
ME 449 Assignment 3
Puppet on a String
Due 1:30 PM, Friday November 15, 2024

You’ve probably seen animation and physics engine tools that allow you to interactively grab a link
of a virtual mechanism and apply forces to it, to make it move like a marionette on a string. In
this assignment, you will create the underlying software that allows you to do this for a 6R robot.

springPos

Left: A puppet on a string. Right: A robot on a spring.

Create the new function Puppet. It takes the following inputs:

• thetalist: an n-vector of initial joint angles (units: rad)

• dthetalist: an n-vector of initial joint rates (units: rad/s)

• g: the gravity 3-vector in the {s} frame (units: m/s2)

• Mlist: the configurations of the link frames relative to each other at the home configuration.
(There are eight frames total: {0} or {s} at the base of the robot, {1} . . .{6} at the centers
of mass of the links, and {7} or {b} at the end-effector.)

• Slist: the screw axes Si in the space frame when the robot is at its home configuration

• Glist: the spatial inertia matrices Gi of the links (units: kg and kg m2)

• t: the total simulation time (units: s)

• dt: the simulation timestep (units: s)

• damping: a scalar indicating the viscous damping at each joint (units: Nms/rad)

• stiffness: a scalar indicating the stiffness of the springy string (units: N/m)

• restLength: a scalar indicating the length of the spring when it is at rest (units: m)

As output, Puppet produces

• thetamat: an N × n matrix where row i is the set of joint values after simulation step i− 1



• dthetmat: an N × n matrix where row i is the set of joint rates after simulation step i− 1

If your total simulation time t is 5 s and dt is 0.01 s, N will equal 500 or 501.

You control the motion of the robot by pulling on a springy string. One end of the spring is
at the position springPos, (x, y, z) in the {s} frame, and the other end of the spring is attached to
the origin of the {b} frame at the end-effector. If the distance between springPos and {b} is more
than restLength, the spring pulls the end-effector toward springPos with a magnitude (stiffness ×
(distance − restLength)). If the distance is less than restLength, the spring pushes the end-effector
away from springPos.

To control springPos, at each simulation iteration Puppet calls a second function you will write,
referencePos. referencePos takes as input the current time and produces as output a three-
vector (x, y, z), which is treated as the current springPos in Puppet.

At each iteration of the simulation, Puppet calls referencePos and the MR function ForwardDynamics
to determine the acceleration of the robot based on springPos and the current state of the robot.
Then it calculates the new state of the robot using numerical integration. You can use simple first-
order Euler numerical integration, as implemented by EulerStep. You are welcome to experiment
with other integrators, including adding a 1

2 θ̈(dt)
2 term to get a more accurate change in position

each timestep, but EulerStep is fine for this project.1

The robot we will use is the UR5, a popular 6-dof industrial robot arm. The robot has geared
motors at each joint, but in this project, we ignore the effects of gearing, such as friction and the
increased apparent inertia of the rotor.

The relevant kinematic and inertial parameters of the UR5 are:

For your convenience, these parameters are given in Python, Mathematica, and MATLAB at
http://hades.mech.northwestern.edu/index.php/Modern_Robotics#Supplemental_Information.

1The MR function ForwardDynamicsTrajectory also simulates the motion of a robot, so you can look at that if
you wish, but it takes different inputs and handles the simulation timesteps differently.

http://hades.mech.northwestern.edu/index.php/Modern_Robotics#Supplemental_Information


Your code will be tested in stages to help ensure correctness. Important: You are welcome to
talk to classmates about concepts at the development phase, but you are not allowed to share your
code nor look at anyone else’s code. AI-based software easily detects shared and altered code with
common origins, so do not do it.

Part 1: Simulating a falling robot. In the first part, the robot will fall in gravity without
damping or the external spring (joint damping and spring stiffness are set to zero). Since there is
no damping or friction, the total energy of the robot (kinetic plus potential) should remain constant
during motion. Gravity is g = 9.81 m/s2 in the −ẑs-direction, i.e., gravity acts downward.

Simulate the robot falling from rest at the home configuration for five seconds. The output data
should be saved as a .csv file, where each of the N rows has six numbers separated by commas.
This .csv file is suitable for animation with the CoppeliaSim UR5 csv animation scene. Adjust
the animation scene playback speed (“Time Multiplier”) so it takes roughly five seconds of wall
clock time to play your csv file. You can evaluate if your simulation is preserving total energy by
visually checking if the robot appears to swing to the same height (same potential energy) each
swing. Choose values of dt (a) where the energy appears nearly constant (without choosing dt
unnecessarily small) and (b) where the energy does not appear constant (because your timestep
is too coarse). Capture a video for each case and note the dt chosen for each case. Explain how
you would calculate the total energy of the robot at each timestep if you wanted to plot the total
energy to confirm that your simulation approximately preserves it.

Part 2: Adding damping. Now experiment with different damping coefficients as the robot
falls from the home configuration. Damping causes a torque at each joint equal to the negative of
the joint rate times the damping. Create two videos showing that (a) when you choose damping to
be positive, the robot loses energy as it swings, and (b) when you choose damping to be negative,
the robot gains energy as it swings. Use t = 5 s and dt = 0.01 s, and for the case of positive
damping, the damping coefficient should almost (but not quite) bring the robot to rest by the end
of the video. Do you see any strange behavior in the simulation if you choose the damping constant
to be a large positive value? Can you explain it? How would this behavior change if you chose
shorter simulation timesteps?

Part 3: Adding a spring. Make gravity and damping zero and design referencePos to return
a constant springPos at (0, 1, 1) in the {s} frame. The spring’s restLength is zero. Experiment
with different stiffness values, and simulate the robot for t = 10 s and dt = 0.01 s starting from
the home configuration. (a) Capture a video for a choice of stiffness that makes the robot oscillate
a couple of times and record the stiffness value. Considering the system’s total energy, does the
motion of the robot make sense? What do you expect to happen to the total energy over time?
Describe the strange behavior you see if you choose the spring constant to be large; if you don’t
see any strange behavior, explain why. (b) Now add a positive damping to the simulation that
makes the arm nearly come to rest by the end of the video. For both videos, record the stiffness
and damping you used.

Part 4: A moving spring. Use the joint damping and spring stiffness from Part 3(b), a spring
restLength of zero, and zero gravity. Now set referencePos to return a sinusoidal motion of
springPos. springPos should sinusoidally oscillate along a line, starting from one endpoint at (1, 1, 1)
to another endpoint at (1,−1, 1), completing two full back-and-forth cycles in 10 s. Simulate with



the robot starting at the home configuration for t = 10 s with dt = 0.01 s and create a movie of
the simulation.

This simulates a robot control mode called impedance control. With impedance control, you can
define a moving reference point (or a reference frame) and a virtual spring/damper connecting the
reference to the end-effector of the robot. The virtual wrench F due to the virtual spring/damper
is converted to a set of actual joint torques via τ = J⊺F that drive the robot. This control mode
can be used to control the motion of a robot in free space or the force a robot applies when in
contact with an environment (for example, if the reference is behind a wall, the robot applies a
force to the wall that depends on the stiffness of the virtual spring and the distance of the reference
behind the wall).

What to turn in: You should turn in a single zip file named FamilyName GivenName asst3.zip. It
should contain a pdf file FamilyName GivenName asst3.pdf; videos named part1a.mp4, part1b.mp4,
part2a.mp4, part2b.mp4, part3a.mp4, part3b.mp4, and part4.mp4; corresponding csv files named
part1a.csv, etc., that were animated by CoppeliaSim to create your videos; and a directory (folder)
called “code.” The pdf file should have five sections: Introduction, Part 1, Part 2, Part 3, and Part
4. In the Introduction, provide any explanation needed to understand your overall submission.
(This may be very short.) In Parts 1-4 answer all questions posed above and provide any needed
information explaining the corresponding videos and csv files, including the dt, t, damping, and
stiffness values used for the animations. In the code directory, provide your commented function(s)
and sample code that we can execute to generate the csv files you turned in. Do not submit
data or videos for cases where you were simply experimenting to better understand
the system behavior; submit data and videos only for parts 1(a), 1(b), 2(a), 2(b), 3(a),
3(b), and 4.


