Where we are:

Chap 2	Configuration Space
Chap 3	Rigid-Body Motions
Chap 4	Forward Kinematics
Chap 5	Velocity Kinematics and Statics
Chap 6	Inverse Kinematics
	6.1 Analytic Inverse Kinematics
	6.2 Numerical Inverse Kinematics
Chap 8	Dynamics of Open Chains
Chap 9	Trajectory Generation
Chap 11	Robot Control
Chap 13	Wheeled Mobile Robots

- inverse kinematics (IK): given $T_{sd} \in SE(3)$, find θ such that $T(\theta) = T_{sd}$.
- unlike FK, IK for serial chains could have zero, one, or multiple solutions

situation is reversed for closed chains:

closed-form (analytical) IK

law of cosines

- **numerical IK**: iteratively refine an initial guess θ^0 to find θ^k such that $T(\theta^k) \approx T_{sd}$
- **Newton-Raphson root finding**

: desired function value

 $f(\theta)$: actual function value at θ

$$\Delta \theta = \left(\frac{\partial f}{\partial \theta}(\theta^0)\right)^{-1} (x_d - f(\theta^0))$$

• vector Taylor expansion: $x_d = f(\theta_d) = f(\theta^0) + \underbrace{\frac{\partial f}{\partial \theta}\Big|_{\theta^0}}_{J(\theta^0)} \underbrace{(\theta_d - \theta^0)}_{\Delta \theta} + \text{h.o.t.}$

linear approximation:
$$J(\theta^0) \Delta \theta = x_d - f(\theta^0)$$
 (1)

linear correction to the guess θ^0 : $\Delta \theta = J^{-1}(\theta^0) (x_d - f(\theta^0))$

- if *J* is not invertible, use the **pseudoinverse**: $\Delta \theta^* = J^{\dagger}(\theta^0) (x_d f(\theta^0))$
 - If there exists a $\Delta\theta$ exactly satisfying (1), then $\Delta\theta^*$ has the smallest 2-norm among all solutions.

If there is no $\Delta\theta$ exactly satisfying (1), then $\Delta\theta^*$ comes closest in the 2-norm sense.

Special cases of pseudoinverse for $J \in \mathbb{R}^{m \times n}$ (m e-e velocity directions, n joints):

• If J is full rank and square: $J^{\dagger} = J^{-1}$

• If J is full rank and tall (m > n): $J^{\dagger} = (J^{T}J)^{-1}J^{T} \in \mathbb{R}^{n \times m}$ (the "left inverse")

• If J is full rank and wide (n > m): $J^{\dagger} = J^{T} (JJ^{T})^{-1} \in \mathbb{R}^{n \times m}$ (the "right inverse")

- Numerical inverse kinematics, coordinate version:
 - (a) **Initialization**: Given $x_d \in \mathbb{R}^m$ and an initial guess $\theta^0 \in \mathbb{R}^n$, set i = 0.
 - (b) Set $e = x_d f(\theta^i)$. While $||e|| > \epsilon$ for some small ϵ :
 - Set $\theta^{i+1} = \theta^i + J^{\dagger}(\theta^i)e$.
 - Increment i.
- Numerical inverse kinematics, geometric version:
 - (a) **Initialization**: Given T_{sd} and an initial guess $\theta^0 \in \mathbb{R}^n$, set i = 0.
 - (b) Set $[\mathcal{V}_b] = \log (T_{sb}^{-1}(\theta^i)T_{sd})$. While $\|\omega_b\| > \epsilon_\omega$ or $\|v_b\| > \epsilon_v$ for small $\epsilon_\omega, \epsilon_v$:
 - Set $\theta^{i+1} = \theta^i + J_b^{\dagger}(\theta^i)\mathcal{V}_b$.
 - Increment i.

Illustrate Newton-Raphson root finding for initial guesses $\theta^0 = 3.6$. and $\theta^0 = 0$.

What if $\theta^0 = 3.1$ and this were a joint angle?

For a robot controller, what's a good choice for the initial guess θ^0 ?

Graphically find a "good" solution to Ax = b, e.g., $x = A^{\dagger}b$.

1)
$$A = [1 \ 2], b = 3$$

2)
$$A = [1 \ 2]^{T}, b = [0 \ 3]^{T}$$

KUKA Systems North America LLC (patent pending)

IK? FK?