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Chapter 1

Introduction

These exercises are designed to give you practice with the concepts, the calcula-
tions, and the software associated with the book. To get the most out of these
practice exercises, you are strongly encouraged not to look at the solutions until
you have given your best effort to solve them. You are more likely to retain
what you have learned when you work through the problem yourself instead of
just reading the solution.
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Chapter 2

Practice Exercises on
Configuration Space

2.1 Practice Exercises

Practice exercise 2.1 The experimental surgical manipulator shown in Fig-
ure 2.1, developed at the National University of Singapore, is a parallel mech-
anism with three identical legs, each with a prismatic joint and two universal
joints (the joints are marked for one of the legs). Use Griibler’s formula to
calculate the number of degrees of freedom of this mechanism.

Practice exercise 2.2
(a) Three rigid bodies move in space independently. How many degrees of
freedom does this system of three bodies have?

Figure 2.1: A miniature parallel surgical manipulator with three PUU legs.
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s \

Figure 2.2: A scissor jack (also known as a scissor lift). Image courtesy of Wikipedia.

(b) Now you constrain them so that each body must make contact with at
least one of the other two bodies. (The bodies are allowed to slide and
roll relative to each other, but they must remain in contact.) How many
degrees of freedom does this system of three bodies have?

Practice exercise 2.3 Figure 2.2 shows a scissor jack. As you turn the
screw, the jack goes up and down. The mechanical advantage provided by the
mechanism allows a single person to jack up a car to change a tire.

Think about what rigid bodies and joints must be present in the scissor jack.
You may not be able to see all of them in the image. Use Griibler’s formula to
calculate the number of degrees of freedom. Does your answer agree with what
you know about how a scissor jack works? If not, can you explain why?

Practice exercise 2.4 Figure 2.3 shows a table lamp that moves only in the
plane of the page. Use Griibler’s formula to calculate the number of degrees of
freedom.

Practice exercise 2.5 A unicycle is controlled moving on a rigid balance
beam as shown in Figure 2.4. Suppose the wheel is always touching the beam
with no sliding, answer the following questions in terms of R, S, T, and I (a
one-dimensional closed interval).
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Chapter 2. Practice Exercises on Configuration Space 5

Figure 2.3: A table lamp that moves only in the plane of the page.

B

Figure 2.4: A unicycle on a rigid balance beam.

(a) Give a mathematical description of the C-space of the unicycle when it
remains upright and is constrained to move in the 2-dimensional plane of
the page.

(b) Give a mathematical description of the C-space of the unicycle when it
remains upright, it moves in a 3-dimensional space, and the beam has
nonzero width.
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Practice exercise 2.6 Explain why S' x S' = T2, not S2. In other words,
explain why the C-space of a spherical pendulum (5?) is not topologically equiv-
alent to the C-space of a 2R robot (T?), even though the configurations of both
would typically be described by two angles. If you think the C-space of a 2R
robot is topologically equivalent (homeomorphic) to S?, propose a continuous
mapping between points on a sphere and the independent joint angles of a 2R
robot.

Practice exercise 2.7 Assume your arm has 7 dof and you constrain your
hand to be at a fixed configuration (e.g., your palm is flat against a table).
(a) What is an explicit representation of the arm’s configuration?
(b) What is an implicit representation?
(c) What does the set of feasible configurations look like in the 7-dimensional
configuration space of the unconstrained arm?

Practice exercise 2.8 Imagine a C-space described as a circle in an (z,y)
plane, of radius 2 centered at (3,0). What is an implicit representation of
this one-dimensional C-space? If you were to decide to parameterize the one-
dimensional C-space by the single parameter 6, give a mapping from 6 to (z,y).

Practice exercise 2.9 Consider the 2D quadcopter and rod shown in Fig-
ure 2.5. The rod is attached to the quadcopter by a revolute joint, and you
are given the task of balancing the rod upright (a flying version of the classic
cart pendulum problem). Assume the configuration of the quadcopter center is
described by (z4,¥q,0,) and the configuration of the rod center is described as
(r,Yr, 0r) where 6, and 60, are measured with respect to the world z axis. The
length of the rod is 2! and the height and width of the quadcopter body are 2h
and 2w respectively.

(a) Solve for the configuration constraints that keep the rod and quadcopter

connected.

(b) Express these as a Pfaffian constraint where q = [z, yq 04 , yr 0,]T

Practice exercise 2.10 Consider the parallel SCARA robot shown in Fig-
ure 2.6. The robot is controlled by two rotational motors located in the base,
and one rotational and one prismatic motor at the end effector. Assume each
of the links of the parallel mechanism are length 1 m, the prismatic joint has a
maximum travel of 1 m, and the separation distance of the base motors is 0.5 m.
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Chapter 2. Practice Exercises on Configuration Space 7

A

L

Figure 2.5: 2D quadcopter balancing a rod

Assume no collisions between the links, and that the end effector y-coordinate
is constrained to be greater than zero.
(a) Sketch the workspace of the end effector.
(b) What are some benefits and drawbacks of making a parallel rather than
a serial SCARA robot?
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Figure 2.6: Parallel SCARA robot and a skeleton top view.
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2.2 Solutions

Solution 2.1 There are N = 8 links (two links in each leg, ground, and
the moving platform). There are J = 9 joints (three prismatic joints and six
universal joints). The joints have a total of 3(1) +6(2) = 15 degrees of freedom.
By Griibler’s formula,

dof = 6(8 — 1 —9) + 15 = 3.

Solution 2.2

(a) 3(6) = 18.

(b) The system of three bodies is now subject to two equality constraints. For
example, if the three bodies are called A, B, and C, the constraints could
be written as the two equations dist(A,B) = 0 and dist(B,C) = 0. These
two constraints subtract two degrees of freedom, so there are 16 degrees
of freedom now.

Solution 2.3 See Figure 2.7 for work. Note that there are two extra cross
pieces behind the two side joints that are not visible from the image. The
result of Griibler’s formula does NOT agree with the known solution of 1 DOF.
This is due to the symmetry of this problem, causing certain constraints to not
be independent. Instead, the formula provides a lower bound, and the known
solution of 1 DOF is indeed above that lower bound.
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Figure 2.7: Written solution to scissor jack problem.

Solution 2.4 Despite all the links and revolute joints, this mechanical system

behaves similarly to a 3R robot arm, since each set of two revolute joints acts
as a single hinge.
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Figure 2.8: Written solution to lamp problem.

Solution 2.5

(a) I: the point of contact on the beam (which determines the angle of the
wheel, since rolling is enforced). If we treat the allowed contact points on
the beam as an open inerval, then the space is topologically equivalent to
R.

(b) I? x T?: intervals correspond to limited beam contact locations, St for
heading direction of wheel, and S* for the point of contact on the wheel.

Solution 2.6 For two spaces to be topologically equivalent, there must be
a homeomorphism relating the two. A homeomorphism is a mapping from
one space X (e.g., S?) to another space Y that (1) is one-to-one, (2) “onto”
(meaning the mapping from X to Y covers all of Y'), (3) continuous, and (4)
has a continuous inverse. A homeomorphism is the mathematical term for the
functions that can only deform the space, not cut, glue, or change its dimension.

There is no homeomorphism between S? and T2. When you poke a hole in
S? to get T2, for example, suddenly points that were neighbors to each other
(at the point where you poked the hole) are no longer neighbors; this cannot
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occur with a continuous mapping.

Solution 2.7

(a) The explicit representation is 6, the angle to the elbow about a line con-
necting the shoulder to the palm.

(b) The implicit representation is (61, 02, 3, 04,05, 06, 07) in the 7-dimensional
space, plus 6 equations constraining the position (3 dof) and orientation
(3 dof) of the palm.

(¢) A closed interval of a 1-dimensional curve in that 7-dimensional space.

Solution 2.8 TImplicit: (z,y) such that (z — 3)2 + y? = 4. Explicit: = =
34 2cosf, y =2sinf.

Solution 2.9 Note: opposite signs are also correct for the following solutions.
(a) Configuration constraints:

xy — Lcos(6y) = xq — hsin(fy)

2.1
yr — £sin(f,) = yq + hcos(fy). =y
(b) A(q)g =0, where ¢ = [z4 yq 04 T yr er]Tv q=1[tq Yq éq Ty Yr ér]T
|1 0 —hcos(fy) —1 0 —¢sin(b,)
A =1, ; —hsin(6g) 0 —1 {Ccos(fy) (2.2)

Solution 2.10

(a) The top view of the workspace is shown by the shaded region in Figure 2.9,
and is the intersection of two circles. To solve for the workspace area, sum
the area of the two circle sectors and subtract the triangle area (formed
when the arms are fully extended in the y position) that is counted twice.
The workspace volume is then the 3D extrusion of this shape into the page
by the reach of the prismatic joint.

(b) The parallel structure has the benefit of being more rigid and having more
of the motor mass concentrated at the base. One drawback is that the

parallel SCARA has a smaller workspace compared to a comparable serial
SCARA arm.
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Figure 2.9: Parallel SCARA robot workspace solution
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Chapter 3

Practice Exercises on
Rigid-Body Motions

3.1 Practice Exercises

Practice exercise 3.1 The mobile manipulator in Figure 3.1 needs to orient
its gripper to grasp the block. For subsequent placement of the block, we have
decided that the orientation of the gripper relative to the block, when the gripper
grasps the block, should be R.4. Our job is to determine the rotation operator
to apply to the gripper to achieve this orientation relative to the block.

Figure 3.1 shows the fixed world frame {a}, the mobile robot’s chassis frame
{b}, the gripper frame {c}, the RGBD camera (color vision plus depth, like the
Kinect) frame {d}, and the object frame {e}. Because we put the camera at a
known location in space, we know R,4;. The camera reports the configuration
of {e} relative to {d}, so we know R4.. From the mobile robot’s localization
procedure (e.g., vision-based localization or odometry) we know R,p. From the
robot arm’s forward kinematics we know Rp..

(a) In terms of the four known rotation matrices Ruq, Rge, Rap, and Ry, and
using only matrix multiplication and the transpose operation, express the
current orientation of the gripper relative to the block, Re..

(b) To align the gripper properly, you could apply to it a rotation Ry expressed
in terms of axes in the gripper’s {c} frame. What is Ry, in terms of the five
known rotation matrices (Rad, Rde, Rab, Roc, Reg), matrix multiplication,
and transpose?

15
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{e} J .

{a

Figure 3.1: The fixed world frame {a}, the mobile robot’s chassis frame {b}, the
gripper frame {c}, the RGBD camera frame {d}, and the object frame {e}.

2 cm {b}

Zb

Figure 3.2: As the machine screw goes into a tapped hole, it advances linearly by
4m mm every full rotation of the screw.

(¢) The same rotation could be written R, in terms of the axes of the frame
of the mobile base {b}. What is Ry?

Practice exercise 3.2 Figure 3.2 shows a screw, a frame {b}, and a frame
{s}. The %p,-axis of {b} is along the axis of the screw, and the origin of the
frame {s} is displaced by 2 cm, along the ¥, -axis, from the {b} frame. The
Zs-axis is aligned with X}, and the %Xg-axis is aligned with Zy,.

Taking note of the direction of the screw’s threads, as the machine screw goes
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Figure 3.3: A screw axis in the (J.,Zc) plane.

into a tapped hole driven by a screwdriver rotating at 3 radians per second, what
is the screw’s twist expressed in {b}, V,? What is the screw axis expressed in
{b}, 8?7 What is Vs? What is S5? Give units as appropriate.

Practice exercise 3.3 A wrench F and a twist V are represented in {a} as
Fo and V,, respectively, and they are represented in {b} as F, and V,. Without
consulting any other source, and using the facts that (AB)T = BTAT, that the
adjoint of the transformation matrix Ty, can be used to change the frame of
representation of a twist from the {a} frame to the {b} frame, and that the
scalar power generated (or dissipated) by applying a wrench F along a twist
V is independent of the frame of reference, show that F, = [Adr,,]TF,. (The
ability to derive this result is useful for your understanding of it.)

Practice exercise 3.4 Figure 3.3 shows a screw axis in the (¥,,2.) plane, at
a 45° angle with respect to the y -axis. (The X.-axis points out of the page.)
The screw axis passes through the point (0, 3,0).

(a) If the pitch of the screw is h = 10 linear units per radian, what is the
screw axis S.? Make sure you can also write this in its se(3) form [S],
too.

(b) Using your answer to (a), if the speed of rotation about the screw axis is
0 =12 rad/s, what is the twist V.7

(c) Using your answer to (a), if a frame initially at {c} rotates by 6 = /2
about the screw axis, yielding a new frame {c’}, what are the exponential
coordinates describing the configuration of {c'} relative to {c}?

(d) What is T,., corresponding to the motion in part (c)?

(e) Now imagine that the axis in Figure 3.3 represents a wrench: a linear force
along the axis and a moment about the axis (according to the right-hand
rule). The linear force in the direction of the axis is 20 and the moment
about the axis is 10. What is the wrench F.7

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
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18 3.1. Practice Exercises

Figure 3.4: A zero-pitch screw axis.

Practice exercise 3.5 Let Ty, € SE(3) represent the configuration of the
frame {b} relative to {s}. (We sometimes write this simply as 7') If {b}
moves over time, you could represent its velocity as Ty (or simply T), the time
derivative of Ty,. You should think of this velocity as a twist of the entire space
(to which the moving frame is attached). But we know that the velocity should
be representable by only six values, and Ty, could have 12 unique nonzero values
(the top three rows of the 4 x 4 matrix; the bottom row will be all zeros, since
the bottom row of a transformation matrix is always the constant [0 0 0 1]).

Instead, we could post-multiply st by Tps, i.e., T T =TT = Tss This
post-multiplication has the effect of representing the Ve1001ty in the {s} frame,
getting rid of the dependence on the current {b} frame. What do we call the
quantity TT-1? How many values are needed to uniquely spec1fy it?

We could also pre-multiply T by Tps to get T} T py =17 7 = Tbb This
pre-multiplication has the effect of representing the velocity in the {b} frame,
getting rid of the dependence on the {s} frame. What do we call the quantity
T-1'77

Practice exercise 3.6 The zero-pitch screw axis in Figure 3.4, aligned with
Za, passes through the point (—2,1,0) in the {a} frame. What is the twist V, if
we rotate about the screw axis at a speed 6 = 5 rad/s?

Practice exercise 3.7 A wrench F is represented in the {c} frame as F,.. If
T, = T, is the configuration of the {b} frame relative to the {a} frame, and
Ty = T, is the configuration of the {c} frame relative to the {a} frame, express
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S’ b

{b} 2 %
Figure 3.5: A machine screw. Notice the direction of the threads.

Fp in terms of Ty, Ts, F., and any math operations you need.

Practice exercise 3.8 Let the orientation of {b} relative to {a} be

1 0 O
Ryw=1]0 0 -1
01 0

and a point p be represented in {a} as p, = (1,2,3). What is p? (Give a
numeric 3-vector.)

Practice exercise 3.9 Consider three frames, {a}, {b}, and {c}. You know
the representations of these frames in terms of the others, e.g., T, and Tp.
(and therefore you can derive T,. and the inverses of these matrices). Give a
mathematical expression for V,, the twist (expressed in {a}) you would need
to follow for ¢ seconds to move the {b} frame to be coincident with the {c}
frame. Or, if you prefer, give an expression for [V,], the se(3) representation
of V,. Your answer should be symbolic (no numbers), and it should use ¢, any
of the transformation matrices you need, and any math operations you need.
If it is helpful, you can use the operation vec : se(3) — R® to get the vector
representation of an element of se(3), e.g., vec([V]) = V.

Practice exercise 3.10 Figure 3.5 shows a machine screw. As it advances
into a tapped hole, it moves 5 mm linearly for every radian of rotation. A frame
{a} has its Z,-axis along the axis of the screw and its %X,-axis out of the page.
The frame {b} has its origin at p, = (0,3, —2) mm and its orientation is shown
in the figure (21, is out of the page). Use mm as your linear units and radians
as your angular units.
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6-’05

{e}

Figure 3.6: Satellite rotating in space.

(a) What is the screw axis S, corresponding to advancing into a tapped hole?
Give a numerical 6-vector.

(b) What is the screw axis Sp? Give a numerical 6-vector.

(c) What is [Sp]?

(d) From the initial configuration Ty, shown in the figure, the {b} frame fol-
lows the screw an angle 6, ending at the final configuration T, . If we
write Ty = TT,.p, what is T? Express this symbolically (don’t write
numbers), using any of S,, Sp, 6, and any math operations you need.

(e) Referring to the previous question, if we instead write Typ = Ty, what
is T? Again, express this symbolically (don’t write numbers), using any
of 8y, Sp, 6, and any math operations you need.

Practice exercise 3.11 Consider the satellite and Earth shown in Figure 3.6.
Let w, = (0,1, 1) be the angular velocity of the satellite expressed in the satellite
body frame {b}. Assume a fixed Earth frame {e} (a geocentric view of the
universe like the ancient Greeks had).
(a) Solve for the coordinate axis velocities of {b} (Xp, ¥y, and 2,) represented
in the {b} frame. Sketch the velocity vectors on the figure above to confirm
that your solutions make sense.
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(b) The orientation of the {b} frame is equivalent to the {e} frame after it
has been rotated —90 degrees about its Ze-axis. Solve for w., the satellite
angular velocity represented in {e}. Sketch the velocity vectors on the
figure above to confirm that your solution makes sense.

(c) Solve for Rep, the time derivative of the body orientation expressed in {e}.

(d) Give the so(3) representation of the angular velocity in both the Earth
and the body frame.

Practice exercise 3.12 Consider again the satellite and Earth shown in Fig-
ure 3.6.

(a) If the given rotational velocity w, = (0,1,1) was instead the exponential
coordinates for a rotation, solve for the axis-angle representation and the
corresponding rotation matrix.

(b) After rotating and orbiting the Earth for some time, the relative orienta-
tion of the Earth and satellite is given as

V32 V32
0 0
V22 V22

Find the axis-angle representation that describes the rotation from the
initial body frame {b} to the new body frame {b’}.

0
Ry =11
0

Practice exercise 3.13 Consider the scene in Figure 3.7 of a once peaceful
park overrun by robots. Frames are shown attached to the tree {t}, robot chassis
{c}, manipulator {m}, and quadcopter {q}. The distances shown in the figure
ared; =4m,ds =3 m,ds =6m, dy =5m, ds =3 m. The manipulator is at a
position pe, = (0, 2, 1) m relative to the chassis frame {c}, and {m} is rotated
from {c} by 45 degrees about the #.-axis.

(a) Give the transformation matrices representing the quadcopter frame {q},
chassis frame {c}, and manipulator frame {m} in the tree frame {t}.

(b) Assume that the position controller for the manipulator on the mobile
robot is referenced to the chassis frame {c}. What position should you
command the gripper to go to if you would like to snatch the quadcopter
out of the sky?

(¢) You are tasked to move the mobile robot so that the chassis origin is
directly underneath the quadcopter and its frame is aligned with the tree
frame. Assume the mobile robot chassis controller takes transformation
matrices in the chassis frame as inputs. What tranformation should you
command the robot to follow?
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Figure 3.7: A tree, mobile manipulator, and flying robot in a park and the corre-
sponding reference frames.

Practice exercise 3.14 Consider the scene in Figure 3.8 of a quadcopter {q}
flying near a tree {t} and house {h}. The quadcopter is at a position pyq = (10,
5, 5) m expressed in the tree frame {t}, and the house is at a position py, =
(0, 10, 10) m expressed in the tree frame {t}. The quadcopter is flying upwards
with a velocity of 1 m/s, and rotating with a velocity of 1 rad/s.

(a) Calculate the quadcopter’s twist in {q} and {t}.

(b) Use the adjoint map to express the twist in the house frame {h}.

Practice exercise 3.15 Consider the cube with side lengths [ = 2 m and the
ant shown in Figure 3.9. Frames {b} and {c} show the ant at the midpoint of
the cube edges.

(a) Solve for the screw axis S, and angle 6 corresponding to the transformation
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Figure 3.8: A tree, and flying robot in a park and the corresponding reference frames.
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Figure 3.9: An ant shown at different positions on a cube.

from {b} to {c}.
(b) Sketch the location of the screw axis on the figure.

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

24 3.1. Practice Exercises

\\Z
b}

Zléj
L)
X

Figure 3.10: A tree and a frame attached to its branch.

(¢) Use the appropriate adjoint map to find S,,, the screw axis representation
in the {w} frame.
(d) How could you solve for S,, without using the adjoint map?

Practice exercise 3.16 Consider the scene in Figure 3.10 of a tree {t} and a
frame {b} attached to its branch. The figure shows a strong wind that applies
a force of 100 N at the center of frame {b}. Assume the branch has a mass of
50 kg centered at frame {b} as well. The position of the branch frame {b} in
the tree frame {t} is pip, = (2, 1, 3) m.

(a) What is the wrench F, due to the wind and the branch’s weight?

(b) What is this wrench in the tree frame {t}?
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3.2 Solutions

Solution 3.1
(a)

Rec = RedeaRabRbc
= Ry Ry Rap Rye.

Rec Ry = Reg — Ry = ReTcReg
= (RdTeR;FdRabRbC)TReg
= RchRgbRadeeReg (: ch)-

(c)
Ry = RyeRy = RyeRey = Rye R Ry RugRaeReg = Ry RaqRacRey (= Ryy).

Solution 3.2 The threads of this screw are the typical right-handed threads,
which means that the screw, when viewed from the top, rotates clockwise when
it advances into a tapped hole. In other words, the fingers of your right hand
curl in the direction of rotation of the screw when your right thumb points
downward on the page, in the negative direction of the upward-pointing Xi,-
axis. Since the screwdriver rotates at 3 rad/s, the screw also rotates at 3 rad/s,
so the angular component of the twist, expressed in {b}, is w, = (=3 rad/s, 0,0).
Since radians and seconds are the SI units for angle and time, respectively, you
could write (—3,0,0) and assume the default SI units. You could also write
(—3(180/7) deg/s,0,0), but that would be unusual.

The pitch of the screw is 47 mm per revolution, or 2 mm/rad. So as
the screw is rotated at 3 rad/s, it moves linearly in the —%p direction at
(2 mm/rad)(3 rad/s) = 6 mm/s. So the linear component of the twist ex-
pressed in {b} is (=6 mm/s,0,0), or, in SI units, v, = (—0.006 m/s,0,0). So,
in ST units, the entire twist is V}, = (wyp, vp) = (—3,0,0,—0.006, 0, 0).

The corresponding screw axis expressed in {b} is the normalized version of
V, where the magnitude of the angular velocity is unit. The magnitude of wy,
is 3, so divide the twist by 3 to get S, = (—1,0,0,-0.002,0,0). We can write
V, = S where 0 = ||wy|| = 3.
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The screw axis could also be represented in the {b} frame by the collection
{qv, 8», h}, where a point g, on the axis is (0,0,0) (expressed in {b}), the axis
direction is §, = (—1,0,0), and the pitch is h = 0.002.

In the {s} frame, the axis of rotation is aligned with the —Zzs-axis, so ws; =
(0,0,—3). A point at the origin of {s}, rigidly attached to the advancing screw,
has a downward linear component of —0.006 m/s in the —zg direction (i.e.,
(0,0,—0.006)) from the downward motion of the screw. But it also has a linear
component in the —%g direction from the rotation of the screw. The point at the
origin of {s} can be expressed as ¢, = (0,0.02,0) in terms of {b} coordinates, so
the linear motion at {s} due to the rotation of the screw is wy x g, = (0,0, —0.06).
In the {s} frame, this is (—0.06,0,0). (Imagine a turntable rotating about
the screw axis and the resulting motion of a point at {s}.) So the total lin-
ear motion at {s}, expressed in {s}, is vs = (0,0,—0.006) + (—0.06,0,0) =
(—0.06,0,-0.006). Therefore, V, = (0,0, -3, -0.06,0,—0.006). The screw axis
is S; = (0,0,—1,-0.02,0,—0.002) and Vs = S,0.

The screw axis could also be represented in the {s} frame by the collection
{¢s, 85, h}, where a point g; on the axis is (0,0.02,0), the axis direction is §; =
(0,0,—1), and the pitch is h = 0.002. Note that Sg = (85, —85 X ¢s + h§), where
hs is the linear velocity due to the linear motion of the screw and —§s X g5 is
the linear velocity due to the rotation of the screw.

You could also calculate V, and S, using Vs = [Adr,, ]V and S = [Adr,, |Sp.

Solution 3.3 See Chapter 3.4 of the textbook.

Solution 3.4
(a) Since the screw axis S, = (S.,,Se,) has a rotational component, S, is
a unit vector aligned with the axis, i.e., S., = § = (0,cos45°,sin45°) =
(0,1/4/2,1/+/2). The linear component is S., = hé — 3 x ¢ (a linear
component due to linear motion along the screw plus a linear component
due to rotation about the screw), where ¢ = (0,3,0) and h = 10, i.e.,
Se, = (0,10/v/2,10/+/2) + (3//2,0,0) = (3,10,10)/+/2.
(b) Ve=38.0=(0,1,1,3,10,10).
) S.0=(0,1,1,3,10,10)7/(2v/2).
You can use the MR code library to do the calculation. Use VecTose3 to
convert the exponential coordinates S.60 to their se(3) representation [S.0)

T~
(oP¥e)
=
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and then use MatrixExp6 to calculate

0 -0.71 0.71 2.12
0.71 0.5 0.5 12.61
-0.71 0.5 0.5 9.61

0 0 0 1

ch’ = 6[560] =

(e) The wrench is written F. = (me, f.). The linear component f. has a mag-
nitude of 20 and is aligned with the axis shown, so f. = (0, 10v/2,10v/2).
If the axis passed through the origin of {c}, the moment (which has mag-
nitude 10) would be (0, 5v/2, 5v/2), but since it is displaced from the origin
of {c}, there is an extra moment component due to the linear component,
q x fo=1(0,3,0) x (0,10v/2,10v/2) = (30v/2,0,0), so the total moment is
me = (0,5v/2,5v2) + (30v/2,0,0) = v/2(30,5,5).
You can verify that you get the same answer using F. = [Adr, |*Fa,
where {a} is a frame aligned with {c} and with an origin at (0,3, 0).

Solution 3.5 TT~'is the se(3) representation of the twist represented in {s},
i.e., [Vs] € se(3). Only six values (the six elements of Vs) are needed to specify
it.

T~1T is the se(3) representation of the twist represented in {b}, i.e., [Vy] €
se(3). Only six values (the six elements of V}) are needed to specify it.

Solution 3.6 The screw axis can be written S, = (S,,,,Sy,). The angular
component is S,,, = (0,0, 1), since the screw axis is aligned with Z,. The linear
component is S,,, = =S, X¢q, where ¢ = (—2,1,0),s0 S,, = (1,2,0). The entire
screw is then S, = (0,0, 1,1,2,0). The twist is V, = 08, = (0,0,5,5,10,0).

Solution 3.7

Fy = [Adr, |  F. where Ty, = T, Top = Ty ' Ty
= [Ady g, )T Fe

Or you could recognize F, = [AdT(;Cl]ch and F, = [Adr,,]TF, to get Fp =
[AdTl]T[AdT2_1]T.7-'C.

Solution 3.8 p, = Rpepa = Rapra =(1,3,-2).
Solution 3.9 Below are two approaches that arrive at the same solution.
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Tac - e[va]tTab
TacT_bl = e[V“']t
log(T.T,," ) = Valt
1
" log(TucT') = [Va]

Or:

t[Vy] = log Tp..

1
[Vb] = ; 10g Tbc

Vy = [Adg,, Jvec([Vs]) = %[AdTab]vec(log )

Solution 3.10

(a) Sg = (Sw,,Sv,)- Since there is a rotational component about the Z,-axis,
Sw, = (0,0,1). There is no linear component at the origin of {a} due to
the rotation, so S,, = (0,0,5), the linear motion due to the pitch of the
screw. So S, = (0,0,1,0,0,5).

(b) Sp = (Sw,sSw,)- The rotational component is S,, = (0,1,0). The linear
component is (0,5,0) due to the pitch of the screw plus the linear motion
due to the rotation of the screw, —S,, x ¢ = (0,0,—3), where ¢ is any
point on the screw axis measured in the {b} frame (e.g., ¢ = (-3,2,0)).
So S, = (0,5,-3), and S, = (0,1,0,0,5,—3).

0 01 0
0 00 5
(C) [Sb} - -1 0 0 -3
0 0 0 O
(d) T = elSafl, (The transformation when the screw axis is expressed in the
{a} frame.)
(e) T = %, (The transformation when the screw axis is expressed in the
{b} frame.)

Solution 3.11 ) _
(a) % = (0,1,-1), 1, = (—1,0,0), z» = (1,0,0)
(b) we =(1,0,1).
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1 0 O
(C) Rep = 0 1 -1
10 0 |
[0 -1 1] 0 -1 0
(d) [wb] = 1 0 0], [we] - 1 -1
-1 0 0] 0 1 0

Solution 3.12
(a) @ = (0,v2/2,+/2/2), and 6 = /2.
0.1559  —0.6985 0.6985

R= 0.6985 0.5780  0.4220
—0.6985 0.4220 0.5780
-1 0 0
(b) Ry = RE Ry = | 0 —V2/2 V2/2 |,
0 V2/2 V2/2

& = (0,0.3827,0.9239), and 6 = .

Solution 3.13
(a)

1 0 0 5
00 -1 6
Ta=1091 0 3
000 0 1|
[0 1 0 4]
-1 0 0 3
Te=1 09 01 0
0 0 0 1 |
0 v2/2 —v2/2 6
oo |1 o 0 3
L0 V22 V272 1
0 0 0 1
(b)
Peq = (=3,1,3)
(c)
Pee! = (—3, 1,0)

Rcc’ = Rct = R;C
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0 —-1.0 0 -30
1.0 0 0 10

Te=1"%9 0o 10 o0
0O 0 0 10

Solution 3.14
(a) Vb = (Oa la 0) Oa 170) Vt - (0,07 1, 5, —107 1)
(b) Vy = (0,0,1,-5,—10,1).

Solution 3.15
(a) Twe = Type!Sl?
Ty T = €l1f
Tye = e[Sb]G
Sy, =(0,0,1,1,0.5,1/m), 0 = .
(b) Axis points in the world z direction intersecting the (x,y) coordinates
(1.5,1) in the {w} frame.
(c) Sw=[Adr,,]S
Sw=1(0,0,1,1,~1.5,1/7), 6 = .
(d) Twe = elS»19T . Can right multiply both sides by T;bl and use the matrix
log to solve for S,

Solution 3.16
(a) F» = (0,0,0,—100,0, —500)
(b) Fy = (=800, 1000, 200, 0, 100, —500)
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Chapter 4

Practice Exercises on
Forward Kinematics

4.1 Practice Exercises

Practice exercise 4.1 Figure 4.1 shows the KUKA LBR iiwa (LBR = “Le-
ichtbauroboter,” German for lightweight robot; iiwa = “intelligent industrial
work assistant”) 7R robot arm. The figure defines an {s} frame at the base
with the y4-axis pointing out of the page and a {b} frame aligned with {s} at
the end-effector. The robot is at its home configuration. The screw axes for the
seven joints are illustrated (positive rotation about these axes is by the right-
hand rule). The axes for joints 2, 4, and 6 are aligned, and the axes for joints
1, 3, 5, and 7 are identical at the home configuration. Write M (T, when the
robot is at its home configuration), the screw axes Si,...,S7 in {s}, and the

Figure 4.1: The KUKA LBR iiwa 7-dof robot.
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J2 J3
{s}s . T ://;M{Flﬁ» B
Yy

S

9.8 mm . Yb

|
275.5 mm 410.0 mm 207.3 mm 100.0 mm

Figure 4.2: The KINOVA ultra lightweight 4-dof robot arm at its home configuration.

screw axes Bi,...,Br in {b}.

Practice exercise 4.2 Figure 4.2 shows a KINOVA ultra lightweight 4-dof
robot arm at its home configuration. An {s} frame is at its base and a {b}
frame is at its end-effector. All the relevant dimensions are shown. The y-axis
is displaced from the y.-axis by 9.8 mm, as shown in the image. Positive rotation
about joint axis 1 is about the y.-axis (by the right-hand rule, as always) and
joint axis 4 is about the j-axis. Joint axes 2 and 3 are also illustrated.

(a) Write M (i.e., Ts, when the robot is at its home configuration). All entries
should be numerical (no symbols or math).

(b) Write the space-frame screw axes Sy, ..., Ss. All entries should be numer-
ical (no symbols or math).

(¢) Give the product of exponentials formula for Ty, (6) for arbitrary joint
angles 0 = (61,02,05,04). Your answer should be purely symbolic (no
numbers), using only the symbols M, Sy, ..., 84, 01, ..., 04, and the matrix
exponential.

Practice exercise 4.3 Figures 4.3 and 4.4 show a Sawyer collaborative robot
in action on a factory floor. This is a 7-dof robotic arm.
(a) Draw a stick and cylinder model of Sawyer (similar to the examples in
Chapter 4), clearly showing all links and joints.
(b) Assuming the home configuration is shown in Figure 4.4, write the M
matrix.
(c) Write the space-frame and body-frame screw axes for this robot.
(d) What is the end-effector position when the joints are set to (0,3,0,5,0,5,0)?
(Hint: You might find the functions in the MR library to be useful).
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Figure 4.3: A Sawyer robot.

4.
h X

L

83.87

Figure 4.4: A top view of the Sawyer robot arm at its home configuration. Dimen-
sions are in mm. Assume that the centerlines shown are the screw axes of the revolute
joints. The {s} frame is at the base of the arm. The height from the base to the first

joint is 317 mm.
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Figure 4.5: Da Vinci Xi surgical robot.

Practice exercise 4.4 Figure 4.5 shows a da Vinci Xi, used in several types
of robot-assisted surgery. Though it is mechanically constrained to have only 3
degrees of freedom per arm, for the sake of this exercise assume each arm is a
simple serial chain with 6 degrees of freedom.
(a) Write the M matrix for the arm if its home configuration is shown in
Figure 4.6.
(b) Find the space frame screw axes for this system.
(c) Determine the position of the end-effector if the joints are at (0,%,0,7,
Again, the MR Library will prove useful here.

3r
4

).

E
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45 5 25 15

T

Figure 4.6: Top view of one da Vinci Xi surgical robot arm. Note that the grey
regions represent R joints, green indicates the {s} frame, and yellow represents the
end-effector frame {b} in this exercise. Dimensions are in cm.
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4.2 Solutions

Solution 4.1

1 00 0
M= 0 1 0 0
- 0 0 1 Li+ Lo+ Ls+ Ly
0 0 O 1
Lining up the screw axes as columns, we get
0 1 0 1 0 1 0
0 0 O 0 0 0 0
Si — 1 0 1 0 1 0 1
ist=1 0 0 0 0 0 0 0
0 Ly 0 Li+Ly 0 Li+Ly+Ls O
0 0 O 0 0 0 0
and
0 1 0 1 0 1 0
0 0 0 0 0 0 0
B — 1 0 1 0 1 0 1
list = 1 0 0 0 0 0 0
0 —(La+Ls+Ly) 0 —(Ls+Lsy) 0 —Lg O
0 0 0 0 0 0 0
Solution 4.2
(a)
1 0 0 0
0 1 0 992.8 mm
M=T+© =1y o 1 Z98mm
0 0 O 1

(b) Lining up the screw axes as columns of a matrix,

0 0 0 0

1 0 0 1
s |0 1 1 0
list = 10 2755 685.5 9.8|°
0 0 0 0
0 0 0 0
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Ly=37mn L,
L2= 83.87vmm Ly

\!

192.5mm Lg= 1685, L,=136.30.,

=400 win, Le= 400 wuy L=120 wm

Figure 4.7: Bare bones model of a Sawyer.

where distances are measured in mm. You can get this by visualiza-
tion, or by noting that w; = w4 = (0,1,0) and wy = ws = (0,0,1)
and choosing representative points on the joint axes (e.g., ¢1 = (0,0,0),
g2 = (0,275.5,0), g5 = (0,685.5,0), and ¢4 = (0,992.8,—9.8)) and using
Vi = —Ww; X @g;.

(C) st(o) — 6[5191]6[5262]6[‘5303]6[3404]M.

Solution 4.3
(a) See Figure 4.7.

(b)
0 0 1 1003.9
1 0 0 160.3
M=1y 1 0 3170
000 1
(c)
0 0 1 0 1 0 1
0 1 0 -1 0 1 0
S |1 0 0 0 0 0 0
list = g —317 0 317 0 —317 0
0 0 317 0 317 0 317
0 83.87 —192.5 —483.87 —24 883.87 —160.3
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0 1 0 -1 0 10

1 0 0o 0 0 0 0

B, 0 0 10 1 0 1
: 10039 0 -322 0 0 0 0
0  —920 0 520 1363 -120 0

~160.3 0 0o 0 0 0 0

(d) Using either FKinSpace or FKinBody, we find that the transformation from
the base to the end-effector at this configuration is

0 1 0 48387
T_ 1 0 0 160.3

0 0 -1 -203

00 O 1

Solution 4.4
(a) Given that there are 6 revolute joints, the model would theoretically have
6 degrees of freedom. However, as mentioned in the question, the actual
robot arm has joints that are constrained to move together in certain ways.

(b)
100 10
010 0
M=10 0 1 90
000 1

(¢) First, we need to derive the screw axes for each of the revolute joints. The
space-frame axis list is:

0 0 1 -1 -1 o0
0O 0 0 0 0 0
Se— |t 1 0 0 0 1
=10 0 0 0 0 0
0 —12 45 —75 —50 —10
0O 0 0 0 0 0

This, along with the M matrix and provided joint angles, can be fed
into FKinSpace, which returns that the transformation matrix to the end-
effector in this case is

7071 —=7071 O 23

—-.7071 —-7071 0 -14
0 0 -1 17
0 0 0 1

T =
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Practice Exercises on
Velocity Kinematics and
Statics

5.1 Practice Exercises

Practice exercise 5.1 Figure 4.1 shows the KUKA LBR iiwa 7R robot arm.
The figure defines an {s} frame at the base with the y,-axis pointing out of the
page and a {b} frame aligned with {s} at the end-effector. The robot is at its
home configuration. The screw axes for the seven joints are illustrated (positive
rotation about these axes is by the right-hand rule). The axes for joints 2, 4,
and 6 are aligned, and the axes for joints 1, 3, 5, and 7 are identical at the home
configuration. The dimensions are L; = 0.34 m, Ly, = 0.4 m, L3 = 0.4 m, and
Ly =0.15 m.
(a) What is the space Jacobian when the robot is at its home configuration?
(b) What is the body Jacobian when the robot is at its home configuration?
(¢c) What is the rank of the space and body Jacobian at the home configu-
ration? (It is always the same.) Is the home configuration a singularity?
What is the dimension of the space of feasible twists at the home config-
uration?
For the remaining questions, assume the angles of the joints are i7/16 for joints
i=1...7.
(d) What is the space Jacobian? What joint torques are needed to generate

39



40 5.1. Practice Exercises

the wrench s = (1 Nm,1 Nm,1 Nm,1 N;1 N,;1 N)? What is the ma-
nipulability measure po for the angular velocity manipulability ellipsoid
in the space frame? What is the manipulability measure ps for the linear
manipulability ellipsoid in the space frame?

(e) What is the body Jacobian? What joint torques are needed to generate
the wrench F, = (1 Nm,1 Nm,1 Nm,1 N;1 N;1 N)? What is the ma-
nipulability measure po for the angular velocity manipulability ellipsoid
in the body frame? What is the manipulability measure us for the linear
manipulability ellipsoid in the body frame?

Practice exercise 5.2 Consider a robot with eight joints moving in space.
The configuration of the end-effector is represented as an element of SE(3), the
velocity of the end-effector is represented as a twist V € RS, and the force and
moment at the end-effector is represented as a wrench F € RS. At some joint
configurations of the robot, the Jacobian has rank 6; at other configurations,
the rank of the Jacobian is lower. Consider a particular joint configuration 6
where the rank of the Jacobian is k.

(a) In the 8-dimensional space of joint velocities 0, what is the dimension of
the subspace of joint velocities that produce zero twist (V = 0, no motion)
of the end-effector?

(b) In the 6-dimensional space of wrenches F applied to the end-effector, what
is the dimension of the subspace of wrenches that the robot can resist with
a zero joint force-torque vector, 7 = 07

In the remaining questions, assume that 1 < k < 6.

(c¢) Assume the task is to position the end-effector in SE(3). Is the robot

redundant, kinematically deficient, or neither with respect to this task?

) Is the longest axis of the manipulability ellipsoid zero, infinite, or other?
) Is the shortest axis of the manipulability ellipsoid zero, infinite, or other?
) Is the longest axis of the force ellipsoid zero, infinite, or other?

) Is the shortest axis of the force ellipsoid zero, infinite, or other?

(d
(e
(f
(g

Practice exercise 5.3 Figure 5.1 shows an RPR robot that is confined to
the plane of the page. An end-effector frame {b} is illustrated, where the X-
axis is out of the page. The directions of positive motion of the three joints are
indicated by arrows. The axes of the two revolute joints are out of the page, and
the prismatic joint moves in the plane of the page. Joint 1 is at ¢; = (0, =5, —7)
in {b} and joint 3 is at g3 = (0,—1,—3) in {b}. Write the body Jacobian
Jp(0) for the configuration shown. All entries of your J,(#) matrix should be
numerical (no symbols or math).
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q1 = (07 _57 _7)

Figure 5.1: An RPR robot.

Practice exercise 5.4 Figure 5.2 shows a simplified pick-and-place robotic
arm at its home configuration. Let’s apply velocity kinematics and statics to
this arm.

(a) Find M = T(0), the configuration of {b} relative to {s} when the robot
is at its zero (home) configuration.

(b) Find the space-frame screw axis for each joint when the robot is at its
home configuration.

(¢) Use the MR library to calculate the body Jacobian at the home configu-
ration using the results from the previous two questions. No need to look
at Figure 5.2 again (but you can do so to verify your answers).

(d) To resist a wrench Fs = (0,0,0,5,10,0) (linear components are in New-
tons) applied to the last link of the robot when the robot is at the home
configuration, what torques 7 must be generated by the joints?

(e) Use the MR library to find Js(0) at 0 = (10,7/4, —7/4,2,2,0).
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Figure 5.2: A pick-and-place robot shown in its home configuration. The end-effector
{b} frame is aligned with the {s} frame and is 7 cm above the {s} frame (in the +2
direction).
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5.2 Solutions

Solution 5.1 Angular units are radians and linear units are mm.

(a)

0O 1 0 1 0 1 0

0 0 0 0 0 0 0

St o 1 0 1 0 1

*“lo 0 0 0 0 0 0

0 034 0 074 0 1.14 0

0 0 0 0 0 0 0

(b)

o 1 0 1 0 1 0
O 0 0 0 0 0 0
solt 0 10 10
0O 0 0 0 0 0 0
0 —095 0 —055 0 —0.15 0
0o 0 0 0 0 0 0

(¢) The rank is three. Columns 2, 3, and 4 of the Jacobians are linearly in-
dependent; all feasible velocity directions are linear combinations of these
three columns. The space of feasible twists is three dimensional.

(d) Calculate J4(0) using JacobianSpace.

=JY(0)F, =[11.440.78 1.72 1.13 0.54 2.29] "

po(JewdE)) = 2.427, ps(JeJE) = 30.5.
(e) Calculate J,(#) using JacobianBody.

7= JY(0)F, =[-0.19 1.76 0.18 0.26 1.36 — 0.96 1]T.

po(Jow Jih)) = 2,427, po(Jpy Jik) = 20.6.

Solution 5.2
(a) Vv=J 6. This question is asking for the dimension of the null space of .J,
i.e., the dimension of the subspace of joint velocities 6 such that J6 = 0.
This is also called the nullity of J. J is rar}k k < 6, so V is confined to
a k-dimensional linear space, regardless of 6. So only k directions in the
6 space (R®) affect V, while the other 8 — k directions, the null space of
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(d)
(e)
(f)
(2)

J, have no affect on V. So an (8 — k)-dimensional space of joint velocities
produce zero motion of the end-effector.

Other ways to see this: J 0 = 0 places k independent constraints on the
eight variables of 6, so the subspace satisfying these constraints must be
(8 — k)-dimensional. Also, the rank-nullity theorem tells us that the sum
of the rank of J plus the nullity of J must equal the number of columns
of J, so the nullity must be 8 — k.

This question is asking for the nullity of JT in 7 = J*F. We know that
rank(.J) = rank(J7), so the rank of JT is k. By the rank-nullity theorem,
k + nullity(JT) = 6, so nullity(J*) =6 — k.

The robot is redundant, since the Jacobian has a rank of 6 at some con-
figurations (capable of moving in any direction in SE(3)) but has eight
joints. The terms “redundant” and “kinematically deficient” are inde-
pendent of the particular configuration, while singularities depend on the
configuration.

Other.

Zero.

Infinite.

Other.

Solution 5.3

o O O
o O o

1
0
0

=109 0

-7 1/vV2 -3
5 1/v/2 1

You can see this by visualization (imagine turntables at joints 1 and 3 and
visualize the motion of a point at the origin of {b}, and imagine a conveyor
moving in the direction of joint 2) or by recognizing that w; = wz = (1,0,0)
and points on the joint 1 and 3 axes are ¢; and g3 and calculating v; = —w; X ¢;.
For joint 2, the linear direction of positive motion is given by vo = (g3 —q1)/|¢3—

ql]-

Solution 5.4 Linear dimensions have been converted to meters.

(a)

0.40

M = Ty (0) =

0

A
0
.07
1

O O OO

0
1
0
0

oo o
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(b) The space-frame screw axes of the joints when the robot is at its home
configuration are the columns of the space Jacobian J(#) when 6 = 0.

0 0 0 0 O 0

0 0 0 0 O 0

0 1 1 0 0 1

St =LO=1g 6 o 1 0 o

0 0 =015 0 0 —-0.40
1 0 0 0 -1 0
(¢) The columns of the Jacobian J,(0) are the screw axes in the end-effector
frame {b}.

0 O 0 0 0 O
0 O 0 0 0 O
0 1 1 0 0 1
Jb(O) - [AdTbb(O)}JS(O) - [AdM*I}SUSt - 0 0 0 1 0 0
0 04 025 0 0 O
1 0 0 0 -1 0

(d)
r=—JY0)F,=[0 0 15 =5 0 4]".

(e) Use JacobianSpace.

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 0 0 1
J5(0) = 0 0 011 1 0 011

0 0 -011 0 0 -2.36

10 0 0 -1 0
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Chapter 6

Practice Exercises on
Inverse Kinematics

6.1 Practice Exercises

Practice exercise 6.1 Perform three iterations of (approximate) iterative
Newton-Raphson root finding on the scalar function z4 — f(0) in Figure 6.1,
starting from 6°. (A general vector function f(#) could represent the forward
kinematics of a robot, and x4 could represent the desired configuration in coor-
dinates. The roots of x4 — f(6) are the joint vectors 0 satisfying x4 — f(8) = 0,
i.e., solutions to the inverse kinematics problem.) Draw the iterates 6%, 62, and
63 on the 6 axis and illustrate clearly how you obtain these points.

Figure 6.1: A scalar function x4 — f(6) of 0.

47



48 6.1. Practice Exercises

s

-7 Xe ye

Figure 6.2: An RRP robot.

Practice exercise 6.2 The spatial RRP open chain of Figure 6.2 is shown in
its zero position.
(a) Use analytic methods to solve the inverse kinematics when the end-effector
configuration is described by

0 1 0 2L

0 0 -1 0
= -1 0 0 =3L

0 0 0 1

(b) Assume that L =1 and use a numerical method (e.g., from the MR code
library) to solve the same problem as in (a).

Practice exercise 6.3 Figure 6.3(a) shows the world’s first robot system that
learns to dress elderly and physically disabled people. The system consists of two
TR WAM robots, whose kinematics are given in Chapter 4.1.3 of the textbook.
The overview of the system is shown in Figure 6.3(b). The WAM robots are
mounted symmetrically. Suppose the world frame is set as shown in the figure
and D, = D, = 0.3 m. The task is to move one of the robot end-effector frames
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(b) Frames for the two WAM robot arms.

Figure 6.3: The dressing assistant consisting of two WAM robot arms.
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to the configuration

0 0 1 015
0 -1 0 0
=11 0 0 03 |
00 0 1

relative to {w}, to hold the clothes. Use the MR code library to solve the
following questions. (Ignore joint limits.)

(a) If one of the robot arms can achieve the configuration, would you generally
expect there to be one solution to the inverse kinematics, a finite number
of solutions, or an infinite number of solutions?

(b) Can the left arm achieve the configuration? You could use numerical
inverse kinematics with different initial guesses, if needed. If you find a
solution, use forward kinematics to verify it. If you cannot find a solution,
explain the reason.

(¢) Can the right arm achieve the configuration? You could use numerical
inverse kinematics with different initial guesses, if needed. If you find a
solution, use forward kinematics to verify it. If you cannot find a solution,
explain the reason.
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6.2 Solutions

Solution 6.1
za— f(0) A

=Y

Solution 6.2

(a) By inspection the first joint rotates along its axis parallel to zs-axis, while
the rotation axis of the second joint can move in a plane parallel to X5 — ¥,
plane. The orientation of the end-effector can be achieved from the initial
orientation by first rotating about the Zs-axis for —r/2 rad and then ro-
tating about the %Xs-axis for /2 rad. So we know that to reach the final
end-effetor configuration, §; = —m/2 and 6, = 7/2. By checking the trans-
lation we find 65 = L. So the joint angles should be § = (—x/2,7/2, L).

(b) Use the MR code library (e.g., IKinBody), to find the same result, begin-
ning from an initial guess away from the solution.

Solution 6.3
(a) You would expect an infinite number of solutions, since the robot is re-
dundant (it has 7 dof).
(b) The configuration is outside the left robot’s workspace, so there is no
solution.
(¢) Considering the inverse kinematics in the body frame of the right arm,
you would get

0 0 O 0 0 0 O
0 1 0 1 0 1 0
Jy = 1 0 1 0 1 0 1
0 091 0 036 0 0.06 O
0 0 0 0 0 0 O
0 0 0 0045 0 0 O
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and
-1 0 0 -0.3
0 -1 0 0
M= 0 0 1 1.21
0 0 O 1

One example solution, found using IKinBody, is

9 = (0, —2.2130,0, 2.6198,0, —1.9776,0).
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Chapter 7

Practice Exercises on
Kinematics of Closed

Chains

7.1 Practice Exercises

7.2 Solutions
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Chapter 8

Practice Exercises on
Dynamics of Open Chains

8.1 Practice Exercises

Practice exercise 8.1 Figure 8.1 illustrates an RP robot moving in a vertical
plane. The mass of link 1 is m; and the center of mass is a distance L; from
joint 1. The scalar inertia of link 1 about an axis through the center of mass
and out of the plane is Z;. The mass of link 2 is ms, the center of mass is a
distance 0y from joint 1, and the scalar inertia of link 2 about its center of mass
is 7. Gravity g acts downward on the page.

(a) Let the location of the center of mass of link i be (z;,y;). Find (z;,y;) for

i =1,2, and their time derivatives, in terms of 6 and 6.
(b) Write the potential energy of each of the two links, P; and Pa, using the

yT m
o

1 ~
X

Figure 8.1: An RP robot operating in a vertical plane.
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joint variables 6.

Write the kinetic energy of each of the two links, K1 and Ko. (Recall that
the kinetic energy of a rigid body moving in the plane is K = (1/2)mv? +
(1/2)Zw?, where m is the mass, v is the scalar linear velocity at the center
of mass, w is the scalar angular velocity, and Z is the scalar inertia of the
rigid body about its center of mass.)

What is the Lagrangian in terms of K1, Ko, P1, and Po?

One of the terms in the Lagrangian can be expressed as

1 .
If this were the complete Lagrangian, what would the equations of motion
be? Derive these by hand (no symbolic math software assistance). Indicate
which of the terms in your equations are a function of é, which are Coriolis
terms, which are centripetal terms, and which are gravity terms, if any.
Now derive the equations of motion (either by hand or using symbolic
math software for assistance) for the full Lagrangian and put them in the
form

7= M®) + c(8,0) + g(6).

Identify which of the terms in ¢(6, §) are Coriolis and which are centripetal.
Explain as if to someone who is unfamiliar with dynamics why these terms
contribute to the joint forces and torques.

Consider the configuration-dependent mass matrix M () from your pre-
vious answer. When the robot is at rest (and ignoring gravity), the mass
matrix can be visualized as the ellipse of joint forces/torques that are re-
quired to generate the unit circle of joint accelerations in 6 space. As 6,
increases, how does this ellipse change? Describe it in text and provide a
drawing.

Now visualize the configuration-dependent end-effector mass matrix A(6),
where the “end-effector” is considered to be at the point (z2,ys), the
location of the center of mass of the second link. For a unit circle of
accelerations (Zg, §j2), consider the ellipse of linear forces that are required
to be applied at the end-effector to realize these accelerations. How does
the orientation of this ellipse change as 6; changes? How does the shape
change as 6, increases from zero to infinity when 6; = 07 Provide a
drawing for the case #; = 0. If you have access to symbolic computation
software (e.g., Mathematica), you can use the Jacobian J(6) satisfying

{ 22 } — J(0)0

Y2
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Figure 8.2: A 2R robot with all mass concentrated at the ends of the links.

to calculate A(0) = J=T(0)M(6).J~1(0) for the case §; = 0. If you do not
have access to symbolic computation software, you can plug in numerical
values for 71, 7y, my, my, and L; (make them all equal to 1, for example)
to say something about how A changes (and therefore how the ellipse
changes) as 5 goes from zero to infinity while §; = 0.

Practice exercise 8.2 The mass matrix of the 2R robot of Figure 8.2 is

mlLf + mQ(L% + 2L1L2 [¢0)] 92 + Lg) mo (LlLQ [€0)] 02 + L%)

M(G) - mo (LlLQ COs 92 + L%) mng ’

where each link is modeled as a point mass at the end of the link. Explain in
text and/or figures why each of the entries makes sense, for example using the
joint accelerations ¢ = (1,0) and (0, 1).

Practice exercise 8.3 The equations of motion for a particular 2R robot arm
can be written M (0)0+ c(0,0)+ g(0) = 7. The Lagrangian £(6, §) for the robot
can be written in components as

L£(6,60) = L£(6,0) + L2(0,0) + L£3(0,0) + ...

One of these components is £! = mb1 05 cos Os.
(a) Find the joint torques 71 and 75 corresponding to the component L.
(b) Write the 2 x 2 mass matrix M'(6), the velocity-product vector ¢'(6, ),
and the gravity vector g'(f) corresponding to £'. (Note that M = M! +
M2+ M3+. . ,c=ct+c2+c+. ., andg=g'+¢*>+¢>+...)

Practice exercise 8.4 For a given configuration 6 of a two-joint robot, the
mass matrix is

mo)=| 5 5.
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Figure 8.3: A ring of radius 3.

which has a determinant of 6 — ab and eigenvalues %(5 + 1+ 4ab). What
constraints must a and b satisfy for this to be a valid mass matrix?

Practice exercise 8.5 Link ¢ of an open-chain robot has two frames attached
to it, a frame {b} at its center of mass and a frame {a} on the axis of joint
i, a revolute joint, that drives the link. In the frame {a}, the screw axis of
the revolute joint is expressed as S. In the backward iterations of Newton-Euler
inverse dynamics, it was determined that the wrench F; (expressed in {b}) must
be applied to the link. What joint torque 7; must be applied at joint ¢, in terms
of Fp, S, and the frames {a} and {b}?

Practice exercise 8.6 Figure 8.3 shows a ring in the ¥,-Z, plane (the %y
coordinate of each point on the ring is zero). The radius of the ring is 3 (all
mass is a distance 3 from the Xp-axis). The mass of the ring is 10, and the mass
is uniformly distributed around the ring. Write the spatial inertia matrix G.
All entries should be numerical, no symbols or math.

Practice exercise 8.7 The Lagrangian of a particular two-joint robot is

£ = L' + other terms

where o .
LY =005 + 0% cos 05.

(a) Find 7}, the force/torque at joint 1 (for arbitrary 6, 6, 6) due to £'. For
each term in your answer, label it as a mass matrix term, a Coriolis term,
a centripetal term, or a gravity term.
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(b) Find 73, the force/torque at joint 2 (for arbitrary 6, 6, 8) due to £'. For
each term in your answer, label it as a mass matrix term, a Coriolis term,
a centripetal term, or a gravity term.

Practice exercise 8.8 Consider the four equivalent forms of dynamics shown
below:

(0
(0
(
(

0+ h(9,0) + JT(0) Fiip, (8.
0+ c(0,0) + g(0) + J(0) Fisp, (8.
(0 (8.

(8.

M
M
M(6
=M(6

5+C(0,9)9+g Y+ I ) Fip,
0+ 6TT(0)0 + g(0) + T () Fuip,

B oW N~

)
)
)
)

— — — —
o o o

(a) List the variables common to all of the equations, what they represent,
their dimension, how they are derived, and any constraints they must
always follow or properties they must satisfy.

(b) For the unique variables in each of the equations, describe what they
represent and provide the dimension.

Practice exercise 8.9 Consider the quadcopter and attached pendulum shown
in Figure 8.4. The rod is attached to the quadcopter by a revolute joint, and you
are given the task of balancing the rod upright (a flying version of the classic
cart pendulum problem). Assume the configuration of the quadcopter center is
described by (z4,yq,0,) and the configuration of the rod center is described as
(@r, yr, 0,) where 6, and 6, are measured with respect to the world x axis. The
length of the rod is 2[, the masses are my, and m,, and the rotational inertias
are I, and I,.

Solve for the kinetic and potential energy terms and the Lagrangian for the
generalized coordinates (24, yq, 04, 0r).

Practice exercise 8.10 Consider the object in Figure 8.5 that consists of
a cube and sphere that are rigidly attached. The {c} and {s} frames of each
component are aligned with the principal axes and located at the center of mass.
The z-axes of both frames are colinear. Given that the body inertia of a sphere
is T, = (2mr? /5 x I3*3), the body inertia of a cube is Z, = ml?/6 x [3*3, r = 1,
[ = 2, the cube has mass 2, and the sphere has mass 1, solve for the spatial
inertia matrix G for the object.

Practice exercise 8.11 You are teaching Newton-Euler inverse dynamics,
and you are using the 2R robot from the beginning of Chapter 8 (see also
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Figure 8.4: 2D quadcopter and attached pendulum.

Figure 8.6) as an example. Each link has length L; and the mass of each link
is m;, concentrated at a point at the end of the link. You already know the
correct dynamics from the Lagrangian derivation. Now you will show how to
arrive at the same answer using Newton-Euler. Go through the method step by
step, showing intermediate results if it is helpful.
(a) Give M;, M;_14, Ai, Si, 8, Gi, Vo, VO. You can assume the frame {3}
is coincident with {2} and Fyp, is zero.
(b) Forward Tteration: First calculate the transformation, twist, and twist
derivative for link 1, then calculate them for link 2.
(c) Backward Iteration: First calculate F» and 7o, then calculate F; and 7.
Confirm that your final result agrees with the result in the notes.
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s

p ¥
(s

l

Figure 8.5: Rigid object consisting of a sphere and cube.

Figure 8.6: 2R robot.

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

62 8.2. Solutions

8.2 Solutions

Solution 8.1

(a)

xr1 = L1 COS 01 (tl = —Llél sin 91

T = 92 COs 91 j’:g = 92 COS 01 - (9291 sin (91
Yy = Ll sin 01 le = Llél COS 91

yo = O sin 6y Yo = 0o sin 01 + 026, cos ;.

P1 =myigy; = mygLysinb,
P2 = Ma2gYys = m2902 sin (91.

1 . . 1. 1 .
K1 = 5‘“1(96? +97) + 3 107 = 5@ +my L3)67

1 . . 1. 1 . .
Ko = 51’(12(37% + y%) =+ 5 29% = § ((IQ + mgeg)Gf + mgeg) .

(d) L=Ki+Ky—P1—7Ps.

(e) 1 = 2mo 6501 05 —Hpgﬁ%él. The first term is a Coriolis term and the second
term depends on 6.
Ty = —mafef?7. This term is a centripetal term.

(f)

T+ To+m L +mef3 0

. 21113929192
M(6) = { ; N }

:| ) 0(970) - |: _m2929'%
_ (m1L1 —|—m292)gcos 91
9(0) = { mog sin 67 } ‘

(g) The mass matrix M(0) is diagonal, so the principal axes of the ellipse
M (0)6 (for all § satisfying |§] = 1) are aligned with the 7, and 75 axes,
and the lengths of those principal axes (the eigenvalues of M) are just the
entries along the diagonal. As 0y gets larger, the top left component of
M gets larger. This means that larger torques at joint 1 are required to
generate accelerations in the 6, direction, due to the increased inertia of
the robot about joint 1. Hence the ellipse gets wider in the 7 direction.
See Figure 8.7.
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T2

0, increases
from zero

my e

N

Ty + o + my L3

Figure 8.7: The mass matrix M(0) represented as the ellipse of joint forces and
torques corresponding to a unit circle of joint accelerations 6 (when gravity and the
joint velocities are zero).

(h) The Jacobian relating joint velocities 6 to the velocity of the end-effector
(E2,72) is
—0ysinf; cosb;

J(0) = 0y cosf; sinbq

and the end-effector mass matrix is
AO)=J TMT

We are interested in the ellipse A(6)[#2 ij2]T (in the (f., f,) space) when
the end-effector acceleration is a unit vector.

The orientation of this ellipse rotates with 61, so we can just consider
the case for a particular constant 6, i.e., 87 = 0 (the end-effector is at
(z2,y2) = (0,62)). In this case, a force applied to the end-effector in the f,
direction acts to extend or retract joint 2 while a force in the f, direction
acts to rotate the robot about joint 1.

Evaluating A(0) with 6; = 0, we get the diagonal matrix

mo 0 o my 0
0 (Il + 7o + mlL% + mﬁ%)/@% o 0 (k? + m29§)/9§ ’

where k is a positive constant. Since the matrix is diagonal, the principal
axes of the ellipse A(0)[%2 2] (where the end-effector acceleration is a
unit vector) are aligned with the f, and f, axes and the lengths of the
principal components are the entries along the diagonal.

The apparent mass at the end-effector in the radial (z) direction is ms, i.e.,
it is independent of f5. The apparent mass in the tangential (y) direction
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fy
Y 0, approaches
zero from
my

my fy

0,=0

Figure 8.8: The end-effector mass matrix A(6) represented as the ellipse of forces
that must be applied to the end-effector to create a circle of accelerations (%2, 3j2). As
02 goes to infinity, the magnitude of the force required to generate a unit acceleration
(0,2) approaches ma, i.e., the robot feels like a point mass with mass ma.

depends on 65, however. As 6y approaches zero from above, the bottom
right component of A approaches infinity. This means large f, forces are
needed to accelerate the tip in the y direction. This is because the torque
about joint 1 provided by a force f, through the end-effector tends to zero
as the end-effector approaches joint 1, and therefore f,, must become large
to generate the angular acceleration of the inertia about joint 1 needed to
generate a modest jj» acceleration. Accordingly, the principal axis of the
end-effector mass ellipse in the f, direction becomes large (Figure 8.8).
As 05 approaches infinity, the bottom right element of A drops to msy, and
the end-effector mass matrix ellipse approaches a circle: the end-effector
feels like a mass ms in every direction.

Solution 8.2 Let
M= [ My Mo }

M21 M22

where M11 = mlL%—l—mg(L%—l—QLng [€0)] 02+L%), M12 = M21 = mg(Lng COSs 92+
L%), and M22 = mng

Figure 8.9 shows the linear accelerations of the masses m; and ms for joint
accelerations (1,0) and (0, 1).

The terms M;; and My are relatively easy to understand. The term
My, is the inertia of the robot about joint 1 if joint 2 is locked. The in-
ertia contribution due to m; is mlL% The distance of my from joint 1 is

= /L? +2L1Lycosfy + L3 (by the law of cosines), and the inertia con-
tribution due to my is mgd%.
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VL3 + 2L Lycos Oy + L3

b,=1

Figure 8.9: The linear accelerations of the point masses of the 2R arm for joint
accelerations (1,0) and (0, 1).

The term Mo, is the inertia about joint 2 due to the mass my a distance Lo
from the joint.

The off-diagonal term is harder to understand. But we know that if joint
1 accelerates, joint 2 has to apply a torque to keep joint 2 locked. And if
joint 2 accelerates, joint 1 has to apply a torque to remain locked; otherwise,
conservation of angular momentum about joint 1 would cause it to begin to
rotate in a direction opposite joint 2. Using Figure 8.9 and some geometry,
you could calculate the joint torque 7 required to keep joint 2 stationary when
6, = 1, based on the moment about joint 2 generated by the line of force required
to accelerate ms.

Solution 8.3
(a)

d (oLt oLt d, - o .

T = @ <%) — (9791 = ﬁ(mﬁg COSGQ) —-0= 11192 00892 — mﬂg SIHOQ
d (oLt oLt d, . S -

Ty = I (802) - 8792 = a(mf)l cos 03) + mb1 05 sin O3 = mb; cos Oy

iy 0 mcos 02 1p iy —mé% sin 05
20 = [ g, "0 | iy = [ T,

ro=g |
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8.2. Solutions

Solution 8.4 M(0) must be positive definite (and therefore symmetric), so
a = b and the eigenvalues must be positive, so |a| = |b| < /6. (The determinant
det(M) = 6 — a® must be positive, which gives the same condition on |a|.)

Solution 8.5 Take the dot product of the wrench with the screw axis after
they’ve been expressed in the same frame, e.g., in the frame {b}, F}[Adr,,|S.

Solution 8.6

90 0 0 0 0 0
0 4 0 0 0 0
G _ |0 0 45 0 0 0
1o 0o 0 10 0 0]
0 0 0 0 10 0
0 0 0 0 0 10

where the inertia about the Xp-axis is mR? = 90 since m = 10 and R = 3.
The inertia about the 7, and 2, axes is (1/2)mR? (derive this formula from the
integral or look it up online).

Solution 8.7

()
(b)

= 92 (mass matrix term).
7'21 = 01 +205c0o860y — 95 sinfy .

mass matrix terms centripetal term

Solution 8.8

(a)

(b)

7: the torque or force at each of the joints represented by the generalized
coordinates. Dimensions are n x 1 array.

M(6): the configuration dependent mass matrix. Dimensions are n X n
matrix. M must be symmetric and positive definite.

0: The generalized coordinates for the joints. Dimensions are n x 1 array.
g: The acceleration of the joints represented by the generalized coordi-
nates. Dimensions are n X 1 array.

J(#): The Jacobian (depends on configuration ). Dimensions are n X n
matrix.

Fiip: The force applied at the tip of the robot. Dimensions are n x 1 array.

8.1: The most general representation, and h(6, 9) is an n x 1 array that
contains the centripetal, coriolis, and gravity terms.
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8.2: 6(9,9) is an n x 1 array that contains the centripetal and coriolis
terms, and ¢(f) is an n x 1 array that contains the gravity terms.

8.3: C(6,0) is the n x n Coriolis matrix.

8.4: T'(0) is the n x n x n Christoffel matrix. Emphasizes that the Coriolis
and centripetal (velocity product) terms are quadratic in the velocity and
that I" depends only on 6.

Solution 8.9
The kinetic energy contains the translational kinetic energy of the rod and quad-
copter as well as the rotational kinetic energy of both bodies.
Quadcopter translational kinetic energy:
2 _ 52 -2
Vg = Tq + 3{(1 . )
Ko trans = 5mq(£5 +97)-
Quadcopter rotational kinetic energy:
Kot = 31402
Rod translational kinetic energy:
x, = x4 + Lcos(0,)
yr - yq + lSin(Qr) )
&r = &g — Isin(6,)0,
Yr = Yq + 1 cos(6,)0, . '
vZ =2+ g2 = (i, — sin(6,)0,)* + (y, + Lcos(6,)6,)?
Kr,trans = %mrvz
Rod rotational kinetic energy:
’Cr,rot = %I'reg
Total kinetic energy: )
K = ’Cq,trans + Kq,rot + ICr,trans + ’Cr,rot = %mq(xg + yg) + %Iqeg + %mr((l‘q -

Isin(0,)0,)2 + (94 + L cos(0,)6,)?) + 11,62,

Potential Energy:

P = %mqu + %mr(yq + Isin(6,)).

Lagrangian = £ = K — P = §mg (i +52) + %Iqég + 2m,((2q — Isin(6,.)0,)% +
(g + lCOS(er)éT)Q) + %Irég - %mqu + %mr(yq + Usin(6;)).

Solution 8.10

COM; = (0,0,3), COM. = (0,0,1).
COM, = (COMsms+ COM m.)/2.
g = COM, — COM,

qs = COM; — COM,

I = I+ me(qt g — qeq?)
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IL=1I+ mS(QEQsI - QSQ;F)
L=5L+1 = diag(6.48, 6.48, 1.73)
Gy = diag(6.48,6.48,1.73,3, 3, 3)

Solution 8.11
(a) Observe the drawing. Find the transformation matrix M; € SE(3) for
each link. M; is the transformation from the base frame {0} to the frame
{i}, which is attached to the center of mass of the i-th link, when the
robot is in its home configuration.

1 0 0 I 1 0 0 Li+Ls
010 0 01 0 0

M1_0010’M2_001 0
00 0 1 0 0 0 1

My € SE(3) is the transformation matrix from the frame {1} (attached
to center of mass of link 1) to the frame {2} (attached to the center of
mass of link 2), when the arm is in its home configuration. Find Ms by
observing the drawing or by using the equation My = M Mo.

1 0 0 Ly
010 0
Ma=19 01 0
00 0 1

From observing the drawing, obtain the screw-axis S; for each joint, ex-
pressed in the space-frame:

S1 =10,0,1,0,0,0]T, Sy =[0,0,1,0,—Ly,0]".

A, is the twist-vector for joint ¢ expressed in the frame {i} when the arm is
in its home configuration (6; = 0). For a simple 2R arm it can be obtained
by observing the spatial velocity of frame {i} when rotating about joint
i from the home configuration. Alternatively one may use the equation
Ay =1[0,0,1,0,Ly,0]T, Ay = [0,0,1,0, Ly, 0]".

Define the gravity vector g = [0,g,0]T with ¢ < 0. Define the spatial
inertia matrix G; for each link ¢, expressed in the frame {i}. In the case
of the 2R robot we assume that the mass is concentrated as a point mass
at the end of each link. This is the origin of frame {i}, so relative to the
frame {i}, the mass of link {i} has no rotational inertia.
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000 0 0 0 000 0 0 0
000 0 0 0 000 0 0 0
1000 0 0 o0 1000 0 0 o0
%*0()0m10 0 %*00()m 0 0
000 0 m O 000 0 m O
000 0 0 m 000 0 0 m

The base is fixed to the ground. It therefore has no velocity. It is however
subject to gravity. The gravity vector g needs to be incorporated in Vo.
Vo = [0,0,0,0,0,0]T, Vo = [0,0,0,0,4,0]T.
During the forward iteration of Newton-Euler inverse dynamics, we obtain
the states and accelerations of the frames attached to each link. Because
the velocity and acceleration of each link is influenced by those of its pre-
decessors, we start our calculations at the base and incrementally move
out-board until the states and accelerations for each link have been ob-
tained. As a convention we will express velocities V; and accelerations VZ
for each link 7 in the frame {¢}, which is attached to the center of mass of
the respective link.
Link 1 states and acceleration:
We now calculate the transformation Tp; from link 1’s predecessor (frame
{0})to itself (frame {1}). The equation Tp; = M;el41l% takes M; (the
transformation from the base frame {0} to the frame {1} when the robot
is in its home configuration ; = 6y = 0) as a reference point, and in-
corporates twists (exponential coordinates A;6;) about joint 1 to find the
transformation from frame {0} to frame {1} for any given 6.
cos(fy) —sin(61) 0 Lqcos(6q)
sin(61) cos(f#1) 0 Lysin(6y)

0 0 1 0

0 0 0 1

Calculate the absolute velocity V; of the frame {1} expressed in frame
{1}.

Detail: V; is composed of two terms: Vi = Adp, Vo + Alél.

First term: If joint 1 had a constant angle 67, then the base, together with
the first link, could be regarded as a single rigid body. Using the Adjoint
of a transformation matrix T1¢ (between two frames {1} and {0}, that are
assumed to be fixed to a rigid body), a spacial velocity of one point (ie.
frame {1}) can be expressed in terms of the spacial velocity of another
point (ie. frame {0}). The first term considers the portion of Vi, as a
result of being attached to a previous dynamic body. In this particular
case, the body (base) is stationary, Vy is 0 and therefore the first term of
the equation is also 0.

To1 =
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Second Term: The joint angle 6; of joint 1 is generally not constant and
the joint-angle velocity 61 is not 0. The second term of the equation for V;
incorporates the additional velocity of the frame {1} caused by rotating
about joint 1. Vl = [O, O, 91, 07 L191, O]T

Calculate the absolute acceleration V; of the frame {1} expressed in frame
{1}.

Detail: V; = Adr,, Vo + [Vl,Al]él + A6, where [V1, A1] indicates the
Lie-Bracket operation of V; and A;. The first term considers the accel-
eration of the previous rigid body, ie. the acceleration of the base frame
{0}. The second term considers the coriolis and centripetal accelerations.
The third term considers accelerations of frame {1}, due to joint-angle
apceleratiops 91 )

V1 =[0,0,6,gsin(6;),gcos(6y) + L161,0]T.

Link 2 states and acceleration:
We now calculate the transformation Ti2 from link {2}’s predecessor (frame
{1})to itself (frame {2}). The equation Tjs = Misel421% takes My,
(the transformation from frame {1} to frame {2} when the robot is in
its home configuration ; = #; = 0) as a reference point, and incor-
porates twists (exponential coordinates A3f) about joint 2 to find the
transformation from frame {1} to frame {2} for any given 6. Ti» =
cos(f2) —sin(fy) 0 Lscos(bs)
sin(f2)  cos(f2) 0 Lgsin(fz)
0 0 1 0
0 0 0 1

Calculate the absolute velocity Vs of the frame {2} expressed in frame
{2}.

Detail: V5 is composed of two terms: Vo = Adp,, V1 + A292.

First term: If joint 2 had a constant angle 65, then link 1, together with
link 2, could be regarded as a single rigid body. Using the Adjoint of
a transformation matrix Ty (between two frames {2} and {1},that are
assumed to be fixed to a rigid body) a spacial velocity of one point (ie.
frame {2}) can be expressed in terms of the spacial velocity of another
point (ie. frame {1}). The first term considers the portion of Vs, as a
result of being attached to a previous dynamic body.

Second Term: The joint angle €5 of joint 2 is generally not constant and
the joint-angle velocity 0 is not 0. The second term of the equation for Vs
incorporates the additional velocity of the frame {2} caused by rotating
about joint 2.
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VQ = [0, 0, 9.1 + 0.2, L1 sin(92)917 (L2 + L1 COS(QQ))él + Lgéz, O]T

Calculate the absolute acceleration Vs of the frame {2} expressed in frame
{2}:

Detail: Vo = Adr,, V) + Vs, Ag]ég +A2é2, where [Va, As] indicates the Lie-
Bracket operation of Vo and As. The first term considers the acceleration
of the previous rigid body, ie. the acceleration of the base frame {1}. The
second term considers the coriolis and centripetal accelerations. The third
term considers accelerations of frame {2}, due to joint-angle accelerations
0s.

Vg = [O, 0, 01 + 0.2,.9 sin(01 + 02) + L1 COS.(92)9102“+ Ll sin(92)01,g COS(91 -+
02) — Ly sin(03)0102 + (Lo + Lq cos(02))61 + LQ@Q]T.

(¢) During the forward iteration, we had to bear in mind that the velocity and
acceleration of link ¢ is dependent on those of its predecessor link i — 1.
Similarly, the forces acting on a link i are dependent on the forces acting
on its outboard follower (i 4+ 1): The wrench F; that must be applied to
link 7 is the sum of the wrench F;;; that must be provided to link 7 + 1
(but expressed in frame {i}) plus the extra wrench from the rigid body
dynamics of link 7. In other words, the inboard links need to support
the outboard links. For that reason, we run a backward iteration starting
with the most outboard link and incrementally approach the base link.
Ultimately, we are solving for the torques acting on each joint, to obtain
the control torques that need to be provided to the joint motors.

Link 2 forces and torques: Find the transform from frame {2} to frame
{3}. The frame n + 1 (in this case 3) is the frame attached to the end-
effector. For the 2R arm we assumed that the frame {3} coincides with
frame {2} (both the center of mass of link 2, as well as the end-effector are
located at the tip of link 2). We therefore know, that Th3 is the identity
transformation in SE(3),

T23 = dlag(l, 1, 1, 1)

F3 is the wrench that the end-effector applies to the environment expressed
in the frame {3}. It is given as 0.

Fiip = F3=10,0,0,0,0,0]T.

Calculate F; using the equation Fy = Adr,, Fiip + GaVsy — ad\T,2 (G2Vs).
Details: The first term is the wrench that must be provided by the end-
effector (expressed in frame{2}). The second and third terms are the
wrench that results from the dynamics of link 2. )

F2 =1[0,0,0,m2 (g sin(61+62)—L4 COS(QQ)H%TLQ (61+62)%+ L1 sin(62)01), ma(g cos(61+
02) + Ly sin(92)9% + (L2 + 14 COS(QQ)) + Lgeg), O]T

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

72 8.2. Solutions

To obtain the torque acting on joint 2, the wrench F5 is multiplied with

the twist-vector for joint 2 expressed in the frame 2, namely As,

To = L2m2(92L2 + 01 (L2 + L1 COS(HQ)) + gCOS(01 + 92) + H%Ll Sin(eg)). )
Link 1 forces and torques are obtained analogous to link 2: Fy = [0, 0, Lama(Ly sin(62)67+
02L2 +91 (L2 +L1 COS(GQ)) +g COS(91 +02)), 7L2m2 008(02)(91 +92)2+(m1 -+

mg)(g Sil’l(gl) — G%Ll) — (01 -+ 92)L2m2 sin(92), —L2m2 Sin(92)(01 + 02)2 -+

(m1 +ma)(01L1 + g cos(61)) + (01 + 02) Lamy cos(02),0]T.

71 = gL1(m1+mg) cos(61)+02 Lama(La+ Ly cos(62))+61 (L3ma+ L3 (m1+

mQ) + 2L1Lomo COS(GQ)) + gLomo COS(91 + 02) — 20105L1 Lamo sin(ﬂg) —

9%L1L2m2 sin(@z)

The outputs 71 and 75 are consistent with the results from the lagrangian

approach! We have therefore successfully demonstrated the Newton-Euler

inverse dynamics derivation for the 2R arm.
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Chapter 9

Practice Exercises on
Trajectory Generation

9.1 Practice Exercises

Practice exercise 9.1 Consider generating trajectories for the 7R, WAM
robot, whose kinematics are given in Section 4.1.3 of the textbook. The start

and end configurations of the end-effector are

V2/2 0 V22
X —2/2 0 V2/2
start — 0 -1 0
0 0 0

and
—2/2 0 V22
ol =v22 00 —v2)2
Xend = 0o -1 0
0 0 0

We will generate 11 trasnformation matrices along each trajectory using a cubic
time scaling with a total motion time of 5 seconds. You can ignore all the joint

limits in this exercise.

(a) Use the function CartesianTrajectory in the MR library to generate
the trajectory. Plot the (x,y,z) components, and the three exponential
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coordinates of rotation, of the transformation matrices as a function of
time.

(b) Use the function ScrewTrajectory in the MR library to generate the
trajectory. Plot the (x,y, z) components, and the three exponential coor-
dinates of rotation, of the transformation matrices as a function of time.

(c) Using a good initial guess at the joint angles for the first configuration
along the trajectories, use IKinBody (and the solution from the previous
configuration) to find appropriate joint angles at each frame along the
trajectories. Are both trajectories feasible?

Practice exercise 9.2 Consider a robot executing a motion of duration T' =
2 s. Initially the robot follows a cubic time scaling. At ¢ = 1 s, however,
it switches to a quintic time scaling. This quintic time scaling, beginning at
t = 1 s, should match the position, velocity, and acceleration of the cubic time
scaling which is ending at that time, i.e., s(1) = 1/2, §(1) = 3/4, and §(1) = 0.
Solve for the complete time scaling s(t) : [0,2] — [0, 1]. You should set up a set
of linear equations for the coefficients during the quintic time scaling, which you
could solve using the \ operator in MATLAB, LinearSolve in Mathematica, or
scipy.linalg.solve in Python.

Practice exercise 9.3 Figure 9.1 shows four proposed time scalings in the
(s, $)-plane (part of the curve (b) coincides with the velocity limit curve). In-
dicate which proposed time scalings are guaranteed to be infeasible (without
knowing anything more about the dynamics) and explain your reasoning. Ex-
plain the differences between the feasible time scalings and time-optimal time
scalings.

Practice exercise 9.4 Time-optimal time scaling requires step changes in
acceleration (“bang-bang” motions), and therefore infinite jerk. An example
time-optimal time scaling is shown in Figure 9.2. How might you modify this
time scaling if you would like to enforce bounded jerk? Sketch the new time
scaling.

Practice exercise 9.5 A time scaling can be written as either s(t) or 5(s).
The first segment of a trapezoidal time scaling is s(t) = (1/2)at?. Write this
segment as $(s). In other words, eliminate ¢ from the expression.

Practice exercise 9.6 The dynamics of a two-joint robot restricted to a path
0(s) are m(s)s + c(s)$% + g(s) = 7. At the state (s, $) = (0.5,2), the vectors
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SA 5 A

3
'3

0 i
(b)
S A
= —
S 0 1 S

(d)

1
0 S1 S2 534

Figure 9.2: A typical time-optimal time scaling.

m(s), ¢(s), and g(s) evaluate to

m(0.5)=[_11], c(0.5):{_33}, g(0.5):[(5)].
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velocity
limit curve

Qe

0 switch  switch switch switch switch 1 s

Figure 9.3: A time-optimal time scaling.

At this state (s, §), each actuator is limited in the torque it can apply to —10 <
(a) At this state (s, $), give the lower and upper bounds on the feasible accel-
erations § due to joint 1 (L; and U;) and joint 2 (Ly and Us).
(b) Can the robot stay on the path at this state? Explain your answer. If
your answer is yes, indicate the range of feasible accelerations § and clearly
draw the motion cone in the (s, $) plane.

Practice exercise 9.7 Ignore the points A, B, and C, and the arrows ema-
nating from them, until part (c) of the problem.

(a) For the time-optimal time scaling in Figure 9.3, approximately draw the
feasible motion cone at every point on the curve where we know the angle
of both the upper and lower bounds of the cone. (Assume the robot can
hold itself stationary at any configuration s € [0, 1].)

(b) Draw a point in the (s, $) plane from which the robot can stay on the path
for a little while longer, but from which the robot is doomed to eventually
leave the path. Label this point “b” so it is easy to see.

(¢) Suppose the robot finds itself at the states A, B, or C, off of the time-
optimal time scaling. The time-optimal time scalings from these states
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involve the robot getting back to the scaling curve shown. To get back to
the time-optimal time scaling, the robot attempts to follow the trajecto-
ries indicated by the arrows. Without knowing anything more about the
robot’s dynamics, can we say with certainty that any of these “arrow”
trajectories is impossible? If so, which? Explain your answer.

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

78 9.2. Solutions

0.2 Solutions

Solution 9.1
(a) The (x,y,2) components, and the three exponential coordinates of rota-
tion, of the Cartesian trajectory are plotted below.

2.0
—_— X
154 — wx
—
— Wy
1.0 7
—_—w2
0.5 4

-_

Trajectory
o
5}

—0.5

-=1.0 4

Time
(b) The (z,y,z) components, and the three exponential coordinates of rota-
tion, of the screw trajectory are plotted below.
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2.0

1.5 - WX

—_— W
104 =

—_— w2
0.5 1

0.0 1

Trajectory

-0.5 1

-1.0 4

-1.5 4

Time
(¢) The screw trajectory leaves the workspace, so is not feasible. The function
ScrewTrajectory returns one possible screw trajectory, where the angle
traveled is less than 7. It is possible to find a screw trajectory of the
opposite rotation sense (and a screw angle greater than 7) that remains
within the workspace.

Solution 9.2 For ¢t € [0,1], the time scaling is the same with a cubic time
scaling. For t € [1,2], the quintic time scaling ,s(t) = ag + - -- + ast® can be
calculated by solving a system of linear equations based on the constraints at
t=1andt=2,i.e.,

111 1 1 1 ag 1/2
12 4 8 16 32 ay 1
012 3 4 5 az | | 3/4
0 1 4 12 32 80 as | | 0
002 6 12 20 ay 0
0 0 2 12 48 160 | | as 0

Solving, we get

3¢2 — 113 te
s(ty=14 4 4 21
—3+ 12t —18t2 + 1413 — 2Lt + 345 1 €]
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0

Figure 9.4: A bounded-jerk time scaling.

Solution 9.3 Time scalings (b) and (c) are infeasible. (b) At points on the
velocity limit curve, the feasible motion cone reduces to a single tangent vector.
A feasible time scaling can only touch the limit curve at points where the time
scaling is tangent to the limit curve. But at the point where the time scaling
initially contacts the velocity limit curve, and at the point that it departs the
limit curve, the time scaling has a tangent that is not also tangent to the velocity
limit curve. (c) At all points where § = 0, the tangent to the time scaling must
be vertical.

In (a), the time scaling does not achieve $ = 0 at s = 1. In (b), the time
scaling is feasible but not time optimal, since a time-optimal time scaling should
either have only one switch or it should contact the velocity limit curve.

Solution 9.4 Figure 9.4 shows one possible solution. Basically, the “corners”
at the first and last switch have to be “rounded” to avoid discontinuous accel-
eration. In this drawing, the new time scaling never touches the velocity limit
curve, but one could imagine a bounded jerk time scaling that still touches the
velocity limit curve. In any case, the new time scaling can never be “above” the
time-optimal time scaling in the $ direction.

Solution 9.5 ¢ = /2s/a and $ = at, so 5(s) = v2as.
Solution 9.6
(a) Joint 1: =10 < §4+12 < 10 —» L; = —22,U; = —2. Joint 2: —10 <

5 3(4)+5<10 = Lo = —17,Us = 3.
(b) L = max(Ly, L) = —17,U = min(U,Us) = —2. We have U > L, so it
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max min max min max min
acc acc acc acc acc acc

Figure 9.5: Points where the motion cone is known, and intervals of the s-axis labeled
as “max acc,” where the time-optimal time scaling follows the maximum possible ac-
celeration along the path) and “min acc,” where the time scaling follows the minimum
acceleration (sometimes called maximum deceleration).

is possible to stay on the path, with § € [—-17,—2]. The motion cone is
illustrated below:
$

Solution 9.7
(a) We know the angles of the upper and lower bounds of the motion cone at
the seven points indicated in Figure 9.5.
(b) Any trajectory beginning from a point between the top of the optimal time
scaling and below the velocity limit curve, and in an s-range for minimum
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acceleration for the time-optimal time scaling, will eventually reach the
velocity limit curve. Even with minimum acceleration, the robot cannot
get back down to the time scaling curve before hitting the limit curve or
passing s = 1.

(¢) The trajectory from A is impossible. It is fully in an s-range marked
“maximum acceleration” for the optimal time scaling, so there is no way
for the robot to catch up to a robot already moving at a higher speed.
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Chapter 10

Practice Exercises on
Motion Planning

10.1 Practice Exercises

10.2 Solutions

83
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Chapter 11

Practice Exercises on Robot
Control

11.1 Practice Exercises

Practice exercise 11.1 The second-order error dynamics of systems A, B,
C, D, and F can all be expressed as

mb, + bl, + k. = 0.

Considered as a mass-spring-damper system, m is the effective mass, b is the
effective damping constant, and k is the effective spring constant. The five
systems share the same m, but their damping constants b and spring constants
k are different. Figure 11.1 shows one of the complex conjugate roots of the
characteristic equation ms? + bs + k = 0 for each of the five systems. The roots
of A, B and C' are on a circle with its center at the origin, while the roots of C,
D and F are on a line passing through the origin.
(a) Give the natural frequency w,, and damping ratio ¢ of the error dynamics
above.
(b) List these five systems in order of their natural frequency, from the highest
to the lowest (group together any that are equal).
(¢) List these five systems in order of their damped natural frequency, from
the highest to the lowest (group together any that are equal).
(d) List these five systems in order of their damping ratio, from the highest
to the lowest (group together any that are equal).
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“5/’7’/ Re(s)

Figure 11.1: Roots in the s-plane.

(e) List these five systems in order of their overshoot to a step input, from
the largest to the smallest (group together any that are equal).

(f) List these five systems in order of their settling time, from the longest to
the shortest (group together any that are equal).

(g) Which system has the “best” transient error response?

(h) To make the dynamics of A the same as C, how should you change the
damping constant b4 and spring constant k4?7 If both b4 and k4 should
be changed, indicate any conditions b4 and k4 must satisfy.

(i) To make the dynamics of F the same as C, how should you change the
damping constant bg and spring constant kg? If both bg and kg should
be changed, indicate any conditions by and kg must satisfy.

Practice exercise 11.2 An example error response plot is shown in Fig-
ure 11.2.

(a) Give the steady-state error ess and the overshoot (as a percentage).

(b) Draw an error response for a controller with better performance.

Practice exercise 11.3 Consider the error dynamics
05 + 20 + 0 + 26, + 46, +20 =0

Is it homogeneous or nonhomogeneous? Verify whether it is stable or not.

Practice exercise 11.4 Write a program to approximately recreate the plots
of Figure 11.8 of the textbook, showing the response of a P and PI controller.
Your controller commands the joint velocity 6, the desired motion is 6,4(t) = t,
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Figure 11.2: An example error response.

and the initial condition is #(0) = 0.2 (i.e., 6.(0) = 64(0) — 6(0) = —0.2).

Practice exercise 11.5 You will design a computed-torque controller for an
n-joint robot with the dynamics

7= M(0)0 + c(0,0) + g(6).
Of course you do not know the robot’s dynamics exactly; your model is
T=M(0)0+(0,0) + §(0),

where hopefully {M ,6, g} 1s “close” to {M,c,g}. (Except for the last part of
the problem, assume {M, ¢ §} = {M, ¢, g}.)
(a) Your computed-torque design will be based on PID feedback. Let 6,(t) be
the controller’s commanded joint accelerations at time ¢,

0.(t) = Og(t) + O (1),

where the feedforward acceleration éff(t) from the planned trajectory is
04(t) and the feedback acceleration from the feedback controller is

o (t) = K 0.(t) + K / 0. ()t + Kb (1),
0
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Write the full computed-torque controller 7(¢) = --- (include the depen-
dence on time).
The actual joint acceleration at time ¢ is

G(t) = Gc(t) + édist (t)a

where O4iq (t) is a disturbance acceleration, perhaps due to unmodeled
forces. With this, the total joint acceleration is

0(t) = Ga(t) + K 0:(t) + K; / t 0o (t)dt + Kb (t) + Oaise (1)
0

Given that 6, = 64 — 0, write the error dynamics differential equation.
Set K; = 0 (your computed-torque controller does not use integral feed-
back) and édist = 0 and write the error dynamics. What conditions must
K, and K, satisfy to ensure stability of the error dynamics? Choose the
gain matrices K, and Ky so that the error dynamics at each joint are crit-
ically damped with a settling time of 0.1 s. Comment on the steady-state
error. What problems might occur if you choose the settling time to be
unrealistically short?

Set K; = 0 and édist (t) = ¢, a constant vector. Write the error dynamics.
If K, and K, are chosen to make the error dynamics stable, what is the
steady-state error?

Now you will choose K; > 0 and édist = c¢. Write the error dynamics.
If you keep the same gains K, and Ky as in part (c), and choose K;
to be positive but very small (nearly zero), where are the three roots of
the characteristic equation of the error dynamics in the s-plane? As you
increase K;, eventually two of the roots will be coincident on the real axis
and there will be one more root further to the left on the real axis. For
what value of K; will this occur, and where are the roots? (You could use
a symbolic math package, like Mathematica, to help you with this.) If you
increase K; further, eventually the system will become unstable. For what
value of K; will this occur, and where are the roots? (Again, a symbolic
math package would be helpful.) Approximately plot by hand, or use a
computer to plot, the motion of the roots as you increase K; from zero to
the point where the system becomes unstable. For all choices of K; that
keep the system stable, what is the steady-state error? Provide a reason
or two why many real-world robot controllers do not use an integral term.
Now assume that your dynamic model of the robot is not very accurate
(e.g., the inertias of the links are not well known), but your static model
of the robot is good (e.g., the masses and locations of the centers of mass
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of the links are well characterized). Also assume that your control goals
are more modest: you will only ask the robot to track slow trajectories.
What might be a good alternative control law that takes advantage of
your static model of the robot but does not use the dynamic model?

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

90 11.2. Solutions

11.2 Solutions

Solution 11.1

(a) wn = /k/m, ¢ =b/(2VEkm).

(b) As shown in Figure 11.5 (top right) of the textbook, the distance between
the root and the origin is the natural frequency. Therefore, from highest
natural frequency to lowest, we have (A, B,C), D, E.

(¢) The damped natural frequency is determined by the imaginary portion of
the roots, so from highest damped natural frequency to lowest, we have
C,B,D,E,A.

(d) The damping ratio can be expressed as

(=cosa

where « is the angle from the negative x-axis to the line connecting the
origin to the root. Therefore, from highest damping ratio to lowest, we
have A, B, (C,D, E).

(e) The overshoot is inversely related to the damping ratio, so from largest
overshoot to smallest, we have (C, D, E), B, A.

(f) The settling time is longer as the roots move toward the imaginary axis
(and the system becomes unstable if they pass into the right-half plane),
so from longest settling time to shortest, we have E, D,C, B, A.

(g) System A has the fastest settling time and least overshoot.

(h) Systems A and C already have the same natural frequency, so k4 should
not be changed. To get the same damping ratio, b4 should be decreased.

(i) Systems F and C have the same damping ratio but E has a smaller natural
frequency than C. So kg must be increased to achieve C’s natural fre-
quency, and b must be increased so that the damping ratio is unchanged.

Solution 11.2
(a) ess = 0.88,
overshoot = | =0200-0.088| 5 100% = 49.123%.
(b) Any reasonable drawing is fine. An example better error response, with
smaller steady-state error, less overshoot, and a faster settling time, is

shown in Figure 11.3.

Solution 11.3 The error dynamics are homogeneous. To check stability, we
can write the characteristic equation

2 4+ 2s* + 83+ 252 +4s5+2=0.
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Figure 11.3: A plot of a better error response.

The roots must all have a negative real component. You could calculate the
roots using symbolic math software, or

9425+ 534252 +45+2=0
Ss+1)2+2(s+1)2=0
(s +2)(s+1)* =0.

The roots are —1, —1, —/2, and 0.63 + 1.095. Because the last two roots have
a positive real component, the error dynamics are unstable.

Solution 11.4 The P control error dynamics is a first-order nonhomogeneous
linear equation with the solution

be(t) = Kip + (ee(o) - Igp) Kt

as given in the textbook, where in this case ¢ = 9d(t) = 1 from the original
figure. The PI control error dynamics is a second-order homogeneous linear
equation with the solution

0. () = (c1 coswgt + g sinwgt)eSwnt
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Joint angle responses

Error responses
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Figure 11.4: An example solution.

as given in the textbook, where wg = wp/1 — (2, w, = VK; and ¢ = K,/ (2V K;).
c1 and ¢y can be calculated from initial conditions. An example is shown in Fig-
ure 11.4.

Solution 11.5

(a)

T(t) =M (0(t)) (é’d(t) + K 0.(t) + K; / t 0. (t)dt + Kdée(t)>
0
+E(0(1), () + 3(6(1)).
(b)
ée + Kdée + Kpt?e + Ki/eedt = 7édist~ (111)

(¢) K; =0 and faist = 0, so Equation (11.1) becomes
b + Kqb. + K0, = 0.

A necessary and sufficient condition for stability for the second-order error
dynamics is that both Ky and K, are positive definite (for example, each
could be a diagonal matrix with identical positive entries on the diagonal).
For the error dynamics to be critically damped with a 2% settling time of
4t = 0.1 s for a given joint, both roots must be at s = —1/t = —40. So we
need

(s 4 40)? = s + kqs + ky,

where k4 and k, are scalars. Expanding, we get kg = 80 and k, = 1600.
The matrices Kq and K, are diagonal matrices with k; and k, on the
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diagonals, respectively. The steady-state error is zero because the stable
error dynamics are homogeneous. If we choose the settling time to be very
short, the roots move far to the left in the s-plane, the required gains will
become large, and the system may no longer be linear due to the actuators
saturating (e.g., the actuators may operate at their limits in response to
small errors).

(d) The error dynamics (11.1) now become 6, + Kq6. + K,0. = —c. The
steady-state error for each joint for stable dynamics is 0. = —c/k, if K,
is a diagonal matrix with £k, on the diagonal. The steady-state error can
be made small by choosing k, large, but it cannot be made zero.

(e) Taking the derivative of the error dynamics (11.1), we get

0P + K40, + K, 0. + Kif. = 0.

Considering a single joint, if k; > 0 is very small, and k; = 80 and
k, = 1600 as calculated earlier, then the characteristic equation of the
error dynamics is approximately

(s +40)%(s +€)* =0,

and there are two roots at —40 and one at —e, where € > 0 is very small.
As we increase k;, eventually two roots are coincident on the real axis with
one further to the left. We can write

(s+a)?(s+b) = s>+ (2a+b)s* + (2ab+a?)s +a®b = s> +80s? +1600s + k;

and solve
2a + b =80
2ab + a? = 1600
a’b =k,

for a, b, and k;. Using symbolic math software, we get
a=13.33, b=153.33, k; = 9481.48,

so there are two roots at —13.33 and one root at —53.33 for a gain k; =
9481.48.

As we increase k; further, eventually two roots are on the imaginary axis,
and we have

(s+a)(s+bj)(s —bj) = s + as® + b%s + ab® = s> + 805 + 1600s + k;,
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and solving we get a = 80, b = 40, and k; = 128,000. So for this k;, there
are roots at —80 and +40j.
Since the error dynamics are homogeneous, for all choices of k; that keep
the roots in the left-half plane, the steady-state error is zero. However,
many robot controllers avoid integral control because PD feedback terms
suffice for small steady-state error, and integral terms can worsen the
transient response or possibly even lead to instability, which would be
disastrous.

(f) A good controller might be a PD controller plus gravity compensation
(similar to Equation (11.38) in Chapter 11.4.2.2, but without the poten-
tially destabilizing integral term).
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