Where we are:

Chap 2 Configuration Space
Chap 3 Rigid-Body Motions3.2 Rotations and Angular Velocities
3.3.1 Homogeneous Transformation Matrices
3.3.2 Twists
Chap 4Chap 5

Important concepts, symbols, and equations

- The special Euclidean group $S E(3)$ is a matrix Lie group also known as the group of rigid-body motions or homogeneous transformation matrices in \mathbb{R}^{3}.

$$
T=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{1} \\
r_{21} & r_{22} & r_{23} & p_{2} \\
r_{31} & r_{32} & r_{33} & p_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \in S E(3) \quad R \in S O(3) \text { and } p \in \mathbb{R}^{3}
$$

- The inverse of $T \in S E(3)$ is

$$
T^{-1}=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
R^{\mathrm{T}} & -R^{\mathrm{T}} p \\
0 & 1
\end{array}\right]
$$

Important concepts, symbols, and equations (cont.)

- Three uses of HT matrices:

1. Represent a configuration. $T_{a b}$ represents frame $\{\mathrm{b}\}$ relative to $\{\mathrm{a}\}$.
2. Change the reference frame of a vector or frame.

$$
\begin{aligned}
T_{a b} T_{b c} & =T_{a p} T_{\phi c}=T_{a c} \\
T_{a b} v_{b} & =T_{a \phi} v_{p}=v_{a}
\end{aligned}
$$

v should be written in
homogeneous coordinates, $v=\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & 1\end{array}\right]^{\mathrm{T}}$.
3. Displace a vector or frame. $T=(R, p)=\operatorname{Trans}(p) \operatorname{Rot}(\widehat{\omega}, \theta)$

$$
\operatorname{Trans}(p)=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & p_{x} \\
0 & 1 & 0 & p_{y} \\
0 & 0 & 1 & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]}_{\text {Modern Robotics, Lynch and Park, Cambridge University Press }} \operatorname{Rot}(\hat{\omega}, \theta)=\left[\begin{array}{cc}
R & 0 \\
0 & 1
\end{array}\right]
$$

Important concepts, symbols, and equations (cont.)

Space-frame transformation:
$T_{s b}=T T_{s b}=\quad \operatorname{Trans}(p)$
$\operatorname{Rot}(\widehat{\omega}, \theta)$
$T_{s b}$
2. translate $\left\{\mathrm{b}^{\prime}\right\}$ by p

1. rotate $\{\mathrm{b}\}$ by θ about $\widehat{\omega}$ in $\{s\}$ to get $\left\{b^{\prime}\right\}$ (moves $\{b\}$ origin)

Body-frame transformation:
$T_{s b^{\prime \prime}}=T_{s b} T=$
$T_{s b}$
Trans (p)
$\operatorname{Rot}(\widehat{\omega}, \theta)$

1. translate $\{\mathbf{b}\}$ by p
in $\{b\}$ to get $\left\{b{ }^{\prime}\right\}$
2. rotate $\left\{b^{\prime}\right\}$ by θ about $\widehat{\omega}$ in $\left\{b^{\prime}\right\}$ to get $\left\{b^{\prime \prime}\right\}$

Important concepts, symbols, and equations (cont.)

Any rigid-body velocity can represented as a screw axis (a direction $\hat{s} \in S^{2}$, a point $q \in \mathbb{R}^{3}$ on the screw, and the pitch (linear speed/angular speed) of the screw $h)$, plus the speed along the screw $\dot{\theta}$.

If h is infinite, $\dot{\theta}$ is the linear speed. Otherwise, it is the angular speed.

Important concepts, symbols, and equations (cont.)

The twist $\mathcal{V}_{a}=\left(\omega_{a}, v_{a}\right) \in \mathbb{R}^{3}$ is the angular velocity expressed in $\{\mathrm{a}\}$ and the linear velocity of the origin of $\{a\}$ expressed in $\{a\}$.

Important concepts, symbols, and equations (cont.)

- To transform a twist from one frame to another,

$\mathcal{V}_{a}=\left[\mathrm{Ad}_{\mathrm{Tab}}\right] \mathcal{V}_{b}$, where the adjoint representation of $T=(R, p)$ is

$$
\left[\operatorname{Ad}_{T}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

Important concepts, symbols, and equations (cont.)

Matrix representation of twists:

$$
\begin{aligned}
& T_{s b}^{-1} \dot{T}_{s b}=\left[\mathcal{V}_{b}\right]=\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right] \in s e(3) \\
& \dot{T}_{s b} T_{s b}^{-1}=\left[\mathcal{V}_{s}\right]=\left[\begin{array}{cc}
{\left[\omega_{s}\right]} & v_{s} \\
0 & 0
\end{array}\right] \in s e(3)
\end{aligned}
$$

where $\operatorname{se}(3)$ is the Lie algebra of $S E(3)$ (the set of all possible \dot{T} when $T=I$).

Important concepts, symbols, and equations (cont.)

Screws and twists:

- for a screw axis $\{q, \hat{s}, h\}$ with finite h,

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right]=\left[\begin{array}{c}
\hat{s} \\
-\hat{s} \times q+h \hat{s}
\end{array}\right]
$$

- "unit" screw axis is $\mathcal{S}=\left[\begin{array}{l}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$, where either (i) $\|\omega\|=1$ or
(ii) $\omega=0$ and $\|v\|=1$
- $\mathcal{V}=\mathcal{S} \dot{\theta}$

Screws and twists

- for a screw axis $\{q, \hat{s}, h\}$ with finite h,

$$
\mathcal{S}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right]=\left[\begin{array}{c}
\hat{s} \\
-\hat{s} \times q+h \hat{s}
\end{array}\right]
$$

- "unit" screw axis is $\mathcal{S}=\left[\begin{array}{l}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$, where either (i) $\|\omega\|=1$ or

$$
\text { (ii) } \omega=0 \text { and }\|v\|=1
$$

What is the dimension of the space of screws?

- $\mathcal{V}=\mathcal{S} \dot{\theta}$

Kinova lightweight 4-dof arm

For J 4 , what is the screw axis S_{b} ? S_{s} ?
For J2?

Write $T_{b c}$.

A camera with frame $\{c\}$ tracks the optical marker on a tool to get its frame $\{\mathrm{t}\}$ relative to $\{\mathrm{c}\}$. This transformation is T_{1}. A space frame $\{\mathrm{s}\}$ is attached to the floor of the room, and the camera observes its configuration relative to $\{\mathrm{c}\}$ as T_{2}. A robot arm has a mounting frame $\{\mathrm{m}\}$ which has been measured relative to $\{\mathrm{s}\}$ as T_{3}. The arm's encoders and the robot's kinematics tell us the gripper's frame \{e\} relative to $\{\mathrm{m}\}$. This is represented as T_{4}. The gripper should be at the frame $\{\mathrm{g}\}$ relative to $\{\mathrm{t}\}$ to be able to close on the tool and pick it up. This configuration is represented as T_{5}.

Write $T_{e g}$, the configuration of the grasping frame $\{\mathrm{g}\}$ relative to the current end-effector frame $\{\mathrm{e}\}$, in terms of $T_{1}, T_{2}, T_{3}, T_{4}$, and T_{5}.

