Where we are:

Chap 2 **Configuration Space** Chap 3 **Rigid-Body Motions Forward Kinematics** Chap 4 **Velocity Kinematics and Statics** Chap 5 5.1 Manipulator Jacobian 5.2 Statics of Open Chains **Inverse Kinematics** Chap 6 **Dynamics of Open Chains** Chap 8 **Trajectory Generation** Chap 9 **Robot Control** Chap 11 Wheeled Mobile Robots Chap 13

Important concepts, symbols, and equations

Robot statics: $\tau = J_*^T(\theta) \mathcal{F}_*$, where * = s or *b*.

Proper interpretation: if a wrench $-\mathcal{F}$ is applied to the last link, then $\tau = J^{\mathrm{T}}(\theta) \mathcal{F}$ is required to resist it.

If $J(\theta)$ has rank 6, then the robot can *actively* generate an end-effector wrench in any direction. The static equation is useful for force control.

If $J(\theta)$ has rank k < 6, then any applied wrench can be decomposed into the sum of components in k directions requiring motors to resist and components in 6 - k directions that are resisted by the bearings.

What is the 6×3 Jacobian J_b ? What is its rank? What wrenches can be resisted without using the motors?

A linear force *f* to the right is applied to link 3 at the point shown. What is the corresponding wrench $-\mathcal{F}_{b}$? τ needed to resist it?