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Linear estimation has found many applications in the. inference of spatial functions in surface and
subsurface hydrology. The effect of parameter uncertainty is examined in a Bayesian framework with
emphasis on the derivation of the Bayesian distribution (and its first two moments) of unknown quan-
tities piven some measurements. This distribution accounts not only for natural variability but also for
parameter uncertainty. For known covariance parameters the Bayesian distribution is Gaussian (for
Gaussian processes) with the mean being a given linear function of the data. This linear estimator is
equivalent to the conventional Gaussian conditional mean estimator for a prioti known drift coefficients
and is the same with kriging for diffuse prior distribution of the drift coefficients; however, the developed
procedure is more general. When both drift and covariance function parameters are uncertain, the
Bayesian distribution is generally not Gaussian, and the Bayesian conditional mean is a nonlinear
estimator. The case of diffuse priors is examined in some detail; it is shown that the posterior distribution
of the covariance function parameters is given by the restricted likelthood function, ie., the likelihood
function of generalized increments. The results provide insight into the applicability of maximum likeli-
hood versus restricted maximum likelihood parameter estimation, and conventional linear versus kriging

estimation. A more general procedure which includes these methods as special cases is presented.

INTRODUCTION

Hydrologic quantities such as rainfall, transmissivity, piezo-
metric head, and solute concentration vary in space in ways
too complex to be represented through simple deterministic
functions. In many cases the most appropriate way to repre-
sent their spatial variability is in statistical terms, through
mean values, variances, correlations, or probabilities of excee-
dence. 1n this case the variable of interest is represented as a
realization of a random function {(a spatial stochastic process).
This representation is very general, does not compromise the
physical basis of hydrologic models, and allows utitization of
any available piece of information by conditioning on prior
information or measurements.

The theory of spatial stochastic processes has found many
applications in the solution of problems of inference, such as
estimation of point values (interpolation) and of areal averages
(such as block-averaged transmissivities or mean areal precipi-
tation) from a few sampled values [e.g., Delhomme, 1979; Chua
and Bras, 1982] and the solution of the inverse problem in
groundwater modeling [ Hoeksema and Kitanidis, 1985b]. The
method which is almost universally used is to assume that the
gstimator is a linear function of the measurement and to seek
the weights which minimize the estimation variance. Such
linear minimum variance estimators assume known values of
some parameters but arc computationally very cfficient and
yicld not only optimal weights but also the variance of esti-
mation error. This variance depends only on the covariance
function of the random function and the location of the sam-
ples, making linear estimation a useful tool in network analy-
sis (see the special section on the Chapman Conference on
Design of Hydrologic Data Networks, in Water Resources
Research, volume 15, pp. 1673-1871, 1979). For example, one
may design the network of observations which minimizes the
estimation variance of an areal mean or point value.

Linear estimation assumes that the mean and the covari-
ance (or only the covariance function, if kriging is used} are
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known with certainty. In reality both the functional form and
the parameters are often determined from the same sample
used for interpolation or averaging. Estimation of parameters
from a limited-size sample involves error which is seldom
taken into account or even acknowledged. This is usually jus-
tified on the basis of the well-established property that given
enough data the minimum variance estimates are relatively
insensitive to errors in the parameters or the model. Fur-
thermore, in mining exploration, where these methods have
been successfully applied, many measurements are available
from which variograms may be inferred. In hydrology, esti-
mation must often be based on rather small samples. Hughes
and Lettenmeier [1981] argued that the optimality of linear
estimators is predicated on knowledge of some properties of
the random function and, consequently, is questionable when
the parameters or the model are partially unknown. These
authors then proceeded to evatuate through Moente Carlo sim-
ulations the effect of parameter estimation error on kriging
estimators. Kitanidis and Vomvoris [1983] and Hoeksema and
Kitanidis {1984, 19854, b] used 2 maximum likelihood param-
eter estimation procedure which also yields some measures of
the reliability of parametar estimates. Sensitivity analysis may
then be used to evaluate the effects of parameter error on
linear estimation.

The problem of parameter estimation is certainly not limit-
ed to applications of linear estimation theory. For example, in
hydrogeology the properties of the random function repre-
senting log permeability are used in the flow and mass trans-
port equations to derive the properties of the functions repre-
senting piezometric head or solute concentration. (For exam-
ple, see Smith and Freeze [1979], Gelhar and Axness [1983],
and Pagan [1984].) Ultimately, these parameters must be de-
termined from data.

This paper examines the problem of parameter uncertainty
and its effect on the estimation of spatial functions in a Bayes-
ian framework. It may be useful to clarify that the term
“Bayesian” here means that the parameters themselves are
viewed as random variables and Bayes’ theorem is used to
revise their probabilities when new information becomes avail-
able. Prior information, and in particular subjective opinions,
may or may not be available. Bayesian analysis provides a
general framework in which parameter uncertainty is recog-
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nized and its effect on estimation or decision can be evaluated.
There have been several applications of Bayesian analysis in
hydrologic time series. For example, Valdés et al. [1977]
examined the normal multivariate case in the Bayesian gener-
ation of synthetic streamflows. However, the author is un-
aware of any previous similar analysis in the framework of
interpolation, averaging, or differencing of spatial processes.
Even in the gencral statistical literature, applications of Bayes-
jan techniques to multivariate problems appear only scarcely.
Most published results are related to normal regression [e.g.,
Raiffa and Schiaifer, 1961; Geisser, 1965; Halpern, 1973].

Among the contributions of this paper is that it provides
much insight into the applicability of suboptimal (for imper-
fectly known parameters) estimators, such as conventional
linear minimum variance cstimation and kriging. The often
misunderstood procedures of kriging and restricted maximum
likelihood parameter estimation [Kiranidis and Lane, 1985]
are given, apparently for the first time, a Bayesian interpreta-
tion. The methodology is applicable to processes with con-
stant or spatially variable mean ({drift), to stationary or
stationary-increment processes, and to cases of a single vari-
able or of muitiple related variables (e.g., piezometric head and
log transmissivity), To facilitate the analysis and presentation,
a concise matrix-vector notation is introduced in section 2,
where the general mode! is defined. Also, linear estimation is
reviewed, and the popular kriging equations are given in a
concise form. Section 3 reviews the essentials of Bayesian
analysis and establishes the notation which is used in subse-
quent sections. Section 4 derives the posterior distribution of
drift coeflicients and the Bayesian {predictive) distributions in
the case of known covariance function parameters. Section 5
extends the results of section 4 in the case of covariance func-
tion being proportional to a partially unknown patameter.
Section 6 presents the general case of both drift and covari-
ance function parameters partially unknown, with emphasis
on the particular case of negligible prior information about
drift coefficients. Chapter 7 presents an extensive discussion of
the results of this analysis and its relevance to applications.

2. GeNErAL MODEL AND LINEAR ESTIMATORS

The common assumption is that the random function is
given by the general linear model:

P
Wx) =}, [0 + elx) ' (n

i=1
where x is the vector of spatial coordinates of the point where
y is sampled; fi;, i = 1, - -+, p are {generally unknown) parame-
ters; fix), i=1, -+, p are known functions of the spatial
coordinates; and g(x) is a zero-mean spatial random function.
The first term on the right-hand side represents a drift (or
trend or “deterministic part”), and the second term represents
a zcro-mean random field (“stochastic part”). Random
measurement error, if it exists, may be represented through a
term which may be absorbed in e The stochastic part has
covariance function R(u, v}, where 0 are parameters, defined

through

Ele(u)e(v)] = R(w, v|8) (2

The form of the drilt and of the covariance function will be
assumed known except for the numerical values of some pa-
ramelters. In principle, uncertainty in the form of the drift and
the covariance function may be neglected if a general enough
model is assumed. It will be useful 1o distinguish between the
drilt coefficients § and the covariance function parameters 0.

AL various stages of the analysis they may be assumed per-
fectly unknown, partially known or deterministic.

From this general representation one may obtain as special
cases most of the useful and commonly assumed models, For
example, for p = 1, fi{x) = 1, and R{u, v} = r{lu — v|), equation
(1} represents a stationary isotropic field with mean equal o
B,. Polynomials or periodic functions may be represented
through the drift. For the time being it will be assumed that R
is an ordinary covariance function {positive definite function);
however, extension to generalized covariance Function (con-
ditionally positive definite functions) will be shown to be
straightforward.

Assume that there are n measurcments arranged, for the
gake of notational convenience, in an n x 1 y vector. These
may be measurements at points, weighed averages over given
areas, or gradients of the function. In all these cases, {1) yields
the following general relation:

y=4Ap+e 3

where X is a known n x p matrix of the known functions of
the spatial coordinates; B is the p x 1 vector of drift coef-
ficients; and € is a random vector with zero mean and covari-
ance matrix Q,(0) which is a2 known [unction ol parameter
vector 0. Thus it has been assumed that the deterministic ef-
facts are linear in the unknown parameters and the measure-
ments are linearly related to the spatial function (or functions).

In this work, attention will be limited to Gaussian pro-
cesses. In view of the complexity of Bayesian analysis, Gaus-
sian processes appear the reasonable point to start. In many
cases the normality assumption is reasonable, probably after a
transformation (e.g., the logarithmic transformation of trans-
missivity). Furthermore, many of the results developed for the
Gaussian case may be given some wide sense interpretation,
i.e., in terms of the first lew moments.

The prediction problem may be defined as finding the prob-
ability density function of y,, a vector of unknown point or
weighted-average values of the function, given observations y.
In the samc way as with the observations, it is assumed that

yo=Xop + & 4

where X is the matrix of deterministic effects for y,; Q,, is the
covariance matrix of y; ,, is the covariance matrix of y,;
and Q. = 0,,7, exponent T denoting transpose, is the cross-
covariance matrix between y, and y. In practice, the most
common procedure is to come up with point estimates, f§
and/or , of the structural parameters which are then assumed
perfectly known. Under this assumption the conditional distri-
bution of y, given y is Gaussian with mean

Eyo/y) = Xof + Q0,@,,” (¥ — XB) (3)
and covariance matrix
V()’o/!i) = QDD - QDyny_ ]Q)'O (6)

Throughout this work it will be assumed that Q. is non-
singular (invertible). The proof of (5) and (6) is available in
textbooks [e.g., Schweppe, 1973, p. 5217. The conditional mean
1s a linear function of the measurements while the conditional
covariance depends not on the observations but only on their
location. Equatiens (5) and (6) are among the most widely
used formulas in applied estimation. They are useful even
when the Gaussian assumption does not hold, because for
known parameters, (5) gives the minimum variancc cstimates
of ¥, which is a linear function of the observations. It mini-
mizes the conditional mean-square-error matrix, given by (6).
{However, in the non-Gaussian case, there may be another
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estimator which is a nonlinear function of the observations
which has an even smaller V(yq/y)) .

Thes¢ equations rely on estimates of the drift coefficients
which are seldom known a priori and are difficult to obtain
for near-nonstationary functions. Matheron [1971] has ad-
vanced a linear estimnation method, known as kriging, which,
among other features, does not involve drift coefficient esti-
mates. In Appendix A the kriging estimator is derived in the
vector case. In vector-matrix notation,

E(yo/y) = [Qoy@yy " + (Xo — 20,2, 7' X)
(X7, Xy 'XTQ, Iy (D
with estimation covariance matrix
V(¥o/¥) = Qoo ~ Qoy@yy ' Qyo + (Xo — 00y, ~' X}
(XTQ,, ' X) HXo — 00,0, )T (B)

These estimators will be given a Bayesian interpretation in
section 4,

3. OVERVIEW OF BAYESIAN ANALYSIS

The Likelihood Funciion

The likelihood function of the parameters f and @ given the
measurements is a multivariate normal with mean Xp and
covariance matrix Q, (@).

p(y| B, 8) = 2m}~"3Q,,| "V
cexp [— 3y — XPQ,, 'y —XPI 9

where two vertical lines denote determinant and the depen-
dence of @, on B is not shown for the sake of notational
converience.

Prior Distribution of the Parameters

Let p'(f, @ describe the prior joint probability density func-
tion of p and €. Thioughout this analysis a prime will denote a
prior distribution while a double prime will denote a posterior
distribution. The reader may refer to Berger [1980] for a good
discussion of methods for assessing priors. In practice, it is
usual to select functional forms which facilitate the analytical
treatment of the problem. The most common and sometimes
most appropriate approach [Raiffa and Schlaifer, 1961] is to
select a prior distribution which is conjugate o the likelihood
function in the sense that the posterior distribution has the
same form as the prior distribution. Under certain conditions,
application of Bayes’ theorem then becomes equivalent to the
algebraic probtem of updating the parameters of the probabil-
ity density function (pdf} of the parameters. Of course, the
main consideration in selecting p'(p. 8) should be that it accu-
rately represents the prior information about the parameters.
If the only source of prior information is another sample such
as the one at hand, the distribution of the parameters will
naturally be conjugate. Furthermore, if little prior information
is available (relatively diffuse prior pdf), the exact shape of
7'(B, ) is not of so much importance as long as it is selected so
that the posterior distribution is dominated by the likelihood
function, At the limit, for completely diffusc or noninformative
priors (uniform over the whole range of possible values) the
analysis is totally unaffected by the assumed shape of the
prior.

Updating of the Distribution of the Parameters

The posterior distribution of the parameters, determined
through application of Bayes’ theorem, is proportional to the
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product of the likelihood times the prior distribution:

p'(B, 8) = cply | B, O (P, 9)

where ¢ is a constant determined so that the posterior is an
appropriate probability density function, i.e.,

-1
c= [I j p(y B, O)p'(B, &) dp dﬂ]
it Je

Mote that we have used the customary and convenient nota-
tion for representing multiple integrals:

J-f(x)dxéj .[ "-ff(xl,xz,"',x,.)dxldxz"-dx..
X XL ufXy *n

(12)

(10)

(1)

Il conjugate priors are used, calculation of the multiple inte-
gral (11} may be avoided in certain cases.

Bayesian or Compound Distribution

The pd{ of y, given y and the parameters B and 8, p(y, | B, 8,
y), is multivariate normal with mean and covariance function
given by (5} and (6), respectively. However, in a Bayesian
sense, § and 8 may themselves be random variables con-
ditional on prior information and the data, jointly distributed
with y,. The marginal distribution of y, given prior infor-
mation and data is called the Bayesian or compound distri-
bution,

Blyoly) = J; J; plyo|$, 6, y)p"(B, 0) dp 40 {13)
where, 1in this work, the tilde denotes Bayesian probability
distribution or expectation. The essence of this distribution is
that it accounts for parameter uncertainty, In the conventional
non-Bayesian approach some point estimates, B and/or 6, of
the parameters are obtained and then treated as perfectly
known; in the Bayesian distribution, uncertainty in the pa-
rameters is recognized and “averaged out.”

It is worthwhile to note that the Bayesian distribution
Plyely) is not necessarily Gaussian, even if p(yy|p, 8, y) is
Gaussian, The Bayesian distribution may be used to obtain
point estimators which minimize a pgiven loss function. Of
particular interest are the conditional mean and the covari-
ance matrix of y, given y (Bayesian distribution). The mean is
given from the double expectation theorem:

Elyoly) = E [E(yqlB. 8, ¥)]
B.o

1

i

'[ J [Xop 00,0, '(y— XB)Ip"(B, 0) dp 46  (14)
B Jo

and the covariance matrix is given by another well-known
result:

Piyoly) = E [VlyolB, 8, y)1 + ¥ [E(vo|B. 0. y)]

B.8 B8

= f j [Qo0 — 20,2y, " Crolp"(B, ) dp a0
§ Jo

+IJ. [Xof + 00,0, 'y ~ XB) — E(yo W]
B JO

) [X0ﬁ+Qﬂyny - 1(}' 7XB)
—Elyo 1 Y1'p"(B, 0) dp d0 {15)

Note that even in the Gaussiun case the Buyesian con-
ditional mean generally is a nonlinear function of the observa-
tions, and the conditional covariance matrix does depend on
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the outcome of the measurements. Because the second term in
(15) is nonnegative, the Bayesian covariance is always larger
than or equal to the average covariance of the conventional
point estimator; the difference is due to accounting for param-
eter uncertainty in the Bayesian estimator.

4. BAYESIAN ANALYSIS FOR KNOWN
COVARIANCE FUNCTION PARAMETERS

The prior distribution of B is assumed Gaussiar (conjugate
of the likelihood, equation (9)) with mean b and inverse of
covariance matrix, to be called precision matrix, P". If sotne
combinations of the drift coefficients are perfectly known, the
covariance matrix is singular. Even in such cases, prior infor-
mation is conveniently summarized through a p x 1 vector b’
and a positive semidefinite matrix P'. The posterior distri-
bution p°(P) is Gaussian with mean vector and precision
matrix which may be calculated easily from {10). (Actually,
form matching would suffice since a conjugale prior has been
selected.) The posterior mean is

b =(F +XTQ”,”X)'l[XTQw"Iy+P'b’] (16)
and the posterior precision matrix is
PP=P+X'0,7'X {17)

Note that on the one extreme, that of diffuse prior (P* = 0), the
estimator is the well-known maximum likelihood (also weight-
ed least squares) estimator

bh’ e (XTny - IX)V 1XTQ” - ly
P'=X7Q,,"'X

(18)
(19

On the other extreme, that of prior information dominating
the evidence contained in the data in the sense that P’ is much
“larger” than X7Q, ~'X,

b =b (200

Pn = Pﬂ (21)

Analytic integration of (13) is possible by making use of the
properties of the Gaussian distribution. An even simpler way
is to note that since p(y,, B|y) is Gaussian so is its marginal,
the Bayesian distribution f(y, ly). The mean and variance of §
can then be calculated using (14) and (15).

Eyoly) = (Xo — Qo,@,, ' XUP" + Xrny*’X}_lP’b’
+[0Q0,0,, " + (X0 — 00,0y, ' X)

. (P’ 4 XTQ”—IX)— leQW—I.]Y (22)
V{YO | P) = (QIJ() - QO)Q}W - leD) + (XO "_ QU}'QY.V_ 1X)
P+ XT0,,TIX)TNX, — 00,0, X (23)

The first term in (23) is the result of the randomness of the
spatial function (often referred to in the hydrologic literature
as “natural” uncertainty}, and the second term is the result of
uncertainty in the drift coefficients.

Note that for a priori known drift coefficients the Bayesian
estimator is the same with the usual linear minimum variance
estimator (or Gaussian conditional mean) given by (5) and (6).
On the other extreme, that of diffuse prior of the drift coef-
ficients (P = 0), the Bayesian estimator is identical to kriging
{equations {7) and (8)). However, the Bayesian estimator {equa-
tions (22) and (23)) is more general and can account for partial
prior information about the parameters. Furthermore, it is
shown in Appendix B that without any reference to probabil-
ity distributions, (22) gives the linear mininum variance esti-
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mator given the observations and the prior mean and variance
of the drift parameters.

5. BAYESIAN ANALYSIS FOR COVARIANCE
FuncTioN KNOwN EXCEPT FOR
A MULTIPLICATIVE CONSTANT

This is an extension to the case of section 4 such that each
covariance matrix may be set equal to a known covariance
matrix divided by an unknown parameter. For example,

) |

Qy.v = 6 S,y QO.‘J =9

1
9 So,; Quo = E Soo

(24)
where the § matrices are known and # is a parameter to be
referred to as the relative precision. Examples include station-
ary random fields with the covariance function being the ex-
ponential with known integral scale or the spherical with
known range; and stationary-increment fields with the poly-
nomial generalized covariance with one term (provided, of
course, that in the last example only generalized increments
are involved). §,, is assumed invertible. The likelihood func-
tion, equation (9}, may be written in terms of sufficient statis-
tics:

g :
ply [B, &) cc 849 exp [— 56— JTH (B — bs)]

0 exp [~ dvagf] (29
where
H=X"'s,'X {26a)
Hb, = X"S, "'y (268)
i, = rank (H) (26¢)
Vo= a - (264)
2, =S, 'y —b XS, "y, (26€)

For a nominformative prior, the postenior distribution of
and @ is proportional to the likelihood. A clarification is
needed at this point. Strictly speaking, the expression of (25) is
a proper probability distribution only if H_ is nonsingular, ic.,
¢, = p. This will be the case in most applications. However,
sometimes the data contain encugh information so that only
up to ufu, < p) linear combinations of the drift coefficients
can be estimated from the data. A case in point is estimation
of the log transmissivity mean using only piezometric head
data. Then the constant term in the mean cannot be estimated
from the data. In such a case the first exponent should be
expressed in terms of these combinations which can be esti-
mated and which have a nonsingular H, matrix. Nevertheless,
it will be convenient to keep the notation of (25)-(26) with the
understanding that they express the pdf of g, hnear combi-
nations of B. Furthermore, only p, combinations of b, are
uniquely defined from (26b).

The conjugate prior distribution is the normal-gamma 2
[see Raiffa and Schlaifer, 1961, chapter 137]:

PP, 0) o 07 exp [— 26— WTH® - b’)J
0 exp (= vgl)  (27)

where o denotes proportional and g is the rank of H’'. This
means that the conditional distribution of § given ¢ is normal
with mean b’ and prior covariance (H'®)”'; and the marginal
of f is gamma 2 with mean 1/g and variance 2/v'g’® The
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completely noninformative case corresponds to the limiting
casc H' =0, ¢ =0,and v = 0.

The posterior distribution p"(f, 8) would have the same
form as the prior, with parameters:

H = H + H, (28a)

H"B" = H'D + Hb, (28h)

u” = rank (H") {28¢e)

Vi Y v — (28d)
‘g’ 4 (b, — WY H b, -~ b

PR B M - } H (b, — b) (280)

For an informative prior, the Bayesian distribution of y,
given observations y may be calculated as follows. The Bayes-
ian distribution of #y, |0, y) is Gaussian with mean and co-
variance function given by (22) and (23). The posterior margin-
al distribution of 8, p"(0), is gamma 2. The Bayesian distri-
bution of y, given only y,

Byoly} = J; pyo16. y)p'(0) d8 29)
is multivariate Student ¢ [see Raiffa and Schiaifer, 1961, p.
256] with mean
Elyo/yy = (Xo — 5,8, ' X)H"} 'HW
+ [ S80S,y V(X — SoSy LXWH") 'XTSJ,J,’ Ny (30)
and covariance matrix

Ptyoly) = (S ~ Soyswﬂsm +(Xo — Soysw_lX)(H")Pl

) (.Xﬂ - SOySyy - IX)T]q”

vi—2 D

Consider, for example, the common case of negligible prior
information. Then the conditional mean of the Bayesian distri-
bution is given by the kriging estimator. The covariance is
given by the covariance of the kriging estimator increased by a
factor of (1 — p)f(y —p — 2), provided that the unknown
quantity {1/6) is substituted by g, its minimum variance unbi-
ased quadratic estimator [Kitanidis, 1985, Equation 29]. Fora
priori unknown # but perfectly known § the multiplicative
factor is nf{n = 2).

Thus we have shown that when the covariance function is
known except for a multiplicative constant, the Bayesian dis-
tribution associzted with predictions is multivariate Student ¢
with mean the same as in the known-covariance case. The
estimation matrix is equal to the one given by the known-
covariance case increased by a factor of v"/(v’ — 2), where v" is
the number of degrees of freedom associated with the calcula-
tion of the variance; v* takes values in accordance with {28).

6. BAYESIAN ANALYSIS USING THE POSTERIOR
MarGINAL PDF oF COVARIANCE PARAMETERS

In the cases examined in sections 4 and 5, analytical solu-
tions could be obtained by using the generally unrestrictive
assumption of conjugate priors and taking advantage of the
fact that the likelihood function could be described through a
fixed number of sufficient statistics. In simple terms, sufficient
statistics are variables which fully summarize the information
contained in the data and whose number does not increase
with the number of observations. When conjugate priors are
used, the problem of deriving the posterior pdf becomes equiv-
alent to an algebraic problem of updating the sufficient statis-
tics. However, the likelihood function of parameters of most

covariance functions used in hydrology, such as the ex-
ponential, spherical, Bessel, and multiparameter polynomial,
does not admit a fixed number of sufficient statistics. Thus the
use of conjugate priors for @ does not necessarily reduce the
computational burden of integrating the equations of section
3. No general method is available for the analytical derivation
of either the posterior distribution of the parameters or the
Bayesian distribution of the predicted quantities. In many
cases, numerical methods must be nsed.

Let p'(B, 9) = p(p{9)p(8) where the prior conditional distri-
bution p'(B|0) is assumed Gaussian with mean b(8) and preci-
sion matrix (inverse of the covariance matrix) P'(8). The poste-
rior distribution is

p'(B. 8) = p“(B10)p"(0) x 10, " **
exp [~ ¥y — XB)'Q,, 'y — X@)(P'?
exp [~ 3(p — bYTP'(B — b))’ (0 (32)

It is obvious that the posterior distribution of B conditional
on 8, p"(B|8), is Gaussian with mean and covariance matrix
given by (16} and (17) except, of course, that they are now
functions of 8. The posterior marginal of 8, consisting of the
remaining terms of (32), is

p'(8) o 10,1 VAPAP + XTQ,, T X) T

cesp {—HyT@Q, Tt - @ X(P'+ XTQ,, ' X)IXTO,, Y
_ 2blTPl(P! + XTny—lX)— lx'Tny*Iy + br‘]"P:b/

—WTP(P 4 XTQ,, T X)) PY (@) (33)

Turning our attention to the prediction problem, note that
the Bayesian of y, can be written as

Flyoly) = J Plyo18, y)p"(0) 40 (34)
L]

whereji(yo | &, y) is Gaussian with mean F(1,10, y) and covari-

ance V(y,|0, y} given by (22) and (23). The Bayesian estimator

may then be written as

Eyoly) = j Elyo |9, y)p'(6) d8 (35)

with covariance matrix
Viyoly) = j [V(y019. y} + [Elyo/y) — Ely,19, y)]
L]

* [E(yo/y) — Elyo |8, YIT}p'(0} d6  (36)

Equations (33), (35), and (36) are easier to use than (10), (14),
and (15) since the uncertainty in p has already been accounted
for. They are useful in the approximate derivation of Bayesian
estimators for some of the most commeon covariance functions.

The analysis of this section provides insight into the prob-
Jlom of suboptimal estimation of spatial functions. Tn most
applications, parameters are first estimated, and then a linear
estimator is uscd. A procedure common in applications of
universal kriging is to assume a covariance function to esti-
mate drift coefficients, then use these estimates to come up
with a covariance function, and keep iterating between esti-
mates of drift coefficients and covariance function parameters
until some convergence criterion is met. Then linear esti-
mation, such as kriging, is used. Another procedure [ Dagan,
1985] is to maximize the likelihood function, equation (9), to
estimate both §§ and 0. Kitanidis and Vomvoris [1983] suggest-
ed that this procedure is appropriate if good prior estimates of
drift coefficients are available; if no prior information is avail-
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able, Kitanidis and Vomvoris [1983], Hoeksema and Kitanidis
[1985a, b}, and Kitanidis and Lane [1985] recommended esti-
mation of covariance parameters through maximization of the
restricted likelihood, ie., the likelihood of data increments
which do not depend on drift coefficients. Tt will be shown that
these results are particular cases of those derived here.

Since the posterior marginal p"(8) summarizes all prior and
data information about 0, it is obvious that it should be the
one from which to obtain point estimates of covariance func-
tion parameters. For example, on¢ may obtain the maximum
a posteriori (MAP) estimates of 9, i.e., the values which maxi-
mize the expression of (33). These values may then be used in
the linear estimator of (22) and (23) for predictions. This is a
practical and rather general suboptimal procedure which can
account for prior information in both drift coefficients and
covariance parameters. To answer the question of how various
suboptimal procedures compare with one another and with
the exact Bayesian procedure, one must resort to extensive
computational experiments. Such a study is beyond the scope
of this paper and will be presented elsewhere.

Note that for a priori known drift coefficients, ie., taking
the limit for P'— [+ oo, the posterior marginal of § tends to

p'®) o 0,712 exp [— 3y — XDV7Q,, 'y — XD)1PO)
: 3N

The marginal likelihood thus has the same form as (9) except
that b’ represents a priori known drift coeflicients, not param-
eters estimated from the sample.

In many applications there is practically no prior infor-
mation about drift coefficients. This important particular case
will now be examined in detail. For P’ — 0, the posterior mar-
ginal of 8 is

p'(0) < 10,1 VX TQ,, T X) M2 exp {~4yTQ,, !
- Q,, ' X(X7Q,, 7 'X)'X7Q,, " y}p@®  (38)

One may readily verify that if an arbitrary drift were intro-
duced in the data, ie., y were replaced by y + Xb where b is
any p x 1 vector representing drift coefficients, the argument
of the exponent would not be affected. Consequently, (e}
depends only on increments of the data which are unaffected
by drift coefficients. Such increments are known in the peosta-
tistical literature as generalized or authorized increments. An
important result of this analysis is that from a strictly Bayes-
ian viewpoint, only generalized increments are relevant in the
calculation of covariance function parameters when no prior
information is available about the drift coeflicients. This prop-
erty is not limited to any particular class of covariance func-
tions or any particular point estimator. However, when only
authorized increments are used, the class of permissible co-
variznce functions may be expanded to include conditionally
positive definite functions. Such covariance [unctions are
called generalized (see, for example, Kitanidis [1983]).

It is of interest to examine the relation between the margin-

al likelihood
LO1y) o 10,17 PUXTQ,, X))
cexp {~4¥71Q, 10, X(XTQ,, T X)TIXTO,, " Ty
{39)

and the likelihood of any complete set of generalized in-
crements. Consider the transformation

_— ‘z_l._ Y ".Pl. ........... y = —11 y=T (40)
= | T Lo, o, TR T Y

where T, is any (n — p) x n matrix of rank (n — p) such that
T, X = 0. Consequently, z, = T,y is an (# — p) vector of gener-
alized increments. Because 7T, has rank (n—p), (X7
Q,, 'X)7'X"Q,,~" has rank p, and T, is orthogonal to T,
with respect to a nonsingular matrix Q,, (te, T,0,,T,T=0), T
has a linearly independent rows and consequently is non-
singular. Its inverse is

T =0, (T, 1,") ' X] (41)

as one may readily verify that this expression satisfies the
relation TT ™' = I. Since T !T = I, another useful relation
follows:

ny_l - ny_lx(XTnywIX)_lXQ}'y_‘ = Tlr('r!.nyTlT}-l'r!

42)
Also note that
7,0, T,7 0
T TT= b S S
ny [ 0 _ (XTQ”, - lx)— l] (43)
Taking determinants of both sides of (43),
TR, = 1T Q,, T TIHXTQ,, X)) 44)

From (42), (43), and (44) the marginal fikelihood may be writ-
ten as

L®|y) oc [T(2m) " 210, T, 2
-exp [— 12, (RQ, 7)Y 2,1 = Tlp(z,18)  (45)

where p(z,|#) is the likelihood of @ given the set of (n — p)
generalized increments. Taking the derivative of |T] with re-
spect to any covariance parameter 6,

aTl . or
a5, =TI e [T )

=|T| Tr {X -a%- xTg,,'x)” 'XTQ”_‘]} =0 (46)

Thus |T] is not a function of the parameters. Consequently, it
has been shown that the likelihood of any complete set of
generalized increments is proportional to the marginal likeli-
hood of the covariance function parameters. This result, which
appears to be original, provides additional theoretical support
to methods which use peneralized increments, such as re-
stricted maximuin likelihood estimation [Hoeksema and Kita-
nidis, 1985a, b; Kitanidis, 1985].

One may select T; as follows:

T, =W - XIXTVX) 'X"V] @n

where V is any nonsingular symmetric matrix and W is any
(n — p) x n matrix of rank n — p. One can verify that T,X =0
and T, is (n — p} x n generally of rank n — p. For example,

V=1, (48)
W=10,,:0 (49)
where I, is the nx»n identity matrix and I,_, is the

(r — p) x (n — p) identity matrix. In this particular selection
the meaning of W is that it eliminates the last p rows of the
projection matrix {I — X(X"X)™'X7]. This simple method of
constructing generalized (drift parameter free) increments has
been used by Kitanidis [1983] and Hoeksema and Kitanidis
[19854, b].

7. Discussion aND CONCLUSIONS

The problem of uncertain parameters and its effect on infer-
ence of spatial functions has been examined in the framework
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of Bavesian analysis. Parameters are treated as random vari-
ables with probability distributions reflecting what is known
about them. The analysis shows how prior information about
the parameters, if available, may be combined in the analysis
with information contained in the sampie. The estimation
problem is seen as that of finding the Bayesian distribution of
quantities of interest, such as point values or block averages of
the function, given some measurements. The Bayesian distri-
bution accounts not only for the randomness of the spatial
function but also for parameter uncertainty.

1L is appropriate at this point to recapitulate the assump-
tions made in this analysis and to discuss briefty how they
may limit the validity of the conclusions. In this paper, atten-
tion has been limited to Gaussian processes. In many practi-
cally encountered cases this is a reasonable assumption, prob-
ably after suitable variable transformations. A case in point is
the logarithm of transmissivity which, according to much evi-
dence, is nearly normally distributed. Most of the results of
the analysis would still be valid to a great extent even if the
normality assumption is not strictly true; as pointed out in the
text, many of them can be derived by using only the first [ew
moments instead of invoking any distributional assumptions.
However, it must be recognized that application of this analy-
sis as well as linear minimum variance estimation theory to
highly non-Gaussian data, cspecially those which contain
“outliers,” cun be inappropriate. Another assumption which
has been made is that the prior distribution of the drift coef-
ficients conditional on the parameters of the covariance func-
tion is Gaussian. In most cases this assumption, which does
not affect the analysis in the case of diffuse priors, should be
acceptable. Usually, ptior information about drift coefficients
does not include details other than mean values, variances,
and correlations. One case in which the normality assumption
would be limiting is when there is significant prior knowledge
about a drift coefflicient which cannot be approximated by a
Gaussian distribution, such as one that is uniform within a
rather short interval. Fortunately, this would not be a case in
which parameter uncertainty would be an important consider-
ation, and approximations would be acceptable,

Finally, it has been assumed that the deterministic effects
(the drift) are linear in the unknown parameters and that both
the measurements and the unknown quantities are linear func-
tions of the spatial function. Both assumptions simplify the
analysis considerably. In many cases there is considerable lati-
tude in selecting the form of the drift coefficients. Also, most of
the measurements of quantities to be predicted are linear func-
tions of the spatial function, such as point values or spatial
averages. Even in cases where the linearity assumption is not
strictly true, such as in the joint analysis of head and log
transmissivity data, using the flow equations, the simulation
studies of Hoeksema and Kitanidis [1985b] indicate that lin-
erization may not introduce significant error in eithcr parame-
ter estimation or prediction. Nevertheless, indiscriminant use
of linearization, no matter how large the variation or how
nonlincar the probiem, is certainly not encouraged.

First, the case of known covariance parameters and par-
tially unknown drift coeflicients was examined. The Bayesian
distribution is Gaussian with mean and covariance matrix of
estimation error which can be computed casily from formulas
developed in this paper. The mean is a linear function of the
observations and the prior mean of the drift coeflicients while
the covariance matrix does not depend on the outcome of the
observations. Independent of distributional assumptions, the
estimator is shown to be the linear minimum mean-squared-
error estimator which uses both prior and sample information.
The Bayesian linear estimator is at least as general as any

other linear estimator now available. For a priori known drift
coefflicients the estimaltor is shown to reduce to conventional
linear minimum variance or (Gaussian conditional mean esti-
mator. However, if no prior information is available about
drift coefficients, the Bayesian estimator is shown to reduce to
the technique widely known as kriging (or cokriging, if more
than one spatial function is involved). It is probably the first
time that kriging is explicitly recognized as a special case of
Bayesian estimation. According to this analysis, if negligible
prior information is available about the drift coeflicients, the
correct procedure to use is kriging. If conventional linear esti-
mation is used instead, the actual estimation error is, on the
average, higher than the estimation error calculated by the
estimation procedure. Kriging, on the other hand, is subop-
timal when prior information about drift coefficients is avail-
able. For example, in the analysis of orographic precipitation
data, some information about the effect of elevation or ex-
posure is often available from the analysis of previous storms
in the same basin or [rom regionalized studies. The Bayesian
estimation procedure developed in this paper combines prior
and sample information in an optimal way and provides mea-
surcs of estimation accuracy which take into account parame-
ter uncertainty,

The case of both drift and covariance function parameters
boing (at least partially} unknown also makes usc of the ana-
Iytical results of the previous casc. The case of covariance
function known except for a multiplicative constant, 1/8, is
first examined, and analytical results are obtained. As one
might have expected, the Bayesian distribution of predictions
giveh prior and sample information is multivariate Student ¢
with the same mean as the Bayesian linear estimator. The
covariance matrix is proportional to that of the Bayesian
linear estimator. The unknown covariance parameter is esti-
mated as -2 weighted sum of prior estimates and a quadratic
function of the data and prior estimates of the drift coef-
ficients. {(For no prior information, the coefficient of pro-
portionality is given by a minimum variance unbiased gua-
dratic estimator) Furthermore, the covariance matrix is
shown to be magnified by a factor v'/v" — 2, where v* is the
number of degrees of freedom available for the estimation of
the covariance parameter. This magnification is the result of
uncertainty in the covariance parameter. In the worst case,
that of no prior information about either drift coefficients or
the covariance parameter, v* is equal to the number of
measurements minus the number of unknown drift coefficients
which affect the data. It increases as the accuracy of prior
estimates of the parameters improves.

For the most commonly used covariance function models,
such as the exponential with unknown variance and integral
scale, analytical results cannot be obtained. The method of
analysis suggested in this paper consists of analytical deri-
vation of the Bayesian mean and variance of predictions and
of the posterior of the drift coeflicients, if appropriate, given
the covariance parameters 8, and then numerical integration
using the posterior marginal probability function of 8. The
posterior marginal of 0, which summarizes all prior and
sample information about the covariance parameters, is pro-
portional to a marginatl likclihood times the prior marginal of
. The marginal likelihood does not involve the unknown drift
coefficients but only their appropriately weighted prior esti-
mates and the data.

For a priori known drift coefficients the marginal likelihood
has the same form as the ordinary likelihood function, except
that the drift coefficients are not parameters to be estimated
from data but known constants. However, at the other ex-
treme, that of negligible prior information about the drift coel-
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ficients, the marginal likelihood is preportional to the likeli-
hood of any complete set of generalized increments (ie., the
maximum number of linearly independent increments which
are not affected by unknown drift coefficients). It has thus
been shown that for a priori unknown drift coefficients, only
generalized increments of the data are relevant in the calcula-
tion of covariance parameters in the prediction problem.

APPENDIX A DERIVATION OF KRIGING
EqQuATION IN MATRIX-VECTOR FORM

The problem is to determine an estimator which is a linear
function of the data, ie.,

Jo=Ay (A1)
where A is the m x n matriz of weights. The estimation error
is

e=¥—Yo=Ay — Yo (A2)

The matrix of the weights is selected according to the follow-

ing specifications:
{. The estimator is unbiased in the sense that
Ele)= AXB— X,B=0 (AJ)

The only way this equation can hold for any value of f is that

AX - Xy,=0 (A4)
2. The matrix of the mean squared error
E(ee) = AQ, A" — AQ,q — Qo,AT + Qoo (AS)
is minimized in some well-defined sense.
The problem of determining A may then be defined as
min Tr [AQ, AT ~ AQ,o — QoyAT + Qoo (A8)
subject to
AX —X,=0 (AT)

The Lagrangian corresponding to the constrained problem is
Tr [AQ,AT — AQ,5 — Qo, AT -+ Qoo] — Tr [(AX — Xo)M]
(AB)

where M is a p x m matrix of Lagrange multipliers. Taking
derivatives [see Schweppe, 1973, p. 5097 with respect to A and
M vyields the folfowing matrix equations:

20, AT - 20,0 — XM =0 (A9)

AX - X,=0 (A10)
The solution to this linear system is
M=2X7Q,, X)X,  — AX7Q,,7 ' X)'X"Q,, Qe
(All)
and
A =000, +$M'X7Q,,"!
= 00,Q,, ! + (X0 — 00, @, XNXTQ, T IX)” 'X7Q,, !

(A12)
and the corresponding covariance matrix
Eee") = Qoo — Q0,0 "' Qo + EMT(XTQ,, T XIM
= Qoo — Qo 0yy "' Cyo + (Xo ~ 00,2y, "' X)
HXTQ,, T X)X, ~ Q02,7 X)T (A13)

Arpenpix B: DistrIBUTION-FREE DERIVATION
OF LINEAR BAYESIAN ESTIMATOR

An estimator ¥, is sought so that it is linear in the prior
estimates of the drift parameters and the measurements

§o = AW + By (81)

where A is m x p and B is m x n. The prior unbiased estimate
of the parameters is b’ with estimation matrix ¥, Matrices 4
and B are to be determined according to the following specifi-
cations:

1. The estimation error

€=¥o— Yo (B2)
must have average of zero
E(€)= AP+ BXp— X p=0 (B3)

which yields the vector equation (corresponds to m x p scalar
equations):
A+BX —Xy=0 (B4)
2. The estimation error must have minimum variance
E(ee”) = AV,A" + BQ,,B" — BO,; — Qo,B" + Qoo (B5)

The values of A and B may thus be calculated by minimizing

the trace of the covariance matrix subject (o the unbiasedness

constraint. The Lagrangian of this constrained optimization

problem is

L =Tr (AV,A" + BQ,,B" — BQ,, — 0o,B" + Qo)
—Tr [M(4 + BX — X, (B6)

where M is a p x m matrix of Lagrange multiples. Taking
derivatives with respect to A4, B, and M yields the system

AT —M =0 (B7)
20,,B"—20,,— XM =10 {B8)
A+BX —X,=0 (B9)
The solution is

A= (Xy — Q0)Q, ' X)V,”' + X7Q,,7'X)7'Y," (BIO)

B =04,0,,”" +(Xo—Q0,0,,” ' X)
(BT HXTe,, X)X T, (B11)
M=2V""+X70, X)X, " - X7Q,,7' Q) (BI2)

The covariance matrix is
E(ee'r) = Q()O - Qﬂyny_ leO + %er(%_j + XTny_!X)M
(B13)
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