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Foreword by Roger
Brockett

In the 1870s, Felix Klein was developing his far-reaching Erlangen Program,
which cemented the relationship between geometry and group theoretic ideas.
With Sophus Lie’s nearly simultaneous development of a theory of continuous
(Lie) groups, important new tools involving infinitesimal analysis based on Lie
algebraic ideas became available for the study of a very wide range of geomet-
ric problems. Even today, the thinking behind these ideas continues to guide
developments in important areas of mathematics. Kinematic mechanisms are,
of course, more than just geometry; they need to accelerate, avoid collisions,
etc., but first of all they are geometrical objects and the ideas of Klein and Lie
apply. The groups of rigid motions in two or three dimensions, as they appear
in robotics, are important examples in the work of Klein and Lie.

In the mathematics literature the representation of elements of a Lie group in
terms of exponentials usually takes one of two different forms. These are known
as exponential coordinates of the first kind and exponential coordinates of the
second kind. For the first kind one has X = e(41#1+4222) " For the second kind
this is replaced by X = e41#1e42%2 ... Up until now, the first choice has found
little utility in the study of kinematics whereas the second choice, a special case
having already shown up in Euler parametrizations of the orthogonal group,
turns out to be remarkably well-suited for the description of open kinematic
chains consisting of the concatenation of single degree of freedom links. This
is all nicely explained in Chapter 4 of this book. Together with the fact that
PeAp—1 = PAP 71, the second form allows one to express a wide variety of
kinematic problems very succinctly. From a historical perspective, the use of
the product of exponentials to represent robotic movement, as the authors have
done here, can be seen as illustrating the practical utility of the 150-year-old
ideas of the geometers Klein and Lie.

In 1983 I was invited to speak at the triennial Mathematical Theory of Net-
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% Foreword

works and Systems Conference in Beer Sheva, Israel, and after a little thought
I decided to try to explain something about what my recent experiences had
taught me. By then I had some experience in teaching a robotics course that
discussed kinematics, including the use of the product of exponentials represen-
tation of kinematic chains. From the 1960s onward e4! had played a central
role in system theory and signal processing, so at this conference a familiarity,
even an affection, for the matrix exponential could be counted on. Given this, it
was natural for me to pick something e“®-related for the talk. Although I had
no reason to think that there would be many in the audience with an interest
in kinematics, I still hoped I could say something interesting and maybe even
inspire further developments. The result was the paper referred to in the preface
that follows.

In this book, Frank and Kevin have provided a wonderfully clear and patient
explanation of their subject. They translate the foundation laid out by Klein
and Lie 150 years ago to the modern practice of robotics, at a level appropriate
for undergraduate engineers. After an elegant discussion of fundamental prop-
erties of configuration spaces, they introduce the Lie group representations of
rigid-body configurations, and the corresponding representations of velocities
and forces, used throughout the book. This consistent perspective is carried
through foundational robotics topics including forward, inverse, and differential
kinematics of open chains, robot dynamics, trajectory generation, and robot
control, and more specialized topics such as kinematics of closed chains, motion
planning, robot manipulation, planning and control for wheeled mobile robots,
and control of mobile manipulators.

I am confident that this book will be a valuable resource for a generation of
students and practitioners of robotics.

Roger Brockett
Cambridge, Massachusetts, USA
November, 2016
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Foreword by Matthew
Mason

Robotics is about turning ideas into action. Somehow, robots turn abstract
goals into physical action: sending power to motors, monitoring motions, and
guiding things towards the goal. Every human can perform this trick, but it
is nonetheless so intriguing that it has captivated philosophers and scientists,
including Descartes and many others.

What is the secret? Did some roboticist have a eureka moment? Did some
pair of teenage entrepreneurs hit on the key idea in their garage? To the con-
trary, it is not a single idea. It is a substantial body of scientific and engineer-
ing results, accumulated over centuries. It draws primarily from mathematics,
physics, mechanical engineering, electrical engineering, and computer science,
but also from philosophy, psychology, biology and other fields.

Robotics is the gathering place of these ideas. Robotics provides motivation.
Robotics tests ideas and steers continuing research. Finally, robotics is the
proof. Observing a robot’s behavior is the nearly compelling proof that machines
can be aware of their surroundings, can develop meaningful goals, and can act
effectively to accomplish those goals. The same principles apply to a thermostat
or a fly-ball governor, but few are persuaded by watching a thermostat. Nearly
all are persuaded by watching a robot soccer team.

The heart of robotics is motion — controlled programmable motion — which
brings us to the present text. Modern Robotics imparts the most important
insights of robotics: the nature of motion, the motions available to rigid bodies,
the use of kinematic constraint to organize motions, the mechanisms that enable
general programmable motion, the static and dynamic character of mechanisms,
and the challenges and approaches to control, programming, and planning mo-
tions. Modern Robotics presents this material with a clarity that makes it acces-
sible to undergraduate students. It is distinguished from other undergraduate
texts in two important ways.

xi



xii Foreword

First, in addressing rigid-body motion, Modern Robotics presents not only
the classical geometrical underpinnings and representations, but also their ex-
pression using modern matrix exponentials, and the connection to Lie algebras.
The rewards to the students are two-fold: a deeper understanding of motion,
and better practical tools.

Second, Modern Robotics goes beyond a focus on robot mechanisms to ad-
dress the interaction with objects in the surrounding world. When robots make
contact with the real world, the result is an ad hoc kinematic mechanism, with
associated statics and dynamics. The mechanism includes kinematic loops, un-
actuated joints, and nonholonomic constraints, all of which will be familiar
concepts to students of Modern Robotics.

Even if this is the only robotics course students take, it will enable them
to analyze, control, and program a wide range of physical systems. With its
introduction to the mechanics of physical interaction, Modern Robotics is also
an excellent beginning for the student who intends to continue with advanced
courses or with original research in robotics.

Matthew T. Mason

Pittsburgh, PA, USA
November, 2016
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Preface

It was at the IEEE International Conference on Robotics and Automation in
Pasadena in 2008 when, over a beer, we decided to write an undergraduate
textbook on robotics. Since 1996, Frank had been teaching robot kinematics to
Seoul National University undergraduates using his own lecture notes; by 2008
these notes had evolved to the kernel around which this book was written. Kevin
had been teaching his introductory robotics class at Northwestern University
from his own set of notes, with content drawn from an eclectic collection of
papers and books.

We believe that there is a distinct and unifying perspective to mechanics,
planning, and control for robots that is lost if these subjects are studied inde-
pendently, or as part of other more traditional subjects. At the 2008 meeting,
we noted the lack of a textbook that (a) treated these topics in a unified way,
with plenty of exercises and figures, and (b), most importantly, was written
at a level appropriate for a first robotics course for undergraduates with only
freshman-level physics, ordinary differential equations, linear algebra, and a lit-
tle bit of computing background. We decided that the only sensible recourse
was to write such a book ourselves. (We didn’t know then that it would take
us more than eight years to finish the project!)

A second motivation for this book, and one that we believe sets it apart from
other introductory treatments on robotics, is its emphasis on modern geometric
techniques. Often the most salient physical features of a robot are best captured
by a geometric description. The advantages of the geometric approach have been
recognized for quite some time by practitioners of classical screw theory. What
has made these tools largely inaccessible to undergraduates—the primary tar-
get audience for this book—is that they require an entirely new language of
notations and constructs (screws, twists, wrenches, reciprocity, transversality,
conjugacy, etc.), and their often obscure rules for manipulation and transfor-
mation. On the other hand, the mostly algebraic alternatives to screw theory
often mean that students end up buried in the details of calculation, losing the

xiii



xiv Preface

simple and elegant geometric interpretation that lies at the heart of what they
are calculating.

The breakthrough that makes the techniques of classical screw theory ac-
cessible to a more general audience arrived in the early 1980’s, when Roger
Brockett showed how to mathematically describe kinematic chains in terms of
the Lie group structure of the rigid-body motions [20]. This discovery allowed
one, among other things, to re-invent screw theory simply by appealing to basic
linear algebra and linear differential equations. With this “modern screw the-
ory” the powerful tools of modern differential geometry can be brought to bear
on a wide-ranging collection of robotics problems, some of which we explore
here, others of which are covered in the excellent but more advanced graduate
textbook by Murray, Li and Sastry [122].

As the title indicates, this book covers what we feel to be the fundamentals
of robot mechanics, together with the basics of planning and control. A thor-
ough treatment of all the chapters would likely take two semesters, particularly
when coupled with programming assignments or experiments with robots. The
contents of Chapters 2-6 constitute the minimum essentials, and these topics
should probably be covered in sequence.

The instructor can then selectively choose content from the remaining chap-
ters. At Seoul National University, the undergraduate course M2794.0027 Intro-
duction to Robotics covers, in one semester, Chapters 2-7 and parts of Chapters
10, 11, and 12. At Northwestern, ME 449 Robotic Manipulation covers, in an 11-
week quarter, Chapters 2-6 and 8, then touches on different topics in Chapters
9-13 depending on the interests of the students and instructor. A course focus-
ing on the kinematics of robot arms and wheeled vehicles could cover chapters
2-7 and 13, while a course on kinematics and motion planning could addition-
ally include Chapters 9 and 10. A course on the mechanics of manipulation
would cover Chapters 2-6, 8, and 12, while a course on robot control would
cover Chapters 2-6, 8, 9, and 11. If the instructor prefers to avoid dynamics
(Chapter 8), the basics of robot control (Chapters 11 and 13) can be covered by
assuming control of velocity at each actuator, not forces and torques. A course
focusing only on motion planning could cover Chapters 2 and 3, Chapter 10 in
depth (possibly supplemented by research papers or other references cited in
that chapter), and Chapter 13.

To help the instructor choose which topics to teach and to help the student
keep track of what she has learned, we have included a summary at the end of
each chapter and a summary of important notation and formulas used through-
out the book (Appendix A). For those whose primary interest in this text is
as an introductory reference, we have attempted to provide a reasonably com-
prehensive, though by no means exhaustive, set of references and bibliographic
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Preface XV

notes at the end of each chapter. Some of the exercises provided at the end of
each chapter extend the basic results covered in the book, and for those who
wish to probe further, these should be of some interest in their own right. Some
of the more advanced material in the book can be used to support independent
study projects.

Another important component of the book is the software, which is written
to reinforce the concepts in the book and to make the formulas operational. The
software was developed primarily by Kevin’s ME 449 students at Northwestern
and is freely downloadable from http://modernrobotics.org. Video lectures
that accompany the textbook will also be available at the website. The intent
of the video content is to “flip” the classroom. Students watch the brief lectures
on their own time, rewinding and rewatching as needed, and class time is fo-
cused more on collaborative problem-solving. This way, the professor is present
when the students are applying the material and discovering the gaps in their
understanding, creating the opportunity for interactive mini-lectures addressing
the concepts that need most reinforcing. We believe that the added value of
the professor is greatest in this interactive role, not in delivering a lecture the
same way it was delivered the previous year. This approach has worked well for
Kevin’s introduction to mechatronics course, http://nu32.org.

Video content is generated using the Lightboard, http://lightboard.info,
created by Michael Peshkin at Northwestern University. We thank him for
sharing this convenient and effective tool for creating instructional videos.

We have also found the V-REP robot simulation software to be a valuable
supplement to the book and its software. This simulation software allows stu-
dents to interactively explore the kinematics of robot arms and mobile manipu-
lators and to animate trajectories that are the result of exercises on kinematics,
dynamics, and control.

While this book presents our own perspective on how to introduce the fun-
damental topics in first courses on robot mechanics, planning, and control, we
acknowledge the excellent textbooks that already exist and that have served
our field well. Among these, we would like to mention as particularly influential
the books by Murray, Li, and Sastry [122]; Craig [32]; Spong, Hutchinson, and
Vidyasagar [177]; Siciliano, Sciavicco, Villani, and Oriolo [171]; Mason [109];
Corke [30]; and the motion planning books by Latombe [30], LaValle [33], and
Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki, and Thrun [27]. In ad-
dition, the Handbook of Robotics [170], edited by Siciliano and Khatib with
a multimedia extension edited by Kroger (http://handbookofrobotics.org),
is a landmark in our field, collecting the perspectives of hundreds of leading
researchers on a huge variety of topics relevant to modern robotics.

It is our pleasure to acknowledge the many people who have been the sources
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Chapter 1

Preview

As an academic discipline, robotics is a relatively young field with highly am-
bitious goals, the ultimate one being the creation of machines that can behave
and think like humans. This attempt to create intelligent machines naturally
leads us first to examine ourselves — to ask, for example, why our bodies are
designed the way they are, how our limbs are coordinated, and how we learn and
perform complex tasks. The sense that the fundamental questions in robotics
are ultimately questions about ourselves is part of what makes robotics such a
fascinating and engaging endeavor.

Our focus in this book is on mechanics, planning, and control for robot
mechanisms. Robot arms are one familiar example. So are wheeled vehicles,
as are robot arms mounted on wheeled vehicles. Basically, a mechanism is con-
structed by connecting rigid bodies, called links, together by means of joints,
so that relative motion between adjacent links becomes possible. Actuation of
the joints, typically by electric motors, then causes the robot to move and exert
forces in desired ways.

The links of a robot mechanism can be arranged in serial fashion, like the
familiar open-chain arm shown in Figure 1.1(a). Robot mechanisms can also
have links that form closed loops, such as the Stewart—Gough platform shown
in Figure 1.1(b). In the case of an open chain, all the joints are actuated, while
in the case of mechanisms with closed loops, only a subset of the joints may be
actuated.

Let us examine more closely the current technology behind robot mecha-
nisms. The links are moved by actuators, which typically are electrically driven
(e.g., by DC or AC motors, stepper motors, or shape memory alloys) but can
also be driven by pneumatic or hydraulic cylinders. In the case of rotating



(a) An open-chain industrial manipulator, (b) Stewart—Gough platform. Closed

visualized in V-REP [154]. loops are formed from the base plat-
form, through the legs, through the top
platform, and through the legs back to
the base platform.

Figure 1.1: Open-chain and closed-chain robot mechanisms.

electric motors, these would ideally be lightweight, operate at relatively low ro-
tational speeds (e.g., in the range of hundreds of RPM), and be able to generate
large forces and torques. Since most currently available motors operate at low
torques and at up to thousands of RPM, speed reduction and torque ampli-
fication are required. Examples of such transmissions or transformers include
gears, cable drives, belts and pulleys, and chains and sprockets. These speed-
reduction devices should have zero or low slippage and backlash (defined as
the amount of rotation available at the output of the speed-reduction device
without motion at the input). Brakes may also be attached to stop the robot
quickly or to maintain a stationary posture.

Robots are also equipped with sensors to measure the motion at the joints.
For both revolute and prismatic joints, encoders, potentiometers, or resolvers
measure the displacement and sometimes tachometers are used to measure ve-
locity. Forces and torques at the joints or at the end-effector of the robot can be
measured using various types of force-torque sensors. Additional sensors may
be used to help localize objects or the robot itself, such as vision-only cameras,
RGB-D cameras which measure the color (RGB) and depth (D) to each pixel,
laser range finders, and various types of acoustic sensor.

The study of robotics often includes artificial intelligence and computer per-
ception, but an essential feature of any robot is that it moves in the physical
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world. Therefore, this book, which is intended to support a first course in
robotics for undergraduates and graduate students, focuses on mechanics, mo-
tion planning, and control of robot mechanisms.

In the rest of this chapter we provide a preview of the rest of the book.

Chapter 2: Configuration Space

As mentioned above, at its most basic level a robot consists of rigid bodies
connected by joints, with the joints driven by actuators. In practice the links
may not be completely rigid, and the joints may be affected by factors such as
elasticity, backlash, friction, and hysteresis. In this book we ignore these effects
for the most part and assume that all links are rigid.

With this assumption, Chapter 2 focuses on representing the configuration
of a robot system, which is a specification of the position of every point of the
robot. Since the robot consists of a collection of rigid bodies connected by
joints, our study begins with understanding the configuration of a rigid body.
We see that the configuration of a rigid body in the plane can be described
using three variables (two for the position and one for the orientation) and the
configuration of a rigid body in space can be described using six variables (three
for the position and three for the orientation). The number of variables is the
number of degrees of freedom (dof) of the rigid body. It is also the dimension
of the configuration space, the space of all configurations of the body.

The dof of a robot, and hence the dimension of its configuration space, is
the sum of the dof of its rigid bodies minus the number of constraints on the
motion of those rigid bodies provided by the joints. For example, the two most
popular joints, revolute (rotational) and prismatic (translational) joints, allow
only one motion freedom between the two bodies they connect. Therefore a
revolute or prismatic joint can be thought of as providing five constraints on
the motion of one spatial rigid body relative to another. Knowing the dof of
a rigid body and the number of constraints provided by joints, we can derive
Griibler’s formula for calculating the dof of general robot mechanisms. For
open-chain robots such as the industrial manipulator of Figure 1.1(a), each
joint is independently actuated and the dof is simply the sum of the freedoms
provided by each joint. For closed chains like the Stewart—Gough platform
in Figure 1.1(b), Griibler’s formula is a convenient way to calculate a lower
bound on the dof. Unlike open-chain robots, some joints of closed chains are
not actuated.

Apart from calculating the dof, other configuration space concepts of interest
include the topology (or “shape”) of the configuration space and its repre-
sentation. Two configuration spaces of the same dimension may have different
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shapes, just like a two-dimensional plane has a different shape from the two-
dimensional surface of a sphere. These differences become important when de-
termining how to represent the space. The surface of a unit sphere, for example,
could be represented using a minimal number of coordinates, such as latitude
and longitude, or it could be represented by three numbers (x,y, z) subject to
the constraint 22 + y% + 22 = 1. The former is an explicit parametrization
of the space and the latter is an implicit parametrization of the space. Each
type of representation has its advantages, but in this book we will use implicit
representations of configurations of rigid bodies.

A robot arm is typically equipped with a hand or gripper, more generally
called an end-effector, which interacts with objects in the surrounding world.
To accomplish a task such as picking up an object, we are concerned with the
configuration of a reference frame rigidly attached to the end-effector, and not
necessarily the configuration of the entire arm. We call the space of positions
and orientations of the end-effector frame the task space and note that there
is not a one-to-one mapping between the robot’s configuration space and the
task space. The workspace is defined to be the subset of the task space that
the end-effector frame can reach.

Chapter 3: Rigid-Body Motions

This chapter addresses the problem of how to describe mathematically the mo-
tion of a rigid body moving in three-dimensional physical space. One convenient
way is to attach a reference frame to the rigid body and to develop a way to
quantitatively describe the frame’s position and orientation as it moves. As a
first step, we introduce a 3 x 3 matrix representation for describing a frame’s
orientation; such a matrix is referred to as a rotation matrix.

A rotation matrix is parametrized by three independent coordinates. The
most natural and intuitive way to visualize a rotation matrix is in terms of its
exponential coordinate representation. That is, given a rotation matrix R,
there exists some unit vector @ € R? and angle 6 € [0, 7] such that the rota-
tion matrix can be obtained by rotating the identity frame (that is, the frame
corresponding to the identity matrix) about & by 6. The exponential coordi-
nates are defined as w = @ € R3, which is a three-parameter representation.
There are several other well-known coordinate representations, e.g., Euler an-
gles, Cayley—Rodrigues parameters, and unit quaternions, which are discussed
in Appendix B.

Another reason for focusing on the exponential description of rotations is
that they lead directly to the exponential description of rigid-body motions.
The latter can be viewed as a modern geometric interpretation of classical screw
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theory. Keeping the classical terminology as much as possible, we cover in detail
the linear algebraic constructs of screw theory, including the unified description
of linear and angular velocities as six-dimensional twists (also known as spa-
tial velocities), and an analogous description of three-dimensional forces and
moments as six-dimensional wrenches (also known as spatial forces).

Chapter 4: Forward Kinematics

For an open chain, the position and orientation of the end-effector are uniquely
determined from the joint positions. The forward kinematics problem is to
find the position and orientation of the reference frame attached to the end-
effector given the set of joint positions. In this chapter we present the product
of exponentials (PoE) formula describing the forward kinematics of open
chains. As the name implies, the PoE formula is directly derived from the expo-
nential coordinate representation for rigid-body motions. Aside from providing
an intuitive and easily visualizable interpretation of the exponential coordinates
as the twists of the joint axes, the PoE formula offers other advantages, like
eliminating the need for link frames (only the base frame and end-effector frame
are required, and these can be chosen arbitrarily).

In Appendix C we also present the Denavit—Hartenberg (D—-H) representa-
tion for forward kinematics. The D—H representation uses fewer parameters but
requires that reference frames be attached to each link following special rules of
assignment, which can be cumbersome. Details of the transformation from the
D-H to the PoE representation are also provided in Appendix C.

Chapter 5: Velocity Kinematics and Statics

Velocity kinematics refers to the relationship between the joint linear and an-
gular velocities and those of the end-effector frame. Central to velocity kine-
matics is the Jacobian of the forward kinematics. By multiplying the vector
of joint-velocity rates by this configuration-dependent matrix, the twist of the
end-effector frame can be obtained for any given robot configuration. Kine-
matic singularities, which are configurations in which the end-effector frame
loses the ability to move or rotate in one or more directions, correspond to those
configurations at which the Jacobian matrix fails to have maximal rank. The
manipulability ellipsoid, whose shape indicates the ease with which the robot
can move in various directions, is also derived from the Jacobian.

Finally, the Jacobian is also central to static force analysis. In static equilib-
rium settings, the Jacobian is used to determine what forces and torques need to
be exerted at the joints in order for the end-effector to apply a desired wrench.
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The definition of the Jacobian depends on the representation of the end-
effector velocity, and our preferred representation of the end-effector velocity
is as a six-dimensional twist. We touch briefly on other representations of the
end-effector velocity and their corresponding Jacobians.

Chapter 6: Inverse Kinematics

The inverse kinematics problem is to determine the set of joint positions
that achieves a desired end-effector configuration. For open-chain robots, the
inverse kinematics is in general more involved than the forward kinematics: for
a given set of joint positions there usually exists a unique end-effector position
and orientation but, for a particular end-effector position and orientation, there
may exist multiple solutions to the jont positions, or no solution at all.

In this chapter we first examine a popular class of six-dof open-chain struc-
tures whose inverse kinematics admits a closed-form analytic solution. Itera-
tive numerical algorithms are then derived for solving the inverse kinematics
of general open chains by taking advantage of the inverse of the Jacobian. If
the open-chain robot is kinematically redundant, meaning that it has more
joints than the dimension of the task space, then we use the pseudoinverse of
the Jacobian.

Chapter 7: Kinematics of Closed Chains

While open chains have unique forward kinematics solutions, closed chains of-
ten have multiple forward kinematics solutions, and sometimes even multiple
solutions for the inverse kinematics as well. Also, because closed chains possess
both actuated and passive joints, the kinematic singularity analysis of closed
chains presents subtleties not encountered in open chains. In this chapter we
study the basic concepts and tools for the kinematic analysis of closed chains.
We begin with a detailed case study of mechanisms such as the planar five-bar
linkage and the Stewart-Gough platform. These results are then generalized
into a systematic methodology for the kinematic analysis of more general closed
chains.

Chapter 8: Dynamics of Open Chains

Dynamics is the study of motion taking into account the forces and torques
that cause it. In this chapter we study the dynamics of open-chain robots. In
analogy to the notions of a robot’s forward and inverse kinematics, the forward
dynamics problem is to determine the resulting joint accelerations for a given
set of joint forces and torques. The inverse dynamics problem is to determine
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the input joint torques and forces needed for desired joint accelerations. The
dynamic equations relating the forces and torques to the motion of the robot’s
links are given by a set of second-order ordinary differential equations.

The dynamics for an open-chain robot can be derived using one of two ap-
proaches. In the Lagrangian approach, first a set of coordinates — referred to
as generalized coordinates in the classical dynamics literature — is chosen to
parametrize the configuration space. The sum of the potential and kinetic
energies of the robot’s links are then expressed in terms of the generalized
coordinates and their time derivatives. These are then substituted into the
Euler—Lagrange equations, which then lead to a set of second-order differ-
ential equations for the dynamics, expressed in the chosen coordinates for the
configuration space.

The Newton—Euler approach builds on the generalization of f = ma, i.e.,
the equations governing the acceleration of a rigid body given the wrench acting
on it. Given the joint variables and their time derivatives, the Newton-Euler
approach to inverse dynamics is: to propagate the link velocities and accelera-
tions outward from the proximal link to the distal link, in order to determine
the velocity and acceleration of each link; to use the equations of motion for
a rigid body to calculate the wrench (and therefore the joint force or torque)
that must be acting on the outermost link; and to proceed along the links back
toward the base of the robot, calculating the joint forces or torques needed to
create the motion of each link and to support the wrench transmitted to the dis-
tal links. Because of the open-chain structure, the dynamics can be formulated
recursively.

In this chapter we examine both approaches to deriving a robot’s dynamic
equations. Recursive algorithms for both the forward and inverse dynamics, as
well as analytical formulations of the dynamic equations, are presented.

Chapter 9: Trajectory Generation

What sets a robot apart from an automated machine is that it should be easily
reprogrammable for different tasks. Different tasks require different motions,
and it would be unreasonable to expect the user to specify the entire time-
history of each joint for every task; clearly it would be desirable for the robot’s
control computer to “fill in the details” from a small set of task input data.

This chapter is concerned with the automatic generation of joint trajectories
from this set of task input data. Formally, a trajectory consists of a path, which
is a purely geometric description of the sequence of configurations achieved by
a robot, and a time scaling, which specifies the times at which those configu-
rations are reached.
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Often the input task data is given in the form of an ordered set of joint values,
called control points, together with a corresponding set of control times. On the
basis of this data the trajectory generation algorithm produces a trajectory for
each joint which satisfies various user-supplied conditions. In this chapter we
focus on three cases: (i) point-to-point straight-line trajectories in both joint
space and task space; (ii) smooth trajectories passing through a sequence of
timed “via points”; and (iii) time-optimal trajectories along specified paths,
subject to the robot’s dynamics and actuator limits. Finding paths that avoid
collisions is the subject of the next chapter on motion planning.

Chapter 10: Motion Planning

This chapter addresses the problem of finding a collision-free motion for a robot
through a cluttered workspace, while avoiding joint limits, actuator limits, and
other physical constraints imposed on the robot. The path planning problem
is a subproblem of the general motion planning problem that is concerned with
finding a collision-free path between a start and goal configuration, usually
without regard to the dynamics, the duration of the motion, or other constraints
on the motion or control inputs.

There is no single planner applicable to all motion planning problems. In
this chapter we consider three basic approaches: grid-based methods, sampling
methods, and methods based on virtual potential fields.

Chapter 11: Robot Control

A robot arm can exhibit a number of different behaviors depending on the task
and its environment. It can act as a source of programmed motions for tasks
such as moving an object from one place to another, or tracing a trajectory for
manufacturing applications. It can act as a source of forces, for example when
grinding or polishing a workpiece. In tasks such as writing on a chalkboard, it
must control forces in some directions (the force pressing the chalk against the
board) and motions in other directions (the motion in the plane of the board).
In certain applications, e.g., haptic displays, we may want the robot to act like
a programmable spring, damper, or mass, by controlling its position, velocity,
or acceleration in response to forces applied to it.

In each of these cases, it is the job of the robot controller to convert the
task specification to forces and torques at the actuators. Control strategies to
achieve the behaviors described above are known as motion (or position) con-
trol, force control, hybrid motion—force control, and impedance con-
trol. Which of these behaviors is appropriate depends on both the task and
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the environment. For example, a force-control goal makes sense when the end-
effector is in contact with something, but not when it is moving in free space.
We also have a fundamental constraint imposed by the mechanics, irrespective
of the environment: the robot cannot independently control both motions and
forces in the same direction. If the robot imposes a motion then the environment
determines the force, and vice versa.

Most robots are driven by actuators that apply a force or torque to each
joint. Hence, precisely controlling a robot requires an understanding of the
relationship between the joint forces and torques and the motion of the robot;
this is the domain of dynamics. Even for simple robots, however, the dynamic
equations are complex and dependent on a precise knowledge of the mass and
inertia of each link, which may not be readily available. Even if it were, the
dynamic equations would still not reflect physical phenomena such as friction,
elasticity, backlash, and hysteresis.

Most practical control schemes compensate for these uncertainties by using
feedback control. After examining the performance limits of feedback control
without a dynamic model of the robot, we study motion control algorithms,
such as computed torque control, that combine approximate dynamic mod-
eling with feedback control. The basic lessons learned for robot motion control
are then applied to force control, hybrid motion—force control, and impedance
control.

Chapter 12: Grasping and Manipulation

The focus of earlier chapters is on characterizing, planning, and controlling the
motion of the robot itself. To do useful work, the robot must be capable of
manipulating objects in its environment. In this chapter we model the con-
tact between the robot and an object, specifically the constraints on the object
motion imposed by a contact and the forces that can be transmitted through a
frictional contact. With these models we study the problem of choosing contacts
to immobilize an object by form closure and force closure grasping. We also
apply contact modeling to manipulation problems other than grasping, such as
pushing an object, carrying an object dynamically, and testing the stability of
a structure.

Chapter 13: Wheeled Mobile Robots

The final chapter addresses the kinematics, motion planning, and control of
wheeled mobile robots and of wheeled mobile robots equipped with robot arms.
A mobile robot can use specially designed omniwheels or mecanum wheels
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to achieve omnidirectional motion, including spinning in place or translating
in any direction. Many mobile bases, however, such as cars and differential-
drive robots, use more typical wheels, which do not slip sideways. These no-slip
constraints are fundamentally different from the loop-closure constraints found
in closed chains; the latter are holonomic, meaning that they are configuration
constraints, while the former are nonholonomic, meaning that the velocity
constraints cannot be integrated to become equivalent configuration constraints.

Because of the different properties of omnidirectional mobile robots ver-
sus nonholonomic mobile robots, we consider their kinematic modeling, motion
planning, and control separately. In particular, the motion planning and con-
trol of nonholonomic mobile robots is more challenging than for omnidirectional
mobile robots.

Once we have derived their kinematic models, we show that the odometry
problem — the estimation of the chassis configuration based on wheel encoder
data — can be solved in the same way for both types of mobile robots. Similarly,
for mobile manipulators consisting of a wheeled base and a robot arm, we show
that feedback control for mobile manipulation (controlling the motion of the
end-effector using the arm joints and wheels) is the same for both types of
mobile robots. The fundamental object in mobile manipulation is the Jacobian
mapping joint rates and wheel velocities to end-effector twists.

Each chapter concludes with a summary of important concepts from the
chapter, and Appendix A compiles some of the most used equations into a handy
reference. Videos supporting the book can be found at the book’s website, http:
//modernrobotics.org. Some chapters have associated software, downloadable
from the website. The software is meant to be neither maximally robust nor
efficient but to be readable and to reinforce the concepts in the book. You are
encouraged to read the software, not just use it, to cement your understanding
of the material. Each function contains a sample usage in the comments. The
software package may grow over time, but the core functions are documented
in the chapters themselves.
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Chapter 2

Configuration Space

A robot is mechanically constructed by connecting a set of bodies, called links,
to each other using various types of joints. Actuators, such as electric motors,
deliver forces or torques that cause the robot’s links to move. Usually an end-
effector, such as a gripper or hand for grasping and manipulating objects, is
attached to a specific link. All the robots considered in this book have links
that can be modeled as rigid bodies.

Perhaps the most fundamental question one can ask about a robot is, where
is it? The answer is given by the robot’s configuration: a specification of the
positions of all points of the robot. Since the robot’s links are rigid and of a
known shape,! only a few numbers are needed to represent its configuration.
For example, the configuration of a door can be represented by a single number,
the angle 6 about its hinge. The configuration of a point on a plane can be
described by two coordinates, (z,y). The configuration of a coin lying heads
up on a flat table can be described by three coordinates: two coordinates (x,y)
that specify the location of a particular point on the coin, and one coordinate
(0) that specifies the coin’s orientation. (See Figure 2.1).

The above coordinates all take values over a continuous range of real num-
bers. The number of degrees of freedom (dof) of a robot is the smallest
number of real-valued coordinates needed to represent its configuration. In the
example above, the door has one degree of freedom. The coin lying heads up
on a table has three degrees of freedom. Even if the coin could lie either heads
up or tails up, its configuration space still would have only three degrees of
freedom; a fourth variable, representing which side of the coin faces up, takes
values in the discrete set {heads, tails}, and not over a continuous range of real

LCompare with trying to represent the configuration of a soft object like a pillow.
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(a) (b) (c)

Figure 2.1: (a) The configuration of a door is described by the angle 6. (b) The
configuration of a point in a plane is described by coordinates (z,y). (c) The config-
uration of a coin on a table is described by (z,y,6), where 6 defines the direction in
which Abraham Lincoln is looking.

values like the other three coordinates.

Definition 2.1. The configuration of a robot is a complete specification of
the position of every point of the robot. The minimum number n of real-valued
coordinates needed to represent the configuration is the number of degrees of
freedom (dof) of the robot. The n-dimensional space containing all possible
configurations of the robot is called the configuration space (C-space). The
configuration of a robot is represented by a point in its C-space.

In this chapter we study the C-space and degrees of freedom of general
robots. Since our robots are constructed from rigid links, we examine first the
degrees of freedom of a single rigid body, and then the degrees of freedom of
general multi-link robots. Next we study the shape (or topology) and geometry
of C-spaces and their mathematical representation. The chapter concludes with
a discussion of the C-space of a robot’s end-effector, its task space. In the
following chapter we study in more detail the mathematical representation of
the C-space of a single rigid body.

2.1 Degrees of Freedom of a Rigid Body

Continuing with the example of the coin lying on the table, choose three points
A, B, and C on the coin (Figure 2.2(a)). Once a coordinate frame Xy is
attached to the plane,? the positions of these points in the plane are written

2The unit axes of coordinate frames are written with a hat, indicating they are unit vectors,
and in a non-italic font, e.g., X, ¥, and Z.
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Figure 2.2: (a) Choosing three points fixed to the coin. (b) Once the location of A is
chosen, B must lie on a circle of radius dap centered at A. Once the location of B is
chosen, C must lie at the intersection of circles centered at A and B. Only one of these
two intersections corresponds to the “heads up” configuration. (c) The configuration
of a coin in three-dimensional space is given by the three coordinates of A, two angles
to the point B on the sphere of radius dap centered at A, and one angle to the point
C on the circle defined by the intersection of the a sphere centered at A and a sphere
centered at B.

(xa,ya), (xB,yB), and (xc,yc). If the points could be placed independently
anywhere in the plane, the coin would have six degrees of freedom — two for each
of the three points. But, according to the definition of a rigid body, the distance
between point A and point B, denoted d(A, B), is always constant regardless of
where the coin is. Similarly, the distances d(B, C') and d(A, C) must be constant.
The following equality constraints on the coordinates (x4,ya), (z5,y5), and
(zc, yo) must therefore always be satisfied:

d(A,B) = /(x4 —75)2 + (ya — y5)* = das,
d(B,C) =+/(zp —2c)? + (ys — yc)? = dpc,
d(A,C) = /(x4 —2c)? + (ya — yo)? = dac-

To determine the number of degrees of freedom of the coin on the table, first
choose the position of point A in the plane (Figure 2.2(b)). We may choose it
to be anything we want, so we have two degrees of freedom to specify, namely
(xa,ya). Once (xa,ya) is specified, the constraint d(A, B) = dap restricts the
choice of (zp,yp) to those points on the circle of radius dap centered at A.
A point on this circle can be specified by a single parameter, e.g., the angle
specifying the location of B on the circle centered at A. Let’s call this angle
¢ap and define it to be the angle that the vector E makes with the X-axis.
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Once we have chosen the location of point B, there are only two possible
locations for C: at the intersections of the circle of radius d4¢ centered at A
and the circle of radius dg¢ centered at B (Figure 2.2(b)). These two solutions
correspond to heads or tails. In other words, once we have placed A and B and
chosen heads or tails, the two constraints d(A,C) = dac and d(B,C) = dpc
eliminate the two apparent freedoms provided by (z¢,yc), and the location of
C is fixed. The coin has exactly three degrees of freedom in the plane, which
can be specified by (z4,y4,daB).

Suppose that we choose to specify the position of an additional point D
on the coin. This introduces three additional constraints: d(A,D) = dap,
d(B,D) = dpp, and d(C, D) = dcp. One of these constraints is redundant,
i.e., it provides no new information; only two of the three constraints are inde-
pendent. The two freedoms apparently introduced by the coordinates (zp,yp)
are then immediately eliminated by these two independent constraints. The
same would hold for any other newly chosen point on the coin, so that there is
no need to consider additional points.

We have been applying the following general rule for determining the number
of degrees of freedom of a system:

degrees of freedom = (sum of freedoms of the points) —

(number of independent constraints). (2.1)

This rule can also be expressed in terms of the number of variables and inde-
pendent equations that describe the system:

degrees of freedom = (number of variables) —

(number of independent equations). (2.2)

This general rule can also be used to determine the number of freedoms of
a rigid body in three dimensions. For example, assume our coin is no longer
confined to the table (Figure 2.2(c)). The coordinates for the three points A, B,
and C are now given by (xa,ya, 24), (xB,yB, 28), and (xc, Yo, 2c), respectively.
Point A can be placed freely (three degrees of freedom). The location of point B
is subject to the constraint d(A, B) = dsp, meaning it must lie on the sphere of
radius da g centered at A. Thus we have 3—1 = 2 freedoms to specify, which can
be expressed as the latitude and longitude for the point on the sphere. Finally,
the location of point C' must lie at the intersection of spheres centered at A and
B of radius dac and dpc, respectively. In the general case the intersection of
two spheres is a circle, and the location of point C' can be described by an angle
that parametrizes this circle. Point C' therefore adds 3 — 2 = 1 freedom. Once
the position of point C' is chosen, the coin is fixed in space.
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In summary, a rigid body in three-dimensional space has six freedoms, which
can be described by the three coordinates parametrizing point A, the two angles
parametrizing point B, and one angle parametrizing point C, provided A, B,
and C are noncollinear. Other representations for the configuration of a rigid
body are discussed in Chapter 3.

We have just established that a rigid body moving in three-dimensional
space, which we call a spatial rigid body, has six degrees of freedom. Similarly,
a rigid body moving in a two-dimensional plane, which we henceforth call a
planar rigid body, has three degrees of freedom. This latter result can also
be obtained by considering the planar rigid body to be a spatial rigid body with
six degrees of freedom but with the three independent constraints z4 = zg =
zZo = 0.

Since our robots consist of rigid bodies, Equation (2.1) can be expressed as
follows:

degrees of freedom = (sum of freedoms of the bodies) —

(number of independent constraints). (2.3)

Equation (2.3) forms the basis for determining the degrees of freedom of general
robots, which is the topic of the next section.

2.2 Degrees of Freedom of a Robot

Consider once again the door example of Figure 2.1(a), consisting of a single
rigid body connected to a wall by a hinge joint. From the previous section we
know that the door has only one degree of freedom, conveniently represented
by the hinge joint angle §. Without the hinge joint, the door would be free to
move in three-dimensional space and would have six degrees of freedom. By
connecting the door to the wall via the hinge joint, five independent constraints
are imposed on the motion of the door, leaving only one independent coordinate
(0). Alternatively, the door can be viewed from above and regarded as a planar
body, which has three degrees of freedom. The hinge joint then imposes two
independent constraints, again leaving only one independent coordinate (6).
The door’s C-space is represented by some range in the interval [0,27) over
which 6 is allowed to vary.

In both cases the joints constrain the motion of the rigid body, thus re-
ducing the overall degrees of freedom. This observation suggests a formula for
determining the number of degrees of freedom of a robot, simply by counting
the number of rigid bodies and joints. In this section we derive precisely such

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

16 2.2. Degrees of Freedom of a Robot
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Figure 2.3: Typical robot joints.

a formula, called Griibler’s formula, for determining the number of degrees of
freedom of planar and spatial robots.

2.2.1 Robot Joints

Figure 2.3 illustrates the basic joints found in typical robots. Every joint con-
nects exactly two links; joints that simultaneously connect three or more links
are not allowed. The revolute joint (R), also called a hinge joint, allows ro-
tational motion about the joint axis. The prismatic joint (P), also called a
sliding or linear joint, allows translational (or rectilinear) motion along the di-
rection of the joint axis. The helical joint (H), also called a screw joint, allows
simultaneous rotation and translation about a screw axis. Revolute, prismatic,
and helical joints all have one degree of freedom.

Joints can also have multiple degrees of freedom. The cylindrical joint (C)
has two degrees of freedom and allows independent translations and rotations
about a single fixed joint axis. The universal joint (U) is another two-degree-
of-freedom joint that consists of a pair of revolute joints arranged so that their
joint axes are orthogonal. The spherical joint (S), also called a ball-and-socket
joint, has three degrees of freedom and functions much like our shoulder joint.

A joint can be viewed as providing freedoms to allow one rigid body to
move relative to another. It can also be viewed as providing constraints on the
possible motions of the two rigid bodies it connects. For example, a revolute
joint can be viewed as allowing one freedom of motion between two rigid bodies
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Constraints ¢ | Constraints ¢
between two | between two
Joint type | dof f planar spatial

rigid bodies rigid bodies
Revolute (R) 1 2 5
Prismatic (P) 1 2 5
Helical (H) 1 N/A 5
Cylindrical (C) 2 N/A 4
Universal (U) 2 N/A 4
Spherical (S) 3 N/A 3

Table 2.1: The number of degrees of freedom f and constraints ¢ provided by common
joints.

in space, or it can be viewed as providing five constraints on the motion of one
rigid body relative to the other. Generalizing, the number of degrees of freedom
of a rigid body (three for planar bodies and six for spatial bodies) minus the
number of constraints provided by a joint must equal the number of freedoms
provided by that joint.

The freedoms and constraints provided by the various joint types are sum-
marized in Table 2.1.

2.2.2 Grubler’'s Formula

The number of degrees of freedom of a mechanism with links and joints can be
calculated using Griibler’s formula, which is an expression of Equation (2.3).

Proposition 2.2. Consider a mechanism consisting of N links, where ground
1s also regarded as a link. Let J be the number of joints, m be the number of
degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for
spatial mechanisms), f; be the number of freedoms provided by joint i, and ¢; be
the number of constraints provided by joint i, where f; +¢; = m for all i. Then
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T

Figure 2.4: (a) Four-bar linkage. (b) Slider—crank mechanism.

Griibler’s formula for the number of degrees of freedom of the robot is

J

dof = m(N-1) - E ¢
rigid body freedoms i=1

joint constraints

J
= )= (m=fi)

—m(N—-1-J +Zfz (2.4)

This formula holds only if all joint constraints are independent. If they are not
independent then the formula provides a lower bound on the number of degrees
of freedom.

Below we apply Griibler’s formula to several planar and spatial mechanisms.
We distinguish between two types of mechanism: open-chain mechanisms
(also known as serial mechanisms) and closed-chain mechanisms. A
closed-chain mechanism is any mechanism that has a closed loop. A person
standing with both feet on the ground is an example of a closed-chain mech-
anism, since a closed loop can be traced from the ground, through the right
leg, through the waist, through the left leg, and back to ground (recall that the
ground itself is a link). An open-chain mechanism is any mechanism without a
closed loop; an example is your arm when your hand is allowed to move freely
in space.

Example 2.3 (Four-bar linkage and slider—crank mechanism). The planar four-
bar linkage shown in Figure 2.4(a) consists of four links (one of them ground)
arranged in a single closed loop and connected by four revolute joints. Since all
the links are confined to move in the same plane, we have m = 3. Subsituting
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Figure 2.5: (a) k-link planar serial chain. (b) Five-bar planar linkage. (c) Stephenson
six-bar linkage. (d) Watt six-bar linkage.

N=4,J=4,and f; =1,i=1,...,4, into Griibler’s formula, we see that the
four-bar linkage has one degree of freedom.

The slider—crank closed-chain mechanism of Figure 2.4(b) can be analyzed in
two ways: (i) the mechanism consists of three revolute joints and one prismatic
joint (J = 4 and each f; = 1) and four links (N = 4, including the ground
link), or (ii) the mechanism consists of two revolute joints (f; = 1) and one RP
joint (the RP joint is a concatenation of a revolute and prismatic joint, so that
fi = 2) and three links (N = 3; remember that each joint connects precisely
two bodies). In both cases the mechanism has one degree of freedom.

Example 2.4 (Some classical planar mechanisms). Let us now apply Griibler’s
formula to several classical planar mechanisms. The k-link planar serial chain
of revolute joints in Figure 2.5(a) (called a kR robot for its k revolute joints)
has N = k + 1 links (k links plus ground), and J = k joints, and, since all the
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Figure 2.6: A planar mechanism with two overlapping joints.

joints are revolute, f; = 1 for all 4. Therefore,
dof=3((k+1)—-1-k)+k=k

as expected. For the planar five-bar linkage of Figure 2.5(b), N =5 (four links
plus ground), J = 5, and since all joints are revolute, each f; = 1. Therefore,

dof=3(5—-1-5)4+5=2.

For the Stephenson six-bar linkage of Figure 2.5(c), we have N = 6, J = 7, and
fi =1 for all 7, so that

dof =3(6—1-7)+7=1.

Finally, for the Watt six-bar linkage of Figure 2.5(d), we have N = 6, J = 7,
and f; =1 for all 4, so that, like the Stephenson six-bar linkage,

dof =3(6—1—T7)+7=1.

Example 2.5 (A planar mechanism with overlapping joints). The planar mech-
anism illustrated in Figure 2.6 has three links that meet at a single point on
the right of the large link. Recalling that a joint by definition connects exactly
two links, the joint at this point of intersection should not be regarded as a
single revolute joint. Rather, it is correctly interpreted as two revolute joints
overlapping each other. Again, there is more than one way to derive the number
of degrees of freedom of this mechanism using Griibler’s formula: (i) The mech-
anism cousists of eight links (N = 8), eight revolute joints, and one prismatic
joint. Substituting into Griibler’s formula yields

dof = 3(8 — 1 —9) +9(1) = 3.
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Figure 2.7: (a) A parallelogram linkage. (b) The five-bar linkage in a regular and
singular configuration.

(ii) Alternatively, the lower-right revolute-prismatic joint pair can be regarded
as a single two-dof joint. In this case the number of links is N = 7, with seven
revolute joints, and a single two-dof revolute—prismatic pair. Substituting into
Griibler’s formula yields

dof = 3(7T—1—8) +7(1) + 1(2) = 3.

Example 2.6 (Redundant constraints and singularities). For the parallelogram
linkage of Figure 2.7(a), N = 5, J = 6, and f; = 1 for each joint. From
Griibler’s formula, the number of degrees of freedom is 3(5 —1—6) +6 =0. A
mechanism with zero degrees of freedom is by definition a rigid structure. It is
clear from examining the figure, though, that the mechanism can in fact move
with one degree of freedom. Indeed, any one of the three parallel links, with
its two joints, has no effect on the motion of the mechanism, so we should have
calculated dof = 3(4 — 1 —4) + 4 = 1. In other words, the constraints provided
by the joints are not independent, as required by Griibler’s formula.

A similar situation arises for the two-dof planar five-bar linkage of Fig-
ure 2.7(b). If the two joints connected to ground are locked at some fixed
angle, the five-bar linkage should then become a rigid structure. However, if the
two middle links are the same length and overlap each other, as illustrated in
Figure 2.7(b), these overlapping links can rotate freely about the two overlap-
ping joints. Of course, the link lengths of the five-bar linkage must meet certain
specifications in order for such a configuration to even be possible. Also note
that if a different pair of joints is locked in place, the mechanism does become
a rigid structure as expected.

Griibler’s formula provides a lower bound on the degrees of freedom for cases
like those just described. Configuration space singularities arising in closed
chains are discussed in Chapter 7.
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Figure 2.8: The Delta robot.

Example 2.7 (Delta robot). The Delta robot of Figure 2.8 consists of two
platforms — the lower one mobile, the upper one stationary — connected by
three legs. Each leg contains a parallelogram closed chain and consists of three
revolute joints, four spherical joints, and five links. Adding the two platforms,
there are N = 17 links and J = 21 joints (nine revolute and 12 spherical). By
Griibler’s formula,

dof = 6(17 — 1 — 21) + 9(1) + 12(3) = 15.

Of these 15 degrees of freedom, however, only three are visible at the end-
effector on the moving platform. In fact, the parallelogram leg design ensures
that the moving platform always remains parallel to the fixed platform, so that
the Delta robot acts as an x—y—z Cartesian positioning device. The other 12
internal degrees of freedom are accounted for by torsion of the 12 links in the
parallelograms (each of the three legs has four links in its parallelogram) about
their long axes.

Example 2.8 (Stewart—Gough platform). The Stewart—Gough platform of Fig-
ure 1.1(b) consists of two platforms — the lower one stationary and regarded as
ground, the upper one mobile — connected by six universal-prismatic—spherical
(UPS) legs. The total number of links is 14 (N = 14). There are six universal
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joints (each with two degrees of freedom, f; = 2), six prismatic joints (each with
a single degree of freedom, f; = 1), and six spherical joints (each with three de-
grees of freedom, f; = 3). The total number of joints is 18. Substituting these
values into Griibler’s formula with m = 6 yields

dof = 6(14 — 1 — 18) + 6(1) + 6(2) + 6(3) = 6.

In some versions of the Stewart—Gough platform the six universal joints
are replaced by spherical joints. By Griibler’s formula this mechanism has 12
degrees of freedom; replacing each universal joint by a spherical joint introduces
an extra degree of freedom in each leg, allowing torsional rotations about the
leg axis. Note, however, that this torsional rotation has no effect on the motion
of the mobile platform.

The Stewart—Gough platform is a popular choice for car and airplane cockpit
simulators, as the platform moves with the full six degrees of freedom of motion
of a rigid body. On the one hand, the parallel structure means that each leg
needs to support only a fraction of the weight of the payload. On the other
hand, this structure also limits the range of translational and rotational motion
of the platform relative to the range of motion of the end-effector of a six-dof
open chain.

2.3 Configuration Space: Topology and Represen-
tation

2.3.1 Configuration Space Topology

Until now we have been focusing on one important aspect of a robot’s C-space
— its dimension, or the number of degrees of freedom. However, the shape of the
space is also important.

Consider a point moving on the surface of a sphere. The point’s C-space
is two dimensional, as the configuration can be described by two coordinates,
latitude and longitude. As another example, a point moving on a plane also
has a two-dimensional C-space, with coordinates (z,y). While both a plane and
the surface of a sphere are two dimensional, clearly they do not have the same
shape — the plane extends infinitely while the sphere wraps around.

Unlike the plane, a larger sphere has the same shape as the original sphere, in
that it wraps around in the same way. Only its size is different. For that matter,
an oval-shaped American football also wraps around similarly to a sphere. The
only difference between a football and a sphere is that the football has been
stretched in one direction.
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Figure 2.9: An open interval of the real line, denoted (a,b), can be deformed to an
open semicircle. This open semicircle can then be deformed to the real line by the
mapping illustrated: beginning from a point at the center of the semicircle, draw a ray
that intersects the semicircle and then a line above the semicircle. These rays show
that every point of the semicircle can be stretched to exactly one point on the line,
and vice versa. Thus an open interval can be continuously deformed to a line, so an
open interval and a line are topologically equivalent.

-

The idea that the two-dimensional surfaces of a small sphere, a large sphere,
and a football all have the same kind of shape, which is different from the shape
of a plane, is expressed by the topology of the surfaces. We do not attempt a
rigorous treatment in this book,® but we say that two spaces are topologically
equivalent if one can be continuously deformed into the other without cutting
or gluing. A sphere can be deformed into a football simply by stretching, without
cutting or gluing, so those two spaces are topologically equivalent. You cannot
turn a sphere into a plane without cutting it, however, so a sphere and a plane
are not topologically equivalent.

Topologically distinct one-dimensional spaces include the circle, the line,
and a closed interval of the line. The circle is written mathematically as S or
S1, a one-dimensional “sphere.” The line can be written as E or E!, indicating
a one-dimensional Euclidean (or “flat”) space. Since a point in E! is usually
represented by a real number (after choosing an origin and a length scale), it is
often written as R or R! instead. A closed interval of the line, which contains its
endpoints, can be written [a,b] C R!. (An open interval (a,b) does not include
the endpoints a and b and is topologically equivalent to a line, since the open
interval can be stretched to a line, as shown in Figure 2.9. A closed interval is
not topologically equivalent to a line, since a line does not contain endpoints.)

In higher dimensions, R™ is the n-dimensional Euclidean space and S™ is the
n-dimensional surface of a sphere in (n + 1)-dimensional space. For example,
S? is the two-dimensional surface of a sphere in three-dimensional space.

Note that the topology of a space is a fundamental property of the space
itself and is independent of how we choose coordinates to represent points in the
space. For example, to represent a point on a circle, we could refer to the point

3For those familiar with concepts in topology, all the spaces we consider can be viewed as
embedded in a higher-dimensional Euclidean space, inheriting the Euclidean topology of that
space.
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by the angle # from the center of the circle to the point, relative to a chosen
zero angle. Or, we could choose a reference frame with its origin at the center
of the circle and represent the point by the two coordinates (x,y) subject to the
constraint 22 4+ y? = 1. No matter what our choice of coordinates is, the space
itself does not change.

Some C-spaces can be expressed as the Cartesian product of two or more
spaces of lower dimension; that is, points in such a C-space can be represented
as the union of the representations of points in the lower-dimensional spaces.
For example:

e The C-space of a rigid body in the plane can be written as R? x S,
since the configuration can be represented as the concatenation of the
coordinates (z,y) representing R? and an angle 6 representing S?.

e The C-space of a PR robot arm can be written R! x St. (We will occa-
sionally ignore joint limits, i.e., bounds on the travel of the joints, when
expressing the topology of the C-space; with joint limits, the C-space is
the Cartesian product of two closed intervals of the line.)

e The C-space of a 2R robot arm can be written S' x S* = T2, where T™ is
the n-dimensional surface of a torus in an (n+ 1)-dimensional space. (See
Table 2.2.) Note that S* x St x ... x S! (n copies of S!) is equal to T",
not S"; for example, a sphere S? is not topologically equivalent to a torus
T2

e The C-space of a planar rigid body (e.g., the chassis of a mobile robot)
with a 2R robot arm can be written as R? x St x T? = R? x T3.

e As we saw in Section 2.1 when we counted the degrees of freedom of a
rigid body in three dimensions, the configuration of a rigid body can be
described by a point in R3, plus a point on a two-dimensional sphere S2,
plus a point on a one-dimensional circle S', giving a total C-space of
R3 x §2% x St

2.3.2 Configuration Space Representation

To perform computations, we must have a numerical representation of the
space, consisting of a set of real numbers. We are familiar with this idea from
linear algebra — a vector is a natural way to represent a point in a Euclidean
space. It is important to keep in mind that the representation of a space involves
a choice, and therefore it is not as fundamental as the topology of the space,
which is independent of the representation. For example, the same point in a
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system topology sample representation
. ; (9)
L.,
point on a plane E? R?
latitude
90°
A A
longitude
~180° 9V 180°
spherical pendulum S? [—180°,180°) x [—90°,90°]

02

2m
A A

0

O 27T 01
2R robot arm T?=5'x St [0,27) x [0, 27)
0
2 >
ol |
-—\— — 0 > -
rotating sliding knob E! x St R x [0,27)

Table 2.2: Four topologically different two-dimensional C-spaces and example co-
ordinate representations. In the latitude-longitude representation of the sphere, the
latitudes —90° and 90° each correspond to a single point (the South Pole and the North
Pole, respectively), and the longitude parameter wraps around at 180° and —180°; the
edges with the arrows are glued together. Similarly, the coordinate representations of
the torus and cylinder wrap around at the edges marked with corresponding arrows.

three-dimensional space can have different coordinate representations depending
on the choice of reference frame (the origin and the direction of the coordinate
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axes) and the choice of length scale, but the topology of the underlying space is
the same regardless of theses choices.

While it is natural to choose a reference frame and length scale and to use
a vector to represent points in a Euclidean space, representing a point on a
curved space, such as a sphere, is less obvious. One solution for a sphere is to
use latitude and longitude coordinates. A choice of n coordinates, or parameters,
to represent an n-dimensional space is called an explicit parametrization of
the space. Such an explicit parametrization is valid for a particular range of
the parameters (e.g., [—90°,90°] for latitude and [—180°,180°) for longitude for
a sphere, where, on Earth, negative values correspond to “south” and “west,”
respectively).

The latitude—longitude representation of a sphere is unsatisfactory if you
are walking near the North Pole (where the latitude equals 90°) or South Pole
(where the latitude equals —90°), where taking a very small step can result in a
large change in the coordinates. The North and South Poles are singularities of
the representation, and the existence of singularities is a result of the fact that a
sphere does not have the same topology as a plane, i.e., the space of the two real
numbers that we have chosen to represent the sphere (latitude and longitude).
The location of these singularities has nothing to do with the sphere itself, which
looks the same everywhere, and everything to do with the chosen representation
of it. Singularities of the parametrization are particularly problematic when
representing velocities as the time rate of change of coordinates, since these
representations may tend to infinity near singularities even if the point on the
sphere is moving at a constant speed /42 + 2 + 22 (which is what the speed
would be had you represented the point as (x,y, z) instead).

If you can assume that the configuration never approaches a singularity of the
representation, you can ignore this issue. If you cannot make this assumption,
there are two ways to overcome the problem.

e Use more than one coordinate chart on the space, where each coordinate
chart is an explicit parametrization covering only a portion of the space
such that, within each chart, there is no singularity. As the configuration
representation approaches a singularity in one chart, e.g., the North or
South Pole, you simply switch to another chart where the North and
South Poles are far from singularities.

If we define a set of singularity-free coordinate charts that overlap each
other and cover the entire space, like the two charts above, the charts are
said to form an atlas of the space, much as an atlas of the Earth consists of
several maps that together cover the Earth. An advantage of using an atlas
of coordinate charts is that the representation always uses the minimum
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number of numbers. A disadvantage is the extra bookkeeping required
to switch representations between coordinate charts to avoid singularities.
(Note that Euclidean spaces can be covered by a single coordinate chart
without singularities.)

Use an implicit representation instead of an explicit parametrization.
An implicit representation views the n-dimensional space as embedded in
a Euclidean space of more than n dimensions, just as a two-dimensional
unit sphere can be viewed as a surface embedded in a three-dimensional
Euclidean space. An implicit representation uses the coordinates of the
higher-dimensional space (e.g., (z,y,2) in the three-dimensional space),
but subjects these coordinates to constraints that reduce the number of
degrees of freedom (e.g., 72 + y* + 22 = 1 for the unit sphere).

A disadvantage of this approach is that the representation has more num-
bers than the number of degrees of freedom. An advantage is that there are
no singularities in the representation — a point moving smoothly around
the sphere is represented by a smoothly changing (z,y, 2), even at the
North and South poles. A single representation is used for the whole
sphere; multiple coordinate charts are not needed.

Another advantage is that while it may be very difficult to construct an
explicit parametrization, or atlas, for a closed-chain mechanism, it is easy
to find an implicit representation: the set of all joint coordinates subject
to the loop-closure equations that define the closed loops (Section 2.4).

We will use implicit representations throughout the book, beginning in
the next chapter. In particular, we use nine numbers, subject to six con-
straints, to represent the three orientation freedoms of a rigid body in
space. This is called a rotation matrix. In addition to being singularity-
free (unlike three-parameter representations such as roll-pitch-yaw an-
gles?), the rotation matrix representation allows us to use linear algebra
to perform computations such as rotating a rigid body or changing the
reference frame in which the orientation of a rigid body is expressed.’

In summary, the non-Euclidean shape of many C-spaces motivates our use

of implicit representations of C-space throughout this book. We return to this

4Roll-pitch—yaw angles and Euler angles use three parameters for the space of rotations

S2 x S! (two for S? and one for S'), and therefore are subject to singularities as discussed

above.
5 Another singularity-free implicit representation of orientations, the unit quaternion, uses

only four numbers subject to the constraint that the 4-vector be of unit length. In fact, this
representation is a double covering of the set of orientations: for every orientation, there are
two unit quaternions.
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M

Figure 2.10: The four-bar linkage.

topic in the next chapter.

2.4 Configuration and Velocity Constraints

For robots containing one or more closed loops, usually an implicit represen-
tation is more easily obtained than an explicit parametrization. For example,
consider the planar four-bar linkage of Figure 2.10, which has one degree of free-
dom. The fact that the four links always form a closed loop can be expressed
by the following three equations:

Licosby + Locos(01 +62) +---+ Lycos(fy +---+604) = 0,
L1 sin 01 + L2 Sin(91 + 92) + -+ L4 Sin(91 —+ -+ 94) = 0,
0140 +03+04,—2r = 0.

These equations are obtained by viewing the four-bar linkage as a serial chain
with four revolute joints in which (i) the tip of link L, always coincides with
the origin and (ii) the orientation of link L, is always horizontal.

These equations are sometimes referred to as loop-closure equations. For
the four-bar linkage they are given by a set of three equations in four unknowns.
The set of all solutions forms a one-dimensional curve in the four-dimensional
joint space and constitutes the C-space.
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In this book, when vectors are used in a linear algebra computation,
they are treated as column vectors, e.g., p = [1 2 3]T. When a computation
is not imminent, however, we often think of a vector simply as an ordered
list of variables, e.g., p = (1,2, 3).

Thus, for general robots containing one or more closed loops, the configura-

tion space can be implicitly represented by the column vector § = [y --- 0,]T €
R"™ and loop-closure equations of the form
91(91, ey Hn)
9(0) = : =0, (255)
gk(01, N >0n)

a set of k independent equations, with k < m. Such constraints are known
as holonomic constraints, ones that reduce the dimension of the C-space.®
The C-space can be viewed as a surface of dimension n — k (assuming that all
constraints are independent) embedded in R™.

Suppose that a closed-chain robot with loop-closure equations g(f) = 0,
g : R® — R*, is in motion, following the time trajectory 6(t). Differentiating
both sides of g(6(t)) = 0 with respect to ¢, we obtain

d

—g(0(t)) = 0
So6(0) = 0
(2.6)
thus
91 (o g1 1\ 4
8791(9)91 + 37%(9)%
: = 0
9k 4 Gk (s
8791(9)91 + %(9)%
This can be expressed as a matrix multiplying a column vector [91 e 9n]T:
991 g1 .
a6, 90,0 | Ty
Ogx gk 6,
26, ) a6, ¥

8Viewing a rigid body as a collection of points, the distance constraints between the points,
as we saw earlier, can be viewed as holonomic constraints.
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Figure 2.11: A coin rolling on a plane without slipping.

which we can write as

g, . -
%(9)9 = 0. (2.7)

Here, the joint-velocity vector 91 denotes the derivative of #; with respect to
time ¢, dg(0)/00 € R¥*" and 6,6 € R". The constraints (2.7) can be written

A(6)0 =0, (2.8)

where A(#) € R**™. Velocity constraints of this form are called Pfaffian con-
straints. For the case of A(f) = 0g(0)/06, one could regard ¢(#) as being the
“Integral” of A(#); for this reason, holonomic constraints of the form ¢g(f) = 0
are also called integrable constraints — the velocity constraints that they
imply can be integrated to give equivalent configuration constraints.

We now consider another class of Pfaffian constraints that is fundamentally
different from the holonomic type. To illustrate this with a concrete example,
consider an upright coin of radius r rolling on a plane as shown in Figure 2.11.
The configuration of the coin is given by the contact point (z,y) on the plane,
the steering angle ¢, and the angle of rotation . The C-space of the coin is
therefore R2 x T2, where T2 is the two-dimensional torus parametrized by the
angles ¢ and 6. This C-space is four dimensional.

We now express, in mathematical form, the fact that the coin rolls without
slipping. The coin must always roll in the direction indicated by (cos ¢, sin @),

with forward speed r6:
T | 4| coso
BRI o9
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Collecting the four C-space coordinates into a single vector ¢ = [q1 ¢2 q3 q4]T =
[z y ¢ 0] € R? x T?, the above no-slip rolling constraint can then be expressed

in the form

1 0 0 —rcosgs

0 1 0 —rsings ¢=0. (2.10)

These are Pfaffian constraints of the form A(q)¢ = 0, A(q) € R2**.

These constraints are not integrable; that is, for the A(g) given in (2.10),
there does not exist a differentiable function g : R* — R? such that dg(q)/0q =
A(q). If this were not the case then there would have to exist a differentiable
91(q) that satisfied the following four equalities:

01/0q1 = 1 — 91(¢) = @1 + h1(q2, 43, qa)

091/0q2 = 0 — 91(q) = h2(q1,93,q4)

0g91/0q3 = 0 — g91(q) = ha(q1,q2,q4)

091/0qs = —rcosqzs — g1(q) = —rqacosqs + ha(q1,q2,q3),

for some h;, i = 1,...,4, differentiable in each of its variables. By inspection
it should be clear that no such g;(q) exists. Similarly, it can be shown that
92(q) does not exist, so that the constraint (2.10) is nonintegrable. A Pfaffian
constraint that is nonintegrable is called a nonholonomic constraint. Such
constraints reduce the dimension of the feasible velocities of the system but
do not reduce the dimension of the reachable C-space. The rolling coin can
reach any point in its four-dimensional C-space despite the two constraints on
its velocity.” See Exercise 2.30.

In a number of robotics contexts nonholonomic constraints arise that involve
the conservation of momentum and rolling without slipping, e.g., wheeled vehicle
kinematics and grasp contact kinematics. We examine nonholonomic constraints
in greater detail in our study of wheeled mobile robots in Chapter 13.

2.5 Task Space and Workspace

We now introduce two more concepts relating to the configuration of a robot:
the task space and the workspace. Both relate to the configuration of the end-
effector of a robot, not to the configuration of the entire robot.

The task space is a space in which the robot’s task can be naturally ex-
pressed. For example, if the robot’s task is to plot with a pen on a piece of paper,
the task space would be R2. If the task is to manipulate a rigid body, a natural

7Some texts define the number of degrees of freedom of a system to be the dimension of
the feasible velocities, e.g., two for the rolling coin. We always refer to the dimension of the
C-space as the number of degrees of freedom.
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|
)

7.

() (d)

Figure 2.12: Examples of workspaces for various robots: (a) a planar 2R open
chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R orienting
mechanism.

representation of the task space is the C-space of a rigid body, representing the
position and orientation of a frame attached to the robot’s end-effector. This is
the default representation of task space. The decision of how to define the task
space is driven by the task, independently of the robot.

The workspace is a specification of the configurations that the end-effector
of the robot can reach. The definition of the workspace is primarily driven by
the robot’s structure, independently of the task.

Both the task space and the workspace involve a choice by the user; in
particular, the user may decide that some freedoms of the end-effector (e.g., its
orientation) do not need to be represented.
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The task space and the workspace are distinct from the robot’s C-space. A
point in the task space or the workspace may be achievable by more than one
robot configuration, meaning that the point is not a full specification of the
robot’s configuration. For example, for an open-chain robot with seven joints,
the six-dof position and orientation of its end-effector does not fully specify the
robot’s configuration.

Some points in the task space may not be reachable at all by the robot,
such as some points on a chalkboard. By definition, however, all points in the
workspace are reachable by at least one configuration of the robot.

Two mechanisms with different C-spaces may have the same workspace. For
example, considering the end-effector to be the Cartesian tip of the robot (e.g.,
the location of a plotting pen) and ignoring orientations, the planar 2R open
chain with links of equal length three (Figure 2.12(a)) and the planar 3R open
chain with links of equal length two (Figure 2.12(b)) have the same workspace
despite having different C-spaces.

Two mechanisms with the same C-space may also have different workspaces.
For example, taking the end-effector to be the Cartesian tip of the robot and
ignoring orientations, the 2R open chain of Figure 2.12(a) has a planar disk as
its workspace, while the 2R open chain of Figure 2.12(c) has the surface of a
sphere as its workspace.

Attaching a coordinate frame to the tip of the tool of the 3R open-chain
“wrist” mechanism of Figure 2.12(d), we see that the frame can achieve any
orientation by rotating the joints but the Cartesian position of the tip is always
fixed. This can be seen by noting that the three joint axes always intersect at
the tip. For this mechanism, we would probably define the workspace to be the
three-dof space of orientations of the frame, S? x S!, which is different from the
C-space T2. The task space depends on the task; if the job is to point a laser
pointer, then rotations about the axis of the laser beam are immaterial and the
task space would be S2, the set of directions in which the laser can point.

Example 2.9. The SCARA robot of Figure 2.13 is an RRRP open chain that is
widely used for tabletop pick-and-place tasks. The end-effector configuration is
completely described by the four parameters (z,y, z, ¢), where (z,y, z) denotes
the Cartesian position of the end-effector center point and ¢ denotes the ori-
entation of the end-effector in the x—y-plane. Its task space would typically be
defined as R3 x S, and its workspace would typically be defined as the reachable
points in (z,y, 2) Cartesian space, since all orientations ¢ € S* can be achieved
at all reachable points.

Example 2.10. A standard 6R industrial manipulator can be adapted to spray-
painting applications as shown in Figure 2.14. The paint spray nozzle attached
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Figure 2.13: SCARA robot.

[

N

Figure 2.14: A spray-painting robot.
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to the tip can be regarded as the end-effector. What is important to the task
is the Cartesian position of the spray nozzle, together with the direction in
which the spray nozzle is pointing; rotations about the nozzle axis (which points
in the direction in which paint is being sprayed) do not matter. The nozzle
configuration can therefore be described by five coordinates: (x,y,z) for the
Cartesian position of the nozzle and spherical coordinates (6, ¢) to describe
the direction in which the nozzle is pointing. The task space can be written
as R3 x S2. The workspace could be the reachable points in R3 x 52, or, to
simplify visualization, the user could define the workspace to be the subset of
R3 corresponding to the reachable Cartesian positions of the nozzle.

2.6 Summary

e A robot is mechanically constructed from links that are connected by
various types of joint. The links are usually modeled as rigid bodies. An
end-effector such as a gripper may be attached to some link of the robot.
Actuators deliver forces and torques to the joints, thereby causing motion
of the robot.

e The most widely used one-dof joints are the revolute joint, which allows
rotation about the joint axis, and the prismatic joint, which allows trans-
lation in the direction of the joint axis. Some common two-dof joints
include the cylindrical joint, which is constructed by serially connecting a
revolute and prismatic joint, and the universal joint, which is constructed
by orthogonally connecting two revolute joints. The spherical joint, also
known as the ball-and-socket joint, is a three-dof joint whose function is
similar to the human shoulder joint.

e The configuration of a rigid body is a specification of the location of all its
points. For a rigid body moving in the plane, three independent parame-
ters are needed to specify the configuration. For a rigid body moving in
three-dimensional space, six independent parameters are needed to specify
the configuration.

e The configuration of a robot is a specification of the configuration of all
its links. The robot’s configuration space is the set of all possible robot
configurations. The dimension of the C-space is the number of degrees of
freedom of a robot.

e The number of degrees of freedom of a robot can be calculated using
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Griibler’s formula,
J
dof =m(N—1-J)+>_ fi,
i=1

where m = 3 for planar mechanisms and m = 6 for spatial mechanisms, N
is the number of links (including the ground link), J is the number of joints,
and f; is the number of degrees of freedom of joint ¢. If the constraints
enforced by the joints are not independent then Griibler’s formula provides
a lower bound on the number of degrees of freedom.

e A robot’s C-space can be parametrized explicitly or represented implicitly.
For a robot with n degrees of freedom, an explicit parametrization uses n
coordinates, the minimum necessary. An implicit representation involves
m coordinates with m > n, with the m coordinates subject to m — n
constraint equations. With an implicit parametrization, a robot’s C-space
can be viewed as a surface of dimension n embedded in a space of higher
dimension m.

e The C-space of an n-dof robot whose structure contains one or more closed
loops can be implicitly represented using & loop-closure equations of the
form g(#) = 0, where # € R™ and g : R™ — R*. Such constraint equations
are called holonomic constraints. Assuming that 6 varies with time ¢, the
holonomic constraints g(6(t)) = 0 can be differentiated with respect to t

to yield
ag, . -

where 9g(6)/06 is a k x m matrix.
e A robot’s motion can also be subject to velocity constraints of the form
A(0)0 =0,

where A(f) is a k X m matrix that cannot be expressed as the differential
of some function g(6). In other words, there does not exist any ¢(6),g :
R™ — R*, such that 5
g
A(0) = 3 9(0).

Such constraints are said to be nonholonomic constraints, or nonintegrable
constraints. These constraints reduce the dimension of feasible velocities
of the system but do not reduce the dimension of the reachable C-space.
Nonholonomic constraints arise in robot systems subject to conservation
of momentum or rolling without slipping.
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e A robot’s task space is a space in which the robot’s task can be naturally
expressed. A robot’s workspace is a specification of the configurations
that the end-effector of the robot can reach.

2.7 Notes and References

In the kinematics literature, structures that consist of links connected by joints
are also called mechanisms or linkages. The number of degrees of freedom of a
mechanism, also referred to as its mobility, is treated in most texts on mecha-
nism analysis and design, e.g., [43, ]. The notion of a robot’s configuration
space was first formulated in the context of motion planning by Lozano-Perez
[95]; more recent and advanced treatments can be found in [30, 83, 27]. As
apparent from some of the examples in this chapter, a robot’s configuration
space can be nonlinear and curved, as can its task space. Such spaces often
have the mathematical structure of a differentiable manifold, which are the cen-
tral objects of study in differential geometry. Some accessible introductions to
differential geometry are [119, 38, 17].

2.8 Exercises

In the exercises below, if you are asked to “describe” a C-space, you should
indicate its dimension and whatever you know about its topology (e.g., using
R, S, and T, as with the examples in Sections 2.3.1 and 2.3.2).

Exercise 2.1 Using the methods of Section 2.1 derive a formula, in terms of
n, for the number of degrees of freedom of a rigid body in n-dimensional space.
Indicate how many of these dof are translational and how many are rotational.
Describe the topology of the C-space (e.g., for n = 2, the topology is R? x S*).

Exercise 2.2 Find the number of degrees of freedom of your arm, from your
torso to your palm (just past the wrist, not including finger degrees of freedom).
Keep the center of the ball-and-socket joint of your shoulder stationary (do not
“hunch” your shoulders). Find the number of degrees of freedom in two ways:
(a) add up the degrees of freedom at the shoulder, elbow, and wrist joints;
(b) fix your palm flat on a table with your elbow bent and, without moving
the center of your shoulder joint, investigate with how many degrees of
freedom you can still move your arm.
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Robot

Figure 2.15: Robot used for human arm rehabilitation.

Do your answers agree? How many constraints were placed on your arm when
you placed your palm at a fixed configuration on the table?

Exercise 2.3 In the previous exercise, we assumed that your arm is a serial
chain. In fact, between your upper arm bone (the humerus) and the bone
complex just past your wrist (the carpal bones), your forearm has two bones,
the radius and the ulna, which are part of a closed chain. Model your arm,
from your shoulder to your palm, as a mechanism with joints and calculate the
number of degrees of freedom using Griibler’s formula. Be clear on the number
of freedoms of each joint you use in your model. Your joints may or may not be
of the standard types studied in this chapter (R, P, H, C, U, and S).

Exercise 2.4 Assume each of your arms has n degrees of freedom. You are
driving a car, your torso is stationary relative to the car (owing to a tight
seatbelt!), and both hands are firmly grasping the wheel, so that your hands
do not move relative to the wheel. How many degrees of freedom does your
arms-plus-steering wheel system have? Explain your answer.

Exercise 2.5 Figure 2.15 shows a robot used for human arm rehabilitation.
Determine the number of degrees of freedom of the chain formed by the human
arm and the robot

Exercise 2.6 The mobile manipulator of Figure 2.16 consists of a 6R arm and
multi-fingered hand mounted on a mobile base with a single wheel. You can
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T
=

Figure 2.16: Mobile manipulator.

think of the wheeled base as the same as the rolling coin in Figure 2.11 — the
wheel (and base) can spin together about an axis perpendicular to the ground,
and the wheel rolls without slipping. The base always remains horizontal. (Left
unstated are the means to keep the base horizontal and to spin the wheel and
base about an axis perpendicular to the ground.)

(a) Ignoring the multi-fingered hand, describe the configuration space of the
mobile manipulator.

(b) Now suppose that the robot hand rigidly grasps a refrigerator door handle
and, with its wheel and base completely stationary, opens the door using
only its arm. With the door open, how many degrees of freedom does the
mechanism formed by the arm and open door have?

(¢) A second identical mobile manipulator comes along, and after parking its
mobile base, also rigidly grasps the refrigerator door handle. How many
degrees of freedom does the mechanism formed by the two arms and the
open refrigerator door have?

Exercise 2.7 Three identical SRS open-chain arms are grasping a common
object, as shown in Figure 2.17.
(a) Find the number of degrees of freedom of this system.
(b) Suppose there are now a total of n such arms grasping the object. How
many degrees of freedom does this system have?
(¢) Suppose the spherical wrist joint in each of the n arms is now replaced by
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spherical joint

%\%@

revolute joint

Figure 2.17: Three cooperating SRS arms grasping a common object.

a universal joint. How many degrees of freedom does this system have?

Exercise 2.8 Consider a spatial parallel mechanism consisting of a moving
plate connected to a fixed plate by n identical legs. For the moving plate to
have six degrees of freedom, how many degrees of freedom should each leg have,
as a function of n? For example, if n = 3 then the moving plate and fixed plate
are connected by three legs; how many degrees of freedom should each leg have
for the moving plate to move with six degrees of freedom? Solve for arbitrary
n.

Exercise 2.9 Use the planar version of Griibler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.18. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.10 Use the planar version of Griibler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.19. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.11 Use the spatial version of Griibler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.20. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.12 Use the spatial version of Griibler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.21. Comment
on whether your results agree with your intuition about the possible motions of
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Figure 2.18: A first collection of planar mechanisms.

these mechanisms.

Exercise 2.13 In the parallel mechanism shown in Figure 2.22, six legs of
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Figure 2.19: A second collection of planar mechanisms.

identical length are connected to a fixed and moving platform via spherical
joints. Determine the number of degrees of freedom of this mechanism using
Griibler’s formula. Illustrate all possible motions of the upper platform.

Exercise 2.14 The 3 x UPU platform of Figure 2.23 consists of two platforms—
the lower one stationary, the upper one mobile-connected by three UPU legs.
(a) Using the spatial version of Griibler’s formula, verify that it has three
degrees of freedom.
(b) Construct a physical model of the 3 x UPU platform to see if it indeed has
three degrees of freedom. In particular, lock the three P joints in place;
does the robot become a rigid structure as predicted by Griibler’s formula,
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Figure 2.20: A first collection of spatial parallel mechanisms.
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(c) (d)

Figure 2.21: A second collection of spatial parallel mechanisms.

or does it move?

Exercise 2.15 The mechanisms of Figures 2.24(a) and 2.24(b).

(a) The mechanism of Figure 2.24(a) consists of six identical squares arranged
in a single closed loop, connected by revolute joints. The bottom square
is fixed to ground. Determine the number of degrees of freedom using
Griibler’s formula.

(b) The mechanism of Figure 2.24(b) also consists of six identical squares
connected by revolute joints, but arranged differently (as shown). Deter-
mine the number of degrees of freedom using Griibler’s formula. Does

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

46 2.8. Exercises

Figure 2.22: A 6xSS platform.

Figure 2.23: The 3xUPU platform.
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Figure 2.24: Two mechanisms.

your result agree with your intuition about the possible motions of this
mechanism?

Exercise 2.16 Figure 2.25 shows a spherical four-bar linkage, in which four
links (one of the links is the ground link) are connected by four revolute joints
to form a single-loop closed chain. The four revolute joints are arranged so that
they lie on a sphere such that their joint axes intersect at a common point.
(a) Use Griibler’s formula to find the number of degrees of freedom. Justify
your choice of formula.
(b) Describe the configuration space.
(c) Assuming that a reference frame is attached to the center link, describe
its workspace.

Exercise 2.17 Figure 2.26 shows a parallel robot used for surgical applications.
As shown in Figure 2.26(a), leg A is an RRRP chain, while legs B and C are
RRRUR chains. A surgical tool is rigidly attached to the end-effector.

(a) Use Griibler’s formula to find the number of degrees of freedom of the
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Figure 2.26: Surgical manipulator.

mechanism in Figure 2.26(a).
(b) Now suppose that the surgical tool must always pass through point A in
Figure 2.26(a). How many degrees of freedom does the manipulator have?
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platform

Figure 2.27: The 3xPUP platform.

(c) Legs A, B, and C are now replaced by three identical RRRR legs as shown
in Figure 2.26(b). Furthermore, the axes of all R joints pass through point
A. Use Griibler’s formula to derive the number of degrees of freedom of
this mechanism.

Exercise 2.18 Figure 2.27 shows a 3 x PUP platform, in which three identical
PUP legs connect a fixed base to a moving platform. The P joints on both
the fixed base and moving platform are arranged symmetrically. Use Griibler’s
formula to find the number of degrees of freedom. Does your answer agree with
your intuition about this mechanism? If not, try to explain any discrepancies
without resorting to a detailed kinematic analysis.

Exercise 2.19 The dual-arm robot of Figure 2.28 is rigidly grasping a box.
The box can only slide on the table; the bottom face of the box must always be
in contact with the table. How many degrees of freedom does this system have?

Exercise 2.20 The dragonfly robot of Figure 2.29 has a body, four legs, and
four wings as shown. Each leg is connected to each adjacent leg by a USP
linkage. Use Griibler’s formula to answer the following questions.
(a) Suppose the body is fixed and only the legs and wings can move. How
many degrees of freedom does the robot have?
(b) Now suppose the robot is flying in the air. How many degrees of freedom
does the robot have?
(¢) Now suppose the robot is standing with all four feet in contact with the
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Figure 2.28: Dual-arm robot.

Figure 2.29: Dragonfly robot.

ground. Assume that the ground is uneven and that each foot—ground
contact can be modeled as a point contact with no slip. How many degrees
of freedom does the robot have? Explain your answer.
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Figure 2.30: A caterpillar robot.

Exercise 2.21 A caterpillar robot.

(a)

A caterpillar robot is hanging by its tail end as shown in Figure 2.30(a).
The robot consists of eight serially connected rigid links (one head, one
tail, and six body links). The six body links are connected by revolute—
prismatic—revolute joints, while the head and tail are connected to the
body by revolute joints. Find the number of degrees of freedom of this
robot.

The caterpillar robot is now crawling on a leaf as shown in Figure 2.30(b).
Suppose that all six body links must make contact with the leaf at all
times but the links can slide and rotate on the leaf. Find the number of
degrees of freedom of this robot during crawling.

Now suppose the caterpillar robot crawls on the leaf as shown in Fig-
ure 2.30(c), with only the first and last body links in contact with the
leaf. Find the number of degrees of freedom of this robot during crawling.

Exercise 2.22 The four-fingered hand of Figure 2.31(a) consists of a palm
and four URR fingers (the U joints connect the fingers to the palm).

(a)

(b)
(c)

Assume that the fingertips are points and that one fingertip is in contact
with the table surface (sliding of the fingertip point-contact is allowed).
How many degrees of freedom does the hand have? What if two fingertips
are in sliding point contact with the table? Three? All four?

Repeat part (a) but with each URR finger replaced by an SRR finger (each
universal joint is replaced by a spherical joint).

The hand (with URR fingers) now grasps an ellipsoidal object, as shown
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(a) (b) ()

Figure 2.31: (a) A four-fingered hand with palm. (b) The hand grasping an ellip-
soidal object. (c) A rounded fingertip that can roll on the object without sliding.

in Figure 2.31(b). Assume that the palm is fixed in space and that no slip
occurs between the fingertips and object. How many degrees of freedom
does the system have?

(d) Now assume that the fingertips are hemispheres as shown in Figure 2.31(c).
Each fingertip can roll on the object but cannot slip or break contact with
the object. How many degrees of freedom does the system have? For a
single fingertip in rolling contact with the object, comment on the dimen-
sion of the space of feasible fingertip velocities relative to the object versus
the number of parameters needed to represent the fingertip configuration
relative to the object (the number of degrees of freedom). (Hint: You may
want to experiment by rolling a ball around on a tabletop to get some
intuition.)

Exercise 2.23 Consider the slider—crank mechanism of Figure 2.4(b). A ro-
tational motion at the revolute joint fixed to ground (the “crank”) causes a
translational motion at the prismatic joint (the “slider”). Suppose that the two
links connected to the crank and slider are of equal length. Determine the con-
figuration space of this mechanism, and draw its projected version on the space
defined by the crank and slider joint variables.

Exercise 2.24 The planar four-bar linkage.
(a) Use Griibler’s formula to determine the number of degrees of freedom of
a planar four-bar linkage floating in space.
(b) Derive an implicit parametrization of the four-bar’s configuration space as
follows. First, label the four links 1, 2, 3, and 4, and choose three points
A,B,Conlink 1, D, E, F on link 2, G, H, I on link 3, and J, K, L on link
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Figure 2.32: Planar four-bar linkage.

4. The four-bar linkage is constructed in such a way that the following
four pairs of points are each connected by a revolute joint: C with D,
F with G, I with J, and L with A. Write down explicit constraints
on the coordinates for the eight points A,...,H (assume that a fixed
reference frame has been chosen, and denote the coordinates for point
A by pa = (za,ya,24), and similarly for the other points). Based on
counting the number of variables and constraints, how many degrees of
freedom does the configuration space have? If it differs from the result
you obtained in (a), try to explain why.

Exercise 2.25 In this exercise we examine in more detail the representation
of the C-space for the planar four-bar linkage of Figure 2.32. Attach a fixed
reference frame and label the joints and link lengths as shown in the figure. The
(x,y) coordinates for joints A and B are given by

A(0) = (acosb, asinb),
B(v) = (g+bcosy, bsiny).

Using the fact that the link connecting A and B is of fixed length h, i.e., |A(0) —
B()]|? = h?, we have the constraint

b? 4 g% + 2gbcos ) + a® — 2(acos (g + beos ) + absin fsinvp) = h2.

Grouping the coefficients of cos 1 and sin v, the above equation can be expressed
in the form

() costp + B(0) sinyp = v(0), (2.11)
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where
a(d) = 2gb—2abcosd,
B(0) = —2absind,
v(0) = h*—g*—b*—a®+2agcosh.

We now express ¥ as a function of 8, by first dividing both sides of Equa-

tion (2.11) by /a2 + 82 to obtain

n (2.12)

& B . o
——Cos Y + ——=sinY = ———.
/042 +ﬁ2 /a2_|_62 /062 +52
Referring to Figure 2.32(b), the angle ¢ is given by ¢ = tan=1(3/a), so that
Equation (2.12) becomes

v

COS('(Z) - ¢) = \/ﬁ

Therefore

(B - Y
1 = tan 1<a>j:cos ! (W)

(a) Note that a solution exists only if 2 < o? 4+ 2. What are the physical
implications if this constraint is not satisfied?

(b) Note that, for each value of the input angle 6, there exist two possible
values of the output angle ¥». What do these two solutions look like?

(c¢) Draw the configuration space of the mechanism in #— space for the fol-
lowing link length values: a =b=g=h=1.

(d) Repeat (c) for the following link length values: a = 1, b = 2, h = /5,
g=2.

(e) Repeat (c) for the following link length values: ¢ = 1, b =1, h = 1,

g=13.

Exercise 2.26 The tip coordinates for the two-link planar 2R robot of Fig-
ure 2.33 are given by

x = 2cosb + cos(fy + 62)
y = 2sin 6 + sin(6; + 62).

(a) What is the robot’s configuration space?
(b) What is the robot’s workspace (i.e., the set of all points reachable by the

tip)?
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Figure 2.33: Two-link planar 2R open chain.

(¢c) Suppose infinitely long vertical barriers are placed at = 1 and x = —1.
What is the free C-space of the robot (i.e., the portion of the C-space that
does not result in any collisions with the vertical barriers)?

Exercise 2.27 The workspace of a planar 3R open chain.

(a) Consider a planar 3R open chain with link lengths (starting from the fixed
base joint) 5, 2, and 1, respectively. Considering only the Cartesian point
of the tip, draw its workspace.

(b) Now consider a planar 3R open chain with link lengths (starting from the
fixed base joint) 1, 2, and 5, respectively. Considering only the Cartesian
point of the tip, draw its workspace. Which of these two chains has a
larger workspace?

(¢) A not-so-clever designer claims that he can make the workspace of any
planar open chain larger simply by increasing the length of the last link.
Explain the fallacy behind this claim.

Exercise 2.28 Task space.
(a) Describe the task space for a robot arm writing on a blackboard.
(b) Describe the task space for a robot arm twirling a baton.

Exercise 2.29 Give a mathematical description of the topologies of the C-
spaces of the following systems. Use cross products, as appropriate, of spaces
such as a closed interval [a, b] of a line and R*, S™ and T", where k, m, and n
are chosen appropriately.
(a) The chassis of a car-like mobile robot rolling on an infinite plane.
(b) The car-like mobile robot (chassis only) driving around on a spherical
asteroid.
(¢) The car-like mobile robot (chassis only) on an infinite plane with an RRPR
robot arm mounted on it. The prismatic joint has joint limits, but the
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I

Side view Top view

Figure 2.34: A side view and a top view of a diff-drive robot.

revolute joints do not.
(d) A free-flying spacecraft with a 6R arm mounted on it and no joint limits.

Exercise 2.30 Describe an algorithm that drives the rolling coin of Figure 2.11
from any arbitrary initial configuration in its four-dimensional C-space to any
arbitrary goal configuration, despite the two nonholonomic constraints. The
control inputs are the rolling speed # and the turning speed ¢. You should
explain clearly in words or pseudocode how the algorithm would work. It is not
necessary to give actual code or formulas.

Exercise 2.31 A differential-drive mobile robot has two wheels that do not
steer but whose speeds can be controlled independently. The robot goes forward
and backward by spinning the wheels in the same direction at the same speed,
and it turns by spinning the wheels at different speeds. The configuration of the
robot is given by five variables: the (x,y) location of the point halfway between
the wheels, the heading direction 8 of the robot’s chassis relative to the z-axis of
the world frame, and the rotation angles ¢, and ¢- of the two wheels about the
axis through the centers of the wheels (Figure 2.34). Assume that the radius of
each wheel is r and the distance between the wheels is 2d.

(a) Let ¢ = (x,y,0, ¢1,d2) be the configuration of the robot. If the two control
inputs are the angular velocities of the wheels w; = gz'Sl and wy = (;52, write
down the vector differential equation ¢ = g1(q)wi + g2(¢)w=. The vector
fields g1(¢) and g2(q) are called control vector fields (see Section 13.3) and
express how the system moves when the respective unit control signal is
applied.

(b) Write the corresponding Pfaffian constraints A(q)¢ = 0 for this system.
How many Pfaffian constraints are there?

(¢) Are the constraints holonomic or nonholonomic? Or how many are holo-
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nomic and how many nonholonomic?

Exercise 2.32 Determine whether the following differential constraints are
holonomic or nonholonomic:

(a)

(14 cosq1)gr + (1 + cosqa)ga + (cosqr + cosge + 4)gs = 0.
(b)

—q1 €08 q2 + 3 sin(q1 + q2) — dacos(q1 + q2)

gzsing; —qscosqy =
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Chapter 3

Rigid-Body Motions

In the previous chapter, we saw that a minimum of six numbers is needed
to specify the position and orientation of a rigid body in three-dimensional
physical space. In this chapter we develop a systematic way to describe a rigid
body’s position and orientation which relies on attaching a reference frame to
the body. The configuration of this frame with respect to a fixed reference frame
is then represented as a 4 x 4 matrix. This matrix is an example of an implicit
representation of the C-space, as discussed in the previous chapter: the actual
six-dimensional space of rigid-body configurations is obtained by applying ten
constraints to the 16-dimensional space of 4 x 4 real matrices.

Such a matrix not only represents the configuration of a frame, but can also
be used to (1) translate and rotate a vector or a frame, and (2) change the rep-
resentation of a vector or a frame from coordinates in one frame to coordinates
in another frame. These operations can be performed by simple linear algebra,
which is a major reason why we choose to represent a configuration as a 4 x 4
matrix.

The non-Euclidean (i.e., non-“flat”) nature of the C-space of positions and
orientations leads us to use a matrix representation. A rigid body’s velocity,
however, can be represented simply as a point in RS, defined by three angular
velocities and three linear velocities, which together we call a spatial velocity
or twist. More generally, even though a robot’s C-space may not be a vector
space, the set of feasible velocities at any point in the C-space always forms
a vector space. For example, consider a robot whose C-space is the sphere
S52: although the C-space is not flat, at any point on the sphere the space of
velocities can be thought of as the plane (a vector space) tangent to that point
on the sphere.

59
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Any rigid-body configuration can be achieved by starting from the fixed
(home) reference frame and integrating a constant twist for a specified time.
Such a motion resembles the motion of a screw, rotating about and translat-
ing along the same fixed axis. The observation that all configurations can be
achieved by a screw motion motivates a six-parameter representation of the
configuration called the exponential coordinates. The six parameters can
be divided into the parameters describing the direction of the screw axis and
a scalar to indicate how far the screw motion must be followed to achieve the
desired configuration.

This chapter concludes with a discussion of forces. Just as angular and linear
velocities are packaged together into a single vector in R, moments (torques)
and forces are packaged together into a six-vector called a spatial force or
wrench.

To illustrate the concepts and to provide a synopsis of the chapter, we begin
with a motivating planar example. Before doing so, we make some remarks
about vector notation.

A Word about Vectors and Reference Frames

A free vector is a geometric quantity with a length and a direction. Think
of it as an arrow in R™. It is called “free” because it is not necessarily rooted
anywhere; only its length and direction matter. A linear velocity can be viewed
as a free vector: the length of the arrow is the speed and the direction of the
arrow is the direction of the velocity. A free vector is denoted by an upright
text symbol, e.g., v.

If a reference frame and length scale have been chosen for the underlying
space in which v lies then this free vector can be moved to a position such that
the base of the arrow is at the origin without changing the orientation. The
free vector v can then be represented by its coordinates in the reference frame.
We write the vector in italics, v € R™, where v is at the “head” of the arrow
in the frame’s coordinates. If a different reference frame and length scale are
chosen then the representation v will change but the underlying free vector v is
unchanged.

In other words, we say that v is coordinate free; it refers to a physical
quantity in the underlying space, and it does not care how we represent it.
However, v is a representation of v that depends on the choice of coordinate
frame.

A point p in physical space can also be represented as a vector. Given
a choice of reference frame and length scale for physical space, the point p
can be represented as a vector from the reference frame origin to p; its vector
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yb

Figure 3.1: The point p exists in physical space, and it does not care how we
represent it. If we fix a reference frame {a}, with unit coordinate axes %X, and y,, we
can represent p as p, = (1,2). If we fix a reference frame {b} at a different location, a
different orientation, and a different length scale, we can represent p as p, = (4, —2).

representation is denoted in italics by p € R™. Here, as before, a different
choice of reference frame and length scale for physical space leads to a different
representation p € R” for the same point p in physical space. See Figure 3.1.

In the rest of this book, a choice of length scale will always be assumed, but
we will be dealing with reference frames at different positions and orientations.
A reference frame can be placed anywhere in space, and any reference frame
leads to an equally valid representation of the underlying space and the objects
in it. We always assume that exactly one stationary fixed frame, or space
frame, denoted {s}, has been defined. This might be attached to a corner of a
room, for example. Similarly, we often assume that at least one frame has been
attached to some moving rigid body, such as the body of a quadrotor flying
in the room. This body frame, denoted {b}, is the stationary frame that is
coincident with the body-attached frame at any instant.

While it is common to attach the origin of the {b} frame to some important
point on the body, such as its center of mass, this is not necessary. The origin of
the {b} frame does not even need to be on the physical body itself, as long as its
configuration relative to the body, viewed from an observer stationary relative
to the body, is constant.

Important! All frames in this book are stationary, inertial, frames.
When we refer to a body frame {b}, we mean a motionless frame that is
instantaneously coincident with a frame that is fixed to a (possibly moving)
body. This is important to keep in mind, since you may have had a dynamics
course that used non-inertial moving frames attached to rotating bodies. Do
not confuse these with the stationary, inertial, body frames of this book.
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positive
rotation <T>

Figure 3.2: (Left) The %, ¥, and Z axes of a right-handed reference frame are aligned
with the index finger, middle finger, and thumb of the right hand, respectively. (Right)
A positive rotation about an axis is in the direction in which the fingers of the right
hand curl when the thumb is pointed along the axis.

For simplicity, we will usually refer to a body frame as a frame attached
to a moving rigid body. Despite this, at any instant, by “body frame” we
actually mean the stationary frame that is instantaneously coincident with
the frame moving along with the body.

It is worth repeating one more time: all frames are stationary.

All reference frames are right-handed, as illustrated in Figure 3.2. A
positive rotation about an axis is defined as the direction in which the fingers
of the right hand curl when the thumb is pointed along the axis (Figure 3.2).

3.1 Rigid-Body Motions in the Plane

Consider the planar body (the gray shape) in Figure 3.3; its motion is confined
to the plane. Suppose that a length scale and a fixed reference frame {s} have
been chosen as shown, with unit axes % and y,. (Throughout this book, the
hat notation indicates a unit vector.) Similarly, we attach a reference frame
with unit axes %}, and ¥}, to the planar body. Because this frame moves with
the body, it is called the body frame and is denoted {b}.

To describe the configuration of the planar body, only the position and
orientation of the body frame with respect to the fixed frame need to be specified.
The body-frame origin p can be expressed in terms of the coordinate axes of
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{S} )A(s

Figure 3.3: The body frame {b} is expressed in the fixed-frame coordinates {s} by the
vector p and the directions of the unit axes X, and y,. In this example, p = (2,1) and
6 = 60°, s0 %, = (cos,sinf) = (0.5,1/v/2) and §,, = (—sinh, cosh) = (—1/+/2,0.5).

{s} as

P = PaXs + Dy¥s- (3.1)

You are probably more accustomed to writing this vector as simply p = (pg, py);
this is fine when there is no possibility of ambiguity about reference frames, but
writing p as in Equation (3.1) clearly indicates the reference frame with respect
to which (ps, py) is defined.

The simplest way to describe the orientation of the body frame {b} relative
to the fixed frame {s} is by specifying the angle 6, as shown in Figure 3.3.
Another (admittedly less simple) way is to specify the directions of the unit
axes X, and §,, of {b} relative to {s}, in the form

Xp = cosfXs+sindy,, (3.2)
¥, = —sinfxXs+cosfy,.

At first sight this seems to be a rather inefficient way of representing the body-
frame orientation. However, imagine if the body were to move arbitrarily in
three-dimensional space; a single angle # would not suffice to describe the ori-
entation of the displaced reference frame. We would actually need three angles,
but it is not yet clear how to define an appropriate set of three angles. However,
expressing the directions of the coordinate axes of {b} in terms of coefficients
of the coordinate axes of {s}, as we have done above for the planar case, is
straightforward.

Assuming we agree to express everything in terms of {s} then, just as the
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{c}

= Y.

Figure 3.4: The frame {b} in {s} is given by (P, p), and the frame {c} in {b} is given
by (Q,q). From these we can derive the frame {c} in {s}, described by (R,r). The
numerical values of the vectors p, ¢, and r and the coordinate-axis directions of the
three frames are evident from the grid of unit squares.

point p can be represented as a column vector p € R? of the form

Pz
= 5 34
p=| 2| (3.4)
the two vectors Xy, and §;, can also be written as column vectors and packaged
into the following 2 X 2 matrix P:

sinf  cos6 (3.5)

P =[x §u] = { cos) —sinf ]
The matrix P is an example of a rotation matrix. Although P consists of
four numbers, they are subject to three constraints (each column of P must be
a unit vector, and the two columns must be orthogonal to each other), and the
one remaining degree of freedom is parametrized by 6. Together, the pair (P, p)
provides a description of the orientation and position of {b} relative to {s}.
Now refer to the three frames in Figure 3.4. Repeating the approach above,

and expressing {c} in {s} as the pair (R, r), we can write

r:[”}, R:{COS(/) _Siw]. (3.6)

Ty sing cos¢
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We could also describe the frame {c} relative to {b}. Letting ¢ denote the
vector from the origin of {b} to the origin of {c} expressed in {b} coordinates,
and letting @ denote the orientation of {c} relative to {b}, we can write {c}
relative to {b} as the pair (Q, ¢), where

| @ | cosyp —siny
1= [ qy } ’ Q= [ siny cosvy | (3.7)

If we know (@, q) (the configuration of {c} relative to {b}) and (P, p) (the
configuration of {b} relative to {s}), we can compute the configuration of {c}
relative to {s} as follows:

R = PQ (convert @ to the {s} frame) (3.8)
r=Pg+p (convert qto the {s} frame and vector-sum with p). (3.9)

Thus (P, p) not only represents a configuration of {b} in {s}; it can also be used
to convert the representation of a point or frame from {b} coordinates to {s}
coordinates.

Now consider a rigid body with two frames attached to it, {d} and {c}. The
frame {d} is initially coincident with {s}, and {c} is initially described by (R, r)
in {s} (Figure 3.5(a)). Then the body is moved in such a way that {d} moves to
{d'}, becoming coincident with a frame {b} described by (P,p) in {s}. Where
does {c} end up after this motion? Denoting the configuration of the new frame
{c'} as (R/,7’), you can verify that

R = PR, (3.10)
r' = Pr+p, (3.11)

which is similar to Equations (3.8) and (3.9). The difference is that (P, p) is ex-
pressed in the same frame as (R, 1), so the equations are not viewed as a change
of coordinates, but instead as a rigid-body displacement (also known as a
rigid-body motion): in Figure 3.5(a) transformation D rotates {c} according
to P and transformation ) translates it by p in {s}.

Thus we see that a rotation matrix—vector pair such as (P,p) can be used
for three purposes:

(a) to represent a configuration of a rigid body in {s} (Figure 3.3);

(b) to change the reference frame in which a vector or frame is represented
(Figure 3.4);

(c) to displace a vector or a frame (Figure 3.5(a)).
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{¢'}

{s.d}

(b)

Figure 3.5: (a) The frame {d}, fixed to an elliptical rigid body and initially coincident
with {s}, is displaced to {d'} (which is coincident with the stationary frame {b}),
by first rotating according to P then translating according to p, where (P, p) is the
representation of {b} in {s}. The same transformation takes the frame {c}, also
attached to the rigid body, to {c'}. The transformation marked (D rigidly rotates
{c} about the origin of {s}, and then transformation @) translates the frame by p
expressed in {s}. (b) Instead of viewing this displacement as a rotation followed by
a translation, both rotation and translation can be performed simultaneously. The
displacement can be viewed as a rotation of 8 = 90° about a fixed point s.

Referring to Figure 3.5(b), note that the rigid-body motion illustrated in
Figure 3.5(a), expressed as a rotation followed by a translation, can be obtained
by simply rotating the body about a fixed point s by an angle 5. This is a planar
example of a screw motion.! The displacement can therefore be parametrized
by the three screw coordinates (8, s, s,), where (sg,sy) = (0,2) denotes the
coordinates for the point s (i.e., the screw axis out of the page) in the fixed
frame {s}.

Another way to represent the screw motion is to consider it as the dis-
placement obtained by following simultaneous angular and linear velocities for
a given distance. Inspecting Figure 3.5(b), we see that rotating about s with
a unit angular velocity (w = 1 rad/s) means that a point at the origin of the
{s} frame moves at two units per second initially in the +%-direction of the {s}
frame, ie., v = (vg,vy) = (2,0). We can package these together in the three-

LIf the displacement is a pure translation without rotation, then s lies at infinity.
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vector § = (w, v, vy) = (1,2,0), a representation of the screw axis. Following
this screw axis for an angle § = /2 yields the final displacement. Thus we
can represent the displacement using the three coordinates SO = (7/2,7,0).
These coordinates have some advantages, and we call these the exponential
coordinates for the planar rigid-body displacement.

To represent the combination of an angular and a linear velocity, called a
twist, we take a screw axis S = (w, vz, vy), where w = 1, and scale it by multi-
plying by some rotation speed, 8. The twist is VV = Sf. The net displacement
obtained by rotating about the screw axis S by an angle 6 is equivalent to the
displacement obtained by rotating about S at a speed 6 = 6 for unit time, so
Y = 80 can also be considered a set of exponential coordinates.

Preview of the remainder of this chapter. In the rest of this chapter we
generalize the concepts above to three-dimensional rigid-body motions. For this
purpose consider a rigid body occupying three-dimensional physical space, as
shown in Figure 3.6. Assume that a length scale for physical space has been
chosen, and that both the fixed frame {s} and body frame {b} have been chosen
as shown. Throughout this book all reference frames are right-handed — the unit
axes {X,¥,2} always satisfy X x § = 7. Denote the unit axes of the fixed frame
by {Xs, V., Zs} and the unit axes of the body frame by {Xp,¥,%,}. Let p denote
the vector from the fixed-frame origin to the body-frame origin. In terms of the
fixed-frame coordinates, p can be expressed as

p = p1Xs + P2V + D3Zs. (3.12)

The axes of the body frame can also be expressed as

Xp = Tri1Xs -+ 7’215’5 + 73175, (313)
yb = 7'125(3 —|— 7’225’8 —|— 7‘3223, (314)
ib = 7'13)25 =+ 7‘23573 —|— 7“3325. (315)

Defining p € R? and R € R3*3 as

P1 i1 Ti2 T3
p=| D2 |, R=1[X, ¥y, Zb) = | 21 722 723 |, (3.16)
ps3 731 T32 T33

the 12 parameters given by (R, p) then provide a description of the position and
orientation of the rigid body relative to the fixed frame.

Since the orientation of a rigid body has three degrees of freedom, only three
of the nine entries in R can be chosen independently. One three-parameter
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Figure 3.6: Mathematical description of position and orientation.

representation of rotations is provided by the exponential coordinates, which
define an axis of rotation and the angle rotated about that axis. We leave
other popular representations of orientations (the three-parameter Euler an-
gles and the roll-pitch—yaw angles, the Cayley—Rodrigues parameters,
and the unit quaternions, which use four variables subject to one constraint)
to Appendix B.

We then examine the six-parameter exponential coordinates for the config-
uration of a rigid body that arise from integrating a six-dimensional twist con-
sisting of the body’s angular and linear velocities. This representation follows
from the Chasles—-Mozzi theorem which states that every rigid-body displace-
ment can be obtained by a finite rotation and translation about a fixed screw
axis.

We conclude with a discussion of forces and moments. Rather than treat
these as separate three-dimensional quantities, we merge the moment and force
vectors into a six-dimensional wrench. The twist and wrench, and rules for
manipulating them, form the basis for the kinematic and dynamic analyses in
subsequent chapters.

3.2 Rotations and Angular Velocities

3.2.1 Rotation Matrices

We argued earlier that, of the nine entries in the rotation matrix R, only three
can be chosen independently. We begin by expressing a set of six explicit con-
straints on the entries of R. Recall that the three columns of R correspond to
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the body-frame unit axes {Xp, §},,%p }. The following conditions must therefore
be satisfied.

(a) The unit norm condition: Xy, §;,, and 2y, are all unit vectors, i.e.,

oty 4y = 1,
T+ rh 13 = 1, (3.17)
iy + 15+ 13 = 1.

(b) The orthogonality condition: Xy, ¥y, = Xp - % = §1, - Z2p = 0 (here - denotes
the inner product), or

T11712 + 721722 + 131732 = 0,
T12713 + Toare3 +132m33 = 0, (3.18)

11713 + 21723 + 731733 =

These six constraints can be expressed more compactly as a single set of con-
straints on the matrix R,
R'R=1, (3.19)

where RT denotes the transpose of R and I denotes the identity matrix.

There is still the matter of accounting for the fact that the frame is right-
handed (i.e., Xp X ¥, = Zp, where x denotes the cross product) rather than
left-handed (i.e., X, X ¥, = —%p); our six equality constraints above do not dis-
tinguish between right- and left-handed frames. We recall the following formula
for evaluating the determinant of a 3 x 3 matrix M: denoting the three columns
of M by a, b, and ¢, respectively, its determinant is given by

det M =aT(bx c)=c(a xb) =b"(cxa). (3.20)
Substituting the columns for R into this formula then leads to the constraint
det R =1. (3.21)

Note that, had the frame been left-handed, we would have det R = —1. In
summary, the six equality constraints represented by Equation (3.19) imply
that det R = +1; imposing the additional constraint det R = 1 means that only
right-handed frames are allowed. The constraint det R = 1 does not change the
number of independent continuous variables needed to parametrize R.

The set of 3 x 3 rotation matrices forms the special orthogonal group
SO(3), which we now formally define.
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Definition 3.1. The special orthogonal group SO(3), also known as the
group of rotation matrices, is the set of all 3 x 3 real matrices R that satisfy (i)
RYR =1 and (ii) det R = 1.

The set of 2 x 2 rotation matrices is a subgroup of SO(3) and is denoted
SO(2).

Definition 3.2. The special orthogonal group SO(2) is the set of all 2 x 2
real matrices R that satisfy (i) RTR = I and (ii) det R = 1.

From the definition it follows that every R € SO(2) can be written

R— 11 T12 _ cosf —sinb
- | siné cosf |’

where 6 € [0,27). The elements of SO(2) represent planar orientations and the
elements of SO(3) represent spatial orientations.

3.2.1.1 Properties of Rotation Matrices

The sets of rotation matrices SO(2) and SO(3) are called groups because they
satisfy the properties required of a mathematical group.? Specifically, a group
consists of a set of elements and an operation on two elements (matrix multipli-
cation for SO(n)) such that, for all A, B in the group, the following properties
are satisfied:

e closure: AB is also in the group.
e associativity: (AB)C = A(BC).

e identity element existence: There exists an element I in the group
(the identity matrix for SO(n)) such that AT = IA = A.

e inverse element existence: There exists an element A~! in the group
such that AA™! = A71A=1.

Proofs of these properties are given below, using the fact that the identity
matrix [ is a trivial example of a rotation matrix.

Proposition 3.3. The inverse of a rotation matrix R € SO(3) is also a rotation
matriz, and it is equal to the transpose of R, i.e., R~ = RT.

2More specifically, the SO(n) groups are also called matriz Lie groups (where “Lie” is
pronounced “Lee”) because the elements of the group form a differentiable manifold.
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Proof. The condition RTR = I implies that R~! = RT and RRT = I. Since
det RT =det R =1, R" is also a rotation matrix. O

Proposition 3.4. The product of two rotation matrices is a rotation matriz.

Proof. Given Ry, Ry € SO(3), their product R Ry satisfies (RyR2)T(R1Rg) =
R;R?Rle = R2TR2 =1. Further, det RlRQ = det Rl -det R2 = 1. Thus R1R2
satisfies the conditions for a rotation matrix. O

Proposition 3.5. Multiplication of rotation matrices is associative, (R1 Ro)R3
= Ri(R2R3), but generally not commutative, RiRs # RoR;. For the special
case of rotation matrices in SO(2), rotations commute.

Proof. Associativity and nocommutativity follows from the properties of matrix
multiplication in linear algebra. Commutativity for planar rotations follows
from a direct calculation. O

Another important property is that the action of a rotation matrix on a
vector (e.g., rotating the vector) does not change the length of the vector.

Proposition 3.6. For any vector x € R® and R € SO(3), the vector y = Rx
has the same length as x.

Proof. This follows from ||y||? = yTy = (Rz)TRx = 2TRTRx = 2Tz = ||z|]2.
O

3.2.1.2 Uses of Rotation Matrices

Analogously to the discussion after Equations 3.10 and (3.11) in Section 3.1,
there are three major uses for a rotation matrix R:

(a) to represent an orientation;
(b) to change the reference frame in which a vector or a frame is represented;
(c) to rotate a vector or a frame.

In the first use, R is thought of as representing a frame; in the second and third
uses, R is thought of as an operator that acts on a vector or frame (changing
its reference frame or rotating it).

To illustrate these uses, refer to Figure 3.7, which shows three different coor-
dinate frames — {a}, {b}, and {c} — representing the same space. These frames
are chosen to have the same origin, since we are only representing orientations,
but, to make the axes clear, the figure shows the same space drawn three times.
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Figure 3.7: The same space and the same point p represented in three different
frames with different orientations.

A point p in the space is also shown. Not shown is a fixed space frame {s},
which is aligned with {a}. The orientations of the three frames relative to {s}
can be written

1
R, =

S O =
o = O
o = O
= o O

0 - 0
0|, Ry= 0 , R.=|0 0 -1/,
1 0 1

and the location of the point p in these frames can be written

1 1 0
Pa = 1 y Pb= -1 y DPec= -1
0 0 -1

Note that {b} is obtained by rotating {a} about 2z, by 90°, and {c} is obtained
by rotating {b} about §,, by —90°.

Representing an orientation When we write R., we are implicitly referring
to the orientation of frame {c} relative to the fixed frame {s}. We can be more
explicit about this by writing it as Rs.: we are representing the frame {c} of the
second subscript relative to the frame {s} of the first subscript. This notation
allows us to express one frame relative to another that is not {s}; for example,
Ry, is the orientation of {c} relative to {b}.

If there is no possibility of confusion regarding the frames involved, we may
simply write R.

Inspecting Figure 3.7, we see that

-1 0 0

0
Ree=]0 0 -1/, Ra=|-1
1 0 0 0 -1
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A simple calculation shows that R,.R., = I; that is, R.. = R, or, equivalently,
from Proposition 3.3, R,. = RL,. In fact, for any two frames {d} and {e},

Rae = Ryy = Rey.

You can verify this fact using any two frames in Figure 3.7.

Changing the reference frame The rotation matrix R,, represents the
orientation of {b} in {a}, and Ry, represents the orientation of {c} in {b}.
A straightforward calculation shows that the orientation of {c} in {a} can be
computed as

Ro. = RopRpe.- (3.22)

In the previous equation, Ry, can be viewed as a representation of the orientation
of {c}, while Ry, can be viewed as a mathematical operator that changes the
reference frame from {b} to {a}, i.e.,

Ry = RapRpe = change reference_frame_from_{b}_to_{a} (Rp.).

A subscript cancellation rule helps us to remember this property. When
multiplying two rotation matrices, if the second subscript of the first matrix
matches the first subscript of the second matrix, the two subscripts “cancel”
and a change of reference frame is achieved:

RopRoc = Ry Ry, = Roc.

A rotation matrix is just a collection of three unit vectors, so the reference
frame of a vector can also be changed by a rotation matrix using a modified
version of the subscript cancellation rule:

Ravpy = R ypy = Pa-

You can verify these properties using the frames and points in Figure 3.7.

Rotating a vector or a frame The final use of a rotation matrix is to rotate
a vector or a frame. Figure 3.8 shows a frame {c} initially aligned with {s} with
axes {X,¥,2}. If we rotate the frame {c} about a unit axis @ by an amount 6,
the new frame, {c'} (light gray), has coordinate axes {X',§",2'}. The rotation
matrix R = R, represents the orientation of {c’'} relative to {s}, but instead
we can think of it as representing the rotation operation that takes {s} to {c'}.
Emphasizing our view of R as a rotation operator, instead of as an orientation,
we can write

R = Rot(&, 0),
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. »
Z 7

(I)\Cﬁ [~

Y )V\
S NN
X NED
Figure 3.8: A coordinate frame with axes {X,y,%} is rotated by € about a unit axis

@ (which is aligned with —¥ in this figure). The orientation of the final frame, with
axes {%,§',%2'}, is written as R relative to the original frame.

meaning the operation that rotates the orientation represented by the identity
matrix to the orientation represented by R. Examples of rotation operations
about coordinate frame axes are

1 0 0 cosf 0 sinf
Rot(%x,0) = | 0 cosf® —sinf |, Rot(y,0) = 0 1 0 ,
0 sinf cos6 —sinf 0 cos@
cosf —sinf 0
Rot(z,60) = | sinf cosf O
0 0 1

More generally, as we will see in Section 3.2.3.3, for & = (&1, &2, @3),

Rot(w, 8) =
co + @%(1 —cp) W1wa(1l —cy) —dgsg  wr1w3(1 — cp) + Wase
(211(,:)2(1 7(39)4’@389 C9+L:)§(1 7C9) @20213(1 7C9) — W1Sp R
(;)10:)3(]. — Co) — U:)QSQ (.:)2(2)3(1 — Cg) + O:)ls@ Co + (2)%(1 — C@)

where sy = sinf and ¢y = cosf. Any R € SO(3) can be obtained by rotating
from the identity matrix by some 6 about some &. Note also that Rot(w,8) =
Rot(—w, —0).

Now, say that R, represents some {b} relative to {s} and that we want to
rotate {b} by 6 about a unit axis w, i.e., by a rotation R = Rot(®, ). To be
clear about what we mean, we have to specify whether the axis of rotation @ is
expressed in {s} coordinates or {b} coordinates. Depending on our choice, the
same numerical @ (and therefore the same numerical R) corresponds to different
rotation axes in the underlying space, unless the {s} and {b} frames are aligned.
Letting {b’} be the new frame after a rotation by 6 about &s = & (the rotation
axis @ is considered to be in the fixed frame, {s}), and letting {b”} be the new
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) X% Ry = RRy,medy

b fixed frame Yo g (b}
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{b}
zy & A/;Bgoo Ky
Ry = R R == {p"}
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2o S’b//

Figure 3.9: (Top) The rotation operator R = Rot(2,90°) gives the orientation of
the right-hand frame in the left-hand frame. (Bottom) On the left are shown a fixed
frame {s} and a body frame {b}, which can be expressed as Rs,. The quantity RRs
rotates {b} by 90° about the fixed-frame axis 2s to {b’}. The quantity R, R rotates
{b} by 90° about the body-frame axis 2y to {b"}.

frame after a rotation by 6 about w, = @ (the rotation axis @ is considered to be
in the body frame {b}), representations of these new frames can be calculated
as

Ry = rotate_by_R_in_{s} frame (R ) = RRg (3.23)
Ry = rotate_by_R_in_{b}_frame (Rs) = RspR. (3.24)

In other words, premultiplying by R = Rot(w,0) yields a rotation about an
axis w considered to be in the fixed frame, and postmultiplying by R yields a
rotation about @ considered as being in the body frame.

Rotation by R in the {s} frame and in the {b} frame is illustrated in Fig-
ure 3.9.

To rotate a vector v, note that there is only one frame involved, the frame
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x(t + At)

Figure 3.10: (Left) The instantaneous angular velocity vector. (Right) Calculating
X.

in which v is represented, and therefore w must be interpreted as being in this
frame. The rotated vector v/, in that same frame, is

v’ = Rw.

3.2.2 Angular Velocities

Referring to Figure 3.10(a), suppose that a frame with unit axes {%,7,2} is
attached to a rotating body. Let us determine the time derivatives of these unit
axes. Beginning with %, first note that X is of unit length; only the direction
of X can vary with time (the same goes for § and z). If we examine the body
frame at times ¢t and ¢t + At, the change in frame orientation can be described as
a rotation of angle Af about some unit axis w passing through the origin. The
axis W is coordinate-free; it is not yet represented in any particular reference
frame.

In the limit as At approaches zero, the ratio Af/At becomes the rate of
rotation 9, and w can similarly be regarded as the instantaneous axis of rotation.
In fact, w and § can be combined to define the angular velocity w as follows:

w = wh. (3.25)
Referring to Figure 3.10(b), it should be evident that

X w X X, (3.26)
§ = wx¥, (3.27)
P = wxai. (3.28)
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To express these equations in coordinates, we have to choose a reference
frame in which to represent w. We can choose any reference frame, but two
natural choices are the fixed frame {s} and the body frame {b}. Let us start
with fixed-frame {s} coordinates. Let R(t) be the rotation matrix describing
the orientation of the body frame with respect to the fixed frame at time t; R(t)
is its time rate of change. The first column of R(t), denoted 7 (¢), describes x
in fixed-frame coordinates; similarly, ro(¢) and r3(¢) respectively describe § and
2 in fixed-frame coordinates. At a specific time ¢, let w, € R? be the angular
velocity w expressed in fixed-frame coordinates. Then Equations (3.26)—(3.28)
can be expressed in fixed-frame coordinates as

TP = Ws X Ty, 1=1,2,3.

These three equations can be rearranged into the following single 3 x 3 matrix
equation: _
R=|ws Xr1 ws Xry ws Xr3] =ws X R. (3.29)

To eliminate the cross product on the right in Equation (3.29), we introduce
some new notation, rewriting w, x R as [ws]R, where [ws] is a 3 x 3 skew-
symmetric matrix representation of w, € R3:

Definition 3.7. Given a vector x = [z1 2o x3]T € R3, define

0 —XI3 To
[z] = | =x3 0 -z |. (3.30)
—XT2 X1 0

The set of all 3 x 3 real skew-symmetric matrices is called so(3).?
A useful property involving rotations and skew-symmetric matrices is the
following.

Proposition 3.8. Given any w € R3 and R € SO(3), the following always
holds:
R[w]RT = [Rw]. (3.31)

3The set of skew-symmetric matrices so(3) is called the Lie algebra of the Lie group SO(3).
It consists of all possible R when R = 1.
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Proof. Letting r] be the ith row of R, we have

ri(wxry) ri(wxry) rl(wxrs)
Rlw]RT = rg(wxry) ri(wxry) ri(wxrs)
ri(wxry) ri(wxry) ri(wxrs)
o —riw  riw
= raw 0 —rfw
T T

= [Ruw], (3.32)

where the second line makes use of the determinant formula for 3 x 3 matrices,
ie., if M is a 3 x 3 matrix with columns {a, b, c}, then det M = aT(b x ¢) =
ct(a x b) =bT(cxa). O

With the skew-symmetric notation, we can rewrite Equation (3.29) as
[ws]R = R. (3.33)
We can post-multiply both sides of Equation (3.33) by R~ to get
[ws] = RR7L. (3.34)

Now let wy, be w expressed in body-frame coordinates. To see how to obtain
wp from ws and vice versa, we write R explicitly as Rg. Then ws and wy are
two different vector representations of the same angular velocity w and, by our
subscript cancellation rule, ws = Rgywp. Therefore

wp = Rlws = R lwy = RMw,. (3.35)
Let us now express this relation in skew-symmetric matrix form:
we] = [RTwi]
RT[ws]R  (by Proposition 3.8)
= RTY(RR™R
RTR=R'R. (3.36)

In summary, two equations relate R and R to the angular velocity w:
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Proposition 3.9. Let R(t) denote the orientation of the rotating frame as seen
from the fixed frame. Denote by w the angular velocity of the rotating frame.
Then

RR™! (
RilR = [wb] ’ (

7)
8)

I
S
R

3.3
3.3

where wy € R3 is the fived-frame vector representation of w and |[ws] € so(3)
is its 3 X 3 matriz representation, and where wy, € R is the body-frame vector
representation of w and [wy] € so(3) is its 3 x 3 matriz representation.

It is important to note that wy, is not the angular velocity relative to a moving
frame. Rather, wy is the angular velocity relative to the stationary frame {b}
that is instantaneously coincident with a frame attached to the moving body.

It is also important to note that the fixed-frame angular velocity ws does not
depend on the choice of body frame. Similarly, the body-frame angular velocity
wp does not depend on the choice of fized frame. While Equations (3.37) and
(3.38) may appear to depend on both frames (since R and R individually depend
on both {s} and {b}), the product RR~! is independent of {b} and the product
R™!R is independent of {s}.

Finally, an angular velocity expressed in an arbitrary frame {d} can be
represented in another frame {c} if we know the rotation that takes {c} to {d},
using our now-familiar subscript cancellation rule:

we = Reqwg.

3.2.3 Exponential Coordinate Representation of Rotation

We now introduce a three-parameter representation for rotations, the expo-
nential coordinates for rotation. The exponential coordinates parametrize
a rotation matrix in terms of a rotation axis (represented by a unit vector &)
and an angle of rotation # about that axis; the vector @@ € R3 then serves as the
three-parameter exponential coordinate representation of the rotation. Writing
w and 6 individually is the axis-angle representation of a rotation.

The exponential coordinate representation wé for a rotation matrix R can
be interpreted equivalently as:

e the axis w and rotation angle 6 such that, if a frame initially coincident
with {s} were rotated by 6 about @, its final orientation relative to {s}
would be expressed by R; or
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e the angular velocity w8 expressed in {s} such that, if a frame initially
coincident with {s} followed & for one unit of time (i.e., WO is integrated
over this time interval), its final orientation would be expressed by R; or

e the angular velocity & expressed in {s} such that, if a frame initially
coincident with {s} followed & for 6 units of time (i.e., & is integrated over
this time interval) its final orientation would be expressed by R.

The latter two views suggest that we consider exponential coordinates in the
setting of linear differential equations. Below we briefly review some key results
from linear differential equations theory.

3.2.3.1 Essential Results from Linear Differential Equations Theory

Let us begin with the simple scalar linear differential equation
i(t) = ax(t), (3.39)

where z(t) € R, a € R is constant, and the initial condition x(0) = z¢ is given.
Equation (3.39) has solution
z(t) = e xp.

It is also useful to remember the series expansion of the exponential function:

at _ (at)®  (at)’®
e =1at+ o

Now consider the vector linear differential equation
z(t) = Az(t), (3.40)

where z(t) € R", A € R"*" is constant, and the initial condition z(0) = x¢ is
given. From the above scalar result one can conjecture a solution of the form

z(t) = ey (3.41)
where the matrix exponential e now needs to be defined in a meaningful
way. Again mimicking the scalar case, we define the matrix exponential to be

(At)*  (At)°

STRE]

e =T+ At + 4o (3.42)

The first question to be addressed is under what conditions this series converges,
so that the matrix exponential is well defined. It can be shown that if A is con-

stant and finite then this series is always guaranteed to converge to a finite limit;
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the proof can be found in most texts on ordinary linear differential equations
and is not covered here.
The second question is whether Equation (3.41), using Equation (3.42), is

indeed a solution to Equation (3.40). Taking the time derivative of z(t) = eAtxg,

d
(dteAt) Zo

()

d A2 A3
= —(r+4
dt( AL+ =+ ):co
A32
= <A+A2t+ ; —|—--->x0
= Aety,
Ax(t), (3.43)

which proves that z(t) = e?*z is indeed a solution. That this is a unique

solution follows from the basic existence and uniqueness result for linear ordinary
differential equations, which we invoke here without proof.
While AB # BA for arbitrary square matrices A and B, it is always true
that
AeMt = M A (3.44)

for any square A and scalar t. You can verify this directly using the series
expansion for the matrix exponential. Therefore, in line four of Equation (3.43),
A could also have been factored to the right, i.e.,

i(t) = e Ax.
While the matrix exponential e4? is defined as an infinite series, closed-
form expressions are often available. For example, if A can be expressed as
A= PDP~! for some D € R"*" and invertible P € R"*" then

2
2
= I+ (PDP M)t+ (PDP‘l)(PDP_l)% 4o
2
= P(I+Dt+ (l;f) 4+ )Pt
= PePipTL (3.45)
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If moreover D is diagonal, i.e., D = diag{d;,ds,...,d,}, then its matrix expo-
nential is particularly simple to evaluate:

eit 0 ... 0
0 et ... 0
ePt=1| . o - (3.46)
0 0 e ednt

We summarize the results above in the following proposition.

Proposition 3.10. The linear differential equation &(t) = Ax(t) with initial
condition x(0) = xg, where A € R™*™ is constant and z(t) € R™, has solution

x(t) = ey (3.47)

where
t2 .
eAt:I+tA+§A2+§A3+-~. (3.48)

The matriz exponential et further satisifies the following properties:

(a) d(eAt)/dt = AeAt = eAtA.

(b) If A= PDP~! for some D € R™*™ and invertible P € R"*™ then et =

PePtp—1,
(c) If AB = BA then e/eB = A+B,
(@) (et) ™t =eA

The third property can be established by expanding the exponentials and
comparing terms. The fourth property follows by setting B = —A in the third

property.

3.2.3.2 Exponential Coordinates of Rotations

The exponential coordinates of a rotation can be viewed equivalently as (1) a
unit axis of rotation & (& € R3, [|&|| = 1) together with a rotation angle about
the axis 6 € R, or (2) as the 3-vector obtained by multiplying the two together,
@O € R3. When we represent the motion of a robot joint in the next chapter,
the first view has the advantage of separating the description of the joint axis
from the motion # about the axis.

Referring to Figure 3.11, suppose that a three-dimensional vector p(0) is
rotated by 6 about & to p(0); here we assume that all quantities are expressed
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s/
&>

Figure 3.11: The vector p(0) is rotated by an angle 6 about the axis @, to p(6).

in fixed-frame coordinates. This rotation can be achieved by imagining that
p(0) rotates at a constant rate of 1 rad/s (since & has unit magnitude) from
time t = 0 to t = 0. Let p(¢) denote the path traced by the tip of the vector.
The velocity of p(t), denoted p, is then given by

p=0uxp. (3.49)

To see why this is true, let ¢ be the constant angle between p(t) and &. Observe

that p traces a circle of radius ||p|| sin ¢ about the @-axis. Then p is tangent to

the path with magnitude ||p|| sin ¢, which is equivalent to Equation (3.49).
The differential equation (3.49) can be expressed as (see Equation (3.30))

p=[wp (3.50)

with initial condition p(0). This is a linear differential equation of the form
& = Ax, which we studied earlier; its solution is given by

p(t) = el'p(0).
Since t and 6 are interchangeable, the equation above can also be written
p(6) = el¥17p(0).

Let us now expand the matrix exponential el*!? in series form. A straight-
forward calculation shows that [©]> = —[@], and therefore we can replace [&]3
by —[@], [@]* by —[@]?, [@]° by —[@]® = [©], and so on, obtaining

Rl

20— 1.0l 1207 s 0?
+ [@] +[w]§+[w]§+~--

0 9 (02 et 6P Y
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Now recall the series expansions for sin 6 and cos 8:

. 03  6°

sinf = Oty
62

cosf = 1-gr+gp—

The exponential el®) therefore simplifies to the following:

Proposition 3.11. Given a vector &0 € R3, such that 0 is any scalar and
@ € R3 is a unit vector, the matriz exponential of [V]0 = [w0] € s0(3) is

Rot (&, 0) = el = T +sin 0 [&] 4 (1 — cos ) [@]* € SO(3). (3.51)

Equation (3.51) is also known as Rodrigues’ formula for rotations.

We have shown how to use the matrix exponential to construct a rotation
matrix from a rotation axis & and an angle §. Further, the quantity e[*!?p
has the effect of rotating p € R3 about the fixed-frame axis & by an angle 6.
Similarly, considering that a rotation matrix R consists of three column vectors,
the rotation matrix R’ = e R = Rot(&, )R is the orientation achieved by
rotating R by 6 about the axis @ in the fixed frame. Reversing the order of
matrix multiplication, R” = Rel*1® = RRot(&, #) is the orientation achieved by
rotating R by 6 about @ in the body frame.

Example 3.12. The frame {b} in Figure 3.12 is obtained by rotation from
an initial orientation aligned with the fixed frame {s} about a unit axis w; =
(0,0.866,0.5) by an angle §; = 30° = 0.524 rad. The rotation matrix represen-
tation of {b} can be calculated as

R = l@lo
I +sinf, [@1} + (1 — COS 91)[@1]2
0 —0.5 0.866 0 0.5 0.866 1°
= I+4+0.5 0.5 0 0 +0.134 0.5 0 0
—0.866 0 0 —0.866 0 0

0.866 —0.250 0.433
= 0.250 0.967  0.058
—0.433 0.058 0.899

The orientation of the frame {b} can be represented by R or by the unit axis

w1 = (0,0.866,0.5) and the angle #; = 0.524 rad, i.e., the exponential coordi-
nates w161 = (0,0.453,0.262).
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Figure 3.12: The frame {b} is obtained by a rotation from {s} by 61 = 30° about
&1 = (0,0.866, 0.5).

If {b} is then rotated by 62 about a fixed-frame axis @y # @y, i.e.,
R = el®22 R,

then the frame ends up at a different location than that reached were {b} to be
rotated by #; about an axis expressed as wo in the body frame, i.e.,

R" = Rel®l%2 £ R/ = 2102,

Our next task is to show that for any rotation matrix R € SO(3), one can

always find a unit vector & and scalar 6 such that R = el®l?.

3.2.3.3 Matrix Logarithm of Rotations

If ©f € R? represents the exponential coordinates of a rotation matrix R, then
the skew-symmetric matrix [06] = [©]6 is the matrix logarithm of the rotation
R.* The matrix logarithm is the inverse of the matrix exponential. Just as the
matrix exponential “integrates” the matrix representation of an angular velocity
[@]0 € so(3) for one second to give an orientation R € SO(3), the matrix
logarithm “differentiates” an R € SO(3) to find the matrix representation of
a constant angular velocity [@]0 € so(3) which, if integrated for one second,
rotates a frame from I to R. In other words,

exp: [w]f €s0(3) — ReSO(3),
log: ReSO(B) — [w]0e€ so(3).

4We use the term “the matrix logarithm” to refer both to a specific matrix which is a
logarithm of R as well as to the algorithm that calculates this specific matrix. Also, while a
matrix R can have more than one matrix logarithm (just as sin~!(0) has solutions 0, , 27,
etc.), we commonly refer to “the” matrix logarithm, i.e., the unique solution returned by the
matrix logarithm algorithm.
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To derive the matrix logarithm, let us expand each entry for e/*!? in Equa-
tion (3.51),
co + @%(1 — Cg) (2)1(.:)2(1 — C9) — W3Sy @1(2)3(1 - Ca) + Waosg
(211(,:)2(1 7(39)4’@389 C9+(2)§(1 709) @20213(1 7C9) — W1Sp R
w1@3(1 — Co) — U:)QSQ (.:)2(2)3(1 — Cg) + O:)ls@ co + of;%(l — C@)
(3.52)

where & = (&1,w9,ws3), and we use again the shorthand notation sy = sinf
and ¢y = cosf. Setting the above matrix equal to the given R € SO(3) and
subtracting the transpose from both sides leads to the following:

T3y —T93 = 2(2}1 sin 9,
ri3 —1r31 = 2Wssinb,
T91 —T12 = 20?)3 sin 4.

Therefore, as long as sinf # 0 (or, equivalently, 6 is not an integer multiple of
), we can write

A )
= —r

w1 9sind 732 23)s

. 1

wy = 2sinf (?”13 - 7'31),

. 1

w3 = m(’l"zl - 7”12)-

The above equations can also be expressed in skew-symmetric matrix form as

0 —w3 @ 1
~ ~ ~ T
(@] = ws p W | =g (R—R"). (3.53)
—W w1 0

Recall that @ represents the axis of rotation for the given R. Because of the
sin @ term in the denominator, [@] is not well defined if 6 is an integer multiple
of 7.5 We address this situation next, but for now let us assume that sin # 0
and find an expression for 6. Setting R equal to (3.52) and taking the trace of
both sides (recall that the trace of a matrix is the sum of its diagonal entries),

trR=1r11 + 729+ 133 =1 + 2cosb. (3.54)

The above follows since &% + @35 +@32 = 1. For any 6 satisfying 1+2cosf = tr R
such that # is not an integer multiple of w, R can be expressed as the exponential
el¥1? with [] as given in Equation (3.53).

5Singularities such as this are unavoidable for any three-parameter representation of rota-
tion. Euler angles and roll-pitch—yaw angles suffer from similar singularities.
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Let us now return to the case § = km, where k is some integer. When £ is
an even integer, regardless of @ we have rotated back to R = I so the vector
@ is undefined. When k is an odd integer (corresponding to § = £, +3m, ...,
which in turn implies tr R = —1), the exponential formula (3.51) simplifies to

R=elm = 1 4 202 (3.55)

The three diagonal terms of Equation (3.55) can be manipulated to give

]
aizi,/%, i=1,2,3. (3.56)

The off-diagonal terms lead to the following three equations:

20w = T2,
2@2(2)3 = To3, (357)
20w3 = 713,

From Equation (3.55) we also know that R must be symmetric: 719 = 7ro7,
Tog = T32, r13 = r31. Equations (3.56) and (3.57) may both be necessary to
obtain a solution for &. Once such a solution has been found then R = e[®1¢,
where 6 = £, +3m,. ..

From the above it can be seen that solutions for 6 exist at 27 intervals. If
we restrict 6 to the interval [0, 7] then the following algorithm can be used to
compute the matrix logarithm of the rotation matrix R € SO(3).

Algorithm: Given R € SO(3), find a § € [0,7] and a unit rotation axis
& € R3 ||| = 1, such that el = R. The vector @ € R? comprises the
exponential coordinates for R and the skew-symmetric matrix [@]6 € so(3) is
the matrix logarithm of R.

(a) If R =1 then 6§ = 0 and & is undefined.

(b) If tr R = —1 then 6 = 7. Set @ equal to any of the following three vectors
that is a feasible solution:

1 13
= | o (3.58)
2(1 + ?”33) 1 + T33
or _ -
1 12
W= e | 14799 (3.59)
2(1 —+ ’1"22) 39
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Figure 3.13: SO(3) as a solid ball of radius w. The exponential coordinates r = w6
may lie anywhere within the solid ball.

or
1 14711
W= — 21 . (3.60)
2(1 + Tn) a1

(Note that if @ is a solution, then so is —&.)
(c) Otherwise § = cos™ (1(tr R — 1)) € [0,7) and

1
"~ 2sinf

(@] (R—RY). (3.61)

Since every R € SO(3) satisfies one of the three cases in the algorithm, for
every R there exists a matrix logarithm [0]6 and therefore a set of exponential
coordinates w6.

Because the matrix logarithm calculates exponential coordinates @@ satisfy-
ing ||wA|| < 7, we can picture the rotation group SO(3) as a solid ball of radius
7 (see Figure 3.13): given a point r € R? in this solid ball, let & = r/||r|| be the
unit axis in the direction from the origin to the point r and let § = ||r|| be the
distance from the origin to r, so that » = @#. The rotation matrix correspond-
ing to r can then be regarded as a rotation about the axis @ by an angle 6. For
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any R € SO(3) such that tr R # —1, there exists a unique r in the interior of
the solid ball such that el”] = R. In the event that tr R = —1, log R is given
by two antipodal points on the surface of this solid ball. That is, if there exists
some 7 such that R = el with ||r|| = 7 then R = el="] also holds; both r and
—r correspond to the same rotation R.

3.3 Rigid-Body Motions and Twists

In this section we derive representations for rigid-body configurations and ve-
locities that extend, but otherwise are analogous to, those in Section 3.2 for
rotations and angular velocities. In particular, the homogeneous transforma-
tion matrix T is analogous to the rotation matrix R; a screw axis S is analogous
to a rotation axis w; a twist V' can be expressed as S0 and is analogous to an
angular velocity w = @f; and exponential coordinates S € RS for rigid-body
motions are analogous to exponential coordinates @ € R3 for rotations.

3.3.1 Homogeneous Transformation Matrices

We now consider representations for the combined orientation and position of
a rigid body. A natural choice would be to use a rotation matrix R € SO(3)
to represent the orientation of the body frame {b} in the fixed frame {s} and a
vector p € R? to represent the origin of {b} in {s}. Rather than identifying R
and p separately, we package them into a single matrix as follows.

Definition 3.13. The special Euclidean group SE(3), also known as the
group of rigid-body motions or homogeneous transformation matrices
in R3, is the set of all 4 x 4 real matrices T of the form

11 Ti2 T3 P1

T R p | _ | rai T2 723 P2 7 (3.62)
0 1 T31 T3z T33 D3

0O 0 0 1

where R € SO(3) and p € R? is a column vector.

An element T € SE(3) will sometimes be denoted (R, p). In this section we
will establish some basic properties of SE(3) and explain why we package R
and p into this matrix form.

Many robotic mechanisms we have encountered thus far are planar. With
planar rigid-body motions in mind, we make the following definition:
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Definition 3.14. The special Euclidean group SE(2) is the set of all 3 x 3 real
matrices T of the form
T{R p}, (3.63)

0 1
where R € SO(2), p € R?, and 0 denotes a row vector of two zeros.

A matrix T € SE(2) is always of the form

11 Ti2 P1 cosf —sinf p;
T=| 1791 7T22 p2 | = sinf cos® po |,
0 o0 1 0 0 1

where 6 € [0, 27).

3.3.1.1 Properties of Transformation Matrices

We now list some basic properties of transformation matrices, which can be
proven by calculation. First, the identity I is a trivial example of a transforma-
tion matrix. The first three properties confirm that SFE(3) is a group.

Proposition 3.15. The inverse of a transformation matriz T € SE(3) is also
a transformation matriz, and it has the following form.:

T = [ g 713 }_1 = { %T _BllTp } (3.64)

Proposition 3.16. The product of two transformation matrices is also a trans-
formation matrix.

Proposition 3.17. The multiplication of transformation matrices is associa-
tive, so that (T1T5)Ts = T1(T5T3), but generally not commutative: TyTo # ToT7 .

Before stating the next proposition, we note that, just as in Section 3.1,
it is often useful to calculate the quantity Rx + p, where x € R?® and (R, p)
represents T'. If we append a ‘1’ to x, making it a four-dimensional vector, this
computation can be performed as a single matrix multiplication:

x| | R p z | | Re+p
AR kI R R
The vector [zT 1]T is the representation of  in homogeneous coordinates,

and accordingly T' € SE(3) is called a homogenous transformation. When, by
an abuse of notation, we write Tz, we mean Rz + p.
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Proposition 3.18. Given T = (R,p) € SE(3) and x,y € R3, the following
hold:

(a) |Tx —Tyl|| = ||z — y||, where || - || denotes the standard Euclidean norm in

R3, i.e., ||z] = VaTx.

(b) (Tx—Tz,Ty—Tz) = (x—z,y—z) for all z € R3, where (-,-) denotes the
standard Euclidean inner product in R3, (x,y) = 2Ty.

In Proposition 3.18, T is regarded as a transformation on points in R3; T trans-
forms a point & to Tx. Property (a) then asserts that T preserves distances,
while property (b) asserts that T preserves angles. Specifically, if z,y,z € R?
represent the three vertices of a triangle then the triangle formed by the trans-
formed vertices {Tx, Ty, Tz} has the same set of lengths and angles as those
of the triangle {z,y, 2z} (the two triangles are said to be isometric). One can
easily imagine taking {z,y, 2z} to be the points on a rigid body, in which case
{Tz, Ty, Tz} represents a displaced version of the rigid body. It is in this sense
that SE(3) can be identified with rigid-body motions.

3.3.1.2 Uses of Transformation Matrices

As was the case for rotation matrices, there are three major uses for a transfor-
mation matrix 7"

(a) to represent the configuration (position and orientation) of a rigid body;
(b) to change the reference frame in which a vector or frame is represented;
(c) to displace a vector or frame.

In the first use, T is thought of as representing the configuration of a frame; in
the second and third uses, T is thought of as an operator that acts to change
the reference frame or to move a vector or a frame.

To illustrate these uses, we refer to the three reference frames {a}, {b}, and
{c}, and the point v, in Figure 3.14. The frames were chosen in such a way
that the alignment of their axes is clear, allowing the visual confirmation of
calculations.

Representing a configuration. The fixed frame {s} is coincident with {a}
and the frames {a}, {b}, and {c}, represented by Ts, = (Rsa,Psa), Tsp =
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Figure 3.14: Three reference frames in space, and a point v that can be represented
in {b} as v, = (0,0,1.5).

(Rsb, psp)s and Ts. = (Rse, pse), respectively, can be expressed relative to {s} by
the rotations

-1
) Rsc = 0
0

= O O
o = O

1
Reo=10
0

o = O
= o O
=
w0
o
|
= O O
\

O = O
SO O =

The location of the origin of each frame relative to {s} can be written

0 0 -1
Psa = 0 y Psb = -2 ’ DPsc = 1
0 0 0

Since {a} is collocated with {s}, the transformation matrix T, constructed from
(Rsa, Psa) is the identity matrix.

Any frame can be expressed relative to any other frame, not just to {s}; for
example, Tpe = (Rpe, Pbe) Tepresents {b} relative to {c}:

0 1 0 0
Rbc = 0 0 -1 3 DPbe = -3
-1 0 O —1

It can also be shown, using Proposition 3.15, that
Toe = Ty

for any two frames {d} and {e}.
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Changing the reference frame of a vector or a frame. By a subscript
cancellation rule analogous to that for rotations, for any three reference frames
{a}, {b}, and {c}, and any vector v expressed in {b} as vy,

TabTbc = Ta¢T¢c = Tac
Topvp = TQ¢U¢ = Vg,

where v, is the vector v expressed in {a}.

Displacing (rotating and translating) a vector or a frame. A transfor-
mation matrix T, viewed as the pair (R, p) = (Rot(w, #),p), can act on a frame
T,y by rotating it by 6 about an axis @ and translating it by p. By a minor
abuse of notation, we can extend the 3 x 3 rotation operator R = Rot(®, ) to
a 4 x 4 transformation matrix that rotates without translating,

Rot(w,e):{R 0},

0 1

and we can similarly define a translation operator that translates without ro-
tating,

1 0 0 p,
Trans(p) = 8 (1) (1) ]2; Y
00 0 1

(To parallel the rotation operator more directly, we could write Trans(p, ||pl|),
a translation along the unit direction p by a distance ||p||, but we will use the
simpler notation with p = p||p||.)

Whether we pre-multiply or post-multiply T, by T = (R,p) determines
whether the @-axis and p are interpreted as in the fixed frame {s} or in the
body frame {b}:

Tay = TTs, = Trans(p) Rot(®, 0)Tsp (fixed frame)

_ R p Rsb Dsb _ RRsb Rpsb +p

Lo PG e =L 366)
Topr = TspT = Ty, Trans(p) Rot(w, 0) (body frame)

_ Ry psp R p _ RgyR  Rapp + psp

_[0 1“01}_{ 0 1 ] (3.67)

The fixed-frame transformation (corresponding to pre-multiplication by T') can
be interpreted as first rotating the {b} frame by 6 about an axis & in the {s}
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Xb" {bl/}
ib”

Vi

NES o' Nz

Figure 3.15: Fixed-frame and body-frame transformations corresponding to @ =
(0,0,1), 8 =90°, and p = (0,2,0). (Left) The frame {b} is rotated by 90° about Zs
and then translated by two units in §,, resulting in the new frame {b’}. (Right) The
frame {b} is translated by two units in y, and then rotated by 90° about its Z axis,
resulting in the new frame {b"}.

frame (this rotation will cause the origin of {b} to move if it is not coincident
with the origin of {s}), then translating it by p in the {s} frame to get a frame
{b'}. The body-frame transformation (corresponding to post-multiplication by
T) can be interpreted as first translating {b} by p considered to be in the {b}
frame, then rotating about @ in this new body frame (this does not move the
origin of the frame) to get {b”}.

Fixed-frame and body-frame transformations are illustrated in Figure 3.15
for a transformation T with @ = (0,0, 1), 8 = 90°, and p = (0, 2,0), yielding

0 -1 0 O
) 1 0 0 2
- (Rot(w,e),p) - 0 0 1 0
0 0 01
Beginning with the frame {b} represented by
0 0 1 O
0 -1 0 -2
Tab 1 0 0 0 |’
0 0 0 1

the new frame {b'} achieved by a fixed-frame transformation T'Ty, and the new
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Y a—4

2

{d}

{e} \ .

{a

Figure 3.16: Assignment of reference frames.

frame {b"} achieved by a body-frame transformation T,,T are given by

01 0 2 0 0O 1 0

0 0 1 2 -1 0 0 —4
Tst = st’ = 1 0 0 0 s TSbT = stu = 0 1 0 0

0 0 01 0 0O 0 1

Example 3.19. Figure 3.16 shows a robot arm mounted on a wheeled mobile
platform moving in a room, and a camera fixed to the ceiling. Frames {b}
and {c} are respectively attached to the wheeled platform and the end-effector
of the robot arm, and frame {d} is attached to the camera. A fixed frame
{a} has been established, and the robot must pick up an object with body
frame {e}. Suppose that the transformations Ty, and Ty. can be calculated
from measurements obtained with the camera. The transformation Tp. can
be calculated using the arm’s joint-angle measurements. The transformation
T,q is assumed to be known in advance. Suppose these calculated and known
transformations are given as follows:

0 0 -1 250

I 0 -1 0 —150
b= -1 0 0 200 |
0 0 0 1
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[0 0 —1 300
0 -1 0 100
Tae = -1 0 0 120 |’
0 0 0 1 |
[0 —1 400 ]
0 -1 0 50
Taa = -1 0 0 300 |’
0 0 0 1 |
[0 —1/vV/2 —1/vV2 30
T _ 0 1/vV/2 —1/v2 —40
be 1 0 0 25
L 0 0 0 1

In order to calculate how to move the robot arm so as to pick up the object, the
configuration of the object relative to the robot hand, T, must be determined.
We know that

T TpcTee = adeea

where the only quantity besides T.. not given to us directly is T,;. However,
since Typ = ToqTap, we can determine T, as follows:

Tee = (ToaTasThoe) " TudTie-

From the given transformations we obtain

1 0 0 280
0 1 0 -50
Tadee - O O 1 O )
L0 0 0 1
[0 —1/vV2 —1/v2 230
|10 12 —1/vV2 160
TodTppTye = 1 0 0 7 |
| 0 0 0 1
[ 0 0 1 —75
(ToTaTo) ™ = —1/v/2 1/vV2 0 70/V2
adL db+L be 71/\/5 71/\/5 O 390/\/§ 9
0 0 0 1
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from which T, is evaluated to be

0 0 1 =75
T —1/v/2 1/vV2 0 —260/v2
T =1/V2 —1/V2 00 130/V2
0 0 0 1

3.3.2 Twists

We now consider both the linear and angular velocities of a moving frame.
As before, {s} and {b} denote the fixed (space) and moving (body) frames,
respectively. Let

Ton(t) = T(t) = [ o) ) } (3.68)

denote the configuration of {b} as seen from {s}. To keep the notation unclut-
tered, for the time being we write T instead of the usual Ty.

In Section 3.2.2 we discovered that pre- or post-multiplying R by R™! results
in a skew-symmetric representation of the angular velocity vector, either in
fixed- or body-frame coordinates. One might reasonably ask whether a similar
property carries over to T, i.e., whether T~'7 and 7T~ ! carry similar physical
interpretations.

Let us first see what happens when we pre-multiply 7" by 7'

L1 [ RT —RT R
1 _ p p
1 = 0 1 Ho 0]
_ [ R™R R"p
0 0
= [‘*6”] 76*’] (3.69)

Recall that RTR = [we] is just the skew-symmetric matrix representation of the
angular velocity expressed in {b} coordinates. Also, p is the linear velocity of
the origin of {b} expressed in the fixed frame {s}, and RTp = v is this linear
velocity expressed in the frame {b}. Putting these two observations together,
we can conclude that 717 represents the linear and angular velocities of the
moving frame relative to the stationary frame {b} currently aligned with the
moving frame.

The above calculation of T—17 suggests that it is reasonable to merge wj, and
vp into a single six-dimensional velocity vector. We define the spatial velocity
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Figure 3.17: Physical interpretation of vs. The initial (solid line) and displaced
(dashed line) configurations of a rigid body.

in the body frame, or simply the body twist,® to be
Yy = [ “b } € RS (3.70)

Just as it is convenient to have a skew-symmetric matrix representation of an
angular velocity vector, it is convenient to have a matrix representation of a
twist, as shown in Equation (3.69). We will stretch the [] notation, writing

T7'T =[] = [ [“6’)] %” } € se(3), (3.71)
where [wy] € s0(3) and v, € R®. The set of all 4 x 4 matrices of this form is
called se(3) and comprises the matrix representations of the twists associated
with the rigid-body configurations SE(3).

6The term “twist” has been used in different ways in the mechanisms and screw theory
literature. In robotics, however, it is common to use the term to refer to a spatial velocity.
‘We mostly use the term “twist” instead of “spatial velocity” to minimize verbiage, e.g., “body
twist” versus “spatial velocity in the body frame.”

se(3) is called the Lie algebra of the Lie group SE(3). It consists of all possible 7" when
T=1I.
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Now that we have a physical interpretation for T1T, let us evaluate 77

1 [ R p|[R" —R™p
T L0 0 0 1
[ RR™ p—RRTp
10 0
_ [ [WS] Vs
=10 o) (3.72)
Observe that the skew-symmetric matrix [ws] = RRT is the angular velocity

expressed in fixed-frame coordinates but that vs = p — RRTp is not the linear
velocity of the body-frame origin expressed in the fixed frame (that quantity
would simply be p). If we write vy as

Vs =P —ws X p=p—+ws X (—p), (3.73)
the physical meaning of vy can now be inferred: imagining the moving body
to be infinitely large, v, is the instantaneous velocity of the point on this body
currently at the fixed-frame origin, expressed in the fixed frame (see Figure 3.17).

As we did for wy and vy, we assemble w and v, into a six-dimensional twist,

v, = [ “’: } eRS, V)= [ [“as] 16 ] =TT € se(3), (3.74)

where [V] is the 4 X 4 matrix representation of V,. We call V, the spatial
velocity in the space frame, or simply the spatial twist.

If we regard the moving body as being infinitely large, there is an appealing
and natural symmetry between Vs = (ws, vs) and Vi, = (wp, vp):

(a) wp is the angular velocity expressed in {b}, and wy is the angular velocity
expressed in {s}.

(b) wp is the linear velocity of a point at the origin of {b} expressed in {b},
and vy is the linear velocity of a point at the origin of {s} expressed in

{s}-

We can obtain V, from Vy as follows:

Ve = T7'T
= T '[VIT. (3.75)
Going the other way,
Vsl =T W] T~ (3.76)
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Writing out the products in Equation (3.76), we get

[ R[wb]RT —R[wb]RTp—i—va :|
Vs = 0 0

which, using R[w]RT = [Rw] (Proposition 3.8) and [w]p = —[p]w for p,w € R?,
can be manipulated into the following relation between V, and V;:

Wg o R 0 Wh
vs | | [PIR R v |
Because the 6 x 6 matrix pre-multiplying V, is useful for changing the frame

of reference for twists and wrenches, as we will see shortly, we give it its own
name.

Definition 3.20. Given T = (R,p) € SE(3), its adjoint representation
[AdT] is

sarl= [ e | < B

For any V € R®, the adjoint map associated with 7 is
V' = [Adr]V,
which is sometimes also written as
V' = Adr (V).
In terms of the matrix form [V] € se(3) of V € RS,
V]=TVT

The adjoint map satisfies the following properties, verifiable by direct calcu-
lation:

Proposition 3.21. Let T1,T, € SE(3) and V = (w,v). Then
Adg, (Adp, (V) = Adpy, (V) or  [Adp][Adg,]V = [Adpg, V. (3.77)
Also, for any T € SE(3) the following holds:
[Adr] ™" = [Adp-], (3.78)

The second property follows from the first on choosing 77 = 7T~ 'and T» = T,
so that
Adp-1 (Adr(V)) = Adp-170(V) = Ad; (V) = V. (3.79)
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3.3.2.1 Summary of Results on Twists

The main results on twists derived thus far are summarized in the following
proposition:

Proposition 3.22. Given a fized (space) frame {s}, a body frame {b}, and a
differentiable Tsy(t) € SE(3), where

To(t) = [ R() plt) ] , (3.80)

0 1
then _ i
Tt =il = | 2% ] e se3) (3.81)

s the matriz representation of the body twist, and

ToTy' = [V = — [uas] 165 _ € se(3) (3.82)

is the matriz representation of the spatial twist. The twists Vs and Vy are
related by

Vv, = [ " ] - { [pffR H { o } = [Adz, |V, (3.83)
N S YR

More generally, for any two frames {c} and {d}, a twist represented as V. in
{c} is related to its representation Vg4 in {d} by

Ve = [Achd]vd’ Va= [Adec]VC'

Again analogously to the case of angular velocities, it is important to realize
that, for a given twist, its fixed-frame representation V, does not depend on the
choice of the body frame {b}, and its body-frame representation V} does not
depend on the choice of the fized frame {s}.

Example 3.23. Figure 3.18 shows a top view of a car, with a single steerable
front wheel, driving on a plane. The Z,-axis of the body frame {b} is into the
page and the Zg-axis of the fixed frame {s} is out of the page. The angle of
the front wheel of the car causes the car’s motion to be a pure angular velocity
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"N\ T{yg}
A

Figure 3.18: The twist corresponding to the instantaneous motion of the chassis of
a three-wheeled vehicle can be visualized as an angular velocity w about the point r.

w = 2 rad/s about an axis out of the page at the point r in the plane. Inspecting
the figure, we can writer asrs = (2,—1,0) or 1, = (2,—1.4,0), was ws = (0,0,2)
or wy = (0,0, —2), and Ty, as

-1 0 0 4
T Rsb Psb _ 0 1 0 0.4
sb 0 1 0 0 -1 0
0 0 0 1

From the figure and simple geometry, we get

Vs = Ws X (—’I"s) =Ts X Ws = (_25 _470)a

vp = wp X (—rp) =715 X wp = (2.8,4,0),

and thus obtain the twists V, and V:

0 0

0 0

_ Wse _ 2 _ Wy o —2
VS_[US]_ -2 | Vb_[vb]_ 2.8
—4 4

0 0

To confirm these results, try calculating Vs = [Adr,,|Vb.

3.3.2.2 The Screw Interpretation of a Twist

Just as an angular velocity w can be viewed as &8, where & is the unit rotation
axis and 0 is the rate of rotation about that axis, a twist V' can be interpreted
in terms of a screw axis S and a velocity 6 about the screw axis.
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hs6 /
—§9Xq / K‘96
q /

3 y
h = pitch =
linear speed/angular speed

Figure 3.19: A screw axis S represented by a point ¢, a unit direction §, and a pitch

h.

A screw axis represents the familiar motion of a screw: rotating about the
axis while also translating along the axis. One representation of a screw axis
S is the collection {g, 3, h}, where ¢ € R? is any point on the axis, § is a unit
vector in the direction of the axis, and h is the screw pitch, which defines the
ratio of the linear velocity along the screw axis to the angular velocity 6 about
the screw axis (Figure 3.19).

Using Figure 3.19 and geometry, we can write the twist V = (w,v) corre-
sponding to an angular velocity 6 about S (represented by {g¢, 3, h}) as

w 50
V‘[J‘[@éxﬁhéé '

Note that the linear velocity v is the sum of two terms: one due to translation
along the screw axis, héé, and the other due to the linear motion at the origin
induced by rotation about the axis, —50 x ¢q. The first term is in the direction
of 3, while the second term is in the plane orthogonal to 5. It is not hard to
show that, for any V = (w,v) where w # 0, there exists an equivalent screw axis
{q,%,h} and velocity 6, where § = w/||wl|, § = ||lw]||, h = &@Tv/0, and ¢ is chosen
so that the term —36 x q provides the portion of v orthogonal to the screw axis.

If w = 0, then the pitch h of the screw is infinite. In this case § is chosen as
v/||v]|, and 0 is interpreted as the linear velocity ||v| along §.

Instead of representing the screw axis S using the cumbersome collection
{g, §, h}, with the possibility that A may be infinite and with the nonuniqueness
of ¢ (any ¢ along the screw axis may be used), we instead define the screw axis
S using a normalized version of any twist V = (w,v) corresponding to motion
along the screw:
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(a) If w # 0 then S = V/|w| = (w/||w||,v/||w|]). The screw axis S is simply
V normalized by the length of the angular velocity vector. The angular
velocity about the screw axis is § = ||w||, such that SO = V.

(b) If w = 0 then S = V/||v|| = (0,v/|v||). The screw axis S is simply V
normalized by the length of the linear velocity vector. The linear velocity
along the screw axis is § = ||v]|, such that S6 = V.

This leads to the following definition of a “unit” (normalized) screw axis:

Definition 3.24. For a given reference frame, a screw axis S is written as
w
S = { } € RS,
v

where either (i) ||w|| = 1 or (ii) w = 0 and |jv|| = 1. If (i) holds then v =
—w X q + hw, where ¢ is a point on the axis of the screw and h is the pitch of
the screw (h = 0 for a pure rotation about the screw axis). If (ii) holds then the
pitch of the screw is infinite and the twist is a translation along the axis defined
by v.

Important: Although we use the pair (w,v) for both a normalized
screw axis S (where one of ||w|| or ||v|| must be unity) and a general twist
V (where there are no constraints on w and v), the meaning should be clear
from the context.

Since a screw axis S is just a normalized twist, the 4 x4 matrix representation
[S] of § = (w,v) is

[w] v 0 —Ws wo
[S] = [ 0 0 ] € se(3), w]=1] ws 0 —(L)ul € s0(3), (3.85)
—W2 w1

where the bottom row of [S] consists of all zeros. Also, a screw axis represented
as S, in a frame {a} is related to the representation S, in a frame {b} by

S, = [Adr,,]Sp, Sy = [Adpy,, |Sa-
3.3.3 Exponential Coordinate Representation of Rigid-Body
Motions
3.3.3.1 Exponential Coordinates of Rigid-Body Motions
In the planar example in Section 3.1, we saw that any planar rigid-body dis-

placement can be achieved by rotating the rigid body about some fixed point
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in the plane (for a pure translation, this point lies at infinity). A similar result
also exists for spatial rigid-body displacements: the Chasles—Mozzi theorem
states that every rigid-body displacement can be expressed as a displacement
along a fixed screw axis S in space.

By analogy to the exponential coordinates @8 for rotations, we define the six-
dimensional exponential coordinates of a homogeneous transformation
T as SO € RS, where S is the screw axis and 6 is the distance that must be
traveled along the screw axis to take a frame from the origin I to T". If the pitch
of the screw axis § = (w,v) is finite then ||w|| = 1 and € corresponds to the
angle of rotation about the screw axis. If the pitch of the screw is infinite then
w =0 and ||v] = 1 and 6 corresponds to the linear distance traveled along the
screw axis.

Also by analogy to the rotation case, we define a matrix exponential (exp)
and matrix logarithm (log):

exp: [S]0€se(3) — T eSE(3),
log: TeSEB) — [S]0¢€ se(3).

We begin by deriving a closed-form expression for the matrix exponential
elS19 Expanding the matrix exponential in series form leads to

202 50°

elSf = I+[8]0+[SP5 + 18P+
[ e G B 62 N
= [ 0 1 , G(0)719+[w]5+[w] 5+~~(3.86)
Using the identity [w]® = —[w], G(#) can be simplified to
G@O) = 10 i 20
0) = I+[w]§+[w]§+-~-
6> 0 6° 0 6 0 5
= I¢9+<2!—Zﬂ+6!—--->[w]+<3!—5!+7!—--~>[w}
= I0+ (1 —cos0)[w] + (0 — sin 0)[w]*. (3.87)

Putting everything together leads to the following proposition:

Proposition 3.25. Let S = (w,v) be a screw azis. If ||w| = 1 then, for any
distance 0 € R traveled along the axis,

[ e (10 + (1 = cosB)[w] + (6 — sinO)[w]?) v
e ( ) Jv | (3.88)
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Ifw=0 and ||v|| =1, then

elS10 = { é “19 ] . (3.89)

3.3.3.2 Matrix Logarithm of Rigid-Body Motions

The above derivation essentially provides a constructive proof of the Chasles—
Mozzi theorem. That is, given an arbitrary (R, p) € SE(3), one can always find
a screw axis S = (w,v) and a scalar 6 such that

s _ | B p
el” = [ 0 1 } , (3.90)
i.e., the matrix
[ [w]@ vO ] € se(3)
0
is the matrix logarithm of T' = (R, p).

Algorithm: Given (R, p) written as T' € SE(3), find a 6 € [0, 7] and a screw
axis § = (w,v) € RS (where at least one of ||w| and |jv|| is unity) such that
elS19 — T The vector SO € RS comprises the exponential coordinates for T' and
the matrix [S]0 € se(3) is the matrix logarithm of 7'

(a) If R =1 then set w =0, v =p/||p||, and 8 = ||p||.

(b) Otherwise, use the matrix logarithm on SO(3) to determine w (written as
@ in the SO(3) algorithm) and 0 for R. Then v is calculated as

v=G0)p (3.91)
where ) ) L1 p
G H0) = il 5[w] + (9 — 5 cot 2) [w]?. (3.92)

The verification of Equation (3.92) is left as an exercise.

Example 3.26. In this example, the rigid-body motion is confined to the X;—
Vs-plane. The initial frame {b} and final frame {c} in Figure 3.20 can be repre-
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ws =1 rad/s

.
g = (3.37,3.37)

v = (3.37,—3.37)
Figure 3.20: Two frames in a plane.

sented by the SF(3) matrices

[ cos30° —sin30° 0 1
T, — sin30°  cos30° 0 2
s 0 0 1 0|’
| 0 0 0 1 |
[ cos60° —sin60° 0 2 ]
T sin60° cos60° 0 1
se 0 0 1 0
| 0 0 0 1 |

Because the motion occurs in the X4—y,-plane, the corresponding screw has an
axis in the direction of the Zs-axis and has zero pitch. The screw axis S = (w, v),
expressed in {s}, therefore has the form

w = (0,0,ws),
v = (v1,v9,0).
We seek the screw motion that displaces the frame at Ty, to Te; i.e., Tse =

eS0T, or
T..T,," = e’

9
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where
0 —Wws3 0 (%1}
o w3 0 0 V2
[S] = 0 0 0 O
0 0 0 O

We can apply the matrix logarithm algorithm directly to Ts T’ ;}1 to obtain [S]
(and therefore S) and 6 as follows:

w1 0
0 -1 0 3.37 wa 0
11 0 0 -337 Clws | | 1 o .
[S] = 0 0 0 0 , §= w | = | 337 | 0= : rad (or 30°).
0 0 O 0 Vg -3.37
VU3 0

The value of S means that the constant screw axis, expressed in the fixed frame
{s}, is represented by an angular velocity of 1 rad/s about 7 and a linear velocity
(of a point currently at the origin of {s}) of (3.37,—3.37,0) expressed in the {s}
frame.

Alternatively, we can observe that the displacement is not a pure translation
— T, and T, have rotation components that differ by an angle of 30° — and we
quickly determine that § = 30° and w3 = 1. We can also graphically determine
the point ¢ = (¢s,¢qy) in the %y -plane through which the screw axis passes;
for our example this point is given by ¢ = (3.37,3.37).

For planar rigid-body motions such as this one, we could derive a planar
matrix logarithm algorithm that maps elements of SE(2) to elements of se(2),
which have the form

0 —w 1
w 0 v
0 O 0

3.4 Wrenches

Consider a linear force f acting on a rigid body at a point r. Defining a reference
frame {a}, the point r can be represented as r, € R® and the force f can be
represented as f, € R3. This force creates a torque or moment m, € R? in
the {a} frame:

Mg =Tq X fa-

Note that the point of application of the force along its line of action is imma-
terial.
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{b}

{a} 'a

Figure 3.21: Relation between wrench representations F, and Fy.

Just as with twists, we can merge the moment and force into a single six-
dimensional spatial force, or wrench, expressed in the {a} frame, F,:

Fo= [ Ma } € RS. (3.93)
Ja

If more than one wrench acts on a rigid body, the total wrench on the body is

simply the vector sum of the individual wrenches, provided that the wrenches

are expressed in the same frame. A wrench with a zero linear component is

called a pure moment.

A wrench in the {a} frame can be represented in another frame {b} (Fig-
ure 3.21) if Tp, is known. One way to derive the relationship between F, and F;
is to derive the appropriate transformations between the individual force and
moment vectors on the basis of techniques we have already used.

A simpler and more insightful way to derive the relationship between F,
and Fp, however, is to (1) use the results we have already derived relating
representations V, and V, of the same twist, and (2) use the fact that the power
generated (or dissipated) by an (F,V) pair must be the same regardless of the
frame in which it is represented. (Imagine if we could create power simply
by changing our choice of reference frame!) Recall that the dot product of a
force and a velocity is a power, and power is a coordinate-independent quantity.
Because of this, we know that

VEFy =ViF,. (3.94)

From Proposition 3.22 we know that V, = [Adr,,]Vs, and therefore Equa-
tion (3.94) can be rewritten as

Vy Fo = ([Adr,, Vo) Fa
=V} [Adr,, | F,.
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L,y Lo
>
yf yh
= y
)A(f Xh }A(a

Figure 3.22: A robot hand holding an apple subject to gravity.

Since this must hold for all V), this simplifies to
Fyp = [Adr,, | Fa. (3.95)

Similarly,
Fo = [Adr,, T Fo. (3.96)

Proposition 3.27. Given a wrench F, represented in {a} as F, and in {b} as
Fp, the two representations are related by

Fo = Adj,(F.) = [Adr,,|" F, (3.97)
Fo = Ady, (F) =[Adg, )" F. (3.98)

Since we usually have a fixed space frame {s} and a body frame {b}, we can
define a spatial wrench F; and a body wrench .

Example 3.28. The robot hand in Figure 3.22 is holding an apple with a mass
of 0.1 kg in a gravitational field g = 10 m/s? (rounded to keep the numbers
simple) acting downward on the page. The mass of the hand is 0.5 kg. What is
the force and torque measured by the six-axis force-torque sensor between the
hand and the robot arm?

We define frames {f} at the force—torque sensor, {h} at the center of mass
of the hand, and {a} at the center of mass of the apple. According to the
coordinate axes in Figure 3.22, the gravitational wrench on the hand in {h} is
given by the column vector

Fin = (0,0,0,0,—5 N,0)
and the gravitational wrench on the apple in {a} is

F, = (0,0,0,0,0,1 N).
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Given L; = 10 cm and Ly = 15 cm, the transformation matrices T}y and Tg
are

1 00 —01m 1 0 0 —025m
01 0 0 0 0 1 0

Thy=10 0 1 0 ' Tar =109 _1 0 0
00 0 1 0 0 0 1

The wrench measured by the six-axis force-torque sensor is

Fr = [Adg,, )" F + [Adr, " T
=00 —05Nm0 —5NO0T+[00 —025Nm0 —1NO0]T
=00 —0.75Nm 0 —6 N 0]T.

3.5 Summary
The following table succinctly summarizes some of the key concepts from the

chapter, as well as the parallelism between rotations and rigid-body motions.
For more details, consult the appropriate section of the chapter.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

112

3.5. Summary

Rotations

Rigid-Body Motions

R € SO(3) : 3 x 3 matrices
RTR=1,detR=1

T € SE(3) : 4 x 4 matrices
_| B
= 0o 1|’
where R € SO(3),p € R3

R'=R"

RT —RTp
-1 _
i N

change of coordinate frame:
RupRpe = Rae, RabPo = Pa

change of coordinate frame:

rotating a frame {b}:
R = Rot(w, 0)

Rsp = RRg:
rotate 6 about wy = @
Rgr = R R:
rotate 6 about w, = @

TovTve = Toe, TabPo = Pa
displacing a frame {b}:
_ | Rot(w,0) p

= 0 1

Tey = TTg: rotate § about Oy = @
(moves {b} origin), translate p in {s}
Topr = TspT: translate p in {b},
rotate # about @ in new body frame

unit rotation axis is & € R3,

where ||@] =1

“unit” screw axis is S = € RS,

where either (i) ||w| =1 or
(ii) w=0and |jv|| =1

for a screw axis {q, §, h} with finite h,

S:[ﬂ:[éxiwﬁ]

angular velocity is w = w6

twist is V = S6

continued...

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

Chapter 3. Rigid-Body Motions

113

Rotations (cont.)

Rigid-Body Motions (cont.)

for any 3-vector, e.g., w € R3,

0 —Ws3 W2
Wwl=| ws 0 —wi |€s0(3)
—W?2 w1 0
identities, w,z € R3, R € SO(3):
[w] = —[w]", Wz = —[z]w,

wlla] = ([]lw) ", RW]RT = [Rw]

w

forV[ }GRG,
v

= | &b ] ese

(the pair (w,v) can be a twist V
or a “unit” screw axis S,
depending on the context)

RR™!' = [w,], R'R = [w)]

TT- =], T7'T =V

[AdT] = l: [pl]{R ]O% :| ERﬁXG
identities: [Adr]™! = [Adp-1],
[AdTl][AdT2] = [AdT1T2}

change of coordinate frame:
Wq = Rapwp, we = Rapwy

change of coordinate frame:
Sa = [Ad,, [y, Vo = [Adg,,[Vs

exp coords for R € SO(3): wf € R3

exp coords for T € SE(3): 86 € R®

exp : [0]0 € so(3) = R € SO(3)
R = Rot(@, ) = el*l? =
I +sin @] + (1 — cos0)[@)?

exp : [S]0 € se(3) - T € SE(3)
T sl _ e[w]G "
T o1

where * =

(I6 + (1 — cos ) [w] + (8 — sin ) [w]?)v

log : R € SO(3) — [@]0 € so(3)
algorithm in Section 3.2.3.3

log : T € SE(3) — [S]0 € se(3)
algorithm in Section 3.3.3.2

moment change of coord frame:
me = Rabmb

wrench change of coord frame:
]:a = (maafa) = [AdTba]T]:b

3.6 Software

The following functions are included in the software distribution accompany-
ing the book. The code below is in MATLAB format, but it is available in
other languages. For more details on the software, consult the code and its

documentation.

invR = RotInv(R)
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Computes the inverse of the rotation matrix R.

so3mat = VecToso3(omg)
Returns the 3 x 3 skew-symmetric matrix corresponding to omg.

omg = so3ToVec(so3mat)
Returns the 3-vector corresponding to the 3 x 3 skew-symmetric matrix so3mat.

[omghat,theta] = AxisAng3(expc3)
Extracts the rotation axis @ and the rotation amount 6 from the 3-vector wf of
exponential coordinates for rotation, expc3.

R = MatrixExp3(so3mat)
Computes the rotation matrix R € SO(3) corresponding to the matrix exponen-
tial of so3mat € so(3).

so3mat = MatrixLog3(R)
Computes the matrix logarithm so3mat € so(3) of the rotation matrix R €

SO(3).

T = RpToTrans(R,p)
Builds the homogeneous transformation matrix T corresponding to a rotation
matrix R € SO(3) and a position vector p € R3.

[R,p] = TransToRp(T)
Extracts the rotation matrix and position vector from a homogeneous transfor-
mation matrix T.

invT = TransInv(T)
Computes the inverse of a homogeneous transformation matrix T.

se3mat = VecTose3(V)
Returns the se(3) matrix corresponding to a 6-vector twist V.

V = se3ToVec(se3mat)
Returns the 6-vector twist corresponding to an se(3) matrix se3mat.

AdT = Adjoint(T)
Computes the 6 x 6 adjoint representation [Adr] of the homogeneous transfor-
mation matrix T.

S = ScrewToAxis(q,s,h)
Returns a normalized screw axis representation S of a screw described by a unit
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vector s in the direction of the screw axis, located at the point q, with pitch h.

[S,theta] = AxisAng(expc6)
Extracts the normalized screw axis S and the distance traveled along the screw
# from the 6-vector of exponential coordinates S6.

T = MatrixExp6(se3mat)
Computes the homogeneous transformation matrix T € SE(3) corresponding to
the matrix exponential of se3mat € se(3).

se3mat = MatrixLog6(T)
Computes the matrix logarithm se3mat € se(3) of the homogeneous transfor-
mation matrix T € SE(3).

3.7 Notes and References

The exponential coordinates for rotations introduced in this chapter are also re-
ferred to in the kinematics literature as the Euler-Rodrigues parameters. Other
representations for rotations such as Euler angles, Cayley—Rodrigues parame-
ters, and unit quaternions are described in Appendix B; further details on these
and related parametrizations of the rotation group SO(3) can be found in, e.g.,
[ ) ) ’ ’ ]

Classical screw theory has its origins in the works of Mozzi and Chasles,
who independently discovered that the motion of a rigid body can be obtained
as a rotation about some axis followed by a translation about the same axis
[25]. Ball’s treatise [6] is often regarded as the classical reference on screw
theory, while more modern treatments can be found in Bottema and Roth [18],
Angeles [2], and McCarthy [113].

The identification of elements of classical screw theory with the Lie group
structure of the rigid body motions SE(3) was first made by Brockett in [20],
who went considerably further and showed that the forward kinematics of open
chains can be expressed as the product of matrix exponentials (this is the subject
of the next chapter). Derivations of the formulas for the matrix exponentials,
logarithms, their derivatives, and other related formulas can be found in [92,

, 131, 122,
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3.8 Exercises

Exercise 3.1 In terms of the X, ., 2s coordinates of a fixed space frame {s},

the frame {a} has its X,-axis pointing in the direction (0,0, 1) and its ¥,-axis

pointing in the direction (—1,0,0), and the frame {b} has its %X,-axis pointing

in the direction (1,0,0) and its §,-axis pointing in the direction (0,0, —1).

(a) Draw by hand the three frames, at different locations so that they are easy
to see.

(b) Write down the rotation matrices R, and Rgp.

(¢) Given Ry, how do you calculate R;bl without using a matrix inverse?
Write down R;} and verify its correctness using your drawing.

(d) Given Ry, and Ry, how do you calculate R, (again without using ma-
trix inverses)? Compute the answer and verify its correctness using your
drawing.

(e) Let R = Ry be considered as a transformation operator consisting of
a rotation about x by —90°. Calculate Ry = Rz, R, and think of Ry,
as a representation of an orientation, R as a rotation of Rg,, and R, as
the new orientation after the rotation has been performed. Does the new
orientation R; correspond to a rotation of R, by —90° about the world-
fixed X¢-axis or about the body-fixed %,-axis? Now calculate Ry = RRs,.
Does the new orientation Ry correspond to a rotation of Rg, by —90°
about the world-fixed %Xs-axis or about the body-fixed X,-axis?

(f) Use Rgp to change the representation of the point p, = (1,2,3) (which is
in {b} coordinates) to {s} coordinates.

(g) Choose a point p represented by ps = (1,2, 3) in {s} coordinates. Calculate
p' = Raps and p” = RLps. For each operation, should the result be

interpreted as changing coordinates (from the {s} frame to {b}) without
moving the point p or as moving the location of the point without changing
the reference frame of the representation?

(h) An angular velocity w is represented in {s} as ws = (3,2,1). What is its
representation w, in {a}?

(i) By hand, calculate the matrix logarithm [©]6 of Rs,. (You may verify your
answer with software.) Extract the unit angular velocity & and rotation
amount 0. Redraw the fixed frame {s} and in it draw &.

(j) Calculate the matrix exponential corresponding to the exponential coor-
dinates of rotation wf = (1,2,0). Draw the corresponding frame relative
to {s}, as well as the rotation axis @.
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Exercise 3.2 Let p be a point whose coordinates are p = (%, —%, %) with

respect to the fixed frame x—y—2. Suppose that p is rotated about the fixed-
frame x-axis by 30 degrees, then about the fixed-frame y-axis by 135 degrees, and
finally about the fixed-frame z-axis by —120 degrees. Denote the coordinates of
this newly rotated point by p'.

(a) What are the coordinates p'?

(b) Find the rotation matrix R such that p’ = Rp for the p’ you obtained in

(a).

Exercise 3.3 Suppose that p; € R? and p} € R? are related by p, = Rp;,
1 =1,2,3, for some unknown rotation matrix R. Find, if it exists, the rotation
R for the three input—output pairs p; — p,, where

b1 = (\[27072) — pll = (0727\6)7

P2 = (1717_1) = pl2 = (\}5?\}57_\/§> >
p3 = (0,2\/5, O) — pg’) = (7\@7 \/iv 72)'

Exercise 3.4 In this exercise you are asked to prove the property R, Rp. =
R,. of Equation (3.22). Define the unit axes of frames {a}, {b}, and {c} by
the triplets of orthogonal unit vectors {Xa,¥.,%a}, {Xb, V1, %b}, and {X¢, Ve, Zc ),
respectively. Suppose that the unit axes of frame {b} can be expressed in terms
of the unit axes of frame {a} by

Xp = ruRa+7r21¥, + 73124,
Vb = T12Xa +722Y, + r32Za,
Zh = T13%a + 7237, + T332,

Similarly, suppose that the unit axes of frame {c} can be expressed in terms of
the unit axes of frame {b} by

Xe = SuXp+ 521¥y, + 5312b,
Ve = S12Xp + S22V}, + S322b,
Ze =  S13Xb + S23Yp t+ S33%Zb-
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From the above prove that R, Rpe = Rae-

Exercise 3.5 Find the exponential coordinates &0 € R? for the SO(3) matrix

0 -1 0
0 0 -1
1 0 O

Exercise 3.6 Given R = Rot(%,7/2)Rot(z,7), find the unit vector & and
angle 6 such that R = el%l?

Exercise 3.7
(a) Given the rotation matrix

0 0 1
R=|0 -1 0],
1 0 0

find all possible values for @ € R3 ||0|| = 1, and @ € [0,27) such that
@0 — R
e :
(b) The two vectors v1,v2 € R? are related by

vy = Rvy = e[‘ﬂ]e’ul

where @ € R® has length 1, and 0 € [~7,7]. Given & = (%, %, %),vl =

(1,0,1),v9 = (0,1, 1), find all the angles 0 that satisfy the above equation.

Exercise 3.8
(a) Suppose that we are seeking the logarithm of a rotation matrix R whose
trace is —1. From the exponential formula

ell0 = T 4 sin 6 [] + (1 — cos 0)[@]?, w| =1,
and recalling that tr R = —1 implies § = 7, the above equation simplifies
to
1—2(w3 +@3) 201 @2 201 @3
R=1+2[0)? = 20169 1—2(0? +02) 20903
200102 209w3 1-— 2(@)% + (21%)

Using the fact that &% + &3 + ©3 = 1, is it correct to conclude that

Oy = 7"11—|—1 Gy — T22—|—1 Cn = T33—|—1
1—\/ 2 ) Q_M 2 3 3_\/ 2 )
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where r;; denotes the (4, j)th entry of R, is also a solution?
(b) Using the fact that [©]® = —[@], the identity R = I +2[®]? can be written
in the alternative forms

R—1 = 27
@] (R-1T) = 2[@) = -2[a],
(@] (R+ 1) 0.

The resulting equation consists of three linear equations in (&1, ws, @3).
What is the relation between the solution to this linear system and the
logarithm of R?

Exercise 3.9 Exploiting the known properties of rotation matrices, determine
the minimum number of arithmetic operations (multiplication and division, ad-
dition and subtraction) required to multiply two rotation matrices.

Exercise 3.10 Because arithmetic precision is only finite, the numerically
obtained product of two rotation matrices is not necessarily a rotation matrix;
that is, the resulting rotation A may not exactly satisfy ATA = I as desired.
Devise an iterative numerical procedure that takes an arbitrary matrix A € R3*3
and produces a matrix R € SO(3) that minimizes

|A—R|?=tr (A— R)(A—R)".

(Hint: See Appendix D for the relevant background on optimization.)

Exercise 3.11 Properties of the matrix exponential.
(a) Under what conditions on general A, B € R™*" does e4eB = eA*B hold?
(b) If A = [V,] and B = [V}], where V, = (wq,vq) and Vi, = (wp,vp) are
arbitrary twists, then under what conditions on V, and V, does ee? =
eATB hold? Try to give a physical description of this condition.

Exercise 3.12

(a) Given a rotation matrix A = Rot(Z, ), where Rot(Z, ) indicates a rota-
tion about the Z-axis by an angle «, find all rotation matrices R € SO(3)
that satisfy AR = RA.

(b) Given rotation matrices A = Rot(z,«) and B = Rot(z, 8), with a # 5,
find all rotation matrices R € SO(3) that satisfy AR = RB.

(c¢) Given arbitrary rotation matrices A, B € SO(3), find all solutions R €
SO(3) to the equation AR = RB.
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Exercise 3.13
(a) Show that the three eigenvalues of a rotation matrix R € SO(3) each have
unit magnitude, and conclude that they can always be written {u+iv, u—
iv, 1}, where p? + 12 = 1.
(b) Show that a rotation matrix R € SO(3) can always be factored in the
form

R=4| - AL

oOR T
oOr X
= o O

where A € SO(3) and p? + v? = 1. (Hint: Denote the eigenvector associ-
ated with the eigenvalue p + iv by = + iy, =,y € R?, and the eigenvector
associated with the eigenvalue 1 by z € R3. For the purposes of this prob-
lem you may assume that the set of vectors {z,y, 2z} can always be chosen
to be linearly independent.)

Exercise 3.14 Given w € R3, ||w|| = 1, and # a nonzero scalar, show that
_ 1 1 1 1 0
(16 + (1 — cos ) [w] + (6 — sin 0)[w]?) b= 5] — —w] + < — —cot ) [w]?.

(Hint: From the identity [w]? = —[w], express the inverse as a quadratic matrix
polynomial in [w].)

Exercise 3.15
(a) Given a fixed frame {0} and a moving frame {1} initially aligned with
{0}, perform the following sequence of rotations on {1}:

1. Rotate {1} about the {0} frame X-axis by «; call this new frame {2}.
2. Rotate {2} about the {0} frame y-axis by 3; call this new frame {3}.
3. Rotate {3} about the {0} frame 2-axis by ~; call this new frame {4}.

What is the final orientation Rg4?

(b) Suppose that the third step above is replaced by the following: “Rotate
{3} about the z-axis of frame {3} by ~; call this new frame {4}.” What
is the final orientation Rg4?
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(c)

Find T,, for the following transformations:

1 1 1 1

7 0 -1 L 0 50
Tp=|v v 9| = 0 1 01

0 0 1 1 s 0 2 0

0 0 0 1 0 0 0 1

Exercise 3.16 In terms of the X, ¥, Zs coordinates of a fixed space frame
{s}, frame {a} has its %X,-axis pointing in the direction (0,0, 1) and its y,-axis
pointing in the direction (—1,0,0), and frame {b} has its Xp-axis pointing in the
direction (1,0,0) and its y,-axis pointing in the direction (0,0, —1). The origin
of {a} is at (3,0,0) in {s} and the origin of {b} is at (0,2,0) is {s}.

(a)
(b)

Draw by hand a diagram showing {a} and {b} relative to {s}.

Write down the rotation matrices Rg, and Ry and the transformation
matrices Ty, and Ty.

Given Ty, how do you calculate TS;1 without using a matrix inverse?
Write T;bl and verify its correctness using your drawing.

Given Ty, and Ty, how do you calculate T, (again without using ma-
trix inverses)? Compute the answer and verify its correctness using your
drawing.

Let T' = Ty, be considered as a transformation operator consisting of a
rotation about X by —90° and a translation along y by 2 units. Calculate
T, =T, T. Does T} correspond to a rotation and translation about %X; and
Vs, respectively (a world-fixed transformation of Ts,), or a rotation and
translation about %X, and ¥,, respectively (a body-fixed transformation of
Tsa)? Now calculate To = TTs,. Does Ty correspond to a body-fixed or
world-fixed transformation of Tg,?

Use Ty, to change the representation of the point p, = (1,2,3) in {b}
coordinates to {s} coordinates.

Choose a point p represented by ps = (1,2,3) in {s} coordinates. Calcu-
late p’ = Typs and p”’ = Téj)lps. For each operation, should the result
be interpreted as changing coordinates (from the {s} frame to {b}) with-
out moving the point p, or as moving the location of the point without
changing the reference frame of the representation?

A twist V is represented in {s} as Vs, = (3,2,1,—1,—2,—3). What is its
representation V, in frame {a}?

By hand, calculate the matrix logarithm [S]6 of Ts,. (You may verify your
answer with software.) Extract the normalized screw axis S and rotation
amount 6. Find the {q, §, h} representation of the screw axis. Redraw the
fixed frame {s} and in it draw S.
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(j) Calculate the matrix exponential corresponding to the exponential coordi-
nates of rigid-body motion 86 = (0,1,2,3,0,0). Draw the corresponding
frame relative to {s}, as well as the screw axis S.

Figure 3.23: Four reference frames defined in a robot’s workspace.

Exercise 3.17 Four reference frames are shown in the robot workspace of
Figure 3.23: the fixed frame {a}, the end-effector frame effector {b}, the camera
frame {c}, and the workpiece frame {d}.

(a) Find T,q and T4 in terms of the dimensions given in the figure.

(b) Find T, given that

Tbc =

o O O
OO = O
o= O O
— O O =
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Figure 3.24: A robot arm mounted on a spacecraft.

Exercise 3.18 Consider a robot arm mounted on a spacecraft as shown in
Figure 3.24, in which frames are attached to the Earth {e}, a satellite {s}, the
spacecraft {a}, and the robot arm {r}, respectively.

(a) Given Teq, Tor, and Tes, find T..

(b) Suppose that the frame {s} origin as seen from {e} is (1,1,1) and that

(an)
e T N

Write down the coordinates of the frame {s} origin as seen from frame

{r}.

Exercise 3.19 Two satellites are circling the Earth as shown in Figure 3.25.
Frames {1} and {2} are rigidly attached to the satellites in such a way that their
x-axes always point toward the Earth. Satellite 1 moves at a constant speed
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Satellite 2

{0} e

X0

Figure 3.25: Two satellites circling the Earth.

v1, while satellite 2 moves at a constant speed vs. To simplify matters, ignore
the rotation of the Earth about its own axis. The fixed frame {0} is located at
the center of the Earth. Figure 3.25 shows the position of the two satellites at
t=0.

(a) Derive the frames Ty1, Tpo as a function of .

(b) Using your results from part (a), find T3, as a function of ¢.

radius = r Ve

<>

radius = 2r

Figure 3.26: A high-wheel bicycle.
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Exercise 3.20 Consider the high-wheel bicycle of Figure 3.26, in which the
diameter of the front wheel is twice that of the rear wheel. Frames {a} and {b}
are attached respectively to the centers of the wheels, and frame {c} is attached
to the top of the front wheel. Assuming that the bike moves forward in the
y-direction, find T,. as a function of the front wheel’s rotation angle 6 (assume
6 = 0 at the instant shown in the figure).

North Stari\(

Y
1300 °

N
N

Docking port
radius: r

Figure 3.27: A spacecraft and space station.

Exercise 3.21 The space station of Figure 3.27 moves in circular orbit around
the Earth, and at the same time rotates about an axis always pointing toward
the North Star. Owing to an instrument malfunction, a spacecraft heading
toward the space station is unable to locate the docking port. An Earth-based
ground station sends the following information to the spacecraft:

0 -1 0 -100

0
1 0 0 300
Tab - 0 O 1 500 bl pa, - 880 I
0 0 O 1

where p, is the vector p expressed in {a}-frame coordinates.
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(a) From the given information, find r,, the vector r expressed in {b}-frame
coordinates.

(b) Determine Ty at the instant shown in the figure. Assume here that the §-
and z-axes of the {a} and {c} frames are coplanar with the docking port.

{1}

Laser

Figure 3.28: A laser tracking a moving target.

Exercise 3.22 A target moves along a circular path at constant angular ve-
locity w rad/s in the X—y-plane, as shown in Figure 3.28. The target is tracked
by a laser mounted on a moving platform, rising vertically at constant speed v.
Assume that at t = 0 the laser and the platform start at L, while the target
starts at frame T7.

(a) Derive the frames Ty1, T12, Tos as functions of ¢.

(b) Using your results from part (a), derive Th3 as a function of ¢.

Exercise 3.23 Two toy cars are moving on a round table as shown in Fig-
ure 3.29. Car 1 moves at a constant speed v; along the circumference of the
table, while car 2 moves at a constant speed vy along a radius; the positions of
the two vehicles at ¢ = 0 are shown in the figures.

(a) Find Tp; and Ty as a function of ¢.

(b) Find T2 as a function of ¢.
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Figure 3.29: Two toy cars on a round table.

Exercise 3.24 Figure 3.30 shows the configuration, at ¢ = 0, of a robot
arm whose first joint is a screw joint of pitch h = 2. The arm’s link lengths
are L; = 10, Ly = L3 = 5, and Ly = 3. Suppose that all joint angular
velocities are constant, with values wy = 7/4, wo = /8, wg = —mw/4 rad/s. Find
Ts(4) € SE(3), i.e., the configuration of the end-effector frame {b} relative to
the fixed frame {s} at time ¢ = 4.

Exercise 3.25 A camera is rigidly attached to a robot arm, as shown in
Figure 3.31. The transformation X € SE(3) is constant. The robot arm moves
from posture 1 to posture 2. The transformations A € SE(3) and B € SE(3)
are measured and can be assumed to be known.

(a) Suppose that X and A are given as follows:

1 0 0 1 0O 0 1 0
01 00 0 1 0 1
X = 0 01 0} A= -1 0 1 0
0 0 0 1 0 0 0 1
What is B?
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Ly

T A Y A

7 Vs

Figure 3.30: A robot arm with a screw joint.

(b) Now suppose that

7RA ba 7RB PB
a= ] e[

are known and we wish to find

| Bx px
% ]

Set Ry = el and Rg = el#l. What are the conditions on a € R? and
B € R3 for a solution Ry to exist?
(¢) Now suppose that we have a set of k equations

AZX:XBZ forizl,...,k.

Assume that A; and B; are all known. What is the minimum number &
for which a unique solution exists?
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{c}

pose 1

camera

Figure 3.31: A camera rigidly attached to a robot arm.

Exercise 3.26 Draw the screw axis for which ¢ = (3,0,0), § = (0,0, 1), and
h=2.

Exercise 3.27 Draw the screw axis for the twist V = (0,2,2,4,0,0).

Exercise 3.28 Assume that the space-frame angular velocity is ws = (1,2, 3)
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for a moving body with frame {b} at

0 -1 0
R=]0 0 -1
1 0 0

relative to the space frame {s}. Calculate the body’s angular velocity wj in {b}.

Exercise 3.29 Two frames {a} and {b} are attached to a moving rigid body.
Show that the twist of {a} in space-frame coordinates is the same as the twist
of {b} in space-frame coordinates.

72 A 22 %5
. Y2
B Wiy e = ()
| < {2} |
1 I 1 1, '
70 A ) Z1
/ R / R
- — T Y1 -— — Y1
{O}A Yo 4 {1} {0} Yo . {1}
X0 PN )A(O
1 1
(a) A first screw motion. (b) A second screw motion.

Figure 3.32: A cube undergoing two different screw motions.

Exercise 3.30 A cube undergoes two different screw motions from frame {1}
to frame {2} as shown in Figure 3.32. In both cases, (a) and (b), the initial
configuration of the cube is

1 000
01 0 1
Too=19 01 0
00 0 1

(a) For each case, (a) and (b), find the exponential coordinates SO = (w,v)6
such that Tps = e!S1?Ty;, where no constraints are placed on w or v.
(b) Repeat (a), this time with the constraint that ||wf|| € [—m,7].

Exercise 3.31 In Example 3.19 and Figure 3.16, the block that the robot must
pick up weighs 1 kg, which means that the robot must provide approximately
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10 N of force in the Z.-direction of the block’s frame {e} (which you can assume
is at the block’s center of mass). Express this force as a wrench F, in the {e}
frame. Given the transformation matrices in Example 3.19, express this same
wrench in the end-effector frame {c} as F..

Exercise 3.32 Given two reference frames {a} and {b} in physical space, and
a fixed frame {0}, define the distance between frames {a} and {b} as

diSt(Toaa Tob) = 02 + Hpab||2

where Ry, = el®?. Suppose that the fixed frame is displaced to another frame
{0’} and that T, = STpq, Tory = STy for some constant S = (Rs,ps) € SE(3).
(a) Evaluate dist(T, 4, Top) using the above distance formula.

(b) Under what conditions on S does dist(Toa, Top) = dist(Tora, Torp)?

)0

Exercise 3.33 (a) Find the general solution to the differential equation & =
Ax, where
-2 1
et
What happens to the solution z(t) as t — co?
(b) Do the same for
2 -1
=2
What happens to the solution x(t) as t — oo?

Exercise 3.34 Let 2 € R?, A € R?>*?, and consider the linear differential
equation @(t) = Az(t). Suppose that

is a solution for the initial condition x(0) = (1,1). Find A and e4*.

Exercise 3.35 Given a differential equation of the form & = Az + f(t), where
x € R™ and f(t) is a given differentiable function of ¢, show that the general
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solution can be written
t
z(t) = ez (0) + / eA=9) f(s) ds.
0
(Hint: Define z(t) = e~4*z(t) and evaluate 2(t).)

Exercise 3.36 Referring to Appendix B, answer the following questions re-
lated to ZXZ Euler angles.
(a) Derive a procedure for finding the ZXZ Euler angles of a rotation matrix.
(b) Using the results of (a), find the ZXZ Euler angles for the following rota-
tion matrix:

-5l

(™)

N = | S‘»—A
I[N

N|= [
)
Shab o

Exercise 3.37 Consider a wrist mechanism with two revolute joints 6; and
62, in which the end-effector frame orientation R € SO(3) is given by

R= 6[01]916[@12]92’
with @1 = (0,0,1) and @y = (0, %, —%) Determine whether the following
orientation is reachable (that is, find, if it exists, a solution (61,63) for the
following R):

=
I
Sod-
o = O
Shog

Exercise 3.38 Show that rotation matrices of the form

ri1 rig 0
T21 T22 T23
31 732 T33

can be parametrized using just two parameters 6 and ¢ as follows:

cos 6 —sinf 0
sinfcos¢ cosfcos¢p —sing
sinfsing cosfsing cos¢

What should the range of values be for 6 and ¢?
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Figure 3.33: A three-degree-of-freedom wrist mechanism.

Exercise 3.39 Figure 3.33 shows a three-dof wrist mechanism in its zero
position (i.e., all joint angles are set to zero).
(a) Express the tool-frame orientation Ry = R(«, 3,7) as a product of three
rotation matrices.
(b) Find all possible angles (a, 3,7) for the two values of Rys given below. If
no solution exists, explain why this is so in terms of the analogy between
SO(3) and a solid ball of radius .
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0
0
-1

(ii) Roz = el“™/2 where & = (0,

(1) Rosz =

(=N}
o O =

_
s
e
(@2
B

Exercise 3.40 Refer to Appendix B.

(a) Verify formulas (B.10) and (B.11) for the unit quaternion representation
of a rotation R € SO(3).

(b) Verify formula (B.12) for the rotation matrix R representation of a unit
quaternion g € S3.

(c) Verify the product rule for two unit quaternions. That is, given two unit
quaternions ¢, p € S3 corresponding respectively to the rotations R, Q €
SO(3), find a formula for the unit quaternion representation of the product

RQ € SO(3).

Exercise 3.41 The Cayley transform of Equation (B.18) in Appendix B can
be generalized to higher orders as follows:

R=(I—[r)EI+ )" (3.99)

(a) For the case k = 2, show that the rotation R corresponding to r can be
computed from the formula

1—rTr 8 9

R:I_4(1+TTT)2[T] + (1+7,T7,)2[7"] .

(3.100)

(b) Conversely, given a rotation matrix R, show that a vector r that satisfies
Equation (3.100) can be obtained as

0
r=—0tan T (3.101)

where, as before, @ is the unit vector along the axis of rotation for R, and
0 is the corresponding rotation angle. Is this solution unique?

(¢) Show that the angular velocity in the body frame obeys the following
relation:

= i (1 —=7rTr)I +2[r] + 2rrT) w. (3.102)

(d) Explain what happens to the singularity at 7 that exists for the standard
Cayley—Rodrigues parameters. Discuss the relative advantages and dis-
advantages of the modified Cayley—Rodrigues parameters, particularly for
order k = 4 and higher.
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(e) Compare the number of arithmetic operations needed for multiplying two
rotation matrices, two unit quaternions, or two Cayley—Rodrigues repre-
sentations. Which requires the fewest arithmetic operations?

Exercise 3.42 Rewrite the software for Chapter 3 in your favorite program-
ming language.

Exercise 3.43 Write a function that returns “true” if a given 3 x 3 matrix is
within € of being a rotation matrix and “false” otherwise. It is up to you how
to define the “distance” between a random 3 X 3 real matrix and the closest
member of SO(3). If the function returns “true,” it should also return the
“nearest” matrix in SO(3). See, for example, Exercise 3.10.

Exercise 3.44 Write a function that returns “true” if a given 4 x 4 matrix is
within € of an element of SE(3) and “false” otherwise.

Exercise 3.45 Write a function that returns “true” if a given 3 x 3 matrix is
within € of an element of so(3) and “false” otherwise.

Exercise 3.46 Write a function that returns “true” if a given 4 x 4 matrix is
within € of an element of se(3) and “false” otherwise.

Exercise 3.47 The primary purpose of the provided software is to be easy
to read and educational, reinforcing the concepts in the book. The code is
optimized neither for efficiency nor robustness, nor does it do full error-checking
on its inputs.

Familiarize yourself with the whole code in your favorite language by reading
the functions and their comments. This should help cement your understanding
of the material in this chapter. Then:

(a) Rewrite one function to do full error-checking on its input, and have the
function return a recognizable error value if the function is called with an
improper input (e.g., an argument to the function is not an element of
S0O(3), SE(3), so(3), or se(3), as expected).

(b) Rewrite one function to improve its computational efficiency, perhaps by
using what you know about properties of rotation or transformation ma-
trices.

(¢) Can you reduce the numerical sensitivity of either of the matrix logarithm
functions?
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Exercise 3.48 Use the provided software to write a program that allows the
user to specify an initial configuration of a rigid body by 7', a screw axis specified
by {q,$,h} in the fixed frame {s}, and the total distance traveled along the
screw axis, #. The program should calculate the final configuration Ty = elS19T
attained when the rigid body follows the screw S a distance 0, as well as the
intermediate configurations at /4, 6/2, and 36/4. At the initial, intermediate,
and final configurations, the program should plot the {b} axes of the rigid
body. The program should also calculate the screw axis &7 and the distance
0, following S; that takes the rigid body from Tj to the origin and it should
plot the screw axis &;. Test the program with ¢ = (0,2,0), § = (0,0,1), h = 2,
0 = m, and

10 0 2
0 1 0 0
T70010
0 0 01

Exercise 3.49 In this chapter, we developed expressions for the matrix expo-
nential for spatial motions mapping elements of so(3) to SO(3) and elements
of se(3) to SE(3). Similarly, we developed algorithms for the matrix logarithm
going the other direction.

We could also develop matrix exponentials for planar motions, from so(2)
to SO(2) and from se(2) to SE(2), as well as the matrix logarithms going
from SO(2) to so(2) and SE(2) to se(2). For the so(2) to SO(2) case there
is a single exponential coordinate. For the se(2) to SE(2) case there are three
exponential coordinates, corresponding to a twist with three elements set to
zero, V = (0,0,w., vz, vy,0).

For planar rotations and planar twists we could apply the matrix exponen-
tials and logarithms that we derived for the spatial case by simply expressing
the so(2), SO(2), se(2), and SE(2) elements as elements of so(3), SO(3), se(3),
and SF(3). Instead, in this problem, write down explicitly the matrix expo-
nential and logarithm for the so(2) to SO(2) case using a single exponential
coordinate, and the matrix exponential and logarithm for the se(2) to SE(2)
case using three exponential coordinates. Then provide software implementa-
tions of each of the four functions in your favorite programming language, and
provide execution logs that show that they function as expected.
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Chapter 4

Forward Kinematics

The forward kinematics of a robot refers to the calculation of the position
and orientation of its end-effector frame from its joint coordinates 6. Figure 4.1
illustrates the forward kinematics problem for a 3R planar open chain. The link
lengths are Ly, Lo, and L3. Choose a fixed frame {0} with origin located at the
base joint as shown, and assume an end-effector frame {4} has been attached to
the tip of the third link. The Cartesian position (z,y) and orientation ¢ of the
end-effector frame as functions of the joint angles (61,602, 03) are then given by

x = Ljcosty + Lycos(01 + 02) + Lscos(0y + 02 + 03), (4.1)
Yy = L1 sin 91 + L2 sin(@l + 92) + Lg sin(91 + 92 + 03), (42)
¢ = 01+02+0s. (4.3)

If one is only interested in the (z,y) position of the end-effector, the robot’s
task space is then taken to be the z—y-plane, and the forward kinematics would
consist of Equations (4.1) and (4.2) only. If the end-effector’s position and orien-
tation both matter, the forward kinematics would consist of the three equations
(4.1)—(4.3).

While the above analysis can be done using only basic trigonometry, it is
not difficult to imagine that for more general spatial chains the analysis can
become considerably more complicated. A more systematic method of deriving
the forward kinematics might involve attaching reference frames to each link;
in Figure 4.1 the three link reference frames are respectively labeled {1}, {2},
and {3}. The forward kinematics can then be written as a product of four
homogeneous transformation matrices:

Tos = To1T12T23T34, (4.4)

137



138

Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the X-
and y-axis is shown; the z-axes are parallel and out of the page.

where
cosf; —sinf; 0 0 cosfy —sinfy 0 L,
T sinf; cosf#; 0 O T sinflg  cosflp 0 O
o= 0 0 10|’ 2= 0 0 1 0 |’
0 0 0 1| 0 0 0 1
cosf; —sinfs 0 Lo | 1 0 0 Lj
| sinf3 cosfs 0 O 10 1 0 0
Tos = 0 0 1 0 |’ Ba=19 01 o (4.5)
0 0 0 1 | 0 00 1

Observe that T34 is constant and that each remaining 7;_;; depends only on
the joint variable 6;.

As an alternative to this approach, let us define M to be the position and
orientation of frame {4} when all joint angles are set to zero (the “home” or
“zero” position of the robot). Then

1 0 0 Li+La+Ls
0 10 0

M = 00 1 0 , (4.6)
0 00 1

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

Chapter 4. Forward Kinematics 139

Now consider each revolute joint axis to be a zero-pitch screw axis. If #; and
05 are held at their zero position then the screw axis corresponding to rotating
about joint 3 can be expressed in the {0} frame as

0
0
_ w3 _ 1
83 - l: V3 :| o 0
—(L1 + L)

0

You should be able to confirm this by simple visual inspection of Figure 4.1.
When the arm is stretched out straight to the right at its zero configuration,
imagine a turntable rotating with an angular velocity of ws = 1 rad/s about
the axis of joint 3. The linear velocity vs of the point on the turntable at the
origin of {0} is in the —§,-direction at a rate of Ly + Lo units/s. Algebraically,
v3 = —ws X g3, where g3 is any point on the axis of joint 3 expressed in {0},
e.g., g3 = (L1 + L2,0,0).
The screw axis S3 can be expressed in se(3) matrix form as

0 -1 0 0

1S] = [w] o _ 1 0 0 —(L1+Ly)
3 0 0 0 0 0 0
0 0 0 0

Therefore, for any 63, the matrix exponential representation for screw motions
from the previous chapter allows us to write

T04 = 6[83]03M (fOI 91 = 92 = O) (47)

Now, for 6; = 0 and any fixed (but arbitrary) 3, rotation about joint 2 can be
viewed as applying a screw motion to the rigid (link 2)/(link 3) pair, i.e.,

Tog = el52192l1% pp (for 6, = 0), (4.8)

where [S3] and M are as defined previously, and

0 -10 0
10 0 —-L

S=10 0 0 o (4.9)
00 0 0
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Finally, keeping 6> and 03 fixed, rotation about joint 1 can be viewed as applying
a screw motion to the entire rigid three-link assembly. We can therefore write,
for arbitrary values of (61, 6, 63),

Tos = elS11016[52102[Ss]0s (4.10)
where
0 -1 0 0
1 0 00
SI=10 0 0 o0 41
0 0 0 0

Thus the forward kinematics can be expressed as a product of matrix exponen-
tials, each corresponding to a screw motion. Note that this latter derivation of
the forward kinematics does not use any link reference frames; only {0} and M
must be defined.

In this chapter we consider the forward kinematics of general open chains.
One widely used representation for the forward kinematics of open chains relies
on the Denavit—Hartenberg parameters (D-H parameters), and this rep-
resentation uses Equation (4.4). Another representation relies on the product
of exponentials (PoE) formula, which corresponds to Equation (4.10). The
advantage of the D—H representation is that it requires the minimum number of
parameters to describe the robot’s kinematics: for an n-joint robot, it uses 3n
numbers to describe the robot’s structure and n numbers to describe the joint
values. The PoE representation is not minimal (it requires 6n numbers to de-
scribe the n screw axes, in addition to the n joint values), but it has advantages
over the D—H representation (e.g., no link frames are necessary) and it is our
preferred choice of forward kinematics representation. The D—H representation,
and its relationship to the PoE representation, is described in Appendix C.

4.1 Product of Exponentials Formula

To use the PoE formula, it is only necessary to assign a stationary frame {s} (e.g.,
at the fixed base of the robot or anywhere else that is convenient for defining
a reference frame) and a frame {b} at the end-effector, described by M when
the robot is at its zero position. It is common to define a frame at each link,
though, typically at the joint axis; these are needed for the D—H representation
and they are useful for displaying a graphic rendering of a geometric model of
the robot and for defining the mass properties of the link, which we will need
starting in Chapter 8. Thus when we are defining the kinematics of an n-joint
robot, we may either (1) minimally use the frames {s} and {b} if we are only
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E[Sn—Q]é‘n—z E[Sn—l]é‘n—l 6[8"]9” M

Figure 4.2: Illustration of the PoE formula for an n-link spatial open chain.

interested in the kinematics, or (2) refer to {s} as frame {0}, use frames {i} for
i=1,...,n (the frames for links 7 at joints ¢), and use one more frame {n + 1}
(corresponding to {b}) at the end-effector. The frame {n + 1} (i.e., {b}) is
fixed relative to {n}, but it is at a more convenient location to represent the
configuration of the end-effector. In some cases we dispense with frame {n+1}
and simply refer to {n} as the end-effector frame {b}.

4.1.1 First Formulation: Screw Axes in the Base Frame

The key concept behind the PoE formula is to regard each joint as applying
a screw motion to all the outward links. To illustrate this consider a general
spatial open chain like the one shown in Figure 4.2, consisting of n one-dof joints
that are connected serially. To apply the PoE formula, you must choose a fixed
base frame {s} and an end-effector frame {b} attached to the last link. Place the
robot in its zero position by setting all joint values to zero, with the direction
of positive displacement (rotation for revolute joints, translation for prismatic
joints) for each joint specified. Let M € SE(3) denote the configuration of the
end-effector frame relative to the fixed base frame when the robot is in its zero
position.

Now suppose that joint n is displaced to some joint value 6#,,. The end-
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effector frame M then undergoes a displacement of the form
T = elSnlon pp, (4.12)

where T € SE(3) is the new configuration of the end-effector frame and S,, =
(Wn, vy) 1s the screw axis of joint n as expressed in the fixed base frame. If joint
n is revolute (corresponding to a screw motion of zero pitch) then w, € R3 is a
unit vector in the positive direction of joint axis n; v, = —w, X qn, with g, any
arbitrary point on joint axis n as written in coordinates in the fixed base frame;
and 6, is the joint angle. If joint n is prismatic then w, = 0, v, € R? is a unit
vector in the direction of positive translation, and 6,, represents the prismatic
extension/retraction.

If we assume that joint n — 1 is also allowed to vary then this has the effect
of applying a screw motion to link n — 1 (and by extension to link 7, since link
n is connected to link n — 1 via joint n). The end-effector frame thus undergoes
a displacement of the form

T = elSn-110n—1 (e[s"]e"LM) . (4.13)

Continuing with this reasoning and now allowing all the joints (6y,...,6,) to
vary, it follows that

T(0) = e[Sl ... elSn—1lfn1[Snl6n py. (4.14)

This is the product of exponentials formula describing the forward kinematics
of an n-dof open chain. Specifically, we call Equation (4.14) the space form
of the product of exponentials formula, referring to the fact that the screw axes
are expressed in the fixed space frame.

To summarize, to calculate the forward kinematics of an open chain using
the space form of the PoE formula (4.14), we need the following elements:

(a) the end-effector configuration M € SE(3) when the robot is at its home
position;

(b) the screw axes Si,...,S,, expressed in the fixed base frame, corresponding
to the joint motions when the robot is at its home position;

(c) the joint variables 61,...,0,.

Unlike the D—H representation, no link reference frames need to be defined.
Further advantages will come to light when we examine the velocity kinematics
in the next chapter.
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Figure 4.3: A 3R spatial open chain.

4.1.2 Examples

We now derive the forward kinematics for some common spatial open chains
using the PoE formula.

Example 4.1 (3R spatial open chain). Consider the 3R open chain of Fig-
ure 4.3, shown in its home position (all joint variables set equal to zero). Choose
the fixed frame {0} and end-effector frame {3} as indicated in the figure, and ex-
press all vectors and homogeneous transformations in terms of the fixed frame.
The forward kinematics has the form

T(a) — 6[81]016[32}926[83]93]\4’7

where M € SE(3) is the end-effector frame configuration when the robot is in
its zero position. By inspection M can be obtained as

0 0 1 I

0 1 0 O
M= -1 0 0 —Lg

0 0 0 1

The screw axis &1 = (w1, v1) for joint axis 1 is then given by w; = (0,0,1)
and v; = (0,0,0) (the fixed frame origin (0,0,0) is a convenient choice for the
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point ¢; lying on joint axis 1). To determine the screw axis Sy for joint axis
2, observe that joint axis 2 points in the —y-direction, so that ws = (0, —1,0).
Choose g2 = (L1,0,0), in which case v = —ws X g2 = (0,0, —L;). Finally, to
determine the screw axis Sz for joint axis 3, note that wz = (1,0,0). Choosing
g3 = (0,0, —Ly), it follows that v3 = —w3 x g3 = (0, — Lo, 0).

In summary, we have the following 4 x 4 matrix representations for the three
joint screw axes Sy, Sz, and Ss:

0 -1 0 0
1 0 0 0
[31]_0000’
0 0 0 0
[0 0 -1 0 ]
00 0 0
Sl =10 0 - |
[0 0 0 |
0 0 0
B 0 0 -1 —Ly
[53]_0100
00 0 0 |

It will be more convenient to list the screw axes in the following tabular form:

|

2 T T
1 (0,0,1) (0,0,0)
2 1 (0,—-1,0) | (0,0,—Ly)
3 (1,0,0) (0, L2, 0)

Example 4.2 (3R planar open chain). For the robot in Figure 4.1, we expressed
the end-effector home configuration M (Equation (4.6)) and the screw axes S;
as follows:

Lill wi | vi |
1] (0,0,1) 0,0,0)
2 (0,0,1) | (0,—Ly,0)
31 (0,0,1) | (0,—(L1 + L2),0)

Since the motion is in the X—y-plane, we could equivalently write each screw
axis S; as a 3-vector (wy, vy, Vy):

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

Chapter 4. Forward Kinematics 145

Figure 4.4: PoE forward kinematics for the 6R open chain.

Li [ wi ] |
11 (0,0)
2 1 (0, —Ly)
3 1] (0,—(L1 + Ly))

and M as an element of SE(2):

[1 0 Li+Ly+Ls
M=|0 1 0
10 0 1

In this case, the forward kinematics would use the simplified matrix exponential
for planar motions (Exercise 3.49).

Example 4.3 (6R spatial open chain). We now derive the forward kinematics
of the 6R open chain of Figure 4.4. Six-dof arms play an important role in
robotics because they have the minimum number of joints that allows the end-
effector to move a rigid body in all its degrees of freedom, subject only to limits
on the robot’s workspace. For this reason, six-dof robot arms are sometimes
called general purpose manipulators.

The zero position and the direction of positive rotation for each joint axis
are as shown in the figure. A fixed frame {s} and end-effector frame {b} are
also assigned as shown. The end-effector frame M in the zero position is then

100 0
0 1 0 3L

M=1, 01 0o (4.15)
000 1
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L,

Figure 4.5: The RRPRRR spatial open chain.

The screw axis for joint 1 is in the direction wy = (0,0, 1). The most convenient
choice for point ¢; lying on joint axis 1 is the origin, so that v; = (0,0,0). The
screw axis for joint 2 is in the y-direction of the fixed frame, so wo = (0,1,0).
Choosing g2 = (0,0,0), we have v = (0,0,0). The screw axis for joint 3 is
in the direction ws = (—1,0,0). Choosing ¢3 = (0,0,0) leads to vs = (0,0,0).
The screw axis for joint 4 is in the direction wy = (—1,0,0). Choosing ¢4 =
(0,L,0) leads to vy = (0,0,L). The screw axis for joint 5 is in the direction
ws = (—1,0,0); choosing g5 = (0,2L,0) leads to vs = (0,0,2L). The screw
axis for joint 6 is in the direction wg = (0, 1,0); choosing ¢s = (0,0,0) leads

to vg = (0,0,0). In summary, the screw axes S; = (w;,v;), ¢ = 1,...,6, are as
follows:
il w [ v |

1] (0,0,1) | (0,0,0)

2 (0,1,0) (0,0,0)

31 (-1,0,0) (0,0,0)

4 | (-1,0,0) | (0,0,L)

51 (=1,0,0) | (0,0,2L)

6 (0,1,0) (0,0,0)

Example 4.4 (An RRPRRR spatial open chain). In this example we consider
the six-degree-of-freedom RRPRRR spatial open chain of Figure 4.5. The end-
effector frame in the zero position is given by

100 0
01 0 Li+L
M=10901 o0

00 0 1
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The screw axes S; = (w;, v;) are listed in the following table:

|

| @i | v |

O O | W DN | =

Note that the third joint is prismatic, so that w3 = 0 and v3 is a unit vector in
the direction of positive translation.

Example 4.5 (Universal Robots’ UR5 6R robot arm). Universal Robots’ UR5
6R robot arm is shown in Figure 4.6. Each joint is directly driven by a brushless
motor combined with 100:1 zero-backlash harmonic drive gearing, which greatly
increases the torque available at the joint while reducing its maximum speed.
Figure 4.6 shows the screw axes S1, ..., g when the robot is at its zero position.
The end-effector frame {b} in the zero position is given by

-1 0 0 L+ Ly

[ R B 1
|l 0 10 H-H,
0 0 0 1

The screw axes S; = (w;, v;) are listed in the following table:

Ll w ] vi |
1 (0,0,1) (0,0,0)
2 [ (0,1,0) (—H3,0,0)
3 (07170) (7H1303L1)
11 (0,1,0) (—H1,0,L1 + L)
51 (0,0,—1) (=W1, Ly + Lo, 0)
6 || (0,1,0) | (Hz— Hy,0,L1 + Lg)

As an example of the forward kinematics, set 83 = —m/2 and 05 = 7/2, with
all other joint angles equal to zero. Then the configuration of the end-effector
is

T(0) = 51101 ([52]02 [S5103 [Sa]04 [S5]05 ,[S606  r
_ 167[82]71’/2[26[35]77/21']\4'

_ e—[Sg]ﬂ/Qe[Ss]ﬂ/QM
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Figure 4.6: (Left) Universal Robots’ UR5 6R robot arm. (Right) Shown at its zero
position. Positive rotations about the axes indicated are given by the usual right-hand
rule. Wy is the distance along the ¥ .-direction between the anti-parallel axes of joints
1 and 5. W1 = 109 mm, W3 = 82 mm, L; = 425 mm, Lo = 392 mm, H; = 89 mm,
Hs = 95 mm.

since €® = I. Evaluating, we get

0 0 —1 0.089 0 1 0 0.708
dsdmp_ |01 0 0 s _ | 1 0 0 0926

1 0 0 0089 |’ 0o 01 0 |’

00 0 1 0 00 1

where the linear units are meters, and

0 -1 0 0.095
_ —(Salm/2 (Ssim/2ay | L 00 0.109
T() =e ¢ M=149 0 1 009ss
00 0 1

as shown in Figure 4.7.

4.1.3 Second Formulation: Screw Axes in the End-Effector
Frame

The matrix identity e™ PM = M~1eP M (Proposition 3.10) can also be ex-

pressed as MeM'PM — oPf. Beginning with the rightmost term of the pre-

viously derived product of exponentials formula, if we repeatedly apply this
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Figure 4.7: (Left) The URS5 at its home position, with the axes of joints 2 and 5
indicated. (Right) The UR5 at joint angles 6 = (61,...,6s) = (0,—m/2,0,0,7/2,0).

identity then after n iterations we obtain

TO) = elS1101 [ o[Snlon pr
= 6[81]91 . MBM_I[STL]MOn
_ 6[51]91 _._Merl[sﬂ_l]Men_leM*[&]M@n

— MeMTUSUMOy | MTUS,_1]M6 M~ [S,] M8,

n—1 e
MelBilor .. o[Bnlui ([Bu16n (4.16)

where each [B;] is given by M~YS;|M, ie., B; = [Ady—1]S;, i = 1,...,n.
Equation (4.16) is an alternative form of the product of exponentials formula,
representing the joint axes as screw axes B; in the end-effector (body) frame
when the robot is at its zero position. We call Equation (4.16) the body form
of the product of exponentials formula.

It is worth thinking about the order of the transformations expressed in
the space-form PoE formula (Equation (4.14)) and in the body-form formula
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(Equation (4.16)). In the space form, M is first transformed by the most distal
joint, progressively moving inward to more proximal joints. Note that the fixed
space-frame representation of the screw axis for a more proximal joint is not
affected by the joint displacement at a distal joint (e.g., joint 3’s displacement
does not affect joint 2’s screw axis representation in the space frame). In the
body form, M is first transformed by the first joint, progressively moving out-
ward to more distal joints. The body-frame representation of the screw axis for
a more distal joint is not affected by the joint displacement at a proximal joint
(e.g., joint 2’s displacement does not affect joint 3’s screw axis representation
in the body frame.) Therefore, it makes sense that we need to determine the
screw axes only at the robot’s zero position: any S; is unaffected by more distal
transformations, and any B; is unaffected by more proximal transformations.

Example 4.6 (6R spatial open chain). We now express the forward kinematics
of the 6R open chain of Figure 4.4 in the second form,

T(Q) = M@[B1}916[B2]92 . 6[85]96,

Assume the same fixed and end-effector frames and zero position as found pre-
viously; M is still the same as in Equation (4.15), obtained as the end-effector
frame as seen from the fixed frame with the chain in its zero position. The screw
axis for each joint axis, expressed with respect to the end-effector frame in its
zero position, is given in the following table:

il wi [ v ]

1] (0,0,1) | (—3L,0,0)
2 [ (0,1,0) (0,0,0)
3 (=1,0,0) | (0,0,—3L)
4 [ (=1,0,0) | (0,0, —2L)
5 | (=1,0,0) | (0,0,—L)
6| (0,1,0) (0,0,0)

Example 4.7 (Barrett Technology’s WAM 7R robot arm). Barrett Technol-
ogy’s WAM 7R robot arm is shown in Figure 4.8. The extra (seventh) joint
means that the robot is redundant for the task of positioning its end-effector
frame in SE(3); in general, for a given end-effector configuration in the robot’s
workspace, there is a one-dimensional set of joint variables in the robot’s seven-
dimensional joint space that achieves that configuration. This extra degree of
freedom can be used for obstacle avoidance or to optimize some objective func-
tion such as minimizing the motor power needed to hold the end-effector at that
configuration.
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Xb
Lsy=60mm {
J5,J6,J7
Lo = 300 mm
o % W, = 45 mm
Elbow J4

L1 = 550 mm

Shoulder
J1,J2,J3

Figure 4.8: Barrett Technology’s WAM 7R robot arm at its zero configuration (right).
At the zero configuration, axes 1, 3, 5, and 7 are along Zs and axes 2, 4, and 6 are
aligned with y, out of the page. Positive rotations are given by the right-hand rule.
Axes 1, 2, and 3 intersect at the origin of {s} and axes 5, 6, and 7 intersect at a point
60mm from {b}. The zero configuration is singular, as discussed in Section 5.3.

Also, some joints of the WAM are driven by motors placed at the base of
the robot, reducing the robot’s moving mass. Torques are transferred from
the motors to the joints by cables winding around drums at the joints and
motors. Because the moving mass is reduced, the motor torque requirements
are decreased, allowing low (cable) gear ratios and high speeds. This design is
in contrast with that of the URbH, where the motor and harmonic drive gearing
for each joint are directly at the joint.

Figure 4.8 illustrates the WAM’s end-effector frame screw axes By,..., By
when the robot is at its zero position. The end-effector frame {b} in the zero
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position is given by

1 0 0 0

0 1 0 0
M= 0 0 1 Li+Ly+ Ls

0 0 0 1

The screw axes B; = (w;,v;) are listed in the following table:

Ll w | vi |

11 (0,0,1) (0,0,0)

21| (0,1,0) | (L1 + L2 + L3,0,0)
31 (0,0,1) (0,0,0)

4 1 (0,1,0) (Ly + Ls,0,W7)

51 (0,0,1) (0,0,0)

6 (Oa 130) (L37070)

71 (0,0,1) (0,0,0)

Figure 4.9 shows the WAM arm with 0, = 45°, 8, = —45°, g = —90° and
all other joint angles equal to zero, giving

0 0 —1 03157
_ MelBaln/ag—(Baln/4~Beln/z _ | O 10 0
T(6) = Me € € “1l1 0 0 06571

00 0 1

4.2 The Universal Robot Description Format

The Universal Robot Description Format (URDF) is an XML (eXtensible
Markup Language) file format used by the Robot Operating System (ROS) to
describe the kinematics, inertial properties, and link geometry of robots. A
URDF file describes the joints and links of a robot:

e Joints. Joints connect two links: a parent link and a child link. A
few of the possible joint types include prismatic, revolute (including joint
limits), continuous (revolute without joint limits), and fixed (a virtual
joint that does not permit any motion). Each joint has an origin frame
that defines the position and orientation of the child link frame relative
to the parent link frame when the joint variable is zero. The origin is on
the joint’s axis. Each joint has an axis 3-vector, a unit vector expressed in
the child link’s frame, in the direction of positive rotation for a revolute
joint or positive translation for a prismatic joint.
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Figure 4.9: (Left) The WAM at its home configuration, with the axes of joints 2, 4,
and 6 indicated. (Right) The WAM at 6 = (64,...,07) = (0,7/4,0,—7 /4,0, —7/2,0).

e Links. While the joints fully describe the kinematics of a robot, the links
define its mass properties. These start to be needed in Chapter 8, when
we begin to study the dynamics of robots. The elements of a link include
its mass; an origin frame that defines the position and orientation of a
frame at the link’s center of mass relative to the link’s joint frame described
above; and an inertia matrix, relative to the link’s center of mass frame,
specified by the six elements on or above the diagonal. (As we will see
in Chapter 8, the inertia matrix for a rigid body is a 3 X 3 symmetric
positive-definite matrix. Since the inertia matrix is symmetric, it is only
necessary to define the terms on and above the diagonal.)

Note that most links have two frames rigidly attached: a first frame at the joint
(defined by the joint element that connects the link to its parent) and a second
frame at the link’s center of mass (defined by the link element).

A URDF file can represent any robot with a tree structure. This includes
serial-chain robot arms and robot hands, but not a Stewart platform or other
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J 3
base link, J4
LO

parent: J1’s parent link, L0

child: J1’s child link, L1

origin: the z—y—z and roll-pitch—yaw coords
of the L1 frame relative to the
LO frame when J1 is zero

axis:  the z—y—2z unit vector along the
rotation axis in the L1 frame

mass: L5’s mass
\ origin: the x—y—z and roll-pitch-yaw coords
of a frame at the center of
mass of L5, relative to the L5 frame

inertia: six unique entries of inertia
matrix in the origin frame

Figure 4.10: A five-link robot represented as a tree, where the nodes of the tree are
the links and the edges of the tree are the joints.

mechanisms with closed loops. An example of a robot with a tree structure is
shown in Figure 4.10.

The orientation of a frame {b} relative to a frame {a} is represented using
roll-pitch—yaw coordinates: first, a roll about the fixed %X,-axis; then a pitch
about the fixed ¥,-axis; then a yaw about the fixed Z,-axis.

The kinematics and mass properties of the UR5 robot arm (Figure 4.11) are
defined in the URDF file below, which demonstrates the syntax of the joint’s
elements (parent, child, origin, and axis) and the link’s elements (mass,
origin, and inertia). A URDF requires a frame defined at every joint, so we
define frames {1} to {6} in addition to the fixed base frame {0} (i.e., {s}) and
the end-effector frame {7} (i.e., {b}). Figure 4.11 gives the extra information
needed to fully write the URDF.

Although the joint types in the URDF are defined as “continuous,” the UR5
joints do in fact have joint limits; they are omitted here for simplicity. The mass
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{4} n?gg

{5} (/ 95
94.65 mrn

{b} {6} RN {3}
/y

g3 W
+Y

89.159 mm
+z

{s}

Figure 4.11: The orientations of the frames {s} (also called {0}), {b} (also called
{7}), and {1} through {6} are illustrated on the translucent UR5. The frames {s}
and {1} are aligned with each other; frames {2} and {3} are aligned with each other;
and frames {4}, {5}, and {6} are aligned with each other. Therefore, only the axes
of frames {s}, {2}, {4}, and {b} are labeled. Just below the image of the robot is a
skeleton indicating how the frames are offset from each other, including distances and
directions (expressed in the {s} frame).

and inertial properties listed here are not exact.

The UR5 URDF file (kinematics and inertial properties only).

<?xml version="1.0" 7>
<robot name="ur5">

<1== soksokkkkkokk KINEMATIC PROPERTIES (JOINTS) sokskokokskokkokk ——>
<joint name="world_joint" type="fixed">
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<parent link="world"/>
<child link="base_link"/>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0"/>
</joint>
<joint name="jointl" type="continuous">
<parent link="base_link"/>
<child link="1link1"/>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.089159"/>
<axis xyz="0 0 1"/>
</joint>
<joint name="joint2" type="continuous">
<parent link="link1"/>
<child link="1link2"/>
<origin rpy="0.0 1.570796325 0.0" xyz="0.0 0.13585 0.0"/>
<axis xyz="0 1 0"/>
</joint>
<joint name="joint3" type="continuous">
<parent link="1ink2"/>
<child link="1ink3"/>
<origin rpy="0.0 0.0 0.0" xyz="0.0 -0.1197 0.425"/>
<axis xyz="0 1 0"/>
</joint>
<joint name="joint4" type="continuous">
<parent link="1ink3"/>
<child link="1link4"/>
<origin rpy="0.0 1.570796325 0.0" xyz="0.0 0.0 0.39225"/>
<axis xyz="0 1 0"/>
</joint>
<joint name="jointb5" type="continuous">
<parent link="link4"/>
<child link="1ink5"/>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.093 0.0"/>
<axis xyz="0 0 1"/>
</joint>
<joint name="joint6" type="continuous">
<parent link="1ink5"/>
<child link="1link6"/>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.09465"/>
<axis xyz="0 1 0"/>
</joint>
<joint name="ee_joint" type="fixed">
<origin rpy="-1.570796325 0 0" xyz="0 0.0823 0"/>
<parent link="1ink6"/>
<child link="ee_link"/>
</joint>

<!== sxkkxxkkxk INERTIAL PROPERTIES (LINKS) skkkkkkkkk —=>
<link name="world"/>
<link name="base_link">
<inertial>
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<mass value="4.0"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
<inertia ixx="0.00443333156" ixy="0.0" ixz="0.0"
iyy="0.00443333156" iyz="0.0" izz="0.0072"/>
</inertial>
</link>
<link name="1link1">
<inertial>
<mass value="3.7"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
<inertia ixx="0.010267495893" ixy="0.0" ixz="0.0"
iyy="0.010267495893" iyz="0.0" izz="0.00666"/>
</inertial>
</link>
<link name="1link2">
<inertial>
<mass value="8.393"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.28"/>
<inertia ixx="0.22689067591" ixy="0.0" ixz="0.0"
iyy="0.22689067591" iyz="0.0" izz="0.0151074"/>
</inertial>
</link>
<link name="1ink3">
<inertial>
<mass value="2.275"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.25"/>
<inertia ixx="0.049443313556" ixy="0.0" ixz="0.0"
iyy="0.049443313556" iyz="0.0" izz="0.004095"/>
</inertial>
</link>
<link name="1link4">
<inertial>
<mass value="1.219"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
<inertia ixx="0.111172755531" ixy="0.0" ixz="0.0"
iyy="0.111172755531" iyz="0.0" izz="0.21942"/>
</inertial>
</link>
<link name="1link5">
<inertial>
<mass value="1.219"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
<inertia ixx="0.111172755531" ixy="0.0" ixz="0.0"
iyy="0.1111727555631" iyz="0.0" izz="0.21942"/>
</inertial>
</link>
<link name="1link6">
<inertial>
<mass value="0.1879"/>
<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
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<inertia ixx="0.0171364731454" ixy="0.0" ixz="0.0"
iyy="0.0171364731454" iyz="0.0" izz="0.033822"/>

</inertial>

</link>
<link name="ee_link"/>
</robot>

Beyond the properties described above, a URDF can describe other proper-

ties of a robot, such as its visual appearance (including geometric models of the
links) as well as simplified representations of link geometries that can be used
for collision detection in motion planning algorithms.

4.3 Summary

e Given an open chain with a fixed reference frame {s} and a reference

frame {b} attached to some point on its last link — this frame is denoted
the end-effector frame — the forward kinematics is the mapping 7'(0) from
the joint values 6 to the position and orientation of {b} in {s}.

In the Denavit—-Hartenberg representation the forward kinematics of an
open chain is described in terms of the relative displacements between
reference frames attached to each link. If the link frames are sequentially
labeled {0},...,{n + 1}, where {0} is the fixed frame {s}, {i} is a frame
attached to link ¢ at joint ¢ (with ¢ = 1,...,n), and {n + 1} is the end-
effector frame {b} then the forward kinematics is expressed as

TO,n—i—l(a) - TOI (91) e Tn—l,n(an)Tn,n-‘rl

where 6; denotes the joint ¢ variable and T}, 41 indicates the (fixed) con-
figuration of the end-effector frame in {n}. If the end-effector frame {b}
is chosen to be coincident with {n} then we can dispense with the frame
{n+1}.

The Denavit—-Hartenberg convention requires that reference frames as-
signed to each link obey a strict convention (see Appendix C). Follow-
ing this convention, the link frame transformation 7;_;; between link
frames {i — 1} and {i} can be parametrized using only four parameters,
the Denavit—Hartenberg parameters. Three of these parameters describe
the kinematic structure, while the fourth is the joint value. Four numbers
is the minimum needed to represent the displacement between two link
frames.
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e The forward kinematics can also be expressed as the following product of
exponentials (the space form),

T(@) = 6[81]61 e e[sn]enM,

where S; = (w;, v;) denotes the screw axis associated with positive motion
along joint i expressed in fixed-frame {s} coordinates, 6; is the joint-i
variable, and M € SE(3) denotes the position and orientation of the end-
effector frame {b} when the robot is in its zero position. It is not necessary
to define individual link frames; it is only necessary to define M and the
screw axes S, ...,Sy.

e The product of exponentials formula can also be written in the equivalent

body form,

T(Q) — Me[Bl]el . e[Bn]‘gn’
where B; = [Adp-1]Si, ¢ = 1,...,n; By = (wi,v;) is the screw axis cor-
responding to joint axis i, expressed in {b}, with the robot in its zero
position.

e The Universal Robot Description Format (URDF) is a file format used
by the Robot Operating System and other software for representing the
kinematics, inertial properties, visual properties, and other information
for general tree-like robot mechanisms, including serial chains. A URDF
file includes descriptions of joints, which connect a parent link and a child
link and fully specify the kinematics of the robot, as well as descriptions
of links, which specify its inertial properties.

4.4 Software

Software functions associated with this chapter are listed in MATLAB format
below.

T = FKinBody (M,Blist,thetalist)

Computes the end-effector frame given the zero position of the end-effector M,
the list of joint screws Blist expressed in the end-effector frame, and the list of
joint values thetalist.

T = FKinSpace(M,Slist,thetalist)

Computes the end-effector frame given the zero position of the end-effector M,
the list of joint screws Slist expressed in the fixed-space frame, and the list of
joint values thetalist.
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4.5 Notes and References

The literature on robot kinematics is quite extensive, and with very few excep-
tions most approaches are based on the Denavit-Hartenberg (D-H) parameters
originally presented in [34] and summarized in Appendix C. Our approach is
based on the Product of Exponentials (PoE) formula first presented by Brockett
in [20]. Computational aspects of the PoE formula are discussed in [132].

Appendix C also elucidates in some detail the many advantages of the PoE
formula over the D—H parameters, e.g., the elimination of link reference frames,
the uniform treatment of revolute and prismatic joints, and the intuitive geo-
metric interpretation of the joint axes as screws. These advantages more than
offset the lone advantage of the D-H parameters, namely that they constitute
a minimal set. Moreover, it should be noted that when using D—H parameters,
there are differing conventions for assigning link frames, e.g., some methods
align the joint axis with the X-axis rather than the z-axis of the link frame as we
have done. Both the link frames and the accompanying D-H parameters need
to be specified together in order to have a complete description of the robot’s
forward kinematics.

In summary, unless using a minimal set of parameters to represent a joint’s
spatial motion is critical, there is no compelling reason to prefer the D-H pa-
rameters over the PoE formula. In the next chapter, an even stronger case can
be made for preferring the PoE formula to model the forward kinematics.

4.6 Exercises

Exercise 4.1 Familiarize yourself with the functions FKinBody and FKinSpace
in your favorite programming language. Can you make these functions more
computationally efficient? If so, indicate how. If not, explain why not.

Exercise 4.2 The RRRP SCARA robot of Figure 4.12 is shown in its zero
position. Determine the end-effector zero position configuration M, the screw
axes S; in {0}, and the screw axes B; in {b}. For ¢, = {; = {3 = 1 and the joint
variable values 6 = (0, 7/2, —7/2,1), use both the FKinSpace and the FKinBody
functions to find the end-effector configuration T' € SE(3). Confirm that they
agree with each other.

Exercise 4.3 Determine the end-effector frame screw axes B; for the 3R robot
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Figure 4.12: An RRRP SCARA robot for performing pick-and-place operations.

in Figure 4.3.

Exercise 4.4 Determine the end-effector frame screw axes B; for the RRPRRR
robot in Figure 4.5.

Exercise 4.5 Determine the end-effector frame screw axes B; for the URS
robot in Figure 4.6.

Exercise 4.6 Determine the space frame screw axes S; for the WAM robot in
Figure 4.8.

Exercise 4.7 The PRRRRR spatial open chain of Figure 4.13 is shown in its
zero position. Determine the end-effector zero position configuration M, the
screw axes S; in {0}, and the screw axes B; in {b}.

Exercise 4.8 The spatial RRRRPR open chain of Figure 4.14 is shown in its
zero position, with fixed and end-effector frames chosen as indicated. Determine
the end-effector zero position configuration M, the screw axes S; in {0}, and
the screw axes B; in {b}.
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Figure 4.14: A spatial RRRRPR open chain.

Exercise 4.9 The spatial RRPPRR open chain of Figure 4.15 is shown in its
zero position. Determine the end-effector zero position configuration M, the
screw axes §; in {0}, and the screw axes B; in {b}.

Exercise 4.10 The URRPR spatial open chain of Figure 4.16 is shown in its
zero position. Determine the end-effector zero position configuration M, the
screw axes §; in {0}, and the screw axes B; in {b}.

Exercise 4.11 The spatial RPRRR open chain of Figure 4.17 is shown in its
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Figure 4.15: A spatial RRPPRR open chain with prescribed fixed and end-effector
frames.

zero position. Determine the end-effector zero position configuration M, the
screw axes §; in {0}, and the screw axes B; in {b}.

Exercise 4.12 The RRPRRR spatial open chain of Figure 4.18 is shown in
its zero position (all joints lie on the same plane). Determine the end-effector
zero position configuration M, the screw axes S; in {0}, and the screw axes B;
in {b}. Setting 65 = 7 and all other joint variables to zero, find Tpg and Tgo.

Exercise 4.13 The spatial RRRPRR open chain of Figure 4.19 is shown in
its zero position. Determine the end-effector zero position configuration M, the
screw axes §; in {0}, and the screw axes B; in {b}.

Exercise 4.14 The RPH robot of Figure 4.20 is shown in its zero position.
Determine the end-effector zero position configuration M, the screw axes S; in
{s}, and the screw axes B; in {b}. Use both the FKinSpace and the FKinBody
functions to find the end-effector configuration 7' € SFE(3) when 6 = (/2,3 7).
Confirm that the results agree.

Exercise 4.15 The HRR robot in Figure 4.21 is shown in its zero position.
Determine the end-effector zero position configuration M, the screw axes S; in
{0}, and the screw axes B; in {b}.

Exercise 4.16 The forward kinematics of a four-dof open chain in its zero
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Figure 4.16: A URRPR spatial open-chain robot.

position is written in the following exponential form:
T(9) = el clA212 g lAolts lAs10n
Suppose that the manipulator’s zero position is redefined as follows:
(01,02,03,04) = (a1, 2, a3, g).
Defining ¢'; = 6; — a;,i = 1,...,4, the forward kinematics can then be written
Toa(0'1,0'2, 05,0 4) = elA11072[A7210%2 7 o[ A's]0%s [AT410"s

Find M’ and each of the A’;.

Exercise 4.17 Figure 4.22 shows a snake robot with end-effectors at each end.
Reference frames {b;} and {bs} are attached to the two end-effectors, as shown.
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Figure 4.17: An RPRRR spatial open chain.

Figure 4.18: An RRPRRR spatial open chain.

(a) Suppose that end-effector 1 is grasping a tree (which can be thought of
as “ground”) and end-effector 2 is free to move. Assume that the robot
is in its zero configuration. Then Ty, € SE(3) can be expressed in the
following product of exponentials form:

Thb, = elS1101 (852102 | 185105 pr

Find 83, S5, and M.
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Figure 4.19: A spatial RRRPRR open chain with prescribed fixed and end-effector
frames.

l—
91Q|§ Dos
05 / pitch A = 0.1 m/rad
Xp Ls
L=/ ] &

Figure 4.20: An RPH open chain shown at its zero position. All arrows along/about
the joint axes are drawn in the positive direction (i.e., in the direction of increasing
joint value). The pitch of the screw joint is 0.1 m/rad, i.e., it advances linearly by
0.1 m for every radian rotated. The link lengths are Lo = 4, L1 = 3, L2 = 2, and
L3 =1 (figure not drawn to scale).

(b) Now suppose that end-effector 2 is rigidly grasping a tree and end-effector
1 is free to move. Then T},5, € SE(3) can be expressed in the following
product of exponentials form:

Ty, = elAs105 o[Aa]0a o[A3]05 £7 o [A2]f2 o[A1]01

Find As, A4, and N.
Exercise 4.18 The two identical PUPR open chains of Figure 4.23 are shown
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Figure 4.21: HRR robot. The pitch of the screw joint is denoted by h.

in their zero position.
(a) In terms of the given fixed frame {A} and end-effector frame {a}, the
forward kinematics for the robot on the left (robot A) can be expressed
in the following product of exponentials form:

Taw = elS1101 (52102 '6[55]05Ma.

Find S5 and S;.

(b) Suppose that the end-effector of robot A is inserted into the end-effector
of robot B in such a way that the origins of the end-effectors coincide; the
two robots then form a single-loop closed chain. Then the configuration
space of the single-loop closed chain can be expressed in the form

M = 67[65]4)5 6*[84@46*[33]4?36*[32]¢72e*[31]¢16[31]916[32]926[53]936[54]946[35]95

for some constant M € SE(3) and B; = (w;,v;), for i =1,...,5. Find Bs,
Bs, and M. (Hint: Given any A € R™" (e4)~! = e~4).

Exercise 4.19 The RRPRR spatial open chain of Figure 4.24 is shown in its
zero position.
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End-effector 1

Figure 4.22: Snake robot.

(a) The forward kinematics can be expressed in the form
T = Mle[-Al]el Mg€LA2]02 . M5€['A5]95_

Find My, M3, Ay, and Asz. (Hint: Appendix C may be helpful.)
(b) Expressing the forward kinematics in the form

Ty = elS1101 (82162 '6[85]05M,

find M and Si,...,S5 in terms of the quantities My, ..., Ms, Aq,..., As
appearing in (a).

Exercise 4.20 The spatial PRRPRR open chain of Figure 4.25 is shown in its
zero position, with space and end-effector frames chosen as indicated. Derive
its forward kinematics in the form

Ty, = el51101 [92]102 [55]03 [Sa]04  [S5105 p ro[96106 ,
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Figure 4.23: Two PUPR open chains.

where M € SE(3).

Exercise 4.21 (Refer to Appendix C.) For each T € SE(3) below, find, if
they exist, values for the four parameters (o, a,d, ¢) that satisfy

T = Rot(%, ) Trans(x, a) Trans(Z, d) Rot(z, ¢).

01 1 3
1 0 0 O
@ T=1¢ 1 ¢ 1
(00 0 1
[ cosp  sinf 0 1
| sin3 —cosB O 0
(b) T'= 0 0 -1 -2
L0 0 0 1
[0 -1 0 -1
O 0 -1 0
©@T=117 ¢ o 2
00 0 1
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05

Figure 4.24: A spatial RRPRR open chain.

X0

{0} e

Figure 4.25: A spatial PRRPRR open chain.
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Chapter 5

Velocity Kinematics and
Statics

In the previous chapter we saw how to calculate the robot end-effector frame’s
position and orientation for a given set of joint positions. In this chapter we
examine the related problem of calculating the twist of the end-effector of an
open chain from a given set of joint positions and velocities.

Before we reach the representation of the end-effector twist as V € RS, start-
ing in Section 5.1, let us consider the case where the end-effector configuration
is represented by a minimal set of coordinates x € R™ and the velocity is given
by & = dx/dt € R™. In this case, the forward kinematics can be written as

where 6 € R™ is a set of joint variables. By the chain rule, the time derivative
at time ¢ is

.50 o) _ of(0)
00 dt 00

= J(0)d),

6

where J(0) € R™*" ig called the Jacobian. The Jacobian matrix represents
the linear sensitivity of the end-effector velocity & to the joint velocity 9, and it
is a function of the joint variables 6.

To provide a concrete example, consider a 2R planar open chain (left-hand

171
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Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian
correspond to the endpoint velocity when ¢1 = 1 (and 62 = 0) and when 02 = 1 (and
01 = 0), respectively.

side of Figure 5.1) with forward kinematics given by

x1 = Ljcosf;+ Ly cos(91 + 02)
ro = Lisinfy + Lo sin(91 + 02)

Differentiating both sides with respect to time yields

i’l = —Llél sin 01 - Lg(él + 92) sin(01 + 02)
i‘g = Llél COS 01 + Lz(él + 02) cos(01 + 62),

which can be rearranged into an equation of the form @ = J(6)6:

T . —Lq1sinf; — Lo sin(91 + 92) —Lo sin(91 + 02) 6:‘1 (5 1)
o | | Licosfy + Lacos(fy +63)  Locos(6y + 62) 0y |’ '

Writing the two columns of J(0) as Ji(0) and J2(6), and the tip velocity @ as
Vtip, Equation (5.1) becomes

viip = J1(0)01 4 J2(6)62. (5.2)

As long as J1(0) and J(0) are not collinear, it is possible to generate a tip
velocity v, in any arbitrary direction in the x1—x2-plane by choosing appropri-
ate joint velocities #; and 6. Since J; (0) and J(6) depend on the joint values
01 and 6y, one may ask whether there are any configurations at which J;(6)
and J2(6) become collinear. For our example the answer is yes: if 65 is 0° or
180° then, regardless of the value of 61, J1(6) and J2(#) will be collinear and
the Jacobian J(6) becomes a singular matrix. Such configurations are therefore
called singularities; they are characterized by a situation where the robot tip
is unable to generate velocities in certain directions.
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02 &

C

Figure 5.2: Mapping the set of possible joint velocities, represented as a square in the
6165 space, through the Jacobian to find the parallelogram of possible end-effector
velocities. The extreme points A; B, C, and D in the joint velocity space map to the
extreme points A, B, C, and D in the end-effector velocity space.

Now let’s substitute L1 = Ly = 1 and consider the robot at two different
nonsingular postures: § = (0,7/4) and 6 = (0,37/4). The Jacobians J(6) at
these two configurations are

J({ 0 D _ {0.71 0.71} and J<[ 0 D _ {0.71 0.71]
w/4 1.71 0.71 3 /4 029 -0.71 |~
The right-hand side of Figure 5.1 illustrates the robot at the 3 = w/4 configu-
ration. Column 4 of the Jacobian matrix, Ji(0), corresponds to the tip velocity
when 6; = 1 and the other joint velocity is zero. These tip velocities (and
therefore columns of the Jacobian) are indicated in Figure 5.1.

The Jacobian can be used to map bounds on the rotational speed of the joints
to bounds on vy, as illustrated in Figure 5.2. Rather than mapping a polygon
of joint velocities through the Jacobian as in Figure 5.2, we could instead map
a unit circle of joint velocities in the 6;—05-plane. This circle represents an
“iso-effort” contour in the joint velocity space, where total actuator effort is
considered to be the sum of squares of the joint velocities. This circle maps
through the Jacobian to an ellipse in the space of tip velocities, and this ellipse
is referred to as the manipulability ellipsoid.! Figure 5.3 shows examples of
this mapping for the two different postures of the 2R arm. As the manipulator
configuration approaches a singularity, the ellipse collapses to a line segment,
since the ability of the tip to move in one direction is lost.

LA two-dimensional ellipsoid, as in our example, is commonly referred to as an ellipse.
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Figure 5.3: Manipulability ellipsoids for two different postures of the 2R planar open
chain.

Using the manipulability ellipsoid one can quantify how close a given posture
is to a singularity. For example, we can compare the lengths of the major and
minor principal semi-axes of the manipulability ellipsoid, respectively denoted
lmax and £in. The closer the ellipsoid is to a circle, i.e., the closer the ratio
Lmax/fmin 1s to 1, the more easily can the tip move in arbitrary directions and
thus the more removed it is from a singularity.

The Jacobian also plays a central role in static analysis. Suppose that an
external force is applied to the robot tip. What are the joint torques required
to resist this external force?

This question can be answered via a conservation of power argument. As-
suming that negligible power is used to move the robot, the power measured at
the robot’s tip must equal the power generated at the joints. Denoting the tip
force vector generated by the robot as fi;p, and the joint torque vector by 7, the
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Figure 5.4: Mapping joint torque bounds to tip force bounds.

conservation of power then requires that
fgpvtip =770,
for all arbitrary joint velocities §. Since v, = J(6)8, the equality
fiJ(0)0 =776
must hold for all possible .2 This can only be true if
7= J7(0) foip- (5.3)

The joint torque 7 needed to create the tip force fi, is calculated from the
equation above.

For our two-link planar chain example, J(6) is a square matrix dependent
on 6. If the configuration 6 is not a singularity then both J(6) and its transpose
are invertible, and Equation (5.3) can be written

fip = ((JO)T) 7 =TT (O)7. (5.4)

Using the equation above one can now determine, under the same static equi-
librium assumption, what input torques are needed to generate a desired tip
force, e.g., the joint torques needed for the robot tip to push against a wall with

2Since the robot is at equilibrium, the joint velocity 6 is technically zero. This can be
considered the limiting case as 6 approaches zero. To be more formal, we could invoke the
“principle of virtual work,” which deals with infinitesimal joint displacements instead of joint
velocities.
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Figure 5.5: Force ellipsoids for two different postures of the 2R planar open chain.

a specified normal force. For a given posture 6 of the robot at equilibrium and
a set of joint torque limits such as

—1Nm <7y <1 Nm,
—1 Nm <75 <1 Nm,

then Equation (5.4) can be used to generate the set of all possible tip forces as
indicated in Figure 5.4.

As for the manipulability ellipsoid, a force ellipsoid can be drawn by map-
ping a unit circle “iso-effort” contour in the 7;—79-plane to an ellipsoid in the
f1—f2 tip-force plane via the Jacobian transpose inverse J~T(6) (see Figure 5.5).
The force ellipsoid illustrates how easily the robot can generate forces in dif-
ferent directions. As is evident from the manipulability and force ellipsoids, if
it is easy to generate a tip velocity in a given direction then it is difficult to
generate a force in that same direction, and vice versa (Figure 5.6). In fact, for
a given robot configuration, the principal axes of the manipulability ellipsoid
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Figure 5.6: Left-hand column: Manipulability ellipsoids at two different arm configu-
rations. Right-hand column: The force ellipsoids for the same two arm configurations.

and force ellipsoid are aligned, and the lengths of the principal semi-axes of the
force ellipsoid are the reciprocals of the lengths of the principal semi-axes of the
manipulability ellipsoid.

At a singularity, the manipulability ellipsoid collapses to a line segment.
The force ellipsoid, on the other hand, becomes infinitely long in a direction
orthogonal to the manipulability ellipsoid line segment (i.e., the direction of the
aligned links) and skinny in the orthogonal direction. Consider, for example,
carrying a heavy suitcase with your arm. It is much easier if your arm hangs
straight down under gravity (with your elbow fully straightened at a singularity),
because the force you must support passes directly through your joints, therefore
requiring no torques about the joints. Only the joint structure bears the load,
not the muscles generating torques. The manipulability ellipsoid loses dimension
at a singularity and therefore its area drops to zero, but the force ellipsoid’s area
goes to infinity (assuming that the joints can support the load!).

In this chapter we present methods for deriving the Jacobian for general open
chains, where the configuration of the end-effector is expressed as T' € SF(3)
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and its velocity is expressed as a twist V in the fixed base frame or the end-
effector body frame. We also examine how the Jacobian can be used for velocity
and static analysis, including identifying kinematic singularities and determining
the manipulability and force ellipsoids. Later chapters on inverse kinematics,
motion planning, dynamics, and control make extensive use of the Jacobian and
related notions introduced in this chapter.

5.1 Manipulator Jacobian

In the 2R planar open chain example, we saw that, for any joint configuration
6, the tip velocity vector v, and joint velocity vector 6 are linearly related
via the Jacobian matrix J(6), i.e., vyp = J(#)f. The tip velocity viip depends
on the coordinates of interest for the tip, which in turn determine the specific
form of the Jacobian. For example, in the most general case vy, can be taken
to be a six-dimensional twist, while, for pure orienting devices such as a wrist,
vyip is usually taken to be the angular velocity of the end-effector frame. Other
choices for v, lead to different formulations for the Jacobian. We begin with
the general case where vy, is taken to be a six-dimensional twist V.

All the derivations below are mathematical expressions of the same simple
idea, embodied in Equation (5.2): given the configuration 6 of the robot, the
6-vector J;(A), which is column i of J(6), is the twist V when 6; = 1 and all
other joint velocities are zero. This twist is determined in the same way as the
joint screw axes were determined in the previous chapter, using a point ¢; on
joint axis ¢ for revolute joints. The only difference is that the screw axes of the
Jacobian depend on the joint variables 8§ whereas the screw axes for the forward
kinematics of Chapter 4 were always for the case 6 = 0.

The two standard types of Jacobian that we will consider are: the space
Jacobian J,(6) satisfying Vs = J,(0)f, where each column Jy;(6) corresponds
to a screw axis expressed in the fixed space frame {s}; and the body Jacobian
Jp(0) satistying V, = Jp(0)0, where each column Jy;(#) corresponds to a screw
axis expressed in the end-effector frame {b}. We start with the space Jacobian.

5.1.1 Space Jacobian

In this section we derive the relationship between an open chain’s joint velocity
vector 6 and the end-effector’s spatial twist V,. We first recall a few basic prop-
erties from linear algebra and linear differential equations: (i) if A, B € R"*" are
both invertible then (AB)~! = B~1A~1; (ii) if A € R"*" is constant and 0(t)
is a scalar function of ¢ then d(eA?)/dt = AeA?0 = eA? Af; (iii) (e4?) ! = =47,
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Consider an n-link open chain whose forward kinematics is expressed in the
following product of exponentials form:

T(01,...,0,) = elSi101¢[S2102 . o[Snlfn pr. (5.5)

The spatial twist V, is given by [V,] = TT~!, where

— 2 olsilon ) L [Snlon [S1]61 [ & [[S2]02 ) ... o[Sn]On o
T (dte ) e M +e (dte ) e M +

— [81]916[51]91 L. e[Sn]GnM + 6[51]91 [82]9.26[52]92 . 6[5"]9”M 4.

Also,
T-1 = M 1e=[Sn]0n ... o—[51101

Calculating 7T~ we obtain
[VS] — [81]91 + 6[51]91 [82]6—[51]9192 + 6[51]916[52]92 [83]6_[52]926_[31]01 9'3 I

The above can also be expressed in vector form by means of the adjoint mapping;:

Vs = Sl 0'1 + Ade[51]91 (52) éQ + Ade[51]91e[52]92 (83) 93 + - (56)
J J J
sl 82 Js3

Observe that Vs is a sum of n spatial twists of the form
Ve = Jo1 + Je2(0)01 + - - - + T (0)6,,, (5.7)

where each Jg;(0) = (ws;(0), vs;(0)) depends explictly on the joint values § € R™
for i = 2,...,n. In matrix form,

Vo = [Ja Jul0) - Ju(0) ] (5.8)
= J,(0)6.

The matrix Js(6) is said to be the Jacobian in fixed (space) frame coordinates,
or more simply the space Jacobian.

Definition 5.1. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = 51001 .. [Snlfn pp. (5.9)
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The space Jacobian J,() € R®*" relates the joint rate vector 6 € R" to the
spatial twist Vs via )
Ve = Js(0)0. (5.10)

The ith column of J,(6) is
Jsi(e) = Ade[sﬂfh ceelSi-110i1 (Si)v (5-11)
for i = 2,...,n, with the first column J; = S;.

To understand the physical meaning behind the columns of Js(6), observe
that the ith column is of the form Ady, ,(S;), where T;_; = elS1101 ... elSi-alfi—1,
recall that S; is the screw axis describing the ith joint axis in terms of the fixed
frame with the robot in its zero position. Adg,_,(S;) is therefore the screw
axis describing the ith joint axis after it undergoes the rigid body displacement
T;_1. Physically this is the same as moving the first ¢ — 1 joints from their zero
position to the current values 61,...,60;_1. Therefore, the ith column J;(0) of
Js(0) is simply the screw vector describing joint axis 4, expressed in fixed-frame
coordinates, as a function of the joint variables 61,...,6;_1.

In summary, the procedure for determining the columns Jy; of J,(#) is similar
to the procedure for deriving the joint screws S; in the product of exponentials
formula elS10 ... elSnl0n M2 each column J;(0) is the screw vector describing
joint axis i, expressed in fixed-frame coordinates, but for arbitrary 6 rather than
0=0.

Example 5.2 (Space Jacobian for a spatial RRRP chain). We now illustrate
the procedure for finding the space Jacobian for the spatial RRRP chain of
Figure 5.7. Denote the ith column of Js(0) by Js; = (wsi,vs;). The [Adp, ]
matrices are implicit in our calculations of the screw axes of the displaced joint
axes.

e Observe that ws is constant and in the Zs-direction: ws = (0,0,1).
Choosing ¢; as the origin, vs; = (0,0,0).

® wgo is also constant in the Zg-direction, so wss = (0,0,1). Choose ¢o as
the point (Ljcy, L181,0), where ¢; = cosfy, s; = sinf;. Then vge =
—wy X q2 = (Ly1s1,—Licy,0).

e The direction of wsz is always fixed in the Zs-direction regardless of the
values of 8; and 65, so wez = (0,0,1). Choosing g3 = (Lic1+ Lacia, L1s1+
L9s12,0), where c12 = cos(61 + 02), s12 = sin(f; + 62), it follows that
vs3 = (L181 + Lasi2, —Lic1 — Laci2,0).
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Figure 5.7: Space Jacobian for a spatial RRRP chain.

e Since the final joint is prismatic, wey = (0,0, 0), and the joint-axis direction
is given by vsq = (0,0, 1).

The space Jacobian is therefore

0 0
0 0
1 1

Lis; Lisy + Lasio
—Licy —Licy — Lacio
0 0

[N el ol
_ O OO oo

Example 5.3 (Space Jacobian for a spatial RRPRRR chain). We now derive
the space Jacobian for the spatial RRPRRR chain of Figure 5.8. The base frame
is chosen as shown in the figure.

e The first joint axis is in the direction ws; = (0,0,1). Choosing ¢ =
(0,0, L1), we get vg1 = —wy X q1 = (0,0,0).

e The second joint axis is in the direction wge = (—c1,—s1,0). Choosing
q2 = (O,O,Ll)7 we get Vg2 = —W2 X @2 = (Llsl, 7L1C1,0).
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Figure 5.8: Space Jacobian for the spatial RRPRRR chain.

e The third joint is prismatic, so wss = (0,0,0). The direction of the pris-
matic joint axis is given by

0 —S1C2
vs3 = Rot(z,01)Rot(x,—62) | 1 | = C1Co
0 —S2

e Now consider the wrist portion of the chain. The wrist center is located
at the point

0 0 —(Lg + 03)s1C2
Guw = 0|+ ROt(i, 91)R0t(§(, —92) Lo+05| = (LQ + 03)61C2
Ly 0 Li— (Lo +63)s2

Observe that the directions of the wrist axes depend on 6, 65, and the
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preceding wrist axes. These are

0 —S182
Wgqg = ROt(i, 91)R0t(§(, —92) 0 = C1S2 y
1 L Co
[ —1 —C1Cq4 + S1C284
Wgy = ROt(i, 91)R0t(§(, —92)ROt(i7 94) 0 = —S1C4 — C1C284 y
L 0 S254
0
wse = Rot(z,0;)Rot(x, —b2)Rot(z,84)Rot(x,—05) | 1
0

—cs5(s1c2C4 + C184) + 518285
C5(0102C4 — 8184) — C15285
—S2C4C5 — C285

The space Jacobian can now be computed and written in matrix form as follows:

Ws1 Ws2 0 Ws4 Wss Ws6

Js(0) =
S( ) 0 —Ws2 X @2 VUs3 —Wsa X G —Wss XGu —Ws6 X u

Note that we were able to obtain the entire Jacobian directly, without having
to explicitly differentiate the forward kinematic map.

5.1.2 Body Jacobian

In the previous section we derived the relationship between the joint rates and
Vs] = TT—', the end-effector’s twist expressed in fixed-frame coordinates. Here
we derive the relationship between the joint rates and [Vy] = T—'T, the end-
effector twist in end-effector-frame coordinates. For this purpose it will be
more convenient to express the forward kinematics in the alternative product of
exponentials form:

T(0) = MelB1l61[B2102 | [Bn]0n (5.12)
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Computing 7',

P AgelBio . [Bailtu (de[Bn]Gn>
dt

4oareBon (B0 B
dt
:M6[31]01 e e[Bn]an [Bn]en
+ Me[61]91 . e[Bn—l]‘gn—l [Bn—l]e[Bn]enénfl N

+ MelBilo[B,]elBa1bz . . g[BrlOng,

Also,
T=1 = = [Bnlbn . —B1]01 -1

Evaluating 717,

W] = [ann + ¢~ [Bnlfn [anl]e[Bn]anén—l +
4 e IBalln o 1B2l02 (3 1o[B2102 . [BalOn g,

or, in vector form,

Vo= By 0y + Ade—i5,000 (Bu1) 01+ 4+ Ad 5,10, ..o 152162 (B1) 01 (5.13)
—

Jon Jon—1 Ju1

The twist V,, can therefore be expressed as a sum of n body twists:
Vo = Jp1(0)01 + -+ + Jon—1(0)6n—1 + Jonbn, (5.14)

where each Jy;(0) = (wpi(6), vpi(0)) depends explictly on the joint values 6 for
1=1,...,n— 1. In matrix form,

01
Vo = [ Jn(0) -~ Jono1(0) Jon || | = Ju(0)0. (5.15)
0
The matrix Jy(6) is the Jacobian in the end-effector- (or body-) frame coordi-

nates and is called, more simply, the body Jacobian.

Definition 5.4. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = MelBlo1 ... o[Bnlbn (5.16)
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The body Jacobian .J,(f) € RO*" relates the joint rate vector § € R™ to the
end-effector twist V}, = (wp, vp) via

Vy = Ju(6)6. (5.17)
The ith column of J,(0) is
Joi(0) = Ad, 5,0, ...~ 8:1210041 (Bi), (5.18)
fori=n-—1,...,1, with Jy, = B,.

A physical interpretation can be given to the columns of J,(6): each column
Jpi(0) = (wpi(6),vp:(0)) of Jp(0) is the screw vector for joint axis 4, expressed in
the coordinates of the end-effector frame rather than those of the fixed frame.
The procedure for determining the columns of J,(6) is similar to the proce-
dure for deriving the forward kinematics in the product of exponentials form
MelBrl01 ... ¢lBrlon the only difference being that each of the end-effector-frame
joint screws Jy;(0) are expressed for arbitrary 6 rather than 6 = 0.

5.1.3 Visualizing the Space and Body Jacobian

Another, perhaps simpler, way to derive the formulas for the ith column of the
space Jacobian (5.11) and the ith column of the body Jacobian (5.18) comes
from inspecting the 5R robot in Figure 5.9. Let’s start with the third column,
Js3, of the space Jacobian using the left-hand column of Figure 5.9.

The screw corresponding to joint axis 3 is written as Sz in {s} when the robot
is at its zero configuration. Clearly the joint variables 03, 64, and 65 have no
impact on the spatial twist resulting from the joint velocity 63, because they do
not displace axis 3 relative to {s}. So we fix those joint variables at zero, making
the robot from joint 2 outward a rigid body B. If §; = 0 and 65 is arbitrary then
the frame {s'} at Ty, = e[521?2 is at the same position and orientation relative
to B as frame {s} when 6; = 05 = 0. Now, if 8, is also arbitrary then the frame
{s"} at Tygn = el51101¢[52192 g at the same position and orientation relative to
B as frame {s} when 6; = 62 = 0. Thus S3 represents the screw relative to
{8} for arbitrary joint angles §; and #3. The column Jy3, though, is the screw
relative to {s}. The mapping that changes the frame of representation of Ss
from {SN} to {S} is [AdTSS,,} = [Ade[sl]ele[sz]ez], i.e., Jsg = [AdTSS,,}Sg, precisely
Equation (5.11) for joint ¢ = 3. Equation (5.11) is the generalization of the
reasoning above for any joint i = 2,...,n.

Now let’s derive the third column, Jp3, of the body Jacobian by inspecting
the right-hand column of Figure 5.9. The screw corresponding to joint 3 is
written B3 in {b} when the robot is at its zero configuration. Clearly the joint
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Bs {b}

77;77_ @ @ L @ T—>

Ty = elBalfa (1}

-

77;7/_0[0\044/1—»

Ty — elBelts lBslos 17y

N
~0
o o o oo Lo

{S//} Tss“ = 6[51]916[52]92

Figure 5.9: A 5R robot. (Left-hand column) Derivation of Js3, the third column of
the space Jacobian. (Right-hand column) Derivation of Ju3, the third column of the
body Jacobian.

variables 61, 65, and 03 have no impact on the body twist resulting from the
joint velocity 93, because they do not displace axis 3 relative to {b}. So we fix
those joint variables at zero, making the robot a rigid body B from the base to
joint 4. If @5 = 0 and 6, is arbitrary, then the frame {b'} at Ty, = elB1l%4 is
the new end-effector frame. Now if 05 is also arbitrary, then the frame {b”} at
Ty = elB4104¢B5105 ig the new end-effector frame. The column Jyg is simply the
screw axis of joint 3 expressed in {b”}. Since B is expressed in {b}, we have

Jy3 = [Adr,,,]Bs
— [Ad, 1 |Bs

bb!!

= [Ade*[55]9567[34]94]83~
where we have made use of the fact that (T3T)~' = T, 'T,"'. This formula

for Jy3 is precisely Equation (5.18) for joint ¢ = 3. Equation (5.18) is the
generalization of the reasoning above for any joint i =1,...,n — 1.
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5.1.4 Relationship between the Space and Body Jacobian

Denoting the fixed frame by {s} and the end-effector frame by {b}, the forward
kinematics can be written as Ts,(6). The twist of the end-effector frame can be
written in terms of the fixed- and end-effector-frame coordinates as

[Vs} - str:blv
V] = T,'Tw,

with Vs and V, related by Vs, = Adr, (V) and Vi, = Adr,,(Vs). The twists Vg
and V, are also related to their respective Jacobians via

V. = J.(0)6, (5.19)
Ve = Jy(0)6. (5.20)

Equation (5.19) can therefore be written
Adr, (V) = J4(0)6. (5.21)

Applying [Adr,,] to both sides of Equation (5.21) and using the general property
[Adx][Ady] = [Adxy] of the adjoint map, we obtain

Adg,, (Adr, (V) = Adgy, 1, (V) = Vo = Adr,, (Js(q)0).

Since we also have V, = J,(0)8 for all 6, it follows that J,(f) and J,(6) are
related by
Jp(0) = Adr,, (J5(0)) = [Adr,, ] J5(0). (5.22)

The space Jacobian can in turn be obtained from the body Jacobian via
Js(0) = Adz,, (Jo(0)) = [Adr,,]J5(0). (5.23)

The fact that the space and body Jacobians, and the space and body twists, are
similarly related by the adjoint map should not be surprising since each column
of the space or body Jacobian corresponds to a twist.

An important implication of Equations (5.22) and (5.23) is that J,(#) and
Js(0) always have the same rank; this is shown explicitly in Section 5.3 on
singularity analysis.

5.1.5 Alternative Notions of the Jacobian

The space and body Jacobians derived above are matrices that relate joint
rates to the twist of the end-effector. There exist alternative notions of the
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Jacobian that are based on a representation of the end-effector configuration
using a minimum set of coordinates g. Such representations are particularly
relevant when the task space is considered to be a subspace of SE(3). For
example, the configuration of the end-effector of a planar robot could be treated
as ¢ = (z,y,0) € R3 instead of as an element of SE(2).

When using a minimum set of coordinates, the end-effector velocity is not
given by a twist ¥ but by the time derivative of the coordinates ¢, and the Jaco-
bian J, in the velocity kinematics ¢ = Ja(e)é is sometimes called the analytic
Jacobian as opposed to the geometric Jacobian in space and body form,
described above.?

For an SFE(3) task space, a typical choice of the minimal coordinates ¢ € RS
includes three coordinates for the origin of the end-effector frame in the fixed
frame and three coordinates for the orientation of the end-effector frame in the
fixed frame. Example coordinates for the orientation include the Euler angles
(see Appendix B) and exponential coordinates for rotation.

Example 5.5 (Analytic Jacobian with exponential coordinates for rotation).

In this example, we find the relationship between the geometric Jacobian J; in

the body frame and an analytic Jacobian J, that uses exponential coordinates

r = & to represent the orientation. (Recall that |0 =1 and 6 € [0, 7].)
First, consider an open chain with n joints and the body Jacobian

Vy = Jp(0)6,

where J,(#) € R®*™. The angular and linear velocity components of V, =
(wp, vp) can be written explicitly as

=[]

where J, is the 3 X n matrix corresponding to the top three rows of J, and J,
is the 3 X n matrix corresponding to the bottom three rows of Jj.

Now suppose that our minimal set of coordinates ¢ € R® is given by q =
(r,x), where z € R? is the position of the origin of the end-effector frame and
r = Q0 € R3 is the exponential coordinate representation for the rotation. The

3The term “geometric Jacobian” has also been used to describe the relationship between
joint rates and a representation of the end-effector velocity that combines the rate of change
of the position coordinates of the end-effector (which is neither the linear portion of a body
twist nor the linear portion of a spatial twist) and a representation of the angular velocity.
Unlike a body or spatial twist, which depends only on the body or space frame, respectively,
this “hybrid” notion of a spatial velocity depends on the definition of both frames.
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coordinate time derivative & is related to v, by a rotation that gives v in the
fixed coordinates: )
T = Rsb(e)vb = Rsb(Q)Jv(e)e,

where R, (0) = el"l = &0,
The time-derivative 7 is related to the body angular velocity w; by

wp = A(r)r,
where

1 — cos ||r]| [[7[| = sin [~

P T E

Alr)y=1-

(The derivation of this formula is explored in Exercise 5.10.) Provided that the
matrix A(r) is invertible, 7 can be obtained from wy:

= AT (r)w, = A7), (0)6.

Putting these together, we obtain

R A Y

i.e., the analytic Jacobian J, is related to the body Jacobian J, by

J“”):{A;(r) RSS@H%)) ]:{A;m Rsfw)]']b(”' (5.25)

5.1.6 Looking Ahead to Inverse Velocity Kinematics

In the above sections we asked the question “What twist results from a given set
of joint velocities?” The answer, written independently of the frame in which
the twists are represented, was given by

V = J(0)6.

Often we are interested in the inverse question: given a desired twist V, what
joint velocities 6 are needed? This is a question of inverse velocity kinematics,
which is discussed in more detail in Section 6.3. Briefly, if J(6) is square (so that
the number of joints n is equal to six, the number of elements of a twist) and of
full rank then 6 = J ~“L(9)V. If n # 6 or the robot is at a singularity, however,
then J(@) is not invertible. In the case n < 6, arbitrary twists V cannot be
achieved — the robot does not have enough joints. If n > 6 then we call the
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robot redundant. In this case, a desired twist )V places six constraints on the
joint rates, and the remaining n — 6 freedoms correspond to internal motions of
the robot that are not evident in the motion of the end-effector. For example,
if you consider your arm from your shoulder to your palm as a seven-joint open
chain, when you place your palm at a fixed configuration in space (e.g., on the
surface of a table), you still have one internal degree of freedom corresponding
to the position of your elbow.

5.2 Statics of Open Chains

Using our familiar principle of conservation of power, we have
power at the joints = (power to move the robot) 4+ (power at the end-effector)

and, considering the robot to be at static equilibrium (no power is being used
to move the robot), we can equate the power at the joints to the power at the
end-effector,* _

0 =F) W,

where 7 is the column vector of the joint torques. Using the identity V), = J,(0)0,

we get
7= J)(0)F,

relating the joint torques to the wrench written in the end-effector frame. Sim-

ilarly,
= JY0)F,

in the fixed space frame. Independently of the choice of the frame, we can
simply write
r=JY0)F. (5.26)

If an external wrench —F is applied to the end-effector when the robot is at
equilibrium with joint values 0, Equation (5.26) calculates the joint torques 7
needed to generate the opposing wrench F, keeping the robot at equilibrium.’
This is important in force control of a robot, for example.

One could also ask the opposite question, namely, what is the end-effector
wrench generated by a given set of joint torques? If JT is a 6 x 6 invertible
matrix, then clearly 7 = J~T(0)7. If the number of joints n is not equal to six
then J7T is not invertible, and the question is not well posed.

4We are considering the limiting case as 6 goes to zero, consistent with our assumption
that the robot is at equilibrium.

51f the robot has to support itself against gravity to maintain static equilibrium, the torques
7 must be added to the torques that offset gravity.
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If the robot is redundant (n > 6) then, even if the end-effector is embedded in
concrete, the robot is not immobilized and the joint torques may cause internal
motions of the links. The static equilibrium assumption is no longer satisfied,
and we need to include dynamics to know what will happen to the robot.

If n < 6 and J¥ € R"™6 has rank n then embedding the end-effector in
concrete will immobilize the robot. If n < 6, no matter what 7 we choose, the
robot cannot actively generate forces in the 6 — n wrench directions defined by
the null space of J7T,

Null(J*(0)) = {F | J*(6)F = 0},

since no actuators act in these directions. The robot can, however, resist ar-
bitrary externally applied wrenches in the space Null(JT(#)) without moving,
owing to the lack of joints that would allow motions due to these forces. For
example, consider a motorized rotating door with a single revolute joint (n = 1)
and an end-effector frame at the door knob. The door can only actively gener-
ate a force at the knob that is tangential to the allowed circle of motion of the
knob (defining a single direction in the wrench space), but it can resist arbitrary
wrenches in the orthogonal five-dimensional wrench space without moving.

5.3 Singularity Analysis

The Jacobian allows us to identify postures at which the robot’s end-effector
loses the ability to move instantaneously in one or more directions. Such a
posture is called a kinematic singularity, or simply a singularity. Math-
ematically, a singular posture is one in which the Jacobian J(6) fails to be of
maximal rank. To understand why, consider the body Jacobian J,(6), whose

columns are denoted Jy;, ¢ = 1,...,n. Then
6
Vo = [ Jun(0) - Jon—1(0) Jpn || ¢
On—1
On

= Jbl(e)él +- an—l(e)én—l + anon

Thus, the tip frame can achieve twists that are linear combinations of the Jy;.
As long as n > 6, the maximum rank that J,(f) can attain is six. Singular
postures correspond to those values of 6 at which the rank of J,(0) drops below
the maximum possible value; at such postures the tip frame loses the ability
to generate instantaneous spatial velocities in in one or more dimensions. This
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loss of mobility at a singularity is accompanied by the ability to resist arbitrary
wrenches in the direction corresponding to the lost mobility.

The mathematical definition of a kinematic singularity is independent of the
choice of body or space Jacobian. To see why, recall the relationship between
Js(0) and Jp(0): J4(0) = Adr,, (Jp(0)) = [Adr,,]Js(0) or, more explicitly,

T:(0) = [ ik R } T 6).

We now claim that the matrix [Adr,,] is always invertible. This can be estab-
lished by examining the linear equation

Sy AIME

Its unique solution is = y = 0, implying that the matrix [Ady,,] is invertible.
Since multiplying any matrix by an invertible matrix does not change its rank,
it follows that

rank Js() = rank J,(0),

as claimed; singularities of the space and body Jacobian are one and the same.

Kinematic singularities are also independent of the choice of fixed frame
and end-effector frame. Choosing a different fixed frame is equivalent to simply
relocating the robot arm, which should have absolutely no effect on whether a
particular posture is singular. This obvious fact can be verified by referring to
Figure 5.10(a). The forward kinematics with respect to the original fixed frame
is denoted T'(#), while the forward kinematics with respect to the relocated
fixed frame is denoted T7(0) = PT(6), where P € SE(3) is constant. Then the
body Jacobian of T"(6), denoted Ji(6), is obtained from (T’)~'7’. A simple
calculation reveals that

(T~ YT = (T7*P~Y)(PT) =TT,

ie., Ji(0) = Jy(8), so that the singularities of the original and relocated robot
arms are the same.

To see that singularities are independent of the end-effector frame, refer to
Figure 5.10(b) and suppose the forward kinematics for the original end-effector
frame is given by T'(6) while the forward kinematics for the relocated end-effector
frame is T'(0) = T'(0)Q, where ) € SE(3) is constant. This time, looking at the
space Jacobian — recall that singularities of Jy,(6) coincide with those of Jg(8) —
let J.(0) denote the space Jacobian of T7(#). A simple calculation reveals that

(1) = (TQ)QITT) =TT
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') =TO)Q
()

Figure 5.10: Kinematic singularities are invariant with respect to the choice of fixed
and end-effector frames. (a) Choosing a different fixed frame, which is equivalent to
relocating the base of the robot arm; (b) choosing a different end-effector frame.

That is, J.(0) = Js(0), so that the kinematic singularities are invariant with
respect to the choice of end-effector frame.

In the remainder of this section we consider some common kinematic singu-
larities that occur in six-dof open chains with revolute and prismatic joints. We
now know that either the space or body Jacobian can be used for our analysis;
we use the space Jacobian in the examples below.

Case |: Two Collinear Revolute Joint Axes

The first case we consider is one in which two revolute joint axes are collinear
(see Figure 5.11(a)). Without loss of generality these joint axes can be labeled
1 and 2. The corresponding columns of the Jacobian are

Jsl(e)_[ Wst } and Jsg(ﬁ)—[ Ws2 }

—Ws1 X q1 —Ws2 X @2

Since the two joint axes are collinear, we must have ws; = ftwso; let us assume
the positive sign. Also, wg; X (g1 — g2) =0 for i = 1,2. Then Jg; = Jso, the set
{Js1,Js25 .- -, Js6} cannot be linearly independent, and the rank of Js(#) must
be less than six.
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(a)

Figure 5.11: (a) A kinematic singularity in which two joint axes are collinear. (b) A
kinematic singularity in which three revolute joint axes are parallel and coplanar.

Case II: Three Coplanar and Parallel Revolute Joint Axes

The second case we consider is one in which three revolute joint axes are par-
allel and also lie on the same plane (three coplanar axes: see Figure 5.11(b)).
Without loss of generality we label these as joint axes 1, 2, and 3. In this case
we choose the fixed frame as shown in the figure; then

Ws1 Ws1 Ws1

Js(6) = 0 —ws1 X@q2 —ws1 Xq3

Since g2 and g3 are points on the same unit axis, it is not difficult to verify that
the first three columns cannot be linearly independent.

Case |lI: Four Revolute Joint Axes Intersecting at a Common Point

Here we consider the case where four revolute joint axes intersect at a common
point (Figure 5.12). Again, without loss of generality, label these axes from 1
to 4. In this case we choose the fixed-frame origin to be the common point of
intersection, so that qg; = --- = g4 = 0, and therefore

Ws1 Ws2 Ws3 Wsq

LO="%9 09 o o

The first four columns clearly cannot be linearly independent; one can be writ-
ten as a linear combination of the other three. Such a singularity occurs, for
example, when the wrist center of an elbow-type robot arm is directly above
the shoulder.
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S2

S3

Sy

Figure 5.12: A kinematic singularity in which four revolute joint axes intersect at a

common point.

Case IV: Four Coplanar Revolute Joints

Here we consider the case in which four revolute joint axes are coplanar. Again,
without loss of generality, label these axes from 1 to 4. Choose a fixed frame
such that the joint axes all lie on the z—y-plane; in this case the unit vector
we; € R3 in the direction of joint axis 4 is of the form

Wsi =

Similarly, any reference point ¢; € R?

qi

and subsequently

Vg = —Wsi X G

Wsix
Wsiy

0

lying on joint axis ¢ is of the form

[ Qix
Qiy )

0

0
0

| WsiyQiz — WsizQiy
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The first four columns of the space Jacobian J,(#) are
Wslx Ws2x Ws3x Wsdx
Wsly Ws2y Ws3y Wsdy
0 0 0 0
0 0 0 0
0 0 0 0

WslyQilz — Wslzqly Ws2yG2z — Ws22q2y Ws3y(G3z — Ws32q3y WsdyGaxz — WsdaGdy

and cannot be linearly independent since they only have three nonzero compo-
nents.
Case V: Six Revolute Joints Intersecting a Common Line

The final case we consider is six revolute joint axes intersecting a common line.
Choose a fixed frame such that the common line lies along the Z-axis, and select
the intersection between this common line and joint axis ¢ as the reference point
¢; € R? for axis i; each ¢; is thus of the form ¢; = (0,0, ¢;.), and

Vsi = —Wgi X @3 = (wsiyqiza _wsixqizao)v

for i =1,...,6. The space Jacobian Js(6) thus becomes

Wslx Ws2x Ws3x Wsdzx Ws5x Wsbx
Wsly Ws2y Ws3y Wsay Ws5y Wsby
Ws1z Ws2z Ws3z Wsdz Ws5z Ws6z
Ws1yQqiz Ws2y Q22 Ws3y 43z Wsdayq4~ Ws5yq52 Ws6yq62
—Wslzqlz  —Ws22G22z —Ws3zG3z  —Wsdx(4r —Ws5zq5z —Ws6x462
0 0 0 0 0 0

which is clearly singular.

5.4 Manipulability

In the previous section we saw that, at a kinematic singularity, a robot’s end-
effector loses the ability to translate or rotate in one or more directions. A
kinematic singularity presents a binary proposition — a particular configuration
is either kinematically singular or it is not — and it is reasonable to ask if a
nonsingular configuration is “close” to being singular. The answer is yes; in
fact, one can even determine the directions in which the end-effector’s ability to
move is diminished, and to what extent. The manipulability ellipsoid allows one

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

Chapter 5. Velocity Kinematics and Statics 197

to visualize geometrically the directions in which the end-effector moves with
least effort or with greatest effort.

Manipulability ellipsoids are illustrated for a 2R planar arm in Figure 5.3.
The Jacobian is given by Equation (5.1).

For a general n-joint open chain and a task space with coordinates g €
R™, where m < n, the manipulability ellipsoid corresponds to the end-effector
velocities for joint rates 0 satisfying ||0]| = 1, a unit sphere in the n-dimensional
joint-velocity space.® Assuming J is invertible, the unit joint-velocity condition
can be written

1=6%9
= (') (I
— qTJ—TJ—lq
=q'(JI) g =q"A"g. (5.27)
If J is full rank (i.e., of rank m), the matrix A = JJT € R™*™ is square,
symmetric, and positive definite, as is A7!.

Consulting a textbook on linear algebra, we see that for any symmetric
positive-definite A= € R™*™_ the set of vectors ¢ € R™ satisfying

TATNG =1

defines an ellipsoid in the m-dimensional space. Letting v; and \; be the eigen-
vectors and eigenvalues of A, the directions of the principal axes of the ellipsoid
are v; and the lengths of the principal semi-axes are Vs, as illustrated in Fig-
ure 5.13. Furthermore, the volume V of the ellipsoid is proportional to the
product of the semi-axis lengths:

V is proportional to \/AiAg--- Ay, = \/det(A) = {/det(JJT).

For the geometric Jacobian J (either J, in the end-effector frame or Jg in
the fixed frame), we can express the 6 x n Jacobian as

6 A two-dimensional ellipsoid is usually referred to as an “ellipse,” and an ellipsoid in more
than three dimensions is often referred to as a “hyperellipsoid,” but here we use the term
ellipsoid independently of the dimension. Similarly, we refer to a “sphere” independently of
the dimension, instead of using “circle” for two dimensions and “hypersphere” for more than
three dimensions.
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V2
Figure 5.13: An ellipsoid visualization of jTA™!¢ = 1 in the ¢ space R®, where the

principal semi-axis lengths are the square roots of the eigenvalues A; of A and the
directions of the principal semi-axes are the eigenvectors v;.

U1

7

where J, comprises the top three rows of J and J, the bottom three rows of
J. It makes sense to separate the two because the units of angular velocity and
linear velocity are different. This leads to two three-dimensional manipulability
ellipsoids, one for angular velocities and one for linear velocities. These ma-
nipulability ellipsoids have principal semi-axes aligned with the eigenvectors of
A, with lengths given by the square roots of the eigenvalues, where A = J,,JX
for the angular velocity manipulability ellipsoid and A = J,JI for the linear
velocity manipulability ellipsoid.

When calculating the linear-velocity manipulability ellipsoid, it generally
makes more sense to use the body Jacobian J, instead of the space Jacobian Jg,
since we are usually interested in the linear velocity of a point at the origin of
the end-effector frame rather than that of a point at the origin of the fixed-space
frame.

Apart from the geometry of the manipulability ellipsoid, it can be useful to
assign a single scalar measure defining how easily the robot can move at a given
posture. One measure is the ratio of the longest and shortest semi-axes of the
manipulability ellipsoid,

. Amax(AA) o )\max(A)
/u’l(A) - Amln(A) - )\mln(A) > 1,

where A = JJT. When p(A) is low (i.e., close to 1) then the manipulability
ellipsoid is nearly spherical or isotropic, meaning that it is equally easy to move
in any direction. This situation is generally desirable. As the robot approaches
a singularity, however, p1(A) goes to infinity.

A similar measure ug(A) is just the square of uq(A), which is known as the
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condition number of the matrix A = JJ7T,

)\max (A) > 1.

p2(A) = N (A) =

Again, smaller values (close to 1) are preferred. The condition number of a ma-
trix is commonly used to characterize the sensitivity of the result of multiplying
that matrix by a vector to small errors in the vector.

A final measure is simply proportional to the volume of the manipulability
ellipsoid,

p3(A) = VAa - = \/det(A).

In this case, unlike the first two measures, a larger value is better.

Just like the manipulability ellipsoid, a force ellipsoid can be drawn for joint
torques T satisfying ||7|| = 1. Beginning from 7 = JT(0)F, we arrive at similar
results to those above, except that now the ellipsoid satisfies

1= [T f =[BT,

where B = (JJT)™! = A~!. For the force ellipsoid, the matrix B plays the
same role as A in the manipulability ellipsoid; it is the eigenvectors and the
square roots of eigenvalues of B that define the shape of the force ellipsoid.

Since eigenvectors of any invertible matrix A are also eigenvectors of B =
A~ the principal axes of the force ellipsoid are aligned with the principal axes
of the manipulability ellipsoid. Furthermore, since the eigenvalues of B = A~!
associated with each principal axis are the reciprocals of the corresponding
eigenvalues of A, the lengths of the principal semi-axes of the force ellipsoid
are given by 1/v/\;, where ); are the eigenvalues of A. Thus the force ellipsoid
is obtained from the manipulability ellipsoid simply by stretching the manipu-
lability ellipsoid along each principal axis ¢ by a factor 1/)\;. Furthermore, since
the volume V4 of the manipulability ellipsoid is proportional to the product of
the semi-axes, v/A1 Az -+, and the volume Vg of the force ellipsoid is propor-
tional to 1/v/A1Ag -+, the product of the two volumes V4 Vg is constant inde-
pendently of the joint variables 6. Therefore, positioning the robot to increase
the manipulability-ellipsoid volume measure u3(A) simultaneously reduces the
force-ellipsoid volume measure p3(B). This also explains the observation made
at the start of the chapter that, as the robot approaches a singularity, V4 goes
to zero while Vp goes to infinity.
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5.5 Summary

e Let the forward kinematics of an m-link open chain be expressed in the
following product of exponentials form:

T(@) = 6[81]01 “e e[Sn]enM.

The space Jacobian J(0) € R®*™ relates the joint rate vector 6 € R" to
the spatial twist Vs, via Vs = J4(60)0. The ith column of J4(0) is given by

Jsi(e) - Ade[51]91 celSi—110i 1 (Sz)v

for i = 2,...,n, with the first column Js; = S;. The screw vector Jg;
for joint 7 is expressed in space-frame coordinates, with the joint values 6
assumed to be arbitrary rather than zero.

e Let the forward kinematics of an mn-link open chain be expressed in the
following product of exponentials form:

T(Q) — Me[81]91 - e[Bn]en.

The body Jacobian J;(0) € R6*™ relates the joint rate vector 0 € R" to
the end-effector body twist Vy = (wp, vp) via Vi = Jp(6)0. The ith column
of Jy(0) is given by

Jbi(e) = Adef[zsn]en,,,e*[5¢+1]9¢+1 (Bi)7

fori =n—1,...,1, with Jy, = B;,,. The screw vector Jp; for joint ¢ is
expressed in body-frame coordinates, with the joint values 6 assumed to
be arbitrary rather than zero.

e The body and space Jacobians are related via

Js(0) = [Adz,]Ju(0),
H(0) = [Adg,]Js(0),
where Ty, = T'(0).

e Consider a spatial open chain with n one-dof joints that is assumed to be
in static equilibrium. Let 7 € R™ denote the vector of the joint torques
and forces and F € RS be the wrench applied at the end-effector, in either
space- or body-frame coordinates. Then 7 and F are related by

T=Jy (0)F = JJ (0)Fs.
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e A kinematically singular configuration for an open chain, or more simply
a kinematic singularity, is any configuration # € R™ at which the rank of
the Jacobian is not maximal. For six-dof spatial open chains consisting of
revolute and prismatic joints, some common singularities include (i) two
collinear revolute joint axes; (ii) three coplanar and parallel revolute joint
axes; (iii) four revolute joint axes intersecting at a common point; (iv) four
coplanar revolute joints; and (v) six revolute joints intersecting a common
line.

e The manipulability ellipsoid describes how easily the robot can move in
different directions. For a Jacobian J, the principal axes of the manip-
ulability ellipsoid are defined by the eigenvectors of JJT and the corre-
sponding lengths of the principal semi-axes are the square roots of the
eigenvalues.

e The force ellipsoid describes how easily the robot can generate forces in
different directions. For a Jacobian J, the principal axes of the force
ellipsoid are defined by the eigenvectors of (JJT)~! and the corresponding
lengths of the principal semi-axes are the square roots of the eigenvalues.

e Measures of the manipulability and force ellipsoids include the ratio of
the longest principal semi-axis to the shortest; the square of this measure;
and the volume of the ellipsoid. The first two measures indicate that the
robot is far from being singular if they are small (close to 1).

5.6 Software

Software functions associated with this chapter are listed below.

Jb = JacobianBody(Blist,thetalist)
Computes the body Jacobian J,(#) € R6*™ given a list of joint screws B; ex-
pressed in the body frame and a list of joint angles.

Js = JacobianSpace(Slist,thetalist)
Computes the space Jacobian J,(f) € R6*" given a list of joint screws S; ex-
pressed in the fixed space frame and a list of joint angles.

5.7 Notes and References

One of the key advantages of the PoE formulation is in the derivation of the
Jacobian; the columns of the Jacobian are simply the (configuration-dependent)
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Figure 5.14: A rolling wheel.

screws for the joint axes. Compact closed-form expressions for the columns of
the Jacobian are also obtained because taking derivatives of matrix exponentials
is particularly straightforward.

There is extensive literature on the singularity analysis of 6R open chains. In
addition to the three cases presented in this chapter, other cases are examined in
[122] and in exercises at the end of this chapter, including the case when some of
the revolute joints are replaced by prismatic joints. Many of the mathematical
techniques and analyses used in open chain singularity analysis can also be used
to determine the singularities of parallel mechanisms, which are the subject of
Chapter 7.

The concept of a robot’s manipulability was first formulated in a quantitative
way by Yoshikawa [195]. There is now a vast literature on the manipulability
analysis of open chains, see, e.g., [75, ].

5.8 Exercises

Exercise 5.1 A wheel of unit radius is rolling to the right at a rate of 1 rad/s
(see Figure 5.14; the dashed circle shows the wheel at ¢t = 0).
(a) Find the spatial twist V() as a function of .
(b) Find the linear velocity of the {b}-frame origin expressed in {s}-frame
coordinates.

Exercise 5.2 The 3R planar open chain of Figure 5.15(a) is shown in its zero
position.
(a) Suppose that the tip must apply a force of 5 N in the %X,-direction of the {s}
frame, with zero component in the y.-direction and zero moment about
the zg axis. What torques should be applied at each joint?
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Figure 5.15: (a) A 3R planar open chain. The length of each link is 1 m. (b) A 4R
planar open chain.

(b) Suppose that now the tip must apply a force of 5 N in the y,-direction.
What torques should be applied at each joint?

Exercise 5.3 Answer the following questions for the 4R planar open chain of
Figure 5.15(b).
(a) For the forward kinematics of the form

T(0) = elS1101 6[52]926[33]936[34]94]\4’

write down M € SE(2) and each S; = (Wi, Ugi, vyi) € R3.

(b) Write down the body Jacobian.

(c) Suppose that the chain is in static equilibrium at the configuration 6, =
0y = 0,05 = 7/2,0, = —7m/2 and that a force f = (10, 10,0) and a moment
m = (0,0,10) are applied to the tip (both f and m are expressed with
respect to the fixed frame). What are the torques experienced at each
joint?

(d) Under the same conditions as (c), suppose that a force f = (—10,10,0)
and a moment m = (0,0,—10), also expressed in the fixed frame, are
applied to the tip. What are the torques experienced at each joint?

(e) Find all kinematic singularities for this chain.
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Figure 5.16: Two fingers grasping a can.

Exercise 5.4 Figure 5.16 shows two fingers grasping a can. Frame {b} is
attached to the center of the can. Frames {b;} and {bs} are attached to the
can at the two contact points as shown. The force fi = (fiz, f1,4, f1,2) is the
force applied by fingertip 1 to the can, expressed in {b;} coordinates. Similarly,
fo = (fo.x, f2,y, f2,2) is the force applied by fingertip 2 to the can, expressed in
{b2} coordinates.

(a) Assume that the system is in static equilibrium, and find the total wrench
Fp applied by the two fingers to the can. Express your result in {b}
coordinates.

(b) Suppose that Feyt is an arbitrary external wrench applied to the can (Fext
is also expressed in frame-{b} coordinates). Find all Fo that cannot be
resisted by the fingertip forces.

Exercise 5.5 Referring to Figure 5.17, a rigid body, shown at the top right,
rotates about the point (L, L) with angular velocity 6=1.
(a) Find the position of point P on the moving body relative to the fixed

reference frame {s} in terms of 6.

(b) Find the velocity of point P in terms of the fixed frame.

(¢c) What is Ty, the configuration of frame {b}, as seen from the fixed frame
{s}?

(d) Find the twist of Ty, in body coordinates.

(e) Find the twist of Ty, in space coordinates.

(f)

(&)

oL

What is the relationship between the twists from (d) and (e)?

What is the relationship between the twist from (d) and P from (b)?

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

Chapter 5. Velocity Kinematics and Statics 205
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Figure 5.17: A rigid body rotating in the plane.

(h) What is the relationship between the twist from (e) and P from (b)?

Exercise 5.6 Figure 5.18 shows a design for a new amusement park ride. A
rider sits at the location indicated by the moving frame {b}. The fixed frame
{s} is attached to the top shaft as shown. The dimensions indicated in the
figure are R = 10 m and L = 20 m, and the two joints each rotate at a constant
angular velocity of 1 rad/s.

(a) Suppose t = 0 at the instant shown in the figure. Find the linear velocity
vp and angular velocity wy, of the rider as functions of time ¢. Express your
answer in frame-{b} coordinates.

(b) Let p be the linear coordinates expressing the position of the rider in {s}.
Find the linear velocity p(t).

Exercise 5.7 The RRP robot in Figure 5.19 is shown in its zero position.

(a) Write down the screw axes in the space frame. Evaluate the forward
kinematics when 6 = (90°,90°,1). Hand-draw or use a computer to show
the arm and the end-effector frame in this configuration. Obtain the space
Jacobian J; for this configuration.

(b) Write down the screw axes in the end-effector body frame. Evaluate the
forward kinematics when 6 = (90°,90°,1) and confirm that you get the
same result as in part (a). Obtain the body Jacobian J;, for this configu-
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Figure 5.18: A new amusement park ride.

Figure 5.19: RRP robot shown in its zero position.

ration.
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Figure 5.20: RPR robot.

Exercise 5.8 The RPR robot of Figure 5.20 is shown in its zero position. The
fixed and end-effector frames are respectively denoted {s} and {b}.
(a) Find the space Jacobian J, () for arbitrary configurations 6 € R3.
(b) Assume the manipulator is in its zero position. Suppose that an external
force f € R? is applied to the {b} frame origin. Find all the directions in
which fcan be resisted by the manipulator with 7 = 0.

Exercise 5.9 Find the kinematic singularities of the 3R wrist given the forward

kinematics
R = e[‘ﬂl]@l 6[0?)2]926[@3]93

where &1 = (0,0,1), &2 = (1/v/2,0,1/4/2), and &3 = (1,0,0).
Exercise 5.10 In this exercise, for an n-link open chain we derive the analytic
Jacobian corresponding to the exponential coordinates on SO(3).

(a) Given an n X n matrix A(t) parametrized by ¢ that is also differentiable

with respect to t, its exponential X (t) = e4®) is then an n x n matrix
that is always nonsingular. Prove the following:

X—lX — / —A(t)sA( ) A(t) st
0

1
Xx! :/ A®s A(t)e= A D3 s,
0

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

208 5.8. Exercises

(Hint: The formula

t
ie(A+EB)t|€:o — / eAsBeA(tfs)dS
de 0

may be useful.)
(b) Use the result above to show that, for r(t) € R* and R(t) = elr®l | the
angular velocity in the body frame, [wy] = RT R, is related to 7 by

wy = A(r)r,
~ 1—cos|r|| ||| — sin [|7||

A = I= = N

(c) Derive the corresponding formula relating the angular velocity in the space
frame, [ws] = RR", to 7.

Exercise 5.11 The spatial 3R open chain of Figure 5.21 is shown in its zero
position. Let p be the coordinates of the origin of {b} expressed in {s}.
(a) In its zero position, suppose we wish to make the end-effector move with
linear velocity p = (10,0,0). What are the required input joint velocities
91, 92, and 937
(b) Suppose that the robot is in the configuration §; = 0,0, = 45°,03 = —45°.
Assuming static equilibrium, suppose that we wish to generate an end-
effector force f, = (10,0,0), where f, is expressed with respect to the
end-effector frame {b}. What are the required input joint torques 71, 72,
and 737
(¢) Under the same conditions as in (b), suppose that we now seek to generate
an end-effector moment m; = (10, 0,0), where my, is expressed with respect
to the end-effector frame {b}. What are the required input joint torques
T, Ta, 737
(d) Suppose that the maximum allowable torques for each joint motor are

Il <10, 72| <20, and Is] < 5.
In the zero position, what is the maximum force that can be applied by

the tip in the end-effector-frame X-direction?

Exercise 5.12 The RRRP chain of Figure 5.22 is shown in its zero position.
Let p be the coordinates of the origin of {b} expressed in {s}.
(a) Determine the body Jacobian J,(0) when 61 =63 = 0,03 =7/2,04 = L.
(b) Findpwhen 91 = 92 :0,93 :71'/2,94 =L and 91 = 92 = 93 = 94 =1.
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Figure 5.21: A spatial 3R open chain.

Figure 5.22: An RRRP spatial open chain.

Exercise 5.13 For the 6R spatial open chain of Figure 5.23,
(a) Determine its space Jacobian J,(0).
(b) Find its kinematic singularities. Explain each singularity in terms of the
alignment of the joint screws and of the directions in which the end-effector
loses one or more degrees of freedom of motion.

Exercise 5.14 Show that a six-dof spatial open chain is at a kinematic sin-
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=

Figure 5.23: Singularities of a 6R open chain.

Prismatic joint axis—|

Revolute joint axis

Figure 5.24: A kinematic singularity involving prismatic and revolute joints.

gularity when any two of its revolute joint axes are parallel, and any prismatic
joint axis is normal to the plane spanned by the two parallel revolute joint axes
(see Figure 5.24).

Exercise 5.15 The spatial PRRRRP open chain of Figure 5.25 is shown in
its zero position.

(a) At the zero position, find the first three columns of the space Jacobian.

(b) Find all configurations for which the first three columns of the space Ja-
cobian become linearly dependent.

(¢) Suppose that the chain is in the configuration 61 = 6y = 03 = 65 =
0 = 0, 0, = 90°. Assuming static equilibrium, suppose that a pure force
fo = (10,0,10), where f, is expressed in terms of the end-effector frame,
is applied to the origin of the end-effector frame. Find the torques 71, 7o,
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Figure 5.25: A spatial PRRRRP open chain.

Figure 5.26: A PRRRRR spatial open chain.

and 73 experienced at the first three joints.

Exercise 5.16 Consider the PRRRRR spatial open chain of Figure 5.26,

shown in its zero position. The distance from the origin of the fixed frame

to the origin of the end-effector frame at the home position is L.

(a) Determine the first three columns of the space Jacobian J.

(b) Determine the last two columns of the body Jacobian J.

¢) For what value of L is the home position a singularity?

(d) In the zero position, what joint forces and torques T must be applied in
order to generate a pure end-effector force of 100 N in the —Z,-direction?
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Figure 5.27: A PRRRRP robot.

Exercise 5.17 The PRRRRP robot of Figure 5.27 is shown in its zero position.
(a) Find the first three columns of the space Jacobian J,(0).
(b) Assuming the robot is in its zero position and § = (1,0,1,—1,2,0), find
the spatial twist V.
(¢) Is the zero position a kinematic singularity? Explain your answer.

Exercise 5.18 The six-dof RRPRPR open chain of Figure 5.28 has a fixed
frame {s} and an end-effector frame {b} attached as shown. At its zero position,
joint axes 1, 2, and 6 lie in the y—Z-plane of the fixed frame, and joint axis 4 is
aligned along the fixed-frame X-axis.

(a) Find the first three columns of the space Jacobian J4(6).

(b) At the zero position, let 6 = (1,0,1,—1,2,0). Find the spatial twist V.

(c) Is the zero position a kinematic singularity? Explain your answer.

Exercise 5.19 The spatial PRRRRP open chain of Figure 5.29 is shown in
its zero position.
(a) Determine the first four columns of the space Jacobian J,(8).
(b) Determine whether the zero position is a kinematic singularity.
(c) Calculate the joint forces and torques required for the tip to apply the
following end-effector wrenches:

(i) Fs=(0,1,-1,1,0,0).
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61

Figure 5.29: A spatial PRRRRP open chain with a skewed joint axis.
(i) Fs =(1,-1,0,1,0,—1).

Exercise 5.20 The spatial RRPRRR open chain of Figure 5.30 is shown in
its zero position.
(a) For the fixed frame {0} and tool (end-effector) frame {t} as shown, express
the forward kinematics in the product of exponentials form

T(0) = el51101 £[82]02 [S3]03 [Sa]04  [S5105 ,[S606
(b) Find the first three columns of the space Jacobian Js(6).

(c) Suppose that the fixed frame {0} is moved to another location {0’} as
shown in the figure. Find the first three columns of the space Jacobian
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(d)

Figure 5.30: A spatial RRPRRR open chain.

Js(0) with respect to this new fixed frame.
Determine whether the zero position is a kinematic singularity and, if so,
provide a geometric description in terms of the joint screw axes.

Exercise 5.21 Figure 5.31 shows an RRPRRR exercise robot used for stroke
patient rehabilitation.

(a)

Assume the manipulator is in its zero position. Suppose that My, € SE(3)
is the displacement from frame {0} to frame {c} and M. € SE(3) is the
displacement from frame {c} to frame {t}. Express the forward kinematics
To: in the form

Tor = elArlf1lA102 1o o[ As]bs o[ Aalba r | o[ As]fs o[Aslbs

Find ./42, ./44, and .A5.

Suppose that 65 = 90° and all the other joint variables are fixed at zero.
Set the joint velocities to (91792,93,94,95796) = (1,0,1,0,0,1), and find
the spatial twist Vs in frame-{0} coordinates.

Is the configuration described in part (b) a kinematic singularity? Explain
your answer.

Suppose that a person now operates the rehabilitation robot. At the
configuration described in part (b), a wrench Fypow is applied to the
elbow link, and a wrench Fi;ip, is applied to the last link. Both Fejpow and
Fiip are expressed in frame {0} coordinates and are given by Felpow =
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(b) Kinematic model of the ARMin III.

Figure 5.31: The ARMin III rehabilitation robot.

(1,0,0,0,0,1) and Fiip = (0,1,0,1,1,0). Find the joint forces and torques
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7 that must be applied for the robot to maintain static equilibrium.

Exercise 5.22 Consider an n-link open chain, with reference frames attached
to each link. Let

Tor = elS1101 ... elSKlok pp k=1,...,n

be the forward kinematics up to link frame {k}. Let J5(6) be the space Jacobian
for Toy; Js(0) has columns Jg; as shown below:

Js0)=1[ Ja0) - Ju(0) ].

Let [Vi] = Tox T, be the twist of link frame {k} in fixed frame {0} coordinates.
(a) Derive explicit expressions for Vs and Vs.
(b) On the basis of your results from (a), derive a recursive formula for Vj4q

in terms of Vi, Je1,...,Js k41, and 6.

Exercise 5.23 Write a program that allows the user to enter the link lengths
Ly and Ly of a 2R planar robot (Figure 5.32) and a list of robot configurations
(each defined by the joint angles (61,62)) and plots the manipulability ellipse
at each of those configurations. The program should plot the arm (as two line
segments) at each configuration and the manipulability ellipse centered at the
endpoint of the arm. Choose the same scaling for all the ellipses so that they
can be easily visualized (e.g., the ellipse should usually be shorter than the arm
but not so small that you cannot easily see it). The program should also print
the three manipulability measures p1, po, and ps for each configuration.

(a) Choose L1 = Ly = 1 and plot the arm and its manipulability ellipse at the
four configurations (—10°, 20°), (60°,60°), (135°,90°), and (190°,160°). At
which of these configurations does the manipulability ellipse appear most
isotropic? Does this agree with the manipulability measures calculated by
the program?

(b) Does the ratio of the length of the major axis of the manipulability ellipse
and the length of the minor axis depend on #;7 On 6,7 Explain your
answers.

(¢) Choose Ly = Ly = 1. Hand-draw the following: the arm at (—45°,90°);
the endpoint linear velocity vector arising from 6, =1 rad/s and 0y = 0;
the endpoint linear velocity vector arising from 6, =0and 6, =1 rad/s;
and the vector sum of these two vectors to get the endpoint linear velocity
when 6; = 1 rad/s and 6, = 1 rad/s.

Exercise 5.24 Modify the program in the previous exercise to plot the force
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Figure 5.32: Left: The 2R robot arm. Right: The arm at four different configura-
tions.

ellipse. Demonstrate it at the same four configurations as in the first part of
the previous exercise.

Exercise 5.25 The kinematics of the 6R UR5 robot are given in Section 4.1.2.

(a) Give the numerical space Jacobian Js when all joint angles are 7/2. Sep-

arate the Jacobian matrix into an angular velocity portion J,, (the joint

rates act on the angular velocity) and a linear velocity portion .J, (the
joint rates act on the linear velocity).

(b) For this configuration, calculate the directions and lengths of the prin-
cipal semi-axes of the three-dimensional angular-velocity manipulability
ellipsoid (based on J,) and the directions and lengths of the principal
semi-axes of the three-dimensional linear-velocity manipulability ellipsoid
(based on J,,).

(¢) For this configuration, calculate the directions and lengths of the principal
semi-axes of the three-dimensional moment (torque) force ellipsoid (based
on J,) and the directions and lengths of the principal semi-axes of the
three-dimensional linear force ellipsoid (based on J,).

Exercise 5.26 The kinematics of the TR WAM robot are given in Section 4.1.3.

(a) Give the numerical body Jacobian J, when all joint angles are 7/2. Sep-

arate the Jacobian matrix into an angular-velocity portion J, (the joint

rates act on the angular velocity) and a linear-velocity portion J, (the
joint rates act on the linear velocity).

(b) For this configuration, calculate the directions and lengths of the prin-
cipal semi-axes of the three-dimensional angular-velocity manipulability
ellipsoid (based on J,) and the directions and lengths of the principal
semi-axes of the three-dimensional linear-velocity manipulability ellipsoid
(based on Jy,).

(c) For this configuration, calculate the directions and lengths of the principal
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semi-axes of the three-dimensional moment (torque) force ellipsoid (based
on J,) and the directions and lengths of the principal semi-axes of the
three-dimensional linear force ellipsoid (based on J,).

Exercise 5.27 Examine the software functions for this chapter in your favorite
programming language. Verify that they work in the way that you expect. Can
you make them more computationally efficient?
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Chapter 6

Inverse Kinematics

For a general n degree-of-freedom open chain with forward kinematics T'(0),
0 € R™, the inverse kinematics problem can be stated as follows: given a ho-
mogeneous transform X € SE(3), find solutions € that satisfy T'(0) = X. To
highlight the main features of the inverse kinematics problem, let us examine
the two-link planar open chain of Figure 6.1(a) as a motivational example. Con-
sidering only the position of the end-effector and ignoring its orientation, the
forward kinematics can be expressed as

[ x ] B { Ly cosfy + Lo cos(6y + 62) (6.1)

y - L1 sin 01 + LQ sin(01 + 02)

Assuming L, > Lo, the set of reachable points, or the workspace, is an annulus
of inner radius L1 — Lo and outer radius Ly + L. Given some end-effector
position (z,y), it is not hard to see that there will be either zero, one, or
two solutions depending on whether (z,y) lies in the exterior, boundary, or
interior of this annulus, respectively. When there are two solutions, the angle
at the second joint (the “elbow” joint) may be positive or negative. These two
solutions are sometimes called “lefty” and “righty” solutions, or “elbow-up” and
“elbow-down” solutions.

Finding an explicit solution (#1,65) for a given (x,y) is also not difficult.
For this purpose, we will find it useful to introduce the two-argument arctan-
gent function atan2(y,z), which returns the angle from the origin to a point
(x,y) in the plane. It is similar to the inverse tangent tan=!(y/z), but whereas
tan~!(y/x) is equal to tan~!(—y/ — z), and therefore tan—! only returns angles
in the range (—7 /2, 7/2), the atan2 function returns angles in the range (—, 7.
For this reason, atan2 is sometimes called the four-quadrant arctangent.
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(a) A workspace, and lefty and righty (b) Geometric solution.
configurations.

Figure 6.1: Inverse kinematics of a 2R planar open chain.

We also recall the law of cosines,
A =a?+b* —2abcosC,

where a, b, and ¢ are the lengths of the three sides of a triangle and C is the
interior angle of the triangle opposite the side of length c.

Referring to Figure 6.1(b), angle 3, restricted to lie in the interval [0, 7], can
be determined from the law of cosines,

L? + L2 —2L1Lycos B = a2 + 32,

from which it follows that

B =cos™! Litli—a® =y
2L, Lo

Also from the law of cosines,
(2?4 + L7 L3
o = CoS .
2L1+/ 22 + 32

The angle 7 is determined using the two-argument arctangent function, v =
atan2(y, ). With these angles, the righty solution to the inverse kinematics is

91:7_()[’ 02:77_6

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org


http://modernrobotics.org

Chapter 6. Inverse Kinematics 221

and the lefty solution is
01:’Y+a, 02:5771

If 2 + 9?2 lies outside the range [L1 — La, L1 + Ls] then no solution exists.

This simple motivational example illustrates that, for open chains, the in-
verse kinematics problem may have multiple solutions; this situation is in con-
trast with the forward kinematics, where a unique end-effector displacement T’
exists for given joint values 6. In fact, three-link planar open chains have an in-
finite number of solutions for points (z,y) lying in the interior of the workspace;
in this case the chain possesses an extra degree of freedom and is said to be
kinematically redundant.

In this chapter we first consider the inverse kinematics of spatial open chains
with six degrees of freedom. At most a finite number of solutions exists in this
case, and we consider two popular structures — the PUMA and Stanford robot
arms — for which analytic inverse kinematic solutions can be easily obtained. For
more general open chains, we adapt the Newton—Raphson method to the inverse
kinematics problem. The result is an iterative numerical algorithm which, pro-
vided that an initial guess of the joint variables is sufficiently close to a true
solution, converges quickly to that solution.

6.1 Analytic Inverse Kinematics

We begin by writing the forward kinematics of a spatial six-dof open chain in
the following product of exponentials form:

T(@) = lS1101 [52]02 [S5]03 [S4]04 [S5]05 o [Ss106 1

Given some end-effector frame X € SE(3), the inverse kinematics problem is
to find solutions 6 € R satisfying T'(§) = X. In the following subsections we
derive analytic inverse kinematic solutions for the PUMA and Stanford arms.

6.1.1 6R PUMA-Type Arm

We first consider a 6R arm of the PUMA type. Referring to Figure 6.2, when
the arm is placed in its zero position: (i) the two shoulder joint axes intersect
orthogonally at a common point, with joint axis 1 aligned in the Zg-direction and
joint axis 2 aligned in the —y,-direction; (ii) joint axis 3 (the elbow joint) lies in
the Xop—¥,-plane and is aligned parallel with joint axis 2; (iii) joint axes 4, 5, and
6 (the wrist joints) intersect orthogonally at a common point (the wrist center)
to form an orthogonal wrist and, for the purposes of this example, we assume
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4

(a) Elbow arm (b) Kinematic diagram.
with offset.

Figure 6.3: A 6R PUMA-type arm with a shoulder offset.

that these joint axes are aligned in the Zy-, y,-, and X¢-directions, respectively.
The lengths of links 2 and 3 are as and ag, respectively. The arm may also have
an offset at the shoulder (see Figure 6.3). The inverse kinematics problem for
PUMA-type arms can be decoupled into inverse-position and inverse-orientation
subproblems, as we now show.

We first consider the simple case of a zero-offset PUMA-type arm. Referring
to Figure 6.2 and expressing all vectors in terms of fixed-frame coordinates,
denote the components of the wr