Where we are:

Chap 2 Configuration Space
Chap 3 Rigid-Body Motions
Chap 4 Forward Kinematics
Chap $5 \quad$ Velocity Kinematics and Statics
Chap 6 Inverse Kinematics
Chap 8 Dynamics of Open Chains
Chap 9 Trajectory Generation
9.1 Definitions
9.2 Point-to-Point Trajectories
9.3 Polynomial Via Point Trajectories

Chap 11
Chap 13
Robot Control
Wheeled Mobile Robots

Important concepts, symbols, and equations

Trajectory: A specification of the configuration as a function of time.

$$
\theta(t), t \in[0, T]
$$

Important concepts, symbols, and equations (cont.)

Path: A specification of the configuration as a function of a path parameter.

$$
\theta(s), s \in[0,1]
$$

Time scaling: A mapping $s(t):[0, T] \rightarrow[0,1]$, from time to the path parameter.

Important concepts, symbols, and equations (cont.)

Motion as a function of $\theta(s)$ and $s(t)$:

$$
\begin{aligned}
& \dot{\theta}=\frac{d \theta}{d s} \dot{s} \\
& \ddot{\theta}=\frac{d \theta}{d s} \ddot{s}+\frac{d^{2} \theta}{d s^{2}} \dot{s}^{2}
\end{aligned}
$$

Both $\theta(s)$ and $s(t)$ must be twice-differentiable.

Important concepts, symbols, and equations (cont.)

straight line in joint space

$$
\theta(s)=\theta_{\text {start }}+s\left(\theta_{\text {end }}-\theta_{\text {start }}\right)
$$

straight line in task space
$X(s)=X_{\text {start }}+s\left(X_{\text {end }}-X_{\text {start }}\right)$

Important concepts, symbols, and equations (cont.)

Important concepts, symbols, and equations (cont.)

Third-order polynomial time scaling $\quad s(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$

$$
\dot{s}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2}
$$

$$
a_{0}=0, a_{1}=0, a_{2}=\frac{3}{T^{2}}, a_{3}=-\frac{2}{T^{3}} \quad \begin{array}{ll}
s(0)=0 & \dot{s}(0)=0 \\
s(T)=1 & \dot{s}(T)=0
\end{array}
$$

Important concepts, symbols, and equations (cont.)

Fifth-order polynomial time scaling $\quad s(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+$

$$
a_{4} t^{4}+a_{5} t^{5}
$$

$$
\begin{array}{lll}
s(0)=0 & \dot{s}(0)=0 & \ddot{s}(0)=0 \\
s(T)=1 & \dot{s}(T)=0 & \ddot{s}(T)=0
\end{array}
$$

Important concepts, symbols, and equations (cont.)

Trapezoidal time scaling

Important concepts, symbols, and equations (cont.)
S-curve time scaling

Important concepts, symbols, and equations (cont.)

Polynomial interpolation through via points

- third-order interpolation using via times, configurations, and velocities
- third-order interpolation using via times, configurations, and equal velocities and accelerations before and after vias

Many other methods, including B-splines (paths stay within convex hull of control points, but don't pass through them).

Give an expression for the path $\theta(s), s \in[0,1]$.

What kind of time scaling can be used to obtain a continuous jerk profile?
What is the maximum joint velocity obtained on a straight-line rest-to-rest trajectory with cubic polynomial time scaling?

Describe a circumstance under which the coast phase of the trapezoidal time scaling is not used.

Give an equation to implement a third-order polynomial time-scaled rest-to-rest motion following a screw axis.

A time scaling can be written as $s(t)$ or $\dot{s}(s)$. If $s(t)=a t^{2}$, what is $\dot{s}(s)$?

