Where we are:

Chap 2	Configuration Space
Chap 3	Rigid-Body Motions
Chap 4	Forward Kinematics
Chap 5	Velocity Kinematics and Statics
Chap 6	Inverse Kinematics
Chap 8	Dynamics of Open Chains
Chap 9	Trajectory Generation
	9.1 Definitions
	9.2 Point-to-Point Trajectories
	9.3 Polynomial Via Point Trajectories
Chap 11	Robot Control
Chap 13	Wheeled Mobile Robots

Trajectory: A specification of the configuration as a function of time.

$$\theta(t), t \in [0, T]$$

Path: A specification of the configuration as a function of a path parameter.

$$\theta(s), s \in [0,1]$$

Time scaling: A mapping s(t): $[0, T] \rightarrow [0, 1]$, from time to the path parameter.

Motion as a function of $\theta(s)$ and s(t):

$$\dot{\theta} = \frac{d\theta}{ds}\dot{s},$$

$$\ddot{\theta} = \frac{d\theta}{ds}\ddot{s} + \frac{d^2\theta}{ds^2}\dot{s}^2$$

Both $\theta(s)$ and s(t) must be twice-differentiable.

straight line in joint space

$$\theta(s) = \theta_{\text{start}} + s(\theta_{\text{end}} - \theta_{\text{start}})$$

straight line in task space

$$X(s) = X_{\text{start}} + s(X_{\text{end}} - X_{\text{start}})$$

$$p(s) = p_{\text{start}} + s(p_{\text{end}} - p_{\text{start}}),$$

$$R(s) = R_{\text{start}} \exp(\log(R_{\text{start}}^{\text{T}} R_{\text{end}})s)$$

Third-order polynomial time scaling

$$s(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$

$$\dot{s}(t) = a_1 + 2a_2t + 3a_3t^2$$

$$s(0) = 0$$
 $\dot{s}(0) = 0$ $\dot{s}(0) = 0$ $a_0 = 0, \ a_1 = 0, \ a_2 = \frac{3}{T^2}, \ a_3 = -\frac{2}{T^3}$ $s(T) = 0$ $\dot{s}(T) = 0$

$$s(0) = 0$$

$$\dot{s}(0) = 0$$

$$s(T) = 1$$

$$\dot{s}(T) = 0$$

Fifth-order polynomial time scaling

$$s(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5$$

$$s(0) = 0$$
 $\dot{s}(0) = 0$ $\ddot{s}(0) = 0$
 $s(T) = 1$ $\dot{s}(T) = 0$ $\ddot{s}(T) = 0$

Trapezoidal time scaling

S-curve time scaling

Polynomial interpolation through via points

- third-order interpolation using via times, configurations, and velocities
- third-order interpolation using via times, configurations, and equal velocities and accelerations before and after vias

Many other methods, including **B-splines** (paths stay within convex hull of control points, but don't pass through them).

Give an expression for the path $\theta(s)$, $s \in [0,1]$.

What kind of time scaling can be used to obtain a continuous jerk profile?

What is the maximum joint velocity obtained on a straight-line rest-to-rest trajectory with cubic polynomial time scaling?

Describe a circumstance under which the coast phase of the trapezoidal time scaling is not used.

Give an equation to implement a third-order polynomial time-scaled rest-to-rest motion following a screw axis.

A time scaling can be written as s(t) or $\dot{s}(s)$. If $s(t) = at^2$, what is $\dot{s}(s)$?