
ME 449 Assignment 3
Due 1:30 PM, October 31, 2025

Part 1. Starting from IKinBody in the MR code library, write a new function, IKinBodyIterates.
This function prints out a report for each iteration of the Newton-Raphson process, for iterates
0 (the initial guess) to the final answer. Each iteration reports the iteration number i, the joint
vector θi, the end-effector configuration Tsb(θ

i), the error twist Vb, and the angular and linear error
magnitudes, ∥ωb∥ and ∥vb∥ (something like the table at the end of Chapter 6.2.2). For a four-joint
robot, an iterate might look like:

Iteration 3:

joint vector:

0.221, 0.375, 2.233, 1.414

SE(3) end-effector config:

1.000 0.000 0.000 3.275

0.000 1.000 0.000 4.162

0.000 0.000 1.000 -5.732

0 0 0 1

error twist V_b: (0.232, 0.171, 0.211, 0.345, 1.367, -0.222)

angular error ||omega_b||: 0.357

linear error ||v_b||: 1.427

The function should also save the joint vector of each iteration as a row in a matrix. For a
four-joint robot with three iterates (including the initial guess), the matrix would beθ01 θ02 θ03 θ04

θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24

 .

When your function completes (the angular error is less than ϵω and the linear error is less than
ϵv), it should save the matrix as a .csv file, where each row of the text file consists of the comma
separated joint values for that iterate. You can learn more about generating .csv files here.

Test your new function for the UR5 robot of Example 4.5 of Chapter 4.1.2 (Figure 4.6). (Note:
The UR5 admits analytical inverse kinematics, but here we will be practicing with
numerical inverse kinematics.) The home configuration of the end-effector M is given in the
book, as well as the numerical values of the constants L1, L2, H1, H2,W1,W2. The screw axes Bi

in the end-effector frame are

joint 1: (0, 1, 0,W1 +W2, 0, L1 + L2)
joint 2: (0, 0, 1,H2,−L1 − L2, 0)
joint 3: (0, 0, 1,H2,−L2, 0)
joint 4: (0, 0, 1,H2, 0, 0)
joint 5: (0,−1, 0,−W2, 0, 0)
joint 6: (0, 0, 1, 0, 0, 0)

http://hades.mech.northwestern.edu/index.php/Writing_a_CSV_File

The desired end-effector configuration is

Tsd =


0 0 −1 0
1 0 0 0.6
0 −1 0 0
0 0 0 1


where linear distances are in meters. Use ϵω = 0.001 rad (0.057◦) and ϵv = 0.0001 (0.1 mm).

You will use the Newton-Raphson method with two different initial guesses θ0 to determine how
the initial guess affects convergence to a set of joint angles that satisfies the desired end-effector
configuration. Choose initial guesses θ0 so that the numerical inverse kinematics

1. converges after 2–4 Newton-Raphson steps (short iterates), not more or less, and

2. converges after 10 Newton-Raphson steps, or never converges (long iterates).

You can use the sliders in the CoppeliaSim UR5 interactive scene (Scene 1) to choose initial guesses.
(Check out http://hades.mech.northwestern.edu/index.php/CoppeliaSim_Introduction for
more information.) You can type the final joint angles found by your function into the UR5
interactive scene to confirm that your function works properly and the desired end-effector con-
figuration is achieved. (Keep in mind that the numerical IK procedure treats all joint values as
real numbers, so it will happily compute joint angles of tens, hundreds, thousands, etc., radians,
particularly if the process is thrashing because you chose an initial guess far from a solution. But
CoppeliaSim uses the joint limits of the UR5, which are limited to the range [−2π, 2π] for each joint,
so if you say a joint angle is 7 radians, for example, CoppeliaSim will convert it to the maximum
joint angle, 2π radians. For that reason, I suggest that at each iteration of the IK process, each
angle guess θ be converted to atan2(sin θ, cos θ), which will convert θ to something in the range
(−π, π].)

Your pdf report should provide the following figures:

1. A 3D plot that shows the (x, y, z) position of the end-effector at each iterate, with a line
between successive iterations. (See Figure 1 for an example.)

2. A plot of the magnitude of the linear error (on the y-axis) as a function of the iterate number
(on the x-axis).

3. A plot of the magnitude of the angular error as a function of the iterate number.

The results from both initial guesses should be shown in each figure. (Three figures total.) Label
all axes and figures, and provide a legend that labels the two different initial guesses.

Part 2. Imagine the robot is powered up at a random configuration θ0 such that Tsb(θ
0) = T 0,

and its first task is to move to a θ∗ satisfying Tsb(θ
∗) = Tsd. Part 1 of this assignment deals with

calculating an appropriate θ∗. In this part, you will consider how to actually control the robot to
move from rest at θ0 to rest at θ∗ in tf seconds.
(a) If you decide to move at constant joint speeds, what joint speed vector θ̇ do you command to
the joints? Your answer should be symbolic in terms of relevant variables.
(b) If you decide to make the last link of the robot follow a single constant twist from T 0 to Tsd,
what joint speed vector θ̇(0) do you command to the joints at time t = 0? What is the commanded
joint speed vector θ̇(tf/2), halfway through the motion? Your answers should be symbolic in terms
of relevant variables. Use the function vec([V]) to convert [V] ∈ se(3) to the twist V ∈ R6, and
assume you have access to the body Jacobian Jb(θ).

http://hades.mech.northwestern.edu/index.php/CoppeliaSim_Introduction

(c) Do you see any advantages to using the approach in (a) relative to (b), or vice-versa?

Submission. Assemble your documents for submission. You will submit one zip file,
FamilyName GivenName asst2.zip; for me, it would be Lynch Kevin asst2.zip.

• The zip file should contain:

1. The pdf file FamilyName GivenName asst3.pdf. (See below for a detailed description of
the pdf file.)

2. Your commented code from Part 1 in a directory (folder) called “code.” You only need
to provide your modified function(s), not the rest of the MR code.

3. A text file called “short iterates.csv” created by your IKinBodyIterates function for
the example that takes 2–4 iterations to converge.

4. A text file called “long iterates.csv,” created by your IKinBodyIterates function for
the example that takes 10 or more iterations to converge, or never converges.

5. Two CoppeliaSim videos animating the Newton-Raphson iterations, one for each
initial guess. Use the CoppeliaSim csv animation scene for the UR5 (Scene 2). The
videos should show CoppeliaSim “playing” your .csv file. (Go to http://hades.mech.

northwestern.edu/index.php/CoppeliaSim_Introduction to learn about making videos
with CoppeliaSim.) The video is just a sequence of configurations of the robot, equal to
the number of iterates in your .csv file. (Keep in mind that, in real numerical IK,
the robot does not actually move to the configurations computed before the
IK computation has converged! It only moves to the computed configuration after
the process has converged. This video is just to visualize the solution process.) You
should uncheck the “Interpolate” checkbox in the CoppeliaSim UR5 animation scene
to make this video. Your video should be a “reasonable” size (e.g., a few MB, less
than 10 MB) and use a standard codec (e.g., some variant of .mp4) that common video
viewers, in Mac OS, Windows, or Linux, can view. Your video should be taken from a
virtual camera angle that makes it easy to see the end-effector configuration. The video
file names should follow the convention FamilyName GivenName short.mp4
and FamilyName GivenName long.mp4 (or possibly a different common file
extension).

• The pdf file should contain:

1. Any information that will help the grader understand your entire submission.

2. One screen log for each of your two guesses in Part 1. This log should show how your
code is called and the text output, i.e., the Newton-Raphson iterates that are printed to
the screen when you call IKinBodyIterates with your initial guess.

3. A CoppeliaSim screenshot showing the UR5 at the solution configuration calculated
after 2–4 iterations for your “good” initial guess. This screenshot should clearly show
the UR5’s end-effector configuration as well as the SE(3) configuration reported by the
scene’s interface, confirming that your code calculated a good solution.

4. A figure showing the progression of end-effector (x, y, z) positions during the solution
process. (Plots of both initial guesses in the same figure.)

5. A figure showing the magnitudes of the linear error as a function of iterations (both
initial guesses).

http://hades.mech.northwestern.edu/index.php/CoppeliaSim_Introduction
http://hades.mech.northwestern.edu/index.php/CoppeliaSim_Introduction

Figure 1 (Left) A plot showing the progression of the {b} frame location of the iterates during the
IK solving process. (Right) A plot showing the linear error magnitude of the iterates during the
IK process. (Not shown: A plot of the angular error magnitude.)

6. A figure showing the magnitude of the angular error as a function of iterations (both
initial guesses).

7. An explanation why convergence is difficult from the long iterates initial guess.

8. The answers to the questions in Part 2.

