Where we are:

Chap 2 Chap 3

Chap 4
Chap 5
Chap 6
Chap 8
Chap 9
Chap 11
Chap 13

Configuration Space Rigid-Body Motions
3.2.1 Rotation Matrices

Forward Kinematics
Velocity Kinematics and Statics
Inverse Kinematics
Dynamics of Open Chains
Trajectory Generation
Robot Control
Wheeled Mobile Robots

Important concepts, symbols, and equations

- We often define a fixed space frame $\{\mathrm{s}\}$ and a body frame $\{b\}$ attached to some body of interest. All frames are instantaneously stationary.
- Right-handed frames, and right-hand rule for positive rotation.

- Special orthogonal group $S O(3)$: matrices R in $\mathbb{R}^{3 \times 3}$ where $R^{\mathrm{T}} R=I$, $\operatorname{det} R=1$. R is a rotation matrix. Implicit representation with 9 numbers for 3 dof.

Important concepts, symbols, and equations (cont.)

- A group is a set of elements $G=\{a, b, c \ldots\}$ and a binary operation • satisfying

closure

associativity

identity element exists
inverse exists
$a \cdot b \in G$ for all $a, b \in G$
$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
there is an $I \in G$ such that $a \cdot I=I \cdot a=a$ for each $a \in G$
for each $a \in G$, there exists $a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=I$

Integers under addition? Nonnegative integers under addition? Square real matrices under multiplication? What is a Lie group?

Important concepts, symbols, and equations (cont.)

- $S O(3)$ is a matrix (Lie) group (the group operation is matrix multiplication).
closure: $\quad R_{1} R_{2} \in S O(3)$
associative: $\quad\left(R_{1} R_{2}\right) R_{3}=R_{1}\left(R_{2} R_{3}\right)$ (not commutative! $R_{1} R_{2} \neq R_{2} R_{1}$ generally) identity: identity matrix I
inverse: matrix inverse
$R^{\mathrm{T}} R=I$, so $R^{-1}=R^{\mathrm{T}}$.
For $x \in \mathbb{R}^{3},\|x\|=\|R x\|$.

Important concepts, symbols, and equations (cont.)

- Uses of a rotation matrix:

1. Represent an orientation. $R_{a b}$ represents orientation of $\{b\}$ in $\{a\}$.
2. Change the reference frame of a vector or frame.
subscript cancellation:

$$
\begin{aligned}
R_{a b} R_{b c} & =R_{a \phi} R_{\not b c}=R_{a c} \\
R_{a b} p_{b} & =R_{a \not p} p_{\phi}=p_{a}
\end{aligned}
$$

3. Rotate a vector or frame. $R=R_{c d}=\operatorname{Rot}(\hat{w}, \theta)$, axis \hat{w} expressed in $\{\mathrm{c}\}$.

$$
\begin{aligned}
& p_{c}^{\prime}=R_{c d} p_{c} \\
& R_{a b}=R R_{a b} \text { (no subscript cancellation) } \\
& R_{a b \prime \prime}^{\prime \prime}\left.=R_{a b} R \quad \text { (after rotating about axis in }\{\mathrm{a}\}\right) \\
&\text { (atating about axis in }\{\mathrm{b}\})
\end{aligned}
$$

$R_{a b}=$

$$
p_{b}=
$$

Given $R_{1}=R_{a b}, R_{2}=R_{b c}$, and $R_{3}=R_{a d}$, write $R_{d c}$ in terms of R_{1}, R_{2}, and R_{3} (no inverses!).

Given p_{b}, what is p_{d} in terms of R_{1}, R_{2}, and R_{3} (no inverses)?

$$
R=R_{b a}=\operatorname{Rot}(\hat{w}, \theta): \theta=\pi / 2, \text { axis } \hat{w}=
$$

$$
R_{b c}=R R_{b c}=
$$

$$
R_{b c}=R_{b c} R=
$$

| orientation representation | \# nums imp/exp? pros cons | |
| :--- | :--- | :--- | :--- |
| Euler angles, roll-pitch-yaw | | |
| | | |
| Unit quaternions | | |
| Rotation matrices | | |

