Where we are:

Chap 2 Configuration Space

Chap 3
Chap 4
Chap 5
Chap 6

Chap 8
Chap 9
Chap 11
Chap 13

Rigid-Body Motions
Forward Kinematics
Velocity Kinematics and Statics Inverse Kinematics
6.1 Analytic Inverse Kinematics
6.2 Numerical Inverse Kinematics

Dynamics of Open Chains
Trajectory Generation
Robot Control
Wheeled Mobile Robots

Important concepts, symbols, and equations

- inverse kinematics (IK): given $T_{s d} \in S E(3)$, find θ such that $T(\theta)=T_{s d}$.
- unlike FK, IK for serial chains could have zero, one, or multiple solutions
situation is reversed for closed chains:

- closed-form (analytical) IK

IK for a 2R robot γ from atan2
α, β from law of cosines

Important concepts, symbols, and equations (cont.)

- numerical IK: iteratively refine an initial guess θ^{0} to find θ^{k} such that $T\left(\theta^{k}\right) \approx T_{s d}$.
- Newton-Raphson root finding
x_{d} : desired function value $f(\theta)$: actual function value at θ

Important concepts, symbols, and equations (cont.)

- vector Taylor expansion: $\quad x_{d}=f\left(\theta_{d}\right)=f\left(\theta^{0}\right)+\underbrace{\left.\frac{\partial f}{\partial \theta}\right|_{\theta^{0}}}_{J\left(\theta^{0}\right)} \underbrace{\left(\theta_{d}-\theta^{0}\right)}_{\Delta \theta}$, h.o.t.

$$
\begin{equation*}
\text { linear approximation: } J\left(\theta^{0}\right) \Delta \theta=x_{d}-f\left(\theta^{0}\right) \tag{1}
\end{equation*}
$$

linear correction to the guess θ^{0} : $\quad \Delta \theta=J^{-1}\left(\theta^{0}\right)\left(x_{d}-f\left(\theta^{0}\right)\right)$

- if J is not invertible, use the pseudoinverse: $\Delta \theta^{*}=J^{\dagger}\left(\theta^{0}\right)\left(x_{d}-f\left(\theta^{0}\right)\right)$

If there exists a $\Delta \theta$ exactly satisfying (1), then $\Delta \theta^{*}$ has the smallest 2-norm among all solutions.

If there is no $\Delta \theta$ exactly satisfying (1), then $\Delta \theta^{*}$ comes closest in the 2-norm sense.

Important concepts, symbols, and equations (cont.)

Special cases of pseudoinverse for $J \in \mathbb{R}^{m \times n}$ (m e-e velocity directions, n joints):

- If J is full rank and square: $\quad J^{\dagger}=J^{-1}$
- If J is full rank and tall $(m>n)$: $\quad J^{\dagger}=\left(J^{\mathrm{T}} J\right)^{-1} J^{\mathrm{T}} \in \mathbb{R}^{n \times m}$ (the "left inverse")
- If J is full rank and wide $(n>m): \quad J^{\dagger}=J^{\mathrm{T}}\left(J J^{\mathrm{T}}\right)^{-1} \in \mathbb{R}^{n \times m}$ (the "right inverse")

Important concepts, symbols, and equations (cont.)

- Numerical inverse kinematics, coordinate version:
(a) Initialization: Given $x_{d} \in \mathbb{R}^{m}$ and an initial guess $\theta^{0} \in \mathbb{R}^{n}$, set $i=0$.
(b) Set $e=x_{d}-f\left(\theta^{i}\right)$. While $\|e\|>\epsilon$ for some small ϵ :
- Set $\theta^{i+1}=\theta^{i}+J^{\dagger}\left(\theta^{i}\right) e$.
- Increment i.
- Numerical inverse kinematics, geometric version:
(a) Initialization: Given $T_{s d}$ and an initial guess $\theta^{0} \in \mathbb{R}^{n}$, set $i=0$.
(b) Set $\left[\mathcal{V}_{b}\right]=\log \left(T_{s b}^{-1}\left(\theta^{i}\right) T_{s d}\right)$. While $\left\|\omega_{b}\right\|>\epsilon_{\omega}$ or $\left\|v_{b}\right\|>\epsilon_{v}$ for small $\epsilon_{\omega}, \epsilon_{v}$:
- Set $\theta^{i+1}=\theta^{i}+J_{b}^{\dagger}\left(\theta^{i}\right) \mathcal{V}_{b}$.
- Increment i.

Illustrate Newton-Raphson root finding for initial guesses $\theta^{0}=3.6$. and $\theta^{0}=0$.

What if $\theta^{0}=3.1$ and this were a joint angle?

For a robot controller, what's a good choice for the initial guess θ^{0} ?

Graphically find a "good" solution to $A x=b$, e.g., $x=A^{\dagger} b$.

1) $A=\left[\begin{array}{ll}12\end{array}\right], b=3$
2) $A=\left[\begin{array}{ll}1 & 2\end{array}\right]^{\mathrm{T}}, b=\left[\begin{array}{ll}0 & 3\end{array}\right]^{\mathrm{T}}$

$3 \times$ PPRS parallel

 manipulatorKUKA Systems North America LLC (patent pending)

