*Preferred Device # Plastic Medium-Power Complementary Silicon Transistors ... designed for general-purpose amplifier and low-speed switching applications. • High DC Current Gain - $h_{FE} = 2500 \text{ (Typ)} @ I_C = 4.0 \text{ Adc}$ • Collector-Emitter Sustaining Voltage - @ 100 mAdc - $V_{CEO(sus)} = 60 \text{ Vdc (Min)} - 2N6040, 2N6043$ = 100 Vdc (Min) - 2N6042, 2N6045 • Low Collector-Emitter Saturation Voltage - $V_{CE(sat)} = 2.0 \text{ Vdc (Max)}$ @ $I_C = 4.0 \text{ Adc} - 2N6043,44$ = 2.0 Vdc (Max) @ $I_C = 3.0 \text{ Adc} - 2N6042$, 2N6045 - Monolithic Construction with Built-In Base-Emitter Shunt Resistors - EPOXY MEETS UL 94, V-0 @ 0.125 in - ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V #### **MAXIMUM RATINGS** (Note 1) | Rating | Symbol | 2N6040
2N6043 | 2N6042
2N6045 | Unit | |---|-----------------------------------|------------------|------------------|-----------| | Collector–Emitter Voltage | V_{CEO} | 60 100 | | Vdc | | Collector-Base Voltage | V _{CB} | 60 | 100 | Vdc | | Emitter-Base Voltage | V _{EB} | 5.0 | | Vdc | | Collector Current – Continuous Peak | I _C | 8.0
16 | | Adc | | Base Current | Ι _Β | 120 | | mAdc | | Total Power Dissipation @ T _C = 25°C Derate above 25°C | P _D | 75
0.60 | | W
W/°C | | Operating and Storage Junction,
Temperature Range | T _J , T _{stg} | -65 to +150 | | °C | ## THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-------------------|------|------| | Thermal Resistance, Junction to Case | θЈС | 1.67 | °C/W | | Thermal Resistance, Junction to Ambient | $\theta_{\sf JA}$ | 57 | °C/W | 1. Indicates JEDEC Registered Data. http://onsemi.com # DARLINGTON, 8 A COMPLEMENTARY SILICON POWER TRANSISTORS 60 V – 100 V, 75 W COLLECTOR EMITTER COLLECTOR # MARKING DIAGRAM TO-220AB CASE 221A-09 Style 1 xxxx = Specific Device Code: 6040, 6042, 6043, 6045 A = Assembly Location Y = Year WW = Work Week ## **ORDERING INFORMATION** | Device | Package | Shipping | |--------|----------|-----------------| | 2N6040 | TO-220AB | 50 Units / Rail | | 2N6042 | TO-220AB | 50 Units / Rail | | 2N6043 | TO-220AB | 50 Units / Rail | | 2N6045 | TO-220AB | 50 Units / Rail | *Preferred devices are recommended choices for future use and best overall value. Figure 1. Power Derating # *ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |--|--|-----------------------|---------------------|--------------------------------------|------| | OFF CHARACTERISTICS | | | | | | | Collector–Emitter Sustaining Voltage (I _C = 100 mAdc, I _B = 0) | 2N6040, 2N6043
2N6042, 2N6045 | V _{CEO(sus)} | 60
100 | _
_ | Vdc | | Collector Cutoff Current
($V_{CE} = 60 \text{ Vdc}, I_B = 0$)
($V_{CE} = 100 \text{ Vdc}, I_B = 0$) | 2N6040, 2N6043
2N6042, 2N6045 | ICEO | _
_
_ | 20
20 | μА | | | 2N6040, 2N6043
2N6042, 2N6045
2N6040, 2N6043
2N6041, 2N6044
2N6042, 2N6045 | I _{CEX} | -
-
-
- | 20
20
200
200
200
200 | μА | | Collector Cutoff Current
(V _{CB} = 60 Vdc, I _E = 0) | 2N6040, 2N6043 | Ісво | - | 20 | μΑ | | $(V_{CB} = 100 \text{ Vdc}, I_{E} = 0)$ | 2N6042, 2N6045 | | _ | 20 | | | Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}$, $I_{C} = 0$) | | I _{EBO} | - | 2.0 | mAdc | | ON CHARACTERISTICS | | | | | | | DC Current Gain $(I_C = 4.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ $(I_C = 3.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ $(I_C = 8.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ | 2N6040, 2N6043,
2N6042, 2N6045
All Types | h _{FE} | 1000
1000
100 | 20.000
20,000
– | _ | | Collector–Emitter Saturation Voltage ($I_C = 4.0 \text{ Adc}$, $I_B = 16 \text{ mAdc}$) ($I_C = 3.0 \text{ Adc}$, $I_B = 12 \text{ mAdc}$) ($I_C = 8.0 \text{ Adc}$, $I_B = 80 \text{ Adc}$) | 2N6040, 2N6043,
2N6042, 2N6045
All Types | V _{CE(sat)} | -
-
- | 2.0
2.0
4.0 | Vdc | | Base-Emitter Saturation Voltage (I _C = 8.0 Adc, I _B = 80 mA | dc) | V _{BE(sat)} | - | 4.5 | Vdc | | Base–Emitter On Voltage (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc) | | V _{BE(on)} | - | 2.8 | Vdc | | DYNAMIC CHARACTERISTICS | | | • | • | • | | Small Signal Current Gain ($I_C = 3.0$ Adc, $V_{CE} = 4.0$ Vdc, $f | = 1.0 MHz) | h _{fe} | 4.0 | _ | | | Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$ | 2N6040/2N6042
2N6043/2N6045 | C _{ob} | _
_ | 300
200 | pF | | Small–Signal Current Gain (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc, f | = 1.0 kHz) | h _{fe} | 300 | - | _ | ^{*}Indicates JEDEC Registered Data. Figure 2. Switching Times Equivalent Circuit Figure 3. Switching Times Figure 4. Thermal Response Figure 5. Active-Region Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on $T_{J(pk)} = 150$ °C; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)}$ < 150°C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 6. Small-Signal Current Gain Figure 7. Capacitance Figure 8. DC Current Gain Figure 9. Collector Saturation Region Figure 10. "On" Voltages #### PACKAGE DIMENSIONS # **TO-220AB CASE 221A-09 ISSUE AA** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN MAX | | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | С | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F | 0.142 | 0.147 | 3.61 | 3.73 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | J | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | T | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | ON Semiconductor and War registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** # Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.