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Chapter 1

Introduction

These exercises are designed to give you practice with the concepts, the calcula-
tions, and the software associated with the book. To get the most out of these
practice exercises, you are strongly encouraged not to look at the solutions until
you have given your best effort to solve them. You are more likely to retain
what you have learned when you work through the problem yourself instead of
just reading the solution.
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Chapter 2

Practice Exercises on
Configuration Space

2.1 Practice Exercises

Practice exercise 2.1 Figure 2.1 shows a scissor jack. As you turn the
screw, the jack goes up and down. The mechanical advantage provided by the
mechanism allows a single person to jack up a car to change a tire.

Think about what rigid bodies and joints must be present in the scissor jack.
You may not be able to see all of them in the image. Use Grübler’s formula to
calculate the number of degrees of freedom. Does your answer agree with what
you know about how a scissor jack works? If not, can you explain why?

Practice exercise 2.2 Figure 2.2 shows a table lamp that moves only in the
plane of the page. Use Grübler’s formula to calculate the number of degrees of
freedom.

Practice exercise 2.3 A unicycle is controlled moving on a rigid balance
beam as shown in Figure 2.3. Suppose the wheel is always touching the beam
with no sliding, answer the following questions in terms of R, S, T , and I (a
one-dimensional closed interval).

(a) Give a mathematical description of the C-space of the unicycle when it
remains upright and is constrained to move in the 2-dimensional plane of
the page.

3



4 2.1. Practice Exercises

Figure 2.1: A scissor jack (also known as a scissor lift). Image courtesy of Wikipedia.

Figure 2.2: A table lamp that moves only in the plane of the page.

(b) Give a mathematical description of the C-space of the unicycle when it
remains upright, it moves in a 3-dimensional space, and the beam has
nonzero width.

Practice exercise 2.4 Explain why S1 × S1 = T 2, not S2. In other words,
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Chapter 2. Practice Exercises on Configuration Space 5

Figure 2.3: A unicycle on a rigid balance beam.

explain why the C-space of a spherical pendulum (S2) is not topologically equiv-
alent to the C-space of a 2R robot (T 2), even though the configurations of both
would typically be described by two angles. If you think the C-space of a 2R
robot is topologically equivalent (homeomorphic) to S2, propose a continuous
mapping between points on a sphere and the independent joint angles of a 2R
robot.

Practice exercise 2.5 Assume your arm has 7 dof and you constrain your
hand to be at a fixed configuration (e.g., your palm is flat against a table).

(a) What is an explicit representation of the arm’s configuration?
(b) What is an implicit representation?
(c) What does the set of feasible configurations look like in the 7-dimensional

configuration space of the unconstrained arm?

Practice exercise 2.6 Imagine a C-space described as a circle in an (x, y)
plane, of radius 2 centered at (3, 0). What is an implicit representation of
this one-dimensional C-space? If you were to decide to parameterize the one-
dimensional C-space by the single parameter θ, give a mapping from θ to (x, y).

Practice exercise 2.7
Consider the 2D quadcopter and rod shown in Figure 2.4. The rod is at-

tached to the quadcopter by a revolute joint, and you are given the task of bal-
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6 2.1. Practice Exercises

x

y

Figure 2.4: 2D quadcopter balancing a rod

ancing the rod upright (a flying version of the classic cart pendulum problem).
Assume the configuration of the quadcopter center is described by (xq, yq, θq)
and the configuration of the rod center is described as (xr, yr, θr) where θq and
θr are measured with respect to the world x axis. The length of the rod is 2l
and the height and width of the quadcopter body are 2h and 2w respectively.

(a) Solve for the configuration constraints that keep the rod and quadcopter
connected.

(b) Express these as a Pfaffian constraint where q = [xq yq θq xr yr θr]
T.

Practice exercise 2.8 Consider the parallel SCARA robot shown in Fig-
ure 2.5. The robot is controlled by two rotational motors located in the base,
and one rotational and one prismatic motor at the end effector. Assume each
of the links of the parallel mechanism are length 1 m, the prismatic joint has a
maximum travel of 1 m, and the separation distance of the base motors is 0.5 m.
Assume no collisions between the links, and that the end effector y-coordinate
is constrained to be greater than zero.

(a) Sketch the workspace of the end effector.
(b) What are some benefits and drawbacks of making a parallel rather than

a serial SCARA robot?
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Chapter 2. Practice Exercises on Configuration Space 7
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Figure 2.5: Parallel SCARA robot and a skeleton top view.

2.2 Solutions

Solution 2.1 See Figure 2.6 for work. Note that there are two extra cross
pieces behind the two side joints that are not visible from the image. The
result of Grübler’s formula does NOT agree with the known solution of 1 DOF.
This is due to the symmetry of this problem, causing certain constraints to not
be independent. Instead, the formula provides a lower bound, and the known
solution of 1 DOF is indeed above that lower bound.
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8 2.2. Solutions

Figure 2.6: Written solution to scissor jack problem.

Solution 2.2 Despite all the links and revolute joints, this mechanical system
behaves similarly to a 3R robot arm, since each set of two revolute joints acts
as a single hinge.
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Chapter 2. Practice Exercises on Configuration Space 9

Figure 2.7: Written solution to lamp problem.

Solution 2.3

(a) I: the point of contact on the beam (which determines the angle of the
wheel, since rolling is enforced). If we treat the allowed contact points on
the beam as an open inerval, then the space is topologically equivalent to
R.

(b) I2 × T 2: intervals correspond to limited beam contact locations, S1 for
heading direction of wheel, and S1 for the point of contact on the wheel.

Solution 2.4 For two spaces to be topologically equivalent, there must be
a homeomorphism relating the two. A homeomorphism is a mapping from
one space X (e.g., S2) to another space Y that (1) is one-to-one, (2) “onto”
(meaning the mapping from X to Y covers all of Y ), (3) continuous, and (4)
has a continuous inverse. A homeomorphism is the mathematical term for the
functions that can only deform the space, not cut, glue, or change its dimension.

There is no homeomorphism between S2 and T 2. When you poke a hole in
S2 to get T 2, for example, suddenly points that were neighbors to each other
(at the point where you poked the hole) are no longer neighbors; this cannot
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10 2.2. Solutions

occur with a continuous mapping.

Solution 2.5

(a) The explicit representation is θ, the angle to the elbow about a line con-
necting the shoulder to the palm.

(b) The implicit representation is (θ1, θ2, θ3, θ4, θ5, θ6, θ7) in the 7-dimensional
space, plus 6 equations constraining the position (3 dof) and orientation
(3 dof) of the palm.

(c) A closed interval of a 1-dimensional curve in that 7-dimensional space.

Solution 2.6 Implicit: (x, y) such that (x − 3)2 + y2 = 4. Explicit: x =
3 + 2 cos θ, y = 2 sin θ.

Solution 2.7 Note: opposite signs are also correct for the following solutions.
(a) Configuration constraints:

xr − ` cos(θr) = xq − h sin(θq)

yr − ` sin(θr) = yq + h cos(θq).
(2.1)

(b) A(q)q̇ = 0, where q = [xq yq θq xr yr θr]
T, q̇ = [ẋq ẏq θ̇q ẋr ẏr θ̇r]

T

A(q) =

[
1 0 −h cos(θq) −1 0 −` sin(θr)
0 1 −h sin(θq) 0 −1 ` cos(θr)

]
(2.2)

Solution 2.8
(a) The top view of the workspace is shown by the shaded region in Figure 2.8,

and is the intersection of two circles. To solve for the workspace area, sum
the area of the two circle sectors and subtract the triangle area (formed
when the arms are fully extended in the y position) that is counted twice.
The workspace volume is then the 3D extrusion of this shape into the page
by the reach of the prismatic joint.

(b) The parallel structure has the benefit of being more rigid and having more
of the motor mass concentrated at the base. One drawback is that the
parallel SCARA has a smaller workspace compared to a comparable serial
SCARA arm.
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Chapter 2. Practice Exercises on Configuration Space 11

Figure 2.8: Parallel SCARA robot workspace solution
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Chapter 3

Practice Exercises on
Rigid-Body Motions

3.1 Practice Exercises

Practice exercise 3.1 The mobile manipulator in Figure 3.1 needs to orient
its gripper to grasp the block. For subsequent placement of the block, we have
decided that the orientation of the gripper relative to the block, when the gripper
grasps the block, should be Reg. Our job is to determine the rotation operator
to apply to the gripper to achieve this orientation relative to the block.

Figure 3.1 shows the fixed world frame {a}, the mobile robot’s chassis frame
{b}, the gripper frame {c}, the RGBD camera (color vision plus depth, like the
Kinect) frame {d}, and the object frame {e}. Because we put the camera at a
known location in space, we know Rad. The camera reports the configuration
of {e} relative to {d}, so we know Rde. From the mobile robot’s localization
procedure (e.g., vision-based localization or odometry) we know Rab. From the
robot arm’s forward kinematics we know Rbc.

(a) In terms of the four known rotation matrices Rad, Rde, Rab, and Rbc, and
using only matrix multiplication and the transpose operation, express the
current orientation of the gripper relative to the block, Rec.

(b) To align the gripper properly, you could apply to it a rotation R1 expressed
in terms of axes in the gripper’s {c} frame. What is R1, in terms of the five
known rotation matrices (Rad, Rde, Rab, Rbc, Reg), matrix multiplication,
and transpose?

13



14 3.1. Practice Exercises

{a}

{b}

{c}
{d}

}{e

Figure 3.1: The fixed world frame {a}, the mobile robot’s chassis frame {b}, the
gripper frame {c}, the RGBD camera frame {d}, and the object frame {e}.

{s}
x̂s

ŷs

ẑs

{b}

x̂b

ŷb

ẑb

2 cm

Figure 3.2: As the machine screw goes into a tapped hole, it advances linearly by
4π mm every full rotation of the screw.

(c) The same rotation could be written R2, in terms of the axes of the frame
of the mobile base {b}. What is R2?

Practice exercise 3.2 Figure 3.2 shows a screw, a frame {b}, and a frame
{s}. The x̂b-axis of {b} is along the axis of the screw, and the origin of the
frame {s} is displaced by 2 cm, along the ŷb-axis, from the {b} frame. The
ẑs-axis is aligned with x̂b and the x̂s-axis is aligned with ẑb.

Taking note of the direction of the screw’s threads, as the machine screw goes
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Chapter 3. Practice Exercises on Rigid-Body Motions 15

{c}
x̂c

ŷc

ẑc

(0, 3, 0)

45◦

Figure 3.3: A screw axis in the (ŷc, ẑc) plane.

into a tapped hole driven by a screwdriver rotating at 3 radians per second, what
is the screw’s twist expressed in {b}, Vb? What is the screw axis expressed in
{b}, Sb? What is Vs? What is Ss? Give units as appropriate.

Practice exercise 3.3 A wrench F and a twist V are represented in {a} as
Fa and Va, respectively, and they are represented in {b} as Fb and Vb. Without
consulting any other source, and using the facts that (AB)T = BTAT, that the
adjoint of the transformation matrix Tab can be used to change the frame of
representation of a twist from the {a} frame to the {b} frame, and that the
scalar power generated (or dissipated) by applying a wrench F along a twist
V is independent of the frame of reference, show that Fa = [AdTba

]TFb. (The
ability to derive this result is useful for your understanding of it.)

Practice exercise 3.4 Figure 3.3 shows a screw axis in the (ŷc, ẑc) plane, at
a 45◦ angle with respect to the ŷc-axis. (The x̂c-axis points out of the page.)
The screw axis passes through the point (0, 3, 0).

(a) If the pitch of the screw is h = 10 linear units per radian, what is the
screw axis Sc? Make sure you can also write this in its se(3) form [Sc],
too.

(b) Using your answer to (a), if the speed of rotation about the screw axis is
θ̇ =
√

2 rad/s, what is the twist Vc?
(c) Using your answer to (a), if a frame initially at {c} rotates by θ = π/2

about the screw axis, yielding a new frame {c′}, what are the exponential
coordinates describing the configuration of {c′} relative to {c}?

(d) What is Tcc′ , corresponding to the motion in part (c)?
(e) Now imagine that the axis in Figure 3.3 represents a wrench: a linear force

along the axis and a moment about the axis (according to the right-hand
rule). The linear force in the direction of the axis is 20 and the moment
about the axis is 10. What is the wrench Fc?
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16 3.1. Practice Exercises

Practice exercise 3.5 Let Tsb ∈ SE(3) represent the configuration of the
frame {b} relative to {s}. (We sometimes write this simply as T .) If {b}
moves over time, you could represent its velocity as Ṫsb (or simply Ṫ ), the time
derivative of Tsb. You should think of this velocity as a twist of the entire space,
to which the moving frame is attached. But we know that the velocity should
be representable by only six values, and Ṫsb could have 12 unique nonzero values
in (the top three rows of the 4×4 matrix; the bottom row will be all zeros, since
the bottom row of a transformation matrix is always the constant [0 0 0 1]).

Instead, we could post-multiply Ṫsb by Tbs, i.e., Ṫ
s�b
T
�bs

= Ṫ T−1 = Ṫss. This
post-multiplication has the effect of representing the velocity in the {s} frame,
getting rid of the dependence on the current {b} frame. What do we call the
quantity Ṫ T−1? How many values are needed to uniquely specify it?

We could also pre-multiply Ṫsb by Tbs to get Tb�s
Ṫ
�sb

= T−1Ṫ = Ṫbb. This
pre-multiplication has the effect of representing the velocity in the {b} frame,
getting rid of the dependence on the {s} frame. What do we call the quantity
T−1Ṫ?

Practice exercise 3.6
Consider the satellite and Earth shown in Figure 3.4. Let ωb = (0, 1, 1)

be the angular velocity of the satellite expressed in the satellite body frame
{b}. Assume a fixed Earth frame {e} (a geocentric view of the universe like the
ancient Greeks had).

(a) Solve for the coordinate axis velocities of {b} ( ˙̂xb, ˙̂yb, and ˙̂zb) represented
in the {b} frame. Sketch the velocity vectors on the figure above to confirm
that your solutions make sense.

(b) The orientation of the {b} frame is equivalent to the {e} frame after it
has been rotated −90 degrees about its ẑe-axis. Solve for ωe, the satellite
angular velocity represented in {e}. Sketch the velocity vectors on the
figure above to confirm that your solution makes sense.

(c) Solve for Ṙeb, the time derivative of the body orientation expressed in {e}.
(d) Give the so(3) representation of the angular velocity in both the Earth

and the body frame.

Practice exercise 3.7 Consider again the satellite and Earth shown in Fig-
ure 3.4.

(a) If the given rotational velocity ωb = (0, 1, 1) was instead the exponential
coordinates for a rotation, solve for the axis-angle representation and the
corresponding rotation matrix.

Practice exercises for Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
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Chapter 3. Practice Exercises on Rigid-Body Motions 17

{b}
x

y
z

ωb

z x

y

{e}

Figure 3.4: Satellite rotating in space.

(b) After rotating and orbiting the Earth for some time, the relative orienta-
tion of the Earth and satellite is given as

Reb′ =

 0 −
√

2/2
√

2/2
1 0 0

0
√

2/2
√

2/2

 .
Find the axis-angle representation that describes the rotation from the
initial body frame {b} to the new body frame {b’}.

Practice exercise 3.8 Consider the scene in Figure 3.5 of a once peaceful
park overrun by robots. Frames are shown attached to the tree {t}, robot chassis
{c}, manipulator {m}, and quadcopter {q}. The distances shown in the figure
are d1 = 4 m, d2 = 3 m, d3 = 6 m, d4 = 5 m, d5 = 3 m. The manipulator is at a
position pcm = (0, 2, 1) m relative to the chassis frame {c}, and {m} is rotated
from {c} by 45 degrees about the x̂c-axis.

(a) Give the transformation matrices representing the quadcopter frame {q},
chassis frame {c}, and manipulator frame {m} in the tree frame {t}.

(b) Assume that the position controller for the manipulator on the mobile
robot is referenced to the chassis frame {c}. What position should you
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18 3.1. Practice Exercises

d1

d2

d4

d5

d3

p

x̂
ŷ

ẑ{c} x̂

ŷ
ẑ

{m}

{q} x̂

ŷ

ẑ

{t}
x̂

ŷ
ẑ

Figure 3.5: A tree, mobile manipulator, and flying robot in a park and the corre-
sponding reference frames.

command the gripper to go to if you would like to snatch the quadcopter
out of the sky?

(c) You are tasked to move the mobile robot so that the chassis origin is
directly underneath the quadcopter and its frame is aligned with the tree
frame. Assume the mobile robot chassis controller takes transformation
matrices in the chassis frame as inputs. What tranformation should you
command the robot to follow?

Practice exercise 3.9 Consider the scene in Figure 3.6 of a quadcopter {q}
flying near a tree {t} and house {h}. The quadcopter is at a position ptq = (10,
5, 5) m expressed in the tree frame {t}, and the house is at a position pth =
(0, 10, 10) m expressed in the tree frame {t}. The quadcopter is flying upwards
with a velocity of 1 m/s, and rotating with a velocity of 1 rad/s.

(a) Calculate the quadcopter’s twist in {q} and {t}.
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{h} x̂

ŷẑ

{q} x̂

ŷ

ẑ

{t}
x̂

ŷ
ẑ

ωq

vq

Figure 3.6: A tree, and flying robot in a park and the corresponding reference frames.

(b) Use the adjoint map to express the twist in the house frame {h}.

Practice exercise 3.10 Consider the cube with side lengths l = 2 m and the
ant shown in Figure 3.7. Frames {b} and {c} show the ant at the midpoint of
the cube edges.

(a) Solve for the screw axis Sw and angle θ corresponding to the transforma-
tion from {b} to {c}.

(b) Sketch the location of the screw axis on the figure.
(c) Use the appropriate adjoint map to find Sb, the screw axis representation

in the {b} frame.

Practice exercise 3.11 Consider the scene in Figure 3.8 of a tree {t} and a
frame {b} attached to its branch. The figure shows a strong wind that applies
a force of 100 N at the center of frame {b}. Assume the branch has a mass of
50 kg centered at frame {b} as well. The position of the branch frame {b} in
the tree frame {t} is ptb = (2, 1, 3) m.

(a) What is the wrench Fb due to the wind and the branch’s weight?
(b) What is this wrench in the tree frame {t}?
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{w}
x̂

ŷẑ

{b}
x̂

ŷẑ

{c}x̂

ŷ

ẑ

l

l

l

Figure 3.7: An ant shown at different positions on a cube.

{t}
x̂

ŷẑ

{b}x̂

ŷ

ẑ

wind

Figure 3.8: A tree and a frame attached to its branch.
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Chapter 3. Practice Exercises on Rigid-Body Motions 21

3.2 Solutions

Solution 3.1

(a)

Rec = RedRdaRabRbc

= RT
deR

T
adRabRbc.

(b)

RecR1 = Reg → R1 = RT
ecReg

= (RT
deR

T
adRabRbc)

TReg

= RT
bcR

T
abRadRdeReg (= Rcg).

(c)

R2 = RbcR1 = RbcRcg = RbcR
T
bcR

T
abRadRdeReg = RT

abRadRdeReg (= Rbg).

Solution 3.2 The threads of this screw are the typical right-handed threads,
which means that the screw, when viewed from the top, rotates clockwise when
it advances into a tapped hole. In other words, the fingers of your right hand
curl in the direction of rotation of the screw when your right thumb points
downward on the page, in the negative direction of the upward-pointing x̂b-
axis. Since the screwdriver rotates at 3 rad/s, the screw also rotates at 3 rad/s,
so the angular component of the twist, expressed in {b}, is ωb = (−3 rad/s, 0, 0).
Since radians and seconds are the SI units for angle and time, respectively, you
could write (−3, 0, 0) and assume the default SI units. You could also write
(−3(180/π) deg/s, 0, 0), but that would be unusual.

The pitch of the screw is 4π mm per revolution, or 2 mm/rad. So as
the screw is rotated at 3 rad/s, it moves linearly in the −x̂b direction at
(2 mm/rad)(3 rad/s) = 6 mm/s. So the linear component of the twist ex-
pressed in {b} is (−6 mm/s, 0, 0), or, in SI units, vb = (−0.006 m/s, 0, 0). So,
in SI units, the entire twist is Vb = (ωb, vb) = (−3, 0, 0,−0.006, 0, 0).

The corresponding screw axis expressed in {b} is the normalized version of
Vb where the magnitude of the angular velocity is unit. The magnitude of ωb
is 3, so divide the twist by 3 to get Sb = (−1, 0, 0,−0.002, 0, 0). We can write
Vb = Sbθ̇ where θ̇ = ‖ωb‖ = 3.
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22 3.2. Solutions

The screw axis could also be represented in the {b} frame by the collection
{qb, ŝb, h}, where a point qb on the axis is (0, 0, 0) (expressed in {b}), the axis
direction is ŝb = (−1, 0, 0), and the pitch is h = 0.002.

In the {s} frame, the axis of rotation is aligned with the −ẑs-axis, so ωs =
(0, 0,−3). A point at the origin of {s}, rigidly attached to the advancing screw,
has a downward linear component of −0.006 m/s in the −ẑs direction (i.e.,
(0, 0,−0.006)) from the downward motion of the screw. But it also has a linear
component in the −x̂s direction from the rotation of the screw. The point at the
origin of {s} can be expressed as qb = (0, 0.02, 0) in terms of {b} coordinates, so
the linear motion at {s} due to the rotation of the screw is ωb×qb = (0, 0,−0.06).
In the {s} frame, this is (−0.06, 0, 0). (Imagine a turntable rotating about
the screw axis and the resulting motion of a point at {s}.) So the total lin-
ear motion at {s}, expressed in {s}, is vs = (0, 0,−0.006) + (−0.06, 0, 0) =
(−0.06, 0,−0.006). Therefore, Vs = (0, 0,−3,−0.06, 0,−0.006). The screw axis
is Ss = (0, 0,−1,−0.02, 0,−0.002) and Vs = Ssθ̇.

The screw axis could also be represented in the {s} frame by the collection
{qs, ŝs, h}, where a point qs on the axis is (0, 0.02, 0), the axis direction is ŝs =
(0, 0,−1), and the pitch is h = 0.002. Note that Ss = (ŝs,−ŝs× qs +hŝ), where
hŝ is the linear velocity due to the linear motion of the screw and −ŝs × qs is
the linear velocity due to the rotation of the screw.

Solution 3.3 See Chapter 3.4 of the textbook.

Solution 3.4
(a) Since the screw axis Sc = (Scω ,Scv ) has a rotational component, Scω is

a unit vector aligned with the axis, i.e., Scω = ŝ = (0, cos 45◦, sin 45◦) =
(0, 1/

√
2, 1/
√

2). The linear component is Scv = hŝ − ŝ × q (a linear
component due to linear motion along the screw plus a linear component
due to rotation about the screw), where q = (0, 3, 0) and h = 10, i.e.,
Scv = (0, 10/

√
2, 10/

√
2) + (3/

√
2, 0, 0) = (3, 10, 10)/

√
2.

(b) Vc = Scθ̇ = (0, 1, 1, 3, 10, 10).
(c) Scθ = (0, 1, 1, 3, 10, 10)π/(2

√
2).

(d) You can use the MR code library to do the calculation. Use VecTose3 to
convert the exponential coordinates Scθ to their se(3) representation [Scθ]
and then use MatrixExp6 to calculate

Tcc′ = e[Scθ] =


0 −0.71 0.71 2.12

0.71 0.5 0.5 12.61
−0.71 0.5 0.5 9.61

0 0 0 1

 .
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(e) The wrench is written Fc = (mc, fc). The linear component fc has a mag-
nitude of 20 and is aligned with the axis shown, so fc = (0, 10

√
2, 10
√

2).
If the axis passed through the origin of {c}, the moment (which has mag-
nitude 10) would be (0, 5

√
2, 5
√

2), but since it is displaced from the origin
of {c}, there is an extra moment component due to the linear component,
q × fc = (0, 3, 0)× (0, 10

√
2, 10
√

2) = (30
√

2, 0, 0), so the total moment is
mc = (0, 5

√
2, 5
√

2) + (30
√

2, 0, 0) =
√

2(30, 5, 5).
You can verify that you get the same answer using Fc = [AdTac

]TFa,
where {a} is a frame aligned with {c} and with an origin at (0, 3, 0).

Solution 3.5 Ṫ T−1 is the se(3) representation of the twist represented in {s},
i.e., [Vs] ∈ se(3). Only six values (the six elements of Vs) are needed to specify
it.

T−1Ṫ is the se(3) representation of the twist represented in {b}, i.e., [Vb] ∈
se(3). Only six values (the six elements of Vb) are needed to specify it.

Solution 3.6
(a) ˙̂xb = (0, 1,−1), ˙̂yb = (−1, 0, 0), ˙̂zb = (1, 0, 0)
(b) ωe = (1, 0, 1).

(c) Ṙeb =

 1 0 0
0 1 −1
−1 0 0


(d) [ωb] =

 0 −1 1
1 0 0
−1 0 0

, [ωe] =

 0 −1 0
1 0 −1
0 1 0


Solution 3.7

(a) ω̂ = (0,
√

2/2,
√

2/2), and θ =
√

2.

R =

 0.1559 −0.6985 0.6985
0.6985 0.5780 0.4220
−0.6985 0.4220 0.5780


(b) Rbb′ = RT

ebReb′ =

 −1 0 0

0 −
√

2/2
√

2/2

0
√

2/2
√

2/2

,

ω̂ = (0, 0.3827, 0.9239), and θ = π.

Solution 3.8
(a)
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Ttq =


1 0 0 5
0 0 −1 6
0 1 0 3
0 0 0 1


Ttc =


0 1 0 4
−1 0 0 3
0 0 1 0
0 0 0 1


Ttm =


0
√

2/2 −
√

2/2 6
−1 0 0 3

0
√

2/2
√

2/2 1
0 0 0 1


(b)

pcq = (−3, 1, 3)
(c)

pcc′ = (−3, 1, 0)
Rcc′ = Rct = R′tc

Tcc′ =


0 −1.0 0 −3.0

1.0 0 0 1.0
0 0 1.0 0
0 0 0 1.0


Solution 3.9

(a) Vb = (0, 1, 0, 0, 1, 0). Vt = (0, 0, 1, 5,−10, 1).
(b) Vh = (0, 0, 1,−5,−10, 1).

Solution 3.10
(a) Sw = (0, 0, 1, 1,−1.5, 1/π), θ = π.
(b) Axis points in in the world z direction intersecting the (x,y) coordinates

(1.5,1) in the {w} frame.
(c) Sb = (0, 0, 1, 1, 0.5, 1/π), θ = π.

Solution 3.11
(a) Fb = (0, 0, 0,−100, 0,−500)
(b) Ft = (−800, 1000, 200, 0, 100,−500)
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