
1

Design Competition 2013 – Milestone 2
Demonstrate to Nick by Wed. 1/30/2013

You goal is to write some code for a robot (that you don't have yet). The robot is differential drive – it has 2
wheels and a caster. The robot has 2 bump sensors, one on the left, one on the right, and overlap in the front.

Hardware
Build two push button circuits, and 4 LED circuits, on the NU32 breadboard.

 The push button circuit needs the resistor to guarantee that there is always a voltage for the NU32 to

read, otherwise the voltage would drift and be unreliable. In this “pull-up” convention, the NU32 pin is
always 3.3V (“high”), and 0V (“low”) when the button is pushed. We do it like this to make it easier to
tell if the connection is broken, and to stretch your mind a little.

 The LED circuit uses an in-series current-limiting resistor with each LED. The current will be (3.3V -
1.7V / 330Ω) = 5mA. This is for safety – to prevent burning out the LED or the NU32 pin.

 Use E8 and E9 for the push button NU32 pins, and D0, D1, D10, and D11 for the LEDs

The push buttons represent the bump sensors on the robot. Call the button on E8 the left one, or BL, and the
button on E9 the right one, or BR.

The LEDs represent the state of the motors. Call the LED on D0 the left motor, or ML. If ML is on, the motor
would be on. If ML is off, the motor would be off. Call the LED on D1 the right motor, or MR.

Call the LED on D10 the direction of the left motor, or DL. If DL is on, the motor would spin to move the robot
forwards. If DL is off, the motor would spin to move the robot backwards. But only if ML is on! Call the LED on
D11 the direction of the right motor, or DR.

Caster

Motor

Wheel

Bump sensor

Robot you don’t have

N
U

32

E8

E9

D0 D1 D10 D11

NU32 with push buttons and LEDs

2

You can go straight by turning on ML, MR, DL, and DR. You can go backwards by turning ML and ML on, and
DL and DR off.

You can turn left on a dime by making both ML, MR, and DR on, and DL off. You can make a simple turn to the
right by turning on ML and DL, and turning MR and DR off.

Make sense?

Software
Make a project in MPLAB X for the NU32, using DC2013_milestone2.c, NU32.c, NU32.h, and
NU32bootloaded.ld.
Turning the LEDs on and off is simple: set the name, like ML, to 1 for on, and = 0 for off
 Ex: ML = 1; // the ML LED, on D0, is on
 MR = 0; // the MR LED, on D1, is off
Reading the buttons is easy too; the variable name is linked to the state, so by using BL in code, you are
inserting a 1 or 0 wherever you typed BL, depending on if the button is un-pushed or pushed, respectively.

Ex: if(BL) {
ML = 1;

}
else {

ML = 0;
}

This will turn on the left motor if the left button is not pushed (remember the pin is high if not pushed),
and turn the motor off if the button is pushed.

Assignment
Write code so the robot is always driving forward. If the robot hits something on the left, back up, turn right and
continue. If the robot hits something on the right, back up, turn left, and continue. If the robot hits something
from the front (both buttons are hit), back up, turn 180, and continue.

Demo it!

Note about turning
How do you know how far the robot has turned? You would need some type of position sensor for that, but this
robot does not have one, so you'll have to guess. Turn on a motor and wait for a certain amount of time to
pass. Assuming the motor goes at constant velocity, the distance travelled is proportional to time. This is called

ML

MR

DL

DR

ML

MR

DL

DR

ML

MR

DL

DR

ML

MR

DL

DR

3

“dead reckoning”, and it is horrible! Motor speed is proportional to voltage, and voltage decreases as a battery
dies, so using dead reckoning is unreliable.

But it is OK here, since you don't have the robot anyway.

Code hints
Use the core timer functions to keep track of time.
 Ex: WriteCoreTimer(0); // set the timer to 0
 int time = ReadCoreTimer(); // get the timer value -> 40000000 (40M) is 1 second

Use && (and), || (or), == (equals) to compare two values. Use &, |, = to set values

Use while() loops with the timer
 Ex. WriteCoreTimer(0); // set the timer to 0
 // turn the left motor on for 1 second
 while(ReadCoreTimer() < 40000000) {
 ML = 1;
 }
 ML = 0; // turn the left motor off

