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Chapter 1

Introduction

These exercises are designed to give you practice with the concepts, the calcula-
tions, and the software associated with the book. To get the most out of these
practice exercises, you are strongly encouraged not to look at the solutions until
you have given your best effort to solve them. You are more likely to retain
what you have learned when you work through the problem yourself instead of
just reading the solution.
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Chapter 2

Practice Exercises on
Configuration Space

2.1 Practice Exercises

Practice exercise 2.1 The experimental surgical manipulator shown in Fig-
ure 2.1, developed at the National University of Singapore, is a parallel mech-
anism with three identical legs, each with a prismatic joint and two universal
joints (the joints are marked for one of the legs). Use Grübler’s formula to
calculate the number of degrees of freedom of this mechanism.

Practice exercise 2.2
(a) Three rigid bodies move in space independently. How many degrees of

freedom does this system of three bodies have?

P
U

U

Figure 2.1: A miniature parallel surgical manipulator with three PUU legs.
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4 2.1. Practice Exercises

Figure 2.2: A scissor jack (also known as a scissor lift). Image courtesy of Wikipedia.

(b) Now you constrain them so that each body must make contact with at
least one of the other two bodies. (The bodies are allowed to slide and
roll relative to each other, but they must remain in contact.) How many
degrees of freedom does this system of three bodies have?

Practice exercise 2.3 Figure 2.2 shows a scissor jack. As you turn the
screw, the jack goes up and down. The mechanical advantage provided by the
mechanism allows a single person to jack up a car to change a tire.

Think about what rigid bodies and joints must be present in the scissor jack.
You may not be able to see all of them in the image. Use Grübler’s formula to
calculate the number of degrees of freedom. Does your answer agree with what
you know about how a scissor jack works? If not, can you explain why?

Practice exercise 2.4 Figure 2.3 shows a table lamp that moves only in the
plane of the page. Use Grübler’s formula to calculate the number of degrees of
freedom.

Practice exercise 2.5 A unicycle is controlled moving on a rigid balance
beam as shown in Figure 2.4. Suppose the wheel is always touching the beam
with no sliding, answer the following questions in terms of R, S, T , and I (a
one-dimensional closed interval).
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Chapter 2. Practice Exercises on Configuration Space 5

Figure 2.3: A table lamp that moves only in the plane of the page.

Figure 2.4: A unicycle on a rigid balance beam.

(a) Give a mathematical description of the C-space of the unicycle when it
remains upright and is constrained to move in the 2-dimensional plane of
the page.

(b) Give a mathematical description of the C-space of the unicycle when it
remains upright, it moves in a 3-dimensional space, and the beam has
nonzero width.
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6 2.1. Practice Exercises

Practice exercise 2.6 Explain why S1 × S1 = T 2, not S2. In other words,
explain why the C-space of a spherical pendulum (S2) is not topologically equiv-
alent to the C-space of a 2R robot (T 2), even though the configurations of both
would typically be described by two angles. If you think the C-space of a 2R
robot is topologically equivalent (homeomorphic) to S2, propose a continuous
mapping between points on a sphere and the independent joint angles of a 2R
robot.

Practice exercise 2.7 Assume your arm has 7 dof and you constrain your
hand to be at a fixed configuration (e.g., your palm is flat against a table).

(a) What is an explicit representation of the arm’s configuration?
(b) What is an implicit representation?
(c) What does the set of feasible configurations look like in the 7-dimensional

configuration space of the unconstrained arm?

Practice exercise 2.8 Imagine a C-space described as a circle in an (x, y)
plane, of radius 2 centered at (3, 0). What is an implicit representation of
this one-dimensional C-space? If you were to decide to parameterize the one-
dimensional C-space by the single parameter θ, give a mapping from θ to (x, y).

Practice exercise 2.9 Consider the 2D quadcopter and rod shown in Fig-
ure 2.5. The rod is attached to the quadcopter by a revolute joint, and you
are given the task of balancing the rod upright (a flying version of the classic
cart pendulum problem). Assume the configuration of the quadcopter center is
described by (xq, yq, θq) and the configuration of the rod center is described as
(xr, yr, θr) where θq and θr are measured with respect to the world x axis. The
length of the rod is 2l and the height and width of the quadcopter body are 2h
and 2w respectively.

(a) Solve for the configuration constraints that keep the rod and quadcopter
connected.

(b) Express these as a Pfaffian constraint where q = [xq yq θq xr yr θr]
T.

Practice exercise 2.10 Consider the parallel SCARA robot shown in Fig-
ure 2.6. The robot is controlled by two rotational motors located in the base,
and one rotational and one prismatic motor at the end effector. Assume each
of the links of the parallel mechanism are length 1 m, the prismatic joint has a
maximum travel of 1 m, and the separation distance of the base motors is 0.5 m.
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Chapter 2. Practice Exercises on Configuration Space 7

x

y

Figure 2.5: 2D quadcopter balancing a rod

Assume no collisions between the links, and that the end effector y-coordinate
is constrained to be greater than zero.

(a) Sketch the workspace of the end effector.
(b) What are some benefits and drawbacks of making a parallel rather than

a serial SCARA robot?
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8 2.1. Practice Exercises

x

y

1 1

1 1

0.5

x z

y

Figure 2.6: Parallel SCARA robot and a skeleton top view.
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Chapter 2. Practice Exercises on Configuration Space 9

2.2 Solutions

Solution 2.1 There are N = 8 links (two links in each leg, ground, and
the moving platform). There are J = 9 joints (three prismatic joints and six
universal joints). The joints have a total of 3(1) + 6(2) = 15 degrees of freedom.
By Grübler’s formula,

dof = 6(8− 1− 9) + 15 = 3.

Solution 2.2
(a) 3(6) = 18.
(b) The system of three bodies is now subject to two equality constraints. For

example, if the three bodies are called A, B, and C, the constraints could
be written as the two equations dist(A,B) = 0 and dist(B,C) = 0. These
two constraints subtract two degrees of freedom, so there are 16 degrees
of freedom now.

Solution 2.3 See Figure 2.7 for work. Note that there are two extra cross
pieces behind the two side joints that are not visible from the image. The
result of Grübler’s formula does NOT agree with the known solution of 1 DOF.
This is due to the symmetry of this problem, causing certain constraints to not
be independent. Instead, the formula provides a lower bound, and the known
solution of 1 DOF is indeed above that lower bound.
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10 2.2. Solutions

Figure 2.7: Written solution to scissor jack problem.

Solution 2.4 Despite all the links and revolute joints, this mechanical system
behaves similarly to a 3R robot arm, since each set of two revolute joints acts
as a single hinge.
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Chapter 2. Practice Exercises on Configuration Space 11

Figure 2.8: Written solution to lamp problem.

Solution 2.5

(a) I: the point of contact on the beam (which determines the angle of the
wheel, since rolling is enforced). If we treat the allowed contact points on
the beam as an open inerval, then the space is topologically equivalent to
R.

(b) I2 × T 2: intervals correspond to limited beam contact locations, S1 for
heading direction of wheel, and S1 for the point of contact on the wheel.

Solution 2.6 For two spaces to be topologically equivalent, there must be
a homeomorphism relating the two. A homeomorphism is a mapping from
one space X (e.g., S2) to another space Y that (1) is one-to-one, (2) “onto”
(meaning the mapping from X to Y covers all of Y ), (3) continuous, and (4)
has a continuous inverse. A homeomorphism is the mathematical term for the
functions that can only deform the space, not cut, glue, or change its dimension.

There is no homeomorphism between S2 and T 2. When you poke a hole in
S2 to get T 2, for example, suddenly points that were neighbors to each other
(at the point where you poked the hole) are no longer neighbors; this cannot
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12 2.2. Solutions

occur with a continuous mapping.

Solution 2.7

(a) The explicit representation is θ, the angle to the elbow about a line con-
necting the shoulder to the palm.

(b) The implicit representation is (θ1, θ2, θ3, θ4, θ5, θ6, θ7) in the 7-dimensional
space, plus 6 equations constraining the position (3 dof) and orientation
(3 dof) of the palm.

(c) A closed interval of a 1-dimensional curve in that 7-dimensional space.

Solution 2.8 Implicit: (x, y) such that (x − 3)2 + y2 = 4. Explicit: x =
3 + 2 cos θ, y = 2 sin θ.

Solution 2.9 Note: opposite signs are also correct for the following solutions.
(a) Configuration constraints:

xr − ` cos(θr) = xq − h sin(θq)

yr − ` sin(θr) = yq + h cos(θq).
(2.1)

(b) A(q)q̇ = 0, where q = [xq yq θq xr yr θr]
T, q̇ = [ẋq ẏq θ̇q ẋr ẏr θ̇r]

T

A(q) =

[
1 0 −h cos(θq) −1 0 −` sin(θr)
0 1 −h sin(θq) 0 −1 ` cos(θr)

]
(2.2)

Solution 2.10
(a) The top view of the workspace is shown by the shaded region in Figure 2.9,

and is the intersection of two circles. To solve for the workspace area, sum
the area of the two circle sectors and subtract the triangle area (formed
when the arms are fully extended in the y position) that is counted twice.
The workspace volume is then the 3D extrusion of this shape into the page
by the reach of the prismatic joint.

(b) The parallel structure has the benefit of being more rigid and having more
of the motor mass concentrated at the base. One drawback is that the
parallel SCARA has a smaller workspace compared to a comparable serial
SCARA arm.
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Chapter 2. Practice Exercises on Configuration Space 13

Figure 2.9: Parallel SCARA robot workspace solution
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Chapter 3

Practice Exercises on
Rigid-Body Motions

3.1 Practice Exercises

Practice exercise 3.1 The mobile manipulator in Figure 3.1 needs to orient
its gripper to grasp the block. For subsequent placement of the block, we have
decided that the orientation of the gripper relative to the block, when the gripper
grasps the block, should be Reg. Our job is to determine the rotation operator
to apply to the gripper to achieve this orientation relative to the block.

Figure 3.1 shows the fixed world frame {a}, the mobile robot’s chassis frame
{b}, the gripper frame {c}, the RGBD camera (color vision plus depth, like the
Kinect) frame {d}, and the object frame {e}. Because we put the camera at a
known location in space, we know Rad. The camera reports the configuration
of {e} relative to {d}, so we know Rde. From the mobile robot’s localization
procedure (e.g., vision-based localization or odometry) we know Rab. From the
robot arm’s forward kinematics we know Rbc.

(a) In terms of the four known rotation matrices Rad, Rde, Rab, and Rbc, and
using only matrix multiplication and the transpose operation, express the
current orientation of the gripper relative to the block, Rec.

(b) To align the gripper properly, you could apply to it a rotation R1 expressed
in terms of axes in the gripper’s {c} frame. What is R1, in terms of the five
known rotation matrices (Rad, Rde, Rab, Rbc, Reg), matrix multiplication,
and transpose?

15



16 3.1. Practice Exercises

{a}

{b}

{c}
{d}

}{e

Figure 3.1: The fixed world frame {a}, the mobile robot’s chassis frame {b}, the
gripper frame {c}, the RGBD camera frame {d}, and the object frame {e}.

{s}
x̂s

ŷs

ẑs

{b}

x̂b

ŷb

ẑb

2 cm

Figure 3.2: As the machine screw goes into a tapped hole, it advances linearly by
4π mm every full rotation of the screw.

(c) The same rotation could be written R2, in terms of the axes of the frame
of the mobile base {b}. What is R2?

Practice exercise 3.2 Figure 3.2 shows a screw, a frame {b}, and a frame
{s}. The x̂b-axis of {b} is along the axis of the screw, and the origin of the
frame {s} is displaced by 2 cm, along the ŷb-axis, from the {b} frame. The
ẑs-axis is aligned with x̂b and the x̂s-axis is aligned with ẑb.

Taking note of the direction of the screw’s threads, as the machine screw goes
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Chapter 3. Practice Exercises on Rigid-Body Motions 17

{c}
x̂c

ŷc

ẑc

(0, 3, 0)

45◦

Figure 3.3: A screw axis in the (ŷc, ẑc) plane.

into a tapped hole driven by a screwdriver rotating at 3 radians per second, what
is the screw’s twist expressed in {b}, Vb? What is the screw axis expressed in
{b}, Sb? What is Vs? What is Ss? Give units as appropriate.

Practice exercise 3.3 A wrench F and a twist V are represented in {a} as
Fa and Va, respectively, and they are represented in {b} as Fb and Vb. Without
consulting any other source, and using the facts that (AB)T = BTAT, that the
adjoint of the transformation matrix Tab can be used to change the frame of
representation of a twist from the {a} frame to the {b} frame, and that the
scalar power generated (or dissipated) by applying a wrench F along a twist
V is independent of the frame of reference, show that Fa = [AdTba

]TFb. (The
ability to derive this result is useful for your understanding of it.)

Practice exercise 3.4 Figure 3.3 shows a screw axis in the (ŷc, ẑc) plane, at
a 45◦ angle with respect to the ŷc-axis. (The x̂c-axis points out of the page.)
The screw axis passes through the point (0, 3, 0).

(a) If the pitch of the screw is h = 10 linear units per radian, what is the
screw axis Sc? Make sure you can also write this in its se(3) form [Sc],
too.

(b) Using your answer to (a), if the speed of rotation about the screw axis is
θ̇ =
√

2 rad/s, what is the twist Vc?
(c) Using your answer to (a), if a frame initially at {c} rotates by θ = π/2

about the screw axis, yielding a new frame {c′}, what are the exponential
coordinates describing the configuration of {c′} relative to {c}?

(d) What is Tcc′ , corresponding to the motion in part (c)?
(e) Now imagine that the axis in Figure 3.3 represents a wrench: a linear force

along the axis and a moment about the axis (according to the right-hand
rule). The linear force in the direction of the axis is 20 and the moment
about the axis is 10. What is the wrench Fc?

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
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18 3.1. Practice Exercises

{a}x̂a

ŷa

ẑa

(−2, 1, 0)

screw
axis

Figure 3.4: A zero-pitch screw axis.

Practice exercise 3.5 Let Tsb ∈ SE(3) represent the configuration of the
frame {b} relative to {s}. (We sometimes write this simply as T .) If {b}
moves over time, you could represent its velocity as Ṫsb (or simply Ṫ ), the time
derivative of Tsb. You should think of this velocity as a twist of the entire space
(to which the moving frame is attached). But we know that the velocity should
be representable by only six values, and Ṫsb could have 12 unique nonzero values
(the top three rows of the 4× 4 matrix; the bottom row will be all zeros, since
the bottom row of a transformation matrix is always the constant [0 0 0 1]).

Instead, we could post-multiply Ṫsb by Tbs, i.e., Ṫ
s�b
T
�bs

= Ṫ T−1 = Ṫss. This
post-multiplication has the effect of representing the velocity in the {s} frame,
getting rid of the dependence on the current {b} frame. What do we call the
quantity Ṫ T−1? How many values are needed to uniquely specify it?

We could also pre-multiply Ṫsb by Tbs to get Tb�s
Ṫ
�sb

= T−1Ṫ = Ṫbb. This
pre-multiplication has the effect of representing the velocity in the {b} frame,
getting rid of the dependence on the {s} frame. What do we call the quantity
T−1Ṫ?

Practice exercise 3.6 The zero-pitch screw axis in Figure 3.4, aligned with
ẑa, passes through the point (−2, 1, 0) in the {a} frame. What is the twist Va if
we rotate about the screw axis at a speed θ̇ = 5 rad/s?

Practice exercise 3.7 A wrench F is represented in the {c} frame as Fc. If
T1 = Tab is the configuration of the {b} frame relative to the {a} frame, and
T2 = Tac is the configuration of the {c} frame relative to the {a} frame, express
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Chapter 3. Practice Exercises on Rigid-Body Motions 19

ẑa

x̂a

ŷa

{a}

{b} x̂b

ŷb

ẑb

Figure 3.5: A machine screw. Notice the direction of the threads.

Fb in terms of T1, T2, Fc, and any math operations you need.

Practice exercise 3.8 Let the orientation of {b} relative to {a} be

Rab =

 1 0 0
0 0 −1
0 1 0


and a point p be represented in {a} as pa = (1, 2, 3). What is pb? (Give a
numeric 3-vector.)

Practice exercise 3.9 Consider three frames, {a}, {b}, and {c}. You know
the representations of these frames in terms of the others, e.g., Tab and Tbc
(and therefore you can derive Tac and the inverses of these matrices). Give a
mathematical expression for Va, the twist (expressed in {a}) you would need
to follow for t seconds to move the {b} frame to be coincident with the {c}
frame. Or, if you prefer, give an expression for [Va], the se(3) representation
of Va. Your answer should be symbolic (no numbers), and it should use t, any
of the transformation matrices you need, and any math operations you need.
If it is helpful, you can use the operation vec : se(3) → R6 to get the vector
representation of an element of se(3), e.g., vec([V]) = V.

Practice exercise 3.10 Figure 3.5 shows a machine screw. As it advances
into a tapped hole, it moves 5 mm linearly for every radian of rotation. A frame
{a} has its ẑa-axis along the axis of the screw and its x̂a-axis out of the page.
The frame {b} has its origin at pa = (0, 3,−2) mm and its orientation is shown
in the figure (ẑb is out of the page). Use mm as your linear units and radians
as your angular units.
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20 3.1. Practice Exercises

{b}
x

y
z

ωb

z x

y

{e}

Figure 3.6: Satellite rotating in space.

(a) What is the screw axis Sa corresponding to advancing into a tapped hole?
Give a numerical 6-vector.

(b) What is the screw axis Sb? Give a numerical 6-vector.
(c) What is [Sb]?
(d) From the initial configuration Tab shown in the figure, the {b} frame fol-

lows the screw an angle θ, ending at the final configuration Tab′ . If we
write Tab′ = TTab, what is T? Express this symbolically (don’t write
numbers), using any of Sa, Sb, θ, and any math operations you need.

(e) Referring to the previous question, if we instead write Tab′ = TabT , what
is T? Again, express this symbolically (don’t write numbers), using any
of Sa, Sb, θ, and any math operations you need.

Practice exercise 3.11 Consider the satellite and Earth shown in Figure 3.6.
Let ωb = (0, 1, 1) be the angular velocity of the satellite expressed in the satellite
body frame {b}. Assume a fixed Earth frame {e} (a geocentric view of the
universe like the ancient Greeks had).

(a) Solve for the coordinate axis velocities of {b} ( ˙̂xb, ˙̂yb, and ˙̂zb) represented
in the {b} frame. Sketch the velocity vectors on the figure above to confirm
that your solutions make sense.
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Chapter 3. Practice Exercises on Rigid-Body Motions 21

(b) The orientation of the {b} frame is equivalent to the {e} frame after it
has been rotated −90 degrees about its ẑe-axis. Solve for ωe, the satellite
angular velocity represented in {e}. Sketch the velocity vectors on the
figure above to confirm that your solution makes sense.

(c) Solve for Ṙeb, the time derivative of the body orientation expressed in {e}.
(d) Give the so(3) representation of the angular velocity in both the Earth

and the body frame.

Practice exercise 3.12 Consider again the satellite and Earth shown in Fig-
ure 3.6.

(a) If the given rotational velocity ωb = (0, 1, 1) was instead the exponential
coordinates for a rotation, solve for the axis-angle representation and the
corresponding rotation matrix.

(b) After rotating and orbiting the Earth for some time, the relative orienta-
tion of the Earth and satellite is given as

Reb′ =

 0 −
√

2/2
√

2/2
1 0 0

0
√

2/2
√

2/2

 .
Find the axis-angle representation that describes the rotation from the
initial body frame {b} to the new body frame {b’}.

Practice exercise 3.13 Consider the scene in Figure 3.7 of a once peaceful
park overrun by robots. Frames are shown attached to the tree {t}, robot chassis
{c}, manipulator {m}, and quadcopter {q}. The distances shown in the figure
are d1 = 4 m, d2 = 3 m, d3 = 6 m, d4 = 5 m, d5 = 3 m. The manipulator is at a
position pcm = (0, 2, 1) m relative to the chassis frame {c}, and {m} is rotated
from {c} by 45 degrees about the x̂c-axis.

(a) Give the transformation matrices representing the quadcopter frame {q},
chassis frame {c}, and manipulator frame {m} in the tree frame {t}.

(b) Assume that the position controller for the manipulator on the mobile
robot is referenced to the chassis frame {c}. What position should you
command the gripper to go to if you would like to snatch the quadcopter
out of the sky?

(c) You are tasked to move the mobile robot so that the chassis origin is
directly underneath the quadcopter and its frame is aligned with the tree
frame. Assume the mobile robot chassis controller takes transformation
matrices in the chassis frame as inputs. What tranformation should you
command the robot to follow?
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22 3.1. Practice Exercises

d1

d2

d4

d5

d3

p

x̂
ŷ

ẑ{c} x̂

ŷ
ẑ

{m}

{q} x̂

ŷ

ẑ

{t}
x̂

ŷ
ẑ

Figure 3.7: A tree, mobile manipulator, and flying robot in a park and the corre-
sponding reference frames.

Practice exercise 3.14 Consider the scene in Figure 3.8 of a quadcopter {q}
flying near a tree {t} and house {h}. The quadcopter is at a position ptq = (10,
5, 5) m expressed in the tree frame {t}, and the house is at a position pth =
(0, 10, 10) m expressed in the tree frame {t}. The quadcopter is flying upwards
with a velocity of 1 m/s, and rotating with a velocity of 1 rad/s.

(a) Calculate the quadcopter’s twist in {q} and {t}.
(b) Use the adjoint map to express the twist in the house frame {h}.

Practice exercise 3.15 Consider the cube with side lengths l = 2 m and the
ant shown in Figure 3.9. Frames {b} and {c} show the ant at the midpoint of
the cube edges.

(a) Solve for the screw axis Sb and angle θ corresponding to the transformation
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{h} x̂

ŷẑ

{q} x̂

ŷ

ẑ

{t}
x̂

ŷ
ẑ

ωq

vq

Figure 3.8: A tree, and flying robot in a park and the corresponding reference frames.

{w}
x̂

ŷẑ

{b}
x̂

ŷẑ

{c}x̂

ŷ

ẑ

l

l

l

Figure 3.9: An ant shown at different positions on a cube.

from {b} to {c}.
(b) Sketch the location of the screw axis on the figure.
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{t}
x̂

ŷẑ

{b}x̂

ŷ

ẑ

wind

Figure 3.10: A tree and a frame attached to its branch.

(c) Use the appropriate adjoint map to find Sw, the screw axis representation
in the {w} frame.

(d) How could you solve for Sw without using the adjoint map?

Practice exercise 3.16 Consider the scene in Figure 3.10 of a tree {t} and a
frame {b} attached to its branch. The figure shows a strong wind that applies
a force of 100 N at the center of frame {b}. Assume the branch has a mass of
50 kg centered at frame {b} as well. The position of the branch frame {b} in
the tree frame {t} is ptb = (2, 1, 3) m.

(a) What is the wrench Fb due to the wind and the branch’s weight?
(b) What is this wrench in the tree frame {t}?
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3.2 Solutions

Solution 3.1

(a)

Rec = RedRdaRabRbc

= RT
deR

T
adRabRbc.

(b)

RecR1 = Reg → R1 = RT
ecReg

= (RT
deR

T
adRabRbc)

TReg

= RT
bcR

T
abRadRdeReg (= Rcg).

(c)

R2 = RbcR1 = RbcRcg = RbcR
T
bcR

T
abRadRdeReg = RT

abRadRdeReg (= Rbg).

Solution 3.2 The threads of this screw are the typical right-handed threads,
which means that the screw, when viewed from the top, rotates clockwise when
it advances into a tapped hole. In other words, the fingers of your right hand
curl in the direction of rotation of the screw when your right thumb points
downward on the page, in the negative direction of the upward-pointing x̂b-
axis. Since the screwdriver rotates at 3 rad/s, the screw also rotates at 3 rad/s,
so the angular component of the twist, expressed in {b}, is ωb = (−3 rad/s, 0, 0).
Since radians and seconds are the SI units for angle and time, respectively, you
could write (−3, 0, 0) and assume the default SI units. You could also write
(−3(180/π) deg/s, 0, 0), but that would be unusual.

The pitch of the screw is 4π mm per revolution, or 2 mm/rad. So as
the screw is rotated at 3 rad/s, it moves linearly in the −x̂b direction at
(2 mm/rad)(3 rad/s) = 6 mm/s. So the linear component of the twist ex-
pressed in {b} is (−6 mm/s, 0, 0), or, in SI units, vb = (−0.006 m/s, 0, 0). So,
in SI units, the entire twist is Vb = (ωb, vb) = (−3, 0, 0,−0.006, 0, 0).

The corresponding screw axis expressed in {b} is the normalized version of
Vb where the magnitude of the angular velocity is unit. The magnitude of ωb
is 3, so divide the twist by 3 to get Sb = (−1, 0, 0,−0.002, 0, 0). We can write
Vb = Sbθ̇ where θ̇ = ‖ωb‖ = 3.
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The screw axis could also be represented in the {b} frame by the collection
{qb, ŝb, h}, where a point qb on the axis is (0, 0, 0) (expressed in {b}), the axis
direction is ŝb = (−1, 0, 0), and the pitch is h = 0.002.

In the {s} frame, the axis of rotation is aligned with the −ẑs-axis, so ωs =
(0, 0,−3). A point at the origin of {s}, rigidly attached to the advancing screw,
has a downward linear component of −0.006 m/s in the −ẑs direction (i.e.,
(0, 0,−0.006)) from the downward motion of the screw. But it also has a linear
component in the −x̂s direction from the rotation of the screw. The point at the
origin of {s} can be expressed as qb = (0, 0.02, 0) in terms of {b} coordinates, so
the linear motion at {s} due to the rotation of the screw is ωb×qb = (0, 0,−0.06).
In the {s} frame, this is (−0.06, 0, 0). (Imagine a turntable rotating about
the screw axis and the resulting motion of a point at {s}.) So the total lin-
ear motion at {s}, expressed in {s}, is vs = (0, 0,−0.006) + (−0.06, 0, 0) =
(−0.06, 0,−0.006). Therefore, Vs = (0, 0,−3,−0.06, 0,−0.006). The screw axis
is Ss = (0, 0,−1,−0.02, 0,−0.002) and Vs = Ssθ̇.

The screw axis could also be represented in the {s} frame by the collection
{qs, ŝs, h}, where a point qs on the axis is (0, 0.02, 0), the axis direction is ŝs =
(0, 0,−1), and the pitch is h = 0.002. Note that Ss = (ŝs,−ŝs× qs +hŝ), where
hŝ is the linear velocity due to the linear motion of the screw and −ŝs × qs is
the linear velocity due to the rotation of the screw.

You could also calculate Vs and Ss using Vs = [AdTsb
]Vb and Ss = [AdTsb

]Sb.

Solution 3.3 See Chapter 3.4 of the textbook.

Solution 3.4
(a) Since the screw axis Sc = (Scω ,Scv ) has a rotational component, Scω is

a unit vector aligned with the axis, i.e., Scω = ŝ = (0, cos 45◦, sin 45◦) =
(0, 1/

√
2, 1/
√

2). The linear component is Scv = hŝ − ŝ × q (a linear
component due to linear motion along the screw plus a linear component
due to rotation about the screw), where q = (0, 3, 0) and h = 10, i.e.,
Scv = (0, 10/

√
2, 10/

√
2) + (3/

√
2, 0, 0) = (3, 10, 10)/

√
2.

(b) Vc = Scθ̇ = (0, 1, 1, 3, 10, 10).
(c) Scθ = (0, 1, 1, 3, 10, 10)π/(2

√
2).

(d) You can use the MR code library to do the calculation. Use VecTose3 to
convert the exponential coordinates Scθ to their se(3) representation [Scθ]
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and then use MatrixExp6 to calculate

Tcc′ = e[Scθ] =


0 −0.71 0.71 2.12

0.71 0.5 0.5 12.61
−0.71 0.5 0.5 9.61

0 0 0 1

 .
(e) The wrench is written Fc = (mc, fc). The linear component fc has a mag-

nitude of 20 and is aligned with the axis shown, so fc = (0, 10
√

2, 10
√

2).
If the axis passed through the origin of {c}, the moment (which has mag-
nitude 10) would be (0, 5

√
2, 5
√

2), but since it is displaced from the origin
of {c}, there is an extra moment component due to the linear component,
q × fc = (0, 3, 0)× (0, 10

√
2, 10
√

2) = (30
√

2, 0, 0), so the total moment is
mc = (0, 5

√
2, 5
√

2) + (30
√

2, 0, 0) =
√

2(30, 5, 5).
You can verify that you get the same answer using Fc = [AdTac

]TFa,
where {a} is a frame aligned with {c} and with an origin at (0, 3, 0).

Solution 3.5 Ṫ T−1 is the se(3) representation of the twist represented in {s},
i.e., [Vs] ∈ se(3). Only six values (the six elements of Vs) are needed to specify
it.

T−1Ṫ is the se(3) representation of the twist represented in {b}, i.e., [Vb] ∈
se(3). Only six values (the six elements of Vb) are needed to specify it.

Solution 3.6 The screw axis can be written Sa = (Sωa ,Sva). The angular
component is Sωa

= (0, 0, 1), since the screw axis is aligned with ẑa. The linear
component is Sva = −Sωa

×q, where q = (−2, 1, 0), so Sva = (1, 2, 0). The entire
screw is then Sa = (0, 0, 1, 1, 2, 0). The twist is Va = θ̇Sa = (0, 0, 5, 5, 10, 0).

Solution 3.7

Fb = [AdTcb
]TFc where Tcb = T−1ac Tab = T−12 T1

= [AdT−1
2 T1

]TFc.

Or you could recognize Fa = [AdT−1
ac

]TFc and Fb = [AdTab
]TFa to get Fb =

[AdT1 ]T[AdT−1
2

]TFc.

Solution 3.8 pb = Rbapa = RT
abpa = (1, 3,−2).

Solution 3.9 Below are two approaches that arrive at the same solution.
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Tac = e[Va]tTab

TacT
−1
ab = e[Va]t

log(TacT
−1
ab ) = [Va]t

1

t
log(TacT

−1
ab ) = [Va]

Or:

t[Vb] = log Tbc

[Vb] =
1

t
log Tbc

Va = [AdTab
]vec([Vb]) =

1

t
[AdTab

]vec(log Tbc)

Solution 3.10
(a) Sa = (Sωa ,Sva). Since there is a rotational component about the ẑa-axis,
Sωa = (0, 0, 1). There is no linear component at the origin of {a} due to
the rotation, so Sva = (0, 0, 5), the linear motion due to the pitch of the
screw. So Sa = (0, 0, 1, 0, 0, 5).

(b) Sb = (Sωb
,Svb). The rotational component is Sωb

= (0, 1, 0). The linear
component is (0, 5, 0) due to the pitch of the screw plus the linear motion
due to the rotation of the screw, −Sωb

× q = (0, 0,−3), where q is any
point on the screw axis measured in the {b} frame (e.g., q = (−3, 2, 0)).
So Svb = (0, 5,−3), and Sb = (0, 1, 0, 0, 5,−3).

(c) [Sb] =


0 0 1 0
0 0 0 5
−1 0 0 −3
0 0 0 0

 .
(d) T = e[Saθ]. (The transformation when the screw axis is expressed in the
{a} frame.)

(e) T = e[Sbθ]. (The transformation when the screw axis is expressed in the
{b} frame.)

Solution 3.11
(a) ˙̂xb = (0, 1,−1), ˙̂yb = (−1, 0, 0), ˙̂zb = (1, 0, 0)
(b) ωe = (1, 0, 1).
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(c) Ṙeb =

 1 0 0
0 1 −1
−1 0 0


(d) [ωb] =

 0 −1 1
1 0 0
−1 0 0

, [ωe] =

 0 −1 0
1 0 −1
0 1 0


Solution 3.12

(a) ω̂ = (0,
√

2/2,
√

2/2), and θ =
√

2.

R =

 0.1559 −0.6985 0.6985
0.6985 0.5780 0.4220
−0.6985 0.4220 0.5780


(b) Rbb′ = RT

ebReb′ =

 −1 0 0

0 −
√

2/2
√

2/2

0
√

2/2
√

2/2

,

ω̂ = (0, 0.3827, 0.9239), and θ = π.

Solution 3.13
(a)

Ttq =


1 0 0 5
0 0 −1 6
0 1 0 3
0 0 0 1


Ttc =


0 1 0 4
−1 0 0 3
0 0 1 0
0 0 0 1


Ttm =


0
√

2/2 −
√

2/2 6
−1 0 0 3

0
√

2/2
√

2/2 1
0 0 0 1


(b)

pcq = (−3, 1, 3)
(c)

pcc′ = (−3, 1, 0)
Rcc′ = Rct = R′tc
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Tcc′ =


0 −1.0 0 −3.0

1.0 0 0 1.0
0 0 1.0 0
0 0 0 1.0


Solution 3.14

(a) Vb = (0, 1, 0, 0, 1, 0). Vt = (0, 0, 1, 5,−10, 1).
(b) Vh = (0, 0, 1,−5,−10, 1).

Solution 3.15
(a) Twc = Twbe

[Sb]θ

T−1wb Twc = e[Sb]θ

Tbc = e[Sb]θ

Sb = (0, 0, 1, 1, 0.5, 1/π), θ = π.
(b) Axis points in the world z direction intersecting the (x,y) coordinates

(1.5,1) in the {w} frame.
(c) Sw = [AdTwb

]Sb
Sw = (0, 0, 1, 1,−1.5, 1/π), θ = π.

(d) Twc = e[Sw]θTwb. Can right multiply both sides by T−1wb and use the matrix
log to solve for Sw

Solution 3.16
(a) Fb = (0, 0, 0,−100, 0,−500)
(b) Ft = (−800, 1000, 200, 0, 100,−500)
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Chapter 4

Practice Exercises on
Forward Kinematics

4.1 Practice Exercises

Practice exercise 4.1 Figure 4.1 shows the KUKA LBR iiwa (LBR = “Le-
ichtbauroboter,” German for lightweight robot; iiwa = “intelligent industrial
work assistant”) 7R robot arm. The figure defines an {s} frame at the base
with the ŷs-axis pointing out of the page and a {b} frame aligned with {s} at
the end-effector. The robot is at its home configuration. The screw axes for the
seven joints are illustrated (positive rotation about these axes is by the right-
hand rule). The axes for joints 2, 4, and 6 are aligned, and the axes for joints
1, 3, 5, and 7 are identical at the home configuration. Write M (Tsb when the
robot is at its home configuration), the screw axes S1, . . . ,S7 in {s}, and the

J1,3,5,7

J2 J4 J6

L1 L2 L3 L4
x̂s

ŷs

x̂b

ŷb

Figure 4.1: The KUKA LBR iiwa 7-dof robot.
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Figure 4.2: A Sawyer robot.

screw axes B1, . . . ,B7 in {b}.

Practice exercise 4.2 Figures 4.2 and 4.3 show a Sawyer collaborative robot
in action on a factory floor. This is a 7-dof robotic arm. Note: The figures
are currently missing the {s} frame, the {b} frame, and the directions
of the screw axes; these will be added soon.

(a) Draw a simple model of Sawyer, clearly showing all links and joints.
(b) Assuming the home configuration is shown in Figure 4.3, write the M

matrix. The height from the base to the first joint is 317 mm.
(c) Write out the space-frame and body-frame screw axes for this robot.
(d) What is the end-effector position when the joints are set to (0,π2 ,0,π2 ,0,π2 ,0)?

Practice exercise 4.3 Figure 4.4 shows a da Vinci Xi, used in several types
of robot-assisted surgery. Though it is mechanically constrained to have only
3 degrees of freedom per arm, for the sake of this exercise assume each arm is
a simple serial chain. Note: The figures are currently missing the {s}
frame, the {b} frame, and the directions of the screw axes; these will
be added soon.
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Figure 4.3: A top view of the Sawyer robot arm at its home configuration. Dimen-
sions are in mm. Assume that the centerlines shown are the screw axes of the revolute
joints.

(a) Figure 4.5 consists of a simplified model of a single arm of the device in
its home configuration. How many degrees of freedom does it have?

(b) Write the M matrix for the arm model.
(c) Determine the position of the end effector if the joints are at (0,π4 ,π4 , 3π4 ,π2 ).
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Figure 4.4: Da Vinci Xi surgical robot.

Figure 4.5: Model of one da Vinci Xi surgical robot arm. Note that the grey regions
represent R joints, green indicates the base reference point, and yellow represents the
”end effector position” for this exercise. Dimensions are in cm.
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4.2 Solutions

Solution 4.1

M =


1 0 0 0
0 1 0 0
0 0 1 L1 + L2 + L3 + L4

0 0 0 1

 .
Lining up the screw axes as columns, we get

Slist =


0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 L1 0 L1 + L2 0 L1 + L2 + L3 0
0 0 0 0 0 0 0


and

Blist =


0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 −(L2 + L3 + L4) 0 −(L3 + L4) 0 −L4 0
0 0 0 0 0 0 0

 .

Solution 4.2
(a) See Figure 4.6.
(b)

M =


0 0 1 1003.9
0 1 0 160.3
−1 0 0 317.0
0 0 0 1

 .
(c)

Slist =


0 0 1 0 1 0 1
0 1 0 −1 0 1 0
1 0 0 0 0 0 0
0 −317 0 317 0 −317 0
0 0 317 0 317 0 317
0 83.87 −192.5 −483.87 −24 883.87 −160.3


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Figure 4.6: Bare bones model of a Sawyer.

Blist =


−1 0 0 0 0 0 0
0 1 0 −1 0 1 0
0 0 1 0 1 0 1
0 920 −32.2 −520 −136.3 120 0

1003.9 0 0 0 0 0 0
−160.3 0 0 0 0 0 0

 .

(d) Using either FKinSpace or FKinBody, we find that the transformation from
the base to the end-effector at this configuration is

T =


−1 0 0 483.87
0 1 0 160.3
0 0 −1 −203
0 0 0 1

 .

Solution 4.3
(a) Given that there are 6 revolute joints, the model would theoretically have

6 degrees of freedom. However, as mentioned in the question, the actual
robot arm has joints that are constrained to move together in certain ways.

(b)

M =


1 0 0 10
0 1 0 0
0 0 1 90
0 0 0 1

 .
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(c) First, we need to derive the screw axes for each of the revolute joints. The
space-frame axis list is:

Slist =


0 0 1 1 0
0 0 0 0 0
1 1 0 0 1
0 0 0 0 0
0 −12 75 −50 −10
0 0 0 0 0


This, along with the M matrix and provided joint angles, can be fed
into FKinSpace, which returns that the transformation matrix to the end-
effector in this case is

T =


.7071 −.7071 0 −51.91
−.7071 −.7071 0 61.09

0 0 −1 −153.39
0 0 0 1

 .
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Chapter 5

Practice Exercises on
Velocity Kinematics and
Statics

5.1 Practice Exercises

Practice exercise 5.1 Figure 4.1 shows the KUKA LBR iiwa 7R robot arm.
The figure defines an {s} frame at the base with the ŷs-axis pointing out of the
page and a {b} frame aligned with {s} at the end-effector. The robot is at its
home configuration. The screw axes for the seven joints are illustrated (positive
rotation about these axes is by the right-hand rule). The axes for joints 2, 4,
and 6 are aligned, and the axes for joints 1, 3, 5, and 7 are identical at the home
configuration. The dimensions are L1 = 0.34 m, L2 = 0.4 m, L3 = 0.4 m, and
L4 = 0.15 m.

(a) What is the space Jacobian when the robot is at its home configuration?
(b) What is the body Jacobian when the robot is at its home configuration?
(c) What is the rank of the space and body Jacobian at the home configu-

ration? (It is always the same.) Is the home configuration a singularity?
What is the dimension of the space of feasible twists at the home config-
uration?

For the remaining questions, assume the angles of the joints are iπ/16 for joints
i = 1 . . . 7.

(d) What is the space Jacobian? What joint torques are needed to generate
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the wrench Fs = (1 Nm, 1 Nm, 1 Nm, 1 N, 1 N, 1 N)? What is the ma-
nipulability measure µ2 for the angular velocity manipulability ellipsoid
in the space frame? What is the manipulability measure µ2 for the linear
manipulability ellipsoid in the space frame?

(e) What is the body Jacobian? What joint torques are needed to generate
the wrench Fb = (1 Nm, 1 Nm, 1 Nm, 1 N, 1 N, 1 N)? What is the ma-
nipulability measure µ2 for the angular velocity manipulability ellipsoid
in the body frame? What is the manipulability measure µ2 for the linear
manipulability ellipsoid in the body frame?

Practice exercise 5.2 Consider a robot with eight joints moving in space.
The configuration of the end-effector is represented as an element of SE(3), the
velocity of the end-effector is represented as a twist V ∈ R6, and the force and
moment at the end-effector is represented as a wrench F ∈ R6. At some joint
configurations of the robot, the Jacobian has rank 6; at other configurations,
the rank of the Jacobian is lower. Consider a particular joint configuration θ
where the rank of the Jacobian is k.

(a) In the 8-dimensional space of joint velocities θ̇, what is the dimension of
the subspace of joint velocities that produce zero twist (V = 0, no motion)
of the end-effector?

(b) In the 6-dimensional space of wrenches F applied to the end-effector, what
is the dimension of the subspace of wrenches that the robot can resist with
a zero joint force-torque vector, τ = 0?

In the remaining questions, assume that 1 < k < 6.
(c) Assume the task is to position the end-effector in SE(3). Is the robot

redundant, kinematically deficient, or neither with respect to this task?
(d) Is the longest axis of the manipulability ellipsoid zero, infinite, or other?
(e) Is the shortest axis of the manipulability ellipsoid zero, infinite, or other?
(f) Is the longest axis of the force ellipsoid zero, infinite, or other?
(g) Is the shortest axis of the force ellipsoid zero, infinite, or other?

Practice exercise 5.3 Figure 5.1 shows a simplified pick-and-place robotic
arm. Let’s apply velocity kinematics and statics to this system. Note that
there are three prismatic joints, and the lengths L1, L3, and L4 correspond
to the extensions of those joints. The link lengths L2 and L5 are 20 cm and
15 cm, respectively. Also note that there is a revolute joint at the base of the
end-effector. Assume that the robot is shown in its home position, and that all
the links are at right angles to each other. Note: Figure 5.1 is currently
missing the {b} frame and the directions of the joint screw axes; these
will be added soon.
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Figure 5.1

(a) Find the space-frame screw axes for each joint when the robot is at its
home configuration.

(b) Use the MR library to find Js(θ) at θ = (10, π/4,−π/4, 2, 2, 0).
(c) Calculate the body Jacobian beginning with the space Jacobian at the

home configuration.
(d) To resist a wrench Fs = (0, 0, 0, 5, 10, 0) (linear components are in New-

tons) applied to the end-effector, what torques τ must be generated by
the joints?
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5.2 Solutions

Solution 5.1 Angular units are radians and linear units are mm.
(a)

Js =


0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 0.34 0 0.74 0 1.14 0
0 0 0 0 0 0 0

 .

(b)

Jb =


0 1 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 −0.95 0 −0.55 0 −0.15 0
0 0 0 0 0 0 0

 .

(c) The rank is three. Columns 2, 3, and 4 of the Jacobians are linearly in-
dependent; all feasible velocity directions are linear combinations of these
three columns. The space of feasible twists is three dimensional.

(d) Calculate Js(θ) using JacobianSpace.

τ = JT
s (θ)Fs = [1 1.44 0.78 1.72 1.13 0.54 2.29]T.

µ2(JsωJ
T
sω) = 2.427, µ2(JsvJ

T
sv) = 30.5.

(e) Calculate Jb(θ) using JacobianBody.

τ = JT
b (θ)Fb = [−0.19 1.76 0.18 0.26 1.36 − 0.96 1]T.

µ2(JbωJ
T
bω) = 2.427, µ2(JbvJ

T
bv) = 20.6.

Solution 5.2
(a) V = Jθ̇. J is rank k ≤ 6, so V is confined to a k-dimensional linear space,

regardless of θ̇. So only k directions in the θ̇ space (R8) affect V, while
the other 8 − k directions, the null space of J , have no affect on V. So
an (8−k)-dimensional space of joint velocities produce zero motion of the
end-effector.
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(b) rank(J) = rank(JT) = k, and τ = JTF . Therefore there is a (6 − k)-
dimensional space of wrenches that map to τ = 0.

(c) The robot is redundant, since the Jacobian has a rank of 6 at some con-
figurations (capable of moving in any direction in SE(3)) but has eight
joints.

(d) Other.
(e) Zero.
(f) Infinite.
(g) Other.

Solution 5.3 Coming soon.
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Chapter 6

Practice Exercises on
Inverse Kinematics

6.1 Practice Exercises

Practice exercise 6.1 The spatial RRP open chain of Figure 6.1 is shown in
its zero position.

(a) Use analytic methods to solve the inverse kinematics when the end-effector
configuration is described by

T =


0 1 0 2L
0 0 −1 0
−1 0 0 −3L
0 0 0 1

 .
(b) Assume that L = 1 and use a numerical method (e.g., from the MR code

library) to solve the same problem as in (a).

Practice exercise 6.2 Figure 6.2(a) shows the world’s first robot system that
learns to dress elderly and physically disabled people. The system consists of two
7R WAM robots, whose kinematics are given in Chapter 4.1.3 of the textbook.
The overview of the system is shown in Figure 6.2(b). The WAM robots are
mounted symmetrically. Suppose the world frame is set as shown in the figure
and Dx = Dz = 0.3 m. The task is to move one of the robot end-effector frames
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{s}

θ1

θ2

θ3

L

L

L

L
{e}

x̂e ŷe

ẑe

x̂s
ŷs

ẑs

Figure 6.1: An RRP robot.

to the configuration

T =


0 0 1 0.15
0 −1 0 0
1 0 0 0.3
0 0 0 1

 ,
relative to {w}, to hold the clothes. Use the MR code library to solve the
following questions. (Ignore joint limits.)

(a) If one of the robot arms can achieve the configuration, would you generally
expect there to be one solution to the inverse kinematics, a finite number
of solutions, or an infinite number of solutions?

(b) Can the left arm achieve the configuration? You could use numerical
inverse kinematics with different initial guesses, if needed. If you find a
solution, use forward kinematics to verify it. If you cannot find a solution,
explain the reason.

(c) Can the right arm achieve the configuration? You could use numerical
inverse kinematics with different initial guesses, if needed. If you find a
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(a) The dressing-assistant robot system.

x̂b

ẑb

x̂s

ẑs

x̂w

ẑw

ẑb’

x̂b’

ẑs’

x̂s’

D

D

x

z

(b) Frames for the two WAM robot arms.

Figure 6.2: The dressing assistant consisting of two WAM robot arms.
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solution, use forward kinematics to verify it. If you cannot find a solution,
explain the reason.
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6.2 Solutions

Solution 6.1
(a) By inspection the first joint rotates along its axis parallel to ẑs-axis, while

the rotation axis of the second joint can move in a plane parallel to x̂s− ŷs

plane. The orientation of the end-effector can be achieved from the initial
orientation by first rotating about the ẑs-axis for −π/2 rad and then ro-
tating about the x̂s-axis for π/2 rad. So we know that to reach the final
end-effetor configuration, θ1 = −π/2 and θ2 = π/2. By checking the trans-
lation we find θ3 = L. So the joint angles should be θ = (−π/2, π/2, L).

(b) Use the MR code library (e.g., IKinBody), to find the same result, begin-
ning from an initial guess away from the solution.

Solution 6.2
(a) You would expect an infinite number of solutions, since the robot is re-

dundant (it has 7 dof).
(b) The configuration is outside the left robot’s workspace, so there is no

solution.
(c) One example solution, found using IKinBody, is

θ = (0,−2.2130, 0, 2.6198, 0,−1.9776, 0).
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Chapter 7

Practice Exercises on
Kinematics of Closed
Chains

7.1 Practice Exercises

Practice exercise 7.1 Some text.

7.2 Solutions

Solution 7.1 Some text.
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Chapter 8

Practice Exercises on
Dynamics of Open Chains

8.1 Practice Exercises

Practice exercise 8.1 The equations of motion for a particular 2R robot arm
can be written M(θ)θ̈+ c(θ, θ̇)+g(θ) = τ . The Lagrangian L(θ, θ̇) for the robot
can be written in components as

L(θ, θ̇) = L1(θ, θ̇) + L2(θ, θ̇) + L3(θ, θ̇) + . . .

One of these components is L1 = mθ̇1θ̇2 cos θ2.
(a) Find the joint torques τ1 and τ2 corresponding to the component L1.
(b) Write the 2 × 2 mass matrix M1(θ), the velocity-product vector c1(θ, θ̇),

and the gravity vector g1(θ) corresponding to L1. (Note that M = M1 +
M2 +M3 + . . ., c = c1 + c2 + c3 + . . ., and g = g1 + g2 + g3 + . . .)

Practice exercise 8.2 For a given configuration θ of a two-joint robot, the
mass matrix is

M(θ) =

[
3 a
b 2

]
,

which has a determinant of 6 − ab and eigenvalues 1
2 (5 ±

√
1 + 4ab). What

constraints must a and b satisfy for this to be a valid mass matrix?

Practice exercise 8.3 Link i of an open-chain robot has two frames attached
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to it, a frame {b} at its center of mass and a frame {a} on the axis of joint
i, a revolute joint, that drives the link. In the frame {a}, the screw axis of
the revolute joint is expressed as S. In the backward iterations of Newton-Euler
inverse dynamics, it was determined that the wrench Fb (expressed in {b}) must
be applied to the link. What joint torque τi must be applied at joint i, in terms
of Fb, S, and the frames {a} and {b}?
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8.2 Solutions

Solution 8.1
(a)

τ1 =
d

dt

(
∂L1

∂θ̇1

)
− ∂L1

∂θ1
=

d

dt
(mθ̇2 cos θ2)− 0 = mθ̈2 cos θ2 −mθ̇22 sin θ2

τ2 =
d

dt

(
∂L1

∂θ̇2

)
− ∂L1

∂θ2
=

d

dt
(mθ̇1 cos θ2) + mθ̇1θ̇2 sin θ2 = mθ̈1 cos θ2

(b)

M1(θ) =

[
0 m cos θ2

m cos θ2 0

]
, c1(θ, θ̇) =

[
−mθ̇22 sin θ2

0

]
, g1(θ) =

[
0
0

]
.

Solution 8.2 M(θ) must be positive definite (and therefore symmetric), so
a = b and the eigenvalues must be positive, so |a| = |b| <

√
6. (The determinant

det(M) = 6− a2 must be positive, which gives the same condition on |a|.)

Solution 8.3 Take the dot product of the wrench with the screw axis after
they’ve been expressed in the same frame, e.g., in the frame {b}, FT

b [AdTba
]S.
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Chapter 9

Practice Exercises on
Trajectory Generation

9.1 Practice Exercises

Practice exercise 9.1 A time scaling can be written as either s(t) or ṡ(s).
The first segment of a trapezoidal time scaling is s(t) = (1/2)at2. Write this
segment as ṡ(s). In other words, eliminate t from the expression.

Practice exercise 9.2 The dynamics of a two-joint robot restricted to a path
θ(s) are m(s)s̈ + c(s)ṡ2 + g(s) = τ . At the state (s, ṡ) = (0.5, 2), the vectors
m(s), c(s), and g(s) evaluate to

m(0.5) =

[
1
−1

]
, c(0.5) =

[
3
−3

]
, g(0.5) =

[
0
5

]
.

At this state (s, ṡ), each actuator is limited in the torque it can apply to −10 ≤
τi ≤ 10.

(a) At this state (s, ṡ), give the lower and upper bounds on the feasible accel-
erations s̈ due to joint 1 (L1 and U1) and joint 2 (L2 and U2).

(b) Can the robot stay on the path at this state? Explain your answer. If
your answer is yes, indicate the range of feasible accelerations s̈ and clearly
draw the motion cone in the (s, ṡ) plane.

Practice exercise 9.3 Ignore the points A, B, and C, and the arrows ema-
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velocity
limit curve

ṡ

s0 1switch switchswitch switchswitch

A B

C

Figure 9.1: A time-optimal time scaling.

nating from them, until part (c) of the problem.
(a) For the time-optimal time scaling below, approximately draw the feasible

motion cone at every point on the curve where we know the angle of both
the upper and lower bounds of the cone. (Assume the robot can hold itself
stationary at any configuration s ∈ [0, 1].)

(b) Draw a point in the (s, ṡ) plane from which the robot can stay on the path
for a little while longer, but from which the robot is doomed to eventually
leave the path. Label this point “b” so it is easy to see.

(c) Suppose the robot finds itself at the states A, B, or C, off of the time-
optimal time scaling. The time-optimal time scalings from these states
involve the robot getting back to the scaling curve shown. To get back to
the time-optimal time scaling, the robot attempts to follow the trajecto-
ries indicated by the arrows. Without knowing anything more about the
robot’s dynamics, can we say with certainty that any of these “arrow”
trajectories is impossible? If so, which? Explain your answer.
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9.2 Solutions

Solution 9.1 t =
√

2s/a and ṡ = at, so ṡ(s) =
√

2as.

Solution 9.2
(a) Joint 1: −10 ≤ s̈ + 12 ≤ 10 → L1 = −22, U1 = −2. Joint 2: −10 ≤
−s̈− 3(4) + 5 ≤ 10→ L2 = −17, U2 = 3.

(b) L = max(L1, L2) = −17, U = min(U1, U2) = −2. We have U > L, so it
is possible to stay on the path, with s̈ ∈ [−17,−2]. The motion cone is
illustrated below:
ṡ

s

Solution 9.3
(a) We know the angles of the upper and lower bounds of the motion cone at

the seven points indicated in Figure 9.2.
(b) Any trajectory beginning from a point between the top of the optimal time

scaling and below the velocity limit curve, and in an s-range for minimum
acceleration for the time-optimal time scaling, will eventually reach the
velocity limit curve. Even with minimum acceleration, the robot cannot
get back down to the time scaling curve before hitting the limit curve or
passing s = 1.

(c) The trajectory from A is impossible. It is fully in an s-range marked
“maximum acceleration” for the optimal time scaling, so there is no way
for the robot to catch up to a robot already moving at a higher speed.
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velocity
limit curve

ṡ

s0 1switch switchswitch switchswitch

A B

C

max
acc

min
acc

max
acc

max
acc

min
acc

min
acc

Figure 9.2: Points where the motion cone is known, and intervals of the s-axis labeled
as “max acc,” where the time-optimal time scaling follows the maximum possible ac-
celeration along the path) and “min acc,” where the time scaling follows the minimum
acceleration (sometimes called maximum deceleration).
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