- 1. Exercise 6.7. Hand draw no more than three iterations which make it clear which root is being converged to.
- 2. Exercise 6.8.
- 3. Exercise 8.2.
- 4. You derive the Lagrangian \mathcal{L} for a two-joint robot. The Lagrangian is the sum of several terms, $\mathcal{L} = \mathcal{L}^1 + \mathcal{L}^2 + \ldots$ One of these terms is $\mathcal{L}^1 = \mathfrak{m}_2 L_1 L_2 \dot{\theta}_1^2 \cos \theta_2$. Use the Euler-Lagrange equation to find the contribution of this term of the Lagrangian to the joint torques τ_1 and τ_2 . For each term in your results, label it as a mass matrix term (i.e., it would appear in $M(\theta)\ddot{\theta}$), a velocity product term, or a potential term.
- 5. Describe the Newton-Euler inverse dynamics for a robot arm in intuitive plain English, assuming the reader understands the Newton-Euler dynamics of a rotating rigid body. There are three equations in the forward iterations and two equations in the backward iteration. For each term that appears on the right-hand side of each of the five equations, provide approximately one plain English sentence justifying why that term appears or makes sense.
- 6. Exercise 9.1.
- 7. Exercise 9.3.
- 8. Exercise 9.21.
- 9. Exercise 9.22.
- 10. Exercise 11.6.