
1

Design Competition 2013, Milestone 3 – Sensors and Actuators
Demonstrate to Nick by Wed. 2/6/2013 (see Assignment section on the last page)

Now that you have written a basic program for the NU32 (see Milestone 2), let’s look at
interfacing to real-world hardware like sensors and actuators.

Debugging is not specifically sensing or actuating, but it is your most powerful tool when
writing code. Often you cannot write code that works the first time, nor should you try to.
Instead, write only a few lines, test them, and then continue. If you write your whole
program at once, and it fails at the first line, you might be stuck re-writing most of your
code, so don’t write too much without testing.
To debug code on the NU32, send messages containing text back to the NU32_Utility (you
can also send text from the NU32_Utility to the NU32). Good debug statements print
specific strings such as “got to loop”, “exited loop”, “got data”. You can also send the values
in variables or registers: e.g. “i = 10”, “LATA = 0xFFFF”.
To do this, use the sprintf() function to put the text into a character array, and use
NU32_WriteUART1() to send the character array to the computer:

#define MAX_MESSAGE_LENGTH 200
…
char message[MAX_MESSAGE_LENGTH];
…
sprintf(message, "Hello! \r\n");
NU32_WriteUART1(message);

The ‘\r\n’ is the equivalent of sending a press of the ‘enter’ key, to advance the cursor to
the next line.
To send the value of a variable:
 int i = 45;
 sprint(message, “i = %d \r\n”, i);
 NU32_WriteUART1(message);
%d is specific to int, search for the sprintf() function to learn how to send other types of
variables (like floats).
If you format the character array as integers with spaces in between (“space delimited”),
you can use the “plot” ability in the NU32_Utility (the numbers need to be in the range of 0
to 512).

int i1 = read_analog(0)/2; // read_analog() returns 0-1023,
int i2 = read_analog(1)/2; // and the plot wants 0-512, so divide by 2
sprint(message, “%d %d\r\n”, i1, i2);
NU32_WriteUART1(message);

2

When you aren’t hooked up to the computer, printing to an LCD is handy. There are many
sizes of LCDs - some use several pins, others fewer. Think about how much data you need
to display when choosing an LCD.

Figure 1: 16x2 Character LCD, uses many pins

Figure 2: Nokia 5110 84x48 pixel,
SPI LCD, uses fewer pins

3

Sensors

A pushbutton is one of the simplest sensors - you basically just need two conductors to
make contact. As we saw in the last milestone, you need a pull-up or pull-down resistor to
limit the current drawn through the button and provide a consistently defined voltage from
the button.

You can read the signal with a digital input. Set the bit in the “TRIS” register to one to make
a pin an input. The value of the bit in “PORT” is the state of the pin.

TRISAbits.TRISA1 = 1; // make pin A1 an input pin
if (PORTAbits.RA1 == 1) { // if A1 is at 3.3V
 // do some stuff
}

A potentiometer is a resistor with a center tap, physically attached to a knob, and
electrically attached to a “wiper” pin. Between one end of the resistor and the wiper is a
resistance proportional to the angle of the knob, with the rest of the resistance between the
wiper and the other end of the potentiometer. The wiper resistance can be adjusted from
almost zero to the full resistance. Usually you use a pot by putting one end at zero volts and
the other at supply voltage (e.g. 3.3V), so that the voltage at the wiper is a proportional to
the knob angle. Pots typically only travel zero to 180 degrees. Some change by a log scale
(e.g. for audio equipment), but we will use linear ones. The big pots are good for integrating
into mechanisms, and the little ones are good for use with breadboards and setting values
by hand and leaving them.

4

You can only read analog signals (voltages not 0 or 3.3) with analog input pins, which are
located on Port B. There are 16 analog inputs, B0-B15. The analog to digital converter, or
ADC, can burn out if the voltage applied is outside the range of 0-3.3V, so be careful what
you connect the input to. The ADC is 10-bit - it stores the voltage as an integer between 0
and 1023; 0 for 0V, and 1023 for 3.3V

init_analog();
…
int i = analog_read(2); // read the voltage at pin B2, number could be 0 to 15
 // i will be in the range of 0 to 1023

A phototransistor is semiconductor that allows current to flow when it is hit by light in
the visible (the lens is clear) or IR (the lens is black) frequencies. Phototransistors are put
in series with a resistor and the junction is read by an analog input pin. The bigger the
resistance, the bigger the output voltage, but also the greater the sensitivity to ambient
light. Many DC robots have been blinded by over-sensitive phototransistor circuits, so take
care!

Putting tape around the phototransistor lens can help block light from the sides, and
designing a cone around the lens, so that only light from the LED you intend to use can hit
the lens, is a good idea.

Phototransistors are often used in two ways, as optoreflectors or optointerrupters.
Optoreflectors contain a light source in parallel with the phototransistor. The light must
reflect off of a surface for the sensor to pick it up. The emitting angle and receiving angle
are important here; you want narrow angles to pinpoint objects, like in the case of a laser
targeting retroreflective tape, and wide angles for color-sensing. Retroreflective tape is a
special reflector used in road signs. It contains tiny spheres. Light that enters the spheres
bounces around and a large amount of it reflects back at the same angle that it came in,
right back at the light source. The Prey robots will be covered in retroreflective tape! This
strong reflection is great for a “yes” or “no” signal that tells you if your sensor sees the tape.

Figure 3: Pre-packaged optoreflector

5

An optointerrupter has the light source pointed directly at the sensor. If something gets in
the way, the light is blocked and you get a clear indication that an object is there.

Figure 4: A pre-packaged optointerrupter

Phototransistor circuits create analog voltage outputs. You can read them and interpret the
value in code, like you do with any analog signal, or you can build a circuit to turn the signal
into a digital one that is easier to interpret in code.

One way to change an analog signal to a digital one with circuitry is to ensure that the
signal is almost square - close to zero or close to 3.3V, and then put the signal on the input
of an inverter like the 74HC04N or 74HC14N. The inverter will square up the signal to
make it look digital, and you could read it the same way you read a push button.

Another way is to put the analog signal into a comparator, like the LM311, and build a
potentiometer circuit for the other input of the comparator. You can threshold the
phototransistor voltage this way - the comparator will tell you when one value is greater
than the other, and you can read the digital output of the comparator the same way you
read a push button.

Figure 5: The input pin will see HIGH when the PT voltage is greater than the pot voltage

6

An encoder has two optointerruptors arranged around a disc with slits, and the whole
assembly is mounted on a rotating shaft. As the disc rotates, you see the following output
from the sensors:

This signal is called quadrature encoding. By looking at how often the signal pulses, you can
calculate speed. By counting the pulses, you can calculate displacement using:
 Disp = number_of_pulses / pulses_per_revolution * circumference_of_wheel
If the disc is on the motor shaft, your reading will be amplified by the gear ratio of the
motor, because the motor shaft spins faster than the output gear shaft, but the signal has
some inaccuracy due to backlash of the gearhead. If you get enough slits on the disc, you
can put the disc on the wheel and calculate the position of your robot relative to the
starting position, but only if the wheel doesn't slip! Navigation by encoders is a type of
dead- reckoning. This is more accurate than calculating distance based on time and motor
speeds (as in Milestone 2), but the errors integrate with time. Using encoders to calculate
turn angle is fine to do, but if you keep adding up the encoder counts with time in order to
calculate your position, soon you will have large errors in your estimation of position.

An ultrasonic range finder is a prebuilt sensor that can tell you the distance from the
sensor to an object in front of it. Sometimes you get lucky and a prebuilt sensor works as
advertised - you ask “what is the distance”, and it replies with an accurate measurement.
But with most sensors this is not so easy. To use the HC-SR04 ultrasonic sensor, raise the
“TRIG” pin high very briefly. This will make the “ECHO” pin go high. Note the time this
happens. The sensor will emit several 40kHz pulses. These ultrasonic waves bounce
around the room, and some of the echos will hit the sensor, which causes the echo pin to go
low. When the echo pin goes low, note the timer again. Hopefully, an object directly in front
of the sensor bounced a wave directly back to the sensor. This shortest-path time is linearly
proportional to the distance, based on the speed of sound in air. But rather than rely on
that number, do some calibration. Measure the time for several known distances, and
calculate the multiplication factor you should use to obtain distance.
 init_ultrasonic();
 …
 int flight_time = read_ultrasonic(); // returns the flight time in nanoseconds
 // now apply some formula with a calibrated slope to calculate distance

7

Note that sometimes the sensor misses the reflection, or picks up other reflections that are
further away, giving you a bad reading; thus thorough testing is necessary. Try in a large
open room; small, cluttered rooms seem to add a lot of noise to the signal. The function in
the sample code attempts to produce better data by averaging 5 reads – but that isn’t a
great way to filter the signal. Can you think of a way to do it better?

There are lots of sensors out there - look for more sensor breakout boards on
www.sparkfun.com, www.adafruit.com, www.seeedstduio.com, www.parallax.com, and
many more.

Actuators

DC motors are (electrically) like a resistor and inductor in series. The angular velocity of
the motor is proportional to voltage, and the torque is proportional to current. We have a
single voltage supply (from the wall or a battery), so it is inefficient to create different
voltages for the motor to get different speeds. Instead, we will turn the motor on and off at
a high frequency. The on and off voltage values will average out, so the time duration spent
in the on state determines speed – the longer you stay on, the faster you go. This is called
pulse width modulation (PWM).

DC motors are very fast with very low torque. We often add a gearhead (or buy a motor
with a gearhead already attached) to reduce the speed and increase the torque. A gearhead
motor is usually specified by its voltage and the speed at that voltage. Use half the voltage
and you get about half the speed. If you run the motor at higher voltages, you risk wearing
out the motor earlier than it is rated for - the brushes can wear out, the motor windings can
melt or short, and the bearings can seize up.

The gearhead adds some friction, so it may take a few volts to get the motor to start
turning. The gearhead friction results in the loss of transmission of torque and speed, and
since changing the direction of the motor makes the gears separate, backlash could be as
much as a few degrees.

8

RC servomotors are cheap, provide high torque and low speeds, and are control position.
You supply power (6V), ground, and a signal proportional to the angle you want it to go to,
and you can assume it will go there, unless it jams on something. Servos have a
potentiometer at the last gear stage to measure position. They have a physical stop, so they
can only go +/-90 degrees. The servos we have use 6V on the red wire, ground on the
brown wire, and signal on the orange wire.
 init_rcservo();
 …
 Set_rcservo(45); // set the servo to 45 degrees, or a number between 0 and 180
Although the input signal is supposed to be standard, different servos will convert the
control signal to different sets of angles. The sample code uses a function that should work
for most servos, but if you notice your servo “talking” (making a lot of noise or vibration)
near 0 degrees or 180 degrees, back off, and only set your servo to angles in a smaller
range, like 10-170. If you are powering your servo off the wall supply (6V), the large servo
can draw enough current to reset your NU32, so stick to the little servos if you are on wall
power.

If you want to keep position control, but rotate more than the allowed maximum rotation of
the servomotor, you can cut out the physical stop, remove the potentiometer from the loop,
reinsert the potentiometer somewhere else in your mechanism, and get the same closed-
loop behavior (control the angle of your mechanism). You can also cut out the hard stop,
remove the potentiometer from the loop and set it to the middle of the range, changing the
position command into a velocity command. However, altering a servo will shorten its
lifespan - the motors are not designed to continuously run and can overheat.

A stepper motor is very different from a DC motor. When you turn on the electromagnets
in the motor, the core (and output shaft) will align with the electromagnets. When you
cycle through which magnets are on, the motor shaft will snap to specific angles. Stepper
motors have low torque and are good for setting a position without feedback from a
sensor, but the motor can stutter and cause you to lose track of its position. Stepper motors
always use power, even to hold a position.

Brushless motors are similar to steppers, but contain a built-in sensor and a controller.
They can run at very high speeds, can provide high torques, and are thus a good choice for

9

drive motors in RC planes, helicopters, or high speed cars, but are often overkill for our
little robots.

Solenoids create a push or pull action and require a spring or other mechanism to return it
to its default position. They need to be continuously powered, similar to the stepper motor.
They are not used often (in DC robots) because you can usually design a mechanism with a
different actuator to perform the same function better. We will talk about mechanism
design soon.

10

Assignment:

For Milestone 3, do the following, testing after each step and building up the code as you
go:

1. Build a potentiometer circuit, read the value, and print it with the plotting format
that NU32_Utility requires. Verify that plotting the graph of voltage works as
expected when you turn the pot.

2. Build a phototransistor circuit as an optoreflector. Read the voltage value and add it
to the output string you created in the last step, and plot both pot voltage and
optoreflector voltage.

3. Add the ultrasonic sensor and read the distance value. Convert the value into the

range of 0 to 512, and add that to the plot (remember it has to be an int, not a
double, when you print it to the plotting function in NU32_Utility).

4. Add a small servo to your circuit. Make the angle of the servo shaft proportional to

the potentiometer angle.

Demo this to Nick, and email him the main C file for reference.

