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Chapter 1

Introduction

These exercises are designed to give you practice with the concepts, the calcula-
tions, and the software associated with the book. To get the most out of these
practice exercises, you are strongly encouraged not to look at the solutions until
you have given your best effort to solve them. You are more likely to retain
what you have learned when you work through the problem yourself instead of
just reading the solution.
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Chapter 2

Practice Exercises on
Configuration Space

2.1 Practice Exercises

Practice exercise 2.1 The experimental surgical manipulator shown in Fig-
ure 2.1, developed at the National University of Singapore, is a parallel mech-
anism with three identical legs, each with a prismatic joint and two universal
joints (the joints are marked for one of the legs). Use Grübler’s formula to
calculate the number of degrees of freedom of this mechanism.

Practice exercise 2.2
(a) Three rigid bodies move in space independently. How many degrees of

freedom does this system of three bodies have?

P
U

U

Figure 2.1: A miniature parallel surgical manipulator with three PUU legs.
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4 2.1. Practice Exercises

Figure 2.2: A scissor jack (also known as a scissor lift). Image courtesy of Wikipedia.

(b) Now you constrain them so that each body must make contact with at
least one of the other two bodies. (The bodies are allowed to slide and
roll relative to each other, but they must remain in contact.) How many
degrees of freedom does this system of three bodies have?

Practice exercise 2.3 Figure 2.2 shows a scissor jack. As you turn the
screw, the jack goes up and down. The mechanical advantage provided by the
mechanism allows a single person to jack up a car to change a tire.

Think about what rigid bodies and joints must be present in the scissor jack.
You may not be able to see all of them in the image. Use Grübler’s formula to
calculate the number of degrees of freedom. Does your answer agree with what
you know about how a scissor jack works? If not, can you explain why?

Practice exercise 2.4 Figure 2.3 shows a table lamp that moves only in the
plane of the page. Use Grübler’s formula to calculate the number of degrees of
freedom.

Practice exercise 2.5 A unicycle is controlled moving on a rigid balance
beam as shown in Figure 2.4. Suppose the wheel is always touching the beam
with no sliding, answer the following questions in terms of R, S, T , and I (a
one-dimensional closed interval).
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Chapter 2. Practice Exercises on Configuration Space 5

Figure 2.3: A table lamp that moves only in the plane of the page.

Figure 2.4: A unicycle on a rigid balance beam.

(a) Give a mathematical description of the C-space of the unicycle when it
remains upright and is constrained to move in the 2-dimensional plane of
the page.

(b) Give a mathematical description of the C-space of the unicycle when it
remains upright, it moves in a 3-dimensional space, and the beam has
nonzero width.
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6 2.1. Practice Exercises

Practice exercise 2.6 Explain why S1 × S1 = T 2, not S2. In other words,
explain why the C-space of a spherical pendulum (S2) is not topologically equiv-
alent to the C-space of a 2R robot (T 2), even though the configurations of both
would typically be described by two angles. If you think the C-space of a 2R
robot is topologically equivalent (homeomorphic) to S2, propose a continuous
mapping between points on a sphere and the independent joint angles of a 2R
robot.

Practice exercise 2.7 Assume your arm has 7 dof and you constrain your
hand to be at a fixed configuration (e.g., your palm is flat against a table).

(a) What is an explicit representation of the arm’s configuration?
(b) What is an implicit representation?
(c) What does the set of feasible configurations look like in the 7-dimensional

configuration space of the unconstrained arm?

Practice exercise 2.8 Imagine a C-space described as a circle in an (x, y)
plane, of radius 2 centered at (3, 0). What is an implicit representation of
this one-dimensional C-space? If you were to decide to parameterize the one-
dimensional C-space by the single parameter θ, give a mapping from θ to (x, y).

Practice exercise 2.9 Consider the 2D quadcopter and rod shown in Fig-
ure 2.5. The rod is attached to the quadcopter by a revolute joint, and you
are given the task of balancing the rod upright (a flying version of the classic
cart pendulum problem). Assume the configuration of the quadcopter center is
described by (xq, yq, θq) and the configuration of the rod center is described as
(xr, yr, θr) where θq and θr are measured with respect to the world x axis. The
length of the rod is 2l and the height and width of the quadcopter body are 2h
and 2w respectively.

(a) Solve for the configuration constraints that keep the rod and quadcopter
connected.

(b) Express these as a Pfaffian constraint where q = [xq yq θq xr yr θr]
T.

Practice exercise 2.10 Consider the parallel SCARA robot shown in Fig-
ure 2.6. The robot is controlled by two rotational motors located in the base,
and one rotational and one prismatic motor at the end effector. Assume each
of the links of the parallel mechanism are length 1 m, the prismatic joint has a
maximum travel of 1 m, and the separation distance of the base motors is 0.5 m.
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Chapter 2. Practice Exercises on Configuration Space 7

x

y

Figure 2.5: 2D quadcopter balancing a rod

Assume no collisions between the links, and that the end effector y-coordinate
is constrained to be greater than zero.

(a) Sketch the workspace of the end effector.
(b) What are some benefits and drawbacks of making a parallel rather than

a serial SCARA robot?
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8 2.1. Practice Exercises

x

y

1 1

1 1

0.5

x z

y

Figure 2.6: Parallel SCARA robot and a skeleton top view.
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Chapter 2. Practice Exercises on Configuration Space 9

2.2 Solutions

Solution 2.1 There are N = 8 links (two links in each leg, ground, and
the moving platform). There are J = 9 joints (three prismatic joints and six
universal joints). The joints have a total of 3(1) + 6(2) = 15 degrees of freedom.
By Grübler’s formula,

dof = 6(8− 1− 9) + 15 = 3.

Solution 2.2
(a) 3(6) = 18.
(b) The system of three bodies is now subject to two equality constraints. For

example, if the three bodies are called A, B, and C, the constraints could
be written as the two equations dist(A,B) = 0 and dist(B,C) = 0. These
two constraints subtract two degrees of freedom, so there are 16 degrees
of freedom now.

Solution 2.3 See Figure 2.7 for work. Note that there are two extra cross
pieces behind the two side joints that are not visible from the image. The
result of Grübler’s formula does NOT agree with the known solution of 1 DOF.
This is due to the symmetry of this problem, causing certain constraints to not
be independent. Instead, the formula provides a lower bound, and the known
solution of 1 DOF is indeed above that lower bound.
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10 2.2. Solutions

Figure 2.7: Written solution to scissor jack problem.

Solution 2.4 Despite all the links and revolute joints, this mechanical system
behaves similarly to a 3R robot arm, since each set of two revolute joints acts
as a single hinge.
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Chapter 2. Practice Exercises on Configuration Space 11

Figure 2.8: Written solution to lamp problem.

Solution 2.5

(a) I: the point of contact on the beam (which determines the angle of the
wheel, since rolling is enforced). If we treat the allowed contact points on
the beam as an open inerval, then the space is topologically equivalent to
R.

(b) I2 × T 2: intervals correspond to limited beam contact locations, S1 for
heading direction of wheel, and S1 for the point of contact on the wheel.

Solution 2.6 For two spaces to be topologically equivalent, there must be
a homeomorphism relating the two. A homeomorphism is a mapping from
one space X (e.g., S2) to another space Y that (1) is one-to-one, (2) “onto”
(meaning the mapping from X to Y covers all of Y ), (3) continuous, and (4)
has a continuous inverse. A homeomorphism is the mathematical term for the
functions that can only deform the space, not cut, glue, or change its dimension.

There is no homeomorphism between S2 and T 2. When you poke a hole in
S2 to get T 2, for example, suddenly points that were neighbors to each other
(at the point where you poked the hole) are no longer neighbors; this cannot
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12 2.2. Solutions

occur with a continuous mapping.

Solution 2.7

(a) The explicit representation is θ, the angle to the elbow about a line con-
necting the shoulder to the palm.

(b) The implicit representation is (θ1, θ2, θ3, θ4, θ5, θ6, θ7) in the 7-dimensional
space, plus 6 equations constraining the position (3 dof) and orientation
(3 dof) of the palm.

(c) A closed interval of a 1-dimensional curve in that 7-dimensional space.

Solution 2.8 Implicit: (x, y) such that (x − 3)2 + y2 = 4. Explicit: x =
3 + 2 cos θ, y = 2 sin θ.

Solution 2.9 Note: opposite signs are also correct for the following solutions.
(a) Configuration constraints:

xr − ` cos(θr) = xq − h sin(θq)

yr − ` sin(θr) = yq + h cos(θq).
(2.1)

(b) A(q)q̇ = 0, where q = [xq yq θq xr yr θr]
T, q̇ = [ẋq ẏq θ̇q ẋr ẏr θ̇r]

T

A(q) =

[
1 0 −h cos(θq) −1 0 −` sin(θr)
0 1 −h sin(θq) 0 −1 ` cos(θr)

]
(2.2)

Solution 2.10
(a) The top view of the workspace is shown by the shaded region in Figure 2.9,

and is the intersection of two circles. To solve for the workspace area, sum
the area of the two circle sectors and subtract the triangle area (formed
when the arms are fully extended in the y position) that is counted twice.
The workspace volume is then the 3D extrusion of this shape into the page
by the reach of the prismatic joint.

(b) The parallel structure has the benefit of being more rigid and having more
of the motor mass concentrated at the base. One drawback is that the
parallel SCARA has a smaller workspace compared to a comparable serial
SCARA arm.
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Chapter 2. Practice Exercises on Configuration Space 13

Figure 2.9: Parallel SCARA robot workspace solution
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Chapter 3

Practice Exercises on
Rigid-Body Motions

3.1 Practice Exercises

Practice exercise 3.1 The mobile manipulator in Figure 3.1 needs to orient
its gripper to grasp the block. For subsequent placement of the block, we have
decided that the orientation of the gripper relative to the block, when the gripper
grasps the block, should be Reg. Our job is to determine the rotation operator
to apply to the gripper to achieve this orientation relative to the block.

Figure 3.1 shows the fixed world frame {a}, the mobile robot’s chassis frame
{b}, the gripper frame {c}, the RGBD camera (color vision plus depth, like the
Kinect) frame {d}, and the object frame {e}. Because we put the camera at a
known location in space, we know Rad. The camera reports the configuration
of {e} relative to {d}, so we know Rde. From the mobile robot’s localization
procedure (e.g., vision-based localization or odometry) we know Rab. From the
robot arm’s forward kinematics we know Rbc.

(a) In terms of the four known rotation matrices Rad, Rde, Rab, and Rbc, and
using only matrix multiplication and the transpose operation, express the
current orientation of the gripper relative to the block, Rec.

(b) To align the gripper properly, you could apply to it a rotation R1 expressed
in terms of axes in the gripper’s {c} frame. What is R1, in terms of the five
known rotation matrices (Rad, Rde, Rab, Rbc, Reg), matrix multiplication,
and transpose?

15



16 3.1. Practice Exercises

{a}

{b}

{c}
{d}

}{e

Figure 3.1: The fixed world frame {a}, the mobile robot’s chassis frame {b}, the
gripper frame {c}, the RGBD camera frame {d}, and the object frame {e}.

{s}
x̂s

ŷs

ẑs

{b}

x̂b

ŷb

ẑb

2 cm

Figure 3.2: As the machine screw goes into a tapped hole, it advances linearly by
4π mm every full rotation of the screw.

(c) The same rotation could be written R2, in terms of the axes of the frame
of the mobile base {b}. What is R2?

Practice exercise 3.2 Figure 3.2 shows a screw, a frame {b}, and a frame
{s}. The x̂b-axis of {b} is along the axis of the screw, and the origin of the
frame {s} is displaced by 2 cm, along the ŷb-axis, from the {b} frame. The
ẑs-axis is aligned with x̂b and the x̂s-axis is aligned with ẑb.

Taking note of the direction of the screw’s threads, as the machine screw goes
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Chapter 3. Practice Exercises on Rigid-Body Motions 17

{c}
x̂c

ŷc

ẑc

(0, 3, 0)

45◦

Figure 3.3: A screw axis in the (ŷc, ẑc) plane.

into a tapped hole driven by a screwdriver rotating at 3 radians per second, what
is the screw’s twist expressed in {b}, Vb? What is the screw axis expressed in
{b}, Sb? What is Vs? What is Ss? Give units as appropriate.

Practice exercise 3.3 A wrench F and a twist V are represented in {a} as
Fa and Va, respectively, and they are represented in {b} as Fb and Vb. Without
consulting any other source, and using the facts that (AB)T = BTAT, that the
adjoint of the transformation matrix Tab can be used to change the frame of
representation of a twist from the {a} frame to the {b} frame, and that the
scalar power generated (or dissipated) by applying a wrench F along a twist
V is independent of the frame of reference, show that Fa = [AdTba

]TFb. (The
ability to derive this result is useful for your understanding of it.)

Practice exercise 3.4 Figure 3.3 shows a screw axis in the (ŷc, ẑc) plane, at
a 45◦ angle with respect to the ŷc-axis. (The x̂c-axis points out of the page.)
The screw axis passes through the point (0, 3, 0).

(a) If the pitch of the screw is h = 10 linear units per radian, what is the
screw axis Sc? Make sure you can also write this in its se(3) form [Sc],
too.

(b) Using your answer to (a), if the speed of rotation about the screw axis is
θ̇ =
√

2 rad/s, what is the twist Vc?
(c) Using your answer to (a), if a frame initially at {c} rotates by θ = π/2

about the screw axis, yielding a new frame {c′}, what are the exponential
coordinates describing the configuration of {c′} relative to {c}?

(d) What is Tcc′ , corresponding to the motion in part (c)?
(e) Now imagine that the axis in Figure 3.3 represents a wrench: a linear force

along the axis and a moment about the axis (according to the right-hand
rule). The linear force in the direction of the axis is 20 and the moment
about the axis is 10. What is the wrench Fc?
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18 3.1. Practice Exercises

{a}x̂a

ŷa

ẑa

(−2, 1, 0)

screw
axis

Figure 3.4: A zero-pitch screw axis.

Practice exercise 3.5 Let Tsb ∈ SE(3) represent the configuration of the
frame {b} relative to {s}. (We sometimes write this simply as T .) If {b}
moves over time, you could represent its velocity as Ṫsb (or simply Ṫ ), the time
derivative of Tsb. You should think of this velocity as a twist of the entire space
(to which the moving frame is attached). But we know that the velocity should
be representable by only six values, and Ṫsb could have 12 unique nonzero values
(the top three rows of the 4× 4 matrix; the bottom row will be all zeros, since
the bottom row of a transformation matrix is always the constant [0 0 0 1]).

Instead, we could post-multiply Ṫsb by Tbs, i.e., Ṫ
s�b
T
�bs

= Ṫ T−1 = Ṫss. This
post-multiplication has the effect of representing the velocity in the {s} frame,
getting rid of the dependence on the current {b} frame. What do we call the
quantity Ṫ T−1? How many values are needed to uniquely specify it?

We could also pre-multiply Ṫsb by Tbs to get Tb�s
Ṫ
�sb

= T−1Ṫ = Ṫbb. This
pre-multiplication has the effect of representing the velocity in the {b} frame,
getting rid of the dependence on the {s} frame. What do we call the quantity
T−1Ṫ?

Practice exercise 3.6 The zero-pitch screw axis in Figure 3.4, aligned with
ẑa, passes through the point (−2, 1, 0) in the {a} frame. What is the twist Va if
we rotate about the screw axis at a speed θ̇ = 5 rad/s?

Practice exercise 3.7 A wrench F is represented in the {c} frame as Fc. If
T1 = Tab is the configuration of the {b} frame relative to the {a} frame, and
T2 = Tac is the configuration of the {c} frame relative to the {a} frame, express
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Chapter 3. Practice Exercises on Rigid-Body Motions 19

ẑa

x̂a

ŷa

{a}

{b} x̂b

ŷb

ẑb

Figure 3.5: A machine screw. Notice the direction of the threads.

Fb in terms of T1, T2, Fc, and any math operations you need.

Practice exercise 3.8 Let the orientation of {b} relative to {a} be

Rab =




1 0 0
0 0 −1
0 1 0




and a point p be represented in {a} as pa = (1, 2, 3). What is pb? (Give a
numeric 3-vector.)

Practice exercise 3.9 Consider three frames, {a}, {b}, and {c}. You know
the representations of these frames in terms of the others, e.g., Tab and Tbc
(and therefore you can derive Tac and the inverses of these matrices). Give a
mathematical expression for Va, the twist (expressed in {a}) you would need
to follow for t seconds to move the {b} frame to be coincident with the {c}
frame. Or, if you prefer, give an expression for [Va], the se(3) representation
of Va. Your answer should be symbolic (no numbers), and it should use t, any
of the transformation matrices you need, and any math operations you need.
If it is helpful, you can use the operation vec : se(3) → R6 to get the vector
representation of an element of se(3), e.g., vec([V]) = V.

Practice exercise 3.10 Figure 3.5 shows a machine screw. As it advances
into a tapped hole, it moves 5 mm linearly for every radian of rotation. A frame
{a} has its ẑa-axis along the axis of the screw and its x̂a-axis out of the page.
The frame {b} has its origin at pa = (0, 3,−2) mm and its orientation is shown
in the figure (ẑb is out of the page). Use mm as your linear units and radians
as your angular units.
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{b}
x

y
z

ωb

z x

y

{e}

Figure 3.6: Satellite rotating in space.

(a) What is the screw axis Sa corresponding to advancing into a tapped hole?
Give a numerical 6-vector.

(b) What is the screw axis Sb? Give a numerical 6-vector.
(c) What is [Sb]?
(d) From the initial configuration Tab shown in the figure, the {b} frame fol-

lows the screw an angle θ, ending at the final configuration Tab′ . If we
write Tab′ = TTab, what is T? Express this symbolically (don’t write
numbers), using any of Sa, Sb, θ, and any math operations you need.

(e) Referring to the previous question, if we instead write Tab′ = TabT , what
is T? Again, express this symbolically (don’t write numbers), using any
of Sa, Sb, θ, and any math operations you need.

Practice exercise 3.11 Consider the satellite and Earth shown in Figure 3.6.
Let ωb = (0, 1, 1) be the angular velocity of the satellite expressed in the satellite
body frame {b}. Assume a fixed Earth frame {e} (a geocentric view of the
universe like the ancient Greeks had).

(a) Solve for the coordinate axis velocities of {b} ( ˙̂xb, ˙̂yb, and ˙̂zb) represented
in the {b} frame. Sketch the velocity vectors on the figure above to confirm
that your solutions make sense.
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Chapter 3. Practice Exercises on Rigid-Body Motions 21

(b) The orientation of the {b} frame is equivalent to the {e} frame after it
has been rotated −90 degrees about its ẑe-axis. Solve for ωe, the satellite
angular velocity represented in {e}. Sketch the velocity vectors on the
figure above to confirm that your solution makes sense.

(c) Solve for Ṙeb, the time derivative of the body orientation expressed in {e}.
(d) Give the so(3) representation of the angular velocity in both the Earth

and the body frame.

Practice exercise 3.12 Consider again the satellite and Earth shown in Fig-
ure 3.6.

(a) If the given rotational velocity ωb = (0, 1, 1) was instead the exponential
coordinates for a rotation, solve for the axis-angle representation and the
corresponding rotation matrix.

(b) After rotating and orbiting the Earth for some time, the relative orienta-
tion of the Earth and satellite is given as

Reb′ =




0 −
√

2/2
√

2/2
1 0 0

0
√

2/2
√

2/2


 .

Find the axis-angle representation that describes the rotation from the
initial body frame {b} to the new body frame {b’}.

Practice exercise 3.13 Consider the scene in Figure 3.7 of a once peaceful
park overrun by robots. Frames are shown attached to the tree {t}, robot chassis
{c}, manipulator {m}, and quadcopter {q}. The distances shown in the figure
are d1 = 4 m, d2 = 3 m, d3 = 6 m, d4 = 5 m, d5 = 3 m. The manipulator is at a
position pcm = (0, 2, 1) m relative to the chassis frame {c}, and {m} is rotated
from {c} by 45 degrees about the x̂c-axis.

(a) Give the transformation matrices representing the quadcopter frame {q},
chassis frame {c}, and manipulator frame {m} in the tree frame {t}.

(b) Assume that the position controller for the manipulator on the mobile
robot is referenced to the chassis frame {c}. What position should you
command the gripper to go to if you would like to snatch the quadcopter
out of the sky?

(c) You are tasked to move the mobile robot so that the chassis origin is
directly underneath the quadcopter and its frame is aligned with the tree
frame. Assume the mobile robot chassis controller takes transformation
matrices in the chassis frame as inputs. What tranformation should you
command the robot to follow?
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d1

d2

d4

d5

d3

p

x̂
ŷ

ẑ{c} x̂

ŷ
ẑ

{m}

{q} x̂

ŷ

ẑ

{t}
x̂

ŷ
ẑ

Figure 3.7: A tree, mobile manipulator, and flying robot in a park and the corre-
sponding reference frames.

Practice exercise 3.14 Consider the scene in Figure 3.8 of a quadcopter {q}
flying near a tree {t} and house {h}. The quadcopter is at a position ptq = (10,
5, 5) m expressed in the tree frame {t}, and the house is at a position pth =
(0, 10, 10) m expressed in the tree frame {t}. The quadcopter is flying upwards
with a velocity of 1 m/s, and rotating with a velocity of 1 rad/s.

(a) Calculate the quadcopter’s twist in {q} and {t}.
(b) Use the adjoint map to express the twist in the house frame {h}.

Practice exercise 3.15 Consider the cube with side lengths l = 2 m and the
ant shown in Figure 3.9. Frames {b} and {c} show the ant at the midpoint of
the cube edges.

(a) Solve for the screw axis Sb and angle θ corresponding to the transformation
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{h} x̂

ŷẑ

{q} x̂

ŷ

ẑ

{t}
x̂

ŷ
ẑ

ωq

vq

Figure 3.8: A tree, and flying robot in a park and the corresponding reference frames.

{w}
x̂

ŷẑ

{b}
x̂

ŷẑ

{c}x̂

ŷ

ẑ

l

l

l

Figure 3.9: An ant shown at different positions on a cube.

from {b} to {c}.
(b) Sketch the location of the screw axis on the figure.
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{t}
x̂

ŷẑ

{b}x̂

ŷ

ẑ

wind

Figure 3.10: A tree and a frame attached to its branch.

(c) Use the appropriate adjoint map to find Sw, the screw axis representation
in the {w} frame.

(d) How could you solve for Sw without using the adjoint map?

Practice exercise 3.16 Consider the scene in Figure 3.10 of a tree {t} and a
frame {b} attached to its branch. The figure shows a strong wind that applies
a force of 100 N at the center of frame {b}. Assume the branch has a mass of
50 kg centered at frame {b} as well. The position of the branch frame {b} in
the tree frame {t} is ptb = (2, 1, 3) m.

(a) What is the wrench Fb due to the wind and the branch’s weight?
(b) What is this wrench in the tree frame {t}?
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3.2 Solutions

Solution 3.1

(a)

Rec = RedRdaRabRbc

= RT
deR

T
adRabRbc.

(b)

RecR1 = Reg → R1 = RT
ecReg

= (RT
deR

T
adRabRbc)

TReg

= RT
bcR

T
abRadRdeReg (= Rcg).

(c)

R2 = RbcR1 = RbcRcg = RbcR
T
bcR

T
abRadRdeReg = RT

abRadRdeReg (= Rbg).

Solution 3.2 The threads of this screw are the typical right-handed threads,
which means that the screw, when viewed from the top, rotates clockwise when
it advances into a tapped hole. In other words, the fingers of your right hand
curl in the direction of rotation of the screw when your right thumb points
downward on the page, in the negative direction of the upward-pointing x̂b-
axis. Since the screwdriver rotates at 3 rad/s, the screw also rotates at 3 rad/s,
so the angular component of the twist, expressed in {b}, is ωb = (−3 rad/s, 0, 0).
Since radians and seconds are the SI units for angle and time, respectively, you
could write (−3, 0, 0) and assume the default SI units. You could also write
(−3(180/π) deg/s, 0, 0), but that would be unusual.

The pitch of the screw is 4π mm per revolution, or 2 mm/rad. So as
the screw is rotated at 3 rad/s, it moves linearly in the −x̂b direction at
(2 mm/rad)(3 rad/s) = 6 mm/s. So the linear component of the twist ex-
pressed in {b} is (−6 mm/s, 0, 0), or, in SI units, vb = (−0.006 m/s, 0, 0). So,
in SI units, the entire twist is Vb = (ωb, vb) = (−3, 0, 0,−0.006, 0, 0).

The corresponding screw axis expressed in {b} is the normalized version of
Vb where the magnitude of the angular velocity is unit. The magnitude of ωb
is 3, so divide the twist by 3 to get Sb = (−1, 0, 0,−0.002, 0, 0). We can write
Vb = Sbθ̇ where θ̇ = ‖ωb‖ = 3.
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The screw axis could also be represented in the {b} frame by the collection
{qb, ŝb, h}, where a point qb on the axis is (0, 0, 0) (expressed in {b}), the axis
direction is ŝb = (−1, 0, 0), and the pitch is h = 0.002.

In the {s} frame, the axis of rotation is aligned with the −ẑs-axis, so ωs =
(0, 0,−3). A point at the origin of {s}, rigidly attached to the advancing screw,
has a downward linear component of −0.006 m/s in the −ẑs direction (i.e.,
(0, 0,−0.006)) from the downward motion of the screw. But it also has a linear
component in the −x̂s direction from the rotation of the screw. The point at the
origin of {s} can be expressed as qb = (0, 0.02, 0) in terms of {b} coordinates, so
the linear motion at {s} due to the rotation of the screw is ωb×qb = (0, 0,−0.06).
In the {s} frame, this is (−0.06, 0, 0). (Imagine a turntable rotating about
the screw axis and the resulting motion of a point at {s}.) So the total lin-
ear motion at {s}, expressed in {s}, is vs = (0, 0,−0.006) + (−0.06, 0, 0) =
(−0.06, 0,−0.006). Therefore, Vs = (0, 0,−3,−0.06, 0,−0.006). The screw axis
is Ss = (0, 0,−1,−0.02, 0,−0.002) and Vs = Ssθ̇.

The screw axis could also be represented in the {s} frame by the collection
{qs, ŝs, h}, where a point qs on the axis is (0, 0.02, 0), the axis direction is ŝs =
(0, 0,−1), and the pitch is h = 0.002. Note that Ss = (ŝs,−ŝs× qs +hŝ), where
hŝ is the linear velocity due to the linear motion of the screw and −ŝs × qs is
the linear velocity due to the rotation of the screw.

You could also calculate Vs and Ss using Vs = [AdTsb
]Vb and Ss = [AdTsb

]Sb.

Solution 3.3 See Chapter 3.4 of the textbook.

Solution 3.4
(a) Since the screw axis Sc = (Scω ,Scv ) has a rotational component, Scω is

a unit vector aligned with the axis, i.e., Scω = ŝ = (0, cos 45◦, sin 45◦) =
(0, 1/

√
2, 1/
√

2). The linear component is Scv = hŝ − ŝ × q (a linear
component due to linear motion along the screw plus a linear component
due to rotation about the screw), where q = (0, 3, 0) and h = 10, i.e.,
Scv = (0, 10/

√
2, 10/

√
2) + (3/

√
2, 0, 0) = (3, 10, 10)/

√
2.

(b) Vc = Scθ̇ = (0, 1, 1, 3, 10, 10).
(c) Scθ = (0, 1, 1, 3, 10, 10)π/(2

√
2).

(d) You can use the MR code library to do the calculation. Use VecTose3 to
convert the exponential coordinates Scθ to their se(3) representation [Scθ]
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and then use MatrixExp6 to calculate

Tcc′ = e[Scθ] =




0 −0.71 0.71 2.12
0.71 0.5 0.5 12.61
−0.71 0.5 0.5 9.61

0 0 0 1


 .

(e) The wrench is written Fc = (mc, fc). The linear component fc has a mag-
nitude of 20 and is aligned with the axis shown, so fc = (0, 10

√
2, 10
√

2).
If the axis passed through the origin of {c}, the moment (which has mag-
nitude 10) would be (0, 5

√
2, 5
√

2), but since it is displaced from the origin
of {c}, there is an extra moment component due to the linear component,
q × fc = (0, 3, 0)× (0, 10

√
2, 10
√

2) = (30
√

2, 0, 0), so the total moment is
mc = (0, 5

√
2, 5
√

2) + (30
√

2, 0, 0) =
√

2(30, 5, 5).
You can verify that you get the same answer using Fc = [AdTac

]TFa,
where {a} is a frame aligned with {c} and with an origin at (0, 3, 0).

Solution 3.5 Ṫ T−1 is the se(3) representation of the twist represented in {s},
i.e., [Vs] ∈ se(3). Only six values (the six elements of Vs) are needed to specify
it.

T−1Ṫ is the se(3) representation of the twist represented in {b}, i.e., [Vb] ∈
se(3). Only six values (the six elements of Vb) are needed to specify it.

Solution 3.6 The screw axis can be written Sa = (Sωa ,Sva). The angular
component is Sωa

= (0, 0, 1), since the screw axis is aligned with ẑa. The linear
component is Sva = −Sωa

×q, where q = (−2, 1, 0), so Sva = (1, 2, 0). The entire
screw is then Sa = (0, 0, 1, 1, 2, 0). The twist is Va = θ̇Sa = (0, 0, 5, 5, 10, 0).

Solution 3.7

Fb = [AdTcb
]TFc where Tcb = T−1ac Tab = T−12 T1

= [AdT−1
2 T1

]TFc.

Or you could recognize Fa = [AdT−1
ac

]TFc and Fb = [AdTab
]TFa to get Fb =

[AdT1 ]T[AdT−1
2

]TFc.

Solution 3.8 pb = Rbapa = RT
abpa = (1, 3,−2).

Solution 3.9 Below are two approaches that arrive at the same solution.
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Tac = e[Va]tTab

TacT
−1
ab = e[Va]t

log(TacT
−1
ab ) = [Va]t

1

t
log(TacT

−1
ab ) = [Va]

Or:

t[Vb] = log Tbc

[Vb] =
1

t
log Tbc

Va = [AdTab
]vec([Vb]) =

1

t
[AdTab

]vec(log Tbc)

Solution 3.10
(a) Sa = (Sωa ,Sva). Since there is a rotational component about the ẑa-axis,
Sωa = (0, 0, 1). There is no linear component at the origin of {a} due to
the rotation, so Sva = (0, 0, 5), the linear motion due to the pitch of the
screw. So Sa = (0, 0, 1, 0, 0, 5).

(b) Sb = (Sωb
,Svb). The rotational component is Sωb

= (0, 1, 0). The linear
component is (0, 5, 0) due to the pitch of the screw plus the linear motion
due to the rotation of the screw, −Sωb

× q = (0, 0,−3), where q is any
point on the screw axis measured in the {b} frame (e.g., q = (−3, 2, 0)).
So Svb = (0, 5,−3), and Sb = (0, 1, 0, 0, 5,−3).

(c) [Sb] =




0 0 1 0
0 0 0 5
−1 0 0 −3
0 0 0 0


 .

(d) T = e[Saθ]. (The transformation when the screw axis is expressed in the
{a} frame.)

(e) T = e[Sbθ]. (The transformation when the screw axis is expressed in the
{b} frame.)

Solution 3.11
(a) ˙̂xb = (0, 1,−1), ˙̂yb = (−1, 0, 0), ˙̂zb = (1, 0, 0)
(b) ωe = (1, 0, 1).
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(c) Ṙeb =




1 0 0
0 1 −1
−1 0 0




(d) [ωb] =




0 −1 1
1 0 0
−1 0 0


, [ωe] =




0 −1 0
1 0 −1
0 1 0




Solution 3.12
(a) ω̂ = (0,

√
2/2,
√

2/2), and θ =
√

2.

R =




0.1559 −0.6985 0.6985
0.6985 0.5780 0.4220
−0.6985 0.4220 0.5780




(b) Rbb′ = RT
ebReb′ =



−1 0 0

0 −
√

2/2
√

2/2

0
√

2/2
√

2/2


,

ω̂ = (0, 0.3827, 0.9239), and θ = π.

Solution 3.13
(a)

Ttq =




1 0 0 5
0 0 −1 6
0 1 0 3
0 0 0 1




Ttc =




0 1 0 4
−1 0 0 3
0 0 1 0
0 0 0 1




Ttm =




0
√

2/2 −
√

2/2 6
−1 0 0 3

0
√

2/2
√

2/2 1
0 0 0 1




(b)
pcq = (−3, 1, 3)

(c)
pcc′ = (−3, 1, 0)
Rcc′ = Rct = R′tc
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Tcc′ =




0 −1.0 0 −3.0
1.0 0 0 1.0
0 0 1.0 0
0 0 0 1.0




Solution 3.14
(a) Vb = (0, 1, 0, 0, 1, 0). Vt = (0, 0, 1, 5,−10, 1).
(b) Vh = (0, 0, 1,−5,−10, 1).

Solution 3.15
(a) Twc = Twbe

[Sb]θ

T−1wb Twc = e[Sb]θ

Tbc = e[Sb]θ

Sb = (0, 0, 1, 1, 0.5, 1/π), θ = π.
(b) Axis points in the world z direction intersecting the (x,y) coordinates

(1.5,1) in the {w} frame.
(c) Sw = [AdTwb

]Sb
Sw = (0, 0, 1, 1,−1.5, 1/π), θ = π.

(d) Twc = e[Sw]θTwb. Can right multiply both sides by T−1wb and use the matrix
log to solve for Sw

Solution 3.16
(a) Fb = (0, 0, 0,−100, 0,−500)
(b) Ft = (−800, 1000, 200, 0, 100,−500)
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Chapter 4

Practice Exercises on
Forward Kinematics

4.1 Practice Exercises

Practice exercise 4.1 Figure 4.1 shows the KUKA LBR iiwa (LBR = “Le-
ichtbauroboter,” German for lightweight robot; iiwa = “intelligent industrial
work assistant”) 7R robot arm. The figure defines an {s} frame at the base
with the ŷs-axis pointing out of the page and a {b} frame aligned with {s} at
the end-effector. The robot is at its home configuration. The screw axes for the
seven joints are illustrated (positive rotation about these axes is by the right-
hand rule). The axes for joints 2, 4, and 6 are aligned, and the axes for joints
1, 3, 5, and 7 are identical at the home configuration. Write M (Tsb when the
robot is at its home configuration), the screw axes S1, . . . ,S7 in {s}, and the

J1,3,5,7

J2 J4 J6

L1 L2 L3 L4
x̂s

ŷs

x̂b

ŷb

Figure 4.1: The KUKA LBR iiwa 7-dof robot.
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9.8 mm

100.0 mm410.0 mm 207.3 mm275.5 mm

{b}

ŷb

ẑbẑs

ŷs

{s} J1

J2 J3

J4

Figure 4.2: The KINOVA ultra lightweight 4-dof robot arm at its home configuration.

screw axes B1, . . . ,B7 in {b}.

Practice exercise 4.2 Figure 4.2 shows a KINOVA ultra lightweight 4-dof
robot arm at its home configuration. An {s} frame is at its base and a {b}
frame is at its end-effector. All the relevant dimensions are shown. The ŷb-axis
is displaced from the ŷs-axis by 9.8 mm, as shown in the image. Positive rotation
about joint axis 1 is about the ŷs-axis (by the right-hand rule, as always) and
joint axis 4 is about the ŷb-axis. Joint axes 2 and 3 are also illustrated.

(a) Write M (i.e., Tsb when the robot is at its home configuration). All entries
should be numerical (no symbols or math).

(b) Write the space-frame screw axes S1, . . . ,S4. All entries should be numer-
ical (no symbols or math).

(c) Give the product of exponentials formula for Tsb(θ) for arbitrary joint
angles θ = (θ1, θ2, θ3, θ4). Your answer should be purely symbolic (no
numbers), using only the symbolsM , S1, . . . ,S4, θ1, . . . , θ4, and the matrix
exponential.

Practice exercise 4.3 Figures 4.3 and 4.4 show a Sawyer collaborative robot
in action on a factory floor. This is a 7-dof robotic arm.

(a) Draw a stick and cylinder model of Sawyer (similar to the examples in
Chapter 4), clearly showing all links and joints.

(b) Assuming the home configuration is shown in Figure 4.4, write the M
matrix.

(c) Write the space-frame and body-frame screw axes for this robot.
(d) What is the end-effector position when the joints are set to (0,π2 ,0,π2 ,0,π2 ,0)?

(Hint: You might find the functions in the MR library to be useful).
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Figure 4.3: A Sawyer robot.

x

y

z

x

J1

J2

J3

J4

J6

J5

J7

Figure 4.4: A top view of the Sawyer robot arm at its home configuration. Dimen-
sions are in mm. Assume that the centerlines shown are the screw axes of the revolute
joints. The {s} frame is at the base of the arm. The height from the base to the first
joint is 317 mm.
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Figure 4.5: Da Vinci Xi surgical robot.

Practice exercise 4.4 Figure 4.5 shows a da Vinci Xi, used in several types
of robot-assisted surgery. Though it is mechanically constrained to have only 3
degrees of freedom per arm, for the sake of this exercise assume each arm is a
simple serial chain with 6 degrees of freedom.

(a) Write the M matrix for the arm if its home configuration is shown in
Figure 4.6.

(b) Find the space frame screw axes for this system.
(c) Determine the position of the end-effector if the joints are at (0,π4 ,0,π4 , 3π4 ,π2 ).

Again, the MR Library will prove useful here.
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45 5 25 15

1012

J3

J1

J2 J5

J4

J6

z

x

z

x

Figure 4.6: Top view of one da Vinci Xi surgical robot arm. Note that the grey
regions represent R joints, green indicates the {s} frame, and yellow represents the
end-effector frame {b} in this exercise. Dimensions are in cm.
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4.2 Solutions

Solution 4.1

M =




1 0 0 0
0 1 0 0
0 0 1 L1 + L2 + L3 + L4

0 0 0 1


 .

Lining up the screw axes as columns, we get

Slist =




0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 L1 0 L1 + L2 0 L1 + L2 + L3 0
0 0 0 0 0 0 0




and

Blist =




0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 −(L2 + L3 + L4) 0 −(L3 + L4) 0 −L4 0
0 0 0 0 0 0 0



.

Solution 4.2
(a)

M = Tsb(0) =




1 0 0 0
0 1 0 992.8 mm
0 0 1 −9.8 mm
0 0 0 1


 .

(b) Lining up the screw axes as columns of a matrix,

Slist =




0 0 0 0
1 0 0 1
0 1 1 0
0 275.5 685.5 9.8
0 0 0 0
0 0 0 0



,
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Figure 4.7: Bare bones model of a Sawyer.

where distances are measured in mm. You can get this by visualiza-
tion, or by noting that ω1 = ω4 = (0, 1, 0) and ω2 = ω3 = (0, 0, 1)
and choosing representative points on the joint axes (e.g., q1 = (0, 0, 0),
q2 = (0, 275.5, 0), q3 = (0, 685.5, 0), and q4 = (0, 992.8,−9.8)) and using
vi = −ωi × qi.

(c) Tsb(θ) = e[S1θ1]e[S2θ2]e[S3θ3]e[S4θ4]M .

Solution 4.3
(a) See Figure 4.7.
(b)

M =




0 0 1 1003.9
1 0 0 160.3
0 1 0 317.0
0 0 0 1


 .

(c)

Slist =




0 0 1 0 1 0 1
0 1 0 −1 0 1 0
1 0 0 0 0 0 0
0 −317 0 317 0 −317 0
0 0 317 0 317 0 317
0 83.87 −192.5 −483.87 −24 883.87 −160.3
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Blist =




0 1 0 −1 0 1 0
1 0 0 0 0 0 0
0 0 1 0 1 0 1

1003.9 0 −32.2 0 0 0 0
0 −920 0 520 136.3 −120 0

−160.3 0 0 0 0 0 0



.

(d) Using either FKinSpace or FKinBody, we find that the transformation from
the base to the end-effector at this configuration is

T =




0 1 0 483.87
1 0 0 160.3
0 0 −1 −203
0 0 0 1


 .

Solution 4.4
(a) Given that there are 6 revolute joints, the model would theoretically have

6 degrees of freedom. However, as mentioned in the question, the actual
robot arm has joints that are constrained to move together in certain ways.

(b)

M =




1 0 0 10
0 1 0 0
0 0 1 90
0 0 0 1


 .

(c) First, we need to derive the screw axes for each of the revolute joints. The
space-frame axis list is:

Slist =




0 0 1 −1 −1 0
0 0 0 0 0 0
1 1 0 0 0 1
0 0 0 0 0 0
0 −12 45 −75 −50 −10
0 0 0 0 0 0




This, along with the M matrix and provided joint angles, can be fed
into FKinSpace, which returns that the transformation matrix to the end-
effector in this case is

T =




.7071 −.7071 0 23
−.7071 −.7071 0 −14

0 0 −1 17
0 0 0 1


 .
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Practice Exercises on
Velocity Kinematics and
Statics

5.1 Practice Exercises

Practice exercise 5.1 Figure 4.1 shows the KUKA LBR iiwa 7R robot arm.
The figure defines an {s} frame at the base with the ŷs-axis pointing out of the
page and a {b} frame aligned with {s} at the end-effector. The robot is at its
home configuration. The screw axes for the seven joints are illustrated (positive
rotation about these axes is by the right-hand rule). The axes for joints 2, 4,
and 6 are aligned, and the axes for joints 1, 3, 5, and 7 are identical at the home
configuration. The dimensions are L1 = 0.34 m, L2 = 0.4 m, L3 = 0.4 m, and
L4 = 0.15 m.

(a) What is the space Jacobian when the robot is at its home configuration?
(b) What is the body Jacobian when the robot is at its home configuration?
(c) What is the rank of the space and body Jacobian at the home configu-

ration? (It is always the same.) Is the home configuration a singularity?
What is the dimension of the space of feasible twists at the home config-
uration?

For the remaining questions, assume the angles of the joints are iπ/16 for joints
i = 1 . . . 7.

(d) What is the space Jacobian? What joint torques are needed to generate
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the wrench Fs = (1 Nm, 1 Nm, 1 Nm, 1 N, 1 N, 1 N)? What is the ma-
nipulability measure µ2 for the angular velocity manipulability ellipsoid
in the space frame? What is the manipulability measure µ2 for the linear
manipulability ellipsoid in the space frame?

(e) What is the body Jacobian? What joint torques are needed to generate
the wrench Fb = (1 Nm, 1 Nm, 1 Nm, 1 N, 1 N, 1 N)? What is the ma-
nipulability measure µ2 for the angular velocity manipulability ellipsoid
in the body frame? What is the manipulability measure µ2 for the linear
manipulability ellipsoid in the body frame?

Practice exercise 5.2 Consider a robot with eight joints moving in space.
The configuration of the end-effector is represented as an element of SE(3), the
velocity of the end-effector is represented as a twist V ∈ R6, and the force and
moment at the end-effector is represented as a wrench F ∈ R6. At some joint
configurations of the robot, the Jacobian has rank 6; at other configurations,
the rank of the Jacobian is lower. Consider a particular joint configuration θ
where the rank of the Jacobian is k.

(a) In the 8-dimensional space of joint velocities θ̇, what is the dimension of
the subspace of joint velocities that produce zero twist (V = 0, no motion)
of the end-effector?

(b) In the 6-dimensional space of wrenches F applied to the end-effector, what
is the dimension of the subspace of wrenches that the robot can resist with
a zero joint force-torque vector, τ = 0?

In the remaining questions, assume that 1 < k < 6.
(c) Assume the task is to position the end-effector in SE(3). Is the robot

redundant, kinematically deficient, or neither with respect to this task?
(d) Is the longest axis of the manipulability ellipsoid zero, infinite, or other?
(e) Is the shortest axis of the manipulability ellipsoid zero, infinite, or other?
(f) Is the longest axis of the force ellipsoid zero, infinite, or other?
(g) Is the shortest axis of the force ellipsoid zero, infinite, or other?

Practice exercise 5.3 Figure 5.1 shows an RPR robot that is confined to
the plane of the page. An end-effector frame {b} is illustrated, where the x̂b-
axis is out of the page. The directions of positive motion of the three joints are
indicated by arrows. The axes of the two revolute joints are out of the page, and
the prismatic joint moves in the plane of the page. Joint 1 is at q1 = (0,−5,−7)
in {b} and joint 3 is at q3 = (0,−1,−3) in {b}. Write the body Jacobian
Jb(θ) for the configuration shown. All entries of your Jb(θ) matrix should be
numerical (no symbols or math).
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θ1

θ2

{b}
x̂b

ŷb

ẑb

θ3

(0, −1, −3)q3 =

(0, −5, −7)q1 =

Figure 5.1: An RPR robot.

Practice exercise 5.4 Figure 5.2 shows a simplified pick-and-place robotic
arm at its home configuration. Let’s apply velocity kinematics and statics to
this arm.

(a) Find M = Tsb(0), the configuration of {b} relative to {s} when the robot
is at its zero (home) configuration.

(b) Find the space-frame screw axis for each joint when the robot is at its
home configuration.

(c) Use the MR library to calculate the body Jacobian at the home configu-
ration using the results from the previous two questions. No need to look
at Figure 5.2 again (but you can do so to verify your answers).

(d) To resist a wrench Fs = (0, 0, 0, 5, 10, 0) (linear components are in New-
tons) applied to the last link of the robot when the robot is at the home
configuration, what torques τ must be generated by the joints?

(e) Use the MR library to find Js(θ) at θ = (10, π/4,−π/4, 2, 2, 0).

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org


42 5.1. Practice Exercises

J1

J2

J3

J4

J5

J6

x

y

z

7 cm

25 cm

15 cm

{s}

{b}

Figure 5.2: A pick-and-place robot shown in its home configuration. The end-effector
{b} frame is aligned with the {s} frame and is 7 cm above the {s} frame (in the +ẑs
direction).
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5.2 Solutions

Solution 5.1 Angular units are radians and linear units are mm.
(a)

Js =




0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 0.34 0 0.74 0 1.14 0
0 0 0 0 0 0 0



.

(b)

Jb =




0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 −0.95 0 −0.55 0 −0.15 0
0 0 0 0 0 0 0



.

(c) The rank is three. Columns 2, 3, and 4 of the Jacobians are linearly in-
dependent; all feasible velocity directions are linear combinations of these
three columns. The space of feasible twists is three dimensional.

(d) Calculate Js(θ) using JacobianSpace.

τ = JT
s (θ)Fs = [1 1.44 0.78 1.72 1.13 0.54 2.29]T.

µ2(JsωJ
T
sω) = 2.427, µ2(JsvJ

T
sv) = 30.5.

(e) Calculate Jb(θ) using JacobianBody.

τ = JT
b (θ)Fb = [−0.19 1.76 0.18 0.26 1.36 − 0.96 1]T.

µ2(JbωJ
T
bω) = 2.427, µ2(JbvJ

T
bv) = 20.6.

Solution 5.2
(a) V = Jθ̇. This question is asking for the dimension of the null space of J ,

i.e., the dimension of the subspace of joint velocities θ̇ such that Jθ̇ = 0.
This is also called the nullity of J . J is rank k ≤ 6, so V is confined to
a k-dimensional linear space, regardless of θ̇. So only k directions in the
θ̇ space (R8) affect V, while the other 8 − k directions, the null space of
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J , have no affect on V. So an (8− k)-dimensional space of joint velocities
produce zero motion of the end-effector.
Other ways to see this: Jθ̇ = 0 places k independent constraints on the
eight variables of θ̇, so the subspace satisfying these constraints must be
(8− k)-dimensional. Also, the rank-nullity theorem tells us that the sum
of the rank of J plus the nullity of J must equal the number of columns
of J , so the nullity must be 8− k.

(b) This question is asking for the nullity of JT in τ = JTF . We know that
rank(J) = rank(JT), so the rank of JT is k. By the rank-nullity theorem,
k + nullity(JT) = 6, so nullity(JT) = 6− k.

(c) The robot is redundant, since the Jacobian has a rank of 6 at some con-
figurations (capable of moving in any direction in SE(3)) but has eight
joints. The terms “redundant” and “kinematically deficient” are inde-
pendent of the particular configuration, while singularities depend on the
configuration.

(d) Other.
(e) Zero.
(f) Infinite.
(g) Other.

Solution 5.3

Jb =




1 0 1
0 0 0
0 0 0
0 0 0

−7 1/
√

2 −3

5 1/
√

2 1



.

You can see this by visualization (imagine turntables at joints 1 and 3 and
visualize the motion of a point at the origin of {b}, and imagine a conveyor
moving in the direction of joint 2) or by recognizing that ω1 = ω3 = (1, 0, 0)
and points on the joint 1 and 3 axes are q1 and q3 and calculating vi = −ωi×qi.
For joint 2, the linear direction of positive motion is given by v2 = (q3−q1)/‖q3−
q1‖.

Solution 5.4 Linear dimensions have been converted to meters.
(a)

M = Tsb(0) =




1 0 0 0.40
0 1 0 0
0 0 0 0.07
0 0 0 1


 .
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(b) The space-frame screw axes of the joints when the robot is at its home
configuration are the columns of the space Jacobian Js(θ) when θ = 0.

Slist = Js(0) =




0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 1
0 0 0 1 0 0
0 0 −0.15 0 0 −0.40
1 0 0 0 −1 0



.

(c) The columns of the Jacobian Jb(0) are the screw axes in the end-effector
frame {b}.

Jb(0) = [AdTbs(0)]Js(0) = [AdM−1 ]Slist =




0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 1
0 0 0 1 0 0
0 0.4 0.25 0 0 0
1 0 0 0 −1 0



.

(d)

τ = −JT
s (0)Fs =

[
0 0 1.5 −5 0 4

]T
.

(e) Use JacobianSpace.

Js(θ) =




0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 1
0 0 0.11 1 0 0.11
0 0 −0.11 0 0 −2.36
1 0 0 0 −1 0



.
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Chapter 6

Practice Exercises on
Inverse Kinematics

6.1 Practice Exercises

Practice exercise 6.1 Perform three iterations of (approximate) iterative
Newton-Raphson root finding on the scalar function xd − f(θ) in Figure 6.1,
starting from θ0. (A general vector function f(θ) could represent the forward
kinematics of a robot, and xd could represent the desired configuration in coor-
dinates. The roots of xd − f(θ) are the joint vectors θ satisfying xd − f(θ) = 0,
i.e., solutions to the inverse kinematics problem.) Draw the iterates θ1, θ2, and
θ3 on the θ axis and illustrate clearly how you obtain these points.

θθ0

xd − f(θ)

Figure 6.1: A scalar function xd − f(θ) of θ.
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{s}

θ1

θ2

θ3

L

L

L

L
{e}

x̂e ŷe

ẑe

x̂s
ŷs

ẑs

Figure 6.2: An RRP robot.

Practice exercise 6.2 The spatial RRP open chain of Figure 6.2 is shown in
its zero position.

(a) Use analytic methods to solve the inverse kinematics when the end-effector
configuration is described by

T =




0 1 0 2L
0 0 −1 0
−1 0 0 −3L
0 0 0 1


 .

(b) Assume that L = 1 and use a numerical method (e.g., from the MR code
library) to solve the same problem as in (a).

Practice exercise 6.3 Figure 6.3(a) shows the world’s first robot system that
learns to dress elderly and physically disabled people. The system consists of two
7R WAM robots, whose kinematics are given in Chapter 4.1.3 of the textbook.
The overview of the system is shown in Figure 6.3(b). The WAM robots are
mounted symmetrically. Suppose the world frame is set as shown in the figure
and Dx = Dz = 0.3 m. The task is to move one of the robot end-effector frames
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(a) The dressing-assistant robot system.

x̂b

ẑb

x̂s

ẑs

x̂w

ẑw

ẑb’

x̂b’

ẑs’

x̂s’

D

D

x

z

(b) Frames for the two WAM robot arms.

Figure 6.3: The dressing assistant consisting of two WAM robot arms.

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org


50 6.1. Practice Exercises

to the configuration

T =




0 0 1 0.15
0 −1 0 0
1 0 0 0.3
0 0 0 1


 ,

relative to {w}, to hold the clothes. Use the MR code library to solve the
following questions. (Ignore joint limits.)

(a) If one of the robot arms can achieve the configuration, would you generally
expect there to be one solution to the inverse kinematics, a finite number
of solutions, or an infinite number of solutions?

(b) Can the left arm achieve the configuration? You could use numerical
inverse kinematics with different initial guesses, if needed. If you find a
solution, use forward kinematics to verify it. If you cannot find a solution,
explain the reason.

(c) Can the right arm achieve the configuration? You could use numerical
inverse kinematics with different initial guesses, if needed. If you find a
solution, use forward kinematics to verify it. If you cannot find a solution,
explain the reason.
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6.2 Solutions

Solution 6.1

θθ0

xd − f(θ)

θ2

θ3θ1

Solution 6.2
(a) By inspection the first joint rotates along its axis parallel to ẑs-axis, while

the rotation axis of the second joint can move in a plane parallel to x̂s− ŷs

plane. The orientation of the end-effector can be achieved from the initial
orientation by first rotating about the ẑs-axis for −π/2 rad and then ro-
tating about the x̂s-axis for π/2 rad. So we know that to reach the final
end-effetor configuration, θ1 = −π/2 and θ2 = π/2. By checking the trans-
lation we find θ3 = L. So the joint angles should be θ = (−π/2, π/2, L).

(b) Use the MR code library (e.g., IKinBody), to find the same result, begin-
ning from an initial guess away from the solution.

Solution 6.3
(a) You would expect an infinite number of solutions, since the robot is re-

dundant (it has 7 dof).
(b) The configuration is outside the left robot’s workspace, so there is no

solution.
(c) Considering the inverse kinematics in the body frame of the right arm,

you would get

Jb =




0 0 0 0 0 0 0
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 0.91 0 0.36 0 0.06 0
0 0 0 0 0 0 0
0 0 0 0.045 0 0 0
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and

M =




−1 0 0 −0.3
0 −1 0 0
0 0 1 1.21
0 0 0 1


 .

One example solution, found using IKinBody, is

θ = (0,−2.2130, 0, 2.6198, 0,−1.9776, 0).
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Practice Exercises on
Kinematics of Closed
Chains

There are currently no chapter 7 practice exercises.
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Chapter 8

Practice Exercises on
Dynamics of Open Chains

8.1 Practice Exercises

Practice exercise 8.1 Figure 8.1 illustrates an RP robot moving in a vertical
plane. The mass of link 1 is m1 and the center of mass is a distance L1 from
joint 1. The scalar inertia of link 1 about an axis through the center of mass
and out of the plane is I1. The mass of link 2 is m2, the center of mass is a
distance θ2 from joint 1, and the scalar inertia of link 2 about its center of mass
is I2. Gravity g acts downward on the page.

(a) Let the location of the center of mass of link i be (xi, yi). Find (xi, yi) for
i = 1, 2, and their time derivatives, in terms of θ and θ̇.

(b) Write the potential energy of each of the two links, P1 and P2, using the

x̂

ŷ

θ1

θ2

L1
g

m1
m2

Figure 8.1: An RP robot operating in a vertical plane.
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joint variables θ.
(c) Write the kinetic energy of each of the two links, K1 and K2. (Recall that

the kinetic energy of a rigid body moving in the plane is K = (1/2)mv2 +
(1/2)Iω2, where m is the mass, v is the scalar linear velocity at the center
of mass, ω is the scalar angular velocity, and I is the scalar inertia of the
rigid body about its center of mass.)

(d) What is the Lagrangian in terms of K1, K2, P1, and P2?
(e) One of the terms in the Lagrangian can be expressed as

1

2
m2θ

2
2 θ̇

2
1.

If this were the complete Lagrangian, what would the equations of motion
be? Derive these by hand (no symbolic math software assistance). Indicate
which of the terms in your equations are a function of θ̈, which are Coriolis
terms, which are centripetal terms, and which are gravity terms, if any.

(f) Now derive the equations of motion (either by hand or using symbolic
math software for assistance) for the full Lagrangian and put them in the
form

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ).

Identify which of the terms in c(θ, θ̇) are Coriolis and which are centripetal.
Explain as if to someone who is unfamiliar with dynamics why these terms
contribute to the joint forces and torques.

(g) Consider the configuration-dependent mass matrix M(θ) from your pre-
vious answer. When the robot is at rest (and ignoring gravity), the mass
matrix can be visualized as the ellipse of joint forces/torques that are re-
quired to generate the unit circle of joint accelerations in θ̈ space. As θ2
increases, how does this ellipse change? Describe it in text and provide a
drawing.

(h) Now visualize the configuration-dependent end-effector mass matrix Λ(θ),
where the “end-effector” is considered to be at the point (x2, y2), the
location of the center of mass of the second link. For a unit circle of
accelerations (ẍ2, ÿ2), consider the ellipse of linear forces that are required
to be applied at the end-effector to realize these accelerations. How does
the orientation of this ellipse change as θ1 changes? How does the shape
change as θ2 increases from zero to infinity when θ1 = 0? Provide a
drawing for the case θ1 = 0. If you have access to symbolic computation
software (e.g., Mathematica), you can use the Jacobian J(θ) satisfying

[
ẋ2
ẏ2

]
= J(θ)θ̇
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x̂

ŷ

θ1

θ2

L1

L2

m1

m2

Figure 8.2: A 2R robot with all mass concentrated at the ends of the links.

to calculate Λ(θ) = J−T(θ)M(θ)J−1(θ) for the case θ1 = 0. If you do not
have access to symbolic computation software, you can plug in numerical
values for I1, I2, m1, m2, and L1 (make them all equal to 1, for example)
to say something about how Λ changes (and therefore how the ellipse
changes) as θ2 goes from zero to infinity while θ1 = 0.

Practice exercise 8.2 The mass matrix of the 2R robot of Figure 8.2 is

M(θ) =

[
m1L

2
1 + m2(L2

1 + 2L1L2 cos θ2 + L2
2) m2(L1L2 cos θ2 + L2

2)
m2(L1L2 cos θ2 + L2

2) m2L
2
2

]
,

where each link is modeled as a point mass at the end of the link. Explain in
text and/or figures why each of the entries makes sense, for example using the
joint accelerations θ̈ = (1, 0) and (0, 1).

Practice exercise 8.3 The equations of motion for a particular 2R robot arm
can be written M(θ)θ̈+ c(θ, θ̇)+g(θ) = τ . The Lagrangian L(θ, θ̇) for the robot
can be written in components as

L(θ, θ̇) = L1(θ, θ̇) + L2(θ, θ̇) + L3(θ, θ̇) + . . .

One of these components is L1 = mθ̇1θ̇2 cos θ2.
(a) Find the joint torques τ1 and τ2 corresponding to the component L1.
(b) Write the 2 × 2 mass matrix M1(θ), the velocity-product vector c1(θ, θ̇),

and the gravity vector g1(θ) corresponding to L1. (Note that M = M1 +
M2 +M3 + . . ., c = c1 + c2 + c3 + . . ., and g = g1 + g2 + g3 + . . .)

Practice exercise 8.4 For a given configuration θ of a two-joint robot, the
mass matrix is

M(θ) =

[
3 a
b 2

]
,
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x̂b ŷb

ẑb

3

Figure 8.3: A ring of radius 3.

which has a determinant of 6 − ab and eigenvalues 1
2 (5 ±

√
1 + 4ab). What

constraints must a and b satisfy for this to be a valid mass matrix?

Practice exercise 8.5 Link i of an open-chain robot has two frames attached
to it, a frame {b} at its center of mass and a frame {a} on the axis of joint
i, a revolute joint, that drives the link. In the frame {a}, the screw axis of
the revolute joint is expressed as S. In the backward iterations of Newton-Euler
inverse dynamics, it was determined that the wrench Fb (expressed in {b}) must
be applied to the link. What joint torque τi must be applied at joint i, in terms
of Fb, S, and the frames {a} and {b}?

Practice exercise 8.6 Figure 8.3 shows a ring in the ŷb-ẑb plane (the x̂b

coordinate of each point on the ring is zero). The radius of the ring is 3 (all
mass is a distance 3 from the x̂b-axis). The mass of the ring is 10. Write the
spatial inertia matrix Gb. All entries should be numerical, no symbols or math.

Practice exercise 8.7 The Lagrangian of a particular two-joint robot is

L = L1 + other terms

where
L1 = θ̇1θ̇2 + θ̇22 cos θ2.

(a) Find τ11 , the force/torque at joint 1 (for arbitrary θ, θ̇, θ̈) due to L1. For
each term in your answer, label it as an inertia matrix term, a Coriolis
term, a centripetal term, or a gravity term.
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(b) Find τ12 , the force/torque at joint 2 (for arbitrary θ, θ̇, θ̈) due to L1. For
each term in your answer, label it as an inertia matrix term, a Coriolis
term, a centripetal term, or a gravity term.

Practice exercise 8.8 Consider the four equivalent forms of dynamics shown
below:

τ = M(θ)θ̈ + h(θ, θ̇) + JT(θ)Ftip, (8.1)

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ) + JT(θ)Ftip, (8.2)

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + JT(θ)Ftip, (8.3)

τ = M(θ)θ̈ + θ̇TΓ(θ)θ̇ + g(θ) + JT(θ)Ftip, (8.4)

(a) List the variables common to all of the equations, what they represent,
their dimension, how they are derived, and any constraints they must
always follow or properties they must satisfy.

(b) For the unique variables in each of the equations, describe what they
represent and provide the dimension.

Practice exercise 8.9 Consider the quadcopter and attached pendulum shown
in Figure 8.4. The rod is attached to the quadcopter by a revolute joint, and you
are given the task of balancing the rod upright (a flying version of the classic
cart pendulum problem). Assume the configuration of the quadcopter center is
described by (xq, yq, θq) and the configuration of the rod center is described as
(xr, yr, θr) where θq and θr are measured with respect to the world x axis. The
length of the rod is 2l, the masses are mq, and mr, and the rotational inertias
are Iq and Ir.

Solve for the kinetic and potential energy terms and the Lagrangian for the
generalized coordinates (xq, yq, θq, θr).

Practice exercise 8.10 Consider the object in Figure 8.5 that consists of
a cube and sphere that are rigidly attached. The {c} and {s} frames of each
component are aligned with the principal axes and located at the center of mass.
The z-axes of both frames are colinear. Given that the body inertia of a sphere
is Is = (2mr2/5 ∗ I3x3), the body inertia of a cube is Ic = ml2/6 ∗ I3x3, r = 1,
l = 2, the cube has mass 2, and the sphere has mass 1, solve for the spatial
inertia matrix Gb for the object.

Practice exercise 8.11 You are teaching Newton-Euler inverse dynamics,
and you are using the 2R robot from the beginning of Chapter 8 (see also
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x

y

θr

Figure 8.4: 2D quadcopter and attached pendulum.

Figure 8.6) as an example. Each link has length Li and the mass of each link
is mi, concentrated at a point at the end of the link. You already know the
correct dynamics from the Lagrangian derivation. Now you will show how to
arrive at the same answer using Newton-Euler. Go through the method step by
step, showing intermediate results if it is helpful.

(a) Give Mi, Mi−1,i, Ai, Si, g, Gi, V0, V̇0. You can assume the frame {3}
is coincident with {2} and Ftip is zero.

(b) Forward Iteration: First calculate the transformation, twist, and twist
derivative for link 1, then calculate them for link 2.

(c) Backward Iteration: First calculate F2 and τ2, then calculate F1 and τ1.
Confirm that your final result agrees with the result in the notes.
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l

l

l

r

{s}
x̂

ŷẑ

{c}
x̂

ŷẑ

Figure 8.5: Rigid object consisting of a sphere and cube.

x̂

ŷ

θ1

θ2

L1

L2

g

θ1 = 0

θ2 = π/2m1

m2

Figure 8.6: 2R robot.
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8.2 Solutions

Solution 8.1
(a)

x1 = L1 cos θ1 ẋ1 = −L1θ̇1 sin θ1
x2 = θ2 cos θ1 ẋ2 = θ̇2 cos θ1 − θ2θ̇1 sin θ1
y1 = L1 sin θ1 ẏ1 = L1θ̇1 cos θ1
y2 = θ2 sin θ1 ẏ2 = θ̇2 sin θ1 + θ2θ̇1 cos θ1.

(b)

P1 = m1gy1 = m1gL1 sin θ1

P2 = m2gy2 = m2gθ2 sin θ1.

(c)

K1 =
1

2
m1(ẋ21 + ẏ21) +

1

2
I1θ̇21 =

1

2
(I1 + m1L

2
1)θ̇21

K2 =
1

2
m2(ẋ22 + ẏ22) +

1

2
I2θ̇21 =

1

2

(
(I2 + m2θ

2
2)θ̇21 + m2θ̇

2
2

)
.

(d) L = K1 +K2 − P1 − P2.
(e) τ1 = 2m2θ2θ̇1θ̇2 +m2θ

2
2 θ̈1. The first term is a Coriolis term and the second

term depends on θ̈1.
τ2 = −m2θ2θ̇

2
1. This term is a centripetal term.

(f)

M(θ) =

[
I1 + I2 + m1L

2
1 + m2θ

2
2 0

0 m2

]
, c(θ, θ̇) =

[
2m2θ2θ̇1θ̇2
−m2θ2θ̇

2
1

]
,

g(θ) =

[
(m1L1 + m2θ2)g cos θ1

m2g sin θ1

]
.

(g) The mass matrix M(θ) is diagonal, so the principal axes of the ellipse
M(θ)θ̈ (for all θ̈ satisfying |θ̈| = 1) are aligned with the τ1 and τ2 axes,
and the lengths of those principal axes (the eigenvalues of M) are just the
entries along the diagonal. As θ2 gets larger, the top left component of
M gets larger. This means that larger torques at joint 1 are required to
generate accelerations in the θ̈1 direction, due to the increased inertia of
the robot about joint 1. Hence the ellipse gets wider in the τ1 direction.
See Figure 8.7.
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m2

I1 + I2 + m1L
2
1

    increases
from zero
θ2

τ1

τ2

Figure 8.7: The mass matrix M(θ) represented as the ellipse of joint forces and
torques corresponding to a unit circle of joint accelerations θ̈ (when gravity and the
joint velocities are zero).

(h) The Jacobian relating joint velocities θ̇ to the velocity of the end-effector
(ẋ2, ẏ2) is

J(θ) =

[
−θ2 sin θ1 cos θ1
θ2 cos θ1 sin θ1

]

and the end-effector mass matrix is

Λ(θ) = J−TMJ−1.

We are interested in the ellipse Λ(θ)[ẍ2 ÿ2]T (in the (fx, fy) space) when
the end-effector acceleration is a unit vector.
The orientation of this ellipse rotates with θ1, so we can just consider
the case for a particular constant θ1, i.e., θ1 = 0 (the end-effector is at
(x2, y2) = (0, θ2)). In this case, a force applied to the end-effector in the fx
direction acts to extend or retract joint 2 while a force in the fy direction
acts to rotate the robot about joint 1.
Evaluating Λ(θ) with θ1 = 0, we get the diagonal matrix

[
m2 0
0 (I1 + I2 + m1L

2
1 + m2θ

2
2)/θ22

]
=

[
m2 0
0 (k + m2θ

2
2)/θ22

]
,

where k is a positive constant. Since the matrix is diagonal, the principal
axes of the ellipse Λ(θ)[ẍ2 ÿ2]T (where the end-effector acceleration is a
unit vector) are aligned with the fx and fy axes and the lengths of the
principal components are the entries along the diagonal.
The apparent mass at the end-effector in the radial (x) direction is m2, i.e.,
it is independent of θ2. The apparent mass in the tangential (y) direction

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org


64 8.2. Solutions

fx

fy

m2

m2

θ1= 0

    approaches
zero from
θ2

θ2 = ∞

Figure 8.8: The end-effector mass matrix Λ(θ) represented as the ellipse of forces
that must be applied to the end-effector to create a circle of accelerations (ẍ2, ÿ2). As
θ2 goes to infinity, the magnitude of the force required to generate a unit acceleration
(0, ÿ2) approaches m2, i.e., the robot feels like a point mass with mass m2.

depends on θ2, however. As θ2 approaches zero from above, the bottom
right component of Λ approaches infinity. This means large fy forces are
needed to accelerate the tip in the y direction. This is because the torque
about joint 1 provided by a force fy through the end-effector tends to zero
as the end-effector approaches joint 1, and therefore fy must become large
to generate the angular acceleration of the inertia about joint 1 needed to
generate a modest ÿ2 acceleration. Accordingly, the principal axis of the
end-effector mass ellipse in the fy direction becomes large (Figure 8.8).
As θ2 approaches infinity, the bottom right element of Λ drops to m2, and
the end-effector mass matrix ellipse approaches a circle: the end-effector
feels like a mass m2 in every direction.

Solution 8.2 Let

M =

[
M11 M12

M21 M22

]
,

where M11 = m1L
2
1+m2(L2

1+2L1L2 cos θ2+L2
2), M12 = M21 = m2(L1L2 cos θ2+

L2
2), and M22 = m2L

2
2.

Figure 8.9 shows the linear accelerations of the masses m1 and m2 for joint
accelerations (1, 0) and (0, 1).

The terms M11 and M22 are relatively easy to understand. The term
M11 is the inertia of the robot about joint 1 if joint 2 is locked. The in-
ertia contribution due to m1 is m1L

2
1. The distance of m2 from joint 1 is

d2 =
√
L2
1 + 2L1L2 cos θ2 + L2

2 (by the law of cosines), and the inertia con-
tribution due to m2 is m2d

2
2.
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θ̈2= 1

L2

L1

θ̈1= 1

√
L2
1 + 2L1L2 cos θ2 + L2

2

θ2/2

θ2

Figure 8.9: The linear accelerations of the point masses of the 2R arm for joint
accelerations (1, 0) and (0, 1).

The term M22 is the inertia about joint 2 due to the mass m2 a distance L2

from the joint.
The off-diagonal term is harder to understand. But we know that if joint

1 accelerates, joint 2 has to apply a torque to keep joint 2 locked. And if
joint 2 accelerates, joint 1 has to apply a torque to remain locked; otherwise,
conservation of angular momentum about joint 1 would cause it to begin to
rotate in a direction opposite joint 2. Using Figure 8.9 and some geometry,
you could calculate the joint torque τ2 required to keep joint 2 stationary when
θ̈1 = 1, based on the moment about joint 2 generated by the line of force required
to accelerate m2.

Solution 8.3
(a)

τ1 =
d

dt

(
∂L1

∂θ̇1

)
− ∂L1

∂θ1
=

d

dt
(mθ̇2 cos θ2)− 0 = mθ̈2 cos θ2 −mθ̇22 sin θ2

τ2 =
d

dt

(
∂L1

∂θ̇2

)
− ∂L1

∂θ2
=

d

dt
(mθ̇1 cos θ2) + mθ̇1θ̇2 sin θ2 = mθ̈1 cos θ2

(b)

M1(θ) =

[
0 m cos θ2

m cos θ2 0

]
, c1(θ, θ̇) =

[
−mθ̇22 sin θ2

0

]
,

g1(θ) =

[
0
0

]
.
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Solution 8.4 M(θ) must be positive definite (and therefore symmetric), so
a = b and the eigenvalues must be positive, so |a| = |b| <

√
6. (The determinant

det(M) = 6− a2 must be positive, which gives the same condition on |a|.)

Solution 8.5 Take the dot product of the wrench with the screw axis after
they’ve been expressed in the same frame, e.g., in the frame {b}, FT

b [AdTba
]S.

Solution 8.6

Gb =




90 0 0 0 0 0
0 45 0 0 0 0
0 0 45 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10



,

where the inertia about the x̂b-axis is mR2 = 90 since m = 10 and R = 3. The
inertia about the ŷb and ẑb axes is (1/2)mR2 (calculate this from the integral
or look it up online).

Solution 8.7
(a) τ11 = θ̈2 (inertia matrix term).
(b) τ12 = θ̈1 + 2θ̈2 cos θ2︸ ︷︷ ︸

inertia matrix terms

− θ̇22 sin θ2︸ ︷︷ ︸
centripetal term

.

Solution 8.8
(a) τ : the torque or force at each of the joints represented by the generalized

coordinates. Dimensions are n× 1 array.
M(θ): the configuration dependent mass matrix. Dimensions are n × n
matrix. M must be symmetric and positive definite.
θ: The generalized coordinates for the joints. Dimensions are n× 1 array.
θ̈: The acceleration of the joints represented by the generalized coordi-
nates. Dimensions are n× 1 array.
J(θ): The Jacobian (depends on configuration θ). Dimensions are n × n
matrix.
Ftip: The force applied at the tip of the robot. Dimensions are n×1 array.

(b) 8.1: The most general representation, and h(θ, θ̇) is an n × 1 array that
contains the centripetal, coriolis, and gravity terms.
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8.2: c(θ, θ̇) is an n × 1 array that contains the centripetal and coriolis
terms, and g(θ) is an n× 1 array that contains the gravity terms.
8.3: C(θ, θ̇) is the n× n Coriolis matrix.
8.4: Γ(θ) is the n×n×n Christoffel matrix. Emphasizes that the Coriolis
and centripetal (velocity product) terms are quadratic in the velocity and
that Γ depends only on θ.

Solution 8.9
The kinetic energy contains the translational kinetic energy of the rod and quad-
copter as well as the rotational kinetic energy of both bodies.
Quadcopter translational kinetic energy:
v2q = ẋ2q + ẏ2q
Kq,trans = 1

2mq(ẋ
2
q + ẏ2q ).

Quadcopter rotational kinetic energy:
Kq,rot = 1

2Iq θ̇
2
q .

Rod translational kinetic energy:
xr = xq + l cos(θr)
yr = yq + l sin(θr)

ẋr = ẋq − l sin(θr)θ̇r
ẏr = ẏq + l cos(θr)θ̇r
v2r = ẋ2r + ẏ2r = (ẋq − l sin(θr)θ̇r)

2 + (ẏq + l cos(θr)θ̇r)
2

Kr,trans = 1
2mrv

2
r

Rod rotational kinetic energy:
Kr,rot = 1

2Ir θ̇
2
r .

Total kinetic energy:
K = Kq,trans + Kq,rot + Kr,trans + Kr,rot = 1

2mq(ẋ
2
q + ẏ2q ) + 1

2Iq θ̇
2
q + 1

2mr((ẋq −
l sin(θr)θ̇r)

2 + (ẏq + l cos(θr)θ̇r)
2) + 1

2Ir θ̇
2
r .

Potential Energy:
P = 1

2mqyq + 1
2mr(yq + l sin(θr)).

Lagrangian = L = K − P = 1
2mq(ẋ

2
q + ẏ2q ) + 1

2Iq θ̇
2
q + 1

2mr((ẋq − l sin(θr)θ̇r)
2 +

(ẏq + l cos(θr)θ̇r)
2) + 1

2Ir θ̇
2
r − 1

2mqyq + 1
2mr(yq + l sin(θr)).

Solution 8.10
COMs = (0, 0, 3), COMc = (0, 0, 1).
COMb = (COMsms + COMcmc)/2.
qc = COMb − COMc

qs = COMb − COMs

I1 = Ic +mc(q
T
c qcI − qcqTc )
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I2 = Is +ms(q
T
s qsI − qsqTs )

Ib = I1 + I2 = diag(6.48, 6.48, 1.73)
Gb = diag(6.48, 6.48, 1.73, 3, 3, 3)

Solution 8.11
(a) Observe the drawing. Find the transformation matrix Mi ∈ SE(3) for

each link. Mi is the transformation from the base frame {0} to the frame
{i}, which is attached to the center of mass of the i-th link, when the
robot is in its home configuration.

M1 =




1 0 0 L1

0 1 0 0
0 0 1 0
0 0 0 1


, M2 =




1 0 0 L1 + L2

0 1 0 0
0 0 1 0
0 0 0 1


.

M12 ∈ SE(3) is the transformation matrix from the frame {1} (attached
to center of mass of link 1) to the frame {2} (attached to the center of
mass of link 2), when the arm is in its home configuration. Find M12 by
observing the drawing or by using the equation M12 =M−11 M2.

M2 =




1 0 0 L2

0 1 0 0
0 0 1 0
0 0 0 1


.

From observing the drawing, obtain the screw-axis Si for each joint, ex-
pressed in the space-frame:
S1 = [0, 0, 1, 0, 0, 0]T, S2 = [0, 0, 1, 0,−L1, 0]T.
Ai is the twist-vector for joint i expressed in the frame {i} when the arm is
in its home configuration (θi = 0). For a simple 2R arm it can be obtained
by observing the spatial velocity of frame {i} when rotating about joint
i from the home configuration. Alternatively one may use the equation
Ai = AdM−1

i
Si.

A1 = [0, 0, 1, 0, L1, 0]T, A2 = [0, 0, 1, 0, L2, 0]T.
Define the gravity vector g = [0, g, 0]T with g < 0. Define the spatial
inertia matrix Gi for each link i, expressed in the frame {i}. In the case
of the 2R robot we assume that the mass is concentrated as a point mass
at the end of each link. This is the origin of frame {i}, so relative to the
frame {i}, the mass of link {i} has no rotational inertia.
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G1 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 m1 0 0
0 0 0 0 m1 0
0 0 0 0 0 m1



G2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 m2 0 0
0 0 0 0 m2 0
0 0 0 0 0 m2




.

The base is fixed to the ground. It therefore has no velocity. It is however
subject to gravity. The gravity vector g needs to be incorporated in V̇0.
V0 = [0, 0, 0, 0, 0, 0]T, V̇0 = [0, 0, 0, 0, g, 0]T.

(b) During the forward iteration of Newton-Euler inverse dynamics, we obtain
the states and accelerations of the frames attached to each link. Because
the velocity and acceleration of each link is influenced by those of its pre-
decessors, we start our calculations at the base and incrementally move
out-board until the states and accelerations for each link have been ob-
tained. As a convention we will express velocities Vi and accelerations V̇i
for each link i in the frame {i}, which is attached to the center of mass of
the respective link.
Link 1 states and acceleration:
We now calculate the transformation T01 from link 1’s predecessor (frame
{0})to itself (frame {1}). The equation T01 = M1e

[A1]θ1 takes M1 (the
transformation from the base frame {0} to the frame {1} when the robot
is in its home configuration θ1 = θ2 = 0) as a reference point, and in-
corporates twists (exponential coordinates A1θ1) about joint 1 to find the
transformation from frame {0} to frame {1} for any given θ1.

T01 =




cos(θ1) − sin(θ1) 0 L1 cos(θ1)
sin(θ1) cos(θ1) 0 L1 sin(θ1)

0 0 1 0
0 0 0 1




Calculate the absolute velocity V1 of the frame {1} expressed in frame
{1}.
Detail: V1 is composed of two terms: V1 = AdT10 V0 +A1θ̇1.
First term: If joint 1 had a constant angle θ1, then the base, together with
the first link, could be regarded as a single rigid body. Using the Adjoint
of a transformation matrix T10 (between two frames {1} and {0}, that are
assumed to be fixed to a rigid body), a spacial velocity of one point (ie.
frame {1}) can be expressed in terms of the spacial velocity of another
point (ie. frame {0}). The first term considers the portion of V1, as a
result of being attached to a previous dynamic body. In this particular
case, the body (base) is stationary, V0 is 0 and therefore the first term of
the equation is also 0.
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Second Term: The joint angle θ1 of joint 1 is generally not constant and
the joint-angle velocity θ̇1 is not 0. The second term of the equation for V1
incorporates the additional velocity of the frame {1} caused by rotating
about joint 1. V1 = [0, 0, θ̇1, 0, L1θ̇1, 0]T.

Calculate the absolute acceleration V̇1 of the frame {1} expressed in frame
{1}.
Detail: V̇1 = AdT10

V̇0 + [V1,A1]θ̇1 + A1θ̈1, where [V1,A1] indicates the
Lie-Bracket operation of V1 and A1. The first term considers the accel-
eration of the previous rigid body, ie. the acceleration of the base frame
{0}. The second term considers the coriolis and centripetal accelerations.
The third term considers accelerations of frame {1}, due to joint-angle
accelerations θ̈1.
V̇1 = [0, 0, θ̈1, g sin(θ1), g cos(θ1) + L1θ̈1, 0]T.

Link 2 states and acceleration:
We now calculate the transformation T12 from link {2}’s predecessor (frame
{1})to itself (frame {2}). The equation T12 = M12e

[A2]θ2 takes M12

(the transformation from frame {1} to frame {2} when the robot is in
its home configuration θ1 = θ2 = 0) as a reference point, and incor-
porates twists (exponential coordinates A2θ2) about joint 2 to find the
transformation from frame {1} to frame {2} for any given θ2. T12 =


cos(θ2) − sin(θ2) 0 L2 cos(θ2)
sin(θ2) cos(θ2) 0 L2 sin(θ2)

0 0 1 0
0 0 0 1




Calculate the absolute velocity V2 of the frame {2} expressed in frame
{2}.
Detail: V2 is composed of two terms: V2 = AdT21 V1 +A2θ̇2.
First term: If joint 2 had a constant angle θ2, then link 1, together with
link 2, could be regarded as a single rigid body. Using the Adjoint of
a transformation matrix T21 (between two frames {2} and {1},that are
assumed to be fixed to a rigid body) a spacial velocity of one point (ie.
frame {2}) can be expressed in terms of the spacial velocity of another
point (ie. frame {1}). The first term considers the portion of V2, as a
result of being attached to a previous dynamic body.
Second Term: The joint angle θ2 of joint 2 is generally not constant and
the joint-angle velocity θ̇2 is not 0. The second term of the equation for V2
incorporates the additional velocity of the frame {2} caused by rotating
about joint 2.
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V2 = [0, 0, θ̇1 + θ̇2, L1 sin(θ2)θ̇1, (L2 + L1 cos(θ2))θ̇1 + L2θ̇2, 0]T.

Calculate the absolute acceleration V̇2 of the frame {2} expressed in frame
{2}:
Detail: V̇2 = AdT21 V̇1+[V2,A2]θ̇2+A2θ̈2, where [V2,A2] indicates the Lie-
Bracket operation of V2 and A2. The first term considers the acceleration
of the previous rigid body, ie. the acceleration of the base frame {1}. The
second term considers the coriolis and centripetal accelerations. The third
term considers accelerations of frame {2}, due to joint-angle accelerations
θ̈2.
V̇2 = [0, 0, θ̈1 + θ̈2, g sin(θ1 + θ2) +L1 cos(θ2)θ̇1θ̇2 +L1 sin(θ2)θ̈1, g cos(θ1 +
θ2)− L1 sin(θ2)θ̇1θ̇2 + (L2 + L1 cos(θ2))θ̈1 + L2θ̈2]T.

(c) During the forward iteration, we had to bear in mind that the velocity and
acceleration of link i is dependent on those of its predecessor link i − 1.
Similarly, the forces acting on a link i are dependent on the forces acting
on its outboard follower (i + 1): The wrench Fi that must be applied to
link i is the sum of the wrench Fi+1 that must be provided to link i + 1
(but expressed in frame {i}) plus the extra wrench from the rigid body
dynamics of link i. In other words, the inboard links need to support
the outboard links. For that reason, we run a backward iteration starting
with the most outboard link and incrementally approach the base link.
Ultimately, we are solving for the torques acting on each joint, to obtain
the control torques that need to be provided to the joint motors.

Link 2 forces and torques: Find the transform from frame {2} to frame
{3}. The frame n + 1 (in this case 3) is the frame attached to the end-
effector. For the 2R arm we assumed that the frame {3} coincides with
frame {2} (both the center of mass of link 2, as well as the end-effector are
located at the tip of link 2). We therefore know, that T23 is the identity
transformation in SE(3),
T23 = diag(1, 1, 1, 1).
F3 is the wrench that the end-effector applies to the environment expressed
in the frame {3}. It is given as 0.
Ftip = F3 = [0, 0, 0, 0, 0, 0]T.

Calculate F2 using the equation F2 = AdT32
Ftip + G2V̇2 − adT

V2(G2V2).
Details: The first term is the wrench that must be provided by the end-
effector (expressed in frame{2}). The second and third terms are the
wrench that results from the dynamics of link 2.
F2 = [0, 0, 0,m2(g sin(θ1+θ2)−L1 cos(θ2)θ̇21−L2(θ̇1+θ̇2)2+L1 sin(θ2)θ̈1),m2(g cos(θ1+
θ2) + L1 sin(θ2)θ̇21 + (L2 + L1 cos(θ2)) + L2θ̈2), 0]T.
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To obtain the torque acting on joint 2, the wrench F2 is multiplied with
the twist-vector for joint 2 expressed in the frame 2, namely A2,
τ2 = L2m2(θ̈2L2 + θ̈1(L2 + L1 cos(θ2)) + g cos(θ1 + θ2) + θ̇21L1 sin(θ2)).
Link 1 forces and torques are obtained analogous to link 2: F1 = [0, 0, L2m2(L1 sin(θ2)θ̇21+
θ̈2L2+θ̈1(L2+L1 cos(θ2))+g cos(θ1+θ2)),−L2m2 cos(θ2)(θ̇1+θ̇2)2+(m1+
m2)(g sin(θ1)− θ̇21L1)− (θ̈1 + θ̈2)L2m2 sin(θ2),−L2m2 sin(θ2)(θ̇1 + θ̇2)2 +
(m1 +m2)(θ̈1L1 + g cos(θ1)) + (θ̈1 + θ̈2)L2m2 cos(θ2), 0]T.
τ1 = gL1(m1+m2) cos(θ1)+θ̈2L2m2(L2+L1 cos(θ2))+θ̈1(L2

2m2+L2
1(m1+

m2) + 2L1L2m2 cos(θ2)) + gL2m2 cos(θ1 + θ2) − 2θ̇1θ̇2L1L2m2 sin(θ2) −
θ̇22L1L2m2 sin(θ2)
The outputs τ1 and τ2 are consistent with the results from the lagrangian
approach! We have therefore successfully demonstrated the Newton-Euler
inverse dynamics derivation for the 2R arm.
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Chapter 9

Practice Exercises on
Trajectory Generation

9.1 Practice Exercises

Practice exercise 9.1 Consider generating trajectories for the 7R WAM
robot, whose kinematics are given in Section 4.1.3 of the textbook. The start
and end configurations of the end-effector are

Xstart =




√
2/2 0

√
2/2 −0.2

−
√

2/2 0
√

2/2 0.1
0 −1 0 0.4
0 0 0 1




and

Xend =




−
√

2/2 0
√

2/2 −0.2

−
√

2/2 0 −
√

2/2 −0.1
0 −1 0 0.4
0 0 0 1


 .

We will generate 11 configuration matrices along each trajectory using a cubic
time scaling within the total motion time of 5 seconds. You can ignore all the
joint limits in this exercise.

(a) Use both functions ScrewTrajectory and CartesianTrajectory in the
MR library to generate the trajectories.
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(b) Are these trajectories appropriate for the WAM robot? If not, why? Write
a program to prove your answer using IKinBody in the MR library.

(c) If the trajectory generated by ScrewTrajectory is not appropriate for the
WAM robot, can we conclude that we can not find any trajectory twisting
along a fixed screw axis based on that fact? Why?

Practice exercise 9.2 A robot is expected to follow a trajectory generated
by a cubic time scaling for T = 2 minutes. However, due to some reason, the
robot has to regenerate its trajectory by a quintic time scaling after it moves
for 1 minute. During this change, the jerk change of the motion should still be
kept smooth.

(a) Hand draw the plots of s(t), ṡ(t), and s̈(t) for the actual time scaling for
the robot in 2 minutes.

(b) To calculate the complete time scaling for the robot in 2 minutes and
represent it by polynimials of time, list sufficient constraint equations we
should use.

(c) Solve the complete time scaling for the robot in 2 minutes. You might use
symbol \ in Matlab, function LinearSolve in Mathematica or function
scipy.linalg.solve in Python to solve the system of linear equations.

Practice exercise 9.3 A time scaling can be written as either s(t) or ṡ(s).
The first segment of a trapezoidal time scaling is s(t) = (1/2)at2. Write this
segment as ṡ(s). In other words, eliminate t from the expression.

Practice exercise 9.4 The dynamics of a two-joint robot restricted to a path
θ(s) are m(s)s̈ + c(s)ṡ2 + g(s) = τ . At the state (s, ṡ) = (0.5, 2), the vectors
m(s), c(s), and g(s) evaluate to

m(0.5) =

[
1
−1

]
, c(0.5) =

[
3
−3

]
, g(0.5) =

[
0
5

]
.

At this state (s, ṡ), each actuator is limited in the torque it can apply to −10 ≤
τi ≤ 10.

(a) At this state (s, ṡ), give the lower and upper bounds on the feasible accel-
erations s̈ due to joint 1 (L1 and U1) and joint 2 (L2 and U2).

(b) Can the robot stay on the path at this state? Explain your answer. If
your answer is yes, indicate the range of feasible accelerations s̈ and clearly
draw the motion cone in the (s, ṡ) plane.

Practice exercise 9.5 Ignore the points A, B, and C, and the arrows ema-
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velocity
limit curve

ṡ

s0 1switch switchswitch switchswitch

A B

C

Figure 9.1: A time-optimal time scaling.

nating from them, until part (c) of the problem.
(a) For the time-optimal time scaling below, approximately draw the feasible

motion cone at every point on the curve where we know the angle of both
the upper and lower bounds of the cone. (Assume the robot can hold itself
stationary at any configuration s ∈ [0, 1].)

(b) Draw a point in the (s, ṡ) plane from which the robot can stay on the path
for a little while longer, but from which the robot is doomed to eventually
leave the path. Label this point “b” so it is easy to see.

(c) Suppose the robot finds itself at the states A, B, or C, off of the time-
optimal time scaling. The time-optimal time scalings from these states
involve the robot getting back to the scaling curve shown. To get back to
the time-optimal time scaling, the robot attempts to follow the trajecto-
ries indicated by the arrows. Without knowing anything more about the
robot’s dynamics, can we say with certainty that any of these “arrow”
trajectories is impossible? If so, which? Explain your answer.
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9.2 Solutions

Solution 9.1
(a) Solutions are shown by code.
(b) The trajectory generated by CartesianTrajectory is appropriate for the

WAM robot, while the one from ScrewTrajectory is not appropriate.
That is because the latter trajectory exceed the robot’s workspace, some
configurations are not reachable. See code for more details.

(c) No. Because the function ScrewTrajectory always generate a trajectory
in which the start configuration of the end-effector frame will transform
to the end configuration by twisting along a fixed screw axis S = (ω, v)
for a distance θ ∈ [0, π]. However, we can find an infinite number of
screw motions doing the same thing. For example, we can travel along
S ′ = (ω, vθ/(θ+2kπ)) with a distance θ′ = θ+2kπ from start to end con-
figuration. Or we can have another fixed screw axis S ′′ = (−ω, vθ/(2π−θ))
and travel for a distance θ′′ = 2π − θ to do the same thing. We still need
to verify if they are appropriate or not.

Solution 9.2
(a) We can get the plot by combining the former half of plots for a cubic

scaling and the latter half of plots for a quintic time scaling, as shown in
Figure 9.2.

 

s ṡ s̈

T t T t

T t

1 3
2T

6
T 2

0

Figure 9.2: Plots of s(t), ṡ(t), and s̈(t)

(b) There are many correct answers. The most common one may be

s(0) = ṡ(0) = 0, s(1) =
1

2
, ṡ(1) =

3

4
, s̈(1) = 0, s(2) = 1, ṡ(2) = s̈(2) = 0

(c) For t ∈ [0, 1], the time scaling is the same with a cubic time scaling. For
t ∈ [1, 2], the quintic time scaling ,s(t) = a0 + · · ·+ a5t

5, can be archieved
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by solving a system of linear equations based on the constraints at t = 1
and t = 2, as




1 1 1 1 1 1
1 2 4 8 16 32
0 1 2 3 4 5
0 1 4 12 32 80
0 0 2 6 12 20
0 0 2 12 48 160







a0
a1
a2
a3
a4
a5




=




1/2
1

3/4
0
0
0



.

So finally we have

s(t) =

{
3
4 t

2 − 1
4 t

3 t ∈ [0, 1)
−3 + 12t− 18t2 + 14t3 − 21

4 t
4 + 3

4 t
5 t ∈ [1, 2]

Solution 9.3 t =
√

2s/a and ṡ = at, so ṡ(s) =
√

2as.

Solution 9.4
(a) Joint 1: −10 ≤ s̈ + 12 ≤ 10 → L1 = −22, U1 = −2. Joint 2: −10 ≤
−s̈− 3(4) + 5 ≤ 10→ L2 = −17, U2 = 3.

(b) L = max(L1, L2) = −17, U = min(U1, U2) = −2. We have U > L, so it
is possible to stay on the path, with s̈ ∈ [−17,−2]. The motion cone is
illustrated below:
ṡ

s

Solution 9.5
(a) We know the angles of the upper and lower bounds of the motion cone at

the seven points indicated in Figure 9.3.
(b) Any trajectory beginning from a point between the top of the optimal time

scaling and below the velocity limit curve, and in an s-range for minimum
acceleration for the time-optimal time scaling, will eventually reach the
velocity limit curve. Even with minimum acceleration, the robot cannot
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velocity
limit curve
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Figure 9.3: Points where the motion cone is known, and intervals of the s-axis labeled
as “max acc,” where the time-optimal time scaling follows the maximum possible ac-
celeration along the path) and “min acc,” where the time scaling follows the minimum
acceleration (sometimes called maximum deceleration).

get back down to the time scaling curve before hitting the limit curve or
passing s = 1.

(c) The trajectory from A is impossible. It is fully in an s-range marked
“maximum acceleration” for the optimal time scaling, so there is no way
for the robot to catch up to a robot already moving at a higher speed.
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