ME 449 Assignment 6
Robot Motion Control
Due 1:30 PM, Wednesday December 10, 2025

Important notes:

e As with all assignments, you are welcome to consult with other students on concepts, but you
are not allowed to copy answers or share code.

e This document may undergo minor changes. If that happens, you will be notified in class.

In this assignment, you will plan and control the motion of a Universal Robots UR5, a popular
6-dof industrial robot arm. The robot has geared motors at each joint, but in this project, we
ignore the effects of gearing, such as friction and the increased apparent inertia of the rotor. We
will, however, assume damping at the joints, equal to 0.5 Nm/(rad/s), i.e., 77 = —(0.5 Nms)6;.
(This value is not realistic, but it is probably more realistic than zero damping!)

The relevant kinematic and inertial parameters of the URS5 are:

1 0 0 0 0 0 1 028 1 0 0 0
0 1 0 0 1 0 0.13585 0 1 0 -01197
My, = LMy, = Moy =
0 0 1 0089159 -1 0 0 0 0 0 1 0395
0 0 0 1 0 0 0 1 0 0 0 1
[0 0 1 0 1 00 0 1 0 0 0
0 1 0 0 0 1 0 0093 0 1 0 0
Msy, = , Mys = s Mse = ;
—1 0 0 0.14225 001 0 0 0 1 0.09465
Lo 0 0 1 00 0 1 0 0 0 1
(1 0 0 0
Mg = 8 _01 (1) 0-08323 , G, = diag([0.010267495893,0.010267495893, 0.00666, 3.7, 3.7, 3.7]),
0 0 0 1

G, = diag([0.22689067591, 0.22689067591, 0.0151074, 8.393, 8.393, 8.393]),

G3 = diag([0.049443313556, 0.049443313556, 0.004095, 2.275, 2.275, 2.275]),

G4 = diag([0.111172755531,0.111172755531,0.21942,1.219, 1.219, 1.219]),

Gs = diag([0.111172755531,0.111172755531, 0.21942,1.219, 1.219, 1.219]),

Ge = diag([0.0171364731454,0.0171364731454,0.033822, 0.1879, 0.1879, 0.1879]),

0 0 0 0 0 0

0 1 1 1 0 1
Slist = 1 0 0 0 -1 0 .

0 -0.089159 —0.089159 —0.089159 —0.10915 0.005491

0 0 0 0 0.81725 0

0 0 0.425 0.81725 0 0.81725

For your convenience, these parameters are given in Python, Mathematica, and MATLAB at
http://hades.mech.northwestern.edu/index.php/Modern_Robotics#Supplemental_Information.

You will write code, using the Modern Robotics library, which takes a user input file and
produces (1) a file that allows the user to visualize the resulting robot motion in CoppeliaSim and
(2) files suitable for plotting. Specifically:

Input. The input to your software is a text file specifying a motion planning and control problem
for the URb, where the robot moves from one rest configuration to another. This text file can be
typed directly in a text editor by a user who knows the required format, or, more ambitiously, it
could be generated by an easy-to-use user interface. At a minimum, your input should include:

http://hades.mech.northwestern.edu/index.php/Modern_Robotics#Supplemental_Information

1. a specification of the start configuration 7 start of the planned trajectory of the robot’s end-
effector frame {b} (an SF(3) matrix, or a simple representation of one, such as the (z,y, 2)
coordinates of the origin of the {b} frame in {s} and three angular exponential coordinates
representing the orientation of {b} in {s})

2. a specification of the end configuration T ¢nq of the planned trajectory

3. a specification of the type of trajectory the robot should follow from start to end, allowing
the user to choose from at least the following four options: screw trajectory with cubic
time scaling, screw trajectory with quintic time scaling, Cartesian trajectory with cubic time
scaling, or Cartesian trajectory with quintic time scaling

4. the duration T of the planned trajectory in seconds

5. a specification of the robot’s actual initial configuration (e.g., a six-vector of joint angles)
with the end-effector away from the trajectory start configuration, to emphasize the action
of feedback control

You may also give the user the option to provide other inputs, such as the control law, the control
gains, or joint torque limits, but these are not required. They can be hard-coded in your software.

This input file (or the GUI) should make it simple for a user to test new instances of motion
planning and control. If the user specifies an impossible task (e.g., the start or end configurations
are outside the workspace, or the planned trajectory moves outside the workspace), it is OK for
your software to simply fail. Ideally your code would recognize the error and report to the user,
but this is not necessary for this project.

Note: As described above, this assignment requires reading data from a text file, and optionally
the use of a GUI to generate that text file. You are welcome to share code snippets for these aspects
of the assignment, but you are not permitted to share code for any other aspect of the assignment
(e.g., simulation, motion planning, and control).

Output. Your program will generate a reference trajectory for the end-effector, from rest at the
start configuration to rest at the end configuration, and then simulate the UR5’s motion under the
action of your controller for time 7. With a good controller and a modest initial error, the URb5
should converge to the desired trajectory within the time 7. Your code should use MR code, but
it is up to you how to use it.

Your code should output:

1. a csv file that records the simulated motion of the controlled robot and that can be animated
in CoppeliaSim by Scene 2

2. a file that records the joint angles as a function of time
3. a file that records the commanded joint torques as a function of time

4. a file that records the angular error ||wp|| and linear error ||vy|| between the desired and actual
end-effector configurations as a function of time

Post-processing. After completing a run of your code, you should be able to create a movie
using Scene 2, plot the joint angles as a function of time, plot the joint torques as a function of
time, plot the linear and angular errors as a function of time, and put these all in a single folder.

Debugging. You may find it helpful to test your work in pieces. For example, you could check
whether the dynamic simulation is reasonable when the control torques are zero, and you could
check whether a simple intuitive controller performs in an understandable way before moving on
to a more complex controller.

What to Turn In

A single zip file with

e A text file with a brief description of your project, including a description of how to run
the code (and where the MR code must be to work with your code). If your code has any
special features, please mention them here. There should also be a brief description of the
three example runs you are submitting, e.g., the controller type, trajectory type, etc., and
any observations about the performance of the controllers in the three example runs.

e A folder with your code.

e Three folders showing simulation results. Each folder should include the input file, the
video from Scene 2, a plot of the joint angles as a function of time, a plot of the
joint torques as a function of time, and a plot of the linear and angular errors as
a function of time. It is up to you to decide what to demonstrate with the three different
examples; for example, they could demonstrate different trajectory types, different start/end
configurations, different control gains, or anything else that is interesting or illuminating.
Suggested: Demonstrate poor control behavior (e.g., bad control gains) for one example, or
put limits on joint torques—if the controller requests a torque beyond a limit, the torque is
capped at the limit. (This could prevent using unrealistic large gains that demand unrealistic
large torques.) You should demonstrate more than one trajectory type; optionally, you could
demonstrate more than one controller type, but it is also fine to use a single controller for all
examples.

