|A in terms of fixed and moving frame
coordinates, i.e.,

~pA = XX̂ + Y Ŷ + ZẐ

~pB|A = xx̂+ yŷ + zẑ,

derive the above formulas for ~vB and ~aB . Be sure to explicitly identify all terms,

in particular
(
~̇pB|A

)
xyz

and
(
~̈pB|A

)
xyz

.
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Figure 5.16: A circular plate of radius R.

4. Figure 5.15 depicts a cannon mounted on a 2R rotating platform at time
t = 0. The platform rotates at constant angular velocities ω1 and ω2 radians/sec
as shown. The axis of the cannon barrel is displaced at a distance d from the
origin of the fixed frame. Assume that a cannonball is fired at t = 0 from the
same height as the Î axis, at a constant speed v0 along the axis of the barrel.
(a) Choose a moving frame and describe how the frame moves.
(b) Determine the velocity of the cannonball at t = 0 in terms of the moving
frame chosen in part (a).

5. As shown in Figure 5.16, a revolving circular plate of radius R, rotating at
a constant angular velocity of ω2 radians/sec, is mounted on a wheeled mobile
base that moves periodically back and forth along the Î axis according to

x(t) = a sinω1t.

(a) Assuming t = 0 at the instant shown in the figure, determine the velocity
of point A as a function of t in fixed frame coordinates.
(b) Determine the acceleration of point A as a function of t in fixed frame
coordinates.

6. The circular pipe of Figure 5.17 is rotating about the X̂ axis at a constant
rate ω1 radians/sec, while a marble D is circling the pipe at a constant speed
u.
(a) Find the angle θ at which the magnitude of the velocity of D is maximal.
What is the maximal velocity magnitude at this angle?
(b) Find the angle θ at which the magnitude of the acceleration of D is maximal.
What is the maximal acceleration magnitude at this angle?
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Figure 5.17: A marble traversing a rotating circular pipe.

Figure 5.18: A satellite with a rotating panel.

7. The satellite of Figure 5.18 is rotating about its own vertical K̂ axis at a
constant rate ω1 radians/sec, while at the same time its solar panel rotates at
a constant rate ω2 radians/sec as shown.
(a) Determine the velocity of point A when ω1 = 0.5, ω2 = 0.25, l = 2m,
r = 0.5m, and θ = 30◦.
(b) Determine the acceleration of point A under the same conditions as part
(a).

8. The two revolute joints in the spherical 2R open chain of Figure 5.19 rotat-
ing at constant angular velocities ω1 radians/sec and ω2 radians/sec as shown.
Denote by r the length of link AB, while θ is the angle between link AB and
the x-y plane.
(a) Choose a moving frame and explain how the frame moves.
(b) Determine the angular velocity and angular of link AB in terms of your
moving frame coordinates chosen in part (a).
(c) Determine the velocity of point B in terms of the chosen moving frame co-
ordinates.
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Figure 5.19: A spherical 2R open chain.

Figure 5.20: A rotating disk.

(d) Determine the acceleration of point B in terms of the chosen moving frame
coordinates.
(e) Setting ω1 = 0.1, ω2 = 0.2, and r = 100mm, determine the velocity and
acceleration of point B in terms of the fixed frame coordinates when θ = π/6.

9. As shown in Figure 5.20, a disk of radius r spins at a constant angular
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Figure 5.21: A toroidal 2R open chain.

velocity of ω2 radians/sec about its horizontal axis, while at the same time the
disk assembly rotates about the vertical axis at a constant angular velocity of
ω1 radians/sec.
(a) Determine the angular velocity and the angular acceleration of the disk in
terms of fixed frame coordinates.
(b) Determine the velocity and the acceleration of point P as a function of the
angle θ.

10. As shown in Figure 5.21, the two revolute joints of the toroidal 2R open
chain are rotating at a constant angular velocity ω1 = 0.6 radians/sec about the
Ŷ axis, and ω2 = 0.45 radians/sec about the horizontal axis through C. When
β = 120◦, determine the following in terms of fixed frame coordinates:
(a) the angular acceleration of link CD.
(b) the velocity of point D.
(c) the acceleration of point D.

11. Figure 5.22 shows an RRP open chain at t = 0. The revolute joints rotate
at constant angular velocities ω1 and ω2 radians/sec. Suppose the vertical po-
sition of point B is given by x(t) = sin t. Determine the following quantities in
terms of fixed frame coordinates.
(a) The velocity of point B at t = 0.
(b) The acceleration of point B at t = 0.

12. The square plate of Figure 5.23 rotates about axis Î with angular velocity
ω2 = 0.5 radians/sec and angular acceleration α2 = 0.01 radians/sec2, while
the circular disk attached to the square plate rotates about the axis normal
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Figure 5.22: An RRP open chain.

Figure 5.23: A rotating square plate.

to the plate with angular velocity ω1 = 1 radians/sec and angular acceleration
α1 = 0.5 radians/sec2. The radius of the circular disk is R = 5m, while the
length of each side of the square plate is 2R = 10m. The distance from the
center of the circular disk to the small circular knob is d = 3m. Assume that
both the disk and the square plate have zero thickness. Setting θ1 = 0◦ and
θ2 = 45◦, find the following in terms of fixed frame coordinates:
(a) The velocity of the circular knob.
(b) The acceleration of the circular knob.

13. A person is riding the 2R gyro swing of Figure 5.24. Joint θ oscillates
periodically according to θ(t) = cos t, and the circular plate connected to the
axis of the gyro swing rotates with constant angular velocity ω2 radians/sec. At
t = 0, the person on the circular plate is at the maximal height as shown in the
figure. Setting l = 1, r = 1, and ω2 = 1 radian/sec, determine the velocity of
the person in terms of the given fixed frame coordinates when t = π

2 .
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Figure 5.24: A 2R gyro swing.

Figure 5.25: A meteorite approaching the earth.

14. As shown in Figure 5.25, a meteorite is approaching a rotating asteroid
along the meteorite’s Ĵ axis with velocity v1 = 100 m/sec. Suppose the radius
of the asteroid is R = 1000m, and the distance of the meteorite from the asteroid
is initially D = 107m. The asteroid takes 6 hours to complete a full revolution.
An astronaut stands at the point antipodal to the expected point of collision,
and unwittingly starts walking north along a longitudinal arc at a velocity of
v2 = 1 m/sec. After three hours, determine the velocity of the astronaut in terms
of the moving frame coordinates attached to the meteorite. of the moving frame
at the meteorite.

15. As shown in Figure 5.26, a clock of radius r is mounted on a gimbal
assembly as shown. The angles θ1, θ2, and θ3 are adjustable to arbitrary values;
in the figure the angles are all assumed to be set to zero. A moving frame {T}
is attached to the tip of the clock’s second hand, with its x̂-axis aligned along
the tip of the hand as shown. Setting r = 1m , a = 3m, b = 7m, answer the
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Figure 5.26: A clock mounted on a gimbal assembly.

following:
(a) Assuming the second hand starts at 12 at t = 0, when the second hand
reaches 10, find TST ∈ SE(3) as a function of the angles (θ1, θ2, θ3).
(b) Setting θ1 = 90◦, θ2 = 0, θ3 = 90◦, find the the velocity of the tip of the
second hand at the moment it passes 10.

16. In this exercise we derive the analytic Jacobian for an n-link open chain
corresponding to the exponential coordinates on SO(3).
(a) Given an n×n matrix A(t) parametrized by t that is also differentiable with
respect to t, its exponential X(t) = eA(t) is then an n× n matrix that is always
nonsingular. Prove the following:

X−1Ẋ =

∫ 1

0

e−A(t)sȦ(t)eA(t)sds

ẊX−1 =

∫ 1

0

eA(t)sȦ(t)e−A(t)sds.

(b) Using the above result to show that for r(t) ∈ R3 and R(t) = e[r(t)], the
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Figure 5.27: A 3R planar open chain.

Figure 5.28: A planar 4R open chain.

angular velocity in the body frame, [ωb] R
T Ṙ is related to ṙ by

ωb = A(r)ṙ

A(r) = I − 1− cos ‖r‖
‖r‖2

[r] +
‖r‖ − sin ‖r‖
‖r‖3

[r]2.

(c) Derive the corresponding formula relating the angular velocity in the space
frame, [ωs] ṘR

T , with ṙ.

17. The 3R planar open chain of Figure 5.27 is shown in its zero position.
(a) Suppose the tip must apply a force of 5N in the x̂-direction. What torques
should be applied at each of the joints?
(b) Suppose the tip must now apply a force of 5N in the ŷ-direction. What
torques should be applied at each of the joints?
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θ

Figure 5.29: A rigid body rotating in the plane.

18. Answer the following questions for the 4R planar open chain of Figure 5.28.
(a) Derive the forward kinematics in the form

T (θ) = e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4M.

where each S〉 ∈ R3 and M ∈ SE(2).
(b) Derive the body Jacobian.
(c) Suppose the chain is in static equilibrium at the configuration θ1 = θ2 =
0, θ3 = π

2 , θ4 = −π2 , and a force f = (10, 10, 0) and moment m = (0, 0, 10) are
applied to the tip (both f and m are expressed with respect to the fixed frame).
What are the torques experienced at each of the joints?
(d) Under the same conditions as (c), suppose that a force f = (−10, 10, 0)
and moment m = (0, 0,−10) are applied to the tip. What are the torques
experienced at each of the joints?
(e) Find all kinematic singularities for this chain.

19. Referring to Figure 5.29, the rigid body rotates about the point (L,L) with
angular velocity θ̇ = 1.
(a) Find the position of point P on the moving body with respect to the fixed
reference frame in terms of θ.
(b) Find the velocity of point P in terms of the fixed frame.
(c) What is Tfb, the displacement of frame {b} as seen from the fixed frame
{f}?
(d) Find the spatial velocity of Tfb in body coordinates.
(e) Find the spatial velocity of Tfb in space coordinates.
(f) What is the relation between the spatial velocities obtained in (d) and (e)?
(g) What is the relation between the spatial velocity obtained in (d) and Ṗ
obtained in (b)?
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Figure 5.30: An RRRP spatial open chain.
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Figure 5.31: A spatial 3R open chain.

(h) What is the relation between the spatial velocity obtained in (e) and Ṗ
obtained in (b)?

20. The RRRP chain of Figure 5.30 is shown in its zero position.
(a) Determine the body Jacobian Jb(θ) when θ1 = θ2 = 0, θ3 = π/2, θ4 = L.
(b) Determine the linear velocity of the end-effector frame, in fixed frame coor-
dinates, when θ1 = θ2 = 0, θ3 = π/2, θ4 = L and θ̇1 = θ̇2 = θ̇3 = θ̇4 = 1.

21. The spatial 3R open chain of Figure 5.31 is shown in its zero position.
(a) In its zero position, suppose we wish to make the end-effector move with
linear velocity vtip = (10, 0, 0), where vtip is expressed with respect to the space

frame {s}. What are the necessary input joint velocities θ̇1, θ̇2, θ̇3?
(b) Suppose the robot is in the configuration θ1 = 0, θ2 = 45◦, θ3 = −45◦.
Assuming static equilibrium, suppose we wish to generate an end-effector force
fb = (10, 0, 0), where fb is expressed with respect to the end-effector frame {b}.
What are the necessary input joint torques τ1, τ2, τ3?
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Figure 5.32: A spatial PRRRRP open chain.

(c) Under the same conditions as in (b), suppose we now seek to generate an
end-effector moment mb = (10, 0, 0), where mb is expressed with respect to the
end-effector frame {b}. What are the necessary input joint torques τ1, τ2, τ3?
(d) Suppose the maximum allowable torques for each joint motor are

‖τ1‖ ≤ 10, ‖τ2‖ ≤ 20, ‖τ3‖ ≤ 5.

In the home position, what is the maximum force that can be applied by the
tip in the end-effector frame x-direction?

22. The spatial PRRRRP open chain of Figure 5.32 is shown in its zero
position.
(a) At the zero position, find the first three columns of the space Jacobian.
(b) Find all configurations at which the first three columns of the space Jacobian
become linearly dependent.
(c) Suppose the chain is in the configuration θ1 = θ2 = θ3 = θ5 = θ6 =
0, θ4 = 90o. Assuming static equilibrium, suppose a pure force fb = (10, 0, 10)
is applied to the origin of the end-effector frame, where fb is expressed in terms
of the end-effector frame. Find the joint torques τ1, τ2, τ3 experienced at the
first three joints.

23. Consider the PRRRRR spatial open chain of Figure 5.33 shown in its zero
position. The distance from the origin of the fixed frame to the origin of the
end-effector frame at the home position is L.
(a) Determine the first three columns of the space Jacobian Js.
(b) Determine the last two columns of the body Jacobian Jb.
(c) For what value of L is the home position a singularity?
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Figure 5.33: A PRRRRR spatial open chain.
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Figure 5.34: A kinematic singularity involving prismatic and revolute joints.

(d) In the zero position, what joint torques must be applied in order to generate
a pure end-effector force of 100N in the -ẑ direction?

24. Find all kinematic singularities of the 3R wrist with the following forward
kinematics:

R = e[ω1]θ1e[ω2]θ2e[ω3]θ3

where ω1 = (0, 0, 1), ω2 = (1/
√

2, 0, 1/
√

2), and ω3 = (1, 0, 0).

25. Show that a six degree of freedom spatial open chain is in a kinematic
singularity when any two of its revolute joint axes are parallel, and any prismatic
joint axis is normal to the plane spanned by the two parallel revolute joint axes
(see Figure 5.34).

26. (a) Determine the space Jacobian Js(θ) of the 6R spatial open chain of
Figure 5.35.
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Figure 5.36: A spatial PRRRRP open chain with a skewed joint axis.

(b) Find the kinematic singularities of the given chain. Explain each singularity
in terms of the alignment of the joint screws, and the directions in which the
end-effector loses one or more degrees of freedom of motion.

27. The spatial PRRRRP open chain of Figure 5.36 is shown in its zero
position.
(a) Determine the first 4 columns of the space Jacobian Js(θ).
(b) Determine whether the zero position is a kinematic singularity.
(c) Calculate the joint torques required for the tip to apply the following end-
effector spatial forces:

(i) Fs = (0, 1,−1, 1, 0, 0)T

(ii) Fs = (1,−1, 0, 1, 0,−1)T .

28. The spatial RRPRRR open chain of Figure 5.37 is shown in its zero
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θ

Figure 5.38: A rollercoaster undergoing a screw motion.

position.
(a) For the fixed frame {0} and tool frame {t} as shown, express the forward
kinematics in the following product of exponentials form:

T (θ) = e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4e[S5]θ5e[S6]θ6M.

(b) Find the first three columns of the space Jacobian Js(θ).
(c) Suppose that the fixed frame {0} is moved to another location {0′} as shown
in the figure. Find the first three columns of the space Jacobian Js(θ) with
respect to this new fixed frame.
(d) Determine if the zero position is a kinematic singularity, and if so, provide
a geometric description in terms of the joint screw axes.

29. The rollercoaster of Figure 5.38 undergoes a screw motion as shown: point
A traces a circle of radius R, and the rollercoaster moves in screw-like fashion at
a distance r from this larger circle. The roller coaster completes one revolution
about this larger circle when point A traverses 30◦ along the larger circle.
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(a) Find T12, the relative displacement of the rollercoaster frame {2} as seen
from the fixed frame {1}, in terms of the angle θ as indicated in the figure.
(b) Derive the space Jacobian for T12(θ).

30. Two frames {a} and {b} are attached to a moving rigid body. Show that
the spatial velocity of {a} in space frame coordinates is the same as the spatial
velocity of {b} in space frame coordinates.

31. Consider an n-link open chain, with reference frames attached to each link.
Let

T0k = e[S1]θ1 · · · e[Sk]θkMk, k = 1, . . . , n

be the forward kinematics up to link frame {k}. Let Js(θ) be the space Jacobian
for T0n. The columns of Js(θ)are denoted

Js(θ) =
[
Vs1(θ) · · · Vsn(θ)

]
.

Let [Vk] = ˙T0kT
−1
0k be the spatial velocity of link frame {k} in frame {k} coor-

dinates.
(a) Derive explicit expressions for V2 and V3.
(b) Based on your results from (a), derive a recursive formula for Vk+1 in terms
of Vk, Vs1, . . . ,Vs,k+1, and θ̇.
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Chapter 6

Inverse Kinematics

For a general n degree-of-freedom open chain with forward kinematics T (θ),
θ ∈ Rn, the inverse kinematics problem can be stated as follows: given a ho-
mogeneous transform X ∈ SE(3), find solutions θ that satisfy T (θ) = X. To
highlight the main features of the inverse kinematics problem, let us consider
the two-link planar open chain of Figure 6.1(a) as a motivational example. Con-
sidering only the position of the end-effector and ignoring its orientation, the
forward kinematics can be expressed as[

x
y

]
=

[
L1 cos θ1 + L2 cos(θ1 + θ2)
L1 sin θ1 + L2 sin(θ1 + θ2)

]
. (6.1)

Assuming L1 > L2, the set of reachable points, or the workspace, is an annulus
of inner radius L1 − L2 and outer radius L1 + L2. Given some end-effector
position (x, y), it is not hard to see that there will be either zero, one, or two
solutions depending on whether (x, y) lies in the exterior, boundary, or interior
of this annulus, respectively. The case of two solutions is given by the familiar
elbow-up and elbow-down configurations.

Finding an explicit solution (θ1, θ2) for a given (x, y) is also not difficult. Re-
ferring this time to Figure 6.1(b), assume that (x, y) lies in the first quadrant,
i.e., both x and y are positive (solutions for the other quadrants follow straight-
forwardly). Angle β, restricted to lie in the interval [0, π], can be determined
from the law of cosines:

L2
1 + L2

2 − 2L1L2 cosβ = x2 + y2,

from which it follows that

β = cos−1

(
L2

1 + L2
2 − x2 − y2

2L1L2

)
θ2 = π − β.

Also from the law of cosines,

α = cos−1

(
x2 + y2 + L2

1 − L2
2

2L1

√
x2 + y2

)
.

159
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(a) Workspace and elbow-up and
elbow-down configurations.

(b) Geometric solution.

Figure 6.1: 2R planar open chain inverse kinematics.

and since tan(θ1 + α) = y/x, it follows that

θ1 = tan−1 y

x
− α.

The above values for θ1 and θ2 correspond to the elbow-down solution. The
elbow-up solution is given by

θ1 = tan−1 y

x
+ α, θ2 = π + β.

If x2+y2 lies outside the range [L1−L2, L1+L2], then no solution exists. Again,
the case when (x, y) lies in other quadrants follows straightforwardly from the
above solution for the first quadrant.

This simple motivational example illustrates that for open chains, the in-
verse kinematics problem may have multiple solutions; this is in contrast to the
forward kinematics, where a unique end-effector displacement T exists for given
joint values θ. In fact, three-link planar open chains have an infinite number
of solutions for points (x, y) lying in the interior of the workspace; in this case
the chain possesses an extra degree of freedom, and is said to be kinematically
redundant.

This chapter begins by considering the inverse kinematics of spatial open
chains with six degrees of freedom. A finite number of solutions exists in this
case, and we first make some simplifying assumptions about the kinematic struc-
ture that lead to analytic solutions. As we shall see, these assumptions are not
overly restrictive, as they accommodate the most commonly used six-degree-of-
freedom open chains. For more general open chains, we specialize the Newton-
Raphson method for nonlinear root finding to the inverse kinematics problem.
The result is an iterative numerical algorithm that, provided an initial guess of
the joint variables is sufficiently close to the true solution, eventually converges
to the solution. The chapter concludes with a discussion of pseudoinverse-based
inverse kinematics solutions for redundant open chains.
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Figure 6.2: Inverse position kinematics of a 6R PUMA-type arm.

(a) Elbow arm with
offset.

(b) Kinematic diagram.

Figure 6.3: A 6R PUMA-type arm with a shoulder offset.

6.1 Analytic Inverse Kinematics

We begin by writing the forward kinematics of a spatial six-degree-of-freedom
open chain in the following product of exponentials form:

T (θ) = e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4e[S5]θ5e[S6]θ6M.

Given some X ∈ SE(3), the inverse kinematics problem is concerned with
finding all solutions θ ∈ R6 that satisfy T (θ) = X. In the following subsections
we shall make some simplifying assumptions about the kinematic structure of
the open chain that will lead to analytic solutions for the inverse kinematics.

6.1.1 6R PUMA-Type Arm

We first consider a 6R arm of the PUMA type (see Figure 6.2). Such arms
are characterized by (i) the last three joint axes intersecting orthogonally at
a common point (the wrist center) to form an orthogonal wrist; (ii) the first
two axes intersecting orthogonally to form a shoulder joint; and (iii) the elbow
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Figure 6.4: Singular configuration of the zero-offset 6R PUMA-type arm.

joint axis being parallel with the horizontal shoulder joint axis. Such arms may
also have an offset at the shoulder (see Figure 6.3). The inverse kinematics
problem for PUMA-type arms can be decoupled into an inverse position and
inverse orientation subproblem, which we now discuss.

We first consider the simple case of a zero-offset PUMA-type arm. Referring
to Figure 6.2 and expressing all vectors in terms of fixed frame coordinates,
denote components of the wrist center p ∈ R3 by p = (px, py, pz). Projecting p
onto the x-y plane, it can be seen that

θ1 = tan−1 py
px
,

where the atan2() function can be used instead of tan−1. Note that a second
valid solution for θ1 is given by

θ1 = tan−1 py
px

+ π,

provided that the original solution for θ2 is replaced by π − θ2. As long as
px, py 6= 0, both these solutions are valid. When px = py = 0 the arm is in a
singular configuration (see Figure 6.4), and there are infinitely many possible
solutions for θ1.

If there is an offset d1 6= 0 as shown in Figure 6.3, then in general there will be
two solutions for θ1, denoted the right and left arm solutions (Figure 6.3). As

seen from the figure, θ1 = φ−α, where φ = tan−1(
py
px

) and α = tan−1(

√
r2−d21
d1

) =

tan−1(

√
p2x+p2y−d21
d1

). The second solution is given by

θ1 = tan−1(
py
px

)− tan−1(
−
√
p2
x + p2

y − d2
1

d1
)

Determining angles θ2 and θ3 for the PUMA-type arm now reduces to the inverse



6.1. Analytic Inverse Kinematics 163

Figure 6.5: Four possible inverse kinematics solutions for the 6R PUMA type
arm with shoulder offset.

kinematics problem for a planar two-link chain:

cos θ3 =
r2 + s2 − a2

2 − a2
3

2a2a3

=
p2
x + p2

y + (p2
z − d1)2 − a2

2 − a2
3

2a2a3

If we let cos θ3 = D, then θ3 is given by

θ3 = tan−1(±
√

1−D2

D
)

θ2 can be obtained in a similar fashion as

θ2 = tan−1(
s

r
)− tan−1(

a3s3

a2 + a3c3
)

= tan−1(
pz − d1√
p2
x + p2

y

)− tan−1(
a3s3

a2 + a3c3
)

The two solutions for θ3 correspond to the well-known elbow up and elbow
down configurations for the two-link planar arm. In general, a PUMA-type arm
with an offset will have four solutions to the inverse position problem, as shown
in Figure 6.5; the upper postures are called left-arm solutions (elbow-up and
elbow-down), while the lower postures are called right-arm solutions (elbow-up
and elbow-down).
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Figure 6.6: A 6R spatial open chain of the generalized PUMA type.

We now solve the inverse orientation problem, i.e., finding values for (θ4, θ5, θ6)
given the end-effector frame orientation. This is completely straightforward:
since the final three joints form a 3R wrist with orthogonal axes, the joint val-
ues can be determined via an appropriate set of Euler angles as discussed in
Appendix B (e.g., ZYX, ZYZ, depending on how the final three joint axes are
aligned when in the zero position).

6.1.2 Generalized 6R PUMA-Type Arms

We now relax some of the assumptions made for the 6R PUMA-type arm: a
generalized 6R PUMA-type arm is characterized by (i) the first two joint
axes intersecting orthogonally, and (ii) the last three joint axes intersecting
orthogonally at a common point. Referring to Figure 6.6, place the fixed frame
origin at the intersection of joint axes 1 and 2, and let rw ∈ R3 be the fixed
frame representation of the point of intersection of the final three axes. The
assumptions about the joint axes then lead to the following relations among the
joint screws Si = (ωi,−ωi × ri), i = 1, . . . , 6, where ri denotes a reference point
on axis i:

• ωT1 ω2 = 0;

• ωT4 ω5 = 0 and ωT5 ω6 = 0.

The inverse kinematics problem can now be stated as finding solutions θ to

e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4e[S5]θ5e[S6]θ6 = XM−1, (6.2)

where

S1 = (ω1, 0)

S2 = (ω2, 0)

S3 = (ω3,−ω3 × r3)

S4 = (ω4,−ω4 × rw)

S5 = (ω5,−ω5 × rw)

S6 = (ω6,−ω6 × rw),
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Figure 6.7: Solving ‖e[S]θp‖ = c for θ.

and the right-hand side XM−1 is given; denote this known quantity by X1 =
XM−1. Solving the inverse kinematics then proceeds in three steps:

Step 1: Solve for θ3

We first multiply both sides of Equation (6.2) by rw (here multiplication of a
vector by a homogeneous transformation is understood in the usual sense, i.e.,

Trw = Rrw + p, T =

[
R p
0 1

]
.

The net effect is to consecutively apply the screw motions defined by e[S6]θ6 ,
e[S5]θ5 , and e[S4]θ4 to rw. However, since all three of these screw motions are
zero pitch (all joints are revolute), and rw is a point lying on all three screw
axes, it follows that

e[S4]θ4e[S5]θ5e[S6]θ6rw = rw.

We are thus left with

e[S1]θ1e[S2]θ2e[S3]θ3rw = X1rw = p1, (6.3)

where the vector p1 = X1rw is known.
Now take the norm of both sides of (6.3). Since both e[S1]θ1 and e[S2]θ2 are

pure rotations, and the general identity ‖Rv‖ = ‖v‖ holds for any rotation R
and vector v, Equation (6.3) becomes

‖e[S3]θ3rw‖ = ‖p1‖.
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This is a problem of the general form

‖e[S]θp‖ = c,

where S = (ω,−ω × r), p ∈ R3, and the scalar c > 0 are known, and the
objective is to find all values of θ ∈ [0, 2π] satisfying this equality. solve this
problem. Referring to Figure 6.7, define the vectors w, u, v ∈ R3 according to

z = e[S]θp

u = p− r
v = w − r,

with ‖z‖ = c given. We shall now project the vectors p, u, v, r, and z onto the
plane normal to the screw axis and containing p: define these respectively to be

pproj = p− (pTω)ω

uproj = u− (uTω)ω

vproj = v − (vTω)ω

rproj = r − (rTω)ω

zproj = z − (zTω)ω.

Note that uproj and qproj are known a priori. From the figure it can be seen
that

‖(zTω)ω‖ = ‖(pTω)ω‖ = |pTω|.

Since zproj = z − (zTω)ω and ‖z‖2 = c2, it follows that

‖zproj‖2 = c2 − (pTω)2,

which is also known a priori. Let us first find the angle ψ = θ + φ, where φ is
defined as indicated in the figure. Since

uTproj(−qproj) = ‖uproj‖ · ‖qproj)‖ cos(θ + φ) (6.4)

uproj × (−qproj) = ω̂ (‖uproj‖ · ‖qproj‖ sin(θ + φ)) , (6.5)

from the latter equality it follows that

ωT (uproj × (−qproj)) = ‖uproj‖‖qproj‖ sin(θ + φ). (6.6)

From Equations (6.4) and (6.6) we have

ψ = tan−1

(
ωT (uproj × qproj)

uTprojqproj

)
. (6.7)

We now determine φ from the law of cosines: referring to the inset of Figure 6.7,

‖rproj‖2 + ‖vproj‖2 − 2‖rproj‖ · ‖vproj‖ cosφ = ‖zproj‖2.
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Figure 6.8: Solving e[ω1]θ1e[ω2]θ2p2 = p1 for θ1 and θ2.

Since ‖zproj‖2 = c2 − (pTω)2 is known, and ‖vproj‖ = ‖uproj‖ is also known, φ
can be determined as follows:

φ = cos−1

(
‖rproj‖2 + ‖vproj‖2 − ‖zproj‖2

2‖rproj‖ · ‖vproj‖

)
. (6.8)

From the figure it should be apparent that there can be up to two solutions for
θ:

θ = ψ ± φ.

If φ = 0, the two solutions collapse to a single solution, while a solution does
not exist in the event that φ does not exist.

Step 2: Solve for θ1 and θ2

Having solved for θ3, Equation (6.3) can be written

e[S1]θ1e[S2]θ2p2 = p1, (6.9)

where p2 = e[S3]θ3rw and p1 are both known. Observe that S1 = (ω1, 0) and
S2 = (ω2, 0) are both pure rotations, and ω1 and ω2 are orthogonal to each
other. Thus, only the rotation component of (6.9) needs to be considered:

e[ω1]θ1e[ω2]θ2p2 = p1. (6.10)

Referring to Figure ??, clearly a necessary condition for a solution (θ1, θ2) to
exist is that ‖p1‖ = ‖p2‖. Assuming this is the case, the solutions are then
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marked by the intersection of the two circles indicated in Figure 6.8. In the
general case there can be up to two solutions, with one or no solution also a
possibility.

Assuming a solution exists, let z ∈ R3 be the vector p2 rotated about ω̂2

by angle θ2. z can also be obtained by rotating p1 about ω1 by an angle −θ1.
Mathematically,

z = e[ω2]θ2p2 = e−[ω1]θ1p1.

Clearly {ω1, ω2, ω1 × ω2} forms an orthonormal basis for R3. Further observe
that the ω1 component of z is the same as the ω1 component of p1, and the
ω2 component of z is the same as the ω2 component of p2). z can therefore be
expressed in terms of this orthonormal basis as

z = (pT1 ω1)ω1 + (pT2 ω2)ω2 ± c(ω1 × ω2)

for some scalar constant c ≥ 0. The length ‖z‖ is then, straightforwardly,

‖z‖ = (pT1 ω1)2 + (pT2 ω2)2 + c2.

Since z is also a rotated version of p2 (and also of p1), it follows that ‖z‖ =
‖p2‖ = ‖p1‖. Solving the above for c2, z can now be written

z = (pT1 ω1)ω1 + (pT2 ω2)ω2 ±
√
‖p2‖2 − (pT1 ω1)2 − (pT2 ω2)(ω1 × ω2).

If c = 0 then there exists a unique solution (θ1, θ2), while if c does not exist,
then no solution (θ1, θ2) exists.

Having found up to two possible solutions for z, what remains is to find θ1

and θ2 for each z. This is relatively straightforward: letting u1 and z1 respec-
tively be the projections of p1 and z onto circle 1, and u2 and z2 respectively
be the projections of p2 and z onto circle 2, it follows that

θ1 = cos−1(uT1 z1)

θ2 = cos−1(uT2 z2).

Step 3: Solve for θ4, θ5, and θ6

Having found θ1, θ2, and θ3, it remains to solve for θ4, θ5, and θ6. We have

e[S4]θ4e[S5]θ5e[S6]θ6 = e−[S3]θ3e−[S2]θ2e−[S1]θ1XM−1 (6.11)

= X2,

where the right-side X2 is now known. Recall that ωT4 ω5 = 0 and ωT5 ω6 = 0;
this implies that ω4 and ω6 are either orthogonal or parallel. Assume for the
time being that ω6 is orthogonal to ω4, or more precisely, ω6 = ω4 × ω5 (the
parallel case will be considered later). Define the transformation

Tw =

[
Rw rw
0 1

]
, Rw =

[
ω6 −ω5 ω4

]
∈ SO(3).
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Multiplying both sides of (6.11) by T−1
w leads to

T−1
w e[S4]θ4e[S5]θ5e[S6]θ6 = T−1

w X2

eT
−1
w [S4]Twθ4eT

−1
w [S5]Twθ5eT

−1
w [S6]Twθ6 = T−1

w X2Tw.

Noting that T−1
w [Si]Tw is the 4×4 matrix representation of the adjoint mapping

AdT−1
w

(Si), it can be verified by calculation that

AdT−1
w

(S6) =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



AdT−1
w

(S5) =


0 0 1 0
0 0 0 0
−1 0 0 0

0 0 0 0



AdT−1
w

(S4) =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
As long as the translational component of T−1

w X1Tw is zero, the solution (θ4, θ5, θ6)
can now be obtained from the following:

Rot(ẑ, θ1) · Rot(ŷ, θ2) · Rot(x̂, θ3) = R̄,

where R̄ is the rotational component of T−1
w X1Tw. The solution (θ4, θ5, θ6)

therefore corresponds to the ZY X Euler angles that parametrize R̄:

θ5 = atan2(−r̄31,±
√
r̄112 + r̄2

21)

θ4 = atan2(r̄21, r̄11)

θ6 = atan2(r̄32, r̄33),

where r̄ij denotes the ij-th entry of R̄. Recall that there are two solutions
determined by the choice of sign for θ5.

The above derivation can be repeated for the case when ω6 and ω4 are
parallel, in which case the solutions (θ4, θ5, θ6) will now correspond to the ZYZ
Euler angles.

Like the earlier 6R PUMA-type arm, since there are up to two possible
solutions for θ3, and also for (θ1, θ2) and (θ4, θ5, θ6), for the generalized PUMA-
type robot arm one can expect up to 2 × 2 × 2 = 8 possible inverse kinematic
solutions.

6.1.3 Stanford-Type Arms

If the elbow joint in a 6R PUMA-type arm is replaced by a prismatic joint
as shown in Figure 6.9, we then have a Stanford-type arm. Here we consider
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Figure 6.9: The first three joints of a Stanford-type arm.

the inverse position kinematics for the arm of Figure 6.9; the inverse orientation
kinematics is identical to that for the PUMA-type arm and is not repeated here.

The first joint variable θ1 an be found in a similar fashion to the PUMA-type
arm: θ1 = tan−1(

py
px

) (provided that px and py are not both zero). θ2 is then
found from Figure 6.9 to be

θ2 = tan−1(
s

r
)

where r2 = p2
x + p2

y and s = pz − d1. Similar to the PUMA-type arm, a second
solution for θ1, θ2 is given by

θ1 = π + tan−1(
py
px

)

θ2 = π − tan−1(
py
px

)

The translation distance d3 is found from the relation

(d3 + a2)2 = r2 + s2

as

d3 =
√
r2 + s2

=
√
p2
x + p2

y + (pz − d1)2 − a2

Ignoring the negative square root solution for d3, we obtain two solutions to
the inverse position kinematics as long as the wrist center p does not intersect
the z-axis of the fixed frame. If there is an offset, then as in the case of the
PUMA-type arm there will be a left and right arm solution.
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If the elbow joint in the generalized 6R PUMA-type arm is replaced by a
prismatic joint, the resulting arm is then referred to as a generalized Stanford-
type arm. The inverse kinematics proceeds in the same way as for the general-
ized PUMA-type arm; the only difference occurs in the first step (obtaining θ3).
The screw vector for the third joint now becomes S3 = (0, v3), with ‖v3‖ = 1,
and θ3 is found by solving the equation

‖e[S3]θ3p‖ = c,

for some given p ∈ R3 and nonnegative positive scalar c. The above equation
reduces to solving the following quadratic in θ3:

θ2
3 + 2(pT v3)θ3 + (‖p‖2 − c2) = 0.

Imaginary, as well as negative solutions, naturally should be excluded.

6.2 Numerical Inverse Kinematics

In cases where the inverse kinematics equations do not admit analytic solutions,
one must resort to numerical methods. Even in cases where an analytic solution
exists, numerical methods are often used to improve the accuracy of these solu-
tions. For example, in a generalized PUMA-type arm, the last three axes may
not exactly intersect at a common point, and the shoulder joint axes may not be
exactly orthogonal. In such cases, rather than throw away any analytic inverse
kinematic solutions that are available, such solutions can be used as the initial
point in an iterative procedure for numerically solving the inverse kinematics.

There exist a variety of iterative methods for finding the roots of a nonlinear
equation, and our aim is not to discuss these in detail—any text on numerical
analysis will cover these methods in depth—but rather to develop ways in which
to transform the inverse kinematics equations such that they are amenable to
existing numerical methods.

However, it is useful to review one fundamental approach to nonlinear root-
finding, the Newton-Raphson method. Suppose we express the end-effector
frame using a coordinate vector x governed by the forward kinematics x = f(θ),
a nonlinear vector equation mapping the n joint coordinates to the m end-
effector coordinates. Assume f : Rn → Rm is twice differentiable, and let xd
be the desired end-effector coordinates. The goal is to find joint coordinates θd
such that

xd − f(θd) = 0.

Solving this equation for θd is a nonlinear root-finding problem.
Given an initial guess θ0 which is “close by” a solution θd, the kinematics

can be approximated by the Taylor expansion truncated at first-order

xd = f(θd) ≈ f(θ0) +
∂f

∂x

∣∣∣∣
θ0︸ ︷︷ ︸

J(θ0)

(θd − θ0)︸ ︷︷ ︸
∆θ

, (6.12)
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Figure 6.10: The first step of the Newton-Raphson method for nonlinear root-
finding for a scalar x and θ.

where J(θ0) ∈ Rm×n is the coordinate Jacobian evaluated at θ0. Assuming
J(θ0) is square (m = n) and invertible, we can solve for ∆θ as

∆θ = J−1(θ0) (xd − f(θ0)) . (6.13)

If the kinematics were linear, then the new guess θ1 = θ0 + ∆θ would exactly
satisfy xd = f(θ1). If not, the new guess θ1 should be closer to the root than θ0,
and the process is then repeated, with the sequence {θ0, θ1, θ2, . . .} converging
to θd (Figure 6.10).

If J is not square, then J−1 does not exist. The Moore-Penrose pseudoinverse
J† is used in place of J−1, so Equation (6.13) becomes

∆θ = J†(θ0) (xd − f(θ0)) , (6.14)

where

J† = JT (JJT )−1 if n > m and JJT is invertible

J† = (JTJ)−1JT if n < m and JTJ is invertible.

If n < m, then there may not exist a ∆θ exactly solving J(θ)∆θ = xd − f(θ0).
In this case, the solution of Equation (6.14) using the pseudoinverse is a ∆θ that
best satisfies J(θ)∆θ = xd−f(θ0) in the least-squares sense. If n > m, then the
robot may be redundant, meaning that there may exist an (n−m)-dimensional
set of solutions ∆θ to J(θ)∆θ = xd − f(θ0). In this case, the the solution of
Equation (6.14) is a ∆θ that exactly satisfies J(θ)∆θ = xd − f(θ0) while also

minimizing the two-norm
√

∆θT∆θ.
Equation (6.14) suggests the Newton-Raphson iterative algorithm for finding

θd:



6.2. Numerical Inverse Kinematics 173

(i) Initialization: Given xd ∈ Rm and an initial guess θ0 ∈ Rn. Set i = 0.

(ii) While ‖xd − f(θi)‖ > ε for some small ε:

• Set θi+1 = θi + J†(θi)(xd − f(θi)).

• Increment i.

To modify this algorithm to work with a desired end-effector configuration
represented as Tsd ∈ SE(3) instead of as a coordinate vector xd, we can re-
place the coordinate Jacobian J with the end-effector body Jacobian Jb. Note,
however, that the vector xd− f(θi), representing the direction from the current
guess (evaluated through the forward kinematics) to the desired end-effector
configuration, cannot simply be replaced with Tsd − Tsb(θi), which is not even
an element of SE(3). Instead we should think of xd− f(θi) as a velocity vector
which, if followed for unit time, would cause a motion from f(θi) to xd. Sim-
ilarly, we should look for a body velocity Vb which, if followed for unit time,
would cause a motion from Tsb(θi) to the desired configuration Tsd.

To find this Vb, we first calculate the desired configuration represented in
the body frame,

Tbd(θi) = T−1
sb (θi)Tsd = Tbs(θi)Tsd.

Then Vb is determined using the matrix logarithm,

[Vb] = log Tbd(θi).

This leads to the following inverse kinematics algorithm, analogous to the
coordinate vector algorithm:

(i) Initialization: Given Tsd and an initial guess θ0 ∈ Rn. Set i = 0.

(ii) Set [Vb] = log
(
T−1
sb (θi)Tsd

)
. While ‖ωb‖ > εω or ‖vb‖ > εv for small εω, εv:

• Set θi+1 = θi + J†b (θi)Vb.
• Increment i.

An equivalent form can be derived in the space frame, using the space Ja-
cobian Js(θ) and the space velocity Vs = [AdTsb ]Vb.

For this numerical inverse kinematics method to converge, the initial guess
θ0 should be sufficiently close to a solution θd. This condition can be satisfied
by starting the robot from an initial home configuration where both the actual
end-effector configuration and the joint angles are known, and ensuring that
the requested end-effector position Tsd change slowly relative to the frequency
of the calculation of the inverse kinematics. Then, for the rest of the robot’s
run, the calculated θd at the previous timestep serves as the initial guess θ0 for
the new Tsd at the next timestep.
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6.3 Inverse Velocity Kinematics

To control a robot to follow a desired end-effector trajectory Tsd(t), one solution
is to calculate the inverse kinematics θd(k∆t) at each discrete time step k, then
control the joint velocities to be

θ̇ = (θd(k∆t)− θ((k − 1)∆t))/∆t

during the time interval [(k − 1)∆t, k∆t]. This is a type of feedback controller,
since the desired new joint angles θd(k∆t) are being compared to the most
recently measured actual joint angles θ((k− 1)∆t) to calculate the commanded
joint velocities.

Another option is to calculate the required joint velocities directly from
the relationship Jθ̇ = Vd, where the desired end-effector velocity Vd and J
are expressed with respect to the same frame, without calculating the inverse
kinematics:

θ̇ = J†(θ)Vd. (6.15)

In this case, a position feedback controller should be designed to choose Vd to
keep the end-effector following Tsd(t).

In the case of a redundant robot with n > 6 joints, of the (n−6)-dimensional
set of solutions satisfying Equation (6.15), the use of the Moore-Penrose pseu-

doinverse J†(θ) returns the θ̇ minimizing the two-norm ‖θ̇‖2 =
√
θ̇T θ̇. This is

appealing; the motion is the minimum joint velocity motion that achieves the
desired end-effector velocity.

Another option is to give the individual joint velocities different weighting.
For example, as we will see later, the kinetic energy of a robot can be written

1

2
θ̇TM(θ)θ̇,

where M(θ) is the configuration-dependent inertia matrix of the robot. In this
case, we might wish to choose the joint velocities θ̇ to minimize the kinetic
energy of the robot (e.g., minimize the velocities of the joints moving a lot of
mass), while still statisfying the desired end-effector velocity. To do this, we can
choose to use the weighted Moore-Penrose pseudoniverse

J† = MJT (JMJT )−1,

which yields a solution minimizing the weighted norm
√
θ̇TMθ̇.

6.4 A Note on Closed Loops

A desired end-effector trajectory over a time-interval [0, tf ] is a closed loop if
Tsd(0) = Tsd(tf ). It should be noted that numerical methods for calculating
inverse kinematics for redundant robots, at either the configuration or velocity
levels, are likely to yield motions that are not closed loops in the joint space,
i.e., θ(0) 6= θ(tf ). If closed-loop motions in joint space are required, an extra
set of conditions on the inverse kinematics must be satisfied.
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6.5 Summary

• Given a spatial open chain with forward kinematics T (θ), θ ∈ Rn, in the
inverse kinematics problem one seeks to find, for some given X ∈ SE(3),
solutions θ that satisfy X = T (θ). Unlike the forward kinematics, the
inverse kinematics problem can possess multiple solutions, or no solutions
in the event that X lies outside the workspace. For a spatial open chain,
n ≤ 6 typically leads to a finite number of inverse kinematic solutions,
while n > 6 leads to an infinite number of solutions.

• The inverse kinematics can be solved analytically for a large class of open
chains that possess some degree of structure. One important class is the
generalized 6R PUMA-type arm; such an arm consists of a 3R orthogonal
axis wrist connected to a 2R orthogonal axis shoulder by an elbow joint.
Geometric algorithms have been developed for this class of arms that
exploits the product of exponentials forward kinematics representation.
Further assumptions on the joint axes, e.g., joint axes 2 and 3 are always
parallel, lead to simpler analytic forms for the inverse kinematics.

• Another class of open chains that admit analytic inverse kinematic solu-
tions are Stanford-type arms; these arms are obtained by replacing the
elbow joint in the generalized 6R PUMA-type arm by a prismatic joint.
Geometric inverse kinematic algorithms similar to those for PUMA-type
arms have also been developed.

• Iterative numerical methods are used in cases where analytic inverse kine-
matics solutions are not available. These typically involve solving the in-
verse kinematics equations through an iterative procedure like the Newton-
Raphson method, and require an initial guess at the joint variables. The
performance of the iterative procedure depends to a large extent on the
quality of the initial point, and only one inverse kinematic solution is pro-
duced per iteration. An iterative procedure based on the Jacobian of the
forward kinematics has been developed for general six degree-of-freedom
spatial open chains.

6.6 Notes and References

The inverse kinematics of the most general 6R open chain is known to have
up to 16 solutions; this result was first proved by Lee and Liang [15], and also
by Raghavan and Roth [33]. Iterative numerical procedures for finding all six-
teen solutions of a general 6R open chain are reported in [18]. A summary
of inverse kinematics methods for kinematically redundant robot arms are dis-
cussed in [36]. The repeatability conditions for kinematically redundant inverse
kinematics schemes are examined in [35].
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Figure 6.11: A 3R wrist.

6.7 Exercises

1. The 3R orthogonal axis wrist mechanism of Figure 6.11 is shown in its zero
position, with joint axes 1 and 3 collinear.
(a) Ignoring position and considering only the orientation of the end-effector
frame, find all kinematic singularities of the wrist mechanism.
(b) Given a desired wrist orientation R ∈ SO(3), derive an iterative numerical
procedure for solving its inverse kinematics.
(c) Assuming static equilibrium, suppose that at the zero position we wish to
generate a moment (0, 1, 0) (in fixed frame coordinates) at the end-effector.
What joint torques should be applied?

2. The 3R nonorthogonal chain of Figure 6.12 is shown in its zero position.
(a) Derive a numerical procedure for solving the inverse position kinematics
numerically; that is, given some end-effector position p as indicated in the figure,
find (θ1, θ2, θ3).
(b) Given an end-effector orientation R ∈ SO(3), find all inverse kinematic
solutions (θ1, θ2, θ3).

3. The RRP open chain of Figure 6.13 is shown in its zero position. Joint axes
1 and 2 intersect at the fixed frame origin, and the end-effector frame origin p
is located at (0, 1, 0) when the robot is is its zero position.
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Figure 6.12: A 3R nonorthogonal chain.

Figure 6.13: An RRP open chain.

(a) Suppose θ1 = 0. Solve for θ2 and θ3 when the end-effector frame origin p is
at (−6, 5,

√
3).

(b) If joint 1 is not fixed to zero but instead allowed to vary, find all inverse
kinematic solutions (θ1, θ2, θ3) for the same p given in part (a).
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Figure 6.14: A 6R open chain of the elbow type.

Figure 6.15: An inverse elbow type robot arm.

4. Find the inverse kinematics solutions when tool frame {T} of the 6R open
chain of the elbow type shown in Figure 6.14 is set to {T ′} as shown. The
orientation of {T} at the zero position is the same as that of the fixed frame
{S}, and T ′ is the result of a pure translation of T along the y-axis.

5. (a) Solve the inverse position kinematics (you do not need to solve the ori-
entation kinematics) of the inverse elbow type robot arm shown in Figure 6.15.
(b) Determine the spatial Jacobian Js(theta) of the inverse elbow robot arm.
(c) Find as many kinematic singularities of the inverse elbow arm that you can,
and for each singularity, describe the directions in which the end-effector loses
degrees of freedom of motion.



Chapter 7

Kinematics of Closed
Chains

Any kinematic chain that contains one or more loops is called a closed chain.
Several examples of closed chains were encountered in Chapter 2, from the pla-
nar four-bar linkage to spatial mechanisms like the Stewart-Gough platform. In
this chapter we shall analyze the kinematics of closed chains, paying special at-
tention to a class of closed chains that we shall refer to as parallel mechanisms;
these are closed chains consisting of a fixed and moving platform connected by
a set of “legs”; these legs are mostly open chains, but sometimes can themselves
be closed chains.

Figures 7.1-7.3 depict some well-known parallel mechanisms. The Stewart-
Gough Platform is a six degree of freedom mechanism, used widely as both
a motion simulator and six-axis force-torque sensor. It is typically realized
as either a 6 × UPS or 6 × SPS platform; note that the additional torsional
rotations of each of the six legs in the 6 × SPS platform have no effect on the
moving platform. When used as a force-torque sensor, the six prismatic joints
experience internal linear forces whenever any external force is applied to the
moving platform; by measuring these internal linear forces one can estimate the
applied external force. The Delta robot is a three degree of freedom mechanism
that has the unusual feature of the moving platform always remaining parallel
to the fixed platform. Because the three actuators are all attached to the three
revolute joints of the fixed upper platform, the moving parts are relatively light;
this allows the Delta to achieve very fast motions. The Eclipse mechanism is
another six degree of freedom parallel mechanism whose moving platform is
capable of ±90◦ orientations with respect to ground, and also of rotating 360◦

about the vertical axis.
Closed chains admit a much greater variety of designs than open chains,

and not surprisingly their kinematic analysis is considerably more complicated.
This can be traced to two defining features of closed chains: (i) the configu-
ration space is curved (e.g., a multidimensional surface embedded in a higher-
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Figure 7.1: The Stewart-Gough platform.

Figure 7.2: The Delta robot.

dimensional vector space), and (ii) not all of the joints are actuated. The pres-
ence of such non-actuated, or passive joints, together with the fact that the
number of actuated joints may deliberately exceed the mechanism’s kinematic
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Figure 7.3: The Eclipse mechanism.

degrees of freedom—such mechanisms are said to be redundantly actuated—
makes not only the position and differential kinematics analysis more challeng-
ing, but also introduces new types of singularities not witnessed in open chains.

Recall also that for open chains, the kinematic analysis proceeds in a more
or less straightforward fashion with the formulation of the forward kinematics
(e.g., via the product of exponentials formalism) followed by that of the inverse
kinematics. For general closed chains it is usually difficult to obtain an ex-
plicit set of equations for the forward kinematics in the form X = T (θ), where
X ∈ SE(3) is the end-effector frame and θ ∈ Rn are the joint coordinates.
The most effective approaches for closed chain kinematic analysis are based on
a collection of tools and methodologies that exploit as much as possible any
kinematic symmetries and other special features of the mechanism.

For this reason we shall proceed in this chapter with a series of case stud-
ies involving some well-known parallel mechanisms, and eventually build up a
repetoire of kinematic analysis tools and methodologies that can be synthesized
to handle more general closed chains. We shall consider only parallel mecha-
nisms that are exactly actuated, i.e., the number of actuated degrees of freedom
is equal to the mechanism’s kinematic mobility. Methods for the forward and
inverse position kinematics of parallel mechanisms are discussed, followed by
the characterization and derivation of the constraint Jacobian, and the Jaco-
bians of both the inverse and forward kinematics. The chapter concludes with
an examination of the various kinematic singularities that can arise in closed
chains.
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Figure 7.4: A three degree-of-freedom 3×RPR planar parallel mechanism.

7.1 Inverse and Forward Kinematics

This section examines methods for the inverse and forward kinematics of closed
chains. Rather than attempt to develop a general methodology applicable to all
types of closed chains, we consider two case studies, the 3×RPR planar parallel
mechanism, and its spatial counterpart, the 3× SPS Stewart-Gough platform.
The analysis of these two mechanisms draws upon some reduction techniques
that result in a reduced form of the governing kinematic equations. We briefly
describe how these methods can be generalized to the analysis of more general
parallel mechanisms.

7.1.1 3×RPR Planar Parallel Mechanism

The first example we consider is the planar 3×RPR parallel mechanism shown
in Figure 7.4. It is easily verified from the planar version of Gruebler’s formula
that this mechanism has mobility three. Assign a fixed frame {s} and end-
effector frame {b} as shown. Typically the three prismatic joints are actuated;
denote the lengths of each of the three legs by si, i = 1, 2, 3. The forward
kinematics problem is to determine, from given values of s = (s1, s2, s3), the
end-effector frame’s position and orientation.

Let ~p be the vector from the origin of the {s} frame to the origin of the {b}
frame. Let φ denote the angle measured from the x̂ axis of the {s} frame to

the {x} axis of the {b} frame. Further define the vectors ~ai, ~bi, ~di, i = 1, 2, 3 as
shown in the figure. From these definitions, clearly

~di = ~p+~bi − ~ai, (7.1)
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for i = 1, 2, 3. Let [
px
py

]
= ~p in {s} frame coordinates[

aix
aiy

]
= ~ai in {s} frame coordinates[

dix
diy

]
= ~di in {s} frame coordinates[

bix
biy

]
= ~bi in {b} frame coordinates.

Note that the vectors (aix, aiy), (bix, biy), i = 1, 2, 3 are constant, and that
with the exception of (bix, biy), all other vectors are expressed in {s} frame
coordinates. To express Equation (7.1) in terms of {s} frame coordinates, it

is first necessary to find the {s} frame representation of the vector ~bi. This is
straightforward: defining

Rsb =

[
cosφ − sinφ
sinφ cosφ

]
,

it now follows that[
dix
diy

]
=

[
px
py

]
+

[
cosφ − sinφ
sinφ cosφ

] [
bix
biy

]
−
[
aix
aiy

]
,

for i = 1, 2, 3. Also, since s2
i = d2

ix + d2
iy, we have

s2
i = (px + bix cosφ− biy sinφ− aix)2

+(py + bix sinφ+ biy cosφ− aiy)2,

for i = 1, 2, 3.
Formulated as above, the inverse kinematics is trivial to compute: given

values for (px, py, φ), the leg lengths (s1, s2, s3) can be directly calculated from
the above equations (negative values of si in most cases will not be physically
realizable, and can be ignored). The forward kinematics problem, in contrast, is
not trivial: here the objective is to determine, for given values of (s1, s2, s3), the
end-effector frame’s position and orientation (px, py, φ). The following tangent
half-angle substitution, widely used in kinematic analysis, transforms the above
three equations into a system of polynomials in the newly defined scalar variable
t:

t = tan
φ

2

sinφ =
2t

1 + t2

cosφ =
1− t2

1 + t2
.
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After considerable algebraic manipulation, this system of polynomials can even-
tually be reduced to a single sixth-order polynomial in t, which effectively shows
that the 3×RPR mechanism may have up to six forward kinematics solutions
(showing that six real solutions are possible requires further verification, which
we do not pursue here).

7.1.2 Stewart-Gough Platform

We now examine the inverse and forward kinematics of the 6 × SPS Stewart-
Gough platform of Figure 7.1. In this design, the fixed and moving platforms
are connected by six serial SPS structures, with the spherical joints passive,
and the prismatic joints actuated. The derivation of the kinematic equations
closely parallels that of our earlier planar 3 × RPR mechanism. Let {s} and

{b} denote the fixed and end-effector frames, respectively, and let ~di be the
vector directed from joint Ai to joint Bi. Referring to Figure 7.1, we make the
following definitions:

• p ∈ R3 = ~p in {s} frame coordinates;

• ai ∈ R3 = ~ai in {s} frame coordinates;

• bi ∈ R3 = ~bi in {b} frame coordinates;

• di ∈ R3 = ~di in {s} frame coordinates.

• R ∈ SO(3) = orientation of {b} as seen from {s}.

In order to derive the kinematic constraint equations, note that vectorially,

~di = ~p+~bi − ~ai, i = 1, . . . , 6.

Writing the above equations explicitly in {s} frame coordinates,

di = p+Rbi − ai, i = 1, . . . , 6.

Denoting the length of leg i by si, we have

s2
i = dTi di = (p+Rbi − ai)T (p+Rbi − ai),

for i = 1, . . . , 6. Observe that ai and bi as defined above are all known con-
stant vectors. Having written the constraint equations in this form, the inverse
kinematics now becomes straightforward: given p and R, the six leg lengths si,
i = 1, . . . , 6 can be evaluated directly from the above equations (negative values
of si in most cases will not be physically realizable, and can be ignored).

The forward kinematics is not as straightforward. Here we are given each of
the leg lengths si, i = 1, . . . , 6, and must solve for p ∈ R3 and R ∈ SO(3). The
six constraint equations, together with the rotation matrix constraint RTR = I,
constitute a set of twelve equations in twelve unknowns. Several methods exist
for finding all solutions to such a set of polynomial equations, e.g., methods
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Figure 7.5: A general spatial parallel mechanism.

based on dialytic elimination, Grobner bases, etc. Of particular note is the work
of Raghavan and Roth [?], who show that there can be at most forty solutions to
the forward kinematics, and Husty [?], who develops a computational algorithm
for finding all forty solutions analytically.

7.1.3 General Parallel Mechanisms

For both the 3 × RPR mechanism and Stewart-Gough Platform, we were able
to exploit certain features of the mechanism that resulted in a reduced set of
equations; for example, in the case of the Stewart-Gough Platform, the fact that
each of the “legs” can be modelled as straight lines considerably simplified the
analysis. In this brief section we consider the more general case where the legs
have the structure of an arbitrary open chain.

Consider such a parallel mechanism as shown in Figure 7.5; here the fixed
and moving platforms are connected by three open chains. Denote the forward
kinematics of the three chains by T1(θ), T2(φ), and T3(ψ), respectively, where
θ ∈ Rm, φ ∈ Rn, and ψ ∈ Rp. The loop closure conditions can be written

T1(θ) = T2(φ) (7.2)

T2(φ) = T3(ψ). (7.3)

Equation 7.2 and 7.3 each consists of 12 equations (9 for the rotation component
and 3 for the position component), 6 of which are independent (recall that the
nine equations for the rotation component can be reduced to a set of three
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independent equations from the rotation matrix constraint, i.e., RTR = I);
there are thus 24 equations, 12 of which are independent, with n + m + p
unknown variables, and the mobility of the mechanism is d = 12− (n+m+ p).

In the forward kinematics problem, given values for d of the joint variables
(θ, φ, ψ), Equations 7.2 and 7.2 can be solved for the remaining joint variables;
note that multiple solutions will be likely. Once the joint values for any one of
the open chain legs are known, the forward kinematics of that leg can then be
evaluated to determine the forward kinematics of the closed chain.

In the inverse kinematics problem, we are given the end-effector frame dis-
placement T ∈ SE(3). Setting T = T1 = T2 = T3, the objective is to solve
Equations 7.2 and 7.2 for all the joint variables (θ, φ, ψ). As hinted by the case
studies, for most parallel mechanisms there are often features of the mechanism
that can be exploited to eliminate some of these equations, and to simplify them
into a reduced form.

7.2 Differential Kinematics

We now consider the differential kinematics of parallel mechanisms. Unlike dif-
ferential kinematics for open chains, in which the objective was to relate the
input joint velocities to the spatial velocity of the end-effector frame, the anal-
ysis for closed chains is complicated by the fact that not all of the joints are
actuated. Only the actuated joints can be prescribed input velocities; the veloc-
ities of the remaining passive joints must then be determined from the kinematic
constraint equations. These passive joint velocities are usually required to even-
tually determine the spatial velocity of the closed chain’s end-effector frame.

For open chains, the Jacobian of the forward kinematics played a defining
role in both velocity and static analysis. For closed chains, in addition to the
forward kinematics Jacobian, the Jacobian defined by the kinematic constraint
equations—for this reason we refer to this latter Jacobian as the constraint
Jacobian—also plays a central role in velocity and static analysis. Much like
the case for the inverse and forward kinematic analysis of parallel mechanisms,
often there are features of the mechanism that can be exploited to simplify
and reduce the procedure for obtaining the Jacobians. We therefore begin with
a case study of the Stewart-Gough platform, and show that the Jacobian of
the inverse kinematics can be obtained straightforwardly via static analysis.
Velocity analysis for more general parallel mechanisms is then detailed.

7.2.1 Stewart-Gough Platform

Earlier we saw that the inverse kinematics for the Stewart-Gough platform can
be solved analytically; that is, given the end-effector frame orientation R ∈
SO(3) and position p ∈ R3, the leg lengths s ∈ R6 can be obtained analytically in
the functional form s = g(R, p). In principle this equation can be differentiated
and manipulated to eventually produce a differential version, e.g.,

ṡ = G(R, p)Vs, (7.4)
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where ṡ ∈ R6 denotes the leg velocities, Vs ∈ R6 is the end-effector’s spatial
velocity in fixed frame coordinates, and G(R, p) ∈ R6×6 is the Jacobian of the
inverse kinematics. This derivation, however, will likely involve considerable
algebraic manipulation.

Here we take a different approach based on static analysis. Based on the same
virtual work considerations that were used to determine the static relationship
for open chains, the static relationship for closed chains (expressed in the fixed
frame) is also given by τ = JTs Fs, where τ is the vector of input joint torques,
Fs is (the fixed frame representation of) the external spatial force applied at the
end-effector frame, and Js denotes the space Jacobian of the forward kinematics.

For the Stewart-Gough platform, note that the only forces being applied to
the moving platform occur at the spherical joints. Let

fi = ωiτi

be the three-dimensional linear force applied by leg i, where ωi ∈ R3 is a unit
vector indicating the direction of the applied force, and τi ∈ R is the magnitude
of the linear force; we emphasize that fi is expressed in terms of the fixed frame
coordinates. The moment generated by fi, denoted mi, is then given by

mi = ri × fi,

where ri ∈ R3 denotes the vector from the fixed frame origin to the point of
application of the force (spherical joint i in this case); again, both ri and mi

are expressed in fixed frame coordinates. It is not too difficult to see that this
same moment can also be expressed as

mi = qi × fi,

where qi ∈ R3 denotes the vector from the fixed frame origin to the base of leg
i, i.e., the joint connecting leg i to the fixed base. Expressing the moment as
qi × fi is preferred, since qi as defined is constant.

Combining fi and mi into a six-dimensional spatial force Fi = (mi, fi), the
resultant spatial force Fs on the moving platform is then given by

Fs =

6∑
i=1

Fi =

6∑
i=1

[
ri × fi
ωi

]
τi

=

[
−ω1 × q1 · · · −ω6 × q6

ω1 · · · ω6

] τ1
...
τ6

 .
Since earlier we asserted that the static relationship for the Stewart-Gough

platform is also of the form τ = JTs Fs, based on the previous derivation we can
conclude that the inverse Jacobian J−1

s (or equivalently, the Jacobian of the
inverse kinematics) is given by

J−1
s =

[
−ω1 × q1 · · · −ω6 × q6

ω1 · · · ω6

]T
.
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7.2.2 General Parallel Mechanisms

Because of its kinematic structure, the Stewart-Gough platform lends itself par-
ticularly well to a static analysis, as each of the six joint forces are directed along
their respective legs. The Jacobian (or more precisely, the inverse Jacobian) can
therefore be derived in terms of the screws associated with each line. In this
section we consider more general parallel mechanisms where a static analysis is
not as straightforward. Using the previous three-legged, three degree-of-freedom
spatial parallel mechanism of Figure 7.5 as an example, we illustrate a general
procedure for determining the forward kinematics Jacobian; generalizing this
method to arbitrary parallel mechanisms should be completely straightforward.

The mechanism of Figure 7.5 consists of two platforms connected by three
legs, with each leg a five degree of freedom open chain. For the given fixed
and end-effector frames as indicated in the figure, we first write the forward
kinematics for the three chains as follows:

T1(θ1, θ2, . . . , θ5) = e[S1]θ1e[S2]θ2 · · · e[S5]θ5M1

T2(φ1, φ2, . . . , φ5) = e[P1]φ1e[P2]φ2 · · · e[P5]φ5M2

T3(ψ1, ψ2, . . . , ψ5) = e[Q1]ψ1e[Q2]ψ2 · · · e[Q5]ψ5M3.

The kinematic loop constraints can be expressed as

T1(θ) = T2(φ) (7.5)

T2(φ) = T3(ψ). (7.6)

Taking right differentials of both sides of the above two equations, we have

Ṫ1T
−1
1 = Ṫ2T

−1
2 (7.7)

Ṫ2T
−1
2 = Ṫ3T

−1
3 . (7.8)

Since ṪiT
−1
i = [Vi], where Vi is the spatial velocity of chain i’s end-effector

frame, the above identities can also be expressed in terms of the forward kine-
matics Jacobian for each chain:

J1(θ)θ̇ = J2(φ)φ̇ (7.9)

J2(φ)φ̇ = J3(ψ)ψ̇, (7.10)

which can also be rearranged as

[
J1(θ) −J2(φ) 0

0 −J2(φ) J3(ψ)

] θ̇

φ̇

ψ̇

 = 0. (7.11)

At this point we now rearrange the fifteen joints into those that are actuated,
and those that are passive. Let us assume without loss of generality that the
three actuated joints are (θ1, φ1, ψ1). Define the vector of actuated joints qa ∈ R3
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and passive joints qp ∈ R12 as

qa =

 θ1

φ1

ψ1

 , qp =

 θ2

...
φ5

 ,
and q = (qa, qp) ∈ R15. Equation (7.11) can now be rearranged into the form[

Ha(q) Hp(q)
] [ q̇a

q̇p

]
= 0, (7.12)

or equivalently
Haq̇a +Hpq̇p = 0, (7.13)

where Ha ∈ R12×3 and Hp ∈ R12×12. If Hp is invertible, we have

q̇p = −H−1
p Haq̇a. (7.14)

Assuming Hp is invertible, once the velocities of the actuated joints are given,
the velocities of the remaining passive joints can be obtained uniquely via Equa-
tion 7.14.

It still remains to derive the forward kinematics Jacobian with respect to
the actuated joints, i.e., to find Ja(q) ∈ R6×3 satisfying Vs = Ja(q)q̇a, where Vs
is the spatial velocity of the end-effector frame. For this purpose we can use the
forward kinematics for any of the three open chains; for example, in terms of
chain 1, J1(θ)θ̇ = Vs, and from Equation (7.14) we can write

θ̇2 = gT2 q̇a (7.15)

θ̇3 = gT3 q̇a (7.16)

θ̇4 = gT4 q̇a (7.17)

θ̇5 = gT5 q̇a (7.18)

where each gi(q) ∈ R3, i = 2, . . . , 5, can be obtained from Equation (7.14).
Defining the row vector eT1 = (1, 0, 0), the differential forward kinematics for
chain 1 can now be written

Vs = J1(θ)


eT1
gT2
gT3
gT4
gT5


 θ̇1

φ̇1

ψ̇1

 . (7.19)

Since we are seeking Ja(q) in Vs = Ja(q)q̇a, and q̇Ta = (θ̇1, φ̇1, ψ̇1), from the
above it now follows that

Ja(q) = J1(q1, . . . , q5)


eT1

g2(q)T

g3(q)T

g4(q)T

g5(q)T

 . (7.20)
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Figure 7.6: A planar four-bar linkage and its joint configuration space.

Figure 7.7: A planar five-bar linkage.

The above could also have been derived using either chain 2 or chain 3.
Given values for the actuated joints qa, it still remains to solve for the passive

joints qp from the loop constraint equations. Eliminating as many elements
of qp a priori will obviously simplify the task. The second point to note is
that Hp(q) may become singular, in which case q̇p cannot be obtained from
q̇a. Configurations in which Hp(q) becomes singular correspond to actuator
singularities, which are discussed in the next section.
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Figure 7.8: Configuration space singularities of the planar five-bar linkage.

7.3 Singularities

In this final section we shall examine the fundamental properties of closed chain
singularities. Characterizing the singularities of closed chains involves many
more subtleties than for open chains. Rather than attempt any such compre-
hensive classification for general closed chains, we instead choose to highlight
the essential features of closed chain singularities via two planar examples: a
four-bar linkage (see Figure 7.6), and a five-bar linkage (see Figure 7.7). The
examples should also make clear how our approach to singularity analysis can
be generalized to more complex closed chains.

We begin with the four-bar linkage. Recall that its configuration space is a
curve embedded in a four-dimensional ambient space; even without appealing
to equations, one can see that the allowable joint values for (θ, φ) of the four-bar
form a curve of the type shown in Figure 7.6. In terms of the input and output
angles θ and φ, the kinematic loop constraint equations can be expressed as

φ = tan−1 β

α
± cos−1

(
γ√

α2 + β2

)
, (7.21)

where

α = 2L3L4 − 2L1L3 cos θ (7.22)

β = −2L1L3 sin θ (7.23)

γ = L2
2 − L2

4 − L2
3 − L2

1 + 2L1L4 cos θ. (7.24)

Obviously the existence and uniqueness of solutions depends on the link lengths
L1, . . . , L4; in particular, a solution fails to exist if γ2 ≤ α2 + β2. The figure
depicts the input-output graph for the choice of link lengths L1 = 4, L2 = 4,
L3 = 3, L4 = 2; in this case both θ and φ can range from 0 to 2π.

One of the striking features of this graph is the bifurcation point P as
indicated in the figure. Here two branches of the curve meet, resulting in a
self-intersection of the curve with itself. If the four-bar is in the configuration
indicated by P , it has the choice of following either branch. At no other point
in the four-bar’s joint configuration space does such a phenomenon occur.
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Figure 7.9: Actuator singularities of the planar five-bar linkage: the left is
nondegenerate, while the right is degenerate.

.

We now turn to the five-bar linkage. The kinematic loop constraint equations
can be written

L1 cos θ1 + . . .+  L4 cos(θ1 + θ2 + θ3 + θ4) = L5 (7.25)

L1 sin θ1 + . . .+  L4 sin(θ1 + θ2 + θ3 + θ4) = 0 (7.26)

where we have eliminated joint variable θ5 a priori from the loop closure con-
ditions. Writing these two equations in the form f(θ1, . . . , θ4) = 0, where
f : R4 → R2, the configuration space can be regarded as a two-dimensional sur-
face in R4. Like the bifurcation point in the four-bar linkage, self-intersections
of the surface can also occur. At such points the constraint Jacobian loses rank;
for the five-bar, any point θ at which

rank

(
∂f

∂θ
(θ)

)
< 2 (7.27)

corresponds to what we call a configuration space singularity. Figure 7.8
illustrates the possible configuration space singularities of the five-bar. Notice
that thus far we have made no mention of which joints of the five-bar are ac-
tuated, or where the end-effector frame is placed; it is worth emphasizing that
the notion of configuration space singularity is completely independent of the
choice of actuated joints, or the end-effector frame.

We now consider the case when two joints of the five-bar are actuated. Re-
ferring to Figure 7.9, the actuated joints are indicated by filled circles. Under
normal operating conditions, the motions of the actuated joints can be indepen-
dently controlled. Alternatively, locking the actuated joints should immobilize
the five-bar and turn it into a rigid structure.

For the nondegenerate actuator singularity shown on the left, rotating
the two actuated joints in opposite directions will clearly have catastrophic
consequences of the mechanism. For the degenerate actuator singularity
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shown on the right, we have the opposite case: even when the actuated joints
are locked in place, the inner two links are free to rotate.

The reason for classifying these singularities as actuator singularities is
that, by relocating the actuators to a different set of joints, such singularities can
be eliminated. For both the degenerate and nondegenerate actuator singularities
of the five-bar, relocating one of the actuators to one of the three passive joints
eliminates the singularity.

Intuitively visualizing the actuator singularities of the planar five-bar is
straightforward enough, but for more complex spaatial closed chains this may
be difficult. Actuator singularities can be characterized mathematically by the
rank of the constraint Jacobian. As before, write the kinematic loop constraints
in differential form: [

Ha(q) Hp(q)
] [ q̇a

q̇p

]
= 0, (7.28)

where qa ∈ Ra is the vector of actuated joints, and qp ∈ Rp is the vector of
passive joints. It follows that the matrix

H(q) =
[
Ha(q) Hp(q)

]
∈ Rp×(a+p), (7.29)

and that Hp(q) is a p× p matrix.
With the above definitions, we have the following:

• If rank Hp(q) < p, then q is an actuator singularity. Distinguishing be-
tween degenerate and nondegenerate singularities involves additional
mathematical subtleties, and relies on second-order derivative information
that we shall not pursue further here.

• If rank H(q) < p, then q is a configuration space singularity. Note
that under this condition Hp(q) is also singular (the converse is not true,
however). The configuration space singularities can thus be regarded as
the intersection of all possible actuator singularities obtained over all pos-
sible combinations of actuated joints.

The final class of singularities involves the choice of an end-effector frame.
For the five-bar, we ignore the orientation of the end-effector frame, and focus
exclusively on its x-y location. Figure 7.10 shows the five-bar in an end-effector
singularity for the given choice of end-effector location. Note that velocities
along the indicated line are not possible in this configuration, similar to the case
for singularities for open chains. Note that end-effector singularities are entirely
independent of the choice of actuated joints (note that it was not necessary to
specify which, or even how many, of the joints are actuated).

End-effector singularities can be mathematically characterized as follows.
Choose any valid set of actuated joints qa such that the mechanism is not at an
actuator singularity. Write the forward kinematics in the form

f(qa) = T (7.30)

where T denotes the end-effector frame. One can then check for rank deficiencies
in the Jacobian of f , as was done for open chains, to determine the presence of
an end-effector singularity.
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Figure 7.10: End-effector singularities of the planar five-bar linkage.
.

7.4 Summary

• Any kinematic chain that contains one or more loops is called a closed
chain. Parallel mechanisms are a class of closed chain that are char-
acterized by two platforms—one moving and one stationary—connected
by several legs; the legs are typically open chains, but can themselves be
closed chains. Compared to open chains, the kinematic analysis of closed
chains is complicated by the fact that the configuration space is often
curved, and only a subset of the joints are actuated.

• For a parallel mechanism whose actuated degrees of freedom equals its
mobility, the inverse kinematics problem involves finding, from the given
position and orientation of the moving platform, the values of all the
actuated joints. For well-known parallel mechanisms like the planar 3 ×
RPR and spatial Stewart-Gough platform, the inverse kinematics admits
unique solutions.

• For a parallel mechanism whose actuated degrees of freedom equals its
mobility, the forward kinematics problem involves finding, given values for
all the actuated joints, the position and orientation of the moving platform.
For well-known parallel mechanisms like the 3 × RPR and the spatial
Stewart-Gough platform, the forward kinematics usually admits multiple
solutions. In the case of the most general Stewart-Gough platform, a
maximum of 40 solutions are possible.

• The differential kinematics of a closed chain relates velocities of the actu-
ated joints to the linear and angular velocities of the moving platform. For
a closed chain consisting of n one degree of freedom joints, whose actuated
degrees of freedom also equals its mobility m, let θa ∈ Rm denote the vec-
tor of actuated joints, and θp ∈ Rn−m denote the vector of passive joints.
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The kinematic loop closure constraints are described by an equation of the
form h(θa, θp) = 0, where g : Rn → Rn−m. The forward kinematics can be
expressed in the form f(θa) = T , where f : Rm → SE(3). The differential
kinematics then involves derivatives of both f and g with respect to θa
and θp. For platforms like the Stewart-Gough platorm, the differential
kinematics can also be obtained from a static analysis, by exploiting the
fact that just as for closed chains, the external forces F at the end-effector
are related to the joint torques τ by τ = JTF .

• Singularities for closed chains can be classifed into three types: (i) configu-
ration space singularities occur at, e.g., self-intersections of the configura-
tion space surface (or bifurcation points in the event that the configuration
space is a curve); (ii) nondegenerate actuator singularities when the actu-
ated joints cannot be independently actuated, while degenerate actuator
singularities are characterized by the mechanism failing to become a rigid
structure even when all the actuated joints are locked in place; (iii) end-
effector singularities occur when the end-effector loses one or more degrees
of freedom of mobility. Configuration space singularities are independent
of choice of actuated joints, while actuator singularities depend on which
joints are actuated. End-effector singularities depend on where the end-
effector frame is placed, but do not depend on the choice of actuated
joints.
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Figure 7.11: Two cooperating six degree of freedom arms grasping an object.

Figure 7.12: A 3×RPR planar parallel mechanism.

7.5 Exercises

1. Two six degree of freedom arms cooperate to move the disc as shown in
Figure 7.11. Given the position and orientation of the disc, how many inverse
kinematics solutions exist?

2. Consider the 3 × RPR planar parallel mechanism of Figure 7.12, in which

the prismatic joints are actuated. Define
−−→
OAi = ai ∈ R3 with respect to the
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Figure 7.13: A Delta robot.

fixed frame and
−−→
PBi = bi ∈ R3 with respect to the moving platform frame.

(a) Solve the inverse kinematics.
(b) Derive a procedure to solve the forward kinematics.
(c) Is the configuration shown an end-effector singularity? Explain your an-
swer by examining the inverse kinematics Jacobian. Is this also an actuator
singularity?

3. The Delta robot of Figure 7.13 consists of a fixed base connected to a mov-
ing platform by three arms. Each arm consists of an upper arm—made up of a
spatial parallelogram connected by spherical joints at the ends of each rod—and
a lower arm connected to the fixed base by a revolute joint ωi, connected or-

thogonally to the upper arm rod.
−−→
OAi = ri, r̂i × ωi = z, AiBi = ai, BiCi = bi,

ωi⊥ai,
−−→
PCi = hi are defined with respect to the moving platform frame. Derive

step-by-step procedures for solving the following:
(a) Solve the forward kinematics.
(b) Solve the inverse kinematics.
(c) Find the Jacobian Ja.
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Chapter 8

Dynamics of Open Chains

In this chapter we study once again the motion of open chain robots, but this
time taking into account the forces and torques that cause it; this is the subject
of robot dynamics. The associated dynamic equations—also referred to as
the equations of motion—are a set of second-order differential equations of
the form

τ = M(θ)θ̈ + b(θ, θ̇), (8.1)

where θ ∈ Rn is the vector of joint variables, τ ∈ Rn is the vector of joint forces
and torques, M(θ) ∈ Rn×n is a symmetric and invertible matrix called the mass
matrix, and b(θ, θ̇) ∈ Rn are “bias” forces that lump together centrifugal and
Coriolis, gravity, friction and other force terms that depend on θ and θ̇. One
should not be deceived by the apparent simplicity of these equations; even for
“simple” open chains, e.g., those with joint axes either orthogonal or parallel to
each other, M(θ) and b(θ, θ̇) can be extraordinarily complex.

Just as a distinction was made between a robot’s forward and inverse kine-
matics, it is also customary to distinguish between a robot’s forward and in-
verse dynamics. From the perspective of generating and simulating entire mo-
tion trajectories, it is useful to regard the robot dynamics as an input-output
system, in which the inputs are torque trajectories τ(t), and the outputs are
joint trajectories θ(t). From this perspective, in the case of forward dynamics
the objective is to determine, from a given input joint torque trajectory τ(t)
and appropriate boundary conditions on θ and θ̇, the output joint trajectory
θ(t); this is usually done by numerically integrating Equation (8.1). In the case
of inverse dynamics, the objective is to determine the joint torque trajectory
τ(t) that generates some desired joint motion trajectory θ(t).

Slight variations in these interpretations of the forward and inverse dynamics
are possible. For the inverse dynamics, observe that the velocity θ̇ and accelera-
tion θ̈ can be obtained by taking derivatives of the desired joint trajectory θ(t).
Thus, given values for (θ, θ̇, θ̈) at time t, the joint torques τ can be obtained just
by algebraic evaluation of the right-hand side of (8.1). This evaluation is also
commonly referred to as the inverse dynamics. In the case of forward dynamics,
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since M(θ) is always invertible, Equation (8.1) can be rewritten

θ̈ = M−1(θ)
(
τ − b(θ, θ̇)

)
. (8.2)

This evaluation of θ̈ from given values for τ , θ, and θ̇ is also often referred
to as the forward dynamics. While this interpretation may seem somewhat
different from the previous one, in fact it is not: given an input torque trajectory
τ(t) together with initial values for θ and θ̇ at t = t0, forward integration of
Equation (8.2) from t = t0 then produces the complete output trajectory θ(t).

A robot’s dynamic equations are typically derived in one of two ways: by a
direct application of Newton’s and Euler’s dynamic equations for a rigid body
(often called the Newton-Euler formulation), or from the Lagrangian dy-
namics formulation. The Lagrangian formalism is conceptually elegant and
quite effective for robots with simple structures, e.g., with three or fewer de-
grees of freedom. However, the calculations can quickly become intractable for
robots with more degrees of freedom. For general open chains, the Newton-Euler
formulation leads to efficient recursive algorithms for both the inverse and for-
ward dynamics that can also be assembled into closed-form analytic expressions
for, e.g., the mass matrix M(θ) and other terms in the dynamics equation (8.1).

In this chapter we study both the Lagrangian and Newton-Euler dynamics
formulations for an open chain robot. We conclude with a formulation of the
dynamics in task space coordinates, or operational space dynamics.

8.1 Lagrangian Formulation

8.1.1 Basic Concepts and Motivating Example

The first step in the Lagrangian formulation of dynamics is to choose a set
of independent coordinates q ∈ Rn that describes the system’s configuration,
similar to what was done in the analysis of a robot’s configuration space. The
coordinates q are called generalized coordinates. Once generalized coordi-
nates have been chosen, these then define another set of coordinates f ∈ Rn
that are dual to q, called generalized forces. f and q are dual to each other
in the sense that their inner product fT∆q corresponds to work (equivalently,
fT q̇ corresponds to power). A Lagrangian function L(q, q̇) is then defined as
the overall system’s kinetic energy minus the potential energy. The equations
of motion can now be expressed in terms of the Lagrangian as follows:

f =
d

dt

∂L
∂q̇
− ∂L
∂q
, (8.3)

These equations are also referred to as the Euler-Lagrange equations with
external forces.1

We illustrate the Lagrangian dynamics formulation through two examples.
In the first example, consider a particle of mass m constrained to move on

1The external force f is zero in the standard form of the Euler-Lagrange equations.
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a vertical line. The particle’s configuration space is this vertical line, and a
natural choice for generalized coordinate is the height of the particle, which we
denote by the scalar variable x ∈ R. Suppose the gravitational force mg acts
downward, and an external force f is applied upward. By Newton’s second law,
the equation of motion for the particle is

f −mg = mẍ. (8.4)

We now apply the Lagrangian formalism to this particle. The kinetic energy is
mẋ2/2, the potential energy is mgx, and the Lagrangian is

L(x, ẋ) =
1

2
mẋ2 −mgx. (8.5)

The equations of motion are then given by

f =
d

dt

∂L

∂ẋ
− ∂L

∂x
= mẍ+ mg, (8.6)

which matches Equation (8.4).
We now derive the dynamic equations for a planar 2R open chain moving in

the presence of gravity. The chain moves in the x-y plane, with gravity acting
in the −y direction. Before the dynamics can be derived, the mass and inertial
properties of all the links must be specified. To keep things simple the two links
are modeled as point masses m1 and m2 concentrated at the ends of each link.
The position and velocity of the mass of link 1 are then given by[

x1

y1

]
=

[
L1 cos θ1

L1 sin θ1

]
[
ẋ1

ẏ1

]
=

[
−L1 sin θ1

L1 cos θ1

]
θ̇1,

while that of the link 2 mass are given by[
x2

y2

]
=

[
L1 cos θ1 + L2 cos(θ1 + θ2)
L1 sin θ1 + L2 sin(θ1 + θ2)

]
[
ẋ2

ẏ2

]
=

[
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

] [
θ̇1

θ̇2

]
.

Choose the joint coordinates θ = (θ1, θ2) to be the generalized coordinates. The
generalized forces τ = (τ1, τ2) then correspond to joint torques (since τT∆θ
must correspond to work). The Lagrangian L(θ, θ̇) is of the form

L(θ, θ̇) =

2∑
i=1

Ki − Pi, (8.7)
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where the link kinetic energy terms K1 and K2 are

K1 =
1

2
m1(ẋ2

1 + ẏ2
1) =

1

2
m1L

2
1θ̇

2
1

K2 =
1

2
m2(ẋ2

2 + ẏ2
2)

=
m2

2

(
(L2

1 + 2L1L2 cos θ2 + L2
2)θ̇2

1 + 2(L2
2 + L1L2 cos θ2)θ̇1θ̇2 + L2

2θ̇
2
2

)
,

and the link potential energy terms P1 and P2 are

P1 = m1gL1 sin θ1

P2 = m2g(L1 sin θ1 + L2 sin(θ1 + θ2)).

The Euler-Lagrange equations (8.3) for this example are of the form

τi =
d

dt

∂L
∂θ̇i
− ∂L
∂θi

, i = 1, 2. (8.8)

The dynamic equations for the 2R planar chain follow from explicit evaluation
of the right-hand side of (8.8) (we omit the detailed calculations, which are
straightforward but tedious):

τ1 =
(
(m1 + m2)L2

1 + m2(2L1L2 cos θ2 + L2
2)
)
θ̈1

+m2(L1L2 cos θ2 + L2
2)θ̈2 − 2m2L1L2θ̇1θ̇2 sin θ2 −m2L1L2θ̇

2
2 sin θ2

+(m1 + m2)L1g cos θ1 + m2gL2 cos(θ1 + θ2)

τ2 = m2(L1L2 cos θ2 + L2
2)θ̈1 + m2L

2
2θ̈2 + m2L1L2θ̇

2
1 sin θ2

+m2gL2 cos(θ1 + θ2).

In the Lagrangian formulation of dynamics, once a set of generalized co-
ordinates has been chosen, it is conceptually straightforward to formulate the
Lagrangian, and from there to arrive at the dynamic equations by taking par-
tial derivatives of the Lagrangian. In practice, however, the calculations can
very quickly become intractable, especially as the number of degrees of freedom
increases.

8.1.2 General Formulation

We now describe the Lagrangian dynamics formulation for general n-link open
chains. The first step is to select a set of generalized coordinates θ ∈ Rn for
the configuration space of the system. For open chains all of whose joints are
actuated, it is convenient and always possible to choose θ to be the vector of
joint values. The generalized forces will then be denoted τ ∈ Rn. If θi is a
revolute joint τi will correspond to a torque, while if θi is a prismatic joint τi
will correspond to a force.

Once θ has been chosen and the generalized forces τ identified, the next step
is to formulate the Lagrangian L(θ, θ̇) as

L(θ, θ̇) = K(θ, θ̇)− P(θ), (8.9)
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where K(θ, θ̇) is the kinetic energy and P(θ) the potential energy of the overall
system. For rigid-link robots the kinetic energy can always be written in the
form

K(θ) =
1

2

n∑
i=1

n∑
j=1

mij(θ)θ̇iθ̇j =
1

2
θ̇TM(θ)θ̇, (8.10)

where mij(θ) is the (i, j) element of the n×n mass matrix M(θ); a constructive
proof of this assertion is provided when we examine the Newton-Euler formu-
lation in the next section. The dynamic equations are analytically obtained by
evaluating the right-hand side of

τi =
d

dt

∂L
∂θ̇i
− ∂L
∂θi

, i = 1, . . . , n. (8.11)

With the kinetic energy expressed as in Equation (8.10), the dynamics can be
explicitly written as

τi =

n∑
j=1

mij(θ)θ̈j +

n∑
j=1

n∑
k=1

Γijk(θ)θ̇j θ̇k +
∂P
∂θi

, i = 1, . . . , n, (8.12)

where the Γijk(θ), known as the Christoffel symbols of the first kind, are
defined as

Γijk(θ) =
1

2

(
∂mij

∂θk
+
∂mik

∂θj
− ∂mjk

∂θi

)
. (8.13)

The Lagrangian formulation has traditionally been regarded as the most di-
rect way of obtaining a set of closed-form analytical equations for the dynamics.
For open chain robots not only is this no longer true, but the formula for Γijk(θ)
above and our earlier examples offer a strong hint of how intractable the calcu-
lations can become, especially for robots with higher degrees of freedom. The
Newton-Euler formulation on the other hand allows us to bypass the evaluation
of these partial derivatives. However, as we show later, the Lagrangian formu-
lation offers important insights into the structure of the dynamics equations,
especially in the development of stable robot control laws.

8.2 Dynamics of a Single Rigid Body

8.2.1 Classical Formulation

We now consider the dynamic equations for a single rigid body. In most treat-
ments of rigid body dynamics one begins with the equations of motion for a
single particle of mass m (essentially, f = ma), which is then generalized to a
system of particles. A rigid body is then assumed to be a system consisting of
an infinite numer of particles, with the constraint that the distances between
particles are always preserved (ensuring that the body is a rigid body). The
equations of motion for a system of particles are then applied to this infinite
collection of particles, resulting in the equations of motion for a rigid body.
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In this section we shall omit the single particle dynamics formulation and
proceed directly to the single rigid body case. Suppose a rigid body of mass m
has a reference frame {b} with axes {x̂b, ŷb, ẑb} attached to its center of mass.
As the rigid body moves, the body frame also moves with linear velocity v and
angular velocity w. Further assume that the rigid body is subject to an external
force f. The external moment m generated by f with respect to the center of
mass is then m = r × f, where r is the vector from the center of mass to the
point on the body at which f is applied. Let h denote the angular momentum
vector about the center of mass (we’ll explain shortly how to calculate h). The
dynamic equations for the rigid body are then given by

f =
d

dt
(mv) = m

d

dt
v (8.14)

m =
d

dt
h. (8.15)

We now express these dynamic equations explicitly in frame {b} coordinates.
First express the angular and linear velocity in {b}-frame coordinates by

w = ωx x̂b + ωy ŷb + ωz ẑb

v = vx x̂b + vy ŷb + vz ẑb,

with the column vectors ωb = (ωx, ωy, ωz)
T , vb = (vx, vy, vz)

T defined accord-
ingly. The linear acceleration a is then

a =
d

dt
v = (v̇x x̂b + v̇y ŷb + v̇z ẑb) + vx ˙̂xb + vy ˙̂yb + vz ˙̂zb. (8.16)

Substituting the rotating frame identities ˙̂xb = w× x̂b, ˙̂yb = w× ŷb,
˙̂zb = w× ẑb

into (8.16) leads to

a = (v̇x x̂b + v̇y ŷb + v̇z ẑb) + w× v.

The {b}-frame vector representation ab ∈ R3 of the linear acceleration is there-
fore

ab = v̇b + (ωb × vb),

where v̇b = (v̇x, v̇y, v̇z)
T . Equation (8.14) expressed in {b}-frame coordinates

now becomes
fb = m(v̇b + ωb × vb). (8.17)

We next express the angular momentum h in {b}-frame coordinates. When
the {b} frame is attached to the body’s center of mass as we have done here,
the angular momentum assumes a particularly simple form. First, the 3 × 3
rotational inertia matrix of the rigid body is required; this can be obtained by
imagining the rigid body as a collection of an infinite number of particles of mass
mi, each with coordinates (xi, yi, zi) with respect to the {b} frame. Denoting
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the rotational inertia matrix by Ib ∈ R3×3, Ib is obtained via the following
summation over all particles constituting the rigid body:

Ib =

 ∑mi(y
2
i + z2

i ) −
∑

mixiyi −
∑

mixizi
−
∑

mixiyi
∑

mi(x
2
i + z2

i ) −
∑

miyizi
−
∑

mixizi −
∑

miyizi
∑

mi(x
2
i + y2

i )


=

 Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 .
The matrix Ib defined in this way is constant, symmetric, and positive-definite.
In the limit as the number of particles becomes infinite, the summations can be
replaced by volume integrals over the body B, with the particle masses mi now
replaced by a mass density function ρ(x, y, z):

Ixx =

∫ ∫ ∫
B

(y2 + z2)ρ(x, y, z) dx dy dz

Iyy =

∫ ∫ ∫
B

(x2 + z2)ρ(x, y, z) dx dy dz

Izz =

∫ ∫ ∫
B

(x2 + y2)ρ(x, y, z) dx dy dz

Ixy = Iyx = −
∫ ∫ ∫

B
xyρ(x, y, z) dx dy dz

Ixz = Izx = −
∫ ∫ ∫

B
xzρ(x, y, z) dx dy dz

Iyz = Izy = −
∫ ∫ ∫

B
yzρ(x, y, z) dx dy dz.

If the body has a uniform mass density throughout, Ib is then determined
exclusively by the shape of the rigid body. The calculation of Ib for some
standard link shapes are covered in the exercises at the end of this chapter.

Express h in terms of the unit axes of the {b} frame as

h = hx x̂b + hy ŷb + hz ẑb, (8.18)

and define hb = (hx, hy, hz)
T ∈ R3. hb is then obtained as

hb = Ibωb. (8.19)

Since Equation (8.15) calls for the derivative of h, differentiating (8.18) leads to

d

dt
h = (ḣx x̂b + ḣy ŷb + ḣz ẑb) + w× h.

The moment equation (8.15) expressed in {b} frame coordinates thus becomes

mb = Ibω̇b + ωb × Ibωb. (8.20)

where mb ∈ R3 is the moment vector m in frame {b} coordinates. Equa-
tions (8.17) and (8.20) together constitute the dynamic equations of motion for
the rigid body.
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8.2.2 Twist-Wrench Formulation

Equations (8.17) and (8.20) can be written in the following combined form:[
mb

fb

]
=

[
Ib 0
0 mI

] [
ω̇b
v̇b

]
+

[
[ωb] 0
0 [ωb]

] [
Ib 0
0 mI

] [
ωb
vb

]
. (8.21)

With the benefit of hindsight, and also making use of the fact that [v]v = v×v =
0 and [v]T = −[v], we write (8.21) in the following equivalent form:[

mb

fb

]
=

[
Ib 0
0 mI

] [
ω̇b
v̇b

]
+

[
[ωb] [vb]
0 [ωb]

] [
Ib 0
0 mI

] [
ωb
vb

]
=

[
Ib 0
0 mI

] [
ω̇b
v̇b

]
−
[

[ωb] 0
[vb] [ωb]

]T [ Ib 0
0 mI

] [
ωb
vb

]
.(8.22)

Written in this way, each of the terms can now be identified with six-
dimensional spatial quantities as follows:

(i) (ωb, vb) and (mb, fb) can be respectively identified with the spatial velocity
(or twist) Vb and spatial force (or wrench) Fb:

Vb =

[
ωb
vb

]
, Fb =

[
mb

fb

]
. (8.23)

(ii) The spatial inertia matrix Gb ∈ R6×6 is defined as follows:

Gb =

[
Ib 0
0 mI

]
, (8.24)

where I denotes the 3×3 identity matrix. Note as an aside that the kinetic
energy of the rigid body can be expressed in terms of the spatial inertia
matrix as

Kinetic Energy =
1

2
ωTb Ibωb +

1

2
mvTb vb =

1

2
VTb GbVb. (8.25)

(iii) The spatial momentum Pb ∈ R6 is defined as

Pb =

[
Ibωb
mvb

]
=

[
Ib 0
0 mI

] [
ωb
vb

]
= GbVb. (8.26)

Observe that the Pb term in Equation (8.22) is left-multiplied by the matrix

−
[

[ωb] 0
[vb] [ωb]

]T
. (8.27)

We now explain the origin and geometric significance of this matrix. First,
recall that the cross product of two vectors ω1, ω2 ∈ R3 can be calculated using
skew-symmetric matrix notation as follows:

[ω1 × ω2] = [ω1][ω2]− [ω2][ω1]. (8.28)
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The matrix in (8.27) can be thought of as a generalization of the cross product
operation to six-dimensional twists. Specifically, given two twists V1 = (ω1, v1)
and V2 = (ω2, v2), we perform a calculation analogous to (8.28):[

[ω1] v1

0 0

] [
[ω2] v2

0 0

]
−
[

[ω2] v2

0 0

] [
[ω1] v1

0 0

]

=

[
[ω1][ω2]− [ω2][ω1] [ω1]v2 − [ω2]v1

0 0

]
=

[
[ω′] v′

0 0

]
,

which can be written more compactly in vector form as[
ω′

v′

]
=

[
[ω1] 0
[v1] [ω1]

] [
ω2

v2

]
.

This generalization of the cross product to two twists V1 and V2 will be called
the Lie bracket of V1 and V2.

Definition 8.1. Given two twists V1 = (ω1, v1) and V2 = (ω2, v2), the Lie
bracket of V1 and V2, denoted simultaneously by [V1,V2] and adV1(V2), is
defined as follows:

[V1,V2] =

[
[ω1] 0
[v1] [ω1]

] [
ω2

v2

]
= adV1(V2). (8.29)

Given V = (ω, v), we further define the following notation for the 6× 6 matrix
representation [adV ]:

[adV ] =

[
[ω] 0
[v] [ω]

]
∈ R6×6. (8.30)

With this notation the Lie bracket [V1,V2] can also be expressed as

[V1,V2] = adV1(V2) = [adV1 ]V2. (8.31)

Definition 8.2. Given a twist V = (ω, v) and wrench F = (m, f), define the
mapping

adTV (F) = [adV ]TF =

[
[ω] 0
[v] [ω]

]T [
m
f

]
=

[
−[ω]m− [v]f
−[ω]f

]
(8.32)

Using the above notation and definitions the dynamic equations for a single
rigid body can now be written as follows:

Fb = GbV̇b − adTVb(Pb) (8.33)

= GbV̇b − [adVb ]
TGbVb. (8.34)

Note the similarity between (8.34) and the moment equation for a rotating rigid
body:

mb = Ibω̇b − [ωb]
TIbωb. (8.35)

Equation (8.35) is simply the rotational component of (8.34).
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8.3 Inverse Dynamics of Open Chains

We now consider the inverse dynamics problem for an n-link open chain con-
nected by one degree-of-freedom joints. Given the joint positions θ ∈ Rn, ve-
locities θ̇ ∈ Rn, and accelerations θ̈ ∈ Rn, the objective is to calculate the
right-hand side of the dynamics equation

τ = M(θ)θ̈ + b(θ, θ̇).

The main result will be a recursive inverse dynamics algorithm consisting of a
forward and backward iteration stage. In the forward iteration, the velocities
and accelerations of each link are propagated from the base to the tip, while in
the backward iteration, the forces and moments experienced by each link are
propagated from the tip to the base.

8.3.1 Overview of Newton-Euler Inverse Dynamics

Before getting into the details of the calculations, it is worth summarizing the
method in words.

• Preliminaries: Attach a frame {0} to the base, frames {1} to {n} to the
centers of mass of links {1} to {n}, and a frame {n+1} at the end-effector,
fixed in the frame {n}.

• Initialization: Set the velocity V0 of the base frame (typically zero), and
let V̇0 be opposite the gravitational acceleration. (Upward acceleration of
the base is equivalent to gravity acting downward.) Fn+1 is a wrench that
the end-effector applies to the environment, expressed in frame {n+ 1}.

• Forward Iteration: For links i = 1 to n do

– Calculate Ti−1,i, the configuration of frame {i} expressed in frame
{i− 1}. This is used in the next two calculations.

– Calculate Vi, the velocity of link i expressed in frame {i}, as the sum
of the velocity of link i−1 (but expressed in frame {i}) plus the extra
velocity due to the joint velocity θ̇i.

– Calculate V̇i as the sum of the acceleration of link i−1 (but expressed
in frame {i}) plus the extra acceleration due to the joint acceleration
θ̈i.

• Backward Iteration: For links i = n to 1 do

– The wrench Fi that must be applied to link i is the sum of the
wrench Fi+1 that must be provided to link i + 1 (but expressed in
frame {i}) plus the extra wrench GiV̇i − adTVi(GiVi), from the rigid-
body dynamics of link i. For link i = n, the wrench Fi+1 is just
the wrench the end-effector applies to the environment. For inboard
links i < n, the wrench Fi+1 includes also the wrenches needed to
support the outboard links.



8.3. Inverse Dynamics of Open Chains 209

– The 6-vector wrench Fi calculated in the previous step is the sum of
the wrench provided by the motor at joint i plus the wrench provided
by the structure of joint i (e.g., the bearings). The motor itself
provides only a wrench that lives on a one-dimensional line in the
wrench space, typically a pure torque about the axis of a revolute
joint or a pure force along the axis of a prismatic joint. We get the
other five dimensions of Fi “for free” from the structure of the joint
that limits the motion to one degree-of-freedom. Thus the force or
torque τi provided by the motor at joint i is simply the component
of Fi along the one-dimensional line of motor wrenches. The motor
effort τi can be calculated by taking the projection (i.e., dot product)
of Fi onto the motor axis.

All that is needed to implement the Newton-Euler method is to introduce
some notation and derive the calculations above.

8.3.2 Details of Newton-Euler Inverse Dynamics

A body-fixed reference frame {i} is attached to the center of mass of each link i,
i = 1, . . . , n. The ground frame is denoted {0}, and a frame at the end-effector
is denoted {n+ 1}. This frame is fixed in {n}.

When the manipulator is at the home position, with all joint variables zero,
we define Mi ∈ SE(3) to be the configuration of {i} in {0} and Mi−1,i ∈ SE(3)
to be the configuration of {i} in {i − 1}. Let Ai be the twist vector for joint i
(assuming θi is set to zero) expressed in the {i} frame. Then the displacement
from frame {i− 1} to {i}, denoted Ti−1,i ∈ SE(3), is expressed in the following
form:

Ti−1,i = Mi−1,ie
[Ai]θi . (8.36)

If the forward kinematics is expressed in the space-frame product-of-exponentials,
then the forward kinematics up to each link frame {i} can be written

T0i = e[S1]θ1e[S2]θ2 · · · e[Si]θiMi (8.37)

for i = 1, . . . , n. For each i = 1, . . . , n, the following can be established via
direct calculation:

Mi−1,i = M−1
i−1Mi (8.38)

Ai = AdM−1
i

(Si). (8.39)

We further define the following notation:

(i) Denote the velocity of link frame {i} expressed in frame {i} coordinates
by Vi = (ωi, vi). Note that Vi is obtained from [Vi] = T−1

0i Ṫ0i.

(ii) Let Gi ∈ R6×6 denote the 6× 6 inertia matrix of link i, expressed relative
to link frame {i}. Since we assume here that all link frames are situated
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Figure 8.1: Free body diagram illustrating the moments and forces exerted on
link i.

at the link center of mass, Gi has the block-diagonal form

Gi =

[
Ii 0
0 miI

]
, (8.40)

where Ii denotes the 3 × 3 rotational inertia matrix of link i, and mi is
the link mass.

(iii) Denote by Fi = (mi, fi) the spatial force transmitted from link i − 1 to
link i, expressed in frame {i} coordinates. Note that Fi is transmitted
entirely through joint i.

With the above notation and definitions, we now consider the free-body
diagram for link i as shown in Figure 8.1. Note that Fi+1 is the wrench applied
by link i to link i+ 1, expressed in frame {i+ 1} coordinates. What is needed
is the wrench applied by link i+ 1 to link i, expressed in frame {i} coordinates;
using the wrench transformation rule under a change of reference frames, this
is given by

AdTTi+1,i
(−Fi+1) = −AdTTi+1,i

(Fi+1).

The equations of motion for link i can therefore be written

GiV̇i = adTVi(GiVi) + Fi −AdTTi+1,i
(Fi+1). (8.41)

The joint torque τi ∈ R at joint i is then the projection of the wrench Fi onto
the joint twist Ai:

τi = FTi Ai. (8.42)

We now derive the forward iteration of link velocities and accelerations from
the base to the tip. First note that

[V1] = T−1
01 Ṫ01 = [A1θ̇1] (8.43)



8.3. Inverse Dynamics of Open Chains 211

and

[V2] = T−1
02 Ṫ02

= T−1
12 (T−1

01 Ṫ01)T12 + T−1
12 Ṫ12

= T−1
12 [V1]T12 + [A2θ̇2], (8.44)

or equivalently, V2 = AdT21(V1) +A2θ̇2. Repeating this procedure for the sub-
sequent links, it can be established that

Vi = AdTi,i−1
(Vi−1) +Aiθ̇i, i = 1, . . . , n. (8.45)

The accelerations V̇i can also be found recursively. Noting that

[V̇i] =
d

dt
Ti−1,i[Vi]T−1

i−1,i + Ti−1,i[V̇i]T−1
i−1,i + Ti−1,i[Vi]

d

dt
T−1
i−1,i + [Ai]θ̈i,

and

d

dt
Ti−1,i = Mi−1,i[Ai]e[Ai]θi θ̇i = Mi−1,ie

[Ai]θi [Ai]θ̇i
d

dt
T−1
i−1,i = −T−1

i−1,iṪi−1,iT
−1
i−1,i,

it can be shown that

V̇i = Aiθ̈i + AdTi,i−1
(V̇i−1) + [AdTi−1,i

(Vi−1),Aiθ̇i], (8.46)

where
[
AdTi−1,i

(Vi−1),Ai
]

denotes the Lie bracket of AdTi−1,i
(Vi−1) with Ai.

Note that since [Ai,Ai] = 0 and AdTi,i−1
(Vi−1) = Vi − Aiθ̇i, one obtains the

alternative but equivalent formula

V̇i = Aiθ̈i + AdTi,i−1
(V̇i−1) + [Vi,Aiθ̇i]. (8.47)

The above formulas for the velocities and accelerations, together with the
dynamic equations for any given link, can now be organized into a two-stage
forward-backward iterative algorithm for the inverse dynamics. Before doing
so, we examine how to include gravity in the dynamics. One way to simulate
the effects of gravity is to set the base frame to have an acceleration −g, where
g ∈ R3 denotes the gravitational acceleration vector as expressed in base frame
coordinates. In this case it is important to remember that the link acceleration
calculated from the recursive algorithm is not its true acceleration, but rather
its true acceleration minus g.

The algorithm is initialized by providing initial values for V0, V̇0, and Ftip,

where V0 and V̇0 are respectively the spatial velocity and spatial acceleration of
the base frame expressed in base frame coordinates, and Ftip is the spatial force
applied to to the environment by the final link, expressed in end-effector frame
coordinates. The joint trajectory θ(t) and its derivatives θ̇, θ̈ are also assumed
given as input.
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Newton-Euler Inverse Dynamics Algorithm Summary

• Preliminaries: Each link frame {i} is assumed attached to the link’s
center of mass. The forward kinematics from the base frame {0} to link
frame {i} is of the form

T0i = e[S1]θ1e[S2]θ2 · · · e[Si]θiMi, i = 1, . . . , n. (8.48)

Define Mi−1,i to be the displacement from link frame {i − 1} to link
frame {i} when the manipulator is at the home position. Then Mi =
M01M12 · · ·Mi−1,i and Mi−1,i = M−1

i−1Mi, i = 1, . . . , n. The displacement
between link frames {i− 1} and {i} is

Ti−1,i = Mi−1,ie
[Ai]θi , (8.49)

where
Ai = AdM−1

i
(Si), i = 1, . . . , n. (8.50)

With respect to the link frame attached at its center of mass, the 6 × 6
spatial inertia Gi of link i is defined as

Gi =

[
Ii 0
0 miI

]
, (8.51)

where Ii ∈ R3×3 is its rotational inertia matrix, and mi is the mass of
link i. Define the twist V0 = (ω0, v0) to be the spatial velocity of the
base frame, expressed in base frame coordinates. Define g ∈ R3 to be
the gravity vector expressed in base frame {0} coordinates. Define Ftip =
(mtip, ftip) to be the wrench applied applied to the environment by the
end-effector expressed in the end-effector frame {n+1}, fixed in the frame
{n}.

• Initialization: V0 = given, V̇0 = (0, g), Fn+1 = Ftip.

• Forward Iteration: For i = 1 to n do

Ti−1,i = Mi−1,ie
[Ai]θi (8.52)

Vi = AdTi,i−1
(Vi−1) +Aiθ̇i (8.53)

V̇i = AdTi,i−1
(V̇i−1) + [Vi,Ai]θ̇i +Aiθ̈i (8.54)

• Backward Iteration: For i = n to 1 do

Fi = AdTTi+1,i
(Fi+1) + GiV̇i − adTVi(GiVi) (8.55)

τi = FTi Ai. (8.56)

As noted earlier, the recursion formula Equation (8.54) for the acceleration V̇i
can also be replaced by the equivalent formula

V̇i = AdTi,i−1
(V̇i−1) + [AdTi−1,i

(Vi−1),Ai]θ̇i +Aiθ̈i. (8.57)
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8.4 Dynamic Equations in Closed Form

In this section we show how the equations in the recursive inverse dynamics
algorithm can be organized into a closed-form set of dynamics equations of the
form τ = M(θ)θ̈ + c(θ, θ̇) + g(θ).

Before doing so, we prove our earlier assertion that the total kinetic energy
K of the robot can be expressed as K = 1

2 θ̇
TM(θ)θ̇. We do so by noting that K

can be expressed as the sum of the kinetic energies of each link:

K =
1

2

n∑
i=1

VTi GiVi, (8.58)

where Vi is the spatial velocity of link frame {i}, and Gi is the spatial inertia
matrix of link i as defined by Equation (8.51) (both are expressed in link frame
{i} coordinates). Let T0i(θ1, . . . , θi) denote the forward kinematics from the base
frame {0} to link frame {i}, and let Jib(θ) denote the body Jacobian obtained
from T−1

0i Ṫ0i. Note that Jib as defined is a 6× i matrix; we turn it into a 6× n
matrix by filling in all entries of the last n − i columns with zeros. With this
definition of Jib, we can write

Vi = Jib(θ)θ̇, i = 1, . . . , n.

The kinetic energy can then be written

K =
1

2
θ̇T

(
n∑
i=1

Jib(θ)
TGiJib(θ)

)
θ̇. (8.59)

The term inside the parentheses is precisely the mass matrix M(θ):

M(θ) =

n∑
i=1

Jib(θ)
TGiJib(θ). (8.60)

Some of the exercises at the end of this chapter examine ways to recursively
compute the entries of M(θ).

We now return to the original task of deriving a closed-form set of dynamic
equations. We start by defining the following stacked vectors:

V =

 V1

...
Vn

 ∈ R6n (8.61)

F =

 F1

...
Fn

 ∈ R6n. (8.62)
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Further define the following matrices:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · · · · An

 ∈ R6n×n (8.63)

G =


G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 · · · · · · Gn

 ∈ R6n×6n (8.64)

[adV ] =


[adV1 ] 0 · · · 0

0 [adV2 ] · · · 0
...

...
. . .

...
0 · · · · · · [adVn ]

 ∈ R6n×6n (8.65)

[
adAθ̇

]
=


[adA1θ̇1

] 0 · · · 0

0 [adA2θ̇2
] · · · 0

...
...

. . .
...

0 · · · · · · [adAnθ̇n ]

 ∈ R6n×6n (8.66)

S(θ) =


0 0 · · · 0 0

[AdT21
] 0 · · · 0 0

0 [AdT32 ] · · · 0 0
...

...
. . .

...
...

0 0 · · ·
[
AdTn,n−1

]
0

 ∈ R6n×6n.(8.67)

We write S(θ) to emphasize the dependence of S on θ. Finally, define the
following stacked vectors:

Vbase =


AdT10

(V0)
0
...
0

 ∈ R6n (8.68)

V̇base =


AdT10(V̇0)

0
...
0

 ∈ R6n (8.69)

Ftip =


0
...
0

AdTTn+1,n
(Fn+1)

 ∈ R6n. (8.70)

Note that A ∈ R6n×n and G ∈ R6n×6n are constant block-diagonal matrices,
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in which A contains only the kinematic parameters, while G contains only the
mass and inertial parameters for each link.

With the above definitions, our earlier recursive inverse dynamics algorithm
can be assembled into the following set of matrix equations:

V = S(θ)V +Aθ̇ + Vbase (8.71)

V̇ = S(θ)V̇ +Aθ̈ − [adAθ̇](S(θ)V + Vbase) + V̇base (8.72)

F = ST (θ)F + GV̇ − [adV ]TGV + Ftip (8.73)

τ = ATF . (8.74)

S(θ) has the property that Sn(θ) = 0 (such a matrix is said to be nilpotent
of order n), and one consequence verifiable through direct calculation is that
(I − S(θ))−1 = I + S(θ) + . . .+ Sn−1(θ). Defining L(θ) = (I − S(θ))−1, it can
further be verified via direct calculation that

L(θ) =


I 0 0 · · · 0

[AdT21 ] I 0 · · · 0
[AdT31

] [AdT32
] I · · · 0

...
...

...
. . .

...
[AdTn1

] [AdTn2
] [AdTn3

] · · · I

 ∈ R6n×6n. (8.75)

We write L(θ) to emphasize the dependence of L on θ. The earlier matrix
equations can now be reorganized as

V = L(θ)
(
Aθ̇ + Vbase

)
(8.76)

V̇ = L(θ)
(
Aθ̈ + [adAθ̇]S(θ)V + [adAθ̇]Vbase + V̇base

)
(8.77)

F = LT (θ)
(
GV̇ − [adV ]TGV + Ftip

)
(8.78)

τ = ATF . (8.79)

If an external wrench Ftip is applied at the tip, this can be included into the
following dynamics equation:

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ) + JT (θ)Ftip, (8.80)

where J(θ) denotes the Jacobian of the forward kinematics expressed in the
same reference frame as Ftip, and

M(θ) = ATLT (θ)GL(θ)A (8.81)

c(θ, θ̇) = −ATLT (θ)
(
GL(θ) [adAθ̇]S(θ) + [adV ]TG

)
L(θ)Aθ̇ (8.82)

g(θ) = ATLT (θ)GL(θ)V̇base. (8.83)

The g(θ) term reflects gravitational forces, while c(θ, θ̇) represents the Coriolis
and centrifugal forces. Comparing these equations with the Lagrangian form of
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the dynamics, i.e.,

τi =

n∑
j=1

mij(θ)θ̈j +

n∑
j=1

n∑
k=1

Γijk(θ)θ̇j θ̇k +
∂P
∂θi

, i = 1, . . . , n, (8.84)

where the Γijk(θ) are

Γijk(θ) =
1

2

(
∂mij

∂θk
+
∂mik

∂θj
− ∂mjk

∂θi

)
, (8.85)

we can see that elements of the c(θ, θ̇) term can be identified with

n∑
j=1

n∑
k=1

Γijk(θ)θ̇j θ̇k

and are thus quadratic in the θ̇i. Elements of the gravity term g(θ) can be
identified with ∂P

∂θi
. With the Newton-Euler formulation, the partial derivative

terms appearing in Γijk(θ) can be evaluated directly from (8.82) without taking

derivatives. Further, by defining the matrix C(θ, θ̇) ∈ Rn×n as

cij(θ, θ̇) =

n∑
k=1

Γijk(θ)θ̇k =
1

2

n∑
k=1

(
∂mij

∂θk
+
∂mik

∂θj
− ∂mjk

∂θi

)
θ̇k, (8.86)

where cij denotes the (i, j) entry of C(θ, θ̇), it can be seen that c(θ, θ̇) can be
expressed as

c(θ, θ̇) = C(θ, θ̇)θ̇. (8.87)

The matrix C(θ, θ̇) is called the Coriolis matrix. The following property, re-
ferred to as the passivity property, turns out to have important ramifications
in proving the stability of certain robot control laws.

Proposition 8.1. The matrix Ṁ(θ) − 2C(θ, θ̇) ∈ Rn×n, where M(θ) ∈ Rn×n
is the mass matrix and Ṁ(θ) its time derivative, and C(θ, θ̇) ∈ Rn×n is the
Coriolis matrix as defined in (8.86), is skew-symmetric.

Proof. The (i, j) component of Ṁ − 2C is

ṁij(θ)− 2cij(θ, θ̇) =

n∑
k=1

∂mij

∂θk
θ̇k −

∂mij

∂θk
θ̇k −

∂mik

∂θj
θ̇k +

∂mkj

∂θi
θ̇k

=

n∑
k=1

∂mkj

∂θi
θ̇k −

∂mik

∂θj
θ̇k.

By switching the indices i and j, it can be seen that

ṁji(θ)− 2cji(θ, θ̇) = −(ṁij(θ)− 2cij(θ, θ̇)),

thus proving that (Ṁ − 2C)T = −(Ṁ − 2C) as claimed.

The passivity property will be used later in the chapter on robot control.
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8.5 Forward Dynamics of Open Chains

We now consider the forward dynamics problem, where a torque trajectory τ(t)
together with a set of initial conditions on θ and θ̇ is assumed given, and the
objective is to integrate the dynamic equations τ(t) = M(θ)θ̈+ b(θ, θ̇) to obtain
the joint trajectory θ(t). The simplest numerical scheme for integrating the
general first-order differential equation q̇ = f(q, t), q ∈ Rn, is via the Euler
iteration

q(t+ h) = q(t) + hf(q(t), t),

where the positive scalar h denotes the timestep. The dynamic equations can be
converted to a first-order differential equation by taking advantage of the fact
that M(θ) is always invertible: setting q1 = θ, q2 = θ̇, and q = (q1, q2) ∈ R2n,
we can write

q̇1 = q2

q̇2 = M−1(q1) (τ(t)− b(q1, q2)) ,

which is of the form q̇ = f(q, t). The Euler integration scheme for this equation
is thus of the form

q1(t+ h) = q1(t) + hq2(t)

q2(t+ h) = q2(t) + h
(
M(q1(t))−1 (τ(t)− b(q1(t), q2(t)))

)
.

Given a set of initial values for q1(0) = θ(0) and q2(0) = θ̇(0), the above equa-
tions can then be iterated forward in time to numerically obtain the motion
θ(t) = q1(t).

Note that the above iteration appears to require the evaluation of M−1(θ),
which can be computationally expensive. In fact, it is possible to integrate
these equations without having to explicitly compute the inverse of M(θ). The
closed-form dynamic equations can be arranged as

M(θ)θ̈ = τ(t)− b(θ, θ̇). (8.88)

Setting θ̈ to zero in (8.88) leads to τ = b(θ, θ̇). Therefore by running the inverse
dynamics algorithm with θ̈(t) set to zero and (θ(t), θ̇(t)) set to their current
values, b(θ(t), θ̇(t)) can now be determined. Subtracting this from the given
value of τ(t) then results in the right-hand side of (8.88). Therefore, with a
means of evaluating M(θ), it is a straightforward matter to obtain θ̈(t) as the
solution to the linear equation Ax = c, where A = M(θ(t)) ∈ Rn×n is assured
to be nonsingular, and c = τ(t)− b(θ(t), θ̇(t)) is known.

Once a numerical integration scheme has been chosen, solving the forward
dynamics then reduces to a procedure for evaluating θ̈ from given values for θ,
θ̇, and τ . In the following algorithm we allow for the possibility of an external
spatial force Ftip applied to the final link.
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Algorithm for Calculating the Joint Acceleration: GetJointAccel(θ, θ̇, τ , τext)

• Prerequisites: Algorithms for calculating the inverse dynamics, and the
mass matrix, are assumed available. An algorithm for solving the linear
system Ax = c for x ∈ Rn, with given c ∈ Rn and A ∈ Rn×n nonsingular,
is also assumed available.

• Inputs: Current values for θ, θ̇, the input torque τ . If an external spatial
tip force Ftip is also given, it is transformed via the static force-torque
relation to τext = JTFtip, where the Jacobian J(θ) is expressed in terms
of the same reference frame as Ftip.

• Output: The joint acceleration θ̈.

• Initialization: Assign temporary storage variables A ∈ Rn×n, γ ∈ Rn,
c ∈ Rn.

• Inverse dynamics calculation: Calculate the inverse dynamics with θ
and θ̇ set to their given values, and θ̈ set to zero; store the output joint
torques in γ, and set c = τ − γ − τext.

• Evaluation of mass matrix: Calculate the mass matrix for the given
θ, and store the result in A.

• Calculation of joint acceleration: Solve the linear system Ax = c for
x; the resulting joint acceleration θ̈ is then given by x.

With the above algorithm for calculating the joint acceleration, various nu-
merical schemes for integrating the forward dynamics can be implemented; here
we present an algorithm for the most basic Euler method described above:

Euler Integration Algorithm for Forward Dynamics

• Prerequisites: Function GetJointAccel(θ, θ̇, τ, τext) required.

• Inputs: Initial conditions θ(0) and θ̇(0), input torques τ(t) and τext for
t ∈ [0, tf ], integration timestep h > 0.

• Output: Joint trajectory values θ[k] = θ(hk), k = 0, . . . , N .

• Initialization: Set N = tf/h.

• Iteration: For k = 1 to N do

θ̈[k] = GetJointAccel(θ[k], θ̇[k], τ [k], τext[k]);

θ[k + 1] = θ[k] + hθ̇[k];

[̇θ](k + 1) = θ̇[k] + hθ̈[k];

• Joint trajectory: θ[k] = θ(hk), k = 0, . . . , N .
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8.6 Dynamics in Task Space Coordinates

In this section we consider how the dynamic equations change under a trans-
formation to coordinates of the end-effector frame (task space coordinates). To
keep things simple we consider a six degree-of-freedom open chain with joint
space dynamics

τ = M(θ)θ̈ + b(θ, θ̇), θ ∈ R6, τ ∈ R6. (8.89)

We also ignore for the time being any external spatial forces that may be applied.
The spatial velocity V = (ω, v) of the end-effector is related to the joint velocity
θ̇ by

V = J(θ)θ̇, (8.90)

with the understanding that V and J(θ) are always expressed in terms of the
same reference frame. The time derivative V̇ is then

V̇ = J̇(θ)θ̇ + J(θ)θ̈. (8.91)

At configurations θ where J(θ) is invertible, we have

θ̇ = J−1V (8.92)

θ̈ = J−1V̇ − J−1J̇J−1V. (8.93)

The second term in (8.93) follows from the general matrix identity d
dt (A

−1A) =
d
dtA
−1 ·A+A−1 · ddtA for any invertible and differentiable matrix A(t). Substi-

tuting for θ̇ and θ̈ in Equation (8.89) leads to

τ = M
(
J−1V̇ − J−1J̇J−1V

)
+ b(θ, θ̇), (8.94)

where J−T denotes (J−1)T = (JT )−1. Pre-multiply both sides by J−T to get

J−T τ = J−TMJ−1V̇ − J−TMJ−1J̇J−1V
+J−T b(θ, J−1V).

(8.95)

Expressing J−T τ as the spatial force F , the above can be written

F = Λ(θ)V̇ + η(θ,V), (8.96)

where

Λ(θ) = J−TM(θ)J−1 (8.97)

η(θ,V) = J−T b(θ, J−1V)− ΛJ̇J−1V. (8.98)

These are the dynamic equations expressed in end-effector frame coordinates. If
an external spatial force F is applied to the end-effector frame, then assuming
zero joint torques, the motion of the end-effector frame is governed by these
equations. Note the dependence of Λ(θ) and η(θ,V) on θ. If θ were replaced by
its inverse kinematics solution θ = T−1(X), then one would obtain a differential
equation strictly in terms of the end-effector frame’s displacement X ∈ SE(3)
and spatial velocity V. In practice, since X is usually obtained by measuring
θ and substituting into the forward kinematics, it is preferable to leave the
dependence on θ explicit.
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8.7 Summary

8.8 Notes and References



Chapter 9

Trajectory Generation

During robot motion, the robot controller is provided with a steady stream of
goal positions and velocities to track. This specification of the robot position
as a function of time is called a trajectory. In some cases, the trajectory is
completely specified by the task—for example, the end-effector may be required
to track a known moving object. In other cases, as when the task is simply to
move from one position to another in a given time, we have freedom to design the
trajectory to meet these constraints. This is the domain of trajectory planning.
The trajectory should be a sufficiently smooth function of time, and it should
respect any given limits on joint velocities, accelerations, or torques.

In this chapter we consider a trajectory as the combination of a path, a purely
geometric description of the configurations achieved by the robot, and a time
scaling, which specifies the times when those configurations are reached. We
consider three cases: point-to-point straight-line trajectories in both joint space
and task space; trajectories passing through a sequence of timed via points;
and minimum-time trajectories along specified paths. Finding paths that avoid
obstacles is left to Chapter 10.

9.1 Definitions

A path θ(s) maps a scalar path parameter s, assumed to be zero at the start
of the path and one at the end, to a point in the robot’s configuration space
Θ, θ : [0, 1] → Θ. As s increases from 0 to 1, the robot moves along the path.
Sometimes s is taken to be time, and is allowed to vary from time s = 0 to
the total motion time s = T , but it is often useful to separate the role of the
geometric path parameter s from the time parameter t. A time scaling s(t)
assigns a value s to each time t ∈ [0, T ], s : [0, T ]→ [0, 1].

Together a path and time scaling define a trajectory θ(s(t)), or θ(t) for short.
Using the chain rule, the velocity and acceleration along the trajectory can be

221
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written as

θ̇ =
dθ

ds
ṡ (9.1)

θ̈ =
dθ

ds
s̈+

d2θ

ds2
ṡ2. (9.2)

To ensure that the robot’s acceleration (and therefore dynamics) are well de-
fined, each of θ(s) and s(t) must be twice differentiable.

9.2 Point-to-Point Trajectories

The simplest type of motion is from rest at one configuration to rest at another.
We call this a point-to-point motion. The simplest type of path for point-to-
point motion is a straight line. Straight-line paths and their time scalings are
discussed below.

9.2.1 Straight-Line Paths

A “straight line” from a start configuration θstart to an end configuration θend

could be defined in joint space or in task space. The advantage of a straight-line
path from θstart to θend in joint space is simplicity: since joint limits typically
take the form θi,min ≤ θi ≤ θi,max for each joint angle θi, the allowable joint
configurations form a convex set Θfree in joint space, so the straight line between
any two endpoints in Θfree also lies in Θfree. The straight line can be written

θ(s) = (1− s)θstart + sθend, s ∈ [0, 1] (9.3)

with derivatives

dθ

ds
= θend − θstart (9.4)

d2θ

ds2
= 0. (9.5)

Straight lines in joint space generally do not yield straight-line motion of the
end-effector in Cartesian space. If Cartesian straight-line motions are desired,
the start and end configurations can be specified by Xstart and Xend in task
space. If Xstart and Xend are represented by a minimum set of coordinates, then
a straight line is defined as X(s) = (1− s)Xstart + sXend, s ∈ [0, 1]. Compared
to joint coordinates, however, the following are issues that must be addressed:

• Inverse kinematics must be used to find joint coordinates θ for the robot
controller.

• If the path passes near a kinematic singularity, joint velocities may become
unreasonably large for almost all time scalings of the path.
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Figure 9.1: (Left) A 2R robot with joint limits 0◦ ≤ θ1 ≤ 180◦, 0◦ ≤ θ2 ≤ 150◦.
(Top right) A straight-line path in joint space and the corresponding motion of
the end-effector in task space. The reachable endpoint configurations, subject
to joint limits, are indicated in gray. (Bottom right) A straight-line path in task
space would violate the joint limits.

• Since the robot’s reachable task space may not be convex in X coordinates,
some points on a straight line between two reachable endpoints may not
be reachable (Figure 9.1).

In addition to the issues above, if Xstart and Xend are represented as elements
of SE(3) instead of as a minimum set of coordinates, then there is the question
of how to define a “straight” line in SE(3). A configuration of the form (1 −
s)Xstart + sXend does not generally lie in SE(3).

One option is to use the screw motion (simultaneous rotation about and
translation along a fixed screw axis) that moves the robot’s end-effector from
Xstart = X(0) to Xend = X(1). To derive this X(s), we can write the start and
end configurations explicitly in the {s} frame as Xs,start and Xs,end and use our
subscript cancellation rule to express the end configuration in the start frame:

Xstart,end = Xstart,sXs,end = X−1
s,startXs,end.

Then log(X−1
s,startXs,end) is the matrix representation of the spatial velocity,

expressed in the {start} frame, that takes Xstart to Xend in unit time. The path
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can therefore be written as

X(s) = Xstart exp(log(X−1
startXend)s) (9.6)

where Xstart is post-multiplied by the matrix exponential since the spatial ve-
locity is represented in the {start} frame, not the fixed world frame {s}.

This screw motion provides a “straight-line” motion in the sense that the
spatial velocity (and the screw axis) is constant. The origin of the end-effector
does not generally follow a straight line in Cartesian space, however, since it
rotates about the axis. It may be preferable to decouple the rotational motion
from the translational motion. Writing X = (R, p), we can define the “straight-
line” path to be

p(s) = (1− s)pstart + spend (9.7)

R(s) = Rstart exp(log(RTstartRend)s). (9.8)

9.2.2 Time Scaling a Straight-Line Path

A time scaling s(t) of a path should ensure that the motion is appropriately
smooth and that any constraints on robot velocity and acceleration are satisfied.
For a straight-line path in joint space of the form Equation (9.3), the time-scaled
joint velocities and accelerations are θ̇ = ṡ(θend−θstart) and θ̈ = s̈(θend−θstart),
respectively. For a straight-line path in task space, parametrized by minimum
coordinates X ∈ Rm, simply replace θ, θ̇, and θ̈ by X, Ẋ, and Ẍ. Inverse
kinematics is then used to convert to an equivalent representation in joint space.

9.2.2.1 Polynomial Time Scaling

Third-order Polynomials A convenient form for the time scaling s(t) is a
cubic polynomial of time,

s(t) = a0 + a1t+ a2t
2 + a3t

3. (9.9)

A point-to-point motion in time T imposes the initial constraints s(0) = ṡ(0) = 0
and the terminal constraints s(T ) = 1 and ṡ(T ) = 0. Evaluating Equation (9.9)
and its derivative

ṡ(t) = a1 + 2a2t+ 3a3t
2 (9.10)

at t = 0 and t = T and solving the four constraints for a0, . . . , a3, we find

a0 = 0, a1 = 0, a2 =
3

T 2
, a3 = − 2

T 3
.

Plots of s(t) and ṡ(t) are shown in Figure 9.2.
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Figure 9.2: Plots of s(t) and ṡ(t) for a third-order polynomial time scaling.

Plugging s = a2t
2 + a3t

3 into Equation (9.3) yields

θ(t) = θstart +

(
3t2

T 2
− 2t3

T 3

)
(θend − θstart) (9.11)

θ̇(t) =

(
6t

T 2
− 6t2

T 3

)
(θend − θstart) (9.12)

θ̈(t) =

(
6

T 2
− 12t

T 3

)
(θend − θstart). (9.13)

The maximum joint velocities are achieved at the halfway point of the motion
t = T/2:

θ̇max =
3

2T
(θend − θstart).

The maximum joint accelerations and decelerations are achieved at t = 0 and
t = T :

θ̈max =

∣∣∣∣ 6

T 2
(θend − θstart)

∣∣∣∣ , θ̈min = −
∣∣∣∣ 6

T 2
(θend − θstart)

∣∣∣∣ .
If there are known limits on the maximum joint velocities |θ̇| ≤ θ̇limit and max-
imum joint accelerations |θ̈| ≤ θ̈limit, these bounds can be checked to see if the
requested motion time T is feasible. Alternatively, T could be solved for to find
the minimum possible motion time that satisfies the most restrictive velocity or
acceleration constraint.

Fifth-order Polynomials Because the third-order time scaling does not con-
strain the endpoint path accelerations s̈(0) and s̈(T ) to be zero, the robot is
asked to achieve a discontinuous jump in acceleration at both t = 0 and t = T .
This implies infinite jerk, the derivative of acceleration, which may cause vibra-
tion of the robot.

One solution is to constrain the endpoint accelerations to s̈(0) = s̈(T ) = 0.
The addition of these two constraints requires the addition of two more design
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Figure 9.3: Plots of s(t), ṡ(t), and s̈(t) for a fifth-order polynomial time scaling.
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Figure 9.4: Plots of s(t) and ṡ(t) for a trapezoidal motion profile.

freedoms in the polynomial, yielding a quintic polynomial of time, s(t) = a0 +
. . . + a5t

5. We can use the six terminal position, velocity, and acceleration
constraints to solve uniquely for a0 . . . a5 (Exercise 5), which yields a smoother
motion with a higher maximum velocity than a cubic time scaling. A plot of
the time scaling is shown in Figure 9.3.

9.2.2.2 Trapezoidal Motion Profiles

Trapezoidal time scalings are quite common in motor control, particularly for
the motion of a single joint, and they get their name from their velocity profiles.
The point-to-point motion consists of a constant acceleration phase s̈ = a of
time ta, followed by a constant velocity phase ṡ = v of time tv = T − 2ta,
followed by a constant deceleration phase s̈ = −a of time ta. The resulting ṡ
profile is a trapezoid and the s profile is the concatenation of a parabola, linear
segment, and parabola as a function of time (Figure 9.4).

The trapezoidal time scaling is not as smooth as the cubic time scaling,
but it has the advantage that if there are known limits on joint velocities θ̇limit

and joint accelerations θ̈limit, the trapezoidal motion using the largest v and a
satisfying

|(θend − θstart)v| ≤ θ̇limit (9.14)

|(θend − θstart)a| ≤ θ̈limit (9.15)
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is the fastest straight-line motion possible. (See Exercise 8.)
If v2/a > 1, the robot never reaches the velocity v during the motion (Ex-

ercise 10). The three-phase accelerate-coast-decelerate motion becomes a two-
phase accelerate-decelerate motion, and the trapezoidal profile ṡ(t) in Figure 9.4
becomes a triangle.

Assuming that v2/a ≤ 1, the trapezoidal motion is fully specified by v, a,
ta, and T , but only two of these can be specified independently, since they
must satisfy s(T ) = 1 and v = ata. It is unlikely that we would specify ta
independently, so we can eliminate it from the equations of motion by the sub-
stitution ta = v/a. The motion profile during the three stages (acceleration,
coast, deceleration) can then be written in terms of v, a, and T as

0 ≤ t ≤ v

a
: s̈(t) = a (9.16)

ṡ(t) = at (9.17)

s(t) =
1

2
at2 (9.18)

v

a
< t ≤ T − v

a
: s̈(t) = 0 (9.19)

ṡ(t) = v (9.20)

s(t) = vt− v2

2a
(9.21)

T − v

a
< t ≤ T : s̈(t) = −a (9.22)

ṡ(t) = a(T − t) (9.23)

s(t) =
2avT − 2v2 − a2(t− T )2

2a
. (9.24)

Since only two of v, a, and T can be chosen independently, we have three
options:

• Choose v and a such that v2/a ≤ 1, assuring a three-stage trapezoidal
profile, and solve s(T ) = 1 (Equation (9.24)) for T :

T =
a+ v2

va
.

If v and a correspond to the highest possible joint velocities and acceler-
ations, this is the minimum possible time for the motion.

• Choose v and T such that 2 ≥ vT > 1, assuring a three-stage trapezoidal
profile and that the top speed v is sufficient to reach s = 1 in time T , and
solve s(T ) = 1 for a:

a =
v2

vT − 1
.
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Figure 9.5: Plot of ṡ(t) for an S-curve motion profile consisting of seven stages:
(1) constant positive jerk, (2) constant acceleration, (3) constant negative jerk,
(4) constant velocity, (5) constant negative jerk, (6) constant deceleration, and
(7) constant positive jerk.

• Choose a and T such that aT 2 ≥ 4, assuring that the motion is completed
in time, and solve s(T ) = 1 for v:

v =
1

2

(
aT −

√
a
√
aT 2 − 4

)
.

9.2.2.3 S-Curve Time Scalings

Just as cubic polynomial time scalings lead to infinite jerk at the beginning and
end of the motion, trapezoidal motions cause discontinuous jumps in accelera-
tion at t ∈ {0, ta, T − ta, T}. A solution is a smoother S-curve time scaling, a
popular motion profile in motor control because it avoids vibrations or oscilla-
tions induced by step changes in acceleration. An S-curve time scaling consists
of seven stages: (1) constant jerk s(3) = J until a desired acceleration s̈ = a is
achieved; (2) constant acceleration until the desired ṡ = v is being approached;
(3) constant negative jerk −J until s̈ equals zero exactly at the time ṡ reaches
v; (4) coasting at constant v; (5) constant negative jerk −J ; (6) constant decel-
eration −a; and (7) constant positive jerk J until s̈ and ṡ reach zero exactly at
the time s reaches 1.

The ṡ(t) profile for an S-curve is shown in Figure 9.5.
Given some subset of v, a, J , and the total motion time T , algebraic ma-

nipulation reveals the switching time between stages and conditions that ensure
that all seven stages are actually achieved, similar to the case of the trapezoidal
motion profile.

9.3 Polynomial Via Point Trajectories

If the goal is to have the robot joints pass through a series of via points at
specified times, without a strict specification on the shape of path, a simple
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Figure 9.6: Two paths in an (x, y) space corresponding to piecewise-cubic tra-
jectories interpolating four via points, including one start point and one end
point. The velocities at the start and end are zero, and the velocities at vias 2
and 3 are indicated by dashed tangent vectors. The shape of the path depends
on the velocities specified at the via points.

solution is to use polynomial interpolation to directly find joint histories θ(t)
without first specifying a path θ(s) and then a time scaling s(t) (Figure 9.6).

Let the trajectory be specified by k via points, with the start point occurring
at T1 = 0 and the final point at Tk = T . Since each joint history is interpolated
individually, we focus on a single joint angle and call it β to avoid proliferation of
subscripts. At each via point i ∈ {1 . . . k}, the user specifies the desired position
β(Ti) = βi and velocity β̇(Ti) = β̇i. The trajectory has j = k − 1 segments,
and the duration of segment j ∈ {1, . . . , k − 1} is ∆Tj = Tj+1 − Tj . The joint
trajectory during segment j is expressed as the third-order polynomial

β(∆t) = aj0 + aj1∆t+ aj2∆t2 + aj3∆t3 (9.25)

in terms of the time ∆t elapsed in segment j, where 0 ≤ ∆t ≤ ∆Tj . Segment j
is subject to the four constraints

β(0) = βj β̇(0) = β̇j

β(∆Tj) = βj+1 β̇(∆Tj) = β̇j+1.

Solving these constraints for aj0, . . . , aj3 yields

aj0 = βj (9.26)

aj1 = β̇j (9.27)

aj2 =
3βj+1 − 3βj − 2β̇j∆Tj − β̇j+1∆Tj

∆T 2
j

(9.28)

aj3 =
2βj + (β̇j + β̇j+1)∆Tj − 2βj+1

∆T 3
j

. (9.29)
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Figure 9.7: The coordinate time histories for the cubic via point interpolation
of Figure 9.6(a).

Figure 9.7 shows the time histories for the interpolation of Figure 9.6(a). In
this 2D (x, y) coordinate space, the via points 1 . . . 4 occur at times T1 = 0,
T2 = 1, T3 = 2, and T4 = 3. The via points are at (0, 0), (0, 1), (1, 1), and (1, 0)
with velocities (0, 0), (1, 0), (0,−1), and (0, 0).

Two issues are worth mentioning:

• The quality of the interpolated trajectories is improved by “reasonable”
combinations of via point times and via point velocities. For example,
if the user wants to specify a via point location and time, but not the
velocity, a heuristic could be used to choose a via velocity based on the
times and coordinate vectors to the via points before and after the via in
question. As an example, the trajectory of Figure 9.6(b) is smoother than
the trajectory of Figure 9.6(a).

• Cubic via point interpolation ensures that velocities are continuous at via
points, but not accelerations. The approach is easily generalized to use
fifth-order polynomials and specifications of the accelerations at the via
points, at the cost of increased complexity of the solution.

If only two points are used (the start and end point), and the velocities at
each are zero, the resulting trajectory is identical to the point-to-point cubic
polynomial time-scaled trajectory discussed in Section 9.2.2.1.

There are many other methods for interpolating a set of via points. For
example, B-spline interpolation is popular. In B-spline interpolation, the path
may not pass exactly through the via points, but the path is guaranteed to be
confined to the convex hull of the via points, unlike the paths in Figure 9.6.
This can be important to ensure that joint limits or workspace obstacles are
respected.
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Figure 9.8: A path planner has returned a semicircular path of radius R around
an obstacle in (x, y) space for a robot with two prismatic joints. The path can
be represented as a function of a path parameter s as x(s) = xc +R cos sπ and
y(s) = yc − R sin sπ for s ∈ [0, 1]. For a 2R robot, inverse kinematics would be
used to express the path as a function of s in joint coordinates.

9.4 Time-Optimal Time Scaling

In the case that the path θ(s) is fully specified by the task or an obstacle-
avoiding path planner (e.g., Figure 9.8), the trajectory planning problem reduces
to finding a time scaling s(t). One could choose the time scaling to minimize
energy consumed while meeting a time constraint, or to prevent spilling a glass
of water the robot is carrying. One of the most useful time scalings, however,
is the one that minimizes the time of motion along the path, subject to the
robot’s actuator limits. Such time-optimal trajectories maximize the robot’s
productivity.

While the trapezoidal time scalings of Section 9.2.2.2 can yield time-optimal
trajectories, this is only under the assumption that the maximum acceleration
a and maximum coasting velocity v are constant. For most robots, because of
state-dependent joint actuator limits and the state-dependent dynamics

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τ, (9.30)

the maximum available velocities and accelerations change along the path.
In this section we consider the problem of finding the fastest possible time

scaling s(t) that respects the robot’s actuator limits. We write the limits on the
ith actuator as

τmin
i (θ, θ̇) ≤ τi ≤ τmax

i (θ, θ̇). (9.31)

The available actuator torque is typically a function of the state of the actuator.
For example, for a given maximum voltage of a DC motor, the maximum torque
available from the motor drops linearly with the motor’s speed.
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Before proceeding, we note that the Coriolis terms in Equation (9.30) can
be written equivalently as

C(θ, θ̇)θ̇ = θ̇TΓ(θ)θ̇,

where Γ(θ) is the three-dimensional tensor of Christoffel symbols constructed
of partial derivatives of components of the inertia matrix M(θ) with respect to
θ. This form more clearly shows the Coriolis terms’ quadratic dependence on
velocities. Now beginning with Equation (9.30), replacing θ̇ by (dθ/ds)ṡ and θ̈
by (dθ/ds)s̈+ (d2θ/ds2)ṡ2, and rearranging, we get(
M(θ(s))

dθ

ds

)
︸ ︷︷ ︸

m(s)

s̈+

(
M(θ(s))

d2θ

ds2
+

(
dθ

ds

)T
Γ(θ(s))

dθ

ds

)
︸ ︷︷ ︸

c(s)

ṡ2+g(θ(s))︸ ︷︷ ︸
g(s)

= τ, (9.32)

expressed more compactly as the vector equation

m(s)s̈+ c(s)ṡ2 + g(s) = τ, (9.33)

where m(s) is the effective inertia of the robot confined to the path θ(s), c(s)ṡ2

are the quadratic velocity terms, and g(s) is the gravitational torque.
Similarly, the actuation constraints (9.31) can be expressed as a function of

s:
τmin
i (s, ṡ) ≤ τi ≤ τmax

i (s, ṡ). (9.34)

Plugging in the components of Equation (9.33), we get

τmin
i (s, ṡ) ≤ mi(s)s̈+ ci(s)ṡ

2 + gi(s) ≤ τmax
i (s, ṡ). (9.35)

Let Li(s, ṡ) and Ui(s, ṡ) be the minimum and maximum accelerations s̈ sat-
isfying the ith component of Equation (9.35). Depending on the sign of mi(s),
we have three possibilities:

if mi(s) > 0 : Li(s) =
τmin
i (s, ṡ)− c(s)ṡ2 − g(s)

mi(s)

Ui(s) =
τmax
i (s, ṡ)− c(s)ṡ2 − g(s)

mi(s)

if mi(s) < 0 : Li(s) =
τmax
i (s, ṡ)− c(s)ṡ2 − g(s)

mi(s)
(9.36)

Ui(s) =
τmin
i (s, ṡ)− c(s)ṡ2 − g(s)

mi(s)

if mi(s) = 0 : zero-inertia point, discussed in Section 9.4.3

Defining

L(s, ṡ) = max
i
Li(s, ṡ) and U(s, ṡ) = min

i
Ui(s, ṡ),
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Figure 9.9: A time scaling in the (s, ṡ) phase plane is a curve with ṡ ≥ 0 at all
times connecting the initial path position and velocity (0, 0) to the final position
and velocity (1, 0).

the actuator limits (9.35) can be written as the state-dependent time-scaling
constraints

L(s, ṡ) ≤ s̈ ≤ U(s, ṡ). (9.37)

The time-optimal time-scaling problem can now be stated:

Given a path θ(s), s ∈ [0, 1], an initial state (s0, ṡ0) = (0, 0), and a final state
(sf , ṡf ) = (1, 0), find a monotonically increasing twice-differentiable time scaling
s : [0, T ]→ [0, 1] that

(i) satisfies s(0) = ṡ(0) = ṡ(T ) = 0 and s(T ) = 1, and

(ii) minimizes the total travel time T along the path while respecting the actu-
ator constraints (9.37).

The problem formulation is easily generalized to the case of nonzero initial
and final velocity along the path, ṡ(0) > 0 and ṡ(T ) > 0.

9.4.1 The (s, ṡ) Phase Plane

The problem is easily visualized in the (s, ṡ) phase plane of the path-constrained
robot, with s running from 0 to 1 on a horizontal axis and ṡ on a vertical
axis. Since s(t) is monotonically increasing, ṡ(t) ≥ 0 for all times t and for all
s ∈ [0, 1]. A time scaling of the path is any curve in the phase plane that moves
monotonically to the right from (0, 0) to (1, 0) (Figure 9.9). Not all such curves
satisfy the acceleration constraints (9.37), however.

To see the effect of the acceleration constraints, at each (s, ṡ) in the phase
plane, we can plot the limits L(s, ṡ) ≤ s̈ ≤ U(s, ṡ) as a cone, as illustrated in
Figure 9.10(a). If L(s, ṡ) ≥ U(s, ṡ), the cone disappears—there are no actuator
commands that can keep the robot on the path at this state. These inadmissible
states are indicated in grey in Figure 9.10(a). For any s, typically there is a
single limit velocity ṡlim(s) above which all velocities are inadmissible. The
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Figure 9.10: (a) Acceleration-limited motion cones at four different states. The
upper ray of the cone is the sum of U(s, ṡ) plotted in the vertical direction
(change in velocity) and ṡ plotted in the horizontal direction (change in posi-
tion). The lower ray of the cone is constructed from L(s, ṡ) and ṡ. Points in
grey, bounded by the velocity limit curve, have L(s, ṡ) ≥ U(s, ṡ)—the state is
inadmissible. On the velocity limit curve, the cone is reduced to a single tangent
vector. (b) The proposed time scaling is infeasible because the tangent to the
curve is outside the motion cone at the state indicated.

function ṡlim(s) is called the velocity limit curve. On the velocity limit curve,
L(s, ṡ) = U(s, ṡ), and the cone reduces to a single vector.

For a time scaling to satisfy the acceleration constraints, the tangent of the
time-scaling curve must lie inside the feasible cone at all points on the curve.
This shows that the time scaling in Figure 9.10(b) is infeasible; it demands more
deceleration than the actuators can provide at the state indicated.

For a minimum-time motion, the velocity ṡ must be as high as possible
at every s while still satisfying the acceleration constraints and the endpoint
constraints. This implies that the time scaling must always operate at the
limit U(s, ṡ) or L(s, ṡ), and our only choice is when to switch between these
limits. A common solution is a bang-bang trajectory: maximum acceleration
U(s, ṡ) followed by a switch to maximum deceleration L(s, ṡ). (This is similar
to the trapezoidal motion profile that never reaches the coasting velocity v in
Section 9.2.2.2.) In this case, the time scaling is calculated by numerically
integrating U(s, ṡ) forward in s from (0, 0), integrating L(s, ṡ) backward in s
from (1, 0), and finding the intersection of these curves (Figure 9.11(a)). The
switch between maximum acceleration and maximum deceleration occurs at the
intersection.

In some cases, however, the velocity limit curve prevents a single-switch
solution (Figure 9.11(b)). These cases require an algorithm to find multiple
switching points.
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Figure 9.11: (a) A time-optimal bang-bang time scaling integrates U(s, ṡ) from
(0, 0) and switches to L(s, ṡ) at a switching point s∗. Also shown is a non-
optimal time scaling with a tangent inside a motion cone. (b) Sometimes the
velocity limit curve prevents a single-switch solution.

9.4.2 The Time-Scaling Algorithm

Finding the optimal time scaling is reduced to finding the switches between
maximum acceleration U(s, ṡ) and maximum deceleration L(s, ṡ), maximizing
the “height” of the curve in the (s, ṡ) phase plane.

Time-scaling algorithm.

1. Initialize an empty list of switches S = {} and a switch counter i = 0. Set
(si, ṡi) = (0, 0).

2. Integrate the equation s̈ = L(s, ṡ) backward in time from (1, 0) until L(s, ṡ) >
U(s, ṡ) (the velocity limit curve is penetrated) or s = 0. Call this phase plane
curve F .

3. Integrate the equation s̈ = U(s, ṡ) forward in time from (si, ṡi) until it crosses
F or until U(s, ṡ) < L(s, ṡ) (the velocity limit curve is penetrated). Call this
curve Ai. If Ai crosses F , then increment i, set (si, ṡi) to the (s, ṡ) value at
which the crossing occurs, and append si to the list of switches S. This is a
switch from maximum acceleration to maximum deceleration. The problem
is solved and S is the set of switches expressed in the path parameter. If
instead the velocity limit curve is penetrated, let (slim, ṡlim) be the point of
penetration and proceed to the next step.

4. Perform a binary search on the velocity in the range [0, ṡlim] to find the
velocity ṡ′ such that the curve integrating s̈ = L(s, ṡ) forward from (slim, ṡ

′)
touches the velocity limit curve without penetrating it. Set ṡhigh = ṡlim and
ṡlow = 0.

(a) Set the test velocity halfway between slow and shigh, ṡtest = (ṡhigh +
ṡlow)/2. The test point is (slim, ṡtest).
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(b) If the curve from the test point penetrates the velocity limit curve, set
ṡhigh equal to ṡtest. If instead the curve from the test point hits ṡ = 0,
set ṡlow equal to ṡtest. Return to step 4a.

Continue the binary search until a specified tolerance. Let (stan, ṡtan) equal
the point where the resulting curve just touches the velocity limit curve
tangentially. The motion cone at this point is reduced to a single tangent
vector (L(s, ṡ) = U(s, ṡ)), tangent to the velocity limit curve.

5. Integrate s̈ = L(s, ṡ) backwards from (stan, ṡtan) until it intersects Ai. Incre-
ment i, set (si, ṡi) to the (s, ṡ) value at the intersection, and label as Ai the
curve segment from (si, ṡi) to (stan, ṡtan). Append si to the list of switches
S. This is a switch from maximum acceleration to maximum deceleration.

6. Increment i and set (si, ṡi) to (stan, ṡtan). Append si to the list of switches
S. This is a switch from maximum deceleration to maximum acceleration.
Go to step 3.

The algorithm is illustrated in Figure 9.12.

9.4.3 Assumptions and Caveats

The description above covers the major points of the optimal time-scaling algo-
rithm. A few assumptions were glossed over, however; they are made explicit
below.

• Static posture maintenance. The algorithm, as described, assumes that the
robot can maintain its configuration against gravity at any state (s, ṡ = 0).
This ensures the existence of valid time scalings, namely, time scalings
that move the robot along the path arbirarily slowly. For some robots
and paths, this assumption may be violated due to weak actuators. For
example, some paths may require momentum to carry motion through
configurations the robot cannot maintain statically. The algorithm can be
modified to handle cases where this assumption is violated.

• Inadmissible states. The algorithm assumes that at every s there is a
unique velocity limit ṡlim(s) > 0 such that all velocities ṡ ≤ ṡlim(s) are
admissible and all velocities ṡ > ṡlim(s) are inadmissible. For some models
of actuator dynamics or friction, this assumption may be violated—there
may be isolated “islands” of inadmissible states. The algorithm can be
modified to handle this case.

• Zero-inertia points. The algorithm assumes no zero-inertia points (Equa-
tion (9.36)). If mi(s) = 0 in (9.36), then the torque provided by actuator
i has no dependence on the acceleration s̈, and the ith actuator constraint
in (9.35) directly defines a velocity constraint on ṡ. At a point s with
one or more zero components in m(s), the velocity limit curve is defined
by the minimum of (a) the velocity constraints defined by the zero-inertia
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Figure 9.12: The time-scaling algorithm. (Step 2) Integrating s̈ = L(s, ṡ) back-
ward from (1, 0) until the velocity limit curve is reached. (Step 3) Integrating
s̈ = U(s, ṡ) forward from (0, 0) to the intersection (slim, ṡlim) with the velocity
limit curve. (Step 4) Binary search to find (slim, ṡ

′) from which s̈ = L(s, ṡ),
integrated forward from (slim, ṡ

′), touches the velocity limit curve tangentially.
(Step 5) Integrating backward along L(s, ṡ) from (stan, ṡtan) to find the first
switch from acceleration to deceleration. (Step 6) The second switch, from de-
celeration to acceleration, is at (s2, ṡ2) = (stan, ṡtan). (Step 3) Integrating for-
ward along U(s, ṡ) from (s2, ṡ2) results in intersection with F at (s3, ṡ3), where
a switch occurs from acceleration to deceleration. The optimal time scaling
consists of switches at S = {s1, s2, s3}.
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components and (b) the ṡ values satisfying Li(s, ṡ) = Ui(s, ṡ) for the other
components. For the algorithm as described, singular arcs of zero-inertia
points on the velocity limit curve may lead to rapid switching between
s̈ = U(s, ṡ) and s̈ = L(s, ṡ). In such cases, choosing an acceleration tan-
gent to the velocity limit curve, and between U(s, ṡ) and L(s, ṡ), preserves
time optimality without chattering controls.

It is worth noting that the time-scaling algorithm generates trajectories with
discontinuous acceleration, which could lead to vibrations. Beyond this, inaccu-
racies in models of robot inertial properties and friction make direct application
of the time-scaling algorithm impractical. Finally, since a minimum-time time
scaling always saturates at least one actuator, if the robot gets off the planned
trajectory, there may be no torque left for corrective action.

Despite these drawbacks, the time-scaling algorithm provides a deep under-
standing of the true maximum capabilities of a robot following a path.

9.5 Summary

• A trajectory θ(t), θ : [0, T ]→ Θ, can be written as θ(s(t)), the composition
of a path θ(s), θ : [0, 1]→ Θ, and a time scaling s(t), s : [0, T ]→ [0, 1].

• A straight-line path in joint space can be written θ(s) = (1−s)θstart+sθend,
s ∈ [0, 1]. A similar form holds for straight-line paths in a minimum
set of task space coordinates. A “straight-line” path in SE(3), where
X = (R, p), can be decoupled to a Cartesian path and a rotation path:

p(s) = (1− s)pstart + spend (9.38)

R(s) = Rstart exp(log(RTstartRend)s). (9.39)

• A cubic polynomial s(t) = a0+a1t+a2t
2+a3t

3 can be used to time-scale a
point-to-point motion with zero initial and final velocity. The acceleration
undergoes a step change (infinite jerk) at t = 0 and t = T , however. An
impulse in jerk can cause vibration of the robot.

• A quintic polynomial s(t) = a0 +a1t+a2t
2 +a3t

3 +a4t
4 +a5t

5 can be used
to time-scale a point-to-point motion with zero initial and final velocities
and accelerations. Jerk is finite at t = 0 and t = T .

• The trapezoidal motion profile is a popular time scaling in point-to-point
control, particularly control of a single motor. The motion consists of
three phases: constant acceleration, constant velocity, and constant decel-
eration, resulting in a trapezoid in ṡ(t). Trapezoidal motion involves step
changes in acceleration.

• The S-curve motion profile is also popular in point-to-point control of a
motor. It consists of seven phases: (1) constant positive jerk, (2) constant
acceleration, (3) constant negative jerk, (4) constant velocity, (5) constant
negative jerk, (6) constant deceleration, and (7) constant positive jerk.
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• Given a set of via points including a start state, a goal state, and other
via states through which the robot’s motion must pass, as well as the
times Ti these states should be reached, a series of cubic polynomial time
scalings can be used to generate a trajectory θ(t) interpolating the via
points. To prevent step changes in the acceleration at the via points, a
series of quintic polynomials can be used instead.

• Given a robot path θ(s), the dynamics of the robot, and limits on the
actuator torques, the actuator constraints can be expressed in terms of
(s, ṡ) as the vector inequalities

L(s, ṡ)s̈ ≤ s̈ ≤ U(s, ṡ).

The time-optimal time scaling is the s(t) such that the “height” of the
curve in the (s, ṡ) phase plane is maximized while satisfying s(0) = ṡ(0) =
ṡ(T ) = 0, s(T ) = 1, and the actuator constraints. The optimal solution al-
ways operates at maximum acceleration U(s, ṡ) or maximum deceleration
L(s, ṡ).
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Figure 9.13: An elliptical path.

9.6 Exercises

1. Consider an elliptical path in the (x, y) plane. The path starts at (0, 0)
and proceeds clockwise to (2, 1), (4, 0), (2,−1), and back to (0, 0) (Figure 9.13).
Write the path as a function of s ∈ [0, 1].

2. A cylindrical path in X = (x, y, z) is given by x = cos 2πs, y = sin 2πs,
z = 2s, s ∈ [0, 1], and its time scaling is s(t) = 1

4 t+ 1
8 t

2, t ∈ [0, 2]. Write Ẋ and

Ẍ.

3. Plot the acceleration as a function of time t ∈ [0, T ] for a point-to-point
cubic time scaling.

4. Consider a straight-line path θ(s) = (1 − s)θstart + sθend, s ∈ [0, 1] from
θstart = (0, 0) to θend = (π, π/3). The feasible joint velocities are |θ̇1|, |θ̇2| ≤
2 rad/s and the feasible joint accelerations are |θ̈1|, |θ̈2| ≤ 0.5 rad/s2. Find the
fastest motion time T using a cubic time scaling that satisfies the joint velocity
and acceleration limits.

5. Find the fifth-order polynomial time scaling that satisfies s(T ) = 1 and
s(0) = ṡ(0) = s̈(0) = ṡ(T ) = s̈(T ) = 0.

6. As a function of the total time of motion T , find the times at which the accel-
eration s̈ of the fifth-order polynomial point-to-point time scaling is maximum
and minimum.

7. If you want to use a polynomial time scaling for point-to-point motion
with zero initial and final velocity, acceleration, and jerk, what would be the
minimum order of the polynomial?

8. Prove that the trapezoidal time scaling, using the maximum allowable ac-
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celeration a and velocity v, minimizes the time of motion T .

9. Plot by hand the acceleration profile s̈(t) for a trapezoidal time scaling.

10. If v and a are specified for a trapezoidal time scaling, prove that v2/a ≤ 1
is a necessary condition for the robot to reach the maximum velocity v during
the path.

11. If v and T are specified for a trapezoidal time scaling, prove that vT > 1
is a necessary condition for the motion to be able to complete in time T . Prove
that vT ≤ 2 is a necessary condition for a three-stage trapezoidal motion.

12. If a and T are specified for a trapezoidal time scaling, prove that aT 2 ≥ 4
is a necessary condition to ensure that the motion completes in time.

13. Consider the case where the maximum velocity v is never reached in a
trapezoidal time scaling. The motion becomes a bang-bang motion: constant
acceleration a for time T/2 followed by constant deceleration −a for time T/2.
Write the position s(t), velocity ṡ(t), and acceleration s̈(t) for both phases,
analogous to Equations (9.16)-(9.24).

14. Plot by hand the acceleration profile s̈(t) for an S-curve time scaling.

15. A seven-stage S-curve is fully specified by the time tJ (duration of constant
positive or negative jerk), the time ta (duration of constant positive or negative
acceleration), the time tv (duration of constant velocity), the total time T , the
jerk J , the acceleration a, and the velocity v. Of these seven quantities, how
many can be specified independently? You may assume that any inequality
constraints needed for a seven-stage profile are satisfied.

16. A nominal S-curve has seven stages, but it can have fewer if certain inequal-
ity constraints are not satisfied. Indicate which cases are possible with fewer
than seven stages. By hand, approximately draw the ṡ(t) velocity profiles for
these cases.

17. If the S-curve achieves all seven stages and uses jerk J , acceleration a, and
velocity v, what is the constant velocity coasting time tv in terms of v, a, J ,
and the total motion time T?

18. Write your own via point cubic polynomial interpolation trajectory gener-
ator program for a 2-DOF robot. A new position and velocity specification is
required for each joint at 1000 Hz. The user specifies a sequence of via point
positions, velocities, and times, and the program generates an array consisting
of the joint angles and velocities at every 1 ms from time t = 0 to time t = T ,
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Figure 9.14: A, B, and C are candidate integral curves, originating from the
dots indicated, while a, b, and c are candidate motion cones at ṡ = 0. Two of
the integral curves and two of the motion cones are incorrect.

the total duration of the movement. For a test case with at least three via
points (start and end at rest, and at least one more via), plot (a) the path in
the joint angle space (similar to Figure 9.6) and (b) the position and velocity of
each joint as a function of time (similar to Figure 9.7).

19. Via points with specified positions, velocities, and accelerations can be
interpolated using fifth-order polynomials of time. For a fifth-order polynomial
segment between via points j and j+1, of duration ∆Tj , with βj , βj+1, β̇j , β̇j+1,

β̈j , and β̈j+1 specified, solve for the coefficients of the fifth-order polynomial
(similar to Equations (9.26)–(9.29)). A symbolic math solver will simplify the
problem.

20. By hand or by computer, plot a trapezoidal motion profile in the (s, ṡ)
plane.

21. Figure 9.14 shows three candidate motion curves in the (s, ṡ) plane (A, B,
and C) and three candidate motion cones at ṡ = 0 (a, b, and c). Two of the
three curves and two of the three motion cones cannot be correct for any robot
dynamics. Indicate which are incorrect and explain your reasoning. Explain
why the others are possibilities.

22. Under the assumptions of Section 9.4.3, explain why the time-scaling al-
gorithm of Section 9.4.2 is correct. In particular, (a) explain why in the binary
search of Step 4, the curve integrated forward from (slim, ṡtest) must either hit
(or run tangent to) the velocity limit curve or hit the ṡ = 0 axis (and does not
hit the curve F , for example); (b) explain why the final time scaling can only
touch the velocity limit curve tangentially; and (c) explain why the acceleration
switches from minimum to maximum at points where the time scaling touches
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the velocity limit curve.

23. Explain how the time-scaling algorithm should be modified, if at all, to
handle the case where the initial and final velocity, at s = 0 and s = 1, are
nonzero.

24. Explain how the time-scaling algorithm should be modified if the robot’s
actuators are too weak to hold it statically at some configurations of the path
(static posture maintenance assumption is violated), but the assumptions on
inadmissible states and zero-inertia points are satisfied. Valid time scalings
may no longer exist. Under what condition(s) should the algorithm terminate
and indicate that no valid time scaling exists? (Under the assumptions of Sec-
tion 9.4.3, the original algorithm always finds a solution, and therefore does not
check for failure cases.) What do the motion cones look like at states (s, ṡ = 0)
where the robot cannot hold itself statically?

25. Create a computer program that plots the motion cones in the (s, ṡ) plane
for a 2R robot in a horizontal plane. The path is a straight line in joint space
from (θ1, θ2) = (0, 0) to (π/2, π/2). First derive the dynamics of the arm, then
rewrite the dynamics in terms of s, ṡ, s̈ instead of θ, θ̇, θ̈. The actuators can
provide torques in the range −τi,limit − bθ̇i ≤ τi ≤ τi,limit − bθ̇i, where b > 0
indicates the velocity dependence of the torque. The cones should be drawn at
a grid of points in (s, ṡ). To keep the figure manageable, normalize each cone
ray to the same length.
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Chapter 10

Motion Planning

Motion planning is the problem of finding a robot motion from a start state
to a goal state while avoiding obstacles in the environment, joint limits, and
torque limits. Motion planning is one of the most active subfields of robotics,
and it is the subject of entire books. The purpose of this chapter is to provide a
practical overview of a few common techniques, using robot arms and wheeled
mobile robots as the primary example systems (Figure 10.1).

The chapter begins with a brief overview of motion planning, followed by
foundational material including configuration space obstacles, and concludes
with summaries of several different planning methods.

10.1 Overview of Motion Planning

A key concept in motion planning is configuration space, or C-space for short.
Every point in the C-space C corresponds to a unique configuration q of the
robot, and every configuration of the robot can be represented as a point in
C-space. For example, the configuration of a robot arm with n joints can be
represented as a list of n joint angles, q = (θ1, . . . , θn). The free C-space Cfree

Figure 10.1: (Left) A robot arm executing a motion plan. (Right) A car-like
mobile robot parallel parking.
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consists of the configurations where the robot does not penetrate any obstacle
nor violate a joint limit.

In this chapter, unless otherwise stated, we assume that q is an n-vector and
that C ⊂ Rn. With some generalization, however, the concepts of this chapter
apply to non-Euclidean C-spaces like C = SE(3) (n = 6).

The control inputs available to drive the robot are written as an m-vector
u ∈ U ⊂ Rm, where m = n for a typical robot arm. If the robot has second-
order dynamics, like a robot arm, and the control inputs are forces (equivalently,
accelerations), the state of the robot is its configuration and velocity, x = (q, v) ∈
X . For q ∈ Rn, typically we write v = q̇. If we can treat the control inputs as
velocities, the state x is simply the configuration q. The notation q(x) indicates
the configuration q corresponding to the state x, and Xfree = {x | q(x) ∈ Cfree}.

The equations of motion of the robot are written

ẋ = f(x, u), (10.1)

or, in integral form,

x(T ) = x(0) +

∫ T

0

f(x(t), u(t))dt. (10.2)

10.1.1 Types of Motion Planning Problems

Given the definitions above, a fairly broad specification of the motion planning
problem is the following:

Given an initial state x(0) = xstart and a desired final state xgoal, find a
time T and a set of controls u : [0, T ]→ U such that the motion (10.2) satisfies
x(T ) = xgoal and q(x(t)) ∈ Cfree for all t ∈ [0, T ].

The goal state xgoal can be replaced by a set of acceptable states, Xgoal.
It is assumed that a feedback controller (Chapter 11) is available to ensure

that the planned motion x(t), t ∈ [0, T ], is followed closely. It is also assumed
that an accurate geometric model of the robot and environment is available to
evaluate Cfree during motion planning.

There are many variations of the basic problem; some are discussed below.

Path planning vs. motion planning. The path planning problem is a sub-
problem of the general motion planning problem. Path planning is the
purely geometric problem of finding a collision-free path q(s), s ∈ [0, 1],
from a start configuration q(0) = qstart to a goal configuration q(1) = qgoal,
without concern for dynamics, the duration of motion, or constraints on
the motion or control inputs. It is assumed that the path returned by the
path planner can be time scaled to create a feasible trajectory (Chapter 9).
This problem is sometimes called the piano mover’s problem, emphasizing
the focus on the geometry of cluttered spaces.
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Control inputs: m = n vs. m < n. If there are fewer control inputs m than
degrees of freedom n, the robot is incapable of following many paths, even
if they are collision-free. For example, a car has n = 3 (position and
orientation of the chassis in the plane) but m = 2 (forward/backward
motion and steering)—it cannot slide directly sideways into a parking
space.

Online vs. offline. A motion planning problem requiring an immediate result,
perhaps because obstacles appear, disappear, or move unpredictably, calls
for a fast, online planner. If the environment is static, an offline planner
may suffice.

Optimal vs. satisficing. In addition to reaching the goal state, we might want
the motion plan to minimize (or approximately minimize) a cost J , e.g.,

J =

∫ T

0

L(x(t), u(t))dt.

For example, minimizing with L = 1 yields a time-optimal motion while
minimizing with L = uT (r)u(r) yields a “minimum-effort” motion.

Exact vs. approximate. We may be satisfied with a final state x(T ) that is
sufficiently close to xgoal, e.g., ‖x(T )− xgoal‖ < ε.

With or without obstacles. The motion planning problem can be challeng-
ing even in the absence of obstacles, particularly if m < n or optimality is
desired.

10.1.2 Properties of Motion Planners

Planners must conform to the properties of the motion planning problem as
outlined above. In addition, planners can be distinguished by the following
properties:

Multiple-query vs. single-query planning. If the environment is unchang-
ing and the robot will be asked to solve a number of motion planning
problems in the environment, it may be worth spending the time to build
a data structure that accurately represents Cfree. This data structure can
then be searched to efficiently solve multiple planning queries. Single-
query planners solve each new problem from scratch.

“Anytime” planning. An anytime planner is one that continues to look for
better solutions after a first solution is found. The planner can be stopped
at any time, for example when a specified time limit has passed, and the
best solution is returned.

Completeness. A motion planner is said to be complete if it is guaranteed to
find a solution in finite time if one exists and to report failure if not. A
weaker notion is resolution completeness. A planner is resolution complete
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if it is guaranteed to find a solution if one exists at the resolution of a
discretized representation of the problem, such as the resolution of a grid
representation of Cfree. Finally, a planner is probabilistically complete if
the probability of finding a solution, if one exists, tends to 1 as planning
time goes to infinity.

Computational complexity. The computational complexity of a planner refers
to characterizations of the amount of time the planner takes to run or the
amount of memory it requires. These are measured in terms of the de-
scription of the planning problem, such as the dimension of the C-space
or the number of vertices in the representation of the robot and obsta-
cles. For example, the time for a planner to run may be exponential in
n, the dimension of the C-space. The computational complexity may be
expressed in terms of the average case or the worst case. Some planning
algorithms lend themselves easily to computational complexity analysis,
while others do not.

10.1.3 Motion Planning Methods

There is no single planner applicable to all motion planning problems. Below
is a broad overview of some of the many motion planners available. Details are
left to the sections indicated.

Complete methods (Section 10.3). These methods focus on exact repre-
sentations of the geometry or topology of Cfree, ensuring completeness.
For all but simple or low-degree-of-freedom problems, these representa-
tions are mathematically or computationally prohibitive to derive.

Grid methods (Section 10.4). These methods discretize Cfree into a grid and
search the grid for a motion from qstart to a grid point in the goal region.
Modifications of the approach may discretize the state space or control
space, or use multi-scale grids to refine the representation of Cfree near
obstacles. These methods are relatively easy to implement and can return
optimal solutions, but for a fixed resolution, the memory required to store
the grid, and the time to search it, grows exponentially with the number
of dimensions of the space. This limits the approach to low-dimensional
problems.

Sampling methods (Section 10.5). A generic sampling method relies on a
random or deterministic function to choose a sample from the C-space
or state space; a function to evaluate whether the sample is in Xfree; a
function to determine the “closest” previous free-space sample; and a lo-
cal planner to try to connect to, or move toward, the new sample. This
process builds up a graph or tree representing feasible motions of the
robot. Sampling methods are easy to implement, tend to be probabilisti-
cally complete, and can even solve high-degree-of-freedom motion planning
problems. The solutions tend to be satisficing, not optimal, and it can be
difficult to characterize the computational complexity.
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Virtual potential fields (Section 10.6). Virtual potential fields create forces
on the robot that pull it toward the goal and push it away from obstacles.
The approach is relatively easy to implement, even for high-degree-of-
freedom systems, and fast to evaluate, often allowing online implementa-
tion. The drawback is local minima in the potential function: the robot
may get stuck in configurations where the attractive and repulsive forces
cancel, but the robot is not at the goal state.

Nonlinear optimization (Section 10.7). The motion planning problem can
be converted to a nonlinear optimization problem by representing the path
or controls by a finite number of design parameters, such as the coefficients
of a polynomial or a Fourier series. The problem is to solve for the design
parameters that minimize a cost function while satisfying constraints on
the controls, obstacles, and goal. While these methods can produce near-
optimal solutions, they require an initial guess at the solution. Because
the objective function or feasible solution space are generally not convex,
the optimization process can get stuck far away from a solution, let alone
an optimal solution.

Smoothing (Section 10.8). Often the motions found by a planner are jerky.
A smoothing algorithm can be run on the result of the motion planner to
improve the smoothness.

The major trend in recent years has been toward sampling methods, which
are easy to implement and can handle high-dimensional problems.

10.2 Foundations

Before discussing motion planning algorithms, we establish concepts used in
most of them: configuration space obstacles, collision detection, and graphs.

10.2.1 Configuration Space Obstacles

Determining whether a robot at a configuration q is in collision with a known
environment generally requires a complex operation involving a CAD model of
the environment and robot. There are a number of free and commercial software
packages that can perform this operation, and we will not delve into them here.
For our purposes, it is enough to know that the workspace obstacles partition
the configuration space C into two sets, the free space Cfree and the obstacle
space Cobs, where C = Cfree

⋃
Cobs. Joint limits are treated as obstacles in the

configuration space.
With the concepts of Cfree and Cobs, the path planning problem becomes

the problem of finding a path for a point robot among the obstacles Cobs. If
the obstacles break Cfree into disconnected connected components, and qstart and
qgoal do not lie in the same connected component, then there is no collision-free
path.
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Figure 10.2: (Left) The joint angles of a 2R robot arm. (Middle) The arm
navigating among obstacles. (Right) The same motion in C-space.

For technical reasons, a configuration that has the robot just barely touching
an obstacle, without penetrating, is typically considered part of the C-space
obstacle (or C-obstacle for short). In other words, C-obstacles are closed (they
contain their boundaries), while Cfree is open: from any point in Cfree, it is
possible to move in any direction, perhaps only infinitesimally, while remaining
in Cfree.

The explicit mathematical representation of a C-obstacle can be exceedingly
complex, and for that reason C-obstacles are rarely represented exactly. Despite
this, the concept of C-obstacles is very important for understanding motion
planning algorithms. The ideas are best illustrated by examples.

10.2.1.1 A 2R Planar Arm

Figure 10.2 shows a 2R planar robot arm, with configuration q = (θ1, θ2), among
obstacles A, B, and C in the workspace. The C-space of the robot is represented
by a portion of the plane with 0 ≤ θ1 < 2π, 0 ≤ θ2 < 2π. In fact, however, the
topology of the C-space is a torus (or doughnut), since the edge of the square
at θ1 = 2π is connected to the edge θ1 = 0; similarly, θ2 = 2π is connected
to θ2 = 0. The square region of R2 is obtained by slicing the surface of the
doughnut twice, at θ1 = 0 and θ2 = 0, and laying it flat on the plane.

The C-space in Figure 10.2 shows the workspace obstacles A, B, and C
represented as C-obstacles. Any configuration inside a C-obstacle corresponds
to penetration of the obstacle by the robot arm in the workspace. A free path for
the robot arm from one configuration to another is shown in both the workspace
and C-space. The path and obstacles illustrate the topology of the C-space.
Note that the obstacles break Cfree into three connected components.

Although the C-space is drawn as a subset of R2, it is correctly described as
S1 × S1, where Sk is the k-dimensional “sphere” embedded in Rk+1. Thus S1

is a circle on a plane, representing a single angle, and S2 is a sphere in 3-space
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Figure 10.3: (a) A circular mobile robot (white) and a workspace obstacle (grey).
The configuration of the robot is represented by (x, y), the center of the robot.
(b) In the C-space, the obstacle is “grown” by the radius of the robot and the
robot is treated as a point. Any (x, y) configuration outside the dark boundary
is collision-free.

(e.g., the surface of the Earth). A robot with n revolute joints with no joint
limits has a C-space S1 × . . .× S1 (n times), which is written more compactly
as Tn, the n-dimensional torus in Rn+1. Note that S1 × S1 = T 2 6= S2; the
topology of a 2-torus and a 2-sphere are different.

10.2.1.2 A Circular Planar Mobile Robot

Figure 10.3 shows a top view of a circular mobile robot whose configuration is
given by the (x, y) ∈ R2 location of its center. The robot translates in a plane
with a single obstacle. The corresponding C-obstacle is obtained by “growing”
the workspace obstacle by the radius of the mobile robot. Any point outside
this C-obstacle represents a free configuration of the robot. Figure 10.4 shows
the workspace and C-space for two obstacles, indicating that the mobile robot
cannot pass between the two obstacles.

10.2.1.3 A Polygonal Planar Mobile Robot

Figure 10.5 shows the C-obstacle for a polygonal mobile robot translating in
the presence of a polygonal obstacle. The C-obstacle is obtained by sliding the
robot along the boundary of the of the obstacle and tracing the position of the
robot’s reference point.

10.2.1.4 A Polygonal Planar Mobile Robot That Rotates

Figure 10.6 illustrates the C-obstacle for the workspace obstacle and triangular
mobile robot of Figure 10.5 if the robot is now allowed to rotate. The C-space
is now three-dimensional, given by (x, y, θ) ∈ R2 × S1. The three-dimensional
C-obstacle is the union of two-dimensional C-obstacle slices at angles θ ∈ [0, 2π).
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Figure 10.4: The grown C-space obstacles corresponding to two workspace ob-
stacles and a circular mobile robot. The overlapping boundaries mean that the
robot cannot move between the two obstacles.

(x,y)
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x^

y^

x^

(a)             (b)

(x,y)

Figure 10.5: (a) The configuration of a triangular mobile robot, which can
translate but not rotate, is represented by the (x, y) location of a reference
point. Also shown is a workspace obstacle in grey. (b) The corresponding
C-space obstacle is obtained by sliding the robot around the boundary of the
obstacle and tracing the position of the reference point.

Even for this relatively low-dimensional C-space, an exact representation of the
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Figure 10.6: (Top) A triangular mobile robot that can rotate and translate,
represented by the configuration (x, y, θ). (Left) The C-space obstacle from
Figure 10.5(b) when the robot is restricted to θ = 0. (Right) The full 3-D
C-space obstacle shown in slices at 10◦ increments.

C-obstacle is quite complex. For this reason, C-obstacles are rarely described
exactly.

10.2.2 Distance to Obstacles and Collision Detection

Given a C-obstacle B and a configuration q, let d(q,B) be the distance between
the robot and the obstacle, where

d(q,B) > 0 no contact with the obstacle

d(q,B) = 0 contact

d(q,B) < 0 penetration.

The distance could be defined as the Euclidean distance between the two closest
points of the robot and the obstacle.

A distance-measurement algorithm is one that determines d(q,B) for a given
B. A collision-detection routine determines whether d(q,Bi) ≤ 0 for any C-
obstacle Bi. A collision-detection routine returns a binary result, and may or
may not utilize a distance-measurement algorithm at its core.

One popular distance-measurement algorithm is called the GJK (Gilbert-
Johnson-Keerthi) algorithm, which efficiently computes the distance between
two convex bodies, possibly represented by triangular meshes. Any robot or
obstacle can be treated as the union of multiple convex bodies. Extensions of
this algorithm are used in many distance-measurement algorithms and collision-
detection routines for robotics, graphics, and game physics engines.
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Figure 10.7: A lamp represented by spheres. The approximation improves as
the number of spheres used to represent the lamp increases.

An even simpler approach is to approximate the robot and obstacles as
unions of overlapping spheres. Approximations must always be conservative—
the approximation must cover all points of the object—so that if a collision-
detection routine indicates a free configuration q, we are guaranteed that the
actual geometry is collision-free. As the number of spheres in the representation
of the robot and obstacles increases, the closer the approximations come to the
actual geometry. An example is shown in Figure 10.7.

Given a robot at q represented by k spheres of radius Ri centered at ri(q),
i = 1 . . . k, and an obstacle B represented by ` spheres of radius Bj centered at
bj , j = 1 . . . `, the distance between the robot and the obstacle can be calculated
as

d(q,B) = min
i,j
‖ri(q)− bj‖ −Ri −Bj .

Apart from determining whether a particular configuration of the robot is
in collision, another useful operation is determining whether the robot collides
during a particular motion segment. While exact solutions have been developed
for particular object geometries and motion types, the general approach is to
sample the path at finely spaced points and to “grow” the robot to ensure that
if two consecutive configurations are collision-free for the grown robot, then
the swept volume of the actual robot between the two configurations is also
collision-free.

10.2.3 Graphs and Trees

Many motion planners explicitly or implicitly represent the C-space or state
space as a graph. A graph consists of a collection of nodes N and a collection
of edges E , where each edge e connects two nodes. In motion planning, a node
typically represents a configuration or state, while an edge between nodes n1 and
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Figure 10.8: (a) A weighted digraph. (b) A weighted undirected graph. (c) A
tree. Leaves are shaded grey.

n2 indicates the ability to move from n1 to n2 without penetrating an obstacle
or violating other constraints.

A graph can be either directed or undirected. In an undirected graph, each
edge is bidirectional: if the robot can travel from n1 to n2, then it can also
travel from n2 to n1. In a directed graph, or digraph for short, each edge allows
travel in only one direction.

Graphs can also be weighted or unweighted. In a weighted graph, each edge
has its own positive cost associated with traversing it. In an unweighted graph,
each edge has the same cost (e.g., 1). Thus the most general type of graph we
consider is a weighted digraph.

A tree is a digraph in which (1) there are no cycles and (2) each node has at
most one parent node (i.e., at most one edge leading to the node). A tree has
one root node with no parents and a number of leaf nodes with no children.

A digraph, undirected graph, and tree are illustrated in Figure 10.8.
Given N nodes, any graph can be represented by a matrix A ∈ RN×N , where

element aij of the matrix represents the cost of the edge from node i to node j
(a zero indicates no edge between the nodes). A tree can be represented more
compactly as a list of nodes, each with a link (and perhaps a cost) to at most
one parent and a list of links (and costs) to its children.

10.3 Complete Path Planners

Complete path planners rely on an exact representation of Cfree. These tech-
niques tend to be mathematically and algorithmically sophisticated, and im-
practical for many real systems, so we do not delve into them in any detail.

One approach to complete path planning, which we will see in modified form
in Section 10.5, is based on representing the complex, high-dimensional space
Cfree by a one-dimensional roadmap R with the following properties:

(i) Reachability. From every point q ∈ Cfree, a free path to a point q′ ∈ R can
be found trivially (e.g., a straight-line path).

(ii) Connectivity. For each connected component of Cfree, there is one con-
nected component of R.
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(a)   (b)       (c)

(d)   (e)       (f)

start goal

Figure 10.9: (a) The start and goal configurations for a square mobile robot
(reference point shown) in an environment with a triangular and a rectangular
obstacle. (b) The grown C-obstacles. (c) The visibility graph roadmap R of
Cfree. (d) The full graph consists of R plus nodes at qstart and qgoal, along with
the links connecting these nodes to visible nodes of R. (e) Searching the graph
results in the shortest path in bold. (f) The robot traversing the path.

With such a roadmap, the planner can find a path between any two points in
the same connected component of Cfree by simply finding paths from qstart to
a point q′start ∈ R, from a point q′goal ∈ R to qgoal, and from q′start to q′goal on
the roadmap R. If a path can be found trivially between qstart and qgoal, the
roadmap may not even be used.

While constructing a roadmap of Cfree is complex in general, some problems
admit simple roadmaps. For example, consider a polygon translating among
polygonal obstacles in the plane. As we have seen in Figure 10.5, the C-obstacles
in this case are also polygons. A suitable roadmap is the weighted undirected
visibility graph, with nodes at the vertices of the C-obstacles and edges between
nodes that can “see” each other (i.e., the line segment between the vertices
does not intersect an obstacle). The weight associated with each edge is the
Euclidean distance between the nodes.

Not only is this a suitable roadmap R, but it allows us to find a shortest
path between any two configurations in the same connected component of Cfree,
as the shortest path is guaranteed to either be a straight line from qstart to qgoal,
or consist of a straight line from qstart to a node q′start ∈ R, a straight line from
a node q′goal ∈ R to qgoal, and a path along the straight edges of R from q′start to
q′goal (Figure 10.9). Note that the shortest path requires the robot to graze the
obstacles, so we implicitly treat Cfree as closed (i.e., including its boundary).
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10.3.1 A∗ Search

As with many path planners, central to the visibility graph planner is a graph
search. A popular search algorithm is A∗ (pronounced “A star”), which ef-
ficiently finds a minimum-cost path on a graph when the cost of the path is
simply the sum of positive edge costs.

Given a graph described by a set of nodes N = {1, . . . , N}, where node
1 is the start node, and a set of edges E , A∗ makes use of the following data
structures:

• a sorted list OPEN of the nodes to be explored from, and a list CLOSED of
nodes that have already been explored from;

• an array past_cost[node] of the minimum cost found so far to reach
node node from the start node; and

• a search tree defined by an array parent[node], which contains a link for
each node to the node preceding it in the shortest path found so far to
node.

To initialize the search, the list OPEN is initialized to the start node 1, the cost to
reach the start node (past_cost[1]) is initialized as 0, and past_cost[node]

for node ∈ {2, . . . , N} is initialized as infinity (or a large number), indicating
that we currently have no idea of the cost to reach those nodes.

At each step of the algorithm, the first node in OPEN is removed from OPEN

and called current. The node current is also added to CLOSED. The first node
in OPEN is one that minimizes the total estimated cost of the best path to the
goal that passes through that node, and it is calculated as

est_total_cost[node] = past_cost[node] +

heuristic_cost_to_go(node)

where heuristic_cost_to_go(node) ≥ 0 is an optimistic (underestimating)
estimate of the actual cost-to-go to the goal from node. For the visibility graph
example, an appropriate choice for the heuristic is the straight-line distance to
the goal, ignoring any obstacles.

Because OPEN is a sorted list according to the estimated total cost, inserting
a new node at the correct location in OPEN entails a small computational price.

If the node current is in the goal set, then the search is finished, and the
path is reconstructed from the parent links. If not, for each neighbor nbr of
current in the graph, which is not also in CLOSED, the tentative_past_cost

for nbr is calculated as past cost[current] + cost[current,nbr]. If
tentative_past_cost < past_cost[nbr], then nbr can be reached less ex-
pensively than previously thought, so past_cost[nbr] is set to tentative_past_cost
and parent[nbr] is set to current. The node nbr is then added (or moved) in
OPEN according to its estimated total cost.

The algorithm proceeds by returning to pop off of OPEN the node with the
lowest estimated total cost. If OPEN is empty, then there is no solution.
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The A∗ algorithm is guaranteed to return a minimum-cost path, as nodes
are only checked for inclusion in the goal set when they have the minimum
total estimated cost of all nodes. If the node current is in the goal set, then
heuristic_cost_to_go(current) is zero, and since all edge costs are positive,
we know that any path found in the future must have a cost greater than
or equal to past_cost[current]. Therefore the path to current must be a
shortest path. (There may be other paths of the same cost.)

If the heuristic cost-to-go is calculated exactly, considering obstacles, then
A∗ will expand the minimum number of nodes necessary to solve the problem.
Of course, calculating the cost-to-go exactly is equivalent to solving the path
planning problem, so this is impractical. Instead, the heuristic cost-to-go should
be calculated quickly and should be as close as possible to the actual cost-to-
go to ensure that the algorithm runs efficiently. Using an optimistic cost-to-go
ensures an optimal solution.

A∗ is an example of the general class of best-first searches, which always
explore from the node currently deemed “best” by some measure. Not all types
of best-first searches are guaranteed to return a minimum-cost path, however.

The A∗ search algorithm is described in pseudocode in Algorithm 1.

Algorithm 1 A∗ search.

1: OPEN ← {1}
2: past_cost[1] ← 0, past_cost[node] ← infinity for node ∈ {2, . . . , N}
3: while OPEN is not empty do
4: current ← first node in OPEN, remove from OPEN

5: add current to CLOSED

6: if current is in the goal set then
7: return SUCCESS and the path to current

8: end if
9: for each nbr of current not in CLOSED do

10: tentative_past_cost← past_cost[current] + cost[current,nbr]

11: if tentative past cost < past cost[nbr] then
12: past_cost[nbr] ← tentative_past_cost

13: parent[nbr] ← current

14: put (or move) nbr in sorted list OPEN according to
est_total_cost[nbr] ← past_cost[nbr] +

heuristic_cost_to_go(nbr)

15: end if
16: end for
17: end while
18: return FAILURE

10.3.2 Other Search Methods

• Suboptimal A∗ search. If the heuristic cost-to-go is overestimated by mul-
tiplying the optimistic heuristic by a constant factor η > 1, A∗ search
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will be biased to explore from nodes closer to the goal rather than nodes
with a low past cost. This may cause a solution to be found more quickly,
but unlike the case of an optimistic cost-to-go heuristic, the solution will
not be guaranteed to be optimal. One possibility is to run A∗ with an
inflated cost-to-go to find an initial solution, then re-run the search with
progressively smaller values of η until the time allotted for the search has
expired or a solution is found with η = 1.

• Dijkstra’s method. If the heuristic cost-to-go is always estimated as zero,
then A∗ always explores from the OPEN node that has been reached with
minimum past cost. This variant is called Dijkstra’s algorithm, which
preceded A∗ historically. Dijkstra’s algorithm is also guaranteed to find a
minimum-cost path, but on many problems it runs slower than A∗ due to
the lack of a heuristic look-ahead function to help guide the search.

• Breadth-first search. If each edge in E has the same cost, Dijkstra’s algo-
rithm reduces to breadth-first search. All nodes one edge away from the
start node are considered first, then all nodes two edges away, etc. This
also results in a minimum-cost path.

• Depth-first search. Depth-first search primarily applies to trees. The
search follows one path through the tree as far as it can go, until it reaches
a goal node or hits a leaf. If it hits a non-goal leaf, the search backtracks
up the tree to the most recent decision that has never been taken, then
follows a path down the tree again to a new leaf. The search terminates
when all leaves have been explored (failure) or a node in the goal set has
been reached. Depth-first search is rarely used in motion planning due to
the likelihood of finding long paths before shorter ones.

10.4 Grid Methods

A search like A∗ requires a discretization of the search space. The simplest
discretization of C-space is a grid. For example, if the configuration space is
n-dimensional and we desire k grid points along each dimension, the C-space is
represented by kn grid points.

The A∗ algorithm can be used as a path planner for a C-space grid, with
the following minor modifications:

• The definition of a “neighbor” of a grid point must be chosen: is the robot
constrained to move in axis-aligned directions in configuration space, or
can it move in multiple dimensions simultaneously? For example, for a
two-dimensional C-space, neighbors could be 4-connected (on the cardi-
nal points of a compass: north, south, east, and west) or 8-connected
(diagonals allowed), as shown in Figure 10.10(a). If diagonal motions are
allowed, the cost to diagonal neighbors should be penalized appropriately.
For example, the cost to a N/S/E/W neighbor could be 1, while the cost
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Figure 10.10: (a) A 4-connected grid point and an 8-connected grid point for a
space n = 2. (b) Grid points spaced at unit intervals. The Euclidean distance
between the two points indicated is

√
5 while the Manhattan distance is 3. (c) A

grid representation of the C-space and a minimum-length Manhattan-distance
path for the problem of Figure 10.2.

to a diagonal neighbor could be
√

2. If integers are desired, for efficiency
of the implementation, the approximate costs 10 and 14 could be used.

• If only axis-aligned motions are used, the heuristic cost-to-go should be
based on the Manhattan distance, not the Euclidean distance. The Man-
hattan distance counts the number of “city blocks” that must be trav-
eled, considering that diagonals through a block are not possible (Fig-
ure 10.10(b)).

• A node nbr is only added to OPEN if the step from current to nbr is
collision-free. (The step may be considered collision-free if a grown version
of the robot at nbr does not intersect any obstacles.)

• Other optimizations can be achieved due to the known regular structure
of the grid.

An A∗ grid-based path planner is resolution-complete: it will find a solution
if one exists at the level of discretization of the C-space. The path will be a
shortest path subject to the allowed motions.

Figure 10.10(c) illustrates grid-based path planning for the 2R robot example
of Figure 10.2. The C-space is represented as a grid with k = 32, i.e., a resolution
of 360◦/32 = 11.25◦ for each joint. This yields a total of 322 = 1024 grid points.

The grid-based planner, as described, is a single-query planner: it solves
each path planning query from scratch. On the other hand, if the same qgoal

will be used in the same environment for multiple path planning queries, it may
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Figure 10.11: A wavefront planner on a 2D grid. The goal configuration is
given a score of 0. Then all collision-free 4-neighbors are given a score of 1. The
process continues, breadth-first, with each free neighbor (that does not have a
score already) assigned the score of its parent plus 1. Once every grid cell in
the connected component of the goal configuration is assigned a score, planning
from any location in the connected component is trivial: at every step, the
robot simply moves “downhill” to a neighbor with a lower score. Grid points in
collision receive a high score.

be worth preprocessing the entire grid to enable fast path planning. This is the
wavefront planner, illustrated in Figure 10.11.

Although grid-based path planning is easy to implement, it is only appro-
priate for low-dimensional C-spaces. This is because the number of grid points,
and hence the computational complexity of the path planner, increases expo-
nentially with the number of dimensions n. For instance, a resolution k = 100 in
a C-space with n = 3 dimensions leads to 1 million grid nodes, while n = 5 leads
to 10 billion grid nodes and n = 7 leads to 100 trillion nodes. An alternative
is to reduce the resolution k along each dimension, but this leads to a coarse
representation of C-space that may to miss free paths.

10.4.1 Multi-Resolution Grid Representation

One way to reduce the computational complexity of a grid-based planner is to
use a multi-resolution grid representation of Cfree. Conceptually, a grid point
is considered an obstacle if any part of the rectangular cell centered on the
grid point touches a C-obstacle. To refine the representation of the obstacle, an
obstacle cell can be subdivided into smaller cells. Each dimension of the original
cell is split in half, resulting in 2n sub-cells for an n-dimensional space. Any of
the cells that are still in contact with a C-obstacle are then subdivided further,
up to a specified maximum resolution.

The advantage of this representation is that only portions of C-space near
obstacles are refined to high resolution, while portions away from obstacles
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original cell        subdivision 1       subdivision 2       subdivision 3

Figure 10.12: At the original C-space cell resolution, a small obstacle (indicated
by a dark square) causes the whole cell to be labeled an obstacle. Subdividing
the cell once shows that at least 3/4 of the cell is actually free. Three levels of
subdivision results in a representation using ten total cells: four at subdivision
level 3, three at subdivision level 2, and three at subdivision level 1. The cells
shaded grey are the obstacle cells in the final representation. The subdivision
of the original cell is also shown as a tree, where the leaves of the tree are the
final cells in the representation.

are represented by a coarse resolution. This allows the planner to find paths
using short steps through cluttered spaces while taking large steps through wide
open space. The idea is illustrated in Figure 10.12, which uses only 10 cells to
represent an obstacle at the same resolution as a fixed grid that uses 64 cells.

For n = 2, this multiresolution representation is called a quadtree, as each
obstacle cell subdivides into 2n = 4 cells. For n = 3, each obstacle cell subdivides
into 2n = 8 cells, and the representation is called an octree.

The multi-resolution representation of Cfree can be built in advance of the
search or incrementally as the search is being performed. In the latter case, if
the step from current to nbr is found to be in collision, the step size can be
halved until the step is free or the minimum step size is reached.

10.4.2 Grid Methods with Motion Constraints

The previous grid-based planners operate under the assumption that the robot
can go from a cell to any neighbor cell in a regular C-space grid. This may
not be possible for some robots. For example, a car cannot reach, in one step,
a “neighbor” cell that is to the side of it. Also, motions for a fast-moving
robot arm should be planned in the state space, not just C-space, to take the
arm dynamics into account. In the state space, the robot arm cannot move in
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q

.q

Figure 10.13: Sample trajectories emanating from three initial states in the
phase space of a dynamic system with q ∈ R. If the initial state has q̇ > 0,
the trajectory cannot move to the left (negative motion in q) instantaneously.
Similarly, if the initial state has q̇ < 0, the trajectory cannot move to the right
instantaneously.

v v

unicycle                 diff-drive robot                     car                     Reeds-Shepp car            Dubins car
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Figure 10.14: Discretizations of the control sets for unicycle, diff-drive, and
car-like robots.

certain directions (Figure 10.13).
Grid-based planners must be adapted to account for the motion constraints

of the particular robot. In particular, the constraints may result in a directed
grid graph, unlike the undirected graphs discussed so far. One approach is to
discretize the robot controls while still making use of a grid on the C-space or
state space, as appropriate. Details for a wheeled mobile robot and a dynamic
robot arm are described next.

10.4.2.1 Grid-Based Path Planning for a Wheeled Mobile Robot

In Chapter ??, we saw that the controls for simplified models of unicycle, diff-
drive, and car-like robots are (v, ω), the forward-backward linear velocity and
the angular velocity. The control sets for these mobile robots are shown in
Figure 10.14. Also shown are proposed discretizations of the controls, as dots.
Other discretizations could be chosen.

Using the control discretization, the A∗ search can be modified slightly to a
Dijkstra algorithm (Algorithm 2).
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Algorithm 2 Grid-based Dijkstra planner for a wheeled mobile robot.

1: OPEN ← {qstart}
2: past_cost[qstart] ← 0
3: counter ← 1
4: while OPEN is not empty and counter < MAXCOUNT do
5: current ← first node in OPEN, remove from OPEN

6: if current is in the goal set then
7: return SUCCESS and the path to current

8: end if
9: if current is not in a previously occupied C-space grid cell then

10: mark grid cell occupied
11: counter ← counter + 1

12: for each control in the discrete control set do
13: integrate control forward a short time ∆t from current to qnew

14: if the path to qnew is collision-free then
15: compute cost of the path to qnew

16: place qnew in OPEN, sorted by cost

17: parent[qnew] ← current

18: end if
19: end for
20: end if
21: end while
22: return FAILURE

The search expands from qstart by integrating forward each of the controls for
a time ∆t, creating new nodes for the paths that are collision-free. Each node
keeps track of the control used to reach the node as well as the cost of the path
to the node. The cost of the path to a new node is the sum of the cost of the
previous node current plus the cost of the action, which is typically a constant
(due to the constant integration time ∆t) plus perhaps a penalty if the action
changed from the one used to reach current. The constant term expresses the
preference for paths of short duration, while the penalty expresses a preference
for smooth paths minimizing control changes, particularly direction reversals.

Integration of the controls does not move the mobile robot to exact grid
points. Instead, the C-space grid comes into play in lines 9 and 10. When a
node is expanded, the grid cell it sits in is marked “occupied.” In future, any
node in this occupied cell will be pruned from the search. This prevents the
search from expanding nodes that are close by nodes reached with a lower cost.

If there is a cost for changing the control from one step to the next, then
we have to be careful about when we prune a node in an “occupied” cell, since
the path cost is no longer simply the sum of edge costs. One solution is to
maintain several copies of the C-space grid, one for each control in the discrete
set. Then a node current is only pruned from the search if its grid cell had
been previously occupied (explored from) by a node previous and if previous
had been reached by the same control step that current used.
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start goal

Figure 10.15: (Left) A minimum-cost path for a car-like robot where each action
has identical cost, favoring a short path. (Right) A minimum-cost path where
reversals are heavily penalized.

No more than MAXCOUNT nodes, where MAXCOUNT is a value chosen by the
user, are considered during the search.

The time ∆t should be chosen small enough that each motion step is “small.”
The size of the grid cells should be chosen as large as possible while ensuring
that integration of any control for time ∆t will move the mobile robot outside
of its current grid cell.

The planner terminates when current lies inside the goal region, when there
are no more nodes left to expand (perhaps due to obstacles), or when MAXCOUNT

nodes have been considered. Any path found is optimal for the choice of cost
function and other parameters to the problem. The planner actually runs faster
in somewhat cluttered spaces, as the obstacles help guide the exploration.

Some examples of motion plans for a car are shown in Figure 10.15.

10.4.2.2 Grid-Based Motion Planning for a Robot Arm

One method for planning the motion for a robot arm is to decouple the problem
into a path planning problem followed by a time-scaling of the path:

(i) Apply a grid-based or other path planner to find an obstacle-free path in
C-space.

(ii) Time scale the path to find the fastest trajectory along the path that
respects the robot’s dynamics, as described in Chapter 9.4. Or use any
less aggressive time scaling.

Since the motion planning problem is broken into two steps (path planning plus
time scaling), the resultant motion will not be time-optimal in general.

Another approach is to plan directly in the state space. Given a state (q, q̇)
of the robot arm, let A(q, q̇) represent the set of feasible accelerations based on
the limited joint torques. To discretize the controls, the set A(q, q̇) is intersected
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a1

a2

q2
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q1
..

A(q,q )
.

Figure 10.16: The instantaneously available acceleration set A(q, q̇) for a two-
joint robot, intersected with a grid spaced at a1 in q̈1 and a2 in q̈2, gives the
discretized control actions shown in bold.

with a grid of points of the form

n∑
i=1

ciaiei,

where ci is an integer, ai > 0 is the acceleration step size in the q̈i direction,
and ei is a unit vector in the ith direction (Figure 10.16).

As the robot moves, the acceleration setA(q, q̇) changes, but the grid remains
fixed. Because of this, and assuming a fixed integration time ∆t at each “step”
in a motion plan, the reachable states of the robot (after any integral number of
steps) are confined to a grid in state space. To see this, consider a single joint
angle of the robot, q1, and assume for simplicity zero initial velocity q̇1(0) = 0.
The velocity at timestep k takes the form

q̇1(k) = q̇1(k − 1) + c1(k)a1∆t,

where c1(k) is chosen from a finite set of integers. By induction, the velocity at
any timestep must be of the form a1kv∆t, where kv is an integer. The position
at timestep k takes the form

q1(k) = q1(k − 1) + q̇1(k − 1)∆t+
1

2
c1(k)a1(∆t)2.

Plugging in the form of the velocity, we find that the position at any timestep
must be of the form a1kp(∆t)

2/2 + q1(0), where kp is an integer (Exercise ??).
To find a trajectory from a start node to a goal set, a breadth-first search

can be employed to create a search tree on the state space nodes. When a node
(q, q̇) in the state space is explored from, the set A(q, q̇) is evaluated to find the
discrete set of control actions. New nodes are created by integrating the control
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actions for time ∆t. A node is discarded if the path to it is in collision or if it
has been reached previously (i.e., by a trajectory taking the same or less time).

Because the joint angles and angular velocities are bounded, the state space
grid is finite, and therefore it can be searched in finite time. The planner
is resolution complete and returns a time-optimal trajectory, subject to the
resolution constraints in the control grid and timestep ∆t.

The control grid stepsizes ai must be chosen small enough that A(q, q̇), for
any feasible state (q, q̇), contains a representative set of points of the control
grid. Choosing a finer grid for the controls, or a smaller timestep ∆t, creates a
finer grid in the state space and a higher likelihood of finding a solution amidst
obstacles. It also allows choosing a smaller goal set while keeping points of the
state space grid inside the set.

Finer discretization comes at a computational cost, however. If the resolu-
tion of the control discretization is increased by a factor of r in each dimension
(i.e., each ai is reduced to ai/r), and the timestep size is divided by a factor of
τ , the computation time spent growing the search tree for a given robot motion
duration increases by a factor of rnτ , where n is the number of joints. For ex-
ample, increasing the control grid resolution by a factor of r = 2 and decreasing
the timestep by a factor of τ = 4 for a three-joint robot results in a search that
is likely to take 23∗4 = 4096 times longer to complete. The high computational
complexity of the planner makes it impractical beyond a few degrees of freedom.

The description above ignores one important issue: the feasible control set
A(q, q̇) changes during a timestep, so the control chosen at the beginning of
the timestep may no longer be feasible by the end of the timestep. For that
reason, a conservative approximation Ã(q, q̇) ⊂ A(q, q̇) should be used instead.
This set should remain feasible over the duration of a timestep regardless of
which control action is chosen. How to determine a conservative approximation
Ã(q, q̇) is beyond the scope of this chapter, but it has to do with bounds on how
rapidly the arm’s inertia matrix M(q) changes with q and how fast the robot is
moving. At low speeds q̇ and short durations ∆t, the conservative set Ã(q, q̇) is
very close to A(q, q̇).

10.5 Sampling Methods

Each of the grid-based methods discussed above delivers optimal solutions sub-
ject to the chosen discretization. A drawback of the approaches is their high
computational complexity, making them unsuitable for systems of more than a
few degrees of freedom.

A different class of planners, known as sampling methods, relies on a random
or deterministic function to choose a sample from the C-space or state space;
a function to evaluate whether a sample or motion is in Xfree; a function to
determine nearby previous free-space samples; and a simple local planner to try
to connect to, or move toward, the new sample. This process builds up a graph
or tree representing feasible motions of the robot.

Sampling methods generally give up on the resolution-optimal solutions of
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a grid search in exchange for the ability to find satisficing solutions quickly in
high-dimensional state spaces. The samples are chosen to form a roadmap or
search tree that quickly approximates the free space Xfree using fewer samples
than would typically be required by a fixed high-resolution grid, where the
number of grid points increases exponentially with the dimension of the search
space. Most sampling methods are probabilistically complete: the probability of
finding a solution, when one exists, approaches 100% as the number of samples
goes to infinity.

Two major classes of sampling methods are rapidly-exploring random trees
(RRTs) and probabilistic roadmaps (PRMs). RRTs use a tree representation for
single-query planning in either C-space or state space, while PRMs are primarily
C-space planners that create a roadmap graph for multiple-query planning.

10.5.1 The RRT

The RRT algorithm searches for a collision-free motion from an initial state
xstart to a goal set Xgoal. It applies to kinematic problems, where the state
x is simply the configuration q, as well as dynamic problems, where the state
includes the velocity. The basic RRT grows a single tree from xstart as outlined
in Algorithm 3.

Algorithm 3 RRT algorithm.

1: initialize search tree T with xstart

2: while T is less than the maximum tree size do
3: xsamp ← sample from X
4: xnearest ← nearest node in T to xsamp

5: employ a local planner to find a motion from xnearest to xnew in
the direction of xsamp

6: if the motion is collision-free then
7: add xnew to T with an edge from xnearest to xnew

8: if xnew is in Xgoal then
9: return SUCCESS and the motion to xnew

10: end if
11: end if
12: end while
13: return FAILURE

In a typical implementation for a kinematic problem (where x is simply q),
the sampler in line 3 chooses xsamp randomly from an almost-uniform distribu-
tion over X , with a slight bias toward states in Xgoal. The closest node xnearest in
T (line 4) is the one minimizing the Euclidean distance to xsamp. The state xnew

(line 5) is chosen as the state a small distance d from xnearest on the straight line
to xsamp. Because d is small, a very simple local planner, e.g., one that returns
a straight line motion, will often find a motion connecting xnearest to xnew. If
the motion is collision-free, the new state xnew is added to T .
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Figure 10.17: (Left) A tree generated by applying a uniformly-distributed ran-
dom motion from a randomly chosen tree node results in a tree that does not
explore very far. (Right) A tree generated by the RRT algorithm using samples
drawn randomly from a uniform distribution. Both trees have 2000 nodes.

The net effect is that the nearly uniformly distributed samples “pull” the
tree toward them, causing the tree to rapidly explore Xfree. An example of the
effect of this pulling action on exploration is shown in Figure 10.17.

The basic algorithm leaves many choices: how to sample from X (line 3),
how to define the “nearest” node in T (line 4), and how to plan the motion
to make progress toward xsamp (line 5). Even a small change to the sampling
method, for example, can yield a dramatic change in the running time of the
planner. A wide variety of planners have been proposed in the literature based
on these choices and other variations. Some of these variations are described
below.

10.5.1.1 Line 3: The Sampler

The most obvious sampler is one that samples randomly from a uniform distri-
bution over X . This is straightforward for Euclidean C-spaces Rn; for n-joint
robot C-spaces Tn = S1 × ... × S1 (n times), where we can choose a uniform
distribution over each joint angle; and for the C-space R2 × S1 for a mobile
robot in the plane, where we can choose a uniform distribution over R2 and
S1 individually. The notion of a uniform distribution on some other curved
C-spaces, notably SO(3), are less straightforward.

For dynamic systems, a uniform distribution over the state space can be de-
fined as the cross-product of a uniform distribution over C-space and a uniform
distribution over a bounded velocity set.

Although the name “rapidly-exploring random trees” gets its name from
the idea of a random sampling strategy, the samples need not be generated
randomly. For example, a deterministic sampling scheme that generates a pro-
gressively finer (multi-resolution) grid on X could be employed instead. To
reflect this more general view, the approach has been called rapidly-exploring
dense trees (RDTs), emphasizing the key point that the samples should even-
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Figure 10.18: Which of the three dashed configurations of the car is “closest”
to reaching the configuration in grey?

tually become dense in the state space (i.e., as the number of samples goes to
infinity, the samples become arbitrarily close to every point in X ).

10.5.1.2 Line 4: Defining the Nearest Node

Finding the “nearest” node depends on a definition of distance on X . For an
unconstrained kinematic robot on C = Rn, a natural choice for the distance
between two points is simply the Euclidean distance. For other spaces, the
choice is less obvious.

As an example, for a car-like robot with a C-space R2 × S1, which configu-
ration is closest to the configuration xsamp: one that is rotated twenty degrees
relative to xsamp, one that is 2 meters straight behind it, or one that is 1 meter
straight to the side of it (Figure 10.18)? Since the motion constraints prevent
spinning in place or moving directly sideways, the configuration that is 2 meters
straight behind is best positioned to make progress toward xsamp. Thus defining
a notion of distance requires

• combining components of different units (e.g., degrees, meters, degrees/second,
meters/second) into a single distance measure; and

• taking into account the motion constraints of the robot.

The closest node xnearest should perhaps be defined as the one that can reach
xsamp the fastest, but computing this is as hard as solving the motion planning
problem.

A simple choice of a distance measure from x to xsamp is the weighted sum of
the distances along the different components of xsamp − x. The weights choose
the relative importance of the different components. If more is known about
the time-limited reachable sets of a motion-constrained robot from a state x,
this information can be used in determining the nearest node. In any case,
the nearest node should be computed quickly. Finding a nearest neighbor is a
common problem in computational geometry, and various algorithms, such as
kd trees and hashing, can be used to solve it efficiently.
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10.5.1.3 Line 5: The Local Planner

The job of the local planner is to find a motion from xnearest to some point
xnew which is closer to xsamp. The planner should be simple and it should run
quickly. Two examples are:

Straight-line planner. This is for kinematic systems with no motion con-
straints. The plan is a straight line to xnew, which may be chosen at
xsamp or at a fixed distance d from xnearest on the straight line to xsamp.

Discretized controls. For systems with motion constraints, such as wheeled
mobile robots or dynamic systems, the controls can be discretized into a
discrete set {u1, u2, . . .}, as in the grid methods with motion constraints
(Section 10.4.2 and Figures 10.14 and 10.16). Each control is integrated
from xnearest for a fixed time ∆t using ẋ = f(x, u). The resulting state
that is closest to xsamp is chosen as xnew.

Wheeled robot planners. For a wheeled mobile robot, local plans can be
found using Reeds-Shepp curves or polynomial functions of time of the
differentially flat output, as described in Chapter ??.

Other robot-specific local planners can be designed.

10.5.1.4 Other RRT Variants

The performance of the basic RRT algorithm depends heavily on the choice
of the sampling method, the distance measure, and the local planner. Beyond
these choices, two other variants of the basic RRT are outlined below.

Bidirectional RRT. The bidirectional RRT grows two trees: one “forward”
from xstart and one “backward” from xgoal. The algorithm alternates between
growing the forward tree and the backward tree, and every so often attempts
to connect the two trees by choosing xsamp from the other tree. The advantage
of this approach is that a single goal state xgoal can be reached exactly, rather
than just a goal set Xgoal. Another advantage is that in many environments,
the two trees are likely to find each other much faster than a single “forward”
tree will find a goal set.

The major problem is that the local planner might not be able to connect
the two trees exactly. For example, the discretized controls planner of Sec-
tion 10.5.1.3 is highly unlikely to create a motion exactly to a node in the other
tree. In this case, the two trees may be considered more-or-less connected when
points on each tree are sufficiently close. The “broken” discontinuous trajectory
can be returned and patched by a smoothing method (Section 10.8).

RRT∗. The basic RRT algorithm returns SUCCESS once a motion to Xgoal

is found. An alternative is to continue running the algorithm and to terminate
the search only when another termination condition is reached (e.g., maximum
running time or maximum tree size). Then the motion with the minimum cost
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Figure 10.19: (Left) The tree generated by an RRT after 20,000 nodes. The goal
region is the square at the top right corner, and the shortest path is indicated.
(Right) The tree generated by RRT∗ after 20,000 nodes.

can be returned. In this way, the RRT solution may continue to improve as
time goes by. Because edges in the tree are never deleted or changed, however,
the RRT generally does not converge to an optimal solution.

RRT∗ is a variation of the single-tree RRT that continually rewires the search
tree to ensure that it always encodes the shortest path from xstart to each node
in the tree. The basic approach works for C-space path planning with no motion
constraints, allowing exact paths from any node to any other node.

To modify the RRT to the RRT∗, line 7 of the RRT algorithm, which inserts
xnew in T with an edge from xnearest to xnew, is replaced by a test of all nodes
x ∈ Xnear in T that are sufficiently near to xnew. An edge to xnew is created
from the x ∈ Xnear that (1) has a collision-free motion by the local planner and
(2) minimizes the total cost of the path from xstart to xnew, not just the cost of
the added edge. The total cost is the cost to reach the candidate x ∈ Xnear plus
the cost of the new edge.

The next step is to consider each x ∈ Xnear to see if it could be reached by
lower cost by a motion through xnew. If so, the parent of x is changed to xnew.
In this way, the tree is incrementally rewired to eliminate high-cost motions in
favor of the minimum-cost motions available so far.

The definition of Xnear depends on the number of samples in the tree, details
of the sampling method, the dimension of the search space, and other factors.

Unlike the RRT, the solution provided by RRT∗ approaches the optimal
solution as the number of sample nodes increases. Like the RRT, RRT∗ is
probabilistically complete. The time to produce a rewired tree by the RRT∗

algorithm is within a constant factor of the time to produce a tree of the same
size by the RRT. Figure 10.19 demonstrates the rewiring behavior of RRT∗

compared to RRT for a simple example in C = R2.
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10.5.2 The PRM

The PRM uses sampling to build a roadmap representation of Cfree (Section 10.3)
before answering any specific queries. The roadmap is an undirected graph: the
robot can move in either direction along any edge exactly from one node to the
next. For this reason, PRMs primarily apply to kinematic problems for which
an exact local planner exists that can find a path (ignoring obstacles) from any
q1 to any q2. The simplest example is a straight-line planner for a robot with
no kinematic constraints.

Once the roadmap is built, a particular start node qstart can be added to
the graph by attempting to connect it to the roadmap, starting with the closest
node. The same is done for the goal node qgoal. The graph is then searched for
a path, typically using A∗. Thus the query can be answered efficiently once the
roadmap has been built.

PRMs allow the possibility of building a roadmap quickly and efficiently
relative to constructing a roadmap using a high-resolution grid representation.
This is because the volume fraction of the C-space that is “visible” by the local
planner from a given configuration does not typically decrease exponentially
with increasing dimension of the C-space.

The algorithm to construct a roadmap R with N nodes is outlined in Algo-
rithm 4 and illustrated in Figure 10.20.

Algorithm 4 PRM roadmap construction algorithm (undirected graph).

1: for i = 1 . . . N do
2: qi ← sample from Cfree

3: add qi to R
4: end for
5: for i = 1 . . . N do
6: N (qi)← k closest neighbors of qi
7: for each q ∈ N (qi) do
8: if there is a collision-free local path from q to qi and

there is not already an edge from q to qi then
9: add an edge from q to qi to the roadmap R

10: end if
11: end for
12: end for
13: return R

A key choice in the PRM roadmap construction algorithm is how to sample
from Cfree. While the default might be sampling randomly from a uniform
distribution on C and eliminating configurations in collision, it has been shown
that sampling more densely near obstacles can improve the likelihood of finding
narrow passages, thus significantly reducing the number of samples needed to
properly represent the connectivity of Cfree. Another option is deterministic
multi-resolution sampling.
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Figure 10.20: An example PRM roadmap for a point robot in C = R2. The
k = 3 closest neighbors are considered for connection to a sample node q. The
degree of a node can be greater than three since it may be a close neighbor of
many nodes.

10.6 Virtual Potential Fields

Virtual potential field methods are inspired by potential energy fields in nature,
such as gravitational and magnetic fields. From physics we know that a potential
field U(q) defined over C induces a force F = −∂U/∂q that drives an object from
high to low potential. For example, if h is the height above the Earth’s surface in
a uniform gravitational potential field (g = 9.81 m/s2), then the potential energy
of a mass m is U(h) = mgh and the force acting on it is F = −∂U/∂h = −mg.
The force will cause the mass to fall to the Earth’s surface.

In robot motion control, the goal configuration qgoal is assigned a low virtual
potential energy and obstacles are assigned a high virtual potential. Applying a
force to the robot proportional to the negative gradient of the virtual potential
naturally pushes the robot toward the goal and away from the obstacles.

A virtual potential field is very different from the planners we have seen so
far. Typically the gradient of the field can be calculated quickly, so the motion
can be calculated in real time (reactive control) instead of planned in advance.
With appropriate sensors, the method can even handle obstacles that move or
appear unexpectedly. The drawback of the basic method is that the robot can
get stuck in local minima of the potential field, away from the goal, even when
a feasible motion to the goal exists. In certain cases it is possible to design the
potential to guarantee that the only local minimum is at the goal, eliminating
this problem.
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10.6.1 A Point in C-space

Let’s begin by assuming a point robot in its C-space. A goal configuration qgoal

is typically encoded by a quadratic potential energy “bowl” with zero energy at
the goal,

Ugoal(q) =
1

2
(q − qgoal)

TK(q − qgoal),

where K is a symmetric positive-definite weighting matrix (for example, the
identity matrix). The force induced by this potential is

Fgoal(q) = −∂Ugoal

∂q
= K(qgoal − q),

an attractive force proportional to the distance from the goal.
The repulsive force induced by a C-obstacle B can be calculated from the

distance d(q,B) to the obstacle (Section 10.2.2):

UB(q) =
k

2d2(q,B)
,

where k > 0 is a scaling factor. The potential is only properly defined for points
outside the obstacle, d(q,B) > 0. The force induced by the obstacle potential is

FB(q) = −∂UB
∂q

=
k

d3(q,B)

∂d

∂q
.

The total potential is obtained by summing the attractive goal potential and
the repulsive obstacle potentials,

U(q) = Ugoal(q) +
∑
i

UBi(q),

yielding a total force

F (q) = Fgoal(q) +
∑
i

FBi(q).

A bowl-like attractive potential and obstacle repulsive potentials are illustrated
for a point in R2 in *** Figure ***.

To actually control the robot using the calculated F (q), we have several
options, two of which are:

• Apply the calculated force plus damping,

u = F (q) +Bq̇, (10.3)

where B is a positive semidefinite matrix. If B is positive definite, then
it dissipates energy for all q̇ 6= 0, reducing oscillation and guaranteeing
that the robot will come to rest. If B = 0, the robot continues to move
while maintaining constant total energy, which is the sum of the initial
kinetic energy 1

2 q̇
T (0)M(q(0))q̇(0) plus the initial virtual potential energy

U(q(0)).
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• Treat the calculated force as a commanded velocity instead:

q̇ = F (q). (10.4)

This automatically eliminates oscillations.

Figure *** shows the motion of point robots in the plane using the velocity
control law (10.4). It also shows a local minimum of the potential, which is the
main drawback of potential fields.

It is important to note that obstacle potentials go to infinity at the bound-
aries of the obstacles, resulting in steep gradients and therefore large FB(q) near
an obstacle boundary. A simple solution is to saturate FB(q) after calculating
it. Another issue is that even distant obstacles have a small effect on the motion
of the robot. To speed up evaluation of the repulsive terms, distant obstacles
could be ignored. We can define a range of influence of the obstacles drange > 0
so that the potential is zero for all d(q,B) ≥ drange:

UB(q) =


k
2

(
drange−d(q,B)
dranged(q,B)

)2

if d(q,B) < drange

0 otherwise.

Another issue is that d(q,B) and its gradient is generally difficult to calculate.
An approach to dealing with this is described in Section ??.

10.6.2 Navigation Functions

A significant problem with the potential field method is local minima. While
potential fields may be appropriate for relatively uncluttered spaces, or for rapid
response to unexpected obstacles, they are likely to get the robot stuck in local
minima for many practical applications.

One exception is the wavefront planner of Figure 10.11. The wavefront
algorithm creates the equivalent of a potential function, with high potential at
grid points in obstacles and zero potential at the goal. If a solution exists to
the motion planning problem, then simply moving “downhill” at every step is
guaranteed to bring the robot to the goal.

Another approach to gradient-following planning is based on replacing the
virtual potential function with a navigation function. A navigation function
ϕ(q) is a type of virtual potential function that

(i) is smooth (or at least twice-differentiable) on q;

(ii) has a bounded maximum value (e.g., 1) on the boundaries of all obstacles;

(iii) has a single minimum at qgoal; and

(iv) has a full-rank Hessian ∂2ϕ/∂q2 at all critical points q where ∂ϕ/∂q = 0
(i.e., ϕ(q) is a Morse function).
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Figure 10.21: Examples of critical points in two dimensions: a maximum, a
saddle (minimum in some directions and maximum in others), and a minimum.
*** From Choset book, replace

Condition 1 ensures that the Hessian ∂2ϕ/∂q2 exists. Condition 2 puts an upper
bound on the virtual potential energy of the robot. The key conditions are 3
and 4. Condition 3 ensures that of the critical points of ϕ(q) (including minima,
maxima, and saddles, as shown in Figure 10.21), there is only one minimum, at
qgoal. This ensures that qgoal is at least locally attractive. However, there may
be saddle points which are minima along a subset of directions. Condition 4
ensures that the set of initial states that are attracted to any saddle point has
empty interior (zero measure), and therefore almost every initial state converges
to the unique minimum qgoal.

While constructing navigation potential functions with only a single mini-
mum is non-trivial, Rimon and Koditschek showed how to construct them for
the particular case of an n-dimensional Cfree consisting of all points inside an
n-sphere of radius R and outside of smaller spherical obstacles Bi of radius ri
centered at qi, i.e., {q ∈ Rn | ‖q‖ ≤ R and ‖q− qi‖ > ri for all i}. This is called
a sphere world. While a real C-space is unlikely to be a sphere world, Rimon
and Koditschek showed that the boundaries of the obstacles, and the associated
navigation function, can be deformed to a much broader class of star-shaped
obstacles. A star-shaped obstacle is one that has a center point from which
the line segment to any point on the obstacle boundary is contained completely
within the obstacle. A star world is a C-space which has star-shaped obstacles.
Thus finding a navigation function for an arbitrary star world reduces to find-
ing a navigation function for a “model” sphere world that has centers at the
centers of the star-shaped obstacles, then stretching and deforming that navi-
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Figure 10.22: (Left) A model “sphere world” with five circular obstacles. The
contour plot of a navigation function is shown. The goal is at (0, 0). Note
that the obstacles induce saddle points near the obstacles, but no local minima.
(Right) A “star world” obtained by deforming the obstacles and the potential
while retaining a navigation function.

gation function to one that fits the star world. Rimon and Koditschek give a
systematic procedure for accomplishing this.

Figure 10.22 shows a deformation of a navigation function on a model sphere
world to a star world for the case C ⊂ R2.

10.6.3 Workspace Potential

A difficulty in calculating the repulsive force from an obstacle is calculating the
distance to the obstacle, d(q,B). One approach that avoids the exact calculation
is to represent the boundary of an obstacle as a set of point obstacles, and to
represent the robot by a small set of control points. Let the Cartesian location
of control point i on the robot be written fi(q) ∈ R3 and boundary point j of the
obstacle be cj ∈ R3. Then the distance between the two points is ‖fi(q)− cj‖,
and the potential at the control point i due to the obstacle point j is

U ′ij(q) =
k

2‖fi(q)− cj‖2
,

yielding the repulsive force at the control point

F ′ij(q) = −∂Uij
∂q

=
k

‖fi(q)− cj‖4
(fi(q)− cj).

To turn the linear force F ′ij(q) ∈ R3 into a generalized force Fij(q) ∈ Rn
acting on the robot arm or mobile robot, we first find the Jacobian Ji(q) relating
q̇ to the linear velocity of the control point ḟi:

ḟi =
∂fi
∂q

q̇ = Ji(q)q̇.
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By the principle of virtual work, the generalized force Fij(q) due to the repulsive
linear force F ′ij(q) is simply

Fij(q) = JTi (q)F ′ij(q).

Now the total force F (q) acting on the robot is the sum of the easily calculated
attractive force Fgoal(q) and the repulsive forces Fij(q) for all i and j.

10.6.4 Wheeled Mobile Robots

The preceding analysis assumes that a control force u = F (q) +Bq̇ (for control
law (10.3)) or a velocity q̇ = F (q) (for control law (10.4)) can be applied in any
direction. If the robot is a wheeled mobile robot subject to rolling constraints
A(q)q̇ = 0, however, the calculated F (q) must be projected to controls Fproj(q)
that move the robot tangent to the constraints. For a kinematic robot employing
the control law q̇ = Fproj(q), a suitable projection is

Fproj(q) =
(
I −AT (q)

(
A(q)AT (q)

)−1
A(q)

)
F (q).

For a dynamic robot employing the control law u = Fproj(q)+Bq̇, the projection
is discussed in Chapter 11.4.2.

10.6.5 Use of Potential Fields in Planners

A potential field can be used in conjunction with a path planner. For example,
a best-first search like A∗ can use the potential as an estimate of the cost-to-go.
Incorporating search prevents the planner from getting permanently stuck in
local minima.

10.7 Nonlinear Optimization

The motion planning problem can be expressed as a general nonlinear optimiza-
tion with equality and inequality constraints, taking advantage of a number of
software packages to solve such problems. Nonlinear optimization problems can
be solved by gradient-based methods, like sequential quadratic programming
(SQP), and non-gradient methods, like simulated annealing, Nelder-Mead op-
timization, and genetic programming. Like many nonlinear optimization prob-
lems, however, these methods are not generally guaranteed to find a feasible
solution when one exists, let alone an optimal one. For methods that use gradi-
ents of the objective function and constraints, however, we can expect a locally
optimal solution if we start the process with a guess that is “close” to a solution.
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The general problem can be written

find u(t), q(t), T (10.5)

minimizing J(u(t), q(t), T ) (10.6)

subject to ẋ(t) = f(x(t), u(t)) ∀t ∈ [0, T ] (10.7)

u(t) ∈ U ∀t ∈ [0, T ] (10.8)

q(t) ∈ Cfree ∀t ∈ [0, T ] (10.9)

x(0) = xstart (10.10)

x(T ) = xgoal. (10.11)

To approximately solve this problem by nonlinear optimization, the con-
trol u(t), trajectory q(t), and equality and inequality constraints (10.7)–(10.11)
must be discretized. This is typically done by ensuring that the constraints are
satisfied at a fixed number of points distributed evenly over the interval [0, T ],
and by choosing a finite-parameter representation of the position and/or con-
trol histories. We have three choices of how to parameterize the position and
controls:

(i) Parameterize the trajectory q(t). In this case, we solve for the parameter-
ized trajectory directly. The control forces u(t) at any time are calculated
using the equations of motion. This approach does not apply to systems
with fewer controls than configuration variables, m < n.

(ii) Parameterize the control u(t). We solve for u(t) directly. Calculating the
state x(t) requires integrating the equations of motion.

(iii) Parameterize both q(t) and u(t). We have a larger number of variables,
since we are parameterizing both q(t) and u(t). Also, we have a larger
number of constraints, as q(t) and u must satisfy the dynamic equations
ẋ = f(x, u) explicitly, typically at a fixed number of points distributed
evenly over the interval [0, T ]. We must be careful to choose the param-
eterizations of q(t) and u(t) to be consistent with each other, so that the
dynamic equations can be satisfied at these points.

A trajectory or control history can be parameterized in any number of ways.
The parameters can be the coefficients of a polynomial in time, the coefficients
of a truncated Fourier series, spline coefficients, wavelet coefficients, piecewise
constant acceleration or force segments, etc. For example, the control ui(t)
could be represented by p+ 1 coefficients aj of a polynomial in time:

ui(t) =

p∑
j=0

ajt
j .

In addition to the parameters for the state or control history, the total time
T may be another control parameter. The choice of parameterization has im-
plications for the efficiency of the calculation of q(t) and u(t) at a given time t.
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The choice of parameterization also determines the sensitivity of the state and
control to the parameters, and whether each parameter affects the profiles at all
times [0, T ] or just on a finite-time support base. These are important factors
in the stability and efficiency of the numerical optimization.

10.8 Smoothing

The axis-aligned motions of a grid planner and the randomized motions of sam-
pling planners may lead to jerky motion of the robot. One approach to dealing
with this issue is to let the planner handle the work of searching globally for a
solution, then post-process the resulting motion to make it smoother.

There are many ways to do this; two possibilities are outlined below.

Nonlinear optimization. While gradient-based nonlinear optimization may
fail to find a solution if initialized with a random initial trajectory, it can make
an effective post-processing, since the plan initializes the optimization with a
“reasonable” solution. The initial motion must be converted to a parameterized
representation of the controls, and the cost J(u(t), q(t), T ) can be expressed as
a function of u(t) or q(t). For example,

J =

∫ T

0

u̇T (t)u̇(t)dt

penalizes the rate of control change. This has an analogy in human motor
control, where the smoothness of human arm motions has been attributed to
minimizing the rate of change of acceleration of the joints.

Subdivide and reconnect. A local planner can be used to attempt a con-
nection between two distant points on a path. If this new connection is collision-
free, it replaces the original path segment. Since the local planner is designed
to produce short, smooth paths, the new path is likely shorter and smoother
than the original. This test-and-replace procedure can be applied iteratively to
randomly chosen points on the path. Another possibility is to use a recursive
procedure that subdivides the path first into two pieces and attempt to replace
each piece with a shorter path; then, if either portion could not be replaced by
a shorter path, subdivide again; etc.

10.9 Summary

• A fairly general statement of the motion planning problem is: Given an
initial state x(0) = xstart and a desired final state xgoal, find a time T
and a set of controls u : [0, T ] → U such that the motion (10.2) satisfies
x(T ) ∈ Xgoal and q(x(t)) ∈ Cfree for all t ∈ [0, T ].
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• Motion planning problems can be classified in the following categories:
path planning vs. motion planning; fully actuated vs. constrained or un-
deractuated; online vs. offline; optimal vs. satisficing; exact vs. approxi-
mate; with or without obstacles.

• Motion planners can be characterized by the following properties: multiple-
query vs. single-query; anytime planning or not; complete, resolution com-
plete, probabilistically complete, or none of the above; and computational
complexity.

• Obstacles partition the C-space into free C-space Cfree and obstacle space
Cobs, C = Cfree

⋃
Cobs. Obstacles may split Cfree into multiple connected

components. There is no feasible path between configurations in different
connected components.

• A conservative check of whether a configuration q is in collision uses a sim-
plified “grown” representation of the robot and obstacles. If there is no
collision between the grown bodies, then the configuration is guaranteed
collision-free. Checking if a path is collision-free usually involves sampling
the path at finely spaced points, and ensuring that if the individual con-
figurations are collision-free, then the swept volume of the robot path is
collision-free.

• The C-space geometry is often represented by a graph consisting of nodes
and edges between the nodes, where edges represent feasible paths. The
graph can be undirected (edges flow both directions) or directed (edges
only flow one direction). Edges can be unweighted or weighted according
to their cost of traversal. A tree is a directed graph with no cycles and
where each node has at most one parent.

• A roadmap path planner uses a graph representation of Cfree, and any path
planning problem can be solved using a simple path from qstart onto the
roadmap, a path along the roadmap, and a simple path from the roadmap
to qgoal.

• A∗ is a popular search method that finds minimum-cost paths on a graph.
It operates by always exploring from the node that is (1) unexplored and
(2) expected to be on a path with minimum estimated total cost. The
estimated total cost is the sum of edge weights to reach the node from the
start node plus an estimate of the cost-to-go to the goal. The cost-to-go
estimate should be optimistic to ensure that the search returns an optimal
solution.

• A grid-based path planner discretizes the C-space into a graph consisting
of neighboring points on a regular grid. A multi-resolution grid can be
used to allow large steps in wide-open spaces while allowing smaller steps
near obstacle boundaries.
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• Discretizing the control set allows robots with motion constraints to take
advantage of grid-based methods. If integrating a control does not land
the robot exactly on a grid point, the new state may still be pruned if a
state in the same grid cell was already achieved with a lower cost.

• The basic RRT algorithm grows a single search tree from xstart to find a
motion to Xgoal. It relies on a sampler to find a sample xsamp in X ; an
algorithm to find the closest node xnearest in the search tree; and a local
planner to find a motion from xnearest to a point closer to xsamp. The
sampling is chosen to cause the tree to explore Xfree quickly.

• The bidirectional RRT grows a search tree from both xstart and xgoal and
attempts to join them up. RRT∗ returns solutions that tend toward the
optimal as planning time goes to infinity.

• The PRM builds a roadmap of Cfree for multiple-query planning. The
roadmap is built by sampling Cfree N times, then using a local planner to
attempt to connect each sample with several of its nearest neighbors. The
roadmap is searched for plans using A∗.

• Virtual potential fields are inspired by potential energy fields such as grav-
itational and electromagnetic fields. The goal point creates an attractive
potential while obstacles create a repulsive potential. The total poten-
tial U(q) is the sum of these, and the virtual force applied to the robot
is F (q) = −∂U/∂q. The robot is controlled by applying this force plus
damping, or by simulating first-order dynamics and driving the robot with
F (q) as a velocity. Potential field methods are conceptually simple but
tend to result in local minima where the robot gets stuck away from the
goal.

• A navigation function is a potential function with no local minima. Nav-
igation functions result in near-global convergence to qgoal. While navi-
gation functions are difficult to design in general, they can be designed
systematically for certain systems.

• Motion planning problems can be converted to general nonlinear optimiza-
tion problems with equality and inequality constraints. While optimiza-
tion methods can be used to find smooth, near-optimal motions, they tend
to get stuck in local minima in cluttered C-spaces. Optimization methods
typically require a good initial guess at a solution.

• Motions returned by grid-based and sampling-based planners tend to be
jerky. Smoothing the plan using nonlinear optimization or subdivide-and-
reconnect can improve the quality of the motion.
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reference
point

Figure 10.23: Exercise 4.

10.10 Exercises

1. A path is homotopic to another if it can be continuously deformed into the
other without moving the endpoints. In other words, it can be stretched and
pulled like a rubber band, but it cannot be cut and pasted back together. For
the C-space of Figure 10.2, draw a path from the start to the goal that is not
homotopic to the one shown.

2. Label the connected components in Figure 10.2. For each connected com-
ponent, draw a picture of the robot for one configuration in the connected
component.

3. Assume that θ2 joint angles in the range [175◦, 185◦] result in self-collision
for the robot of Figure 10.2. Draw the new joint limit C-obstacle on top of the
existing C-obstacles and label the resulting connected components of Cfree. For
each connected component, draw a picture of the robot for one configuration in
the connected component.

4. Draw the C-obstacle corresponding to the obstacle and translating planar
robot in Figure 10.23.

5. Write a program that accepts as input the coordinates of a polygonal robot
(relative to a reference point on the robot) and the coordinates of a polygonal
obstacle and produces as output a drawing of the corresponding C-space obsta-
cle. In Mathematica, you may find the function ConvexHull useful. In Matlab,
try convhull.

6. Calculating a square root is typically computationally expensive. For a
robot and an obstacle represented as collections of spheres (Section 10.2.2),
provide a method for calculating the distance between the robot and obstacle
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start

goal

Figure 10.24: Planning problem for Exercise 8.

that minimizes the use of square roots.

7. For Figure 10.8(c), give the order that the nodes in the tree are visited in
a complete breadth-first search and a complete depth-first search. Assume that
leftmost branches are always followed first.

8. Draw the visibility roadmap for the C-obstacles and qstart and qgoal in Fig-
ure 10.24. Indicate the shortest path.

9. Not all edges of the visibility roadmap described in Section 10.3 are needed.
Prove that an edge between two vertices of C-obstacles need not be included in
the roadmap if either end of the edge does not hit the obstacle tangentially. In
other words, if the edge ends by “colliding” with an obstacle, it will never be
used in a shortest path.

10. You will implement an A∗ path planner for a point robot in a plane with
obstacles. The planar region is a 100×100 area. The program will generate a
graph consisting of N nodes and E edges, where N and E are chosen by the
user. After generating N randomly chosen nodes, the program should connect
randomly chosen nodes with edges until E unique edges have been generated.
The cost associated with each edge is the Euclidean distance between the nodes.
Finally, the program should display the graph, search the graph using A∗ for the
shortest path between nodes 1 and N , and display the shortest path or indicate
FAILURE if no path exists. The heuristic cost-to-go is the Euclidean distance
to the goal.

11. Modify the A∗ planner in Exercise 10 to use a heuristic cost-to-go equal
to ten times the distance to the goal node. Compare the running time to the
original A∗ when they are run on the same graphs. Are the solutions found with
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the new heuristic optimal?

12. Modify the A∗ algorithm from Exercise 10 to use Dijkstra’s algorithm
instead. Comment on the relative running time between A∗ and Dijkstra’s
algorithm when each is run on the same graphs.

13. Write a program that accepts the vertices of polygonal obstacles from a
user, as well as the specification of a 2R robot arm, rooted at (x, y) = (0, 0), with
link lengths L1 and L2. Each link is simply a line segment. Generate the C-space
obstacles for the robot by sampling the two joint angles at k-degree intervals
(e.g., k = 5) and checking for intersection between the line segments and the
polygon. Plot the obstacles in the workspace and the C-space grid using a black
square or dot for C-obstacles. (Hint: At the core of this program is a subroutine
to see if two line segments intersect. If the segments’ corresponding infinite lines
intersect, you can check if this intersection is within the line segments.)

14. Write an A∗ grid path planner for the 2R robot with obstacles, and display
found paths on the C-space. (See Exercise 13 and Figure 10.10.)



Chapter 11

Robot Control

A robot arm can exhibit a number of different behaviors, depending on the task
and its environment. It can act as a source of programmed motions for tasks
such as moving an object from one place to another, or tracing a trajectory for
a spray paint gun. It can act as a source of forces, as when applying a polishing
wheel to a workpiece. In tasks such as writing on a chalkboard, it must control
forces in some directions (the force pressing the chalk against the board) and
motions in others (motion in the plane of the board). When the purpose of the
robot is to act as a haptic display, mimicking a virtual environment, we may
want it to act like a spring, damper, or mass, yielding in response to forces
applied to it.

In each of these cases, it is the job of the robot controller to convert the task
specification to forces and torques at the actuators. Control strategies to achieve
the behaviors described above are known as motion (or position) control, force
control, hybrid motion-force control, and impedance control. Which of these
behaviors is appropriate depends on both the task and the environment. For
example, a force control goal makes sense when the end-effector is in contact with
something, but not when it is moving in free space. We also have a fundamental
constraint imposed by mechanics, irrespective of the environment: the robot
cannot independently control both motions and forces. If the robot imposes a
motion, then the environment will determine the force, and vice-versa.

Once we have chosen a control goal consistent with the task and environ-
ment, we have a number of ways to achieve it. Feedback control uses position,
velocity, and force sensors to measure the actual behavior of the robot, compare
it to the desired behavior, and modulate the control signals sent to the actua-
tors. Feedback is used in nearly all robot systems. Feedforward control uses a
model of the dynamics of the robot and its environment to determine actuator
signals that achieve the desired change in state. Because of modeling errors,
feedforward control is rarely used by itself, but it is often used in conjunction
with feedback control. Complementary control strategies include adaptive con-
trol, which continuously estimates properties of the dynamic system to improve
performance; robust control to guarantee some level of performance in the face

287



288 Robot Control

of an uncertain model of the system; and iterative learning control for repeti-
tive tasks, where errors from previous executions of the same task are used to
generate more appropriate feedforward controls for future iterations.

In this chapter we focus on feedback and feedforward control for motion
control, force control, hybrid motion-force control, and impedance control.

11.1 Control System Overview

A typical control block diagram is shown in Figure 11.1(a). The controller is
often a PC or microcontroller. Sensors are typically potentiometers, encoders, or
resolvers for joint position/angle sensing; tachometers for joint velocity sensing;
strain gauge joint force/torque sensors; and/or multi-axis force-torque sensors
at the “wrist” between the end of the arm and the end-effector. The controller
samples the sensors and updates its control signals to the actuators at a rate
of hundreds to a few thousands of Hz. In most robotic applications, higher
control update rates are of limited benefit, given time constants associated with
the dynamics of the robot and environment. In our analysis, we will ignore
the nonzero sampling time and treat controllers as if they are implemented in
continuous time.

While tachometers can be used for direct velocity sensing, a common ap-
proach is to use a digital filter to numerically difference position signals at
successive time steps. A low-pass filter is often used in combination with the
differencing filter to reduce high frequency jitter due to quantization.

Actuators could be brushed DC motors, brushless DC motors, various types
of AC motors, hydraulic actuators, or pneumatic actuators, among others. Typ-
ically gears or other transmissions are used to lower the speed and increase the
force or torque of the actuator. Electric motors are coupled with a power ampli-
fier that converts signals from the controller to high currents to drive the motor.
Local feedback of motor current or joint torque may be used in an inner control
loop to achieve the forces or torques requested by the controller.

For each robot joint, we will lump the amplifier, actuator, and transmission
together and treat them as a transformer from low-power control signals to forces
and torques. This assumption, along with the assumption of perfect sensors,
allows us to simplify the block diagram to the one shown in Figure 11.1(b), where
the controller produces forces and torques directly. The rest of this chapter deals
with the control algorithms that go inside the “Controller” box in Figure 11.1(b).

Real robot systems are subject to flexibility and vibrations in the joints
and links, backlash at gears and transmissions, actuator saturation limits, and
limited resolution of the sensors. These are significant issues in design and
control, but are beyond the scope of this chapter.
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Figure 11.1: (a) A typical robot control system. An inner control loop may be
used to help the amplifier and actuator achieve the desired force or torque. For
example, a DC motor amplifier in torque control mode may sense the current
actually flowing through the motor and implement a local controller to better
match the desired current, since the current is proportional to the torque pro-
duced by the motor. (b) A simplified model with ideal sensors and a controller
block that directly produces forces and torques. This assumes ideal behavior of
the amplifier and actuator blocks in part (a).

11.2 Motion Control

Typically a motion control task is to have the end-effector follow a desired
trajectory. If the robot is redundant, there may be more than one set of joint
variable histories that yield this end-effector trajectory. We begin by assuming
that inverse kinematics and its derivatives, possibly with redundancy resolution,
have already been applied to yield a unique set of target joint histories as a
function of time. Our goal is to construct controllers that drive the robot to track
this trajectory in joint space. We consider the case of a trajectory expressed in
the task space in Section 11.2.3.

The ideas are well illustrated by a robot with a single joint, so we begin
there, then generalize to a multi-joint robot.
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Figure 11.2: A single joint robot rotating in a gravity field.

11.2.1 Motion Control of a Single Joint

Consider a single motor attached to a single link, as shown in Figure 11.2. Let
τ be the motor’s torque and θ be the angle of the link. The dynamics can be
written as

τ = Mθ̈ +mgr cos θ, (11.1)

where M is the inertia of the link about the axis of rotation, m is the mass of
the link, r is the distance from the axis to the center of mass of the link, and
g ≥ 0 is gravitational acceleration.

According to the model (11.1), there is no dissipation: if the link is made
to spin and τ = 0, it would spin forever. This is unrealistic, of course; there
is friction at the various bearings, gears, and transmissions. Friction modeling
is an active research area, but a simple model of rotational friction is viscous
friction,

τfric = bθ̇, (11.2)

where b > 0. Adding the friction torque, our final model is

τ = Mθ̈ +mgr cos θ + bθ̇, (11.3)

which we may write more compactly as

τ = Mθ̈ + h(θ, θ̇), (11.4)

where h contains all terms that depend only on the state, not the acceleration.
For concreteness in the following simulations, we set M = 0.5 kgm2, m =

1 kg, r = 0.1 m, and b = 0.1 Nms/rad. In some examples, the link moves in
a horizontal plane, so g = 0. In other examples, the link moves in a vertical
plane, so g = 9.81 m/s

2
.

11.2.1.1 Feedback Control: PID Control

The most common feedback control algorithm is linear PID (proportional-integral-
derivative) control. Defining the error between the desired angle θd and actual
angle θ as

θe = θd − θ, (11.5)
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Figure 11.3: Block diagram of a PID controller.

the PID controller is simply

τ = Kpθe +Ki

∫
θe(t)dt+Kdθ̇e, (11.6)

where the control gains Kp, Ki, and Kd are nonnegative. The proportional
gain Kp acts as a virtual spring that tries to reduce the position error θd − θ,
and the derivative gain Kd acts as a virtual damper that tries to reduce the
velocity error θ̇d − θ̇. The integral gain, as we will see later, can be used to
eliminate steady-state errors when the joint is at rest. See the block diagram in
Figure 11.3.

For now let’s consider the case where Ki = 0. This is known as PD control.
(We can similarly define PI, P, I, and D control by setting other gains to zero.
PD and PI control are the most common variants of PID control.) Let’s also
assume the robot moves in a horizontal plane, so g = 0. Plugging the control
law (11.6) into the dynamics (11.3), we get

Mθ̈ + bθ̇ = Kp(θd − θ) +Kd(θ̇d − θ̇). (11.7)

If the goal state is rest at a constant θd, then θ̇d = θ̈d = 0. This is called
setpoint control. Using θe = θd− θ, θ̇e = −θ̇, and θ̈e = −θ̈, Equation (11.7) can
be rewritten as the linear mass-spring-damper error dynamics

Mθ̈e + (b+Kd)θ̇e +Kpθe = 0. (11.8)

Stability Error dynamics, such as Equation (11.8), are an important concept
in the study of control systems. A minimum requirement is that the error
dynamics be stable, i.e., initial errors tend to zero exponentially with time. A
linear homogeneous ordinary differential equation of the form

anθ
(n)
e + an−1θ

(n−1)
e + . . .+ a2θ̈e + a1θ̇e + a0θe = 0
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is stable if and only if all of the complex roots s1, . . . , sn of its characteristic
equation

ans
n + an−1s

n−1 + . . .+ a2s
2 + a1s+ a0 = 0

have real components less than zero, i.e., Re(si) < 0 for all i = 1 . . . n. A
necessary condition for stability, regardless of the order n of the dynamics, is
that ai > 0 for all i. This condition is also sufficient for second-order dynamics
such as (11.8). For third-order dynamics, it is also required that a2a1 > a3a0.

PD Control and Second-Order Error Dynamics To study the second-
order error dynamics (11.8) more formally, we assume stability and rewrite in
the standard second-order form

θ̈e +
b+Kd

M
θ̇e +

Kp

M
θe = 0 → θ̈e + 2ζωnθ̇e + ω2

nθe = 0, (11.9)

where the damping ratio ζ and the natural frequency ωn are

ζ =
b+Kd

2
√
KpM

, ωn =

√
Kp

M
.

The characteristic equation of (11.9) is

s2 + 2ζωns+ ω2
n = 0, (11.10)

with complex roots

s1,2 = −ζωn ± ωn
√
ζ2 − 1.

There are three types of solutions to the differential equation (11.9), de-
pending on whether the roots s1,2 are real and unequal (ζ > 1), real and equal
(ζ = 1), or complex conjugates (ζ < 1):

• Overdamped: ζ > 1. The roots s1,2 are real and distinct, and the
solution is

θe(t) = c1 exp(s1t) + c2 exp(s2t),

where c1 and c2 depend on the initial conditions. The response is the sum
of two decaying exponentials, with time constants τ1,2 = −1/s1,2, where
the time constant is the time it takes the exponential to decay to 37% of
its original value. The “slower” time constant in the solution is given by
the less negative root, s1 = −ζωn + ωn

√
ζ2 − 1.

• Critically damped: ζ = 1. The roots s1,2 = −ζωn are equal and real,
and the solution is

θe(t) = exp(−ζωnt)(c1 + c2t),

i.e., a decaying exponential multiplied by a linear function of time. The
time constant of the decaying exponential is τ = 1/(ζωn).
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Figure 11.4: The error response to a step input for an underdamped second-
order system, showing steady-state error ess, overshoot, and 2% settling time.

• Underdamped: ζ < 1. The roots s1,2 are complex conjugates at s1,2 =

−ζωn ± ωd, where ωd = ωn
√

1− ζ2 is the damped natural frequency. The
solution is

θe(t) = exp(−ζωnt) (c1 cos(ωdt) + c2 sin(ωdt)) ,

i.e., a decaying exponential (time constant τ = 1/(ζωn)) multiplied by a
sinusoid.

To see how to apply these solutions, imagine that the link is originally at rest
at θ = 0. At time t = 0, the desired position is suddenly changed from θd = 0 to
θd = 1. This is called a step input and the resulting motion of the system θ(t)
is called the step response. Our interest is in the error response θe(t). We can
solve for c1,2 in the specific solution by solving θe(0) = 1 (the error immediately

becomes 1) and θ̇e(0) = 0 (both θ̇d(0) and θ̇(0) are zero).
The error response can be described by a transient response and a steady-

state response (Figure 11.4). The steady-state response is characterized by the
steady-state error ess, which is the asymptotic error θe(t) as t → ∞. For the
link in zero gravity with a stable PD controller, ess = 0. The transient response
is characterized by the overshoot and (2%) settling time. The 2% settling time
is the first time T such that |θe(t) − ess| ≤ 0.02(1 − ess) for all t ≥ T , and is
approximately equal to 4τ , where τ is the slowest time constant in the solution.
Overshoot is defined as

overshoot =

∣∣∣∣θe,min − ess

1− ess

∣∣∣∣× 100%
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Figure 11.5: (Left) The complex roots of the characteristic equation of the PD-
controlled joint for a fixed Kd = 10 Nms/rad as Kp increases from zero. This is
known as a “root locus” plot. (Right) The response of the system to an initial
error θe = 1, θ̇e = 0 is shown for overdamped (ζ = 1.5, roots at “1”), critically
damped (ζ = 1, roots at “2”), and underdamped (ζ = 0.5, roots at “3”) cases.

where θe,min is the least positive value achieved by the error. The overshoot can
be calculated to be

overshoot = exp(−πζ/
√

1− ζ2)× 100%, 0 ≤ ζ < 1.

A good transient response is characterized by a low settling time and little or
no overshoot.

Figure 11.5 shows the relationship of the location of the roots of (11.10) to
the transient response. For a fixed Kd and a small Kp, we have ζ > 1, the system
is overdamped, and the response is sluggish due to the “slow” root. As Kp is
increased, the damping ratio decreases. The system is critically damped (ζ = 1)
at Kp = (b+Kd)

2/(4M), and the two roots are coincident on the negative real
axis. This situation corresponds to a relatively fast response and no overshoot.
As Kp continues to increase, ζ drops below 1, the roots move off the negative
real axis, and we begin to see overshoot and oscillation in the response. The
settling time is unaffected as Kp is increased beyond critical damping, as ζωn
is unchanged.

Practical Bounds on Feedback Gains According to our simple model,
we could increase Kp and Kd without bound to make the real components
of the roots more and more negative, achieving arbitrarily fast response. In
practice, however, large gains lead to actuator saturation, rapid torque changes
(chattering), vibrations of the structure due to unmodeled flexibility in the joints
and links, and even instability due to the finite servo rate frequency. Thus there
are practical limits on the set of useful gains.
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Figure 11.6: (Left) The tracking errors for a PD controller with Kd =
2 Nms/rad,Kp = 2.205 Nm/rad for critical damping, and a PID controller
with the same PD gains and Ki = 1 Nm/(rad s). The arm starts at θ(0) =
−π/2, θ̇(0) = 0, with a goal state θd = 0, θ̇d = 0. (Middle) The individual
contributions of the terms in the PD and PID control laws. (Right) The initial
and final configurations.

PID Control and Third-Order Error Dynamics Now consider the case
of setpoint control where the link moves in a vertical plane, i.e., g > 0. With
the PD control law above, the system can now be written

Mθ̈e + (b+Kd)θ̇e +Kpθe = mgr cos θ. (11.11)

This implies that the system comes to rest at a configuration θ satisfying Kpθe =
mgr cos θ, i.e., the final error θe is not zero when θd 6= ±π2 . This is because the
robot must provide a nonzero torque to hold the link at rest at θ 6= ±π2 , but the
PD control law only creates a nonzero torque at rest if θe 6= 0. We can make
this steady-state error small by increasing the gain Kp, but as discussed above,
there are practical limits.

To eliminate the steady-state error, we return to the PID controller by setting
Ki > 0. This allows a nonzero steady-state torque even with zero position
error; only the integrated error must be nonzero. Figure 11.6 demonstrates the
addition of the integral term to the controller.

To see how this works, write the setpoint error dynamics

Mθ̈e + (b+Kd)θ̇e +Kpθe +Ki

∫
θe(t)dt = τdist, (11.12)

where τdist is a disturbance torque substituted for the gravity term mgr cos θ.
Taking derivatives of both sides, we get the third-order error dynamics

Mθ(3)
e + (b+Kd)θ̈e +Kpθ̇e +Kiθe = τ̇dist. (11.13)

If τdist is constant, then the right-hand side of (11.13) is zero. If the PID
controller is stable, then (11.13) shows that θe converges to zero. (While the
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disturbance torque due to gravity is not constant as the link rotates, it ap-
proaches a constant as θ̇ approaches zero, and therefore similar reasoning holds
close to the equilibrium.)

Integral control is useful to eliminate steady-state error in setpoint control,
but it may adversely affect the transient response. This is because integral
control essentially responds to delayed information—it takes time for the system
to respond to error as it integrates. It is well known in control theory that
delayed feedback can cause instability. To see this, consider the characteristic
equation of (11.13) when τdist is constant:

Ms3 + (b+Kd)s
2 +Kps+Ki = 0. (11.14)

For all roots to have negative real part, we require b + Kd > 0 and Kp > 0 as
before, but there is also an upper bound on the new gain Ki (Figure 11.7):

0 ≤ Ki <
(b+Kd)Kp

M
.

Thus a reasonable design strategy is to choose Kp and Kd for a good transient
response, then choose Ki small so as not to adversely affect stability. In the
example of Figure 11.6, the relatively large Ki worsens the transient response,
giving significant overshoot. In practice, Ki = 0 for many robot controllers.

Pseudocode for the PID control algorithm is given in Figure 11.8.
While our analysis has focused on setpoint control, the PID controller applies

perfectly well to trajectory following, where θ̇d(t) 6= 0. Integral control will not
eliminate tracking error along arbitrary trajectories, however.

11.2.1.2 Feedforward Control

Another strategy for trajectory following is to use a model of the robot’s dy-
namics to proactively generate torques, instead of waiting for errors. Let the
controller’s model of the dynamics be

τ = M̂(θ)θ̈ + ĥ(θ, θ̇), (11.15)

where the model is perfect if M̂(θ) = M(θ) and ĥ(θ, θ̇) = h(θ, θ̇). Note that

the inertia model M̂(θ) is written as a function of the configuration θ. While
the inertia of our simple one-joint robot is not a function of configuration, writ-
ing this way allows us to re-use Equation (11.15) for multi-joint systems in
Section 11.2.2.

Given θd, θ̇d, and θ̈d from the trajectory generator, the commanded torque
is calculated as

τ = M̂(θd)θ̈d + ĥ(θd, θ̇d). (11.16)

If the model of the robot dynamics is exact, and there are no initial state errors,
then the robot exactly follows the desired trajectory. This is called feedforward
control, as no feedback is used.
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Figure 11.7: The three roots of (11.14) as Ki increases from zero. First a PD
controller is chosen with Kp and Kd yielding critical damping, giving rise to two
collocated roots on the negative real axis. Adding an infinitesimal gain Ki > 0
creates a third root at the origin. As we increase Ki, one of the two collocated
roots moves to the left on the negative real axis, while the other two roots move
toward each other, break away from the real axis, and move into the right-half
plane when Ki = (b + Kd)Kp/M . The system is unstable for larger values of
Ki.

A pseudocode implementation of feedforward control is given in Figure 11.9.
Figure 11.10 shows two examples of trajectory following for the link in grav-

ity. Here, the controller’s dynamic model is correct except that it has r̂ = 0.08 m,
when actually r = 0.1 m. In Task 1, the error stays small, as unmodeled gravity
effects provide a spring-like force to θ = −π/2, accelerating the robot at the be-
ginning and decelerating it at the end. In Task 2, unmodeled gravity effects act
against the desired motion, resulting in a larger tracking error. Because there
are always modeling errors, feedforward control is always used in conjunction
with feedback, as discussed next.

11.2.1.3 Feedforward Plus Feedback Linearization

All practical controllers use feedback, as no model of robot and environment
dynamics will be perfect. Nonetheless, a good model can be used to improve
performance and simplify analysis.

Let’s combine PID control with a model of the robot dynamics {M̂, ĥ} to
achieve the error dynamics

θ̈e +Kdθ̇e +Kpθe +Ki

∫
θe(t)dt = 0 (11.17)
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time = 0 // dt = cycle time

eint = 0 // error integral

qprev = senseAngle // initial joint angle q

loop

[qd,qdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle

qdot = (q - qprev)/dt // simple velocity calculation

qprev = q

e = qd - q

edot = qdotd - qdot

eint = eint + e*dt

tau = Kp*e + Kd*edot + Ki*eint

commandTorque(tau)

time = time + dt

end loop

Figure 11.8: Pseudocode for PID control.

time = 0 // dt = cycle time

loop

[qd,qdotd,qdotdotd] = trajectory(time) // from trajectory generator

tau = Mhat(qd)*qdotdotd + hhat(qd,qdotd) // calculate dynamics

commandTorque(tau)

time = time + dt

end loop

Figure 11.9: Pseudocode for feedforward control.

along arbitrary trajectories, not just to a setpoint. The error dynamics (11.17)
and proper choice of PID gains ensure exponential decay of trajectory error.

Since θ̈e = θ̈d − θ̈, to achieve the error dynamics (11.17), we choose the
robot’s commanded acceleration to be

θ̈com = θ̈d − θ̈e then plug in Equation (11.17) to get

= θ̈d +Kdθ̇e +Kpθe +Ki

∫
θe(t)dt. (11.18)

Plugging θ̈com into a model of the robot dynamics, we get the feedback linearizing
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Figure 11.10: Results of feedforward control with an incorrect model: r̂ =
0.08 m, but r = 0.1 m. The desired trajectory in Task 1 is θd(t) = −π/2−cos(t)
for 0 ≤ t ≤ π. The desired trajectory for Task 2 is θd(t) = π/2−cos(t), 0 ≤ t ≤ π.

controller

τ = M̂(θ)

(
θ̈d +Kpθe +Ki

∫
θe(t)dt+Kdθ̇e

)
+ ĥ(θ, θ̇). (11.19)

This type of controller is called feedback linearizing because feedback of θ and
θ̇ is used to transform the nonlinear control system to a linear one. The ĥ(θ, θ̇)

term cancels dynamics dependent only on the state, and the inertia model M̂(θ)
converts desired joint accelerations into joint torques, realizing the simple linear
error dynamics (11.17). This kind of controller is sometimes called a computed
torque controller.

A block diagram of the controller is shown in Figure 11.11. The gains Kp,Ki,
and Kd are chosen to place the roots of the characteristic equation as desired
to achieve good transient response. Under the assumption of a perfect dynamic
model, we would choose Ki = 0.

Figure 11.12 shows typical behavior of feedback linearizing control relative
to feedforward and feedback only. Pseudocode is given in Figure 11.13.
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Figure 11.11: Feedback linearizing control. The feedforward acceleration θ̈d is
added to the acceleration θ̈fb computed by the PID feedback controller to create
the commanded acceleration θ̈com.
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Figure 11.12: Performance of feedforward only (ff), feedback only (fb), and
feedback linearizing control (ff+fb). PID gains are taken from Figure 11.6, and
the feedforward modeling error is taken from Figure 11.10. The desired motion
is Task 2 from Figure 11.10. The middle plot shows the tracking performance
of the three controllers. Also plotted is

∫
τ2(t)dt, a standard measure of control

effort, for each of the three controllers. These plots show typical behavior: the
feedback linearizing controller yields better tracking than either feedforward or
feedback alone, with less control effort than feedback alone.

11.2.1.4 A Closer Look at Friction

For simplicity, we have been assuming a viscous model of friction at bearings
and gears. In reality, friction is a complex phenomenon which is the subject
of considerable current research, and any friction model is a gross attempt to
capture average behavior of the micromechanics of contact. Friction forces may
be a function of the loading force at the contact, the time the contact has been at
rest, position (due to spring-like forces before sliding begins, or non-uniformity
in bearings), velocity, temperature, etc.

One noteworthy limitation of a viscous friction model is its implication of
zero friction force at zero velocity. In fact, common experience indicates that
friction forces can be large at zero velocity. For example, you can apply sig-
nificant horizontal forces to a book on a table before it begins to slide. The
force resisting motion at rest is known as static friction and is not included in
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time = 0 // dt = cycle time

eint = 0 // error integral

qprev = senseAngle // initial joint angle q

loop

[qd,qdotd,qdotdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle

qdot = (q - qprev)/dt // simple velocity calculation

qprev = q

e = qd - q

edot = qdotd - qdot

eint = eint + e*dt

tau = Mhat(q)*(qdotdotd + Kp*e + Kd*edot + Ki*eint) + hhat(q,qdot)

commandTorque(tau)

time = time + dt

end loop

Figure 11.13: Pseudocode for the feedback linearizing controller.

the viscous model. For a robot joint, nonzero static friction implies that some
torque can be applied to the joint at rest without causing any motion. The
discontinuity of friction force at zero velocity significantly complicates the prob-
lem of controlling low-speed motions, particularly motions involving switches
in direction. To address this issue, a more sophisticated model of joint friction
can be included in the nonlinear dynamics compensation term ĥ(θ, θ̇) in feed-
forward or feedback linearizing control. See Figure 11.14 for some examples of
velocity-dependent friction. Other ways of dealing with friction include “dither-
ing” (imposing a high-frequency zero-mean control signal on top of the nominal
control signal, to smooth the friction discontinuity at zero velocity) and using
larger PID gains in the neighborhood of zero velocity.

11.2.1.5 The Effect of Gearing

Until now we have been considering our actuator as a source of torque, without
considering how the actuator generates that torque. For example, if we choose
a DC motor with an appropriate power rating for our robot joint, we will likely
find that it is capable of producing high speed, up to 10,000 RPM or more, but
only low torque. Most robotic applications require significantly lower speeds and
higher torques. Therefore, gears, belts and pulleys, and other transmissions are
usually used to reduce speed by a gear ratio G > 1, while ideally increasing the
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Figure 11.14: Examples of velocity-dependent friction models. (a) Viscous fric-
tion. (b) Coulomb friction, τfric = b sgn(θ̇). τfric can take any value in [−b, b] at
zero velocity. (c) Static plus viscous friction, τfric = bstatic sgn(θ̇) + bviscousθ̇. (d)
Static and kinetic friction, requiring τfric ≥ |bstatic| to initiate motion, and then
τfric = bkinetic sgn(θ̇) during motion, where bstatic > bkinetic. (e) Static, kinetic,
and viscous friction. (f) A friction law exhibiting the Stribeck effect—at low
velocities, friction decreases as velocity increases.

available torque by a factor of G, thereby preserving power:

θ̇out =
θ̇in

G
, τout = Gτin, Pout = τoutθ̇out = (Gτin)(θ̇in/G) = Pin.

In practice, however, some power is dissipated due to friction in the gearing,
and the torque available at the output is less than Gτin. This effect tends to
increase with the gear ratio G. Typical choices of G are from single digits to
over one hundred.

Another option is to directly drive a robot joint with G = 1. Motors used in
direct-drive configurations typically have much higher power ratings than needed
for the application, so that they can provide sufficient torque without gearing.
These motors never approach their top-end speeds in typical applications.

Now consider the inertia M of our one-joint robot. It is actually a lumped
parameter capturing not only the inertia of the link, but also the inertia of the
motor’s rotor. Typically the motor’s inertia Imotor is much smaller than the
inertia of the link Ilink. When there is gearing G > 1, however, the motor spins
faster than the link; if the link angular velocity is θ̇, then the motor speed is
Gθ̇. We can write the kinetic energy of the link-rotor system as

K =
1

2

(
Ilinkθ̇

2 + Imotor(Gθ̇)
2
)

=
1

2
(Ilink +G2Imotor)︸ ︷︷ ︸

M

θ̇2,

where G2Imotor is the inertia of the motor seen from the gearing output shaft.
This is called the motor’s reflected inertia through the gearbox: the effective
inertia of the motor as seen at the output of the gearbox. The time derivative
of the kinetic energy K̇ is the torque driving the link-rotor system multiplied
by the joint velocity, or

K̇ = (Ilink +G2Imotor)θ̈θ̇.

As an example, consider Ilink = 1 kgm2 and Imotor = 10−3 kgm2. For G = 1,
99.9% of the total inertia is due to the link; only 0.1% of the acceleration torque
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accelerates the motor. With a gear ratio G = 100, however, the effective inertia
of the geared motor is ten times the inertia of the link.

When G is chosen so that G =
√
Ilink/Imotor, half of the torque is used to

accelerate each of the motor and the link, and the system is said to be inertia
matched, maximizing the power transferred to the link (Exercise 9).

Summarizing, we can make two observations comparing direct-drive and
highly geared systems:

• The behavior of geared systems is generally less sensitive to changes in
the link inertia, as when the arm carries a load, since the link inertia is a
smaller percentage of the total inertia due to the high reflected inertia of
geared motor.

• Friction forces are larger in highly geared systems. In the limit where
friction forces dominate inertial forces, the joint dynamics may be closer
to a first-order viscous system than a second-order inertial system.

These properties play an important role in the analysis of control laws for
multi-joint systems, discussed next.

11.2.2 Multi-Joint Motion Control

The methods applied above for a single-joint robot carry over directly to n-joint
robots. The difference is that the dynamics (11.4) now take the more general
vector-valued form

τ = M(θ)θ̈ + h(θ, θ̇),

where the n × n positive-definite inertia matrix M is now a function of the
configuration θ. We will sometimes find it convenient to explicitly state the
components of the term h(θ, θ̇):

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + b(θ̇), (11.20)

where C(θ, θ̇)θ̇ are Coriolis and centripetal terms, g(θ) are potential (e.g., grav-
ity) terms, and b(θ̇) are friction terms. In general, the dynamics (11.20) are
coupled—the force or torque at a joint may be a function of the positions, ve-
locities, and accelerations of other joints.

We distinguish between two types of control of multi-joint robots: decen-
tralized control, where each joint is controlled separately with no sharing of
information between joints, and centralized control, where full state informa-
tion for each of the n joints is available to calculate the controls for each joint.

11.2.2.1 Decentralized Multi-Joint Control

The simplest method for controlling a multi-joint robot, and one that is often
used, is to apply an independent controller at each joint. Decentralized control
is appropriate when the dynamics of the joints can be decoupled, or at least
approximately decoupled. The dynamics are decoupled when the acceleration
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of each joint depends only on the torque applied at that joint. This occurs when
the inertia matrix is diagonal, as in Cartesian or gantry robots, where the first
three axes are prismatic and orthogonal along the x-y-z axes. This kind of robot
is equivalent to three single-joint systems.

Approximate decoupling is also achieved in highly geared robots in the ab-
sence of gravity. The inertia matrix M(θ) is nearly diagonal, as it is dominated
by the reflected inertias of the motors themselves. Variations in M(θ) due to
different joint configurations are small. Significant friction at the individual
joints also contributes to the decoupling of the dynamics.

11.2.2.2 Centralized Multi-Joint Control

When gravity forces and torques are significant and coupled, or when the iner-
tia matrix M(θ) is not well approximated by a diagonal matrix, decentralized
control may no longer yield acceptable performance. In this case, the feedback
linearizing control law (11.19) of Figure 11.11 can be generalized. The configu-
rations θ and θd and the error θe = θd − θ are now n-vectors, and the positive
scalar gains become positive-definite matrices Kp,Ki,Kd:

τ = M̂(θ)

(
θ̈d +Kpθe +Ki

∫
θe(t)dt+Kdθ̇e

)
+ ĥ(θ, θ̇). (11.21)

Typically we choose the gain matrices as kpI, kiI, kdI, where I is the n × n
identity matrix and kp, ki, and kd are nonnegative scalars. In the case of an

exact dynamics model M̂ and ĥ, the dynamics of each joint reduces to the
linear dynamics (11.17). The block diagram and pseudocode for this control
algorithm are found in Figures 11.11 and 11.13, respectively.

Implementing the control law (11.21) requires calculating potentially com-
plex dynamics. We may not have a good model of these dynamics, or the
equations may be too computationally expensive to calculate at servo rate. In
this case, if the desired velocities and accelerations are small, an approximation
to (11.21) can be obtained using only PID control and gravity compensation:

τ = Kpθe +Ki

∫
θe(t)dt+Kdθ̇e + ĝ(θ). (11.22)

With zero friction, perfect gravity compensation, and PD setpoint control (Ki =
0 and θ̇d = θ̈d = 0), the controlled dynamics can be written

M(θ)θ̈ + C(θ, θ̇)θ̇ = Kpθe −Kdθ̇, (11.23)

where the Coriolis and centripetal terms are written C(θ, θ̇)θ̇, and any viscous
friction effects are included in Kd for simplicity. We can now define a virtual



11.2. Motion Control 305

“error energy,” the sum of an “error potential energy” stored in the virtual
spring and an “error kinetic energy”:

V (θe, θ̇e) =
1

2
θTe Kpθe +

1

2
θ̇TeM(θ)θ̇e. (11.24)

Since θ̇d = 0, this reduces to

V (θe, θ̇) =
1

2
θTe Kpθe +

1

2
θ̇TM(θ)θ̇. (11.25)

Taking the time derivative and plugging in (11.23), we get

V̇ = −θ̇TKpθe + θ̇TM(θ)θ̈ +
1

2
θ̇T Ṁ(θ)θ̇

= −θ̇TKpθe + θ̇T
(
Kpθe −Kdθ̇ − C(θ, θ̇)θ̇

)
+

1

2
θ̇T Ṁ(θ)θ̇. (11.26)

Rearranging, and using the fact that Ṁ − 2C is skew-symmetric, we get

V̇ = −θ̇TKpθe + θ̇T
(
Kpθe −Kdθ̇

)
+

1

2
θ̇T
(
Ṁ(θ)− 2C(θ, θ̇)

)
θ̇

= −θ̇TKdθ̇ ≤ 0. (11.27)

This shows that the error energy is decreasing when θ̇ 6= 0. If θ̇ = 0 and
θ 6= θd, the virtual spring ensures that θ̈ 6= 0, so θ̇e will again become nonzero
and more energy will be dissipated. Thus by the Krasovskii-LaSalle invariance
principle (Exercise 13), the total error energy decreases monotonically and the
robot converges to rest at θd (θe = 0) from any initial state.

11.2.3 Task Space Motion Control

In Section 11.2.2, we focused on motion control in joint space. This is convenient
because joint limits are easily expressed in this space, and the robot should be
able to execute any joint-space path respecting these limits. Trajectories are
naturally described by the joint variables, and there are no issues of singularities
or redundancy.

On the other hand, since the robot interacts with the external environment
and objects in it, it may be more convenient to express the motion as a trajectory
of the end-effector in task space. Let the end-effector trajectory be specified by
(X(t),V(t)), where X ∈ SE(3) or X ∈ Rn, for example, with V ∈ Rn the
velocity. Provided the corresponding trajectory in joint space is feasible and
does not pass through a dynamic singularity where M(θ) loses rank, we now
have two options for control: (1) convert to a joint-space trajectory and proceed
with control as in Section 11.2.2 or (2) express the robot dynamics and control
law in the task space.

The first option is to convert the trajectory to joint space. The forward
kinematics are X = f(θ) and V = J(θ)θ̇, where J(θ) is the appropriate Jacobian
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based on the chosen velocity representation V. Then the joint space trajectory
is obtained from the task space trajectory by

(inverse kinematics) θ(t) = f−1(X(t)) (11.28)

θ̇(t) = J−1(θ(t))V(t) (11.29)

θ̈(t) = J−1(θ(t))
(
V̇(t)− J̇(θ(t))θ̇(t)

)
. (11.30)

If the robot is redundant, i.e., J(θ) has more columns than rows, a redundancy
resolution scheme must be used to solve for f−1 and J−1.

A drawback of this approach is that we must calculate the inverse kinematics,
which may require significant computing power. The second option is to express
the robot’s dynamics in task-space coordinates, as discussed in Chapter 8.6.
Recall the task-space dynamics

F = Λ(θ)V̇ + γ(θ,V) + η(θ).

The joint forces and torques τ are related to the forces F expressed in the
end-effector frame by τ = JT (θ)F .

We can now write a control law in task coordinates inspired by the feedback
linearizing control law in joint coordinates (11.21),

τ = JT (θ)

(
Λ̂(θ)

(
V̇d +KpXe +Ki

∫
Xe(t)dt+KdVe

)
+ γ̂(θ,V) + η̂(θ)

)
,

(11.31)

where V̇d is the desired acceleration and Λ̂, γ̂, and η̂ represent the controller’s
dynamics model.

The task-space control law (11.31) makes use of the configuration error Xe

and velocity error Ve. When X is expressed in a minimal set of coordinates
(X ∈ Rn) and V = Ẋ, a natural choice is Xe = Xd − X,Ve = Vd − V. When
X = (R, p) ∈ SE(3), however, there are a number of possible choices, including
the following:

• V = Vb and J(θ) = Jb(θ) in the end-effector frame {b}. A natural choice
would be Xe = logSE(3)(X

−1Xd) and Ve = AdX−1XdVd − V. The expres-
sion for Xe gives the body-fixed “direction” from the current configuration
X to the desired configuration Xd in the end-effector frame. The trans-
form AdX−1Xd transports the desired velocity Vd from Xd to a velocity
expressed in the end-effector frame at X.

• V = Vs and J(θ) = Js(θ) in the space frame {s}. A natural choice would
be Xe = logSE(3)(XdX

−1) and Ve = Vd − V.

• V and J(θ) chosen so that V = (ω, v), where ω is the angular velocity of
the end-effector relative to {s} and v = ṗ. A natural choice would be

Xe =

[
logSO(3)(RdR

T )

pd − p

]
and Ve = Vd − V.
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These choices lead to different behaviors of the robot. In particular, the last
choice decouples the rotational and linear corrective terms.

11.3 Force Control

When the goal is not to create motions at the end-effector, but to apply forces
and torques to the environment, the task requires force control. Pure force
control is only possible if the environment provides resistance forces in every
direction (e.g., when the end-effector is embedded in concrete or attached to
a spring-damper providing resistance in every motion direction). Pure force
control is a bit of an abstraction, as robots are usually able to move freely in at
least some direction. It is a useful abstraction, however. It also leads to hybrid
motion-force control in the next section.

In ideal force control, the force applied by the end-effector is unaffected by
disturbance motions applied to the end-effector. This is dual to the case of ideal
motion control, where the motion is unaffected by disturbance forces. Force
control is dual to motion control in the sense that forces are dual to velocities,
with their product being power, an intrinsic, coordinate-free concept.

Let Fapp be the force that the manipulator applies to the environment. The
manipulator dynamics can be written

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + b(θ̇) + JT (θ)Fapp = τ, (11.32)

where the Jacobian J(θ) satisfies V = J(θ)θ̇. Since the robot typically moves
slowly (or not at all) during a force control task, we ignore the acceleration and
velocity terms to get

g(θ) + JT (θ)Fapp = τ. (11.33)

In the absence of any direct measurements of the force-torque at the robot
end-effector, joint angle feedback alone can be used to implement the force
control law

τ = ĝ(θ) + JT (θ)Fd, (11.34)

where ĝ(θ) is the model of gravitational torques and Fd is the desired force. This
control law requires a good model for gravity compensation as well as precise
control of the torques produced at the robot joints. In the case of a direct-drive
joint, torque control can be achieved by current control of the motor. In the
case of a highly geared actuator, however, large friction torque in the gearing
degrades the quality of torque control achieved using only current control. In
this case, the output of the gearing can be instrumented with strain gauges to
directly measure the joint torque, which is fed back to a local controller that
modulates the motor current to achieve the desired output torque.

A more common solution is to equip the robot arm with a six-axis force-
torque sensor between the arm and the end-effector to directly measure the
end-effector forces Fapp (Figure 11.15). Force-torque measurements are often
noisy, so the time derivative of these measurements may not be meaningful.
In addition, the desired force Fd is typically constant or only slowly changing.
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six-axis
force-torque

sensor

Figure 11.15: A six-axis force-torque sensor, highlighted in yellow, mounted
between the Barrett WAM robot arm and its end-effector.

These characteristics suggest a PI controller with a feedforward term and gravity
compensation,

τ = ĝ(θ) + JT (θ)

(
Fd +KfpFe +Kfi

∫
Fe(t)dt

)
, (11.35)

where Fe = Fd − Fapp and Kfp and Kfi are positive-definite proportional and
integral gain matrices, respectively. In the case of perfect gravity modeling,
plugging the force controller (11.35) into the dynamics (11.33), we get the error
dynamics

KfpFe +Kfi

∫
Fe(t)dt = 0. (11.36)

In the case of a constant force disturbance on the right-hand side of (11.36),
arising from an incorrect model of ĝ(θ), for example, we take the derivative to
get

KfpḞe +KfiFe = 0, (11.37)

showing that Fe converges to zero for positive-definite Kfp and Kfi.
The control law (11.35) is simple and appealing, but potentially dangerous if

incorrectly applied. If there is nothing for the robot to push against, the robot
will accelerate in a failing attempt to create end-effector forces. Since a typical
force control task requires little motion, we can limit this acceleration by adding
velocity damping. This gives the modified control law

τ = ĝ(θ) + JT (θ)

(
Fd +KfpFe +Kfi

∫
Fe(t)dt−KdampV

)
, (11.38)

where Kdamp is positive definite.
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11.4 Hybrid Motion-Force Control

Most tasks requiring the application of controlled forces also require the applica-
tion of controlled motions. Control to achieve this is called hybrid motion-force
control. If the the task space is n-dimensional, then we are free to specify n
of the 2n forces and motions at any time t; the other n are determined by the
environment. Apart from this constraint, we also should not specify forces and
motions in the “same direction,” as they are not independent.

As an example, consider a two-dimensional environment modeled by a damper,
F = BenvV, where

Benv =

[
2 1
1 1

]
.

Defining the components of V and F as (V1,V2) and (F1,F2), we have F1 =
2V1 + V2,F2 = V1 + V2. We have n = 2 freedoms to choose among the 2n = 4
velocities and forces at any time. For example, we can specify both F1 and V1

independently, because Benv is not diagonal. Then V2 and F2 are determined
by Benv. We cannot independently control both F1 and 2V1 + V2, however, as
these are in the “same direction” according to the damper.

11.4.1 Natural and Artificial Constraints

A particularly interesting case is when the environment is infinitely stiff (rigid
constraints) in k directions and unconstrained in n− k directions. In this case,
we cannot choose which of the 2n motions and forces to specify—the contact
with the environment chooses the k directions in which the robot can freely
apply forces and the n − k directions of free motion. As an example, consider
the task space to have the n = 6 dimensions of SE(3). Then a robot opening a
cabinet door has 6− k = 1 motion freedom, rotation about the cabinet hinges,
and therefore k = 5 force freedoms—the robot can apply any force and torque
that has zero moment about the axis of the hinges.

As another example, a robot writing on a chalkboard may freely control the
force into the board (k = 1), but it cannot penetrate the board; and it may
freely move with 6−k = 5 degrees of freedom (two specifying the motion of the
tip of the chalk in the plane of the board, and three describing the orientation
of the chalk), but it cannot independently control forces in these directions.

The chalk example comes with two caveats. The first is due to friction—
the chalk-wielding robot can actually control forces tangent to the plane of the
board, provided the requested motion in the plane of the board is zero and the
requested tangential forces do not exceed the static friction limit determined by
the friction coefficient and the normal force into the board (see friction modeling
in Chapter 12). Within this regime, the robot has three motion freedoms and
three force freedoms. Second, the robot could decide to pull away from the
board. In this regime, the robot has six motion freedoms and no force freedoms.
Thus the configuration of the robot is not the only determinant in the directions
of motion and force freedoms. Nonetheless, in this section we consider the
simplified case where the motion and force freedoms are determined solely by the
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Figure 11.16: The fixed space frame {s} attached to the chalkboard and the
body frame {b} attached to the eraser.

robot’s configuration, and all constraints are equality constraints. For example,
the inequality velocity constraint of the board (the chalk cannot penetrate the
board) is treated as an equality constraint (the robot also does not pull the
chalk away from the board).

As a final example, consider a robot erasing a chalkboard using an eraser
modeled as a rigid block (Figure 11.16). Let the configuration X(t) be expressed
in coordinates q = (φ, p) = (φx, φy, φz, x, y, z), where φ are exponential coordi-
nates for the orientation. The velocity is represented as V = q̇. When the eraser
is in contact with the board, its configuration X(t) is subject to the constraints

φx = 0

φy = 0

z = c

where c is half the thickness of the eraser. These constraints can be expressed
differentially as

φ̇x = 0

φ̇y = 0

ż = 0

In the language of Chapter 2, these constraints are holonomic—the differential
constraints can be integrated to give the configuration constraints.

These constraints are called natural constraints, specified by the environ-
ment. In light of the natural constraints, we can specify any motion of the
eraser satisfying these k = 3 velocity constraints, giving 6− k = 3 motion free-
doms. We are also free to specify k = 3 forces, Fz,Fφx , and Fφy . These motion
and force specifications are called artificial constraints. Below is a typical set of
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artificial constraints corresponding to the natural constraints:

natural constraints artificial constraints

φ̇x = 0 Fφx = 0

φ̇y = 0 Fφy = 0

Fφz = 0 φ̇z = 0

Fx = 0 ẋ = k1

Fy = 0 ẏ = 0

ż = 0 Fz = k2

The artificial constraints cause the eraser to move with an x-velocity k1 while
applying a constant force k2 against the board.

11.4.2 A Hybrid Controller

We now return to the problem of designing a hybrid motion-force controller. If
the environment is rigid, then we express the k natural constraints on velocity
in task space as

A(X)V = 0, (11.39)

where A(X) ∈ Rk×n. (Alternatively, these constraints could be written in a
minimal set of task coordinates as A(q)q̇ = 0 or in joint coordinates as A(θ)θ̇ =
0.) This formulation includes holonomic and nonholonomic contact constraints
with the environment, as well as closure constraints in parallel mechanisms.

If the task-space dynamics of the robot, in the absence of constraints, are

F = Λ(θ)V̇ + γ(θ,V) + η(θ),

then the constrained dynamics are

F = Λ(θ)V̇ + γ(θ,V) + η(θ) +AT (X)λ︸ ︷︷ ︸
Fapp

, (11.40)

where λ ∈ Rk are Lagrange multipliers and Fapp are forces that the robot applies
against the constraints. The requested force Fd must lie in the column space of
AT (X).

Since (11.39) must be satisfied at all times, we can replace (11.39) by the
time derivative

A(X)V̇ + Ȧ(X)V = 0. (11.41)

Now, solving (11.40) for V̇, plugging the result into (11.41), and solving for λ,
we get

λ = (AΛ−1AT )−1(AΛ−1(F − γ − η) + ȦV)

= (AΛ−1AT )−1(AΛ−1(F − γ − η)−AV̇), (11.42)
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where we have plugged in −AV̇ = ȦV by (11.41). With (11.42), we can calculate
the forces Fapp = AT (q)λ the robot applies against the constraints.

Plugging (11.42) into (11.40) and manipulating, the n equations of the con-
strained dynamics (11.40) can be expressed as the n − k independent motion
equations

P (X)F = P (X)(Λ(θ)V̇ + γ(θ,V) + η(θ)) (11.43)

where
P = I −AT (AΛ−1AT )−1AΛ−1 (11.44)

and I is the identity matrix. The n×n matrix P (X) has rank n−k and projects
an arbitrary manipulator force F onto the subspace of forces that move the end-
effector tangent to the constraints. The rank k matrix I − P (X) projects an
arbitrary force F to the subspace of forces against the constraints. Thus P
partitions the n-dimensional force space into forces that address the motion
control task and forces that address the force control task.

Our hybrid motion-force controller is simply the sum of a task-space motion
controller, derived from the feedback linearizing control law (11.31), and a task-
space force controller (11.35), each projected to generate forces in its appropriate
subspace:

τ = JT (θ)

[
P (X)

(
Λ̂(θ)

[
V̇d +KpXe +Ki

∫
Xe(t)dt+KdVe

])
︸ ︷︷ ︸

motion control

+ (I − P (X))

(
Fd +KfpFe +Kfi

∫
Fe(t)dt

)
︸ ︷︷ ︸

force control

+ γ̂(θ,V) + η̂(θ)︸ ︷︷ ︸
nonlinear compensation

]
. (11.45)

Because the dynamics of the two controllers are decoupled by the orthogonal
projections P and I − P , the controller inherits the error dynamics and stabil-
ity analyses of the individual force and motion controllers on their respective
subspaces.

A difficulty in implementing the hybrid control law (11.45) in rigid envi-
ronments is knowing precisely the constraints A(X)V = 0 active at any time.
This is necessary to specify the desired motion and force and to calculate the
projections, but any model of the environment will have some uncertainty. One
approach to dealing with this issue is to use a real-time estimation algorithm to
identify the constraint directions based on force feedback. Another is to sacri-
fice some performance by choosing low feedback gains, which makes the motion
controller “soft” and the force controller more tolerant of force error. We can
also build passive compliance into the structure of the robot itself to achieve
a similar effect. In any case, some passive compliance is unavoidable, due to
flexibility in the joints and links.
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Figure 11.17: A robot creating a one-degree-of-freedom mass-spring-damper
virtual environment. The human hand applies a force f to the haptic interface.

11.5 Impedance Control

Ideal hybrid motion-force control in rigid environments demands extremes in
robot impedance, which characterizes the change in endpoint motion as a func-
tion of disturbance forces. Ideal motion control corresponds to high impedance
(little change in motion due to force disturbances) while ideal force control cor-
responds to low impedance (little change in force due to motion disturbances).
In practice, there are limits to a robot’s achievable impedance range.

In this section, we consider the problem of impedance control, where the
robot mimics particular mass, spring, and damper properties.1 For example,
a robot used as a haptic surgical simulator could be tasked with mimicking
the mass, stiffness, and damping properties of a virtual surgical instrument in
contact with virtual tissues.

A one-degree-of-freedom environment can be written

mẍ+ bẋ+ kx = f, (11.46)

where x is the position, m is the mass, b is the damping, and k is the stiffness,
and f is the force applied to the environment (Figure 11.17). Collectively, we
refer to the parameters {m, b, k} as the impedance. Loosely, we say that the
environment has high impedance if one or more of these parameters, usually
including b or k, is large. Similarly, we say that the impedance is low if all of
these parameters are small.

More formally, taking the Laplace transform of (11.46), we get

(ms2 + bs+ k)X(s) = F (s), (11.47)

and the impedance is defined by the transfer function from position pertur-
bations to forces, Z(s) = F (s)/X(s). Thus impedance is frequency depen-
dent, with low-frequency response dominated by the spring and high-frequency
response dominated by the mass. Admittance is the inverse of impedance,
Y (s) = Z−1(s) = X(s)/F (s).

A good motion controller is characterized by high impedance (low admit-
tance), since ∆X = Y∆F . If the admittance Y is small, then force perturbations

1A popular subcategory of impedance control is stiffness or compliance control, where the
robot mimics a virtual spring only.
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∆F produce only small position perturbations ∆X. Similarly, a good force con-
troller is characterized by low impedance (high admittance), since ∆F = Z∆X,
and small Z implies that motion perturbations produce only small force pertur-
bations.

The goal of impedance control is to implement the task-space behavior

DV̇ +BV +KX = Fext, (11.48)

where X ∈ Rn and V = Ẋ are the task-space position and velocity; D,B, and
K are the positive-definite virtual inertia, damping, and stiffness to be created
by the robot; and Fext is a force applied to the robot, perhaps by a user. The
values of D,B, and K may change depending on the location in the virtual
environment, to represent distinct objects for instance, but we will focus on the
case of constant values.

We can replace X and V in (11.48) by X(t) − Xref(t) and V(t) − Vref(t).
If Xref(t) is time-varying, it will “pull” the robot approximately along the tra-
jectory. This allows impedance control to achieve motion control, much like
a task-space PD controller. Larger stiffness K and damping B achieve more
precise trajectory tracking.

There are at least two ways to achieve the behavior (11.48):

• The robot senses motions and commands joint torques to create −Fext, the
force to display to the user. Such a robot is called impedance controlled,
as it implements a transfer function Z(s) from motions to forces. These
robots tend to be lightweight and backdrivable, and are often cable-driven.
They are typically good at displaying low impedances, and not as good at
displaying stiff, high impedance environments.

• The robot senses Fext using a wrist force-torque sensor and controls mo-
tions in response. Such a robot is called admittance controlled, as it
implements a transfer function Y (s) from forces to motions. These robots
tend to be highly geared. They are typically good at displaying stiff, high
impedance environments, and not as good at displaying low impedances.

11.5.1 Impedance Control Algorithm

In an impedance control algorithm, encoders, tachometers, and possibly ac-
celerometers are used to estimate the joint and endpoint positions, veloci-
ties, and possibly accelerations. Often these robots are not equipped with a
force-torque sensor, and instead rely on their ability to precisely control joint
torques with little friction to display the appropriate end-effector force −Fext

(from (11.48)) to the user. An ideal control law might be

τ = JT (θ)

 Λ̂(θ)V̇ + γ̂(θ,V) + η̂(θ)︸ ︷︷ ︸
arm dynamics compensation

− (DV̇ +BV +KX)︸ ︷︷ ︸
Fext

 . (11.49)
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Addition of an end-effector force-torque sensor allows the use of feedback terms
to more closely achieve the desired interaction force −Fext.

In the control law (11.49), it is assumed that V̇, V, and X are measured
directly. Measurement of the acceleration V̇ is likely to be noisy, however, and
there is the problem of attempting to compensate for the robot’s inertia after
the acceleration has been sensed. Therefore, it is not uncommon to eliminate
the inertial compensation term Λ̂(θ)V̇ and to set D = 0. The inertia of the arm
will be apparent to the user, but impedance-controlled manipulators are often
designed to be lightweight.

Additionally, instability can arise when (11.49) is used to simulate stiff envi-
ronments. Small changes in position, as measured by encoders for example, lead
to large changes in motor torques. This effective high gain, coupled with delays,
sensor quantization, and sensor errors, can lead to oscillatory behavior in stiff
virtual environments. On the other hand, the effective gains are low when em-
ulating low impedance environments. A lightweight backdrivable manipulator
can excel at impedance control.

11.5.2 Admittance Control Algorithm

In an admittance control algorithm, the force Fext applied by the user is sensed
by the wrist load cell, and the robot responds with an end-effector acceleration
satisfying (11.48). A simple approach is to calculate the desired end-effector
acceleration V̇d according to

DV̇d +BV +KX = Fext,

where (X,V) is the current state. Solving, we get

V̇d = D−1(Fext −BV −KX). (11.50)

Given V̇d, V, and X, integration over the servo timestep ∆t yields the desired
position and velocity Xd and Vd. The reference Xd,Vd, V̇d can be plugged into
the feedback linearizing control law in task coordinates (11.31). To make the
response smoother, the force readings can be low-pass filtered.

Simulating a low impedance environment is challenging for an admittance
control algorithm, as small forces produce large accelerations. The effective
large gains can produce instability. On the other hand, admittance control by
a highly geared robot can excel at emulating stiff environments.

11.6 Other Topics

Robust Control While all stable feedback controllers confer some amount of
robustness to uncertainty, the field of robust control deals with designing con-
trollers that explicitly guarantee the performance of a robot subject to bounded
parametric uncertainties, such as in its inertial properties.
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Adaptive Control Adaptive control of robots involves estimating the robot’s
inertia parameters during execution and updating the control law in real-time
to incorporate those estimates.

Iterative Learning Control Iterative learning control (ILC) generally fo-
cuses on repetitive tasks. For example, if a robot performs the same pick-and-
place operation over and over, the trajectory errors from the previous execution
can be used to modify the feedforward control for the next execution. In this
way, the robot improves its performance over time, driving execution error to-
ward zero. ILC differs from adaptive control in that the “learned” information
is generally nonparametric and focused on a single trajectory.

Passive Compliance and Flexible Manipulators All robots unavoidably
have some passive compliance. Models of this compliance could be as simple as a
single torsional spring at each revolute joint (e.g., to account for finite stiffness in
the flexsplines of harmonic drive gearing) or as complicated as treating links as
flexible beams. Two significant effects of flexibility are (1) a mismatch between
the motor angle reading, the true joint angle, and the endpoint of the attached
link, and (2) increased order of the dynamics of the robot. These issues raise
challenging problems in control, particularly when vibration modes are at low
frequencies.

Some robots are specifically designed for passive compliance, particularly
those meant for contact interactions with humans or the environment. Such
robots may sacrifice position control performance in favor of safety.

Variable Impedance Actuators The impedance of a joint is typically con-
trolled using a feedback control law, as described in Section 11.5. There are lim-
its to the bandwidth of this control, however; a joint that is actively controlled
to behave as a spring will only achieve spring-like behavior to low-frequency
perturbations.

A new class of actuators, called variable impedance actuators or variable stiff-
ness actuators, aims to give actuators the desired passive mechanical impedance
without the bandwidth limitations of an active control law. As an example, a
variable stiffness actuator may comprise two motors, allowing the actuator to
independently control the mechanical stiffness of the joint (e.g., based on the
setpoint of an internal nonlinear spring) and the torque produced by the actu-
ator.

11.7 Summary

• A PID joint-space feedback controller takes the form

τ = Kpθe +Ki

∫
θe(t)dt+Kdθ̇e,
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where θe = θd − θ and θd is the vector of desired joint angles. The pro-
portional term acts like a virtual spring, to pull the robot joints to the
desired positions; the derivative term acts like a virtual damper, acting to
reduce velocity differences between the actual and desired velocities; and
the integral term can be used to eliminate steady-state error in setpoint
control.

• The linear error dynamics

anθ
(n)
e + an−1θ

(n−1)
e + . . .+ a2θ̈e + a1θ̇e + a0θe = 0

are stable, i.e., initial errors converge exponentially to zero, if and only if
all of the complex roots s1, . . . , sn of the characteristic equation

ans
n + an−1s

n−1 + . . .+ a2s
2 + a1s+ a0 = 0

have real components less than zero, i.e., Re(si) < 0 for all i = 1 . . . n.

• Stable second-order linear error dynamics can be written in the standard
form

θ̈e + 2ζωnθ̇e + ω2
nθe = 0,

where ζ is the damping ratio and ωn is the natural frequency. The roots
of the characteristic equation are

s1,2 = −ζωn ± ωn
√
ζ2 − 1.

The system is overdamped if ζ > 1, critically damped if ζ = 1, and
underdamped if ζ < 1. The step response of a stable second-order system
is generally characterized by its overshoot, 2% settling time, and steady-
state error.

• Highly geared robots tend to have greater decoupling of their dynamics
due to high friction and large reflected motor inertias.

• The joint-space feedback linearizing (or computed torque) controller is

τ = M̂(θ)

(
θ̈d +Kpθe +Ki

∫
θe(t)dt+Kdθ̇e

)
+ ĥ(θ, θ̇).

This controller cancels nonlinear terms, uses feedforward control to antic-
ipate the desired acceleration, and uses linear feedback control for stabi-
lization.

• Joint-space PD control plus gravity compensation

τ = Kpθe +Kdθ̇e + ĝ(θ)

yields global convergence to θe = 0 by the Krasovskii-LaSalle invariance
principle.
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• The task-space feedback linearizing motion controller is

τ = JT (θ)

(
Λ̂(θ)

(
V̇d +KpXe +Ki

∫
Xe(t)dt+KdVe

)
+ γ̂(θ,V) + η̂(θ)

)
.

There are a number of possible choices for calculating Xe and Ve.

• Task-space force control can be achieved by the controller

τ = ĝ(θ) + JT (θ)

(
Fd +KfpFe +Kfi

∫
Fe(t)dt−KdampV

)
,

consisting of gravity compensation, feedforward force control, PI force
feedback, and damping to prevent fast motion.

• In an n-dimensional task space (where typically n = 6), rigid constraints
specify n − k free motion directions and k constraint directions in which
forces can be applied. These constraints can be represented as A(X)V = 0.
A force F can be partitioned as F = P (X)F+(I −P (X))F , where P (X)
projects to forces that move the end-effector tangent to the constraints
and I − P (X) projects to forces against the constraints. The projection
matrix P (X) is written in terms of the task-space inertia matrix Λ(θ) and
constraints A(X) as

P = I −AT (AΛ−1AT )−1AΛ−1.

• A hybrid motion-force controller using the projection P (X) can be written

τ = JT (θ)

[
P (X)

(
Λ̂(θ)

[
V̇d +KpXe +Ki

∫
Xe(t)dt+KdVe

])
︸ ︷︷ ︸

motion control

+ (I − P (X))

(
Fd +KfpFe +Kfi

∫
Fe(t)dt

)
︸ ︷︷ ︸

force control

+ γ̂(θ,V) + η̂(θ)︸ ︷︷ ︸
nonlinear compensation

]
.

• An impedance controller measures end-effector motions and creates end-
point forces to mimic a mass-spring-damper system. An admittance con-
troller measures end-effector forces and creates endpoint motions to achieve
the same purpose.
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11.8 Exercises

1. Classify the following robot tasks as motion control, force control, hybrid
motion-force control, impedance control, or some combination. Justify your
answer.

(i) Tightening a screw with a screwdriver.

(ii) Pushing a box on the floor.

(iii) Pouring a glass of water.

(iv) Shaking hands with a human.

(v) Throwing a baseball to hit a target.

(vi) Shoveling snow.

(vii) Digging a hole.

(viii) Giving a back massage.

(ix) Vacuuming the floor.

(x) Carrying a tray of glasses.

2. The 2% settling time of an underdamped second-order system is approx-
imately t = 4/(ζωn), based on exp(−ζωnt) = 0.02. What is the 5% settling
time?

3. Solve for any constants and give the specific equation for an underdamped
second-order system with ωn = 4, ζ = 0.2, θe(0) = 1, and θ̇e(0) = 0 (a step
response). Calculate the damped natural frequency, approximate overshoot,
and 2% settling time. Plot the solution on a computer and measure the exact
overshoot and settling time.

4. Solve for any constants and give the specific equation for an underdamped
second-order system with ωn = 10, ζ = 0.1, θe(0) = 0, and θ̇e(0) = 1. Calculate
the damped natural frequency. Plot the solution on a computer.

5. Consider a pendulum in gravity g = 10 m/s2. The pendulum consists of a
2 kg mass at the end of a 1 m massless rod. The pendulum joint has a viscous
friction coefficient of b = 0.1 Nms/rad.

(i) Write the equation of motion of the pendulum in terms of θ, where θ = 0
corresponds to the “hanging down” configuration.
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(ii) Linearize the equation of motion about the stable “hanging down” equi-
librium. To do this, replace any trigonometric terms in θ with the linear
term in the Taylor expansion. Give the effective mass and spring con-
stants m and k in the linearized dynamics mθ̈+bθ̇+kθ = 0. At the stable
equilibrium, what is the damping ratio? Is the system underdamped, crit-
ically damped, or overdamped? If it is underdamped, what is the damped
natural frequency? What is the time constant of convergence to the equi-
librium and the 2% settling time?

(iii) Now write the linearized equations of motion for θ = 0 at the balanced
upright configuration. What is the effective spring constant k?

(iv) You add a motor at the joint of the pendulum to stabilize the upright
position, and you choose a P controller τ = Kpθ. For what values of Kp

is the upright position stable?

6. You will develop a controller for a one-degree-of-freedom mass-spring-damper
system of the form mẍ+bẋ+kx = f , where f is the control force and m = 4 kg,
b = 2 Ns/m, and k = 0.1 N/m.

(i) What is the damping ratio of the uncontrolled system? Is the uncon-
trolled system overdamped, underdamped, or critically damped? If it is
underdamped, what is the damped natural frequency? What is the time
constant of convergence to the origin?

(ii) Choose a P controller f = Kpxe, where xe = xd − x is the position error
and xd = 0. What value of Kp yields critical damping?

(iii) Choose a D controller f = Kdẋe, where ẋd = 0. What value of Kd yields
critical damping?

(iv) Choose a PD controller that yields critical damping and a 2% settling time
of 0.01 s.

(v) For the PD controller above, if xd = 1 and ẋd = ẍd = 0, what is the
steady-state error xe(t) as t goes to infinity? What is the steady-state
control force?

(vi) Now plug a PID controller in for f . Assume xd 6= 0 and ẋd = ẍd = 0.
Write the error dynamics in terms of ẍe, ẋe, xe, and

∫
xe(t)dt on the

left-hand side and a constant forcing term on the right-hand side. (Hint:
You can write kx as −k(xd − x) + kxd.) Take the time derivative of this
equation and give the conditions on Kp, Ki, and Kd for stability. Show
that zero steady-state error is possible with a PID controller.

7. Simulation of a one-degree-of-freedom robot and robot controller.
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(i) Write a simulator for a one-joint robot consisting of a motor rotating a
link in gravity using the model parameters given in Section 11.2.1. The
simulator should consist of (1) a dynamics function that takes as input the
current state of the robot and the torque applied by the motor and gives as
output the acceleration of the robot; and (2) a numerical integrator that
uses the dynamics function to calculate the new state of the system over a
series of timesteps ∆t. A first-order Euler integration method suffices for
this problem (e.g., θ(k + 1) = θ(k) + θ̇(k)∆t, θ̇(k + 1) = θ̇(k) + θ̈(k)∆t).
Test the simulator in two ways: (a) starting the robot at rest at θ = −π/2
and applying a constant torque of 0.5 Nm and (b) starting the robot at
rest at θ = −π/4 and applying a constant torque of 0 Nm. For both
examples, plot the position as a function of time for sufficient duration to
see the basic behavior. Make sure the behavior makes sense. A reasonable
choice of ∆t is 1 ms.

(ii) Add two more functions to your simulator: (1) a trajectory generator
function that takes the current time and returns the desired state and
acceleration of the robot, and (2) a control function that takes the cur-
rent state of the robot and information from the trajectory generator and
returns a control torque. The simplest trajectory generator would return
θ = θd1 and θ̇ = θ̈ = 0 for all time t < T , and θ = θd2 6= θd1 and θ̇ = θ̈ = 0
for all time t ≥ T . This trajectory is a step function in position. Use PD
feedback control for the control function and set Kp = 10 Nm/rad. For a
well-tuned choice of Kd, give Kd (including units) and plot the position as
a function of time over 2 seconds for an initial state at rest at θ = −π/2
and a step trajectory with θd1 = −π/2 and θd2 = 0. The step occurs at
T = 1 s.

(iii) Demonstrate two different choices of Kd that yield (1) overshoot and (2)
sluggish response with no overshoot. Give the gains and the position plots.

(iv) Add a nonzero Ki to your original well-tuned PD controller to eliminate
steady-state error. Give the PID gains and plot the results of the step
test.

8. Modify the simulation of the one-joint robot in Exercise 7 to model a flexible
transmission from the motor to the link with a stiffness of 500 Nm/rad. Tune a
PID controller to give a good step response from θ = −π/2 to θ = 0. Give the
gains and plot the response.

9. Consider a motor with rotor inertia Imotor connected through a gearhead of
gear ratio G to a load of inertia Ilink. The load and motor are said to be inertia
matched if, for any given torque τm at the motor, the acceleration of the load
is maximized. The acceleration of the load can be written

θ̈ =
Gτm

Ilink +G2Imotor
.



322 Robot Control

Solve for the inertia matching gear ratio
√
Ilink/Imotor by solving dθ̈/dG = 0.

Show your work.

10. Simulation of a two-degree-of-freedom robot and robot controller (Fig-
ure 11.18).

(i) Dynamics. Derive the dynamics of a 2R robot in gravity (Figure 11.18).
The mass of link i is mi, the center of mass is a distance ri from the joint,
the inertia of link i about the joint is Ii, and the length of link i is Li.
There is no friction at the joints.

(ii) Direct drive. Assume each joint is directly driven by a DC motor with
no gearing. Each motor comes with specifications of the mass mstator

i

and inertia Istator
i of the stator and the mass mrotor

i and inertia Irotor
i of

the rotor (the spinning portion). For the motor at joint i, the stator is
attached to link i − 1 and the rotor is attached to link i. The links are
thin uniform-density rods of mass mi and length Li.

In terms of the quantities given above, for each link i ∈ {1, 2} give equa-
tions for the total inertia Ii about the joint, mass mi, and distance ri from
the joint to the center of mass. Think about how to assign the mass and
inertia of the motors to the different links.

(iii) Geared robot. Assume motor i has gearing with gear ratio Gi, and that the
gearing itself is massless. As in the part above, for each link i ∈ {1, 2}, give
equations for the total inertia Ii about the joint, mass mi, and distance
ri from the joint to the center of mass.

(iv) Simulation and control. As in Exercise 7, write a simulator with (at
least) four functions: a dynamics function, a numerical integrator, a tra-
jectory generator, and a controller. Assume zero friction at the joints,
g = 9.81 m/s2 in the direction indicated, Li = 1 m, ri = 0.5 m, m1 = 3 kg,
m2 = 2 kg, I1 = 2 kgm2, and I2 = 1 kgm2. Write a PID controller, find
gains that give a good response, and plot the joint angles as a function of
time for a trajectory with a reference at rest at (θ1, θ2) = (−π/2, 0) for
t < 1 s and (θ1, θ2) = (0,−π/2) for t ≥ 1 s. The initial state of the robot
is at rest with (θ1, θ2) = (−π/2, 0).

(v) Torque limits. Real motors have limits on torque. While these limits are
generally velocity dependent, here we assume that each motor’s torque
limit is independent of velocity, τi ≤ |τmax

i |. Assume τmax
1 = 100 Nm

and τmax
2 = 20 Nm. If the control law requests greater torque, the ac-

tual torque is saturated to these values. Rerun the previous PID control
simulation and plot the torques as well as the position as a function of
time.

(vi) Friction. Add a viscous friction coefficient of bi = 1 Nms/rad to each joint
and rerun the previous PID control simulation.
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Figure 11.18: A two-link robot arm. The length of link i is Li and its inertia
about the joint is Ii. Gravity is g = 9.81 m/s2.

11. For the two-joint robot of Exercise 10, write a more sophisticated trajectory
generator function. The trajectory generator should take as input

• the desired initial position, velocity, and acceleration of each joint;

• the desired final position, velocity, and acceleration; and

• the total time of motion T .

A call of the form

[qd,qdotd,qdotdotd] = trajectory(time)

returns the desired position, velocity, and acceleration of each joint at time
time. The trajectory generator should provide a trajectory that is a smooth
function of time.

As an example, each joint could follow a fifth-order polynomial trajectory of
the form

θd(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5. (11.51)

Given the desired positions, velocities, and accelerations of the joints at times
t = 0 and t = T , you can uniquely solve for the six coefficients a0 . . . a5 by
evaluating Equation (11.51) and its first and second derivatives at t = 0 and
t = T .

Tune a PID controller to track a fifth-order polynomial trajectory moving
from rest at (θ1, θ2) = (−π/2, 0) to rest at (θ1, θ2) = (0,−π/2) in T = 2 s. Give
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the values of your gains and plot the reference position of both joints and the
actual position of both joints. You are free to ignore torque limits and friction.

12. For the two-joint robot of Exercise 10 and fifth-order polynomial trajectory
of Exercise 11, write a feedback linearizing controller to stabilize the trajectory.
The robot has no joint friction or torque limits. The model of the link masses
should be 20% greater than their actual values to create error in the feedforward
model. Give the PID gains and plot the reference and actual joint angles for
both the feedback linearizing controller as well as PID control only.

13. The Krasovskii-LaSalle invariance principle states the following: Given a
system ẋ = f(x), x ∈ Rn such that f(0) = 0, and any energy-like function V (x)
such that

• V (x) > 0 for all x 6= 0;

• V (x)→∞ as x→∞;

• V (0) = V̇ (0) = 0; and

• V̇ (x) ≤ 0 along all trajectories of the system.

Let S be the largest set of Rn such that V̇ (x) = 0 and trajectories beginning
in S remain in S for all time. Then if S contains only the origin, the origin is
globally asymptotically stable—all trajectories converge to the origin.

Show how the Krasovskii-LaSalle principle is violated for centralized multi-
joint PD setpoint control with gravity compensation, using the energy function
V (x) from Equation (11.24), if Kp = 0 or Kd = 0. For a practical robot system,
is it possible to use the Krasovskii-LaSalle invariance principle to demonstrate
global asymptotic stability even if Kd = 0? Explain your answer.

14. The two-joint robot of Exercise 10 can be controlled in task space using
the endpoint task coordinates X = (x, y), as shown in Figure 11.18. The task
space velocity is V = Ẋ. Give the Jacobian J(θ) and the task-space dynamics

models Λ̂(θ), γ̂(θ,V), and η̂(θ) in the feedback linearizing control law (11.31).

15. Choose appropriate space and end-effector reference frames {s} and {b}
and express natural and artificial constraints, six each, that achieve the following
tasks: (a) opening a cabinet door; (b) turning a screw that advances linearly a
distance p for every revolution; and (c) drawing a circle on a chalkboard with a
piece of chalk.

16. Assume the end-effector of the two-joint robot in Figure 11.18 is constrained
to move on the line x − y = 1. The robot’s link lengths are L1 = L2 = 1. (a)
Write the constraint as A(X)V = 0, where X = (x, y) and V = Ẋ. (b) Write
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Figure 11.19: Two methods for controlling the torque at a joint driven by a
geared DC motor. (Top) The current to the motor is measured by measuring
the voltage across a small resistance in the current path. A PI controller works
to make the actual current better match the requested current Icom. (Bottom)
The actual torque delivered to the link is measured by a strain gauge.

the constraint as A(θ)θ̇ = 0.

17. Derive the constrained motion equations (11.43) and (11.44). Show all the
steps.

18. We have been assuming that each actuator delivers the torque requested by
the control law. In fact, there is typically an inner control loop running at each
actuator, typically at a higher servo rate than the outer loop, to try to track
the torque requested. Figure 11.19 shows two possibilities for a DC electric
motor, where the torque τ delivered by the motor is proportional to the current
I through the motor, τ = KtI. The torque from the DC motor is amplified by
the gearhead with gear ratio G.

In one control scheme, the motor current is measured by a current sensor
and compared to the desired current Icom; the error is passed through a PI con-
troller which sets the duty cycle of a low-power pulse-width-modulation (PWM)
digital signal; and the PWM signal is sent to an H-bridge that generates the
actual motor current. In the second scheme, a strain gauge torque sensor is
inserted between the output of the motor gearing and the link, and the mea-
sured torque is compared directly to the requested torque τcom. Since a strain
gauge measures deflection, the element it is mounted on must have a finite tor-
sional stiffness. Actuators called series elastic actuators are designed to have
particularly flexible torsional elements.
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(i) For the current sensing scheme, what multiplicative factor should go in
the block labeled Icom/τcom? Even if the PI current controller does its job
perfectly (Ierror = 0) and the torque constant Kt is perfectly known, what
effect may contribute to error in the generated torque?

(ii) For the strain gauge measurement method, explain the drawbacks, if any,
of having a flexible element between the gearhead and the link.



Chapter 12

Grasping and Manipulation

Most of the book so far has been concerned with kinematics, dynamics, motion
planning, and control of the robot itself. Only in Chapter 11, on the topics
of force control and impedance control, did the robot finally begin interacting
with an environment other than free space. This is when a robot really becomes
valuable—when it can perform useful work on objects in the environment.

In this chapter our focus moves outward, from the robot itself to the interac-
tion between the robot and its environment. The desired behavior of the robot
hand or end-effector, whether motion control, force control, hybrid motion-force
control, or impedance control, is assumed to be achieved perfectly using the
methods discussed so far. Our focus is on the contact interface between the
robot and objects, as well as contacts among objects and between objects and
constraints in the environment. In short, our focus is on manipulation rather
than the manipulator. Examples of manipulation include grasping, pushing,
rolling, throwing, catching, tapping, etc. To limit our scope, we will assume
that the manipulator, objects, and obstacles in the environment are rigid.

To simulate, plan, and control robotic manipulation tasks, we need an under-
standing of (at least) three elements: contact kinematics; forces applied through
contacts; and the dynamics of rigid bodies. Contact kinematics studies how rigid
bodies can move relative to each other without penetration, and classifies these
feasible motions according to whether the contacts are rolling, sliding, or sepa-
rating. Contact force models address the normal and frictional forces that can
be transmitted through rolling and sliding contacts. Finally, the actual motions
of the bodies are those that simultaneously satisfy the kinematic constraints,
contact force model, and rigid-body dynamics. The environment is assumed to
consist of one or more rigid movable parts; perhaps stationary constraints such
as floors, walls, and fixtures; and one or more controlled manipulators (e.g., “fin-
gers”) which could be under motion, force, hybrid motion-force, or impedance
control.

327
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12.1 Contact Kinematics

Contact kinematics is the study of how two or more rigid bodies can move
relative to each other while respecting the impenetrability constraint. It also
classifies motion in contact as either rolling or sliding. Let’s start by looking at
a single contact between two rigid bodies.

12.1.1 First-Order Analysis of a Single Contact

Consider two rigid bodies whose configuration is given by the local coordinate
column vectors q1 and q2, respectively. Writing the composite configuration
as q = [qT1 , q

T
2 ]T , we define a distance function d(q) between the parts that is

positive when they are separated, zero when they are touching, and negative
when they are in penetration. When d(q) > 0, there are no constraints on the
motions of the parts; each is free to move with six degrees of freedom. When
the parts are in contact (d(q) = 0), we look at the time derivatives ḋ, d̈, etc., to
determine if the parts stay in contact or break apart as they follow a particular
trajectory q(t). This can be determined by the following table of possibilities:

d ḋ d̈ . . .
> 0 no contact
< 0 infeasible (penetration)
= 0 > 0 in contact, but breaking free
= 0 < 0 infeasible (penetration)
= 0 = 0 > 0 in contact, but breaking free
= 0 = 0 < 0 infeasible (penetration)
etc.

The contact is maintained only if all time derivatives are zero.
Now let’s assume that the two bodies are initially in contact (d = 0) at a

single point. The first two time derivatives of d are written

ḋ =
∂d

∂q
q̇ (12.1)

d̈ = q̇T
∂2d

∂q2
q̇ +

∂d

∂q
q̈. (12.2)

The terms ∂d/∂q and ∂2d/∂q2 carry information about the local contact geom-
etry. The gradient vector ∂d/∂q corresponds to the separation direction in q
space associated with the contact normal (Figure 12.1). The matrix ∂2d/∂q2

encodes information about the relative curvature of the parts at the contact
point.

In this chapter we assume that only contact normal information ∂d/∂q is
available at contacts. Other information about the local contact geometry, in-
cluding the contact curvature ∂2d/∂q2 and higher derivatives, is unknown. With
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contact
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contact
tangent plane

A
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n̂

Figure 12.1: (Left) The parts A and B in single-point contact define a contact
tangent plane and a contact normal vector n̂ perpendicular to the tangent plane.
By default, the positive direction of the normal is chosen into body A. Since
contact curvature is not addressed in this chapter, the contact places the same
restrictions on the motions of the rigid bodies in the middle and right panels.

this assumption, we truncate our analysis at Equation (12.1) and assume bodies
remain in contact if ḋ = 0. Since we deal only with the first-order contact deriva-
tive ∂d/∂q, we refer to our analysis as a first-order analysis. By a first-order
analysis, the contacts in Figure 12.1 are treated identically.

As indicated in the table above, a second-order analysis incorporating con-
tact curvature ∂2d/∂q2 may indicate that the contact is actually breaking or
penetrating even when d = ḋ = 0. We will see examples of this, but a detailed
analysis of second-order contact conditions is beyond the scope of this chapter.

12.1.2 Contact Types: Rolling, Sliding, and Breaking Free

Given two bodies in single-point contact, they undergo a roll-slide motion
if the contact is maintained. The constraint that contact is maintained is a
holonomic constraint, as discussed in Chapter ??. A necessary condition for
maintaining contact is ḋ = 0.

Let’s write the velocity constraint ḋ = 0 in a form that does not require an
explicit distance function, based on the contact normal (Figure 12.1). Let n̂ be
a unit vector aligned with the contact normal, expressed in a world frame. Let
pA be a representation of the point in contact on part A in the world frame,
and pB be the point in contact on part B. The condition ḋ = 0 is written

n̂T (ṗA − ṗB) = 0. (12.3)

Since the contact normal is defined as into body A, the impenetrability con-
straint ḋ ≥ 0 is written

n̂T (ṗA − ṗB) ≥ 0. (12.4)

Let us rewrite the constraint (12.4) in terms of the twists VA = (ωA, vA) and
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VB = (ωB , vB) of parts A and B in a space frame, respectively.1 Note that

ṗA = vA + ωA × pA = vA + [ωA]pA

ṗB = vB + ωB × pB = vB + [ωB ]pB .

We can also write the wrench F = (m, f) corresponding to a unit force applied
along the contact normal:

F = (pA × n̂, n̂) = ([pA]n̂, n̂).

While it is not necessary to appeal to forces in a purely kinematic analysis of
rigid bodies, we will find it convenient to adopt this notation now in anticipation
of contact forces in Section 12.2.

With these expressions, the inequality constraint (12.4) can be written

(impenetrability constraint) FT (VA − VB) ≥ 0. (12.5)

(See Exercise 1). If

(active constraint) FT (VA − VB) = 0, (12.6)

then, to first order, the constraint is active and the parts remain in contact.
In the case that B is a stationary fixture, the impenetrability constraint

(12.5) simplifies to
FTVA ≥ 0. (12.7)

If the condition (12.7) is satisfied, F and VA are said to be repelling. If
FTVA = 0, F and VA are said to be reciprocal and the constraint is active.

Twists VA and VB satisfying (12.6) are called first-order roll-slide mo-
tions—the contact may be either sliding or rolling. Roll-slide contacts may
be further separated into rolling contacts and sliding contacts. The contact
is rolling if the parts have no motion relative to each other at the contact:

(rolling constraint) ṗA = vA + [ωA]pA = vB + [ωB ]pB = ṗB . (12.8)

Note that “rolling” contacts include those where the two parts remain stationary
relative to each other, i.e., no relative rotation.

If the twists satisfy Equation (12.6) but not the rolling equations of (12.8),
then they are sliding.

We assign a rolling contact the contact label R, a sliding contact the label
S, and a contact that is breaking free (the impenetrability constraint (12.5) is
satisfied but not the active constraint (12.6)) the label B.

The distinction between rolling and sliding contacts becomes especially im-
portant when we consider friction forces in Section 12.2.

1All twists and wrenches are expressed in an inertial space frame in this chapter.
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Figure 12.2: Example 12.1. (Left) The body B makes contact with A at pA =
pB = (1, 2, 0) with normal n̂ = (0, 1, 0). (Middle) The velocities VA and their
corresponding contact labels for B stationary and A confined to a plane. The
contact normal force F is mz = 1, fx = 0, fy = 1. (Right) Looking down the
−vAx axis.

Example 12.1. Consider the contact shown in Figure 12.2. Parts A and B
are in contact at pA = pB = (1, 2, 0) with contact normal direction n̂ = (0, 1, 0).
The impenetrability constraint (12.5) is

FT (VA − VB) ≥ 0

([pA]n̂, n̂)T (ωA − ωB , vA − vB) ≥ 0

[0, 0, 1, 0, 1, 0] [ωAx − ωBx, ωAy − ωBy, ωAz − ωBz,
vAx − vBx, vAy − vBy, vAz − vBz]T ≥ 0

ωAz − ωBz + vAy − vBy ≥ 0,

and therefore roll-slide twists satisfy

ωAz − ωBz + vAy − vBy = 0. (12.9)

Equation (12.9) defines an 11-dimensional hyperplane in the 12-dimensional
space of twists (VA,VB).

The rolling constraints (12.8) are

vAx + ωAzpAy − ωAypAz = vBx + ωBzpBy − ωBypBz
vAy + ωAzpAx − ωAxpAz = vBy + ωBzpBx − ωBxpBz
vAz + ωAxpAy − ωAypAx = vBz + ωBxpBy − ωBypBx,

and plugging in for pA and pB , we get

vAx + 2ωAz = vBx + 2ωBz (12.10)

vAy + ωAz = vBy + ωBz (12.11)

vAz + 2ωAx − ωAy = vBz + 2ωBx − ωBy. (12.12)
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The constraint equations (12.10)–(12.12) define a 9-dimensional hyperplane sub-
set of the 11-dimensional hyperplane of roll-slide twists.

To visualize the constraints in a low-dimensional space, let’s assume that
B is stationary (VB = 0) and A is confined to the z = 0 plane, i.e., VA =
(ωAx, ωAy, ωAz, vAx, vAy, vAz) = (0, 0, ωAz, vAx, vAy, 0). The wrench F is writ-
ten (mz, fx, fy) = (1, 0, 1). The roll-slide constraint (12.9) reduces to

ωAz + vAy = 0,

while the rolling constraints simplify to

vAx + 2ωAz = 0

vAy + ωAz = 0

The single roll-slide constraint yields a plane in the (ωAz, vAx, vAy) space, and
the two rolling constraints yield a line in that plane. Because VB = 0, the
constraint surfaces pass through the origin VA = 0. If VB 6= 0, this is no longer
the case in general.

Figure 12.2 graphically shows that nonpenetrating twists VA must have a
nonnegative dot product with the constraint wrench F when VB = 0.

12.1.3 Multiple Contacts

Now suppose that A is subject to several contacts, from B and perhaps other
parts. Each impenetrability constraint (12.5) constrains VA to a half-space of
its six-dimensional twist space bounded by a five-dimensional hyperplane of the
form FTVA = FTVB . Unioning the set of constraints from all the contacts, we
get a polyhedral convex set (polytope2 for short) V of feasible twists in the
VA space, written

V = {VA | FTi (VA − Vi) ≥ 0 ∀i},

where Fi corresponds to the ith contact normal and Vi is the twist of the other
part in contact at contact i. A contact constraint i is redundant if the half-space
constraint contributed by Fi does not change the feasible twist polytope V . In
general, the feasible twist polytope for a part can consist of a six-dimensional
interior (where no contact constraint is active), five-dimensional faces where one
constraint is active, four-dimensional faces where two constraints are active, and
so on, down to one-dimensional edges and zero-dimensional points. A twist VA
on an n-dimensional facet of the polytope indicates that 6 − n independent
(non-redundant) contact constraints are active.

If all of the bodies providing constraints are stationary, such as fixtures, then
each constraint hyperplane defined by (12.5) passes through the origin of the VA
space. We call such a constraint homogeneous. The feasible twist set becomes

2We use the term “polytope” to refer generally to a convex set bounded by hyperplanes in
an arbitrary vector space. The set need not be finite; it could be a cone with infinite volume.
It could also be a point at the origin, or the null set if the constraints are incompatible with
the rigid-body assumption.
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a cone rooted at the origin, called a (homogeneous) polyhedral convex cone.
Let Fi be the constraint wrench of stationary contact i. Then the feasible twist
cone V is

V = {VA | FTi VA ≥ 0 ∀i}.

If the Fi positively span the six-dimensional wrench space, or, equivalently, the
convex hull of the Fi contains the origin in the interior, then the feasible twist
polytope reduces to a point at the origin, the stationary contacts completely
constrain the motion of the part, and we have form closure, discussed in more
detail in Section 12.1.7.

As mentioned in Section 12.1.2, each point contact i can be given a label
corresponding to the type of contact: B if the contact is breaking, R if the
contact is rolling, and S if the contact is sliding, i.e., (12.6) is satisfied but
(12.8) is not. The contact mode for the entire system can be written as the
concatenation of the contact labels at the contacts. Since we have three distinct
contact labels, a system of bodies with k contacts can have a maximum of 3k

contact labels. Some of these contact modes may not be feasible, however, as
their corresponding kinematic constraints may not be compatible.

Example 12.2. Figure 12.3 shows triangular fingers contacting a hexagonal
part A. To more easily visualize the contact constraints, the hexagon is re-
stricted to translational motion in a plane only, so that its twist can be written
VA = (0, 0, 0, vAx, vAy, 0). In Figure 12.3(a), the single stationary finger creates
a contact wrench F1 that can be drawn in the VA space. All feasible twists
have a nonnegative component in the direction of F1. Roll-slide twists satisfy-
ing FT1 VA = 0 lie on the constraint line. Since no rotations are allowed, the
only twist yielding a rolling contact is VA = 0. In Figure 12.3(b), the union of
the constraints due to two stationary fingers creates a cone of feasible twists.
Figure 12.3(c) shows three fingers in contact, one of which is moving with twist
V3. Because the moving finger has nonzero velocity, its constraint half-space is
displaced from the origin by V3. The result is a closed polygon of feasible twists.

Example 12.3. Figure 12.4 shows the contact normals of three stationary
contacts with a planar part A, not shown. The part moves in a plane, so vAz =
ωAx = ωAy = 0. In this example we do not distinguish between rolling and
sliding motions, so the locations of the contacts along the normals are irrelevant.
The three contact wrenches, written (mz, fx, fy), are F1 = (0, 1,−2),F2 =
(−1, 0, 1), and F3 = (1, 0, 1), yielding the motion constraints

vAy − 2ωAz ≥ 0

−vAx + ωAz ≥ 0

vAx + ωAz ≥ 0.

These constraints describe a polyhedral convex cone of feasible twists rooted at
the origin, as illustrated in Figure 12.4.
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Figure 12.3: Motion-controlled fingers contacting a hexagon that is constrained
to translate in a plane only (Example 12.2). (a) A single stationary finger pro-
vides a single half-space constraint on the hexagon’s twist VA. The feasible mo-
tion half-space is shaded gray. The two-dimensional set of twists corresponding
to breaking contact B, the one-dimensional set corresponding to sliding contact
S, and the zero-dimensional set corresponding to rolling (fixed) contact R are
shown. (b) The union of constraints from two stationary fingers creates a cone
of feasible twists. This cone corresponds to four possible contact modes: RR,
SB, BS, and BB. The contact label for the leftmost finger is given first. (c) Three
fingers, one of which is moving with a linear velocity V3, create a closed poly-
gon of feasible twists. There are seven possible contact modes corresponding to
the feasible twists: a two-dimensional set where all contacts are breaking, three
one-dimensional sets where one contact constraint is active, and three zero-
dimensional sets where two contact constraints are active. Note that rolling
contact at the moving finger is not feasible, since translation of the hexagon to
“follow” the moving finger, as indicated by the ◦ at the lower right of the figure,
would violate one of the impenetrability constraints. If the third finger were
stationary, the only feasible motion of the hexagon would be zero velocity, with
contact mode RRR.

12.1.4 Collections of Parts

The discussion above can be generalized to find the feasible twists of multiple
parts in contact. If parts i and j make contact at a point p, where n̂ points into
part i and F = ([p]n̂, n̂), then their spatial twists Vi and Vj must satisfy the
constraint

FT (Vi − Vj) ≥ 0 (12.13)

to avoid penetration. This is a homogeneous half-space constraint in the com-
posite (Vi,Vj) twist space. In an assembly of multiple parts, each pairwise
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x̂contact 1

contact 2

contact 3 vAy

ωAz

vAx contact 2

contact 3

contact 1
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ωAz

vAx
contact 2

contact 3

contact 1

Figure 12.4: Example 12.3. (Left) The lines of force corresponding to three
stationary contacts on a planar body. If we are only concerned with feasible
motions, and do not distinguish between rolling and sliding, contacts anywhere
along the lines, with the contact normals shown, are equivalent. (Right) The
three constraint half-spaces define a polyhedral convex cone of feasible twists.
In the figure, the cone is truncated at the plane vAy = 2. The outer faces of the
cone are shaded white and the inner faces are gray. Twists in the interior of the
cone correspond to all contacts breaking, while twists on the faces of the cone
correspond to an active constraint.

contact contributes another constraint in the composite twist space, and the
result is a polyhedral convex cone of kinematically feasible twists rooted at the
origin of the composite twist space. The contact mode for the entire assembly
is the concatenation of the contact labels at each contact in the assembly.

If there are moving contacts whose motion is prescribed, e.g., robot fingers,
the constraints on the motion of the remaining parts are no longer homogeneous.
As a result, the polyhedral feasible twist space is no longer a cone rooted at the
origin.

12.1.5 Other Types of Contacts

We have been considering point contacts of the type shown in Figure 12.5(a),
where at least one of the bodies in contact uniquely defines the contact normal.
Figures 12.5(b)-(e) show other types of contact. The kinematic constraints pro-
vided by the convex-concave vertex, line, and plane contacts of Figures 12.5(b)-
(d) are, to first order, identical to those provided by finite collections of single-
point contacts. Constraints provided by other points of contact are redundant.
The degenerate case in Figure 12.5(e) is ignored, as there is no unique definition
of a contact normal.

The impenetrability constraint (12.5) derives from the fact that arbitrarily
large contact forces can be applied in the normal direction to prevent penetra-
tion. In Section 12.2, we will see that tangential forces may also be applied
due to friction, and these forces may prevent slipping between two objects in
contact. Normal and tangential contact forces are subject to constraints: the
normal force must be pushing into a part, not pulling, and the maximum friction
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(a)     (b)            (c)                                 (d)             (e)

Figure 12.5: (a) Vertex-face contact. (b) A convex vertex contacting a concave
vertex can be treated as multiple point contacts, one at each face adjacent to
the concave vertex. These faces define the contact normals. (c) A line contact
can be treated as two point contacts at either end of the line. (d) A plane
contact can be treated as point contacts at the corners of the convex hull of the
contact area. (e) Convex vertex-vertex contact. This case is degenerate and not
considered.

force is proportional to the normal force.
If we wish to apply a kinematic analysis that can approximate the effects

of friction without explicitly modeling forces, we can define three purely kine-
matic models of point contacts: a frictionless point contact, a hard-finger
contact (or point contact with friction), and a soft-finger contact. A friction-
less point contact enforces only the roll-slide constraint (12.5). A hard-finger
contact also enforces the rolling constraints (12.8), implicitly modeling friction
sufficient to prevent slip at the contact. A soft-finger contact enforces the rolling
constraints (12.8) as well as one more constraint: the two bodies in contact may
not spin relative to each other about the contact normal axis. This models de-
formation and the resulting friction moment resisting spin due to the small but
nonzero contact area between the two bodies. For planar problems, a hard-finger
contact and a soft-finger contact are identical.

While these kinematic models are convenient for studying the kinematic
mobility of bodies in contact, we will not use them in the rest of this chapter.

12.1.6 Planar Graphical Methods

Planar problems allow the possibility of using graphical methods to visualize the
feasible motions for a single body, since the space of twists is three-dimensional.
An example planar twist cone is shown in Figure 12.4. Such a figure would be
very difficult to draw for a system with more than three degrees of freedom.

A convenient way to represent a planar twist V = (ωz, vx, vy) is as a center
of rotation (CoR) at (−vy/ωz, vx/ωz) plus the angular velocity ωz. The CoR is
the point in the (projective) plane that remains stationary under the motion.3

In the case that the speed of motion is immaterial, we may simply label the
CoR with a +, −, or 0 sign representing the direction of rotation (Figure 12.6).

3Note that the case ωz = 0 must be treated with care, as it corresponds to a CoR at
infinity.
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+ CoR

Figure 12.6: Given the velocity of two points on the part, the lines normal to
the velocities intersect at the CoR. The CoR shown is labeled + corresponding
to the (counterclockwise) positive angular velocity of the part.

z

V

Figure 12.7: Mapping a planar twist V to a CoR. The ray containing a vector
V intersects either the plane of + CoRs at ωz = 1, the plane of − CoRs at
ωz = −1, or the circle of translation directions.

The mapping from planar twists to CoRs is illustrated in Figure 12.7, which
shows that the space of CoRs consists of a plane of + CoRs (counterclockwise),
a plane of − CoRs (clockwise), and a circle of translation directions.

Given two distinct twists V1 and V2, the set of linear combinations of these
velocities k1V1 + k2V2, where k1, k2 ∈ R, maps to the line of CoRs containing
CoR(V1) and CoR(V2). Since k1 and k2 can have either sign, if either ω1z or
ω2z is nonzero, the CoRs on this line can have either sign. If ω1z = ω2z = 0,
then this set corresponds to the set of all translation directions.

A more interesting case is when k1, k2 ≥ 0. Given two twists V1 and V2, the
nonnegative linear combination of these two velocities is written

V = pos({V1,V2}) = {k1V1 + k2V2 | k1, k2 ≥ 0},
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z
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Figure 12.8: The intersection of a twist cone with the unit twist sphere, and the
representation of the cone as a set of CoRs.
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Figure 12.9: (a) Positive linear combination of two CoRs labeled +. (b) Positive
linear combination of a + CoR and a − CoR. (c) Positive linear combination of
three + CoRs. (d) Positive linear combination of two + CoRs and a − CoR.

a polyhedral convex twist cone rooted at the origin, with V1 and V2 defining the
edges of the cone. If ω1z and ω2z have the same sign, then the CoRs of their
nonnegative linear combinations CoR(pos({V1,V2})) all have that sign, and lie
on the line segment between the two CoRs. If CoR(V1) and CoR(V2) are labeled
+ and −, respectively, then CoR(pos({V1,V2})) consists of the line containing
the two CoRs, minus the segment between the CoRs. This set consists of a ray
of CoRs labeled + attached to CoR(V1), a ray of CoRs labeled − attached to
CoR(V2), and a point at infinity labeled 0, corresponding to translation. This
collection should be considered as a single line segment (though one passing
through infinity), just like the first case. Figures 12.8 and 12.9 show examples
of CoR regions corresponding to positive linear combinations of planar twists.

The CoR representation of planar twists is particularly useful for represent-
ing the feasible motions of one movable body in contact with stationary bodies.
Since the constraints are stationary, as noted in Section 12.1.3, the feasible
twists form a polyhedral convex cone rooted at the origin. This cone can be
represented uniquely by a set of CoRs with +, −, and 0 labels. A general twist
polytope, as in the case of moving constraints, cannot be uniquely represented
by a set of CoRs with +, −, and 0 labels.

Given a contact between a stationary body and a movable body, we can plot
the CoRs that do not violate the impenetrability constraint. Label all points
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+, Sr

+, B ±, R –, B

–, Sl

+, Sl –, Sr

Figure 12.10: The stationary triangle makes contact with a movable part. CoRs
to the left of the contact normal are labeled +, to the right are labeled −, and
on the normal labeled ±. Also given are the contact types for the CoRs. For
points on the contact normal, the sign assigned to Sl and Sr CoRs switches at
the contact point.

on the contact normal ±, points to the left of the inward normal +, and points
to the right −. All points labeled + can serve as CoRs with positive angular
velocity for the movable body, and all points labeled − can serve as CoRs with
negative angular velocity, without violating the first-order contact constraint.
We can further assign contact labels to each CoR corresponding to the first-
order conditions for breaking contact B, sliding contact S, and rolling contact
R. For planar sliding, we subdivide the label S into two subclasses: Sr, where
the moving body slips right relative to the fixed constraint, and Sl, where the
moving body slips to the left. Figure 12.10 illustrates the labeling. If there is
more than one contact, we simply union the constraints and contact labels from
the individual contacts.

Example 12.4. Figure 12.11(a) shows a planar part standing on a table while
being contacted by a stationary robot finger. The finger defines an inequality
constraint on the part’s motion and the table defines two more. The cone of
twists that do not violate the impenetrability constraints is represented by the
CoRs that are consistently labeled for each contact (Figure 12.11(b)). Each
feasible CoR is labeled with a contact mode that concatenates the labels for the
individual contacts (Figure 12.11(c)).

Now look more closely at the CoR labeled (+, SrBSr) in Figure 12.11(c).
Is this motion really possible? It should be apparent that it is, in fact, not
possible: the part would immediately penetrate the stationary finger. Our
incorrect conclusion is due to the fact that our first-order analysis ignores the
local contact curvature. A second-order analysis would show that this motion
is impossible. On the other hand, if the radius of curvature of the part at the
contact were sufficiently small, then the motion would be possible.
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Figure 12.11: Example 12.4. (a) A part resting on a table and the three contact
constraints. (b) The feasible twists representated as CoRs, shown in gray. Note
that the lines that extend off to the left and to the bottom “wrap around”
at infinity and come back in from the right and the top, respectively, so this
CoR region should be interpreted as a single connected convex region. (c) The
contact modes assigned to each feasible motion. The zero velocity contact mode
is RRR.

Thus a first-order analysis of a contact indicating roll-slide motion might be
classified as penetrating or breaking by a second-order analysis. Similarly, if
our second-order analysis indicates a roll-slide motion, a third or higher-order
analysis may indicate penetration or breaking free. In any case, if an nth-order
analysis indicates that the contact is breaking or penetrating, then no analysis
of order greater than n will change the conclusion, because the higher-order
effects are smaller.

12.1.7 Form Closure

Form closure of an object is achieved if a set of stationary constraints prevents
all motion of the object. If these constraints are robot fingers, we call this a
form-closure grasp.

Before proceeding, we introduce a few definitions from linear algebra.

Definition 12.1. Given a set of j vectors A = a1, . . . aj ∈ Rn, we define the
linear span, or the linear combinations, of the vectors to be

span(A) =

{
j∑
i=1

kiai | ki ∈ R

}
,

the nonnegative linear combinations, sometimes called the positive span,
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(a)           (b)    (c)   (d)

Figure 12.12: (a) Three vectors in R2, drawn as arrows from the origin. (b) The
linear span of the vectors is the entire plane. (c) The positive linear span is the
cone shaded gray. (d) The convex combination is the polygon and its interior.

to be

pos(A) =

{
j∑
i=1

kiai | ki ≥ 0

}
,

and the convex span to be

conv(A) =

{
j∑
i=1

kiai | ki ≥ 0 and
∑
i

ki = 1

}
.

Clearly conv(A) ⊂ pos(A) ⊂ span(A) (see Figure 12.12). The following
facts from linear algebra will also be useful.

1. The space Rn can be linearly spanned by n vectors, but no fewer.

2. The space Rn can be positively spanned by n+ 1 vectors, but no fewer.

3. From any set A of vectors positively spanning Rn, a subset of no more than
2n vectors can be chosen that also positively spans Rn.

The first fact is implicit in our use of n coordinates to represent Rn. Fact
2 follows from the fact that for any choice of n vectors A = {a1, . . . , an}, there
exists a vector c ∈ Rn such that aTi c ≤ 0 for all i. In other words, no nonnegative
combination of vectors in A can create a vector in the direction c. On the
other hand, if we choose a1, . . . , an to be orthogonal coordinate bases of Rn,
then choose an+1 = −

∑n
i=1 ai, we see that this set of n + 1 vectors positively

spans Rn. Fact 3 is stated without proof, and all three facts are illustrated in
Figure 12.13.

These definitions and facts are useful in determining the number of contacts
needed to immobilize an object by form closure.

12.1.7.1 Number of Contacts Needed for First-Order Form Closure

Each stationary contact i provides a half-space twist constraint of the form

FTi V ≥ 0.
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(a)        (b)                  (c)

Figure 12.13: (a) Two vectors spanning the plane but not positively spanning
the plane. (b) Three vectors positively spanning the plane. (c) Four vectors
positively spanning the plane from which no three vectors can be chosen which
also positively span the plane.

Form closure holds if the only velocity V satisfying the constraints is the zero
velocity. For j contacts, this condition is equivalent to

pos({F1, . . . ,Fj}) = R6

for parts in three dimensions. Therefore, by Fact 2 above, at least 6 + 1 = 7
contacts are needed for first-order form closure of spatial parts. For planar
parts, the condition is

pos({F1, . . . ,Fj}) = R3,

and 3 + 1 = 4 contacts are needed for first-order form closure. These results are
summarized in the following theorem.

Theorem 12.1. For a planar part, at least four contacts are needed for first-
order form closure. For a spatial part, at least seven contacts are needed.

Now consider the problem of grasping a circular disk in the plane. It should
be clear that kinematically preventing motion of the disk is impossible regardless
of the number of contacts; it will always be able to spin about its center. Such
objects are called exceptional—the positive span of the contact normal forces
at all points on the object is not equal to Rn, where n = 3 in the planar case
and n = 6 in the spatial case. Examples of such objects in three dimensions
include surfaces of revolution, such as spheres and ellipsoids.

Apart from these exceptional objects, we can directly use Fact 3 to show
that no more than six contacts are needed for planar form closure and no more
than twelve contacts for spatial form closure. With more detailed analysis, it is
possible to reduce the numbers further (to four and seven contacts for planar
and spatial cases, respectively), but we do not go into details here.

Figure 12.14 shows example planar grasps. The graphical methods of Sec-
tion 12.1.6 indicate that the four contacts in Figure 12.14(a) immobilize the
object. Our first-order analysis indicates that the parts in Figures 12.14(b) and
12.14(c) can each rotate about their centers in the three-finger grasps, but in
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Figure 12.14: (a) Four fingers yielding planar form closure. The first-order
analysis treats (b) and (c) identically, saying the triangle can rotate about its
center in each case. A second-order analysis shows this is not possible for (b).
The grasps in (d), (e), and (f) are identical by a first-order analysis, which says
that rotation about any center on the vertical line is possible. This is true for
(d), while only some of these centers are possible for (e). No motion is possible
in (f).

fact this is not possible for the part in Figure 12.14(b)—a second-order analy-
sis would tell us that this part is actually immobilized. Finally, the first-order
analysis tells us that the two-finger grasps in Figures 12.14(d)-(f) are identical,
but in fact the part in Figure 12.14(f) is immobilized by only two fingers due to
curvature effects.

To summarize, our first-order analysis always correctly labels breaking and
penetrating motions, but second- and higher-order effects may change first-
order roll-slide motions to breaking or penetrating. If an object is in form
closure by the first-order analysis, it is in form closure for any analysis; if only
roll-slide motions are feasible by the first-order analysis, the object could be in
form closure by a higher-order analysis; and otherwise the object is not in form
closure by any analysis.

12.1.7.2 A Linear Programming Test for First-Order Form Closure

Let F = [ F1 | F2 | . . . | Fj ] ∈ Rn×j be a matrix whose columns are formed by
the j contact wrenches. For spatial parts, n = 6, and for planar parts, n = 3
with Fi = [miz, fix, fiy]T . The contacts yield form closure if there exists a
vector of weights k ∈ Rj , k ≥ 0 such that Fk = Fext for all Fext ∈ Rn.

Clearly the part is not in form closure if the rank of F is not full (rank(F ) <
n). If F is full rank, the form-closure condition above is equivalent to the
existence of strictly positive coefficients k > 0 such that Fk = 0. We can
formulate this test as the following linear program:

find k (12.14)

minimizing 1T k

such that Fk = 0

k ≥ 1,
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Figure 12.15: Two fingers grasping the interior of an object.

where 1 is a j-vector of ones. If F is full rank and there exists a solution k to
(12.14), the part is in first-order form closure. Otherwise it is not. Note that the
objective function 1T k is not strictly necessary to answer the binary question,
but it is included to make sure the problem is well posed, depending on the LP
solver.

Example 12.5. The planar object in Figure 12.15 has a hole in the center.
Two fingers each touch two different edges of the hole, creating four contact
normals. The matrix F = [ F1 | F2 | F3 | F4 ] is

F =

 0 0 −1 2
−1 0 1 0

0 −1 0 1

 .
The matrix F is clearly rank 3. The linear program of (12.14) returns a solution
with k1 = k3 = 2, k2 = k4 = 1, so the grasp is form closure. If the circular
finger were moved to the bottom right corner of the hole, the new F matrix

F =

 0 0 0 −2
−1 0 1 0

0 −1 0 −1


is still full rank, but there is no solution to the linear program. This grasp is
not form closure.

12.1.7.3 Measuring the Quality of a Form-Closure Grasp

Consider the two form-closure grasps shown in Figure 12.16. Which is a better
grasp?

Answering this question obviously requires a metric measuring the quality
of a grasp. A grasp metric takes the set of contacts {Fi} and returns a single
value Qual({Fi}), where Qual({Fi}) < 0 indicates that the grasp is not form
closure, and larger positive values indicate better grasps.
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Figure 12.16: Both grasps are form closure, but which is better?
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Figure 12.17: (a) A set of three wrenches in a two-dimensional wrench space,
the set of all wrenches that can be applied by the contacts, and the radius d
of the largest ball of wrenches centered at the origin that fits inside the wrench
polygon. (b) A different set of three wrenches yielding a larger inscribed ball.

There are many reasonable choices of grasp metric. As an example, suppose
that to avoid damaging the object, we require the magnitude of the force at
contact i be less than or equal to fi,max > 0, which may be set to 1. Then the
total set of contact wrenches that can be applied by the j contacts is given by

CF =

{
j∑
i=1

fiFi | fi ∈ [0, fi,max]

}
. (12.15)

See Figure 12.17 for an example in two dimensions. This is the convex set of
wrenches that the contacts can apply to resist disturbance wrenches applied to
the part. If the grasp is form closure, the set includes the origin of the wrench
space.

Now the problem is to turn this polytope into a single number representing
the quality of the grasp. Ideally this process would use some idea of the distur-
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bance wrenches the part can be expected to experience. A more common choice
is to set Qual({Fi}) to be the radius of the largest ball of wrenches, centered
at the origin of the wrench space, that fits inside the convex polytope. In eval-
uating this radius, two caveats should be considered: (1) moments and forces
have different units, so there is no obvious way to equate force and moment
magnitudes, and (2) the moments due to contact forces depend on the choice of
the location of the origin of the space frame. To address (1), it is common to
choose a characteristic length r of the grasped part and convert contat moments
m to forces m/r. To address (2), typically the origin is chosen somewhere near
the geometric center of the part, or at its center of mass.

Given the choice of the space frame and the characteristic length r, we
simply calculate the signed distance from the origin of the wrench space to
each hyperplane on the boundary of CF . The minimum of these distances is
Qual({Fi}) (Figure 12.17).

Returning to our original example in Figure 12.16, we can see that if each
finger is allowed to apply the same force, then the grasp on the left is likely
to be considered the better grasp, as the contacts can resist greater moments
about the center of the object.

12.1.7.4 Choosing Contacts for Form Closure

Many methods have been suggested for choosing form-closure contacts for fix-
turing or grasping. A typical approach is to sample candidate grasp points on
the surface of the object (four for planar parts or seven for spatial parts) until
a set is found yielding form closure. From there, the candidate grasp points
may be incrementally repositioned according to gradient ascent using the grasp
metric, i.e., ∂Qual(p)/∂p, where p is a vector representing the grasp locations.

12.2 Contact Forces and Friction

12.2.1 Friction

A commonly-used model of friction in robotic manipulation is Coulomb fric-
tion. This experimental law states that the tangential friction force magnitude
ft is related to the normal force magnitude fn by ft ≤ µfn, where µ is called
the friction coefficient. If the contact is sliding, or currently rolling but with
incipient slip (i.e., at the next instant the contacts are sliding), then ft = µfn,
and the friction force opposes the motion. The friction force is independent of
the speed of sliding.

Often two friction coefficients are defined, a static friction coefficient µs and
a kinetic (or sliding) friction coefficient µk, where µs ≥ µk. This implies that
a larger friction force is available to resist initial motion, but once motion has
begun, the resisting force is smaller. Many other friction models have been
developed with different functional dependences on factors such as the speed
of sliding and the duration of static contact before sliding (for example, see
Chapter 11.2.1). All of these are aggregate models of complex microscopic
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Figure 12.18: (a) A friction cone illustrating all possible forces that can be
transmitted through the contact. (b) A side view of the same friction cone
showing the friction coefficient µ and the friction angle α = tan−1 µ. (c) An
inscribed polyhedral convex cone approximation to the circular friction cone.

behavior. For simplicity, we use the simplest Coulomb friction model with a
single friction coefficient µ. This model is reasonable for hard, dry materials.
The friction coefficient depends on the two materials in contact, and typically
ranges from 0.1 to 1.

For a contact normal in the +z direction, the set of forces that can be
transmitted through the contact satisfies√

f2
x + f2

y ≤ µfz, fz ≥ 0. (12.16)

Figure 12.18(a) shows that this set of forces forms a friction cone. The set
of forces that the finger can apply to the plane lies inside the cone shown.
Correspondingly, the equal and opposite force the plane applies to the finger is
inside the negative of the cone. Figure 12.18(b) shows the same cone from a
side view, illustrating the friction angle α = tan−1 µ, which is the half-angle
of the cone. If the finger slips to the right, the force it applies lies on the right
edge of the friction cone, with a magnitude determined by the normal force. If
the contact is rolling, the force may be anywhere inside the cone.

To allow linear formulations of contact mechanics problems, it is often con-
venient to represent the convex circular cone by a polyhedral convex cone. Fig-
ure 12.18(c) shows an inscribed four-sided pyramidal approximation of the fric-
tion cone, defined by the nonnegative linear combinations of the (fx, fy, fz)
cone edges (µ, 0, 1), (−µ, 0, 1), (0, µ, 1), and (0,−µ, 1). We can obtain a tighter
approximation to the circular cone by using more edges. An inscribed cone un-
derapproximates the friction forces available, while a circumscribed cone over-
approximates the friction forces. The choice of which to use depends on the
application. For example, if we want to ensure that a robot hand can grasp
an object, it is a good idea to underapproximate the friction forces available.
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Figure 12.19: (a) A planar friction cone with friction coefficient µ and corre-
sponding friction angle α = tan−1 µ. (b) The corresponding wrench cone. (c)
Two friction cones. (d) The corresponding composite wrench cone.

For planar problems, no approximation is necessary; a friction cone is exactly
represented by the nonnegative linear combinations of the two edges of the cone,
similar to the side view illustrated in Figure 12.18(b).

Once we choose a coordinate frame, any contact force can be expressed as
a wrench F = ([p]f, f), where p is the contact location. This turns the friction
cone into a wrench cone. A planar example is shown in Figure 12.19. The
two edges of the planar friction cone give two rays in the wrench space, and
the wrenches that can be transmitted to the part through the contact are all
nonnegative linear combinations of basis vectors along these edges. If F1 and
F2 are basis vectors for these wrench cone edges, we write the wrench cone as
WC = pos({F1,F2}).

If multiple contacts act on a part, then the total set of wrenches that can
be transmitted to the part through the contacts is the nonnegative linear com-
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bination of all the individual wrench cones WCi,

WC = pos({WCi}) =

{∑
i

kiFi | Fi ∈ WCi, ki ≥ 0

}
.

This composite wrench cone is a convex cone rooted at the origin. An example
composite wrench cone is shown in Figure 12.19(d) for a planar object with the
two friction cones shown in Figure 12.19(c). For planar problems, the composite
wrench cone in the three-dimensional wrench space is polyhedral. For spatial
problems, wrench cones in the six-dimensional wrench space are not polyhedral,
unless the individual friction cones have been approximated by polyhedral cones,
as in Figure 12.18(c).

If a contact or set of contacts acting on a part is ideally force-controlled, the
wrench Fext specified by the controller must lie within the composite wrench
cone corresponding to those contacts. Because these force-controlled contacts
choose a nonzero wrench from this wrench cone, the set of wrenches that can
act on the part, including other non-force-controlled contacts, may no longer
be a homogeneous cone rooted at the origin. This is analogous to the case of
velocity-controlled contacts in Section 12.1.3, where moving constraints result
in feasible part twists which are not necessarily a cone rooted at the origin.

12.2.2 Planar Graphical Methods

Just as homogeneous twist cones for planar problems can be represented as
convex signed CoR regions in the plane, homogeneous wrench cones for planar
problems can be represented as convex signed regions in the plane. One method
for doing so is called moment labeling. Given a collection of lines of force
in the plane (e.g., the edges of friction cones from a set of point contacts), the
composite wrench cone can be represented by labeling each point in the plane
with either a ‘+’ if all wrenches in the cone make nonnegative moment about
that point, a ‘−’ if all make nonpositive moment about that point, a ‘±’ if all
make zero moment about that point, and a blank label if there exist wrenches
making positive moment and wrenches making negative moment about that
point.

The idea is best illustrated by an example. In Figure 12.20(a), a single line
of force F1 is represented by labeling the points to the left of the line with a +
and points to the right of the line with a −. Points on the line are labeled ±. In
Figure 12.20(b), another line of force is added, which could represent the other
edge of a planar friction cone. Only the points in the plane that are consistently
labeled for both lines of force retain their labels; inconsistently labeled points
lose their labels. Finally, a third line of force is added in Figure 12.20(c). The
result is a single region labeled +. A nonnegative linear combination of the
three lines of force can create any line of force in the plane that passes around
this region in a counterclockwise sense; no other forces can be created. This rep-
resentation is equivalent to a homogeneous convex wrench cone representation
of pos({F1,F2,F3}).
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Figure 12.20: (a) Representing a line of force by moment labels. (b) Represent-
ing the nonnegative linear combinations of two lines of force by moment labels.
(c) Nonnegative linear combinations of three lines of force.

12.2.3 Force Closure

Consider a single movable object and a number of frictional contacts. We say
the contacts result in force closure if the composite wrench cone contains the
entire wrench space—any external wrench Fext on the object can be balanced
by contact forces.

We can derive a simple linear test for force closure which is exact for planar
cases and approximate for spatial cases. Let Fi, i = 1 . . . j be the wrenches
corresponding to the edges of the friction cones for all the contacts. For planar
problems, each friction cone contributes two edges, and for spatial problems,
each friction cone contributes three or more edges (see Figure 12.18(d)), de-
pending on the polyhedral approximation chosen. The columns of the n × j
matrix F are the Fi, where n = 3 for planar problems and n = 6 for spatial
problems. As with the test for form closure in Section 12.1.7.2, the part is in
force closure if there is a vector of weights k ∈ Rj , k ≥ 0 such that Fk = Fext

for all Fext ∈ Rn. In the case of µ = 0, each contact can provide forces only
along the normal direction, and force closure is equivalent to first-order form
closure.

12.2.3.1 Number of Contacts Needed for Force Closure

For planar problems, four contact wrenches are sufficient to positively span
the three-dimensional wrench space, which means that as few as two frictional
contacts (with two edges each) are sufficient for force closure. Using moment
labeling, we see that force closure is equivalent to having no consistent moment
labels. For example, if the two contacts can “see” each other by a line inside
both friction cones, we have force closure (Figure 12.21).
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(a)        (b)

Figure 12.21: An equilateral triangle can be force-closure grasped by two fingers
on edges of the triangle if µ ≥ tan 30◦ ≈ 0.577. (a) This grasp with µ = 0.25
is not force closure, as indicated by the consistently labeled moment-labeling
region. (b) This grasp is force closure with µ = 1.

It is important to note that force closure simply means that forces at the
contacts are capable of generating any wrench. It does not necessarily mean
that the object will not move, however. For the example of Figure 12.21(b),
whether the triangle falls under gravity or not depends on the internal forces
between the fingers. If the motors powering the fingers cannot provide sufficient
forces, or if they are restricted to only generate forces in certain directions, the
triangle may fall despite force closure.

Two frictional contacts are insufficient to yield force closure for spatial parts,
as there is no way to generate moment about the axis joining the two contacts.
A force-closure grasp can be obtained with as few as three frictional contacts,
however. A particularly simple and appealing result due to Li et al. [16] reduces
the force closure analysis of spatial frictional grasps into a planar force closure
problem. Referring to Figure 12.22, suppose a rigid body is constrained by
three point contacts with friction. If the three contact points happened to be
collinear, then obviously any moment applied about this line cannot be resisted
by the three contacts. We can therefore exclude this case, and assume that the
three contact points are not collinear. The three contacts then define a unique
plane S, and at each contact point, three possibilities arise (see Figure 12.23):

• The friction cone intersects S in a planar cone;

• The friction cone intersects S in a line;

• The friction cone intersects S in a point.

The object is in force closure if and only if each of the friction cones intersects
S in a planar cone, and S is also in planar force closure.

Theorem 12.2. Given a spatial rigid body restrained by three point contacts
with friction, the body is in force closure if and only if the friction cone at each
of the contacts intersects the plane S of the contacts in a cone, and the plane S
is in planar force closure.
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Figure 12.22: A spatial rigid body restrained by three point contacts with fric-
tion.

Figure 12.23: Three possibilities for the intersection between a friction cone and
a plane.

Proof. First, the necessity condition—if the spatial rigid body is in force closure,
then each of the friction cones intersects S in a planar cone and S is also in planar
force closure—is easily verified: if the body is in spatial force closure, then S
(which is a part of the body) must also be in planar force closure. Moreover, if
even one friction cone intersects S in a line or point, then there will be external
moments (e.g., about the line between the remaining two contact points) that
cannot be resisted by the grasp.

To prove the sufficiency condition—if each of the friction cones intersects S
in a planar cone and S is also in planar force closure, then the spatial rigid body
is in force closure—choose a fixed reference frame such that S lies in the x-y
plane, and let ri ∈ R3 denote the vector from the fixed frame origin to contact
point i (see Figure 12.22). Denoting the contact force at i by fi ∈ R3, the
contact spatial force Fi ∈ R6 is then of the form

Fi =

[
fi
mi

]
, (12.17)

where each mi = ri × fi, i = 1, 2, 3. Denote the arbitrary external spatial force
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Fext ∈ R6 by

Fext =

[
fext

mext

]
∈ R6. (12.18)

Force closure then requires that there exist contact spatial forces Fi, i = 1, 2, 3,
each lying inside its respective friction cone, such that for any external spatial
disturbance force Fext, the following equality is satisfied:

F1 + F2 + F3 + Fext = 0, (12.19)

or equivalently,

f1 + f2 + f3 + fext = 0 (12.20)

(r1 × f1) + (r2 × f2) + (r3 × f3) +mext = 0, (12.21)

If each of the contact forces and moments, as well as the external force and mo-
ment, is orthogonally decomposed into components lying on the plane spanned
by S (corresponding to the x-y plane in our chosen reference frame) and its
normal subspace N (corresponding to the z-axis in our chosen reference frame),
then the previous force closure equality relations can be written

f1S + f2S + f3S = −fext,S (12.22)

(r1 × f1S) + (r2 × f2S) + (r3 × f3S) = −mext,S (12.23)

f1N + f2N + f3N = −fext,N (12.24)

(r1 × f1N ) + (r2 × f2N ) + (r3 × f3N ) = −mext,N . (12.25)

In what follows we shall use S to refer both to the slice of the rigid body
corresponding to the x-y plane, as well as the x-y plane itself. N will always be
identified with the z-axis.

Proceeding with the proof of sufficiency, we now show that if S is in pla-
nar force closure, then the body is in spatial force closure. In terms of Equa-
tions (12.24)-(12.25) we wish to show that, for any arbitrary forces fext,S ∈ S,
fext,N ∈ N and arbitrary moments mext,S ∈ S, mext,N ∈ N , there exist contact
forces fiS ∈ S, fiN ∈ N , i = 1, 2, 3, that satisfy (12.24)-(12.25), and such that
for each i = 1, 2, 3, the contact force fi = fiS + fiN lies in friction cone i.

First consider the force closure equations (12.24)-(12.25) in the normal di-
rection N . Given an arbitrary external force fext,N ∈ N and external moment
mext,S ∈ S, Equations (12.24)-(12.25) constitute a set of three linear equations
in three unknowns. From our hypothesis that the three contact points are never
collinear, these equations will always have a unique solution set {f∗1N , f∗2N , f∗3N}
in N .

Since S is assumed to be in planar force closure, for any arbitrary fext,S ∈ S
and mext,N ∈ N , there will exist planar contact forces fiS ∈ S, i = 1, 2, 3, that
lie inside their respective planar friction cones and also satisfy Equations (12.22)-
(12.23). This solution set is not unique: one can always find a set of internal
forces ηi ∈ S, i = 1, 2, 3, each lying inside its respective friction cone, satisfying

η1 + η2 + η3 = 0 (12.26)

(r1 × η1) + (r2 × η2) + (r3 × η3) = 0. (12.27)
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(To see why such ηi exist, recall that since S is assumed to be in planar force
closure, solutions to (12.22)-(12.23) must exist for fext,S = µext,N = 0; these
solutions are precisely the internal forces ηi). Note that these two equations
constitute three linear equality constraints involving six variables, so that there
exists a three-dimensional linear subspace of solutions for {η1, η2, η3}.

Now if {f1S , f2S , f3S} satisfy (12.22)-(12.23), then so will {f1S + η1, f2S +
η2, f3S + η3}. The internal forces {η1, η2, η3} can in turn be chosen to have
sufficiently large magnitude so that the contact forces

f1 = f∗1N + f1S + η1 (12.28)

f2 = f∗2N + f2S + η2 (12.29)

f3 = f∗3N + f3S + η3 (12.30)

all lie inside their respective friction cone. This completes the proof of the
sufficiency condition.

12.2.3.2 Measuring the Quality of a Force-Closure Grasp

Friction forces are not always repeatable. Try putting a coin on a book and
tilting the book. The coin should begin to slide when the book is at an angle
α = tan−1 µ with respect to horizontal. If you do the experiment several times,
you may find a range of measured values of µ, however, due to effects that
are difficult to model. For that reason, when choosing between grasps, it is
reasonable to choose finger locations that minimize the friction coefficient needed
to achieve force closure.

12.2.4 Duality of Force and Motion Freedoms

Our discussion of kinematic constraints and friction should make apparent that,
for any point contact and contact label, the number of equality constraints on
the part’s motion caused by that contact is equal to the number of wrench
freedoms it provides. For example, a breaking contact B provides zero equality
constraints on the part motion and also allows no contact force. A fixed contact
R provides 3 motion constraints (the motion of a point on the part is specified)
and 3 freedoms on the contact force: any wrench in the interior of the contact
wrench cone is consistent with the contact mode. Finally, a slipping contact
S provides 1 equality motion constraint (one equation on the part’s motion
must be satisfied to maintain the contact), and for a given motion satisfying the
constraint, the contact wrench has only 1 freedom, the magnitude of the contact
wrench on the edge of the friction cone and opposite the slipping direction. In
the planar case, the motion constraints and wrench freedoms for B, S, and R

contacts are 0, 1, and 2, respectively.
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12.3 Manipulation

So far we have studied the feasible twists and contact forces due to a set of
contacts. We have also considered two types of manipulation: form- and force-
closure grasping.

Manipulation consists of much more than just grasping, however. It includes
almost anything where manipulators impose motions or forces with the purpose
of achieving motion or restraint of objects. Examples include carrying glasses
on a tray without toppling them, pivoting a refrigerator about a foot, pushing a
sofa on the floor, throwing and catching a ball, transporting parts on a vibratory
conveyor, etc. Endowing a robot with methods of manipulation beyond grasp-
and-carry allows it to manipulate parts that are too large to be grasped and too
heavy to be lifted, or to send objects outside the workspace of the end-effector.

To plan such manipulation tasks, we use the contact kinematic constraints
of Section 12.1, the Coulomb friction law of Section 12.2, and the dynamics of
rigid bodies. Restricting ourselves to a single rigid body and using the notation
of Chapter 8, the part’s dynamics are written

Fext +
∑

kiFi = GV̇ − [adV ]TP, ki ≥ 0, Fi ∈ WCi, (12.31)

where V is the part’s twist, P is its momentum, Fext is the external wrench
acting on the part due to gravity, etc., WCi is the set of possible wrenches
acting on the object due to contact i, and

∑
kiFi is the wrench due to the

contacts. Now, given a set of motion- or force-controlled contacts acting on the
part, and the initial state of the system, the general method for solving for the
motion of the part is the following:

(i) Enumerate the set of possible contact modes consisting of the contact
labels R, S, and B at each contact.

(ii) For each contact mode, determine if there exists a contact wrench
∑
kiFi

that is consistent with the contact mode and Coulomb’s law, and an accel-
eration V̇ consistent with the kinematic constraints of the contact mode,
such that Equation (12.31) is satisfied. If so, this contact mode, contact
wrench, and part acceleration is a consistent solution to the rigid-body
dynamics.

For a given contact mode, the set of kinematically consistent accelerations is
described by a set of linear constraints on V̇. Therefore, for planar problems
and spatial problems with approximate polyhedral friction cones, step (ii) above
is a linear constraint satisfaction problem (LCSP).

This kind of “case analysis” may sound unusual; we are not simply solving
a set of equations. It also seems to leave open the possibility that we could find
more than one consistent solution, or perhaps no consistent solution. This is,
in fact, the case: we can define problems with multiple solutions (ambiguous)
and problems with no solutions (inconsistent). This state of affairs is a bit
unsettling; surely there is exactly one solution to any real mechanics problem!
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But this is the price we pay to use the assumptions of perfectly rigid bodies and
Coulomb friction. For many problems the method described above will yield a
unique motion.

A special case of the dynamics (12.31) are quasistatic problems, where the
velocities and accelerations of the parts are small so that inertial forces may be
ignored. Contact wrenches and external wrenches are always in force balance,
and Equation (12.31) reduces to

Fext +
∑

kiFi = 0, ki ≥ 0, Fi ∈ WCi. (12.32)

The same case-enumeration method is used to solve such problems, except now
we often solve for the part’s twist V instead of its acceleration V̇. The part’s
twist is relevant for determining whether individual contacts are sliding or not,
which places constraints on the contact forces that can be applied.

Below we illustrate the methods of this chapter with several examples.

Example 12.6. A block carried by two fingers.
Consider a planar block in gravity supported by two fingers, as in Figure 12.24(a).
The friction coefficient between one finger and the block is µ = 1, and the other
contact is frictionless. Thus the cone of wrenches that can be applied by the
fingers is pos({F1,F2,F3}), as shown using moment labeling in Figure 12.24(a).

Our first question is whether the stationary fingers can keep the block at
rest. To do so, the fingers must provide a wrench F = (mz, fx, fy) = (0, 0,mg)
to balance Fext = (0, 0,−mg) due to gravity. As shown in Figure 12.24(b),
however, this wrench is not in the composite cone of possible contact wrenches.
Therefore the contact mode RR is not feasible, and the block will move relative
to the fingers.

Now consider the case where the fingers each accelerate to the left at 2g. In
this case, the contact mode RR requires that the block also accelerate to the left
at 2g. The wrench needed to cause this acceleration is (0,−2mg, 0). Therefore
the total wrench that the fingers must apply to the block is (0,−2mg, 0)−Fext =
(0,−2mg,mg). As shown in Figures 12.24(c) and (d), this wrench lies inside the
composite wrench cone. Thus RR (the block stays stationary relative to the
fingers) is a solution as the fingers accelerate to the left at 2g.

This is called a dynamic grasp—inertial forces are used to keep the block
pressed against the fingers while the fingers move. If we plan to manipulate the
block using a dynamic grasp, we should make certain that no contact modes
other than RR are feasible, for completeness.

Moment labels are convenient for understanding this problem graphically,
but we can also solve it algebraically. Finger one contacts the block at (x, y) =
(−3,−1) and finger 2 contacts the block at (1, 1). This gives the basis contact



12.3. Manipulation 357

_

+

_

+

mg

mg
F1 F2

F3

_

+

k3F3

k1F1 k2F2+

(a)                (b)

(c)                (d)

acceleration
force

x

y

mg

Figure 12.24: (a) A planar block in gravity supported by two robot fingers, one
with a friction cone with µ = 1 and one with µ = 0. (b) The composite wrench
cone that can be applied by the fingers represented using moment labels. To
balance the block against gravity, the fingers must apply the line of force shown.
This line does not make nonpositive moment with respect to all points labeled
−, and therefore it cannot be generated by the two fingers. (c) For the block to
match the fingers’ acceleration to the left, the contacts must apply the vector
sum of the wrench to balance gravity plus the wrench needed to accelerate the
block to the left. This total wrench lies inside the composite wrench cone, as the
line of force makes positive moment with respect to the points labeled + and
negative moment with respect to the points labeled −. (d) The total wrench
applied by the fingers in Figure (c) can be translated along the line of action
without changing the wrench. This allows us to easily visualize the components
k1F1 + k2F2 and k3F3 provided by the fingers.

wrenches

F1 =
1√
2

(−4,−1, 1)

F2 =
1√
2

(−2, 1, 1)

F3 = (1,−1, 0).

Let the fingers’ acceleration in the x direction be written ax. Then, under
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the assumption that the block stays fixed to the fingers (RR contact mode),
Equation (12.31) can be written

k1F1 + k2F2 + k3F3 + (0, 0,−mg) = (0,max, 0). (12.33)

This yields three equations in the three unknowns, k1, k2, k3. Solving, we get
blah blah. For the ki to be nonnegative, we need some range for ax. For
x-direction finger accelerations in this range, a dynamic grasp is a consistent
solution.

Example 12.7. The meter stick trick.
Try this experiment: Get a meter stick (or any similar long smooth stick) and
balance it horizontally on your two index fingers. Place your left finger near
the 10 cm mark and your right finger near the 60 cm mark. The center of mass
is closer to your right finger, but still between your fingers, so that the stick
is supported. Now, keeping your left finger stationary, slowly move your right
finger towards your left until they touch. What happens to the stick?

If you didn’t try the experiment, you might guess that your right finger
passes the center of mass of the stick, at which point the stick falls. If you did
try the experiment, you saw something different. Let’s see why.

Figure 12.25 shows the stick supported by two frictional fingers. Since all
motions are slow, we use the quasistatic approximation that the stick’s accelera-
tion is zero, and the net contact wrench must balance the gravitational wrench.
As the two fingers move together, the stick must slip on one or both fingers to
accommodate the motion. Figure 12.25 shows the moment-labeling representa-
tion of the composite wrench cone for three different contact modes where the
stick remains stationary on the left finger (R) or slips left relative to it (Sl) while
either remaining stationary on the right finger (R) or slipping right relative to
it (Sr). It is clear from the figure that only the SlR contact mode can provide a
wrench that balances the gravitational wrench. In other words, the right finger,
which supports more of the stick’s weight, remains sticking, while the left finger
slides over the stick. Since the right finger is moving to the left in the world
frame, this means the center of mass is moving to the left at the same speed.
This continues until the center of mass is halfway between the fingers, at which
point the stick transitions to the SlSr contact mode, and the center of mass
stays centered between the fingers until they meet. The stick never falls.

Note that this analysis relies on the quasistatic assumption; it is easy to make
the stick fall if you move your right finger quickly, requiring large accelerations
of the stick to maintain the sticking contact. Also, in your experiment, you
might notice that when the center of mass is nearly centered, the stick does not
actually achieve the idealized SlSr contact mode, but instead switches rapidly
between the SlR and RSr contact modes. If there is a large difference between
the static and kinetic friction coefficients, the time between switches is increased.

Example 12.8. Stability of an assembly.
Consider the arch in Figure 12.26. Is it stable under gravity?

For a problem like this, graphical planar methods are difficult to use. In-
stead we test algebraically for consistency of the contact mode with all contacts
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Figure 12.25: Top left: Two frictional fingers supporting a meter stick in gravity.
The other three panels show the moment labels for the RSr, SlR, and SlSr

contact modes. Only the SlR contact mode yields force balance.
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Figure 12.26: Left: An arch in gravity. Right: The friction cones at the contacts
of the stones 1 and 2.

labeled R. The friction cones are shown in Figure 12.26. With these labelings
of the friction cone edges, the arch remaining standing is a consistent solution
if there exist ki ≥ 0 for i = 1 . . . 16 satisfying the following nine wrench-balance
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F2

_

F1

Figure 12.27: Left: A peg in two-point contact with a hole. Right: The wrench
F1 may cause the peg to jam, while the wrench F2 continues to push the peg
into the hole.

equations, three for each body:

8∑
i=1

kiFi + Fext1 = 0

16∑
i=9

kiFi + Fext2 = 0

−
12∑
i=5

kiFi + Fext3 = 0.

The last set of equations comes from the fact that forces that body 1 applies
to body 3 are equal and opposite those that body 3 applies to body 1, and
similarly for bodies 2 and 3.

Example 12.9. Peg insertion.
Figure 12.27 shows a force-controlled planar peg in two-point contact with a
hole during insertion. Also shown are the contact friction cones acting on the
peg and the corresponding composite wrench cone, illustrated using moment
labels. If the force controller applies the wrench F1 to the peg, it may jam—
the hole may generate contact forces that balance F1. Therefore the peg may
get stuck in this position. If the force controller applies the wrench F2, however,
the contacts cannot balance the wrench and insertion proceeds.

If the friction coefficients at the two contacts are large enough that the two
friction cones “see” each others’ base, the peg is in force closure, and the contacts
may be able to resist any wrench. The peg is said to be wedged.
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Figure 12.28: A 4×4 planar square restrained by five frictionless point contacts.

12.4 Exercises

1. Prove that the impenetrability constraint (12.4) is equivalent to the con-
straint (12.7).

2. note that any contact with the same normal provides the same interpene-
trability constraints, no matter where it acts along the line of action

3. write SFC and PCwF contact velocity constraints in a coordinate frame at
the contact, with z-axis aligned with normal.

4. follow up on the examples at the end of the chapter. show that other contact
modes are not possible for the meter stick trick.

5. A finger toppling a block.

6. Vibratory transport.

7. pushing? 3 support points, CoRs of pushing and relative motion

8. holding a rod by over-under contacts. table supported by four legs. par-
allel jaw gripper. ambiguity and inconsistency example. waiter’s problem. 3d
example. LCSP solution. limit surface. two leg planar table.
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Figure 12.29: A planar disk restrained by three frictionless point contacts.

9. (a) The planar grasp of Figure 12.28 consists of five frictionless point con-
tacts. The square is of size 4× 4. Show that this grasp is not force closure.
(b) The grasp of part (a) can be made force closure by adding one frictionless
point contact. Draw all the possible locations for this contact.

10. Assume all contacts shown in Figure 12.29 are frictionless point contacts.
Determine whether the grasp is force closure. If it is not, how many additional
frictionless point contacts are needed to construct a force closure grasp?

(a) (b)

Figure 12.30: A planar rigid body with two square holes.

11. (a) In Figure 12.30-(a), the planar object with two rectangular holes is re-
strained from the interior by four frictionless point contacts. Determine whether
this grasp is force closure.
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(b) In Figure 12.30-(b), the same planar object with two rectangular holes is
now restrained from the interior by three frictionless point contacts. Determine
whether this grasp is force closure.

Figure 12.31: A planar wedge-like object with a hole.

12. The planar object of Figure 12.31 is restrained by four frictionless point
contacts.
(a) Determine if this grasp is force closure.
(b) Suppose the contacts A, B, C, D are now allowed to slide along the half-
circle (without crossing each other). Describe the set of all possible force closure
grasps.

13. (a) Determine whether the grasp of Figure 12.32-(a) is force closure. As-
sume all contacts are frictionless point contacts. If the grasp is not force closure,
slide the position of one of the contacts in order to construct a force closure
grasp.
(b) Now place two frictionless point contacts at the corners as shown in Fig-
ure 12.32-(b). Determine if this grasp is force closure.
(c) In the grasp of Figure 12.32-(c), contact A is a point contact with friction
(its friction cone is 90◦ as indicated in the figure), while contacts B and C are
frictionless point contacts. Determine whether this grasp is force closure.

14. Determine whether the grasp of Figure 12.33 is force closure. Assume all
contacts are point contacts with a friction coefficient µ = 1.

15. (a) In the planar triangle of Figure 12.34-(a), contacts A, B, and C are
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(a) (b)

(c)

Figure 12.32: A planar rigid body restrained by point contacts.

all frictionless point contacts. is this grasp force closure? If not, what type of
external force or moment would cause the object to slip out of the grasp?
(b) In the planar triangle of Figure 12.34-(a), suppose now that contact A is
a point contact with friction coefficient µ = 1, while contacts B and C are
frictionless point contacts. Determine whether the grasp shown is force closure.
(c) Now suppose contact point A can be moved to anywhere on the hypotenuse
of the triangle as shown in Figure 12.34-(b). Determine the range of all contact
points A for which the grasp is force closure.
(d) Contact points B and C are now moved as shown in Figure 12.35. Bill,
a clever student, argues that the two contacts B and C can be replaced by a
virtual point contact with friction (point D) with the given friction cone, and
Nguyen’s condition for force closure can now be applied to A and D, as shown
in the right Figure 12.35. Is Bill correct? Justify your answer with a derivation
of the appropriate force closure condition.
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Figure 12.33: A planar rigid body restrained by three point contacts with fric-
tion.

(a) (b)

Figure 12.34: A planar triangle constrained by three point contacts.

16. Consider the L-shaped planar object of Figure 12.36.
(a) Suppose both contacts are point contacts with friction coefficient µ = 1.
Determine whether this grasp is force closure.
(b) Now suppose point contact 1 is a point contact with friction coefficient
µ = 1, while point contact 2 is frictionless. Determine whether this grasp is
force closure.
(c) Suppose now that the vertical position of contact 1 is allowed to vary; denote
its height by x. Find all positions x such that the grasp of part (b) is force
closure.
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Figure 12.35: A planar triangle constrained by three point contacts.

Figure 12.36: An L-shaped planar object restrained by two point contacts with
friction.

17. A square is restrained by three point contacts as shown in Figure 12.37:
contact f1 is a point contact with friction coefficient µ, while contacts f2 and
f3 are frictionless point contacts. If c = 1

4 and h = 1
2 , find the range of values

of µ such that grasp is force closure.

18. In the grasp of Figure 12.38, contacts f1 and f2 on the left are frictionless
point contacts, while contact f3 on the right is a point contact with friction
coefficient µ = 0.2. Determine whether this grasp is force closure.

19. A single point contact with friction coefficient µ = 1 is applied to the left
side of the square doughnut as shown in Figure 12.39. A force closure grasp can
be constructed by adding another point contact with friction, also with µ = 1.
Draw all possible locations for this additional point contact.
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Figure 12.37: A square restrained by three point contacts.

Figure 12.38: A rectangle restrained by three point contacts.
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Figure 12.39: A square doughnut.



Appendix A

Summary of Useful
Formulas

Chapter 2

• Grübler’s formula for the DOF of mechanisms with N links (including
ground) and J joints, where joint i has fi degrees of freedom and m = 3
for planar mechanisms or m = 6 for spatial mechanisms:

dof = m(N − 1− J) +

J∑
i=1

fi

• Pfaffian velocity constraints take the form A(θ)θ̇ = 0.

Chapter 3

• An element R of SO(3) satisfies RTR = I and detR = 1, and therefore
R−1 = RT . Also Rab = R−1

ba and Rabvb = va, while Rabva = v′a, which is
the original vector va rotated by the rotation that takes {a} to {b}.

• Let R1 be the orientation achieved when rotating about a fixed axis ω
(‖ω‖ = 1) a distance θ from an initial orientation R = I. Then R1Ra is
the orientation achieved by rotating {a} about ω intrepreted as a space
frame angular velocity, while RaR1 is the orientation achieved by rotating
{a} about ω interpreted as a body frame angular velocity.

• ẋ(t) = Ax(t) has solution x(t) = eAtx0. A can be viewed as a constant
angular velocity or rigid-body twist (angular and linear velocity), in the
body or space frame.

• For ω ∈ R3, we have ω × x = [ω]x, where

[ω] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
369
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• Rodrigues’ formula, integrating a rotation with an angular velocity ω with
‖ω‖ = 1 for time (or angle) θ: e[ω]θ = I+sin θ[ω]+(1−cos θ)[ω]2. ω and θ
together are called the axis-angle representation of an orientation of an el-
ement of SO(3), and ωθ ∈ R3 is the exponential coordinate representation
of an an element of SO(3).

• The matrix log of R, in the general case, is given by: θ = cos−1((trace(R)−
1)/2) ∈ [0, π) and [ω] = (R − RT )/(2 sin θ). If R = I, then θ = 0. If
trace(R) = −1, then θ = π. We write log(R) = [ω]θ.

• A rigid-body configuration is written T ∈ SE(3) with the form

T =

[
R p
0 1

]
∈ R4×4

where R ∈ SO(3) and p ∈ R3. Also,

T−1 =

[
RT −RT p
0 1

]
,

TabTbc = Tac, T
−1
ab = Tba, and xa = Tabxb.

• A spatial velocity, or twist, is written V = (ω, v) ∈ R6, which we can also
write in the matrix form

[S] =

[
[ω] v
0 0

]
∈ R4×4.

• Consider a screw motion following the twist S ′ = (ω′, v′) for duration 1.
We can write this as S ′ = Sθ, where S = (ω, v) and θ is the “distance” of
motion along the screw axis S. If ω′ 6= 0, then S = S ′/‖ω‖ and θ is the
net rotation about the screw axis. If ω′ = 0, then S = S ′/‖v′‖ and θ is
the translation along the axis.

The net displacement obtained by motion along the screw axis [S] by θ
from the identity element of SE(3), in either the body or space frame
(since they are initially aligned with each other), is

e[S]θ =

[
e[ω]θ (Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2)v

0 1

]
.

For ω = 0, i.e., S = (0, v), then

e[S]θ =

[
I vθ
0 1

]
.

For T = e[S]θ, Sθ ∈ R6 are the exponential coordinates of T .
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• The matrix log of T = (R, p), for the general case, is given by

θ = cos−1

(
trace(R)− 1

2

)
∈ [0, π)

[ω] =
1

2 sin θ
(R−RT )

v =

(
1

θ
I − 1

2
[ω] +

(1

θ
− 1

2
cot

θ

2

)
[ω]2

)
p. (A.1)

If R = I, then ω = 0, v = p/‖p‖,and θ = ‖p‖. If trace(R) = −1, then
θ = π, and [ω] = logR. We write log(T ) = [S]θ.

• The quantity T ′ = e[S]θT is the new configuration after T undergoes a
screw motion Sθ in the space frame. The quantity T ′ = Te[S]θ is the new
configuration after T undergoes a screw motion Sθ in the body frame.

• Given frames {s} and {b}, a particular spatial velocity can be represented
in these frames as Vs or Vb, and these are related by the Adjoint transfor-
mation

Vs = AdTsb(Vb),

where AdTsb(Vb) = [AdTsb ]Vb and

[AdT ] =

[
R 0

[p]R R

]
∈ R6×6.

The expression Vs = AdTsb(Vb) is equivalent to [Vs] = Tsb[Vb]T−1
sb .

• Ad−1
T = AdT−1 and AdT1

(AdT2
(V)) = AdT1T2

(V).

• Ṫ T−1 = [Vs], the spatial velocity (twist) in space coordinates, and T−1Ṫ =
[Vb], the spatial velocity (twist) in body coordinates.

• A wrench in space coordinates is written Fs = (ms, fs) ∈ R6 and a wrench
in body coordinates is written Fb = (mb, fb). Fb and Fs are related by

Fb = AdTTsb(Fs) = [AdTsb ]
TFs

Fs = AdTTbs(Fb) = [AdTbs ]
TFb,

derived from the relationship between space and body velocities and the
fact that power, FTs Vs and FTb Vb, must be the same in both frames.

Chapter 4

• The product of exponentials formula for a serial chain manipulator is

space frame: T = e[S1]θ1 . . . e[Sn]θnM

body frame: T = Me[B1]θ1 . . . e[Bn]θn
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where M is the frame of the end-effector in the space frame when the
manipulator is at its home position, [Si] is the velocity of the space frame
in space coordinates when joint i rotates (or translates) at unit speed while
all other joints are fixed, and [Bi] is the velocity of the body frame in body
coordinates when all other joints are fixed.

Chapter 5

• For a manipulator end-effector configuration written in coordinates x, the
forward kinematics is x = f(θ), and the differential kinematics is given by
ẋ = ∂f

∂θ θ̇ = J(θ)θ̇, where J(θ) is the manipulator Jacobian.

• In spatial velocities, the relation is V∗ = J∗(θ)θ̇, where ∗ is either s (space
Jacobian) or b (body Jacobian). The columns Jsi of the space Jacobian
are

Jsi(θ) = Ad
e[S1]θ1 ...e[Si−1]θi−1 (Si)

and the columns Jbi of the body Jacobian are

Jbi(θ) = Ad
e−[Bn]θn ...e−[Bi+1]θi+1 (Bi).

As expected, the space motion caused by Si is only altered by the con-
figurations of joints inboard from joint i (between the joint and the space
frame), while the body motion caused by Bi is only altered by the config-
urations of joints outboard from joint i (between the joint and the body
frame).

The two Jacobians are related by

Jb(θ) = AdTbs(θ)(Js(θ)) , Js(θ) = AdTsb(θ)(Jb(θ)).

• Generalized forces at the joints τ are related to wrenches expressed in the
space or end-effector body frame by

τ = JT∗ (θ)F∗,

where ∗ is s (space frame) or b (body frame).

• Singularities occur at manipulator configurations where the rank of the
Jacobian drops below its maximum value. Often we only care about end-
effector motions in a particular subspace, and a singularity is defined when
the set of feasible motions in that subspace loses rank.

Chapter 6

• The law of cosines states that c2 = a2 +b2−2ab cos γ, where a, b, and c are
the lengths of the sides of a triangle and γ is the interior angle opposite
side c. This formula is often useful to solve inverse kinematics problems.
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• Many inverse problems can be stated as finding θ such that x = f(θ),
where x and θ are vectors. Such problems can have many or no solutions,
and often admit no closed-form solution. Newton-Raphson iterative nu-
merical root-finding attempts to find a “close by” solution to an initial
guess. Starting with an initial guess θ(0), the iteration is defined by

θ(i+ 1) = θ(i) +

(
∂f

∂θ
|θ(i)

)−1

(x− f(θ(i))),

where the expression x − f(θ(i)) is the vector from the current guess to
the desired value.

• For inverse kinematics with a desired end-effector configurationX ∈ SE(3),
the direction from the current configuration T (θ(i)) to X, expressed in
the end-effector body frame, is given by [S] = log T−1X. The Newton-
Raphson iteration beomes

θ(i+ 1) = θ(i) + (Jb(θ(i))
−1S︸ ︷︷ ︸

∆θi

.

• If the Jacobian is not square (i.e., the number of joints n differs from the
degrees of freedom of the end-effector m), then J−1

b (θ) does not exist. The

right generalized inverse J−right
b = JTb (JbJ

T
b )−1 can be used for n > m and

the left generalized inverse J−left
b = (JTb Jb)

−1JTb can be used for n < m.

Chapter 8

• The Lagrangian is the kinetic minus the potential energy, L(q, q̇) = K(q, q̇)−
U(q).

• The Euler-Lagrange equations are

τ =
d

dt

∂L

∂q̇
− ∂L

∂q
.

• The kinetic energy of a mechanical system is K(q, q̇) = 1
2 q̇
TM(q)q̇, where

M is the mass or inertia matrix.

• The equations of motion of a manipulator can be written

τ = M(θ)θ̈ + c(θ, θ̇) +
∂U

∂θ
(A.2)

= M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) (A.3)

= M(θ)θ̈ + θ̇TΓ(θ)θ̇ + g(θ) (A.4)

where g(θ) are the potential terms (typically due to gravity) and c(θ, θ̇)
is the vector of quadratic velocity terms (Coriolis and centrifugal terms).
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These quadratic terms are sometimes written as a Coriolis matrix C(θ, θ̇)
multiplied by the linear velocity θ̇, or more insightfully as a quadratic
form in terms of the three-dimensional matrix of Christoffel symbols of
the mass matrix.

• The Lie bracket of twists V1 and V2, i.e., the derivative of V2 in the
direction of V1, is written

[V1,V2] = adV1(V2) = [adV1 ]V2,

where

[adV ] =

[
[ω] 0
[v] [ω]

]
∈ R6×6.

• The body-frame 6× 6 mass matrix of a rigid-body is

Gb =

[
Ib 0
0 mI

]
,

where Ib is the inertia matrix in the body frame and m is the mass.

• The equations of motion of a rigid body, expressed in the body frame, are

Fb = GbV̇b − [adVb ]
TGbVb.



Appendix B

Other Representations of
Rotations

B.1 Euler Angles

As we established earlier, a rotation matrix can be parametrized by three in-
dependent coordinates. Here we introduce one popular three-parameter rep-
resentation of rotations, the ZYX Euler angles. One way to visualize these
angles is through the wrist mechanism shown in Figure B.1. The ZYX Euler
angles (α, β, γ) refer to the angle of rotation about the three joint axes of this
mechanism. In the figure the wrist mechanism is shown in its zero position, i.e.,
when all three joints are set to zero.

Four reference frames are defined as follows: frame {0} is the fixed frame,
while frames {1}, {2}, and {3} are attached to the three links of the wrist mech-
anism as shown. When the wrist is in the zero position, all four reference frames
have the same orientation. We now consider the relative frame orientations R01,
R12, and R23. First, it can be seen that R01 depends only on the angle α: ro-
tating about the ẑ-axis of frame {0} by an angle α (a positive rotation about
an axis is taken by aligning the thumb of the right hand along the axis, and
rotating in the direction of the fingers curling about the axis), it can be seen
that

R01 =

 cosα − sinα 0
sinα cosα 0

0 0 1

 = Rot(ẑ, α). (B.1)

The notation Rot(ẑ, α) describes a rotation about the ẑ-axis by angle α. Simi-
larly, R12 depends only on β, and is given by

R12 =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 = Rot(ŷ, β), (B.2)

375
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γ

β

α

{0}
x

y

z

{1}

x
y
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y

zx
y

z {3}

Figure B.1: Wrist mechanism illustrating the ZYX Euler angles.

where the notation Rot(ŷ, β) describes a rotation about the ŷ-axis by angle β.
Finally, R23 depends only on γ, and is given by

R23 =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 = Rot(x̂, γ), (B.3)

where the notation Rot(x̂, γ) describes a rotation about the x̂-axis by angle γ.
R03 = R01R12R23 is therefore given by

R03 =

 cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 , (B.4)

where sα is shorthand for sinα, cα for cosα, etc.
We now ask the following question: given an arbitrary rotation matrix R,

does there exist (α, β, γ) such that Equation (B.4) is satisfied? If the answer is
yes, then the wrist mechanism of Figure B.1 can reach any orientation. This is
indeed the case, and we prove this fact constructively as follows. Let rij be the
ij-th element of R. Then from Equation (B.4) we know that r2

11 + r2
21 = cos2 β;

as long as cosβ 6= 0, or equivalently β 6= ±90◦, we have

β = tan−1

(
sinβ

cosβ

)
= tan−1

(
−r31

±
√
r2
11 + r2

21

)
.
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γ

β

α

=90
o

Figure B.2: Configuration corresponding to β = 90◦ for ZYX Euler angles.

We now define the atan2 function, which is a two-argument function imple-
mented in a variety of computer languages for computing the arctangent. Specif-
ically, the function atan2(y, x) evaluates tan−1(y/x) by taking into account the
signs of x and y. For example, atan2(1, 1) = π/4, while atan2(−1,−1) = −3π/4.
Using atan2, the possible values for β can be expressed as

β = atan2

(
−r31,

√
r2
11 + r2

21

)
and

β = atan2

(
−r31,−

√
r2
11 + r2

21

)
.

In the first case β lies in the range [−90◦, 90◦], while in the second case β lies
in the range [90◦, 270◦]. Assuming the β obtained above is not ±90◦, α and γ
can then be determined from the following relations:

α = atan2(r21, r11)

γ = atan2(r32, r33)

In the event that β = ±90◦, there exists a one-parameter family of solutions
for α and γ. This is most easily seen from Figure B.2. If β = 90◦, then α and
γ represent rotations (in the opposite direction) about the same vertical axis.
Hence, if (α, β, γ) = (ᾱ, 90◦, γ̄) is a solution for a given rotation R, then any
triple (ᾱ′, 90◦, γ̄′) where ᾱ′ − γ̄′ = ᾱ− γ̄ is also a solution.
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Algorithm for Computing the ZYX Euler Angles

Given R ∈ SO(3), we wish to find angles α, γ ∈ [0, 2π) and β ∈ [−π/2, π/2)
that satisfy

R =

 cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 , (B.5)

where sα is shorthand for sinα, cα for cosα, etc. Denote by rij the ij-th entry
of R.

(i) If r31 6= ±1, set

β = atan2

(
−r31,

√
r2
11 + r2

21

)
(B.6)

α = atan2(r21, r11) (B.7)

γ = atan2(r32, r33), (B.8)

where the square root is taken to be positive.

(ii) If r31 = 1, then β = π/2, and a one-parameter family of solutions for α
and γ exists. One possible solution is α = 0 and γ = atan2(r12, r22).

(iii) If r31 = −1, then β = −π/2, and a one-parameter family of solutions for
α and γ exists. One possible solution is α = 0 and γ = −atan2(r12, r22).

From the earlier wrist mechanism illustration of the ZYX Euler angles it
should be evident that the choice of zero position for β is, in some sense, ar-
bitrary. That is, we could just as easily have defined the home position of
the wrist mechanism to be as in Figure B.2; this would then lead to another
three-parameter representation (α, β, γ) for SO(3). Figure B.2 is precisely the
definition of the ZYZ Euler angles. The resulting rotation matrix can be
obtained via the following sequence of rotations:

R(α, β, γ) = Rot(ẑ, α) · Rot(ŷ, β) · Rot(ẑ, γ)

=

 cα −sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1 0
−sβ 0 cβ

 cγ −sγ 0
sγ cγ 0
0 0 1


=

 cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ

 . (B.9)

Just as before, we can show that for every rotation R ∈ SO(3), there exists
a triple (α, β, γ) that satisfies R = R(α, β, γ) for R(α, β, γ) as given in Equa-
tion (B.9). (Of course, the resulting formulas will differ from those for the ZYX
Euler angles.)

From the wrist mechanism interpretation of the ZYX and ZYZ Euler angles,
it should be evident that for Euler angle parametrizations of SO(3), what really
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Figure B.3: Illustration of XYZ roll-pitch-yaw angles.

matters is that rotation axis 1 is orthogonal to rotation axis 2, and that rotation
axis 2 is orthogonal to rotation axis 3 (axis 1 and axis 3 need not necessarily be
orthogonal to each other). Specifically, any sequence of rotations of the form

Rot(axis1, α) · Rot(axis2, β) · Rot(axis3, γ), (B.10)

where axis1 is orthogonal to axis2, and axis2 is orthogonal to axis3, can serve
as a valid three-parameter representation for SO(3). Later in this chapter we
see how to express a rotation about an arbitrary axis that is not a unit axis of
the reference frame.

B.2 Roll-Pitch-Yaw Angles

Earlier in the chapter we asserted that a rotation matrix can also be used to
describe a transformation of a rigid body from one orientation to another. Here
we use this prescriptive viewpoint to derive another three-parameter representa-
tion for rotation matrices, the roll-pitch-yaw angles. Referring to Figure B.3,
given a frame in the identity configuration (that is, R = I), we first rotate this
frame by an angle γ about the x̂-axis of the fixed frame, followed by an angle β
about the ŷ-axis of the fixed frame, and finally by an angle α about the ẑ-axis
of the fixed frame.

Let us derive the explicit form of a vector v ∈ R3 (expressed as a column
vector using fixed frame coordinates) that is rotated about the fixed frame x̂-axis
by an angle γ. The rotated vector, denoted v′, will be

v′ =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 v. (B.11)

If v′ is now rotated about the fixed frame ŷ-axis by an angle β, then the rotated
vector v′′ can be expressed in fixed frame coordinates as

v′′ =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 v′. (B.12)
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Finally, rotating v′′ about the fixed frame ẑ-axis by an angle α yields the vector

v′′′ =

 cosα − sinα 0
sinα cosα 0

0 0 1

 v′′. (B.13)

If we now take v to successively be the three unit axes of the reference frame
in the identity orientation R = I, then after applying the above sequence of
rotations to the three axes of the reference frame, its final orientation will be

R(α, β, γ) = Rot(ẑ, α)Rot(ŷ, β) · Rot(x̂, γ) · ·I

=

 cα −sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1 0
−sβ 0 cβ

 1 0 0
0 cγ −sγ
0 sγ cγ

 · I
=

 cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 . (B.14)

This product of three rotations is exactly the same as that for the ZYX Euler
angles given in (B.5). We see that the same product of three rotations admits
two different physical interpretations: as a sequence of rotations with respect
to the body frame (ZYX Euler angles), or, reversing the order of rotations, as
a sequence of rotations with respect to the fixed frame (the XYZ roll-pitch-yaw
angles).

The terms roll, pitch, and yaw are often used to describe the rotational mo-
tion of a ship or aircraft. In the case of a typical fixed-wing aircraft, for example,
suppose a body frame is attached such that the x̂-axis is in the direction of for-
ward motion, the ẑ-axis is the vertical axis pointing downward toward ground
(assuming the aircraft is flying level with respect to ground), and the ŷ-axis
extends in the direction of the wing. The roll, pitch, and yaw motions are then
defined according to the XYZ roll-pitch-yaw angles (α, β, γ) of Equation (B.14).

In fact, for any sequence of rotations of the form (B.10) in which consecutive
axes are orthogonal, a similar descriptive-prescriptive interpretation exists for
the corresponding Euler angle formula. Euler angle formulas can be defined in
a number of ways depending on the choice and order of the rotation axes, but
their common features are:

• The angles represent three successive rotations taken about the axes of
either the body frame or the fixed frame.

• The first axis must be orthogonal to the second axis, and the second axis
must be orthogonal to the third axis.

• The angle of rotation for the first and third rotations ranges in value over
a 2π interval, while that of the second rotation ranges in value over an
interval of length π.
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B.3 Unit Quaternions

One disadvantage with the exponential coordinates on SO(3) is that because of
the division by sin θ in the logarithm formula, the logarithm can be numerically
sensitive to small rotation angles θ. The unit quaternions are an alternative
representation of rotations that alleviates some of these numerical difficulties,
but at the cost of introducing an additional fourth parameter. We now illustrate
the definition and use of these coordinates.

Let R ∈ SO(3) have exponential coordinate representation R = e[ω]θ, where
as usual ‖ω‖ = 1 and θ ∈ [0, π]. The unit quaternion representation of R is
constructed as follows. Define q ∈ R4 according to

q =


q0

q1

q2

q3

 =

[
cos θ2
ω sin θ

2

]
∈ R4. (B.15)

q as defined clearly satifies ‖q‖ = 1. Geometrically, q is a point lying on the
three-dimensional unit sphere in R4, and for this reason the unit quaternions
are also identified with the three-sphere, denoted S3. Naturally among the
four coordinates of q, only three can be chosen independently. Recalling that
1 + 2 cos θ = tr R, and using the cosine double angle formula, i.e., cos 2φ =
2 cos2 φ− 1, the elements of q can be obtained directly from the entries of R as
follows:

q0 =
1

2

√
1 + r11 + r22 + r33 (B.16) q1

q2

q3

 =
1

4q0

 r32 − r23

r13 − r31

r21 − 212

 . (B.17)

Going the other way, given a unit quaternion (q0, q1, q2, q3), the correspond-
ing rotation matrix R is obtained as a rotation about the unit axis in the direc-
tion of (q1, q2, q3), by an angle 2 cos−1 q0. Explicitly,

R =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 . (B.18)

From the above explicit formula it should be apparent that both q ∈ S3 and its
antipodal point−q ∈ S3 produce the same rotation matrix R. For every rotation
matrix there exists two unit quaternion representations that are antipodal to
each other.

The final property of the unit quaternions concerns the product of two rota-
tions. Let Rq, Rp ∈ SO(3) denote two rotation matrices, with unit quaternion
representations ±q,±p ∈ S3, respectively. The unit quaternion representation
for the product RqRp can then be obtained by first arranging the elements of q
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and p in the form of the following 2× 2 complex matrices:

Q =

[
q0 + iq1 q2 + ip3

−q2 + iq3 q0 − iq1

]
, P =

[
p0 + ip1 p2 + ip3

−p2 + ip3 p0 − ip1

]
, (B.19)

where i denotes the imaginary unit. Now take the product N = QP , where the
entries of N are written

N =

[
n0 + in1 n2 + in3

−n2 + in3 n0 − in1

]
. (B.20)

The unit quaternion for the product RqRp is then given by ±(n0, n1, n2, n3)
obtained from the entries of N :

n0

n1

n2

n3

 =


q0p0 − q1p1 − q2p2 − q3p3

q0p1 + p0q1 + q2p3 − q3p2

q0p2 + p0q2 − q1p3 + q3p1

q0p3 + p0q3 + q1p2 − q2p1

 . (B.21)

Verification of this formula is left as an exercise at the end of this chapter.



Appendix C

Denavit-Hartenberg
Parameters and Their
Relationship to the Product
of Exponentials

C.1 Denavit-Hartenberg Representation

The basic idea underlying the Denavit-Hartenberg approach to forward kinemat-
ics is to attach reference frames to each link of the open chain, and to derive the
forward kinematics based on knowledge of the relative displacements between
adjacent link frames. Assume that a fixed reference frame has been established,
and that a reference frame (the end-effector frame) has been attached to some
point on the last link of the open chain. For a chain consisting of n one degree
of freedom joints, the links are numbered sequentially from 0 to n, in which
the ground link is labelled 0, and the end-effector frame is attached to some
point on link n. Reference frames attached to the links are also correspondingly
labelled from {0} (the fixed frame) to {n} (the end-effector frame). The joint
variable corresponding to the i-th joint is denoted θi. The forward kinematics
of the n-link open chain can then be expressed as

T0n(θ1, . . . , θn) = T01(θ1)T12(θ2) · · ·Tn−1,n(θn), (C.1)

where Ti,i−1 ∈ SE(3) denotes the relative displacement between link frames
{i− 1} and {i}. Depending on how the link reference frames have been chosen,
for open chains each Ti−1,i can be obtained in a straightforward fashion.

383
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Figure C.1: Illustration of Denavit-Hartenberg parameters.

C.1.1 Assigning Link Frames

Rather than attaching reference frames to each link in some arbitrary fashion,
in the Denavit-Hartenberg convention a set of rules for assigning link frames
is observed. Figure C.1 illustrates the frame assignment convention for two
adjacent revolute joints i− 1 and i that are connected by link i− 1.

The first rule is that the ẑ-axis coincides with joint axis i, and ẑi−1 coincides
with joint axis i − 1. The direction of each link frame ẑ-axis is determined via
the right-hand rule, i.e., such that positive rotations are counterclockwise about
the ẑ-axis.

Once the ẑ-axis direction has been assigned, the next rule determines the
origin of the link reference frame. First, find the line segment that orthogonally
intersects both joint axes ẑi−1 and ẑi. For now let us assume that this line
segment is unique; the case where it is not unique (i.e., when the two joint
axes are parallel), or fails to exist (i.e., when the two joint axes intersect), is
addressed later. Connecting joint axes i− 1 and i by a mutually perpendicular
line, the origin of frame {i − 1} is then located at the point where this line
intersects joint axis i− 1.

Determining the remaining x̂- and ŷ-axes of each link reference frame is now
straightforward: the x̂ axis is chosen to be in the direction of the mutually
perpendicular line pointing from the i− 1 axis to the i axis. The ŷ-axis is then
uniquely determined from the cross-product x̂ × ŷ = ẑ. Figure C.1 depicts the
link frames i and i− 1 chosen according to this convention.

Having assigned reference frames in this fashion for links i and i−1, we now
define four parameters that exactly specify Ti−1,i:

• The length of the mutually perpendicular line, denoted by the scalar ai−1,
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is called the link length of link i− 1. Despite its name, this link length
does not necessarily correspond to the actual length of the physical link.

• The link twist αi−1 is the angle from ẑi−1 to ẑi, measured about x̂i−1.

• The link offset di is the distance from the intersection of x̂i−1 and ẑi to
the link i frame origin (the positive direction is defined to be along the ẑi
axis).

• The joint angle φi is the angle from x̂i−1 to x̂i, measured about the
ẑi-axis in the right-hand sense.

These parameters constitute the Denavit-Hartenberg parameters. For an
open chain with n one degree-of-freedom joints, the 4n Denavit-Hartenberg
parameters are sufficient to completely describe the forward kinematics. In the
case of an open chain with all joints revolute, the link lengths ai−1, twists αi−1,
and offset parameters di are all constant, while the joint angle parameters φi
act as the joint variables.

We now consider the case where the mutually perpendicular line is undefined
or fails to be unique, as well as when some of the joints are prismatic, and finally,
how to choose the ground and end-effector frames.

When Adjacent Revolute Joint Axes Intersect

If two adjacent revolute joint axes intersect each other, then the mutually per-
pendicular line between the joint axes fails to exist. In this case the link length
is set to zero, and we choose x̂i−1 to be perpendicular to the plane spanned
by ẑi−1 and ẑi. There are two possibilities here, both of which are acceptable:
one leads to a positive value of the twist angle αi−1, while the other leads to a
negative value.

When Adjacent Revolute Joint Axes are Parallel

The second special case occurs when two adjacent revolute joint axes are par-
allel. In this case there exist many possibilities for a mutually perpendicular
line, all of which are valid (more precisely, a one-parameter family of mutual
perpendicular lines is said to exist). Again, it is important to detail precisely
how the link frames are assigned. A useful guide is to try to choose the mutually
perpendicular line that is the most physically intuitive, and simplifies as many
Denavit-Hartenberg parameters as possible (e.g., such that their values become
zero).

Prismatic Joints

For prismatic joints, the ẑ-direction of the link reference frame is chosen to be
along the positive direction of translation. This convention is consistent with
that for revolute joints, in which the ẑ-axis indicates the positive axis of rotation.
With this choice the link offset parameter di now becomes the joint variable (see
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Figure C.2: Link frame assignment convention for prismatic joints. Joint i− 1
is a revolute joint, while joint i is a prismatic joint.

Figure C.2). The procedure for choosing the link frame origin, as well as the
remaining x̂ and ŷ-axes, remains the same as for revolute joints.

Assigning the Ground and End-Effector Frames

Our frame assignment procedure described thus far does not specify how to
choose the ground and final link frames. Here as before, a useful guideline is to
choose initial and final frames that are the most physically intuitive, and simplify
as many Denavit-Hartenberg parameters as possible. This usually implies that
the ground frame is chosen to coincide with the link 1 frame in its zero (rest)
position; in the event that the joint is revolute, this choice forces a0 = α0 =
d1 = 0, while for a prismatic joint we have a0 = α0 = φ1 = 0. The end-effector
frame is typically attached to some reference point on the end-effector, usually
at a location that makes the description of the task intuitive and natural, and
also simplifies as many of the Denavit-Hartenberg parameters as possible (e.g.,
their values become zero).

It is important to realize that arbitrary choices of the ground and end-
effector frames may not always be possible, since there may not exist a valid set
of Denavit-Hartenberg parameters to describe the relative transformation; we
elaborate on this point below.

C.1.2 Why Four Parameters are Sufficient

In our earlier study of spatial displacements, we argued that a minimum of
six independent parameters were required to describe the relative displacement
between two frames in space: three for the orientation, and three for the po-
sition. Based on this result, it would seem that for an n-link arm, a total of
6n parameters would be required to completely describe the forward kinematics
(each Ti−1,i in the above equation would require six parameters). Surprisingly,
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Figure C.3: An example of three frames {a}, {b}, and {c}, in which the trans-
formations Tab and Tac cannot be described by any set of Denavit-Hartenberg
parameters.

in the Denavit-Hartenberg parameter representation only four parameters are
required for each transformation Ti−1,i. Although this result may at first appear
to contradict our earlier results, this reduction in the number of parameters is
accomplished by the carefully stipulated rules for assigning link reference frames.
If the link reference frames had been assigned in arbitrary fashion, then more
parameters would have been required.

Consider, for example, the link frames shown in Figure C.3. The trans-
formation from frame {a} to frame {b} is a pure translation along the ŷ-axis
of frame {a}. If one were to try to express the transformation Tab in terms
of the Denavit-Hartenberg parameters (α, a, d, θ) as prescribed above, it should
become apparent that no such set of parameter values exist. Similarly, the trans-
formation Tac also does not admit a description in terms of Denavit-Hartenberg
parameters, as only rotations about the x̂- and ẑ- axes are permissible. Under
our Denavit-Hartenberg convention, only rotations and translations along the
x̂ and ẑ axes are allowed, and no combination of such motions can achieve the
transformations shown in Figure C.3.

Given that the Denavit-Hartenberg convention uses exactly four parameters
to describe the transformation between link frames, one might naturally wonder
if the number of parameters can be reduced even further, by an even more clever
set of link frame assignment rules. Denavit and Hartenberg show that this is
not possible, and that four is the minimum number of parameters [7].

We end this section with a reminder that there are alternative conventions
for assigning link frames. Whereas we chose the ẑ-axis to coincide with the joint
axis, some authors choose the x̂-axis, and reserve the ẑ-axis to be the direction
of the mutually perpendicular line. To avoid ambiguities in the interpretation
of the Denavit-Hartenberg parameters, it is essential to include a concise de-
scription of the link frames together with the parameter values.
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C.1.3 Manipulator Forward Kinematics

Once all the transformations Ti−1,i between adjacent link frames are known
in terms of their Denavit-Hartenberg parameters, the forward kinematics is
obtained by sequentially multiplying these link transformations. Each link frame
transformation is of the form

Ti−1,i = Rot(x̂, αi−1) · Trans(x̂, ai−1) · Trans(ẑ, di) · Rot(ẑ, φi)

=


cosφi − sinφi 0 ai−1

sinφi cosαi−1 cosφi cosαi−1 − sinαi−1 −di sinαi−1

sinφi sinαi−1 cosφi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

 ,
where

Rot(x̂, αi−1) =


1 0 0 0
0 cosαi−1 − sinαi−1 0
0 − sinαi−1 cosαi−1 0
0 0 0 1

 (C.2)

Trans(x̂, ai−1) =


1 0 0 ai−1

0 1 0 0
0 0 1 0
0 0 0 1

 (C.3)

Trans(ẑ, di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 (C.4)

Rot(ẑ, φi) =


cosφi−1 − sinφi−1 0 0
− sinφi−1 cosφi−1 0 0

0 0 1 0
0 0 0 1

 . (C.5)

A useful way to visualize Ti,i−1 is to transport frame {i − 1} to frame {i} via
the following sequence of four transformations:

(i) Rotate frame {i− 1} about its x̂ axis by an angle αi−1.

(ii) Translate this new frame along its x̂ axis by a distance ai−1.

(iii) Translate this new frame along its ẑ axis by a distance di.

(iv) Rotate this new frame about its ẑ axis by an angle φi.

Note that switching the order of the first and second steps will not change the
final form of Ti−1,i. Similarly, the order of the third and fourth steps can also
be switched without affecting Ti−1,i.
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Figure C.4: An RRRP spatial open chain.

C.1.4 Examples

We now derive the Denavit-Hartenberg parameters for some common spatial
open chain structures.

Example: A 3R Spatial Open Chain

Consider the 3R spatial open chain of Figure 4.3, shown in its zero position
(i.e., with all its joint variables set to zero). The assigned link reference frames
are shown in the figure, and the corresponding Denavit-Hartenberg parameters
listed in the following table:

i αi−1 ai−1 di φi

1 0 0 0 θ1

2 90◦ L1 0 θ2 − 90◦

3 −90◦ L2 0 θ3

Note that frames {1} and {2} are uniquely specified from our frame assign-
ment convention, but that we have some latitude in choosing frames {0} and
{3}. Here we choose the ground frame {0} to coincide with frame {1} (resulting
in α0 = a0 = d1 = 0), and frame {3} such that x̂3 = x̂2 (resulting in no offset
to the joint angle θ3).

Example: A Spatial RRRP Open Chain

The next example we consider is the four degree-of-freedom RRRP spatial open
chain of Figure C.4, here shown in its zero position. The link frame assignments
are as shown, and the corresponding Denavit-Hartenberg parameters are listed
in the following table:
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Figure C.5: A 6R spatial open chain.

i αi−1 ai−1 di φi

1 0 0 0 θ1

2 90◦ 0 0 θ2

3 0 L2 0 θ3 + 90◦

4 90◦ 0 θ4 0

The four joint variables are (θ1, θ2, θ3, θ4), where θ4 is the displacement of
the prismatic joint. As in the previous example, the ground frame {0} and final
link frame {4} have been chosen to make as many of the Denavit-Hartenberg
parameters zero.

Example: A Spatial 6R Open Chain

The final example we consider is a widely used six 6R robot arm (Figure C.5).
This open chain has six rotational joints: the first three joints function as a
Cartesian positioning device, while the last three joints act as a ZYZ type
wrist. The link frames are shown in the figure, and the corresponding Denavit-
Hartenberg parameters are listed in the following table:

i αi−1 ai−1 di φi

1 0 0 0 θ1

2 90◦ 0 0 θ2

3 0 L1 0 θ3 + 90◦

4 90◦ 0 L2 θ4 + 180◦

5 90◦ 0 0 θ5 + 180◦

6 90◦ 0 0 θ6
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C.1.5 Relation between the Product of Exponential and the
Denavit-Hartenberg Representations

The product of exponentials formula can also be derived directly from the
Denavit-Hartenberg parameter-based representation of the forward kinematics.
As before, denote the relative displacement between adjacent link frames by

Ti−1,i = Rot(x̂, αi−1) · Trans(x̂, ai−1) · Trans(ẑ, di) · Rot(ẑ, φi).

If joint i is revolute, the first three matrices can be regarded as constant, and
φi becomes the revolute joint variable. Define θi = φi, and

Mi = Rot(x̂, αi−1) · Trans(x̂, ai−1) · Trans(ẑ, di), (C.6)

and write Rot(ẑ, θi) as the following matrix exponential:

Rot(ẑ, θi) = e[Ai]θi , [Ai] =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (C.7)

With the above definitions we can write Ti−1,i = Mie
[Ai]θi .

If joint i is prismatic, then di becomes the joint variable, φi is a constant
parameter, and the order of Trans(ẑ, di) and Rot(ẑ, φi) in Ti−1,i can be reversed
(recall that reversing translations and rotations taken along the same axis still
results in the same motion). In this case we can still write Ti−1,i = Mie

[Ai]θi ,
where θi = di and

Mi = Rot(x̂, αi−1)Trans(x̂, ai−1)Rot(ẑ, φi) (C.8)

[Ai] =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (C.9)

Based on the above, for an n-link open chain containing both revolute and
prismatic joints, the forward kinematics can be written

T0,n = M1e
[A1]θ1M2e

[A2]θ2 · · ·Mne
[An]θn (C.10)

where θi denotes joint variable i, and [Ai] is either of the form (C.7) or (C.9)
depending on whether joint i is revolute or prismatic.

We now make use of the matrix identity MePM−1 = eMPM−1

, which holds
for any nonsingular M ∈ Rn×n and arbitrary P ∈ Rn×n. The above can also be
rearranged as MeP = eMPM−1

M . Beginning from the left of Equation (C.10),
if we repeatedly apply this identity, after n iterations we obtain the product of
exponentials formula as originally derived:

T0n = eM1[A1]M−1
1 θ1(M1M2)e[A2]θ2 · · · e[An]θn

= eM1[A1]M−1
1 θ1e(M1M2)[A2](M1M2)−1θ2(M1M2M3)e[A3]θ3 · · · e[An]θn

= e[S1]θ1 · · · e[Sn]θnM, (C.11)
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where

[Si] = (M1 · · ·Mi−1)[Ai](M1 · · ·Mi−1)−1, i = 1, . . . , n (C.12)

M = M1M2 · · ·Mn. (C.13)

We now re-examine the physical meaning of the Si by recalling how a screw
twist transforms under a change of reference frames. If Sa represents the screw
twist for a given screw motion with respect to frame {a}, and Sb represents the
screw twist for the same physical screw motion but this time with respect to
frame {b}, then recall that Sa and Sb are related by

[Sb] = Tba[Sa]T−1
ba , (C.14)

or using the adjoint notation AdTba ,

Sb = AdTba(Sa). (C.15)

Seen from the perspective of this transformation rule, Equation (C.13) suggests
that Ai is the screw twist for joint axis i as seen from link frame {i}, while Si
is the screw twist for joint axis i as seen from the fixed frame {0}.
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