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Abstract— We show that arbitrary small amplitude periodic
motion of a rigid plate causes isolated point parts on the plate
to move as if they are in a position-dependent velocity field.
By allowing the plate to vibrate with six-degrees-of-freedom,
we can create a large family of programmable velocity fields.
Several fields in this family exhibit sink and source behavior,
opening up the possibility of using a single rigid plate for
sensorless part orientation, uncertainty-reducing transport, and
simultaneous manipulation of multiple parts. The fields are
verified experimentally with a device that can generate user-
defined plate motions with up to six-degrees-of-freedom.

I. INTRODUCTION

In this paper we show that the motion of an isolated point
part sliding on an oscillating rigid plate is well approximated
by a position-dependent velocity field.

II. RELATED WORK

III. KINEMATICS

A. Plate Kinematics

Consider a rigid plate undergoing small amplitude vibration.
We define three coordinate systems: a fixed inertial frame W ,
a local frame S attached to the origin of the plate, and an
inertial frame S ′ instantaneously aligned with S (Figure 1).
The z-axis ofW is in the direction opposite the gravity vector,
which is represented as g = [0, 0,−g]T in the W frame. The
z-axis of S is always perpendicular to the plate surface.

We choose to specify plate motions in the W frame in
terms of the linear acceleration of the origin of the plate
p̈ = [p̈x, p̈y, p̈z] and the angular acceleration of the plate α =
[αx, αy, αz]. All six acceleration components must be periodic
with period T . When the linear and angular accelerations are
integrated, the plate’s linear velocity ṗ, angular velocity ω, and
configuration must be continuous and periodic with period T .
The configuration of the plate in W is given by[

R p
0 1

]
∈ SE(3),

where R ∈ SO(3).

B. Part Kinematics

Let P be a point part with mass m in contact with the plate.
As illustrated in Figure 1, we let q = [xS , yS , 0]T be a vector
in S to P, and r = [x, y, z]T be a vector in W to P such that

r = p + Rq. (1)

Let P∗ be the point on the plate directly underneath P. The
position of P∗ is given by the vector r∗ = r in the W frame.
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Fig. 1. An extremely exaggerated picture of the plate displaced from the
fixed W frame by the vector p. The S frame is always attached to the origin
of the plate. The position of the part is given by r in the W frame and by q
in S frame.

The velocity and acceleration of P∗ in the W frame are given
by

ṙ∗ = ṗ + ω ×Rq (2)
r̈∗ = p̈ + ω × ω ×Rq + α×Rq. (3)

The velocity and acceleration of P in theW frame are given
by

ṙ = ṙ∗ + Rq̇ (4)
r̈ = r̈∗ + 2ω ×Rq̇ + Rq̈. (5)

IV. PART DYNAMICS

A. System Model

Up to three forces may act on the part: gravity, friction, and
the normal force from the plate (Figure 2). Applying Newton’s
second law in the S ′ frame gives

fNS′ + fFS′ + fGS′ = mRT r̈ (6)

= mRT
(
r̈∗ + 2ω ×Rq̇

)
+ mq̈, (7)

where fNS′ = [0, 0, N ]T , fFS′ = [FxS , FyS , 0]T , and fGS′ =
mRTg are the normal, frictional, and gravitational forces on
the part in the S ′ frame. Solving (6) for r̈ yields an expression
for the part’s acceleration in the W frame:

r̈ =
1
m

R
(
fNS′ + fFS′

)
+ g. (8)

Explicit expressions for fNS′ and fFS′ are derived in the
following two sections.

The state vector xW = [r, ṙ]T can be computed by inte-
grating (8). Alternatively, the state vector xS = [q, q̇]T can
be computed from xW noting that (1) and (4) imply

q = RT (r− p) (9)

q̇ = RT (ṙ− ṙ∗) . (10)
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Fig. 2. The three forces that may act on the part are due to gravity, friction,
and the the contact with the plate. The gravitational force fG always acts in
the negative z-direction of the W frame, the frictional force fF always acts
tangent to the plate surface, and the normal force fN always acts perpendicular
to the plate surface.

Our analysis is restricted to situations where the part always
remains in contact with the plate. Contact is maintained as long
as the magnitude of the normal force is positive. Additionally,
contact implies the acceleration of the part perpendicular
to the plate surface is zero at all times in the S frame.
Mathematically, we express this as

z◦q̈ = 0, (11)

where z◦ , [0, 0, 1].

B. Normal Force

Pre-multiplying (7) by z◦ and noting (11) yields the follow-
ing expression for the magnitude of the normal force, N :

N = mz◦RT (r̈∗ + 2ω ×Rq̇− g) . (12)

We define the effective gravity as

geff = z◦RT (r̈∗ + 2ω ×Rq̇− g) , (13)

so that
N = mgeff. (14)

C. Friction Force

We assume Coulomb friction in our model. Since frictional
forces can only act in the x-y plane of the S ′ frame we define
the matrix

SXY ,

 1 0 0
0 1 0
0 0 0

 ,

that projects vectors onto the x-y plane.
The frictional force acting on a part located at r depends

on the state of the system:
• If the part is moving relative to the plate, the frictional

force is directed opposite the relative velocity vector
q̇. The magnitude of the force is the product of the
coefficient of kinetic friction and the magnitude of the
normal force acting on the part.

• If the part is at rest with respect to the plate, the frictional
force acts in the same direction as the acceleration of P∗

projected onto the plane of the plate surface. There are
two possibilities for the magnitude of the frictional force.
If the magnitude of the acceleration of P∗ projected onto

the plane of the plate surface is greater than the product of
the coefficient of static friction and the effective gravity
at r, the magnitude of the frictional force is equal to
the product of the coefficient of static friction and the
normal force acting on the part. If the magnitude of
the acceleration of P∗ projected onto the plate of the
plate surface is less than or equal to the product of the
coefficient of static friction and the effective gravity at
r, the magnitude of the frictional force is equal to the
product of the part’s mass and the magnitude of the
acceleration of P∗ projected onto the plane of the plate
surface.

Mathematically, we summarize these cases as

fFS′ =



−µkN
q̇
‖q̇‖

, ‖q̇‖ > 0;

µsN
SXYRT r̈∗

‖SXYRT r̈∗‖
, ‖q̇‖ = 0

‖SXYRT r̈∗‖ > µsgeff;

mSXYRT r̈∗, ‖q̇‖ = 0
‖SXYRT r̈∗‖ ≤ µsgeff;

(15)
where µk and µs are the respective kinetic and static coeffi-
cients of friction between the part and the plate.

D. Simplified System Model

For the type of plate motions we wish to implement, we
assume that the part is sliding at all times. We also assume
that the linear and angular displacements of the plate during
each cycle are insignificant, implying that theW and S ′ frames
are indistinguishable. Mathematically, we express this as

p ≈ 0 R ≈ I,

where I is the identity matrix. It follows that the part’s position
vector in the W frame can be approximated as r ≈ q =
[x, y, 0]T , and that the gravitational, frictional, and normal
forces on the part can be considered aligned with the W axes.

Let the plane of x and y velocities in theW frame be called
Vxy and the plane of x and y accelerations in the W frame
be called Axy . With the assumptions above, the approximate
acceleration of the part in Axy is obtained by simplifying the
x and y components of (8): ẍ

ÿ
0

 = SXY r̈ ≈ −µkgeff
q̇
‖q̇‖

. (16)

The effective gravity geff and the relative velocity vector q̇ that
respectively dictate the magnitude and direction of the part’s
acceleration in Axy can be approximated by simplifying (13)
and (10):

geff ≈ z◦ (r̈∗ + 2ω × q̇− g) (17)
≈ z◦ (p̈ + ω × ω × r + α× r + 2ω × q̇− g) (18)

q̇ ≈ SXY (ṙ− ṙ∗) (19)
≈ SXY (ṙ− ṗ− ω × r) . (20)
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V. ASYMPTOTIC VELOCITY

Simulations show that for a given periodic plate motion and
position r on the plate, there is a unique average velocity va(r)
such that a point part at r, moving with any other average
velocity, tends toward va(r). We call va(r) the asymptotic
velocity at r. Thus a part’s motion on the plate is given approx-
imately by the position-dependent asymptotic velocity field,
where the quality of the approximation depends on the rate of
convergence to the asymptotic velocity at each location. For
plate motions that adhere to the assumptions of the simplified
system model given in the previous section, simulations show
there is a rapid convergence to the asymptotic velocity during
which time the displacement is negligible.

Theorem1: For an arbitrary periodic plate motion there is
a unique asymptotic velocity for an isolated point part located
at r assuming that the part does not displace from r, the part
is always slipping, and friction is the only force acting on the
part in the plane of the plate surface.

Proof: In the Vxy plane let the velocity of the plate at r be
given by v∗ = SXY ṙ∗. For periodic plate motions, v∗ sweeps
out a closed loop over the course of a cycle. Let P1 and P2

be two point parts located at r with identical coefficients of
kinetic friction, µk. Let the velocities of P1 and P2 in Vxy be
v1 = SXY ṙ1 and v2 = SXY ṙ2. Let ∆v = ‖v1 − v2‖ be the
distance between v1 and v2 in Vxy .

From (16), P1 and P2 always accelerate with equal magni-
tude in the direction of v∗ (Figure 3). It follows that d

dt (∆v) ≤
0. The nondecreasing case where d

dt (∆v) = 0 corresponds to
v1, v2, and v∗ being collinear such that v∗ is not between
v1 and v2. However, the periodic motion of the plate ensures
that there will always be at least one instant of time during
the cycle when v1, v2, and v∗ are not collinear, or v1, v2,
and v∗ are collinear such that v∗ is between v1 and v2. In
either case, d

dt (∆v) < 0 during this instant.
Since the initial velocities of P1 and P2 are arbitrary, all

parts located at r must converge to a unique closed trajectory
in Vxy that we call the asymptotic trajectory at r. The average
velocity of the points on the asymptotic trajectory at r is the
unique asymptotic velocity at r. QED.

Corollary: In the Vxy plane the asymptotic trajectory at r
lies within the convex hull of the plate’s trajectory at r.

Proof: HOW TO PROPERLY WRITE PROOF??????????
Theorem2: The asymptotic trajectory is periodic with a

period equal to the period of the plate.
Proof: HOW TO PROVE?????????
Since the asymptotic trajectory has a period of T in Vxy ,

we formally define the asymptotic velocity as

va(r) =
1
T

∫ t+T

t

ṙdt such that ṙ(t) = ṙ(t + T ),

where r is kept fixed.
For simple plate motions, assumptions can sometimes be

made that allow the asymptotic velocity field to be approx-
imated analytically [?], [?]. Otherwise, it can be determined
numerically by computing the asymptotic velocity at a discrete
set of points on the plate as follows:
• Set the part’s initial velocity to zero.

v
∗
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v2

∆v

x−velocity (m/s)

y−
ve

lo
ci

ty
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m
/s

)

Fig. 3. The Vxy plane at an arbitrary location r in which the velocity of
the plate v∗ sweeps out a closed trajectory. At any given instant, the velocity
of a part (e.g., v1) is changing in the direction of v∗. AHHH–HOW TO
DESCRIBE??? GET RID OF (M/S) LABELS

• Use (16) to simulate the part dynamics (without updating
the position) for one cycle of plate motion.

• If the velocity at the end of the cycle is greater than a very
small predefined tolerance ε of the initial velocity (i.e., if
ṙ(t+T )− ṙ(t) > ε), simulate another cycle in which the
part’s initial velocity is equal to its final velocity from
the previous cycle.

• Repeat the previous two steps M times until the velocity
difference between the beginning and end of the cycle is
less than ε.

The value of MT is a measure of the rate of convergence to
the asymptotic state. As long as MT � 1 s, the asymptotic
velocity provides a good model of part motion. As a point
of reference, the twelve asymptotic velocity fields in Figure 5
correspond to plates that oscillate with a period of T = 0.03 s;
every point in all twelve fields satisfies MT ≤ 0.12 s for
ε = 0.001 m/s. Figure 4 shows in detail how two parts at one
particular location converge to an asymptotic trajectory on a
plate undergoing the motion generating the Whirlpool field
in Figure 5(h).

VI. ESTIMATING ASYMPTOTIC VELOCITY FIELDS FOR
SINUSOIDAL PLATE MOTIONS

A. Sinusoidal Motion Primitives

In this paper we confine ourselves to linear and angular
accelerations with sinusoidal components that all have the
same frequency, f :

p̈x = Ax sin(2πft + φx) αx = Aθ sin(2πft + φθ)
p̈z = Az sin(2πft + φz) αy = Aϕ sin(2πft + φϕ)
p̈y = Ay sin(2πft + φy) αz = Aψ sin(2πft + φψ).

We refer to plate accelerations of this form as sinusoidal
motion primitives.

B. Simplified Transient Acceleration Model

Let a point part located at r be initially at rest in the W
frame. Barring the exceptional case (***should trajectory be
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Fig. 4. The trajectories in Vxy of a plate undergoing the motion specified
in Figure 5(h) and two parts with initial velocities of (−0.05, 0.03) m/s
and (0.03, 0) m/s. All trajectories correspond to four cycles of plate motion
with period T = 0.03 s at the location (0.06, 0) m are shown in (a). Both
parts rapidly approach a nearly circular asymptotic trajectory centered around
(−0.01,−0.025) m/s that is fully contained within the plate’s trajectory.
The distance between the parts’ velocities in Vxy never increases and rapidly
approaches zero as shown in (b). In the top two graphs of (c) the x and y-
components of the velocity are plotted individually; in the bottom graph of
(c) the effective gravity is plotted. ADD (M/S) LABEL TO B.

defined in x-y-t space to clarify that staring on trajectory in
Vxy does not necessarily mean you on the trajectory?****),
there is a transient period during the first few cycles of plate
motion in which the part converges to the asymptotic trajectory
at r. During the transient period the average acceleration
of the part is nonzero in order to bring the average cycle
velocity closer to the asymptotic velocity. Thus, to a good
approximation, the asymptotic velocity at r is proportional to
the average transient acceleration at r. To estimate the part’s
average transient acceleration we use the acceleration model
given by (16), but further simplify the expressions for geff and
q̇ given by (18) and (20).

Let ‖p̈‖∞ = p̈max and ‖α‖∞ = αmax. Assuming the
part’s initial speed is less than the maximum speed of the
plate, a sinusoidal motion primitive imposes the following tight

bounds: ‖q̇‖∞ ≤
p̈maxT

π
and ‖ω‖∞ ≤

αmaxT

2π
. We choose to

bound the part’s position in our transient acceleration model
such that ‖r‖∞ ≤

g

αmax
. Thus, we can bound (18) as follows:

geff ≤ g

(
p̈max

g
+

αmaxT
2

4π2
+ 1 +

αmaxp̈maxT
2

π2
+ 1

)
(21)

If we choose to operate our system such that p̈max ≤ 10 m/s2,
αmax ≤ 100 rad/s2, and T ≤ 0.05 s, the second and fourth
terms of (21), corresponding to the centripetal and Coriolis
accelerations, are the least significant. Ignoring these terms
reduces (18) to

geff ≈ z◦ (p̈ + α× r− g) = p̈z + αxy − αyx + g (22)

To simplify q̇, we make the highly exaggerated assumption
that during the transient period the plate’s velocity in the plane
of the plate is much greater than the part’s velocity in the plane
of the plate (i.e., SXY ṙ� SXY ṙ∗). Thus, (20) reduces to

q̇ ≈ SXY (−ṙ∗) = SXY (−ṗ− ω × r) =

 −ṗx − ωzy
−ṗy + ωzx

0

 .

(23)

We make the important observation that in this grossly
simplified transient acceleration model, geff = geff(p̈z, αx, αy)
and q̇ = q̇(ṗx, ṗy, ωz). Thus, the magnitude of the part’s
acceleration in the plane of the plate is a function of p̈z ,
αx, and αy , and the direction of the part’s acceleration in the
plane of the plate is a function of ṗx, ṗy , and ωz . We refer to
p̈z , αx, and αy as the out-of-plane acceleration components.
Out-of-plane acceleration components come directly from the
sinusoidal motion primitive. We refer to ṗx, ṗy , and ωz as the
in-plane velocity components. In-plane velocity components
can be obtained by integrating the in-plane acceleration com-
ponents p̈x, p̈y , and αz of the sinusoidal motion primitive.

C. Estimating Asymptotic Velocity

We now make a final exaggerated assumption that the
acceleration of the part in Axy is negligible when geff < g.
This means that we assume the frictional force is too weak to
accelerate the part when the plate is accelerating downwards
(i.e., in the negative z-direction). Thus, the average magnitude
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of the part’s acceleration in Axy during the transient period is
roughly proportional to the average value of geff during the half
of the cycle when geff > g. Because geff is a sinusoid shifted by
g, this average is roughly proportional to the amplitude of geff.
Similarly, the average direction of the part’s acceleration Axy
during the transient period roughly corresponds to the average
direction of q̇ during the half of the cycle when geff > g.

For example, consider the scenario in Figure 3. In (a), we
see that the plate sweeps out a circular trajectory in Vxy . In
(c), we see that the amplitude of geff is roughly 0.5g, and
that geff > g only when the plate’s y-velocity is negative
(we also show this in (a) using a thicker line to denote
the portion of the plate’s trajectory when geff > g). Based
on the simplified transient acceleration model, the direction
of the asymptotic velocity should correspond to the average
direction of the plate’s velocity in Vxy when geff > g. Thus,
the asymptotic velocity should have a negative y-component
and no x-component. This is very nearly true—the asymptotic
trajectory to which the parts are converging in (a) has an
average y-velocity that is negative and an average x-velocity
that is very close to zero, although slightly negative.

If the amplitude of geff were to decrease, we would expect
the magnitude of the asymptotic velocity to decrease. In Vxy
this corresponds to a translation of the asymptotic trajectory
in the positive y-direction. In the extreme case when the
amplitude of geff is zero, we would expect the asymptotic
trajectory to be centered on the origin and the asymptotic
velocity to be zero.

If the amplitude of geff were to increase, we would expect
the magnitude of the asymptotic velocity to increase. In Vxy
this corresponds to a translation of the asymptotic trajectory
in the negative y-direction. In the extreme case when the
amplitude of geff is g (if the amplitude of geff becomes greater
than g the part loses contact with the plate and the model is no
longer valid), the asymptotic trajectory may become tangent
to the plate’s trajectory, but it must remain within the convex
hull of plate’s trajectory.

VII. ASYMPTOTIC VELOCITY FIELDS ARISING FROM
SINUSOIDAL MOTION PRIMITIVES

Though simple, sinusoidal motion primitives generate a
variety of asymptotic velocity fields. Throughout this section
we look at several classes of sinusoidal motion primitives and
explain how to estimate the corresponding asymptotic velocity
field from the simplified transient acceleration model. The
exact fields, calculated numerically, are shown in Figure 5.
Approximate equations governing each field are given in
Table I.

A. Combining In-Plane Translation with Out-of-Plane Trans-
lation: Translational Fields

The class of translational sinusoidal motion primitives
combine the in-plane acceleration components p̈x and p̈y with
out-of-plane acceleration component p̈z:

p̈x = Ax sin(2πft)
p̈y = Ay sin(2πft)
p̈z = Az sin(2πft + φ).

From (22) and (23), the effective gravity and relative veloc-
ity vector can be written as

geff ≈ p̈z + g = Az sin(2πft + φ) + g

q̇ ≈

 −ṗx
−ṗy
0

 =


Ax

2πf
cos(2πft)

Ay

2πf
cos(2πft)

0

 .

We note that neither geff nor q̇ is position-dependent, from
which it follows that the transient acceleration will be identical
at all locations, with a direction corresponding to ±(Ax, Ay)
and a magnitude that scales with Az .

Without loss of generality, let us consider the special case
where Ay = 0 implying that q̇ is always aligned with the x-
axis. If φ = 3

2π, geff and q̇ are out of phase with each other—
i.e., the plate moves in the positive x-direction during the half
of the cycle when geff > g. As illustrated in Figure 5(a), the
asymptotic velocity field for this case corresponds to uniform
motion in the positive x-direction. This is an example of a
Trans field. In general, Ax, Ay , Az , and φ can be controlled
to set the desired magnitude and direction of the Trans field.

B. Combining In-Plane Rotation with Out-of-Plane Transla-
tion: Circular Fields

EXPAND??? —add pddx and pddy. then show how one
can reduce motion to rotation about the point (-ay/alphaz,
ax/aphaz).

The class of circular sinusoidal motion primitives combine
the in-plane acceleration component αz with the out-of-plane
acceleration component p̈z:

αz = Aψ sin(2πft)
p̈z = Az sin(2πft + φ)

From (22) and (23), the effective gravity and relative veloc-
ity vector can be written as

geff ≈ p̈z + g = Az sin(2πft + φ) + g

q̇ ≈

 −ωzy
ωzx
0

 =


Aψ

2πf
cos(2πft)y

− Aψ

2πf
cos(2πft)x

0

 .

We note that geff is position-independent, and that in a polar
coordinate system q̇ points in the positive or negative angular
direction at all locations. It follows that during the transient
period parts will accelerate in a clockwise or counterclockwise
direction with a magnitude that scales with Az .

The orientation of the field depends on the phase φ. For
example, if φ = 3

2π, geff and q̇ are out of phase with each
other—i.e., the plate moves in the counterclockwise direction
during the half of the cycle when geff > g. As illustrated
in Figure 5(b), the asymptotic velocity field for this case
corresponds to counterclockwise circular motion around the
origin. We refer to this as a Circle field. In general, Aψ ,
Az , and φ can be controlled to set the desired magnitude and
direction of the Circle field.
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C. Combining In-Plane Translation with Out-of-Plane Rota-
tion: Nodal Line Fields

The class of nodal line sinusoidal motion primitives com-
bine the in-plane acceleration components p̈x and p̈y with the
out-of-plane acceleration components αx and αy:

p̈x = Ax sin(2πft)
p̈y = Ay sin(2πft)
αx = Aθ sin(2πft + φ)
αy = Aϕ sin(2πft + φ).

From (22) and (23), the effective gravity and relative veloc-
ity vector can be written as

geff ≈ αxy − αyx + g

= Aθ sin(2πft + φ)y −Aϕ sin(2πft + φ)x + g

q̇ ≈

 −ṗx
−ṗy
0

 =


Ax

2πf
cos(2πft)

Ay

2πf
cos(2πft)

0

 .

We note that geff is position-dependent. Its amplitude in-
creases with distance from the line through the origin in the
direction of (Aθ, Aϕ). We refer to this line as a nodal line.
We also note that q̇ is position-independent and points in the
direction of the vector (Ax, Ay). It follows that during the tran-
sient period parts will accelerate in a direction corresponding
to ±(Ax, Ay) with a magnitude that scales with their distance
from the nodal line.

Let us examine the special case where Ay = Aθ = 0,
implying that q̇ is always aligned with the x-axis and that
the amplitude of geff increases with distance from the y-axis.
Thus, we expect the magnitude of the transient acceleration
to increase with distance from the y-axis. Further, when geff
is greater than g on one side of the y-axis it is less than g
on the other side. This introduces an asymmetry that causes
the direction of the part’s transient acceleration to differ on
opposite sides of the y-axis. Depending on on the phase φ, a
part will accelerate towards or away from the nodal line.

For example, if φ = 3
2π, geff and q̇ are out of phase with

each other for positions satisfying x < 0—i.e., for parts with
positive x-positions, the plate moves in the positive x-direction
during the half of the cycle when geff > g. On the other hand,
the plate moves in the negative x-direction during the half of
the cycle when geff > g for parts with positions satisfying x >
0. It follows that during the transient period parts with negative
positions tend to get accelerated in the positive x-direction
whereas parts with positive positions tend to get accelerated
in the negative x-direction. As illustrated in Figure 5(c), the
asymptotic velocity field for this case corresponds to a squeeze
field converging on the y-axis. We refer to this as a LineSink
field.

If φ = 1
2π, the asymptotic velocity field diverges from

the y-axis as shown in Figure 5(d). We refer to this as
a LineSource field. The full dynamics of LineSink
and LineSource fields generated by “bang-bang” motion
primitives are analyzed in [?].

In general, the class of nodal line sinusoidal motion primi-
tives create a nodal line of zero velocity in the direction of the
rotation axis (i.e., the direction of the vector (Aθ, Aϕ)). The
value of φ determines whether the nodal line is attractive or
repulsive. As illustrated in Figure 5(d–f), Ax, Ay , Aθ, Aϕ,
and φ can be chosen to create fields such as SkewSink,
SkewSource, and ShearFlow.

Closely related to all of these fields is the DivCircle field
shown in Figure 5(g). This field has a nodal line that is both
attractive and repulsive. It arises from the class of sinusoidal
motion primitives that combine the in-plane acceleration com-
ponent αz with the out-of-plane acceleration components αx
and αy:

αz = Aψ sin(2πft)
αx = Aθ sin(2πft + φ)
αy = Aϕ sin(2πft + φ).

As with the other nodal line fields, the amplitude of geff
increases with distance from the nodal line, and, geff is always
larger than g on one side of the nodal line and smaller than
g on the other side. What differentiates this field from the
others is that q̇ always points in the positive or negative
angular direction. Thus, parts on one side of the nodal
line move clockwise whereas parts on the other side move
counterclockwise.

D. Combining In-Plane Translation with Out-of-Plane Rota-
tion: Nodal Fields

The class of nodal sinusoidal motion primitives combine
the in-plane acceleration components p̈x and p̈y with the out-
of-plane acceleration components αx and αy:

p̈x = Ax sin(2πft)
p̈y = Ay cos(2πft)
αx = Aθ sin(2πft + φ)
αy = Aϕ cos(2πft + φ),

From (22) and (23), the effective gravity and relative veloc-
ity vector can be written as

geff ≈ αxy − αyx + g

= Aθ sin(2πft + φ)y −Aϕ cos(2πft + φ)x + g

q̇ ≈

 −ṗx
−ṗy
0

 =


Ax

2πf
cos(2πft)

− Ay

2πf
sin(2πft)

0

 .

The relative velocity q̇ is position-independent with a con-
stant magnitude and a direction that rotates at a constant rate.
This implies that the part can potentially accelerate in any
direction at any location. However, we can rule out many
possibilities by examining geff. In particular, we expect the
transient acceleration to be an odd function of position because
geff(x, y, t) = −geff(−x,−y, t). Further, the magnitude of the
transient acceleration should increase with distance from the
origin because the amplitude of geff increases in this manner.
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TABLE I
APPROXIMATE FORM OF THE ASYMPTOTIC VELOCITY FOR THE FIELDS

SHOWN IN FIGURE 5. CHECK EQUATIONS FOR MISMATCHES!!!!

Field Name Asymptotic Velocity

Trans v(x, y) ≈ a(1, 0)

Circle v(x, y) ≈ a(−y, x)

LineSink v(x, y) ≈ a(−x, 0)

LineSource v(x, y) ≈ a(x, 0)

SkewSink v(x, y) ≈ (−ax,−bx)

SkewSource v(x, y) ≈ (ax, bx)

ShearFlow v(x, y) ≈ a(0, x)

DivCircle v(x, y) ≈ (axy, bx2)

Sink v(x, y) ≈ a(−x,−y)

Source v(x, y) ≈ a(x, y)

Whirlpool v(x, y) ≈ (−ax,−by)

Centrifuge v(x, y) ≈ (ax, by)

In general, nodal sinusoidal motion primitives create fields
with a node of zero velocity at the origin of the plate. The value
of φ determines whether the node is attractive or repulsive as
well as whether the field is oriented clockwise or counterclock-
wise. The values of Ax, Ay , Aθ, and Aϕ determine the strength
and eccentricity of the field. As illustrated in Figure 5(h)–
(k), nodal fields include Sink, Source, Whirlpool, and
Centrifuge (and a second version of Circle which is not
illustrated).

VIII. DESIGNING ASYMPTOTIC VELOCITY FIELDS

The primitive fields shown in Figure 5 represent a small
subset of the class of asymptotic velocity fields obtainable
with a six-DOF oscillating plate. In this section we look at
two methods of generating more fields: concatenation and
parameter optimization.

A. Concatenating Primitives

In theory, by rapidly sequencing primitive asymptotic ve-
locity fields, the set of all convex combinations of primitive
fields are obtainable. This can be done in practice by tem-
porally concatenating the acceleration components of motion
primitives. The resulting asymptotic velocity field loosely
resembles a time-averaged superposition of the concatenated
primitive fields. Two concatenated fields are shown in Figure 6.
The SqueezeTrans field, which transports parts while si-
multaneously reducing their configuration uncertainty, results
from concatenating the motion primitive for a LineSink
field with the motion primitive for a Trans field. The
Saddle field results from concatenating the motion primi-
tive for a LineSink field with the motion primitive for a
LineSource field.

********The Jet field results from concatenating two
circular motion primitives whose centers of rotation are on

(a) SqueezeTrans (b) Saddle
Fig. 6. Asymptotic velocity fields from concatenated sinusoidal motion
primitives.

opposite sides of the y-axis. TECHNICALLY WE CANNOT
DO A JET SINCE CIRCLES SCALE WITH DISTANCE
FROM ORIGIN*****

Time-averaging the component fields only approximates
the actual concatenated field because there is an interaction
between the motion primitives depending on the order in
which they are executed; the sliding motion at the end of
one motion primitive influences the part’s behavior during the
next motion primitive. For example, the squeeze line of the
SqueezeTrans field in Figure 6 is not centered on the y-
axis as we would expect from time-averaging a LineSink
field and a Trans field. This illustrates that there is some
nonlinear interaction between the concatenated primitives. To
lessen this effect, the motion primitives may be joined by a
period during which the plate is at rest; however, this reduces
the strength of the field.

B. Parameter Optimization

If a particular asymptotic velocity field is desired, a numer-
ical routine can be used to find a plate motion that generates
an approximation to the desired field (if one exists). This
can be achieved by calculating the asymptotic velocity field
for a particular plate motion at a discrete set of points and
comparing it to the desired field. The plate motion is then
altered in an effort to minimize the norm of the error.

A practical implementation might include parameterizing a
simple class of plate motion. For example, the twelve free
parameters (six amplitudes and six phases) of a sinusoidal
motion primitives could be used. The algorithm would find
the optimum values of the parameters within specified limits
to best match the desired field. If these twelve parameters do
not yield a sufficiently rich set of fields, more free parameters
can be added to the acceleration components of the motion
primitive. Ideally, a fairly small number of free parameters
will be able to generate the vast majority of the set of all
fields obtainable with a six-DOF plate.

IX. EXPERIMENTAL WORK

Our six-DOF vibratory device is shown in Figure ??. The
plate has a diameter of 10.5 inches and is made of 1

2????? inch
thick aluminum honeycomb. The plate is actuated from below
by six speakers (****) evenly spaced along the perimeter of a
circle. The speakers are driven by a stereo amplifier. Each
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p̈x = 10 sin(66πt) αz = 100 sin(66πt) p̈x = 10 sin(66πt) p̈x = 10 sin(66πt)

p̈z = 5 sin(66πt + 3
2
π) p̈z = 8 sin(66πt + 3

2
π) αy = 100 sin(66πt + 3

2
π) αy = 100 sin(66πt + 1

2
π)

(a) Trans (b) Circle (c) LineSink (d) LineSource

p̈x = 10 sin(66πt) p̈x = 10 sin(66πt) p̈y = 10 sin(66πt) p̈x = 10 sin(66πt)

p̈y = 10 sin(66πt) p̈y = 10 sin(66πt) αy = 100 sin(66πt + 3
2
π) p̈y = 10 cos(66πt)

αy = 100 sin(66πt + 3
2
π) αy = 100 sin(66πt + 1

2
π) αx = 100 sin(66πt + 3

2
π)

αy = 100 cos(66πt + 3
2
π)

(e) SkewSink (f) SkewSource (g) ShearFlow (h) Whirlpool

p̈x = 10 sin(66πt) p̈x = 10 sin(66πt) p̈x = 10 sin(66πt) αz = 100 sin(66πt)

p̈y = 10 cos(66πt) p̈y = 10 cos(66πt) p̈y = 10 cos(66πt) αy = 100 sin(66πt + 1
2
π)

αx = 100 sin(66πt + 1
2
π) αx = 100 sin(66πt + 75

64
π) αx = 100 sin(66πt + 11

64
π)

αy = 100 cos(66πt + 1
2
π) αy = 100 cos(66πt + 75

64
π) αy = 100 cos(66πt + 11

64
π)

(i) Centrifuge (j) Sink (k) Source (l) DivCircle
Fig. 5. Numerically calculated asymptotic velocity fields corresponding to sinusoidal motion primitives. The fields are calculated for a point part with
µk = µs = 0.3. Arrows are drawn in 2 cm increments. Arrows are missing in the corners of (h)–(k) because the part lost contact with the plate at those
locations before reaching the asymptotic state. Linear accelerations are in m/s2. Angular accelerations are in rad/s2. All acceleration components have a
frequency of 33 Hz. Overlaid on each asymptotic velocity field is a six second (200 cycle) simulation of a point part starting from rest incorporating the full
system dynamics. The position of the part is plotted every 0.3 seconds (every 10 cycles).
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speaker is connected to the plate with threaded aluminum
rods and two compliant joints made of tygon tubing with
1
2????? inch bend radius.

Four two-axis accelerometers (****)are mounted around the
perimeter of the plate in increments of 60 or 120 degrees. The
direction of the axes are shown in Figure ??. We use a least
squares approximation to determine p̈ and α from the eight
accelerometer readings assuming that R = I, p = 0, and
ω = 0.

Two-axis accelerometers are also mounted on each speaker,
but only acceleration in the vertical direction is measured.

Accelerometer signals are acquired by a PC running MAT-
LAB xPC using a **** DAQ board sampling at 10,000*** Hz.
Signals are sent to the amplifier using a *** DAQ board.

**Bode plots

A. Acceleration Control

A spectral decomposition learning control method appropri-
ate for linear systems is used to control the plate’s acceleration.
The method entails converting all signals to the frequency
domain, where the magnitude and phase of the desired and
measured signals are compared at each frequency.

Let Y (s) be the discrete Fourier transform of the numerical
representation of the vector of measured acceleration com-
ponents y(t) = [p̈d, p̈y, p̈z, αx, αx, αx]T during one cycle.
Let D(s) be the discrete Fourier transform of the numerical
representation of the vector of desired acceleration components
d(t) = [p̈dx, p̈

d
y, p̈

d
z , α

d
x, α

d
x, α

d
x]
T during one cycle. Let U(s) be

the discrete Fourier transform of the numerical representation
of the six control voltages sent to the speakers u(t) =
[V1, V2, V3, V4, V5, V6]T during one cycle.

An initialization routine measures the plate’s acceleration
response to sinusoidal input voltages sent to one speaker for
a range of frequencies. This process is then repeated for the
other five speakers. From this data, we construct a discrete
approximation to the system’s six by six transfer function
matrix G(s), where Y (s) = G(s)U(s). We use the iterative
control law

U(s)← U(s) + kG−1(s) (D(s)− Y (s)) , (24)

where k = 0.05, to drive the magnitude and phase of the
plate’s acceleration components at each frequency to their
desired values. Figure 7 shows an example of the desired
and measured acceleration profiles in the time domain for a
sinusoidal motion primitive after 50 controller updates.

B. results

superposition of videos and fields

X. CONCLUSIONS

extension to parts with planar extent
how to characterize the class of obtainable fields
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Fig. 7. TO BE REPLACED WITH SINUSOIDAL MOTION PRIMI-
TIVE WITH LEGEND AND, LABELS, AND CORRECT ORDERING OF
GRAPHS
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