Where we are:

Chap 2	Configuration Space	
Chap 3	Rigid-Body Motions	
Chap 4	Forward Kinematics	
Chap 5	Velocity Kinematics and Statics	
Chap 6	Inverse Kinematics	
Chap 8	Dynamics of Open Chains	
Chap 9	Trajectory Generation	
Chap 11	Robot Control	
Chap 13	Wheeled Mobile Robots	
	13.1 Types of Wheeled Mobile Robots	
	13.2 Omidirectional Wheeled Mobile Robots	
	13.4 Odometry	

Important concepts, symbols, and equations

Relationship between planar and spatial twist:

$$
\mathcal{V}_{b 6}=\left[\begin{array}{c}
0 \\
0 \\
\left.\begin{array}{|c}
\mathcal{V}_{b} \\
0
\end{array}\right]
\end{array}\right.
$$

Important concepts, symbols, and equations (cont.)

Odometry (or dead reckoning)

1. Measure the wheel displacements, $\Delta \theta$.
2. Assume constant wheel speeds, so $\dot{\theta}=\Delta \theta / \Delta t, \Delta t=1$.
3. Find $\mathcal{V}_{b}=F \dot{\theta}=F \Delta \theta$.
4. Integrate $\mathcal{V}_{b 6}$ for $\Delta t=1, T_{b_{k} b_{k+1}}=e^{\left[\mathcal{V}_{b 6}\right]}$.
5. $T_{s b_{k+1}}=T_{s b_{k}} T_{b_{k} b_{k+1}}$ (or express as q_{k+1}).

Important concepts, symbols, and equations (cont.)

Diff-drive

Important concepts, symbols, and equations (cont.)

$\dot{\theta}=H(0) \mathcal{V}_{b} \rightarrow \mathcal{V}_{b}=H^{\dagger}(0) \dot{\theta}=F \dot{\theta}=F \Delta \theta$

Important concepts, symbols, and equations (cont.)

$\dot{\theta}=H(0) \mathcal{V}_{b} \rightarrow \mathcal{V}_{b}=H^{\dagger}(0) \dot{\theta}=F \dot{\theta}=F \Delta \theta$

$$
\mathcal{V}_{b}=F \Delta \theta=\frac{r}{4}\left[\begin{array}{cccc}
-1 /(\ell+w) & 1 /(\ell+w) & 1 /(\ell+w) & -1 /(\ell+w) \\
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & 1
\end{array}\right] \Delta \theta
$$

Important concepts, symbols, and equations (cont.)

$$
\begin{aligned}
T_{b_{k} b_{k+1}} & =e^{\left[\mathcal{V}_{b 6}\right]} \\
T_{s b_{k+1}} & =T_{s b_{k}} T_{b_{k} b_{k+1}}=T_{s b_{k}} e^{\left[\mathcal{V}_{b 6}\right]} \\
& \rightarrow q_{k+1}
\end{aligned}
$$

Could instead use $S E(2)$ representations
or and use a matrix exponential for $\operatorname{se}(2)$.

$$
\begin{aligned}
& T_{b_{k} b_{k+1}}=e^{\left[\mathcal{V}_{b 6}\right]} \\
& \rightarrow \Delta q_{b} \rightarrow \Delta q \rightarrow q_{k+1}=q_{k}+\Delta q \\
& \begin{array}{c}
\downarrow \\
\text { rotate the } \\
\text { linear } \\
\text { component }
\end{array}
\end{aligned}
$$

Important concepts, symbols, and equations (cont.)

"Matrix exponential" for se(2) using center of rotation (CoR) visualization

$$
\begin{aligned}
& \text { if } \omega_{b z}=0, \quad \Delta q_{b}=\left[\begin{array}{l}
\Delta \phi_{b} \\
\Delta x_{b} \\
\Delta y_{b}
\end{array}\right]=\left[\begin{array}{c}
0 \\
v_{b x} \\
v_{b y}
\end{array}\right] ; \\
& \text { if } \omega_{b z} \neq 0, \quad \Delta q_{b}=\left[\begin{array}{l}
\Delta \phi_{b} \\
\Delta x_{b} \\
\Delta y_{b}
\end{array}\right]=\left[\begin{array}{c}
\omega_{b z} \\
\left(v_{b x} \sin \omega_{b z}+v_{b y}\left(\cos \omega_{b z}-1\right)\right) / \omega_{b z} \\
\left(v_{b y} \sin \omega_{b z}+v_{b x}\left(1-\cos \omega_{b z}\right)\right) / \omega_{b z}
\end{array}\right]
\end{aligned}
$$

$$
\left(-v_{b y} / \omega_{b z}, v_{b x} / \omega_{b z}\right)
$$

Draw the proper angles of the front wheels of the car-like mobile robot for the CoR shown. (Ackermann steering.) How do the rolling speeds of the rear wheels compare?

Your mobile robot is equipped with two mouse sensors for odometry. They report the velocity vectors shown. Where is the CoR?

