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Foreword by Roger
Brockett

In the 1870s, Felix Klein was developing his far-reaching Erlangen Program,
which cemented the relationship between geometry and group theoretic ideas.
With Sophus Lie’s nearly simultaneous development of a theory of continuous
(Lie) groups, important new tools involving infinitesimal analysis based on Lie
algebraic ideas became available for the study of a very wide range of geomet-
ric problems. Even today, the thinking behind these ideas continues to guide
developments in important areas of mathematics. Kinematic mechanisms are,
of course, more than just geometry; they need to accelerate, avoid collisions,
etc., but first of all they are geometrical objects and the ideas of Klein and Lie
apply. The groups of rigid motions in two or three dimensions, as they appear
in robotics, are important examples in the work of Klein and Lie.

In the mathematics literature the representation of elements of a Lie group in
terms of exponentials usually takes one of two di↵erent forms. These are known
as exponential coordinates of the first kind and exponential coordinates of the
second kind. For the first kind one has X = e(A1x1+A2x2··· ). For the second kind
this is replaced by X = eA1x1eA2x2 · · · . Up until now, the first choice has found
little utility in the study of kinematics whereas the second choice, a special case
having already shown up in Euler parametrizations of the orthogonal group,
turns out to be remarkably well-suited for the description of open kinematic
chains consisting of the concatenation of single degree of freedom links. This
is all nicely explained in Chapter 4 of this book. Together with the fact that
PeAP�1 = ePAP�1

, the second form allows one to express a wide variety of
kinematic problems very succinctly. From a historical perspective, the use of
the product of exponentials to represent robotic movement, as the authors have
done here, can be seen as illustrating the practical utility of the 150-year-old
ideas of the geometers Klein and Lie.

In 1983 I was invited to speak at the triennial Mathematical Theory of Net-

ix

x Foreword

works and Systems Conference in Beer Sheva, Israel, and after a little thought
I decided to try to explain something about what my recent experiences had
taught me. By then I had some experience in teaching a robotics course that
discussed kinematics, including the use of the product of exponentials represen-
tation of kinematic chains. From the 1960s onward eAt had played a central
role in system theory and signal processing, so at this conference a familiarity,
even an a↵ection, for the matrix exponential could be counted on. Given this, it
was natural for me to pick something eAx-related for the talk. Although I had
no reason to think that there would be many in the audience with an interest
in kinematics, I still hoped I could say something interesting and maybe even
inspire further developments. The result was the paper referred to in the preface
that follows.

In this book, Frank and Kevin have provided a wonderfully clear and patient
explanation of their subject. They translate the foundation laid out by Klein
and Lie 150 years ago to the modern practice of robotics, at a level appropriate
for undergraduate engineers. After an elegant discussion of fundamental prop-
erties of configuration spaces, they introduce the Lie group representations of
rigid-body configurations, and the corresponding representations of velocities
and forces, used throughout the book. This consistent perspective is carried
through foundational robotics topics including forward, inverse, and di↵erential
kinematics of open chains, robot dynamics, trajectory generation, and robot
control, and more specialized topics such as kinematics of closed chains, motion
planning, robot manipulation, planning and control for wheeled mobile robots,
and control of mobile manipulators.

I am confident that this book will be a valuable resource for a generation of
students and practitioners of robotics.

Roger Brockett
Cambridge, Massachusetts, USA
November, 2016
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Foreword by Matthew
Mason

Robotics is about turning ideas into action. Somehow, robots turn abstract
goals into physical action: sending power to motors, monitoring motions, and
guiding things towards the goal. Every human can perform this trick, but it
is nonetheless so intriguing that it has captivated philosophers and scientists,
including Descartes and many others.

What is the secret? Did some roboticist have a eureka moment? Did some
pair of teenage entrepreneurs hit on the key idea in their garage? To the con-
trary, it is not a single idea. It is a substantial body of scientific and engineer-
ing results, accumulated over centuries. It draws primarily from mathematics,
physics, mechanical engineering, electrical engineering, and computer science,
but also from philosophy, psychology, biology and other fields.

Robotics is the gathering place of these ideas. Robotics provides motivation.
Robotics tests ideas and steers continuing research. Finally, robotics is the
proof. Observing a robot’s behavior is the nearly compelling proof that machines
can be aware of their surroundings, can develop meaningful goals, and can act
e↵ectively to accomplish those goals. The same principles apply to a thermostat
or a fly-ball governor, but few are persuaded by watching a thermostat. Nearly
all are persuaded by watching a robot soccer team.

The heart of robotics is motion – controlled programmable motion – which
brings us to the present text. Modern Robotics imparts the most important
insights of robotics: the nature of motion, the motions available to rigid bodies,
the use of kinematic constraint to organize motions, the mechanisms that enable
general programmable motion, the static and dynamic character of mechanisms,
and the challenges and approaches to control, programming, and planning mo-
tions. Modern Robotics presents this material with a clarity that makes it acces-
sible to undergraduate students. It is distinguished from other undergraduate
texts in two important ways.

xi

xii Foreword

First, in addressing rigid-body motion, Modern Robotics presents not only
the classical geometrical underpinnings and representations, but also their ex-
pression using modern matrix exponentials, and the connection to Lie algebras.
The rewards to the students are two-fold: a deeper understanding of motion,
and better practical tools.

Second, Modern Robotics goes beyond a focus on robot mechanisms to ad-
dress the interaction with objects in the surrounding world. When robots make
contact with the real world, the result is an ad hoc kinematic mechanism, with
associated statics and dynamics. The mechanism includes kinematic loops, un-
actuated joints, and nonholonomic constraints, all of which will be familiar
concepts to students of Modern Robotics.

Even if this is the only robotics course students take, it will enable them
to analyze, control, and program a wide range of physical systems. With its
introduction to the mechanics of physical interaction, Modern Robotics is also
an excellent beginning for the student who intends to continue with advanced
courses or with original research in robotics.

Matthew T. Mason
Pittsburgh, PA, USA
November, 2016
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Preface

It was at the IEEE International Conference on Robotics and Automation in
Pasadena in 2008 when, over a beer, we decided to write an undergraduate
textbook on robotics. Since 1996, Frank had been teaching robot kinematics to
Seoul National University undergraduates using his own lecture notes; by 2008
these notes had evolved to the kernel around which this book was written. Kevin
had been teaching his introductory robotics class at Northwestern University
from his own set of notes, with content drawn from an eclectic collection of
papers and books.

We believe that there is a distinct and unifying perspective to mechanics,
planning, and control for robots that is lost if these subjects are studied inde-
pendently, or as part of other more traditional subjects. At the 2008 meeting,
we noted the lack of a textbook that (a) treated these topics in a unified way,
with plenty of exercises and figures, and (b), most importantly, was written
at a level appropriate for a first robotics course for undergraduates with only
freshman-level physics, ordinary di↵erential equations, linear algebra, and a lit-
tle bit of computing background. We decided that the only sensible recourse
was to write such a book ourselves. (We didn’t know then that it would take
us more than eight years to finish the project!)

A second motivation for this book, and one that we believe sets it apart from
other introductory treatments on robotics, is its emphasis on modern geometric
techniques. Often the most salient physical features of a robot are best captured
by a geometric description. The advantages of the geometric approach have been
recognized for quite some time by practitioners of classical screw theory. What
has made these tools largely inaccessible to undergraduates—the primary tar-
get audience for this book—is that they require an entirely new language of
notations and constructs (screws, twists, wrenches, reciprocity, transversality,
conjugacy, etc.), and their often obscure rules for manipulation and transfor-
mation. On the other hand, the mostly algebraic alternatives to screw theory
often mean that students end up buried in the details of calculation, losing the

xiii
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simple and elegant geometric interpretation that lies at the heart of what they
are calculating.

The breakthrough that makes the techniques of classical screw theory ac-
cessible to a more general audience arrived in the early 1980’s, when Roger
Brockett showed how to mathematically describe kinematic chains in terms of
the Lie group structure of the rigid-body motions [20]. This discovery allowed
one, among other things, to re-invent screw theory simply by appealing to basic
linear algebra and linear di↵erential equations. With this “modern screw the-
ory” the powerful tools of modern di↵erential geometry can be brought to bear
on a wide-ranging collection of robotics problems, some of which we explore
here, others of which are covered in the excellent but more advanced graduate
textbook by Murray, Li and Sastry [122].

As the title indicates, this book covers what we feel to be the fundamentals
of robot mechanics, together with the basics of planning and control. A thor-
ough treatment of all the chapters would likely take two semesters, particularly
when coupled with programming assignments or experiments with robots. The
contents of Chapters 2-6 constitute the minimum essentials, and these topics
should probably be covered in sequence.

The instructor can then selectively choose content from the remaining chap-
ters. At Seoul National University, the undergraduate course M2794.0027 Intro-
duction to Robotics covers, in one semester, Chapters 2-7 and parts of Chapters
10, 11, and 12. At Northwestern, ME 449 Robotic Manipulation covers, in an 11-
week quarter, Chapters 2-6 and 8, then touches on di↵erent topics in Chapters
9-13 depending on the interests of the students and instructor. A course focus-
ing on the kinematics of robot arms and wheeled vehicles could cover chapters
2-7 and 13, while a course on kinematics and motion planning could addition-
ally include Chapters 9 and 10. A course on the mechanics of manipulation
would cover Chapters 2-6, 8, and 12, while a course on robot control would
cover Chapters 2-6, 8, 9, and 11. If the instructor prefers to avoid dynamics
(Chapter 8), the basics of robot control (Chapters 11 and 13) can be covered by
assuming control of velocity at each actuator, not forces and torques. A course
focusing only on motion planning could cover Chapters 2 and 3, Chapter 10 in
depth (possibly supplemented by research papers or other references cited in
that chapter), and Chapter 13.

To help the instructor choose which topics to teach and to help the student
keep track of what she has learned, we have included a summary at the end of
each chapter and a summary of important notation and formulas used through-
out the book (Appendix A). For those whose primary interest in this text is
as an introductory reference, we have attempted to provide a reasonably com-
prehensive, though by no means exhaustive, set of references and bibliographic
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Preface xv

notes at the end of each chapter. Some of the exercises provided at the end of
each chapter extend the basic results covered in the book, and for those who
wish to probe further, these should be of some interest in their own right. Some
of the more advanced material in the book can be used to support independent
study projects.

Another important component of the book is the software, which is written
to reinforce the concepts in the book and to make the formulas operational. The
software was developed primarily by Kevin’s ME 449 students at Northwestern
and is freely downloadable from http://modernrobotics.org. Video lectures
that accompany the textbook are also be available at the website. The intent of
the video content is to “flip” the classroom. Students watch the brief lectures
on their own time, rewinding and rewatching as needed, and class time is fo-
cused more on collaborative problem-solving. This way, the professor is present
when the students are applying the material and discovering the gaps in their
understanding, creating the opportunity for interactive mini-lectures addressing
the concepts that need most reinforcing. We believe that the added value of
the professor is greatest in this interactive role, not in delivering a lecture the
same way it was delivered the previous year. This approach has worked well for
Kevin’s introduction to mechatronics course, http://nu32.org.

Video content is generated using the Lightboard, http://lightboard.info,
created by Michael Peshkin at Northwestern University. We thank him for
sharing this convenient and e↵ective tool for creating instructional videos.

We have also found the V-REP robot simulation software to be a valuable
supplement to the book and its software. This simulation software allows stu-
dents to interactively explore the kinematics of robot arms and mobile manipu-
lators and to animate trajectories that are the result of exercises on kinematics,
dynamics, and control.

While this book presents our own perspective on how to introduce the fun-
damental topics in first courses on robot mechanics, planning, and control, we
acknowledge the excellent textbooks that already exist and that have served
our field well. Among these, we would like to mention as particularly influential
the books by Murray, Li, and Sastry [122]; Craig [32]; Spong, Hutchinson, and
Vidyasagar [177]; Siciliano, Sciavicco, Villani, and Oriolo [171]; Mason [109];
Corke [30]; and the motion planning books by Latombe [80], LaValle [83], and
Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki, and Thrun [27]. In ad-
dition, the Handbook of Robotics [170], edited by Siciliano and Khatib with
a multimedia extension edited by Kröger (http://handbookofrobotics.org),
is a landmark in our field, collecting the perspectives of hundreds of leading
researchers on a huge variety of topics relevant to modern robotics.

It is our pleasure to acknowledge the many people who have been the sources
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of help and inspiration in writing this book. In particular, we would like to
thank our Ph.D. advisors, Roger Brockett and Matt Mason. Brockett laid down
much of the foundation for the geometric approach to robotics employed in this
book. Mason’s pioneering contributions to analysis and planning for manipula-
tion form a cornerstone of modern robotics. We also thank the many students
who provided feedback on various versions of this material, in M2794.0027 at
Seoul National University and in ME 449 at Northwestern University. In par-
ticular, Frank would like to thank Seunghyeon Kim, Keunjun Choi, Jisoo Hong,
Jinkyu Kim, Youngsuk Hong, Wooyoung Kim, Cheongjae Jang, Taeyoon Lee,
Soocheol Noh, Kyumin Park, Seongjae Jeong, Sukho Yoon, Jaewoon Kwen,
Jinhyuk Park, and Jihoon Song, as well as Jim Bobrow and Scott Ploen from
his time at UC Irvine. Kevin would like to thank Matt Elwin, Sherif Mostafa,
Nelson Rosa, Jarvis Schultz, Jian Shi, Mikhail Todes, Huan Weng, and Zack
Woodru↵.

Finally, and most importantly, we thank our wives and families, for putting
up with our late nights and our general unavailability, and for supporting us as
we made the final push to finish the book. Without the love and support of
Hyunmee, Shiyeon, and Soonkyu (Frank) and Yuko, Erin, and Patrick (Kevin),
this book would not exist. We dedicate this book to them.

Kevin M. Lynch
Evanston, Illinois, USA

Frank C. Park
Seoul, Korea

November, 2016

Publication note. The authors consider themselves to be equal contributors
to this book. Author order is alphabetical.

Notes on the updated first edition. Readers are encouraged to consult
the companion website

http://modernrobotics.org

for more information on the Modern Robotics software library, videos, online
courses, robot simulations, practice problems with solutions, errata, a linear
algebra refresher chapter, and more.

Various minor corrections and additions have been made in this update to the
first edition. Thanks to the following people who provided corrections, starting
from the preliminary version of the book posted online in October, 2016:
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H. Andy Nam, Eric Lee, Yuchen Rao, Chainatee Tanakulrongson, Mengjiao
Hong, Kevin Cheng, Jens Lundell, Elton Cheng, Michael Young, Jarvis Schultz,
Logan Springgate, Sofya Akhmametyeva, Aykut Onol, Josh Holcomb, Yue Chen,
Mark Shi, AJ Ibraheem, Yalun Wen, Seongjae Jeong, Josh Mehling, Felix Wang,
Drew Warren, Chris Miller, Clemens Eppner, Zack Woodru↵, Jian Shi, Jixiang
Zhang, Shachar Liberman, Will Wu, Dirk Boysen, Awe Wang, Ville Kyrki, John
Troll, Andrew Taylor, and Nikhil Bakshi.
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Chapter 1

Preview

As an academic discipline, robotics is a relatively young field with highly am-
bitious goals, the ultimate one being the creation of machines that can behave
and think like humans. This attempt to create intelligent machines naturally
leads us first to examine ourselves – to ask, for example, why our bodies are
designed the way they are, how our limbs are coordinated, and how we learn and
perform complex tasks. The sense that the fundamental questions in robotics
are ultimately questions about ourselves is part of what makes robotics such a
fascinating and engaging endeavor.

Our focus in this book is on mechanics, planning, and control for robot
mechanisms. Robot arms are one familiar example. So are wheeled vehicles,
as are robot arms mounted on wheeled vehicles. Basically, a mechanism is con-
structed by connecting rigid bodies, called links, together by means of joints,
so that relative motion between adjacent links becomes possible. Actuation of
the joints, typically by electric motors, then causes the robot to move and exert
forces in desired ways.

The links of a robot mechanism can be arranged in serial fashion, like the
familiar open-chain arm shown in Figure 1.1(a). Robot mechanisms can also
have links that form closed loops, such as the Stewart–Gough platform shown
in Figure 1.1(b). In the case of an open chain, all the joints are actuated, while
in the case of mechanisms with closed loops, only a subset of the joints may be
actuated.

Let us examine more closely the current technology behind robot mecha-
nisms. The links are moved by actuators, which typically are electrically driven
(e.g., by DC or AC motors, stepper motors, or shape memory alloys) but can
also be driven by pneumatic or hydraulic cylinders. In the case of rotating

1

2

(a) An open-chain industrial manipulator,

visualized in V-REP [154].

(b) Stewart–Gough platform. Closed

loops are formed from the base plat-

form, through the legs, through the top

platform, and through the legs back to

the base platform.

Figure 1.1: Open-chain and closed-chain robot mechanisms.

electric motors, these would ideally be lightweight, operate at relatively low ro-
tational speeds (e.g., in the range of hundreds of RPM), and be able to generate
large forces and torques. Since most currently available motors operate at low
torques and at up to thousands of RPM, speed reduction and torque ampli-
fication are required. Examples of such transmissions or transformers include
gears, cable drives, belts and pulleys, and chains and sprockets. These speed-
reduction devices should have zero or low slippage and backlash (defined as
the amount of rotation available at the output of the speed-reduction device
without motion at the input). Brakes may also be attached to stop the robot
quickly or to maintain a stationary posture.

Robots are also equipped with sensors to measure the motion at the joints.
For both revolute and prismatic joints, encoders, potentiometers, or resolvers
measure the displacement and sometimes tachometers are used to measure ve-
locity. Forces and torques at the joints or at the end-e↵ector of the robot can be
measured using various types of force–torque sensors. Additional sensors may
be used to help localize objects or the robot itself, such as vision-only cameras,
RGB-D cameras which measure the color (RGB) and depth (D) to each pixel,
laser range finders, and various types of acoustic sensor.

The study of robotics often includes artificial intelligence and computer per-
ception, but an essential feature of any robot is that it moves in the physical
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Chapter 1. Preview 3

world. Therefore, this book, which is intended to support a first course in
robotics for undergraduates and graduate students, focuses on mechanics, mo-
tion planning, and control of robot mechanisms.

In the rest of this chapter we provide a preview of the rest of the book.

Chapter 2: Configuration Space

As mentioned above, at its most basic level a robot consists of rigid bodies
connected by joints, with the joints driven by actuators. In practice the links
may not be completely rigid, and the joints may be a↵ected by factors such as
elasticity, backlash, friction, and hysteresis. In this book we ignore these e↵ects
for the most part and assume that all links are rigid.

With this assumption, Chapter 2 focuses on representing the configuration
of a robot system, which is a specification of the position of every point of the
robot. Since the robot consists of a collection of rigid bodies connected by
joints, our study begins with understanding the configuration of a rigid body.
We see that the configuration of a rigid body in the plane can be described
using three variables (two for the position and one for the orientation) and the
configuration of a rigid body in space can be described using six variables (three
for the position and three for the orientation). The number of variables is the
number of degrees of freedom (dof) of the rigid body. It is also the dimension
of the configuration space, the space of all configurations of the body.

The dof of a robot, and hence the dimension of its configuration space, is
the sum of the dof of its rigid bodies minus the number of constraints on the
motion of those rigid bodies provided by the joints. For example, the two most
popular joints, revolute (rotational) and prismatic (translational) joints, allow
only one motion freedom between the two bodies they connect. Therefore a
revolute or prismatic joint can be thought of as providing five constraints on
the motion of one spatial rigid body relative to another. Knowing the dof of
a rigid body and the number of constraints provided by joints, we can derive
Grübler’s formula for calculating the dof of general robot mechanisms. For
open-chain robots such as the industrial manipulator of Figure 1.1(a), each
joint is independently actuated and the dof is simply the sum of the freedoms
provided by each joint. For closed chains like the Stewart–Gough platform in
Figure 1.1(b), Grübler’s formula is a convenient way to calculate the dof. Unlike
open-chain robots, some joints of closed chains are not actuated.

Apart from calculating the dof, other configuration space concepts of interest
include the topology (or “shape”) of the configuration space and its repre-
sentation. Two configuration spaces of the same dimension may have di↵erent
shapes, just like a two-dimensional plane has a di↵erent shape from the two-
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dimensional surface of a sphere. These di↵erences become important when de-
termining how to represent the space. The surface of a unit sphere, for example,
could be represented using a minimal number of coordinates, such as latitude
and longitude, or it could be represented by three numbers (x, y, z) subject to
the constraint x2 + y2 + z2 = 1. The former is an explicit parametrization
of the space and the latter is an implicit parametrization of the space. Each
type of representation has its advantages, but in this book we will use implicit
representations of configurations of rigid bodies.

A robot arm is typically equipped with a hand or gripper, more generally
called an end-e↵ector, which interacts with objects in the surrounding world.
To accomplish a task such as picking up an object, we are concerned with the
configuration of a reference frame rigidly attached to the end-e↵ector, and not
necessarily the configuration of the entire arm. We call the space of positions
and orientations of the end-e↵ector frame the task space and note that there
is not a one-to-one mapping between the robot’s configuration space and the
task space. The workspace is defined to be the subset of the task space that
the end-e↵ector frame can reach.

Chapter 3: Rigid-Body Motions

This chapter addresses the problem of how to describe mathematically the mo-
tion of a rigid body moving in three-dimensional physical space. One convenient
way is to attach a reference frame to the rigid body and to develop a way to
quantitatively describe the frame’s position and orientation as it moves. As a
first step, we introduce a 3 ⇥ 3 matrix representation for describing a frame’s
orientation; such a matrix is referred to as a rotation matrix.

A rotation matrix is parametrized by three independent coordinates. The
most natural and intuitive way to visualize a rotation matrix is in terms of its
exponential coordinate representation. That is, given a rotation matrix R,
there exists some unit vector !̂ 2 R3 and angle ✓ 2 [0,⇡] such that the rota-
tion matrix can be obtained by rotating the identity frame (that is, the frame
corresponding to the identity matrix) about !̂ by ✓. The exponential coordi-
nates are defined as ! = !̂✓ 2 R3, which is a three-parameter representation.
There are several other well-known coordinate representations, e.g., Euler an-
gles, Cayley–Rodrigues parameters, and unit quaternions, which are discussed
in Appendix B.

Another reason for focusing on the exponential description of rotations is
that they lead directly to the exponential description of rigid-body motions.
The latter can be viewed as a modern geometric interpretation of classical screw
theory. Keeping the classical terminology as much as possible, we cover in detail
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Chapter 1. Preview 5

the linear algebraic constructs of screw theory, including the unified description
of linear and angular velocities as six-dimensional twists (also known as spa-
tial velocities), and an analogous description of three-dimensional forces and
moments as six-dimensional wrenches (also known as spatial forces).

Chapter 4: Forward Kinematics

For an open chain, the position and orientation of the end-e↵ector are uniquely
determined from the joint positions. The forward kinematics problem is to
find the position and orientation of the reference frame attached to the end-
e↵ector given the set of joint positions. In this chapter we present the product
of exponentials (PoE) formula describing the forward kinematics of open
chains. As the name implies, the PoE formula is directly derived from the expo-
nential coordinate representation for rigid-body motions. Aside from providing
an intuitive and easily visualizable interpretation of the exponential coordinates
as the twists of the joint axes, the PoE formula o↵ers other advantages, like
eliminating the need for link frames (only the base frame and end-e↵ector frame
are required, and these can be chosen arbitrarily).

In Appendix C we also present the Denavit–Hartenberg (D–H) representa-
tion for forward kinematics. The D–H representation uses fewer parameters but
requires that reference frames be attached to each link following special rules of
assignment, which can be cumbersome. Details of the transformation from the
D–H to the PoE representation are also provided in Appendix C.

Chapter 5: Velocity Kinematics and Statics

Velocity kinematics refers to the relationship between the joint linear and an-
gular velocities and those of the end-e↵ector frame. Central to velocity kine-
matics is the Jacobian of the forward kinematics. By multiplying the vector
of joint-velocity rates by this configuration-dependent matrix, the twist of the
end-e↵ector frame can be obtained for any given robot configuration. Kine-
matic singularities, which are configurations in which the end-e↵ector frame
loses the ability to move or rotate in one or more directions, correspond to those
configurations at which the Jacobian matrix fails to have maximal rank. The
manipulability ellipsoid, whose shape indicates the ease with which the robot
can move in various directions, is also derived from the Jacobian.

Finally, the Jacobian is also central to static force analysis. In static equilib-
rium settings, the Jacobian is used to determine what forces and torques need to
be exerted at the joints in order for the end-e↵ector to apply a desired wrench.
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The definition of the Jacobian depends on the representation of the end-
e↵ector velocity, and our preferred representation of the end-e↵ector velocity
is as a six-dimensional twist. We touch briefly on other representations of the
end-e↵ector velocity and their corresponding Jacobians.

Chapter 6: Inverse Kinematics

The inverse kinematics problem is to determine the set of joint positions
that achieves a desired end-e↵ector configuration. For open-chain robots, the
inverse kinematics is in general more involved than the forward kinematics: for
a given set of joint positions there usually exists a unique end-e↵ector position
and orientation but, for a particular end-e↵ector position and orientation, there
may exist multiple solutions to the joint positions, or no solution at all.

In this chapter we first examine a popular class of six-dof open-chain struc-
tures whose inverse kinematics admits a closed-form analytic solution. Itera-
tive numerical algorithms are then derived for solving the inverse kinematics
of general open chains by taking advantage of the inverse of the Jacobian. If
the open-chain robot is kinematically redundant, meaning that it has more
joints than the dimension of the task space, then we use the pseudoinverse of
the Jacobian.

Chapter 7: Kinematics of Closed Chains

While open chains have unique forward kinematics solutions, closed chains of-
ten have multiple forward kinematics solutions, and sometimes even multiple
solutions for the inverse kinematics as well. Also, because closed chains possess
both actuated and passive joints, the kinematic singularity analysis of closed
chains presents subtleties not encountered in open chains. In this chapter we
study the basic concepts and tools for the kinematic analysis of closed chains.
We begin with a detailed case study of mechanisms such as the planar five-bar
linkage and the Stewart–Gough platform. These results are then generalized
into a systematic methodology for the kinematic analysis of more general closed
chains.

Chapter 8: Dynamics of Open Chains

Dynamics is the study of motion taking into account the forces and torques
that cause it. In this chapter we study the dynamics of open-chain robots. In
analogy to the notions of a robot’s forward and inverse kinematics, the forward
dynamics problem is to determine the resulting joint accelerations for a given
set of joint forces and torques. The inverse dynamics problem is to determine
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the input joint torques and forces needed for desired joint accelerations. The
dynamic equations relating the forces and torques to the motion of the robot’s
links are given by a set of second-order ordinary di↵erential equations.

The dynamics for an open-chain robot can be derived using one of two ap-
proaches. In the Lagrangian approach, first a set of coordinates – referred to
as generalized coordinates in the classical dynamics literature – is chosen to
parametrize the configuration space. The sum of the potential and kinetic
energies of the robot’s links are then expressed in terms of the generalized
coordinates and their time derivatives. These are then substituted into the
Euler–Lagrange equations, which then lead to a set of second-order di↵er-
ential equations for the dynamics, expressed in the chosen coordinates for the
configuration space.

The Newton–Euler approach builds on the generalization of f = ma, i.e.,
the equations governing the acceleration of a rigid body given the wrench acting
on it. Given the joint variables and their time derivatives, the Newton–Euler
approach to inverse dynamics is: to propagate the link velocities and accelera-
tions outward from the proximal link to the distal link, in order to determine
the velocity and acceleration of each link; to use the equations of motion for
a rigid body to calculate the wrench (and therefore the joint force or torque)
that must be acting on the outermost link; and to proceed along the links back
toward the base of the robot, calculating the joint forces or torques needed to
create the motion of each link and to support the wrench transmitted to the dis-
tal links. Because of the open-chain structure, the dynamics can be formulated
recursively.

In this chapter we examine both approaches to deriving a robot’s dynamic
equations. Recursive algorithms for both the forward and inverse dynamics, as
well as analytical formulations of the dynamic equations, are presented.

Chapter 9: Trajectory Generation

What sets a robot apart from an automated machine is that it should be easily
reprogrammable for di↵erent tasks. Di↵erent tasks require di↵erent motions,
and it would be unreasonable to expect the user to specify the entire time-
history of each joint for every task; clearly it would be desirable for the robot’s
control computer to “fill in the details” from a small set of task input data.

This chapter is concerned with the automatic generation of joint trajectories
from this set of task input data. Formally, a trajectory consists of a path, which
is a purely geometric description of the sequence of configurations achieved by
a robot, and a time scaling, which specifies the times at which those configu-
rations are reached.
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Often the input task data is given in the form of an ordered set of joint values,
called control points, together with a corresponding set of control times. On the
basis of this data the trajectory generation algorithm produces a trajectory for
each joint which satisfies various user-supplied conditions. In this chapter we
focus on three cases: (i) point-to-point straight-line trajectories in both joint
space and task space; (ii) smooth trajectories passing through a sequence of
timed “via points”; and (iii) time-optimal trajectories along specified paths,
subject to the robot’s dynamics and actuator limits. Finding paths that avoid
collisions is the subject of the next chapter on motion planning.

Chapter 10: Motion Planning

This chapter addresses the problem of finding a collision-free motion for a robot
through a cluttered workspace, while avoiding joint limits, actuator limits, and
other physical constraints imposed on the robot. The path planning problem
is a subproblem of the general motion planning problem that is concerned with
finding a collision-free path between a start and goal configuration, usually
without regard to the dynamics, the duration of the motion, or other constraints
on the motion or control inputs.

There is no single planner applicable to all motion planning problems. In
this chapter we consider three basic approaches: grid-based methods, sampling
methods, and methods based on virtual potential fields.

Chapter 11: Robot Control

A robot arm can exhibit a number of di↵erent behaviors depending on the task
and its environment. It can act as a source of programmed motions for tasks
such as moving an object from one place to another, or tracing a trajectory for
manufacturing applications. It can act as a source of forces, for example when
grinding or polishing a workpiece. In tasks such as writing on a chalkboard, it
must control forces in some directions (the force pressing the chalk against the
board) and motions in other directions (the motion in the plane of the board).
In certain applications, e.g., haptic displays, we may want the robot to act like
a programmable spring, damper, or mass, by controlling its position, velocity,
or acceleration in response to forces applied to it.

In each of these cases, it is the job of the robot controller to convert the
task specification to forces and torques at the actuators. Control strategies to
achieve the behaviors described above are known as motion (or position) con-
trol, force control, hybrid motion–force control, and impedance con-
trol. Which of these behaviors is appropriate depends on both the task and
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the environment. For example, a force-control goal makes sense when the end-
e↵ector is in contact with something, but not when it is moving in free space.
We also have a fundamental constraint imposed by the mechanics, irrespective
of the environment: the robot cannot independently control both motions and
forces in the same direction. If the robot imposes a motion then the environment
determines the force, and vice versa.

Most robots are driven by actuators that apply a force or torque to each
joint. Hence, precisely controlling a robot requires an understanding of the
relationship between the joint forces and torques and the motion of the robot;
this is the domain of dynamics. Even for simple robots, however, the dynamic
equations are complex and dependent on a precise knowledge of the mass and
inertia of each link, which may not be readily available. Even if it were, the
dynamic equations would still not reflect physical phenomena such as friction,
elasticity, backlash, and hysteresis.

Most practical control schemes compensate for these uncertainties by using
feedback control. After examining the performance limits of feedback control
without a dynamic model of the robot, we study motion control algorithms,
such as computed torque control, that combine approximate dynamic mod-
eling with feedback control. The basic lessons learned for robot motion control
are then applied to force control, hybrid motion–force control, and impedance
control.

Chapter 12: Grasping and Manipulation

The focus of earlier chapters is on characterizing, planning, and controlling the
motion of the robot itself. To do useful work, the robot must be capable of
manipulating objects in its environment. In this chapter we model the con-
tact between the robot and an object, specifically the constraints on the object
motion imposed by a contact and the forces that can be transmitted through a
frictional contact. With these models we study the problem of choosing contacts
to immobilize an object by form closure and force closure grasping. We also
apply contact modeling to manipulation problems other than grasping, such as
pushing an object, carrying an object dynamically, and testing the stability of
a structure.

Chapter 13: Wheeled Mobile Robots

The final chapter addresses the kinematics, motion planning, and control of
wheeled mobile robots and of wheeled mobile robots equipped with robot arms.
A mobile robot can use specially designed omniwheels or mecanum wheels
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to achieve omnidirectional motion, including spinning in place or translating
in any direction. Many mobile bases, however, such as cars and di↵erential-
drive robots, use more typical wheels, which do not slip sideways. These no-slip
constraints are fundamentally di↵erent from the loop-closure constraints found
in closed chains; the latter are holonomic, meaning that they are configuration
constraints, while the former are nonholonomic, meaning that the velocity
constraints cannot be integrated to become equivalent configuration constraints.

Because of the di↵erent properties of omnidirectional mobile robots ver-
sus nonholonomic mobile robots, we consider their kinematic modeling, motion
planning, and control separately. In particular, the motion planning and con-
trol of nonholonomic mobile robots is more challenging than for omnidirectional
mobile robots.

Once we have derived their kinematic models, we show that the odometry
problem – the estimation of the chassis configuration based on wheel encoder
data – can be solved in the same way for both types of mobile robots. Similarly,
for mobile manipulators consisting of a wheeled base and a robot arm, we show
that feedback control for mobile manipulation (controlling the motion of the
end-e↵ector using the arm joints and wheels) is the same for both types of
mobile robots. The fundamental object in mobile manipulation is the Jacobian
mapping joint rates and wheel velocities to end-e↵ector twists.

Each chapter concludes with a summary of important concepts from the
chapter, and Appendix A compiles some of the most used equations into a handy
reference. Videos supporting the book can be found at the book’s website, http:
//modernrobotics.org. Some chapters have associated software, downloadable
from the website. The software is meant to be neither maximally robust nor
e�cient but to be readable and to reinforce the concepts in the book. You are
encouraged to read the software, not just use it, to cement your understanding
of the material. Each function contains a sample usage in the comments. The
software package may grow over time, but the core functions are documented
in the chapters themselves.
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Chapter 2

Configuration Space

A robot is mechanically constructed by connecting a set of bodies, called links,
to each other using various types of joints. Actuators, such as electric motors,
deliver forces or torques that cause the robot’s links to move. Usually an end-
e↵ector, such as a gripper or hand for grasping and manipulating objects, is
attached to a specific link. All the robots considered in this book have links
that can be modeled as rigid bodies.

Perhaps the most fundamental question one can ask about a robot is, where
is it? The answer is given by the robot’s configuration: a specification of the
positions of all points of the robot. Since the robot’s links are rigid and of a
known shape,1 only a few numbers are needed to represent its configuration.
For example, the configuration of a door can be represented by a single number,
the angle ✓ about its hinge. The configuration of a point on a plane can be
described by two coordinates, (x, y). The configuration of a coin lying heads
up on a flat table can be described by three coordinates: two coordinates (x, y)
that specify the location of a particular point on the coin, and one coordinate
(✓) that specifies the coin’s orientation. (See Figure 2.1).

The above coordinates all take values over a continuous range of real num-
bers. The number of degrees of freedom (dof) of a robot is the smallest
number of real-valued coordinates needed to represent its configuration. In the
example above, the door has one degree of freedom. The coin lying heads up
on a table has three degrees of freedom. Even if the coin could lie either heads
up or tails up, its configuration space still would have only three degrees of
freedom; a fourth variable, representing which side of the coin faces up, takes
values in the discrete set {heads, tails}, and not over a continuous range of real

1
Compare with trying to represent the configuration of a soft object like a pillow.
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(a) (b) (c)

✓

✓

x̂ x̂

ŷ ŷ

(x, y)

(x, y)

Figure 2.1: (a) The configuration of a door is described by the angle ✓. (b) The
configuration of a point in a plane is described by coordinates (x, y). (c) The config-
uration of a coin on a table is described by (x, y, ✓), where ✓ defines the direction in
which Abraham Lincoln is looking.

values like the other three coordinates.

Definition 2.1. The configuration of a robot is a complete specification of
the position of every point of the robot. The minimum number n of real-valued
coordinates needed to represent the configuration is the number of degrees of
freedom (dof) of the robot. The n-dimensional space containing all possible
configurations of the robot is called the configuration space (C-space). The
configuration of a robot is represented by a point in its C-space.

In this chapter we study the C-space and degrees of freedom of general
robots. Since our robots are constructed from rigid links, we examine first the
degrees of freedom of a single rigid body, and then the degrees of freedom of
general multi-link robots. Next we study the shape (or topology) and geometry
of C-spaces and their mathematical representation. The chapter concludes with
a discussion of the C-space of a robot’s end-e↵ector, its task space. In the
following chapter we study in more detail the mathematical representation of
the C-space of a single rigid body.

2.1 Degrees of Freedom of a Rigid Body

Continuing with the example of the coin lying on the table, choose three points
A, B, and C on the coin (Figure 2.2(a)). Once a coordinate frame x̂–ŷ is
attached to the plane,2 the positions of these points in the plane are written

2
The unit axes of coordinate frames are written with a hat, indicating they are unit vectors,

and in a non-italic font, e.g., x̂, ŷ, and ẑ.
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AA

BB

CC

x̂
x̂ ŷ

ŷ
dAC

dAB

dBC

ẑ

(a) (b) (c)

Figure 2.2: (a) Choosing three points fixed to the coin. (b) Once the location of A is
chosen, B must lie on a circle of radius dAB centered at A. Once the location of B is
chosen, C must lie at the intersection of circles centered at A and B. Only one of these
two intersections corresponds to the “heads up” configuration. (c) The configuration
of a coin in three-dimensional space is given by the three coordinates of A, two angles
to the point B on the sphere of radius dAB centered at A, and one angle to the point
C on the circle defined by the intersection of the a sphere centered at A and a sphere
centered at B.

(xA, yA), (xB , yB), and (xC , yC). If the points could be placed independently
anywhere in the plane, the coin would have six degrees of freedom – two for each
of the three points. But, according to the definition of a rigid body, the distance
between point A and point B, denoted d(A, B), is always constant regardless of
where the coin is. Similarly, the distances d(B, C) and d(A, C) must be constant.
The following equality constraints on the coordinates (xA, yA), (xB , yB), and
(xC , yC) must therefore always be satisfied:

d(A, B) =
p

(xA � xB)2 + (yA � yB)2 = dAB ,

d(B, C) =
p

(xB � xC)2 + (yB � yC)2 = dBC ,

d(A, C) =
p

(xA � xC)2 + (yA � yC)2 = dAC .

To determine the number of degrees of freedom of the coin on the table, first
choose the position of point A in the plane (Figure 2.2(b)). We may choose it
to be anything we want, so we have two degrees of freedom to specify, namely
(xA, yA). Once (xA, yA) is specified, the constraint d(A, B) = dAB restricts the
choice of (xB , yB) to those points on the circle of radius dAB centered at A.
A point on this circle can be specified by a single parameter, e.g., the angle
specifying the location of B on the circle centered at A. Let’s call this angle

�AB and define it to be the angle that the vector
��!
AB makes with the x̂-axis.
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Once we have chosen the location of point B, there are only two possible
locations for C: at the intersections of the circle of radius dAC centered at A
and the circle of radius dBC centered at B (Figure 2.2(b)). These two solutions
correspond to heads or tails. In other words, once we have placed A and B and
chosen heads or tails, the two constraints d(A, C) = dAC and d(B, C) = dBC

eliminate the two apparent freedoms provided by (xC , yC), and the location of
C is fixed. The coin has exactly three degrees of freedom in the plane, which
can be specified by (xA, yA,�AB).

Suppose that we choose to specify the position of an additional point D
on the coin. This introduces three additional constraints: d(A, D) = dAD,
d(B, D) = dBD, and d(C, D) = dCD. One of these constraints is redundant,
i.e., it provides no new information; only two of the three constraints are inde-
pendent. The two freedoms apparently introduced by the coordinates (xD, yD)
are then immediately eliminated by these two independent constraints. The
same would hold for any other newly chosen point on the coin, so that there is
no need to consider additional points.

We have been applying the following general rule for determining the number
of degrees of freedom of a system:

degrees of freedom = (sum of freedoms of the points) �
(number of independent constraints). (2.1)

This rule can also be expressed in terms of the number of variables and inde-
pendent equations that describe the system:

degrees of freedom = (number of variables) �
(number of independent equations). (2.2)

This general rule can also be used to determine the number of freedoms of
a rigid body in three dimensions. For example, assume our coin is no longer
confined to the table (Figure 2.2(c)). The coordinates for the three points A, B,
and C are now given by (xA, yA, zA), (xB , yB , zB), and (xC , yC , zC), respectively.
Point A can be placed freely (three degrees of freedom). The location of point B
is subject to the constraint d(A, B) = dAB , meaning it must lie on the sphere of
radius dAB centered at A. Thus we have 3�1 = 2 freedoms to specify, which can
be expressed as the latitude and longitude for the point on the sphere. Finally,
the location of point C must lie at the intersection of spheres centered at A and
B of radius dAC and dBC , respectively. In the general case the intersection of
two spheres is a circle, and the location of point C can be described by an angle
that parametrizes this circle. Point C therefore adds 3 � 2 = 1 freedom. Once
the position of point C is chosen, the coin is fixed in space.
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In summary, a rigid body in three-dimensional space has six freedoms, which
can be described by the three coordinates parametrizing point A, the two angles
parametrizing point B, and one angle parametrizing point C, provided A, B,
and C are noncollinear. Other representations for the configuration of a rigid
body are discussed in Chapter 3.

We have just established that a rigid body moving in three-dimensional
space, which we call a spatial rigid body, has six degrees of freedom. Similarly,
a rigid body moving in a two-dimensional plane, which we henceforth call a
planar rigid body, has three degrees of freedom. This latter result can also
be obtained by considering the planar rigid body to be a spatial rigid body with
six degrees of freedom but with the three independent constraints zA = zB =
zC = 0.

Since our robots consist of rigid bodies, Equation (2.1) can be expressed as
follows:

degrees of freedom = (sum of freedoms of the bodies) �
(number of independent constraints). (2.3)

Equation (2.3) forms the basis for determining the degrees of freedom of general
robots, which is the topic of the next section.

2.2 Degrees of Freedom of a Robot

Consider once again the door example of Figure 2.1(a), consisting of a single
rigid body connected to a wall by a hinge joint. From the previous section we
know that the door has only one degree of freedom, conveniently represented
by the hinge joint angle ✓. Without the hinge joint, the door would be free to
move in three-dimensional space and would have six degrees of freedom. By
connecting the door to the wall via the hinge joint, five independent constraints
are imposed on the motion of the door, leaving only one independent coordinate
(✓). Alternatively, the door can be viewed from above and regarded as a planar
body, which has three degrees of freedom. The hinge joint then imposes two
independent constraints, again leaving only one independent coordinate (✓).
The door’s C-space is represented by some range in the interval [0, 2⇡) over
which ✓ is allowed to vary.

In both cases the joints constrain the motion of the rigid body, thus re-
ducing the overall degrees of freedom. This observation suggests a formula for
determining the number of degrees of freedom of a robot, simply by counting
the number of rigid bodies and joints. In this section we derive precisely such
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Figure 2.3: Typical robot joints.

a formula, called Grübler’s formula, for determining the number of degrees of
freedom of planar and spatial robots.

2.2.1 Robot Joints

Figure 2.3 illustrates the basic joints found in typical robots. Every joint con-
nects exactly two links; joints that simultaneously connect three or more links
are not allowed. The revolute joint (R), also called a hinge joint, allows ro-
tational motion about the joint axis. The prismatic joint (P), also called a
sliding or linear joint, allows translational (or rectilinear) motion along the di-
rection of the joint axis. The helical joint (H), also called a screw joint, allows
simultaneous rotation and translation about a screw axis. Revolute, prismatic,
and helical joints all have one degree of freedom.

Joints can also have multiple degrees of freedom. The cylindrical joint (C)
has two degrees of freedom and allows independent translations and rotations
about a single fixed joint axis. The universal joint (U) is another two-degree-
of-freedom joint that consists of a pair of revolute joints arranged so that their
joint axes are orthogonal. The spherical joint (S), also called a ball-and-socket
joint, has three degrees of freedom and functions much like our shoulder joint.

A joint can be viewed as providing freedoms to allow one rigid body to
move relative to another. It can also be viewed as providing constraints on the
possible motions of the two rigid bodies it connects. For example, a revolute
joint can be viewed as allowing one freedom of motion between two rigid bodies
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Constraints c Constraints c
between two between two

Joint type dof f planar spatial
rigid bodies rigid bodies

Revolute (R) 1 2 5
Prismatic (P) 1 2 5

Helical (H) 1 N/A 5
Cylindrical (C) 2 N/A 4

Universal (U) 2 N/A 4
Spherical (S) 3 N/A 3

Table 2.1: The number of degrees of freedom f and constraints c provided by common
joints.

in space, or it can be viewed as providing five constraints on the motion of one
rigid body relative to the other. Generalizing, the number of degrees of freedom
of a rigid body (three for planar bodies and six for spatial bodies) minus the
number of constraints provided by a joint must equal the number of freedoms
provided by that joint.

The freedoms and constraints provided by the various joint types are sum-
marized in Table 2.1.

2.2.2 Grübler’s Formula

The number of degrees of freedom of a mechanism with links and joints can be
calculated using Grübler’s formula, which is an expression of Equation (2.3).

Proposition 2.2. Consider a mechanism consisting of N links, where ground
is also regarded as a link. Let J be the number of joints, m be the number of
degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for
spatial mechanisms), fi be the number of freedoms provided by joint i, and ci be
the number of constraints provided by joint i, where fi + ci = m for all i. Then
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(a) (b)

Figure 2.4: (a) Four-bar linkage. (b) Slider–crank mechanism.

Grübler’s formula for the number of degrees of freedom of the robot is

dof = m(N � 1)| {z }
rigid body freedoms

�
JX

i=1

ci

| {z }
joint constraints

= m(N � 1)�
JX

i=1

(m� fi)

= m(N � 1� J) +
JX

i=1

fi. (2.4)

This formula holds in “generic” cases, but it fails under certain configurations
of the links and joints, such as when the joint constraints are not independent.

Below we apply Grübler’s formula to several planar and spatial mechanisms.
We distinguish between two types of mechanism: open-chain mechanisms
(also known as serial mechanisms) and closed-chain mechanisms. A
closed-chain mechanism is any mechanism that has a closed loop. A person
standing with both feet on the ground is an example of a closed-chain mech-
anism, since a closed loop can be traced from the ground, through the right
leg, through the waist, through the left leg, and back to ground (recall that the
ground itself is a link). An open-chain mechanism is any mechanism without a
closed loop; an example is your arm when your hand is allowed to move freely
in space.

Example 2.3 (Four-bar linkage and slider–crank mechanism). The planar four-
bar linkage shown in Figure 2.4(a) consists of four links (one of them ground)
arranged in a single closed loop and connected by four revolute joints. Since all
the links are confined to move in the same plane, we have m = 3. Substituting
N = 4, J = 4, and fi = 1, i = 1, . . . , 4, into Grübler’s formula, we see that the
four-bar linkage has one degree of freedom.
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(a) (b)

(c) (d)

Figure 2.5: (a) k-link planar serial chain. (b) Five-bar planar linkage. (c) Stephenson
six-bar linkage. (d) Watt six-bar linkage.

The slider–crank closed-chain mechanism of Figure 2.4(b) can be analyzed in
two ways: (i) the mechanism consists of three revolute joints and one prismatic
joint (J = 4 and each fi = 1) and four links (N = 4, including the ground
link), or (ii) the mechanism consists of two revolute joints (fi = 1) and one RP
joint (the RP joint is a concatenation of a revolute and prismatic joint, so that
fi = 2) and three links (N = 3; remember that each joint connects precisely
two bodies). In both cases the mechanism has one degree of freedom.

Example 2.4 (Some classical planar mechanisms). Let us now apply Grübler’s
formula to several classical planar mechanisms. The k-link planar serial chain
of revolute joints in Figure 2.5(a) (called a kR robot for its k revolute joints)
has N = k + 1 links (k links plus ground), and J = k joints, and, since all the
joints are revolute, fi = 1 for all i. Therefore,

dof = 3((k + 1)� 1� k) + k = k
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Figure 2.6: A planar mechanism with two overlapping joints.

as expected. For the planar five-bar linkage of Figure 2.5(b), N = 5 (four links
plus ground), J = 5, and since all joints are revolute, each fi = 1. Therefore,

dof = 3(5� 1� 5) + 5 = 2.

For the Stephenson six-bar linkage of Figure 2.5(c), we have N = 6, J = 7, and
fi = 1 for all i, so that

dof = 3(6� 1� 7) + 7 = 1.

Finally, for the Watt six-bar linkage of Figure 2.5(d), we have N = 6, J = 7,
and fi = 1 for all i, so that, like the Stephenson six-bar linkage,

dof = 3(6� 1� 7) + 7 = 1.

Example 2.5 (A planar mechanism with overlapping joints). The planar mech-
anism illustrated in Figure 2.6 has three links that meet at a single point on
the right of the large link. Recalling that a joint by definition connects exactly
two links, the joint at this point of intersection should not be regarded as a
single revolute joint. Rather, it is correctly interpreted as two revolute joints
overlapping each other. Again, there is more than one way to derive the number
of degrees of freedom of this mechanism using Grübler’s formula: (i) The mech-
anism consists of eight links (N = 8), eight revolute joints, and one prismatic
joint. Substituting into Grübler’s formula yields

dof = 3(8� 1� 9) + 9(1) = 3.

(ii) Alternatively, the lower-right revolute–prismatic joint pair can be regarded
as a single two-dof joint. In this case the number of links is N = 7, with seven
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(a) (b)

Figure 2.7: (a) A parallelogram linkage. (b) The five-bar linkage in a regular and
singular configuration.

revolute joints, and a single two-dof revolute–prismatic pair. Substituting into
Grübler’s formula yields

dof = 3(7� 1� 8) + 7(1) + 1(2) = 3.

Example 2.6 (Redundant constraints and singularities). For the parallelogram
linkage of Figure 2.7(a), N = 5, J = 6, and fi = 1 for each joint. From
Grübler’s formula, the number of degrees of freedom is 3(5� 1� 6) + 6 = 0. A
mechanism with zero degrees of freedom is by definition a rigid structure. It is
clear from examining the figure, though, that the mechanism can in fact move
with one degree of freedom. Indeed, any one of the three parallel links, with
its two joints, has no e↵ect on the motion of the mechanism, so we should have
calculated dof = 3(4� 1� 4) + 4 = 1. In other words, the constraints provided
by the joints are not independent, as required by Grübler’s formula.

A similar situation arises for the two-dof planar five-bar linkage of Fig-
ure 2.7(b). If the two joints connected to ground are locked at some fixed
angle, the five-bar linkage should then become a rigid structure. However, if the
two middle links are the same length and overlap each other, as illustrated in
Figure 2.7(b), these overlapping links can rotate freely about the two overlap-
ping joints. Of course, the link lengths of the five-bar linkage must meet certain
specifications in order for such a configuration to even be possible. Also note
that if a di↵erent pair of joints is locked in place, the mechanism does become
a rigid structure as expected.

Example 2.7 (Delta robot). The Delta robot of Figure 2.8 consists of two
platforms – the lower one mobile, the upper one stationary – connected by
three legs. Each leg contains a parallelogram closed chain and consists of three
revolute joints, four spherical joints, and five links. Adding the two platforms,
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Figure 2.8: The Delta robot.

there are N = 17 links and J = 21 joints (nine revolute and 12 spherical). By
Grübler’s formula,

dof = 6(17� 1� 21) + 9(1) + 12(3) = 15.

Of these 15 degrees of freedom, however, only three are visible at the end-
e↵ector on the moving platform. In fact, the parallelogram leg design ensures
that the moving platform always remains parallel to the fixed platform, so that
the Delta robot acts as an x–y–z Cartesian positioning device. The other 12
internal degrees of freedom are accounted for by torsion of the 12 links in the
parallelograms (each of the three legs has four links in its parallelogram) about
their long axes.

Example 2.8 (Stewart–Gough platform). The Stewart–Gough platform of Fig-
ure 1.1(b) consists of two platforms – the lower one stationary and regarded as
ground, the upper one mobile – connected by six universal–prismatic–spherical
(UPS) legs. The total number of links is 14 (N = 14). There are six universal
joints (each with two degrees of freedom, fi = 2), six prismatic joints (each with
a single degree of freedom, fi = 1), and six spherical joints (each with three de-
grees of freedom, fi = 3). The total number of joints is 18. Substituting these
values into Grübler’s formula with m = 6 yields

dof = 6(14� 1� 18) + 6(1) + 6(2) + 6(3) = 6.
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In some versions of the Stewart–Gough platform the six universal joints
are replaced by spherical joints. By Grübler’s formula this mechanism has 12
degrees of freedom; replacing each universal joint by a spherical joint introduces
an extra degree of freedom in each leg, allowing torsional rotations about the
leg axis. Note, however, that this torsional rotation has no e↵ect on the motion
of the mobile platform.

The Stewart–Gough platform is a popular choice for car and airplane cockpit
simulators, as the platform moves with the full six degrees of freedom of motion
of a rigid body. On the one hand, the parallel structure means that each leg
needs to support only a fraction of the weight of the payload. On the other
hand, this structure also limits the range of translational and rotational motion
of the platform relative to the range of motion of the end-e↵ector of a six-dof
open chain.

2.3 Configuration Space: Topology and Represen-
tation

2.3.1 Configuration Space Topology

Until now we have been focusing on one important aspect of a robot’s C-space
– its dimension, or the number of degrees of freedom. However, the shape of the
space is also important.

Consider a point moving on the surface of a sphere. The point’s C-space
is two dimensional, as the configuration can be described by two coordinates,
latitude and longitude. As another example, a point moving on a plane also
has a two-dimensional C-space, with coordinates (x, y). While both a plane and
the surface of a sphere are two dimensional, clearly they do not have the same
shape – the plane extends infinitely while the sphere wraps around.

Unlike the plane, a larger sphere has the same shape as the original sphere, in
that it wraps around in the same way. Only its size is di↵erent. For that matter,
an oval-shaped American football also wraps around similarly to a sphere. The
only di↵erence between a football and a sphere is that the football has been
stretched in one direction.

The idea that the two-dimensional surfaces of a small sphere, a large sphere,
and a football all have the same kind of shape, which is di↵erent from the shape
of a plane, is expressed by the topology of the surfaces. We do not attempt a
rigorous treatment in this book,3 but we say that two spaces are topologically

3
For those familiar with concepts in topology, all the spaces we consider can be viewed as

embedded in a higher-dimensional Euclidean space, inheriting the Euclidean topology of that
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a b
( )

( ) ( )

Figure 2.9: An open interval of the real line, denoted (a, b), can be deformed to an
open semicircle. This open semicircle can then be deformed to the real line by the
mapping illustrated: beginning from a point at the center of the semicircle, draw a ray
that intersects the semicircle and then a line above the semicircle. These rays show
that every point of the semicircle can be stretched to exactly one point on the line,
and vice versa. Thus an open interval can be continuously deformed to a line, so an
open interval and a line are topologically equivalent.

equivalent if one can be continuously deformed into the other without cutting
or gluing. A sphere can be deformed into a football simply by stretching, without
cutting or gluing, so those two spaces are topologically equivalent. You cannot
turn a sphere into a plane without cutting it, however, so a sphere and a plane
are not topologically equivalent.

Topologically distinct one-dimensional spaces include the circle, the line,
and a closed interval of the line. The circle is written mathematically as S or
S1, a one-dimensional “sphere.” The line can be written as E or E1, indicating
a one-dimensional Euclidean (or “flat”) space. Since a point in E1 is usually
represented by a real number (after choosing an origin and a length scale), it is
often written as R or R1 instead. A closed interval of the line, which contains its
endpoints, can be written [a, b] ⇢ R1. (An open interval (a, b) does not include
the endpoints a and b and is topologically equivalent to a line, since the open
interval can be stretched to a line, as shown in Figure 2.9. A closed interval is
not topologically equivalent to a line, since a line does not contain endpoints.)

In higher dimensions, Rn is the n-dimensional Euclidean space and Sn is the
n-dimensional surface of a sphere in (n + 1)-dimensional space. For example,
S2 is the two-dimensional surface of a sphere in three-dimensional space.

Note that the topology of a space is a fundamental property of the space
itself and is independent of how we choose coordinates to represent points in the
space. For example, to represent a point on a circle, we could refer to the point
by the angle ✓ from the center of the circle to the point, relative to a chosen
zero angle. Or, we could choose a reference frame with its origin at the center
of the circle and represent the point by the two coordinates (x, y) subject to the
constraint x2 + y2 = 1. No matter what our choice of coordinates is, the space
itself does not change.

Some C-spaces can be expressed as the Cartesian product of two or more

space.
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spaces of lower dimension; that is, points in such a C-space can be represented
as the union of the representations of points in the lower-dimensional spaces.
For example:

• The C-space of a rigid body in the plane can be written as R2 ⇥ S1,
since the configuration can be represented as the concatenation of the
coordinates (x, y) representing R2 and an angle ✓ representing S1.

• The C-space of a PR robot arm can be written R1 ⇥ S1. (We will occa-
sionally ignore joint limits, i.e., bounds on the travel of the joints, when
expressing the topology of the C-space; with joint limits, the C-space is
the Cartesian product of two closed intervals of the line.)

• The C-space of a 2R robot arm can be written S1⇥S1 = T 2, where Tn is
the n-dimensional surface of a torus in an (n+1)-dimensional space. (See
Table 2.2.) Note that S1 ⇥ S1 ⇥ · · ·⇥ S1 (n copies of S1) is equal to Tn,
not Sn; for example, a sphere S2 is not topologically equivalent to a torus
T 2.

• The C-space of a planar rigid body (e.g., the chassis of a mobile robot)
with a 2R robot arm can be written as R2 ⇥ S1 ⇥ T 2 = R2 ⇥ T 3.

• As we saw in Section 2.1 when we counted the degrees of freedom of a
rigid body in three dimensions, the configuration of a rigid body can be
described by a point in R3, plus a point on a two-dimensional sphere S2,
plus a point on a one-dimensional circle S1, giving a total C-space of
R3 ⇥ S2 ⇥ S1.

2.3.2 Configuration Space Representation

To perform computations, we must have a numerical representation of the
space, consisting of a set of real numbers. We are familiar with this idea from
linear algebra – a vector is a natural way to represent a point in a Euclidean
space. It is important to keep in mind that the representation of a space involves
a choice, and therefore it is not as fundamental as the topology of the space,
which is independent of the representation. For example, the same point in a
three-dimensional space can have di↵erent coordinate representations depending
on the choice of reference frame (the origin and the direction of the coordinate
axes) and the choice of length scale, but the topology of the underlying space is
the same regardless of theses choices.

While it is natural to choose a reference frame and length scale and to use
a vector to represent points in a Euclidean space, representing a point on a
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system topology sample representation

x̂

ŷ
(x, y)

point on a plane E2 R2

longitude

latitude
90�

�90��180� 180�

spherical pendulum S2 [�180�, 180�)⇥ [�90�, 90�]

0
0

2⇡

2⇡ ✓1

✓2

2R robot arm T 2=S1⇥S1 [0, 2⇡)⇥ [0, 2⇡)
✓

x̂
0

2⇡
......

rotating sliding knob E1 ⇥ S1 R1 ⇥ [0, 2⇡)

Table 2.2: Four topologically di↵erent two-dimensional C-spaces and example co-
ordinate representations. In the latitude-longitude representation of the sphere, the
latitudes �90� and 90� each correspond to a single point (the South Pole and the North
Pole, respectively), and the longitude parameter wraps around at 180� and �180�; the
edges with the arrows are glued together. Similarly, the coordinate representations of
the torus and cylinder wrap around at the edges marked with corresponding arrows.

curved space, such as a sphere, is less obvious. One solution for a sphere is to
use latitude and longitude coordinates. A choice of n coordinates, or parameters,

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 2. Configuration Space 27

to represent an n-dimensional space is called an explicit parametrization of
the space. Such an explicit parametrization is valid for a particular range of
the parameters (e.g., [�90�, 90�] for latitude and [�180�, 180�) for longitude for
a sphere, where, on Earth, negative values correspond to “south” and “west,”
respectively).

The latitude–longitude representation of a sphere is unsatisfactory if you
are walking near the North Pole (where the latitude equals 90�) or South Pole
(where the latitude equals �90�), where taking a very small step can result in a
large change in the coordinates. The North and South Poles are singularities of
the representation, and the existence of singularities is a result of the fact that a
sphere does not have the same topology as a plane, i.e., the space of the two real
numbers that we have chosen to represent the sphere (latitude and longitude).
The location of these singularities has nothing to do with the sphere itself, which
looks the same everywhere, and everything to do with the chosen representation
of it. Singularities of the parametrization are particularly problematic when
representing velocities as the time rate of change of coordinates, since these
representations may tend to infinity near singularities even if the point on the
sphere is moving at a constant speed

p
ẋ2 + ẏ2 + ż2 (which is what the speed

would be had you represented the point as (x, y, z) instead).
If you can assume that the configuration never approaches a singularity of the

representation, you can ignore this issue. If you cannot make this assumption,
there are two ways to overcome the problem.

• Use more than one coordinate chart on the space, where each coordinate
chart is an explicit parametrization covering only a portion of the space
such that, within each chart, there is no singularity. As the configuration
representation approaches a singularity in one chart, e.g., the North or
South Pole, you simply switch to another chart where the North and
South Poles are far from singularities.

If we define a set of singularity-free coordinate charts that overlap each
other and cover the entire space, like the two charts above, the charts are
said to form an atlas of the space, much as an atlas of the Earth consists of
several maps that together cover the Earth. An advantage of using an atlas
of coordinate charts is that the representation always uses the minimum
number of numbers. A disadvantage is the extra bookkeeping required
to switch representations between coordinate charts to avoid singularities.
(Note that Euclidean spaces can be covered by a single coordinate chart
without singularities.)

• Use an implicit representation instead of an explicit parametrization.
An implicit representation views the n-dimensional space as embedded in
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a Euclidean space of more than n dimensions, just as a two-dimensional
unit sphere can be viewed as a surface embedded in a three-dimensional
Euclidean space. An implicit representation uses the coordinates of the
higher-dimensional space (e.g., (x, y, z) in the three-dimensional space),
but subjects these coordinates to constraints that reduce the number of
degrees of freedom (e.g., x2 + y2 + z2 = 1 for the unit sphere).

A disadvantage of this approach is that the representation has more num-
bers than the number of degrees of freedom. An advantage is that there are
no singularities in the representation – a point moving smoothly around
the sphere is represented by a smoothly changing (x, y, z), even at the
North and South poles. A single representation is used for the whole
sphere; multiple coordinate charts are not needed.

Another advantage is that while it may be very di�cult to construct an
explicit parametrization, or atlas, for a closed-chain mechanism, it is easy
to find an implicit representation: the set of all joint coordinates subject
to the loop-closure equations that define the closed loops (Section 2.4).

We will use implicit representations throughout the book, beginning in
the next chapter. In particular, we use nine numbers, subject to six con-
straints, to represent the three orientation freedoms of a rigid body in
space. This is called a rotation matrix. In addition to being singularity-
free (unlike three-parameter representations such as roll–pitch–yaw an-
gles4), the rotation matrix representation allows us to use linear algebra
to perform computations such as rotating a rigid body or changing the
reference frame in which the orientation of a rigid body is expressed.5

In summary, the non-Euclidean shape of many C-spaces motivates our use
of implicit representations of C-space throughout this book. We return to this
topic in the next chapter.

2.4 Configuration and Velocity Constraints

For robots containing one or more closed loops, usually an implicit represen-
tation is more easily obtained than an explicit parametrization. For example,

4
Roll–pitch–yaw angles and Euler angles use three parameters for the space of rotations

S
2 ⇥ S

1
(two for S

2
and one for S

1
), and therefore are subject to singularities as discussed

above.
5
Another singularity-free implicit representation of orientations, the unit quaternion, uses

only four numbers subject to the constraint that the 4-vector be of unit length. In fact, this

representation is a double covering of the set of orientations: for every orientation, there are

two unit quaternions.
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x̂

ŷ

L1

L2

L3

L4

✓1

✓2

✓3

✓4

Figure 2.10: The four-bar linkage.

consider the planar four-bar linkage of Figure 2.10, which has one degree of free-
dom. The fact that the four links always form a closed loop can be expressed
by the following three equations:

L1 cos ✓1 + L2 cos(✓1 + ✓2) + · · · + L4 cos(✓1 + · · · + ✓4) = 0,

L1 sin ✓1 + L2 sin(✓1 + ✓2) + · · · + L4 sin(✓1 + · · · + ✓4) = 0,

✓1 + ✓2 + ✓3 + ✓4 � 2⇡ = 0.

These equations are obtained by viewing the four-bar linkage as a serial chain
with four revolute joints in which (i) the tip of link L4 always coincides with
the origin and (ii) the orientation of link L4 is always horizontal.

These equations are sometimes referred to as loop-closure equations. For
the four-bar linkage they are given by a set of three equations in four unknowns.
The set of all solutions forms a one-dimensional curve in the four-dimensional
joint space and constitutes the C-space.

In this book, when vectors are used in a linear algebra computation,
they are treated as column vectors, e.g., p = [1 2 3]T. When a computation
is not imminent, however, we often think of a vector simply as an ordered
list of variables, e.g., p = (1, 2, 3).

Thus, for general robots containing one or more closed loops, the configura-
tion space can be implicitly represented by the column vector ✓ = [✓1 · · · ✓n]T 2
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Rn and loop-closure equations of the form

g(✓) =

2

64
g1(✓1, . . . , ✓n)

...
gk(✓1, . . . , ✓n)

3

75 = 0, (2.5)

a set of k independent equations, with k  n. Such constraints are known
as holonomic constraints, ones that reduce the dimension of the C-space.6

The C-space can be viewed as a surface of dimension n � k (assuming that all
constraints are independent) embedded in Rn.

Suppose that a closed-chain robot with loop-closure equations g(✓) = 0,
g : Rn ! Rk, is in motion, following the time trajectory ✓(t). Di↵erentiating
both sides of g(✓(t)) = 0 with respect to t, we obtain

d

dt
g(✓(t)) = 0;

(2.6)

thus
2

66664

@g1
@✓1

(✓)✓̇1 + · · · +
@g1
@✓n

(✓)✓̇n

...
@gk
@✓1

(✓)✓̇1 + · · · +
@gk
@✓n

(✓)✓̇n

3

77775
= 0.

This can be expressed as a matrix multiplying a column vector [✓̇1 · · · ✓̇n]T:
2

66664

@g1
@✓1

(✓) · · · @g1
@✓n

(✓)

...
. . .

...
@gk
@✓1

(✓) · · · @gk
@✓n

(✓)

3

77775

2

64
✓̇1
...
✓̇n

3

75 = 0,

which we can write as

@g

@✓
(✓)✓̇ = 0. (2.7)

Here, the joint-velocity vector ✓̇i denotes the derivative of ✓i with respect to
time t, @g(✓)/@✓ 2 Rk⇥n, and ✓, ✓̇ 2 Rn. The constraints (2.7) can be written

A(✓)✓̇ = 0, (2.8)

6
Viewing a rigid body as a collection of points, the distance constraints between the points,

as we saw earlier, can be viewed as holonomic constraints.
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x̂

ŷ

ẑ

(x, y)
�

✓

Figure 2.11: A coin rolling on a plane without slipping.

where A(✓) 2 Rk⇥n. Velocity constraints of this form are called Pfa�an con-
straints. For the case of A(✓) = @g(✓)/@✓, one could regard g(✓) as being the
“integral” of A(✓); for this reason, holonomic constraints of the form g(✓) = 0
are also called integrable constraints – the velocity constraints that they
imply can be integrated to give equivalent configuration constraints.

We now consider another class of Pfa�an constraints that is fundamentally
di↵erent from the holonomic type. To illustrate this with a concrete example,
consider an upright coin of radius r rolling on a plane as shown in Figure 2.11.
The configuration of the coin is given by the contact point (x, y) on the plane,
the steering angle �, and the angle of rotation ✓. The C-space of the coin is
therefore R2 ⇥ T 2, where T 2 is the two-dimensional torus parametrized by the
angles � and ✓. This C-space is four dimensional.

We now express, in mathematical form, the fact that the coin rolls without
slipping. The coin must always roll in the direction indicated by (cos�, sin�),
with forward speed r✓̇: 

ẋ
ẏ

�
= r✓̇


cos�
sin�

�
. (2.9)

Collecting the four C-space coordinates into a single vector q = [q1 q2 q3 q4]T =
[x y � ✓]T 2 R2⇥T 2, the above no-slip rolling constraint can then be expressed
in the form 

1 0 0 �r cos q3
0 1 0 �r sin q3

�
q̇ = 0. (2.10)

These are Pfa�an constraints of the form A(q)q̇ = 0, A(q) 2 R2⇥4.
These constraints are not integrable; that is, for the A(q) given in (2.10),

there does not exist a di↵erentiable function g : R4 ! R2 such that @g(q)/@q =
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A(q). If this were not the case then there would have to exist a di↵erentiable
g1(q) that satisfied the following four equalities:

@g1/@q1 = 1 �! g1(q) = q1 + h1(q2, q3, q4)
@g1/@q2 = 0 �! g1(q) = h2(q1, q3, q4)
@g1/@q3 = 0 �! g1(q) = h3(q1, q2, q4)
@g1/@q4 = �r cos q3 �! g1(q) = �rq4 cos q3 + h4(q1, q2, q3),

for some hi, i = 1, . . . , 4, di↵erentiable in each of its variables. By inspection
it should be clear that no such g1(q) exists. Similarly, it can be shown that
g2(q) does not exist, so that the constraint (2.10) is nonintegrable. A Pfa�an
constraint that is nonintegrable is called a nonholonomic constraint. Such
constraints reduce the dimension of the feasible velocities of the system but
do not reduce the dimension of the reachable C-space. The rolling coin can
reach any point in its four-dimensional C-space despite the two constraints on
its velocity.7 See Exercise 2.30.

In a number of robotics contexts nonholonomic constraints arise that involve
the conservation of momentum and rolling without slipping, e.g., wheeled vehicle
kinematics and grasp contact kinematics. We examine nonholonomic constraints
in greater detail in our study of wheeled mobile robots in Chapter 13.

2.5 Task Space and Workspace

We now introduce two more concepts relating to the configuration of a robot:
the task space and the workspace. Both relate to the configuration of the end-
e↵ector of a robot, not to the configuration of the entire robot.

The task space is a space in which the robot’s task can be naturally ex-
pressed. For example, if the robot’s task is to plot with a pen on a piece of paper,
the task space would be R2. If the task is to manipulate a rigid body, a natural
representation of the task space is the C-space of a rigid body, representing the
position and orientation of a frame attached to the robot’s end-e↵ector. This is
the default representation of task space. The decision of how to define the task
space is driven by the task, independently of the robot.

The workspace is a specification of the configurations that the end-e↵ector
of the robot can reach. The definition of the workspace is primarily driven by
the robot’s structure, independently of the task.

7
Some texts define the number of degrees of freedom of a system to be the dimension of

the feasible velocities, e.g., two for the rolling coin. We always refer to the dimension of the

C-space as the number of degrees of freedom.
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✓1

✓2

✓3

(a) (b)

(c) (d)

Figure 2.12: Examples of workspaces for various robots: (a) a planar 2R open
chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R orienting
mechanism.

Both the task space and the workspace involve a choice by the user; in
particular, the user may decide that some freedoms of the end-e↵ector (e.g., its
orientation) do not need to be represented.

The task space and the workspace are distinct from the robot’s C-space. A
point in the task space or the workspace may be achievable by more than one
robot configuration, meaning that the point is not a full specification of the
robot’s configuration. For example, for an open-chain robot with seven joints,
the six-dof position and orientation of its end-e↵ector does not fully specify the
robot’s configuration.

Some points in the task space may not be reachable at all by the robot,
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such as some points on a chalkboard. By definition, however, all points in the
workspace are reachable by at least one configuration of the robot.

Two mechanisms with di↵erent C-spaces may have the same workspace. For
example, considering the end-e↵ector to be the Cartesian tip of the robot (e.g.,
the location of a plotting pen) and ignoring orientations, the planar 2R open
chain with links of equal length three (Figure 2.12(a)) and the planar 3R open
chain with links of equal length two (Figure 2.12(b)) have the same workspace
despite having di↵erent C-spaces.

Two mechanisms with the same C-space may also have di↵erent workspaces.
For example, taking the end-e↵ector to be the Cartesian tip of the robot and
ignoring orientations, the 2R open chain of Figure 2.12(a) has a planar disk as
its workspace, while the 2R open chain of Figure 2.12(c) has the surface of a
sphere as its workspace.

Attaching a coordinate frame to the tip of the tool of the 3R open-chain
“wrist” mechanism of Figure 2.12(d), we see that the frame can achieve any
orientation by rotating the joints but the Cartesian position of the tip is always
fixed. This can be seen by noting that the three joint axes always intersect at
the tip. For this mechanism, we would probably define the workspace to be the
three-dof space of orientations of the frame, S2⇥S1, which is di↵erent from the
C-space T 3. The task space depends on the task; if the job is to point a laser
pointer, then rotations about the axis of the laser beam are immaterial and the
task space would be S2, the set of directions in which the laser can point.

Example 2.9. The SCARA robot of Figure 2.13 is an RRRP open chain that is
widely used for tabletop pick-and-place tasks. The end-e↵ector configuration is
completely described by the four parameters (x, y, z,�), where (x, y, z) denotes
the Cartesian position of the end-e↵ector center point and � denotes the ori-
entation of the end-e↵ector in the x–y-plane. Its task space would typically be
defined as R3⇥S1, and its workspace would typically be defined as the reachable
points in (x, y, z) Cartesian space, since all orientations � 2 S1 can be achieved
at all reachable points.

Example 2.10. A standard 6R industrial manipulator can be adapted to spray-
painting applications as shown in Figure 2.14. The paint spray nozzle attached
to the tip can be regarded as the end-e↵ector. What is important to the task
is the Cartesian position of the spray nozzle, together with the direction in
which the spray nozzle is pointing; rotations about the nozzle axis (which points
in the direction in which paint is being sprayed) do not matter. The nozzle
configuration can therefore be described by five coordinates: (x, y, z) for the
Cartesian position of the nozzle and spherical coordinates (✓,�) to describe
the direction in which the nozzle is pointing. The task space can be written
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x̂

ŷ
ẑ

(x, y, z)

�

✓1

✓2

✓3

✓4

Figure 2.13: SCARA robot.

Figure 2.14: A spray-painting robot.
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as R3 ⇥ S2. The workspace could be the reachable points in R3 ⇥ S2, or, to
simplify visualization, the user could define the workspace to be the subset of
R3 corresponding to the reachable Cartesian positions of the nozzle.

2.6 Summary

• A robot is mechanically constructed from links that are connected by
various types of joint. The links are usually modeled as rigid bodies. An
end-e↵ector such as a gripper may be attached to some link of the robot.
Actuators deliver forces and torques to the joints, thereby causing motion
of the robot.

• The most widely used one-dof joints are the revolute joint, which allows
rotation about the joint axis, and the prismatic joint, which allows trans-
lation in the direction of the joint axis. Some common two-dof joints
include the cylindrical joint, which is constructed by serially connecting a
revolute and prismatic joint, and the universal joint, which is constructed
by orthogonally connecting two revolute joints. The spherical joint, also
known as the ball-and-socket joint, is a three-dof joint whose function is
similar to the human shoulder joint.

• The configuration of a rigid body is a specification of the location of all its
points. For a rigid body moving in the plane, three independent parame-
ters are needed to specify the configuration. For a rigid body moving in
three-dimensional space, six independent parameters are needed to specify
the configuration.

• The configuration of a robot is a specification of the configuration of all
its links. The robot’s configuration space is the set of all possible robot
configurations. The dimension of the C-space is the number of degrees of
freedom of a robot.

• The number of degrees of freedom of a robot can be calculated using
Grübler’s formula,

dof = m(N � 1� J) +
JX

i=1

fi,

where m = 3 for planar mechanisms and m = 6 for spatial mechanisms,
N is the number of links (including the ground link), J is the number of
joints, and fi is the number of degrees of freedom of joint i.
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• A robot’s C-space can be parametrized explicitly or represented implicitly.
For a robot with n degrees of freedom, an explicit parametrization uses n
coordinates, the minimum necessary. An implicit representation involves
m coordinates with m � n, with the m coordinates subject to m � n
constraint equations. With an implicit parametrization, a robot’s C-space
can be viewed as a surface of dimension n embedded in a space of higher
dimension m.

• The C-space of an n-dof robot whose structure contains one or more closed
loops can be implicitly represented using k loop-closure equations of the
form g(✓) = 0, where ✓ 2 Rm and g : Rm ! Rk. Such constraint equations
are called holonomic constraints. Assuming that ✓ varies with time t, the
holonomic constraints g(✓(t)) = 0 can be di↵erentiated with respect to t
to yield

@g

@✓
(✓)✓̇ = 0,

where @g(✓)/@✓ is a k ⇥m matrix.

• A robot’s motion can also be subject to velocity constraints of the form

A(✓)✓̇ = 0,

where A(✓) is a k⇥m matrix that cannot be expressed as the di↵erential
of some function g(✓). In other words, there does not exist any g(✓), g :
Rm ! Rk, such that

A(✓) =
@g

@✓
(✓).

Such constraints are said to be nonholonomic constraints, or nonintegrable
constraints. These constraints reduce the dimension of feasible velocities
of the system but do not reduce the dimension of the reachable C-space.
Nonholonomic constraints arise in robot systems subject to conservation
of momentum or rolling without slipping.

• A robot’s task space is a space in which the robot’s task can be naturally
expressed. A robot’s workspace is a specification of the configurations
that the end-e↵ector of the robot can reach.

2.7 Notes and References

In the kinematics literature, structures that consist of links connected by joints
are also called mechanisms or linkages. The number of degrees of freedom of a
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mechanism, also referred to as its mobility, is treated in most texts on mecha-
nism analysis and design, e.g., [43, 114]. The notion of a robot’s configuration
space was first formulated in the context of motion planning by Lozano-Perez
[95]; more recent and advanced treatments can be found in [80, 83, 27]. As
apparent from some of the examples in this chapter, a robot’s configuration
space can be nonlinear and curved, as can its task space. Such spaces often
have the mathematical structure of a di↵erentiable manifold, which are the cen-
tral objects of study in di↵erential geometry. Some accessible introductions to
di↵erential geometry are [119, 38, 17].

2.8 Exercises

In the exercises below, if you are asked to “describe” a C-space, you should
indicate its dimension and whatever you know about its topology (e.g., using
R, S, and T , as with the examples in Sections 2.3.1 and 2.3.2).

Exercise 2.1 Using the methods of Section 2.1 derive a formula, in terms of
n, for the number of degrees of freedom of a rigid body in n-dimensional space.
Indicate how many of these dof are translational and how many are rotational.
Describe the topology of the C-space (e.g., for n = 2, the topology is R2 ⇥ S1).

Exercise 2.2 Find the number of degrees of freedom of your arm, from your
torso to your palm (just past the wrist, not including finger degrees of freedom).
Keep the center of the ball-and-socket joint of your shoulder stationary (do not
“hunch” your shoulders). Find the number of degrees of freedom in two ways:

(a) add up the degrees of freedom at the shoulder, elbow, and wrist joints;
(b) fix your palm flat on a table with your elbow bent and, without moving

the center of your shoulder joint, investigate with how many degrees of
freedom you can still move your arm.

Do your answers agree? How many constraints were placed on your arm when
you placed your palm at a fixed configuration on the table?

Exercise 2.3 In the previous exercise, we assumed that your arm is a serial
chain. In fact, between your upper arm bone (the humerus) and the bone
complex just past your wrist (the carpal bones), your forearm has two bones,
the radius and the ulna, which are part of a closed chain. Model your arm,
from your shoulder to your palm, as a mechanism with joints and calculate the
number of degrees of freedom using Grübler’s formula. Be clear on the number
of freedoms of each joint you use in your model. Your joints may or may not be
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Human

Robot

A

Figure 2.15: Robot used for human arm rehabilitation.

of the standard types studied in this chapter (R, P, H, C, U, and S).

Exercise 2.4 Assume each of your arms has n degrees of freedom. You are
driving a car, your torso is stationary relative to the car (owing to a tight
seatbelt!), and both hands are firmly grasping the wheel, so that your hands
do not move relative to the wheel. How many degrees of freedom does your
arms-plus-steering wheel system have? Explain your answer.

Exercise 2.5 Figure 2.15 shows a robot used for human arm rehabilitation.
Determine the number of degrees of freedom of the chain formed by the human
arm and the robot

Exercise 2.6 The mobile manipulator of Figure 2.16 consists of a 6R arm and
multi-fingered hand mounted on a mobile base with a single wheel. You can
think of the wheeled base as the same as the rolling coin in Figure 2.11 – the
wheel (and base) can spin together about an axis perpendicular to the ground,
and the wheel rolls without slipping. The base always remains horizontal. (Left
unstated are the means to keep the base horizontal and to spin the wheel and
base about an axis perpendicular to the ground.)

(a) Ignoring the multi-fingered hand, describe the configuration space of the
mobile manipulator.

(b) Now suppose that the robot hand rigidly grasps a refrigerator door handle
and, with its wheel and base completely stationary, opens the door using
only its arm. With the door open, how many degrees of freedom does the
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Figure 2.16: Mobile manipulator.

Spherical Joint

Revolute Joint

spherical joint

revolute joint

Figure 2.17: Three cooperating SRS arms grasping a common object.

mechanism formed by the arm and open door have?
(c) A second identical mobile manipulator comes along, and after parking its

mobile base, also rigidly grasps the refrigerator door handle. How many
degrees of freedom does the mechanism formed by the two arms and the
open refrigerator door have?

Exercise 2.7 Three identical SRS open-chain arms are grasping a common
object, as shown in Figure 2.17.

(a) Find the number of degrees of freedom of this system.
(b) Suppose there are now a total of n such arms grasping the object. How

many degrees of freedom does this system have?
(c) Suppose the spherical wrist joint in each of the n arms is now replaced by
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a universal joint. How many degrees of freedom does this system have?

Exercise 2.8 Consider a spatial parallel mechanism consisting of a moving
plate connected to a fixed plate by n identical legs. For the moving plate to
have six degrees of freedom, how many degrees of freedom should each leg have,
as a function of n? For example, if n = 3 then the moving plate and fixed plate
are connected by three legs; how many degrees of freedom should each leg have
for the moving plate to move with six degrees of freedom? Solve for arbitrary
n.

Exercise 2.9 Use the planar version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.18. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.10 Use the planar version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.19. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.11 Use the spatial version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.20. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.12 Use the spatial version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.21. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.13 In the parallel mechanism shown in Figure 2.22, six legs of
identical length are connected to a fixed and moving platform via spherical
joints. Determine the number of degrees of freedom of this mechanism using
Grübler’s formula. Illustrate all possible motions of the upper platform.

Exercise 2.14 The 3⇥UPU platform of Figure 2.23 consists of two platforms–
the lower one stationary, the upper one mobile–connected by three UPU legs.

(a) Using the spatial version of Grübler’s formula, verify that it has three
degrees of freedom.
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(a) (b)

Fork Joint

Slider

Slider

(c) (d)

(e) (f)

Figure 2.18: A first collection of planar mechanisms.

(b) Construct a physical model of the 3⇥UPU platform to see if it indeed has
three degrees of freedom. In particular, lock the three P joints in place;
does the robot become a rigid structure as predicted by Grübler’s formula,

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 2. Configuration Space 43

(a) (b)

(c) (d)

Figure 2.19: A second collection of planar mechanisms.

or does it move?

Exercise 2.15 The mechanisms of Figures 2.24(a) and 2.24(b).
(a) The mechanism of Figure 2.24(a) consists of six identical squares arranged

in a single closed loop, connected by revolute joints. The bottom square
is fixed to ground. Determine the number of degrees of freedom using
Grübler’s formula.

(b) The mechanism of Figure 2.24(b) also consists of six identical squares
connected by revolute joints, but arranged di↵erently (as shown). Deter-
mine the number of degrees of freedom using Grübler’s formula. Does
your result agree with your intuition about the possible motions of this
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(a)

Circular P Joint

R Joint
P JointS Joint

(b)

Circular
P Joint

S Joint

(c)

Universal Joint

(d)

(e)

S Joint

(f)

Figure 2.20: A first collection of spatial parallel mechanisms.
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U
U
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U

R

(a) (b)

R

U

S

(c)

R

RR

RR

R

P

(d)

Figure 2.21: A second collection of spatial parallel mechanisms.

mechanism?

Exercise 2.16 Figure 2.25 shows a spherical four-bar linkage, in which four
links (one of the links is the ground link) are connected by four revolute joints
to form a single-loop closed chain. The four revolute joints are arranged so that
they lie on a sphere such that their joint axes intersect at a common point.

(a) Use Grübler’s formula to find the number of degrees of freedom. Justify
your choice of formula.

(b) Describe the configuration space.
(c) Assuming that a reference frame is attached to the center link, describe
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Figure 2.22: A 6⇥SS platform.

Figure 2.23: The 3⇥UPU platform.
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stationaryR

R

R

RR

R

(a)

stationary

R

R

R

R

R

R

(b)

Figure 2.24: Two mechanisms.

Figure 2.25: The spherical four-bar linkage.
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Leg A

Leg B

Leg C

Point A

Base

Surgical tool

End-e↵ector

(a)

Leg D

Leg D

Leg D

Point A

Base

Surgical tool

End-e↵ector

(b)

Figure 2.26: Surgical manipulator.

its workspace.

Exercise 2.17 Figure 2.26 shows a parallel robot used for surgical applications.
As shown in Figure 2.26(a), leg A is an RRRP chain, while legs B and C are
RRRUR chains. A surgical tool is rigidly attached to the end-e↵ector.

(a) Use Grübler’s formula to find the number of degrees of freedom of the
mechanism in Figure 2.26(a).

(b) Now suppose that the surgical tool must always pass through point A in
Figure 2.26(a). How many degrees of freedom does the manipulator have?

(c) Legs A, B, and C are now replaced by three identical RRRR legs as shown
in Figure 2.26(b). Furthermore, the axes of all R joints pass through point
A. Use Grübler’s formula to derive the number of degrees of freedom of
this mechanism.

Exercise 2.18 Figure 2.27 shows a 3⇥PUP platform, in which three identical
PUP legs connect a fixed base to a moving platform. The P joints on both
the fixed base and moving platform are arranged symmetrically. Use Grübler’s
formula to find the number of degrees of freedom. Does your answer agree with
your intuition about this mechanism? If not, try to explain any discrepancies
without resorting to a detailed kinematic analysis.
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P

U

P

platform

base

Figure 2.27: The 3⇥PUP platform.

S

S S

S

R R

R

Figure 2.28: Dual-arm robot.

Exercise 2.19 The dual-arm robot of Figure 2.28 is rigidly grasping a box.
The box can only slide on the table; the bottom face of the box must always be
in contact with the table. How many degrees of freedom does this system have?

Exercise 2.20 The dragonfly robot of Figure 2.29 has a body, four legs, and
four wings as shown. Each leg is connected to each adjacent leg by a USP
linkage. Use Grübler’s formula to answer the following questions.

(a) Suppose the body is fixed and only the legs and wings can move. How
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P

S

U

P

S

R

Figure 2.29: Dragonfly robot.

many degrees of freedom does the robot have?
(b) Now suppose the robot is flying in the air. How many degrees of freedom

does the robot have?
(c) Now suppose the robot is standing with all four feet in contact with the

ground. Assume that the ground is uneven and that each foot–ground
contact can be modeled as a point contact with no slip. How many degrees
of freedom does the robot have? Explain your answer.

Exercise 2.21 A caterpillar robot.
(a) A caterpillar robot is hanging by its tail end as shown in Figure 2.30(a).

The robot consists of eight serially connected rigid links (one head, one
tail, and six body links). The six body links are connected by revolute–
prismatic–revolute joints, while the head and tail are connected to the
body by revolute joints. Find the number of degrees of freedom of this
robot.

(b) The caterpillar robot is now crawling on a leaf as shown in Figure 2.30(b).
Suppose that all six body links must make contact with the leaf at all
times but the links can slide and rotate on the leaf. Find the number of
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R

R

RPR

(a) (b)

Contact

(c)

Figure 2.30: A caterpillar robot.

U

R

R

(a)     (b)      (c)

Figure 2.31: (a) A four-fingered hand with palm. (b) The hand grasping an ellip-
soidal object. (c) A rounded fingertip that can roll on the object without sliding.

degrees of freedom of this robot during crawling.
(c) Now suppose the caterpillar robot crawls on the leaf as shown in Fig-

ure 2.30(c), with only the first and last body links in contact with the
leaf. Find the number of degrees of freedom of this robot during crawling.

Exercise 2.22 The four-fingered hand of Figure 2.31(a) consists of a palm
and four URR fingers (the U joints connect the fingers to the palm).

(a) Assume that the fingertips are points and that one fingertip is in contact
with the table surface (sliding of the fingertip point-contact is allowed).
How many degrees of freedom does the hand have? What if two fingertips
are in sliding point contact with the table? Three? All four?

(b) Repeat part (a) but with each URR finger replaced by an SRR finger (each
universal joint is replaced by a spherical joint).
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(c) The hand (with URR fingers) now grasps an ellipsoidal object, as shown
in Figure 2.31(b). Assume that the palm is fixed in space and that no slip
occurs between the fingertips and object. How many degrees of freedom
does the system have?

(d) Now assume that the fingertips are hemispheres as shown in Figure 2.31(c).
Each fingertip can roll on the object but cannot slip or break contact with
the object. How many degrees of freedom does the system have? For a
single fingertip in rolling contact with the object, comment on the dimen-
sion of the space of feasible fingertip velocities relative to the object versus
the number of parameters needed to represent the fingertip configuration
relative to the object (the number of degrees of freedom). (Hint: You may
want to experiment by rolling a ball around on a tabletop to get some
intuition.)

Exercise 2.23 Consider the slider–crank mechanism of Figure 2.4(b). A ro-
tational motion at the revolute joint fixed to ground (the “crank”) causes a
translational motion at the prismatic joint (the “slider”). Suppose that the two
links connected to the crank and slider are of equal length. Determine the con-
figuration space of this mechanism, and draw its projected version on the space
defined by the crank and slider joint variables.

Exercise 2.24 The planar four-bar linkage.
(a) Use Grübler’s formula to determine the number of degrees of freedom of

a planar four-bar linkage floating in space.
(b) Derive an implicit parametrization of the four-bar’s configuration space as

follows. First, label the four links 1, 2, 3, and 4, and choose three points
A, B, C on link 1, D, E, F on link 2, G, H, I on link 3, and J, K,L on link
4. The four-bar linkage is constructed in such a way that the following
four pairs of points are each connected by a revolute joint: C with D,
F with G, I with J , and L with A. Write down explicit constraints
on the coordinates for the eight points A, . . . , H (assume that a fixed
reference frame has been chosen, and denote the coordinates for point
A by pA = (xA, yA, zA), and similarly for the other points). Based on
counting the number of variables and constraints, how many degrees of
freedom does the configuration space have? If it di↵ers from the result
you obtained in (a), try to explain why.

Exercise 2.25 In this exercise we examine in more detail the representation
of the C-space for the planar four-bar linkage of Figure 2.32. Attach a fixed
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Figure 2.32: Planar four-bar linkage.

reference frame and label the joints and link lengths as shown in the figure. The
(x, y) coordinates for joints A and B are given by

A(✓) = (a cos ✓, a sin ✓),

B( ) = (g + b cos , b sin ).

Using the fact that the link connecting A and B is of fixed length h, i.e., kA(✓)�
B( )k2 = h2, we have the constraint

b2 + g2 + 2gb cos + a2 � 2(a cos ✓(g + b cos ) + ab sin ✓ sin ) = h2.

Grouping the coe�cients of cos and sin , the above equation can be expressed
in the form

↵(✓) cos + �(✓) sin = �(✓), (2.11)

where

↵(✓) = 2gb� 2ab cos ✓,

�(✓) = �2ab sin ✓,

�(✓) = h2 � g2 � b2 � a2 + 2ag cos ✓.

We now express  as a function of ✓, by first dividing both sides of Equa-
tion (2.11) by

p
↵2 + �2 to obtain

↵p
↵2 + �2

cos +
�p

↵2 + �2
sin =

�p
↵2 + �2

. (2.12)

Referring to Figure 2.32(b), the angle � is given by � = tan�1(�/↵), so that
Equation (2.12) becomes

cos( � �) =
�p

↵2 + �2
.
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x̂

ŷ
✓1

✓2

(x, y)

Figure 2.33: Two-link planar 2R open chain.

Therefore

 = tan�1

✓
�

↵

◆
± cos�1

 
�p

↵2 + �2

!
.

(a) Note that a solution exists only if �2  ↵2 + �2. What are the physical
implications if this constraint is not satisfied?

(b) Note that, for each value of the input angle ✓, there exist two possible
values of the output angle  . What do these two solutions look like?

(c) Draw the configuration space of the mechanism in ✓– space for the fol-
lowing link length values: a = b = g = h = 1.

(d) Repeat (c) for the following link length values: a = 1, b = 2, h =
p

5,
g = 2.

(e) Repeat (c) for the following link length values: a = 1, b = 1, h = 1,
g =
p

3.

Exercise 2.26 The tip coordinates for the two-link planar 2R robot of Fig-
ure 2.33 are given by

x = 2 cos ✓1 + cos(✓1 + ✓2)

y = 2 sin ✓1 + sin(✓1 + ✓2).

(a) What is the robot’s configuration space?
(b) What is the robot’s workspace (i.e., the set of all points reachable by the

tip)?
(c) Suppose infinitely long vertical barriers are placed at x = 1 and x = �1.

What is the free C-space of the robot (i.e., the portion of the C-space that
does not result in any collisions with the vertical barriers)?

Exercise 2.27 The workspace of a planar 3R open chain.
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(a) Consider a planar 3R open chain with link lengths (starting from the fixed
base joint) 5, 2, and 1, respectively. Considering only the Cartesian point
of the tip, draw its workspace.

(b) Now consider a planar 3R open chain with link lengths (starting from the
fixed base joint) 1, 2, and 5, respectively. Considering only the Cartesian
point of the tip, draw its workspace. Which of these two chains has a
larger workspace?

(c) A not-so-clever designer claims that he can make the workspace of any
planar open chain larger simply by increasing the length of the last link.
Explain the fallacy behind this claim.

Exercise 2.28 Task space.
(a) Describe the task space for a robot arm writing on a blackboard.
(b) Describe the task space for a robot arm twirling a baton.

Exercise 2.29 Give a mathematical description of the topologies of the C-
spaces of the following systems. Use cross products, as appropriate, of spaces
such as a closed interval [a, b] of a line and Rk, Sm, and Tn, where k, m, and n
are chosen appropriately.

(a) The chassis of a car-like mobile robot rolling on an infinite plane.
(b) The car-like mobile robot (chassis only) driving around on a spherical

asteroid.
(c) The car-like mobile robot (chassis only) on an infinite plane with an RRPR

robot arm mounted on it. The prismatic joint has joint limits, but the
revolute joints do not.

(d) A free-flying spacecraft with a 6R arm mounted on it and no joint limits.

Exercise 2.30 Describe an algorithm that drives the rolling coin of Figure 2.11
from any arbitrary initial configuration in its four-dimensional C-space to any
arbitrary goal configuration, despite the two nonholonomic constraints. The
control inputs are the rolling speed ✓̇ and the turning speed �̇. You should
explain clearly in words or pseudocode how the algorithm would work. It is not
necessary to give actual code or formulas.

Exercise 2.31 A di↵erential-drive mobile robot has two wheels that do not
steer but whose speeds can be controlled independently. The robot goes forward
and backward by spinning the wheels in the same direction at the same speed,
and it turns by spinning the wheels at di↵erent speeds. The configuration of the
robot is given by five variables: the (x, y) location of the point halfway between

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

56 2.8. Exercises

Side view                                 Top view
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Figure 2.34: A side view and a top view of a di↵-drive robot.

the wheels, the heading direction ✓ of the robot’s chassis relative to the x-axis of
the world frame, and the rotation angles �1 and �2 of the two wheels about the
axis through the centers of the wheels (Figure 2.34). Assume that the radius of
each wheel is r and the distance between the wheels is 2d.

(a) Let q = (x, y, ✓,�1,�2) be the configuration of the robot. If the two control
inputs are the angular velocities of the wheels !1 = �̇1 and !2 = �̇2, write
down the vector di↵erential equation q̇ = g1(q)!1 + g2(q)!2. The vector
fields g1(q) and g2(q) are called control vector fields (see Section 13.3) and
express how the system moves when the respective unit control signal is
applied.

(b) Write the corresponding Pfa�an constraints A(q)q̇ = 0 for this system.
How many Pfa�an constraints are there?

(c) Are the constraints holonomic or nonholonomic? Or how many are holo-
nomic and how many nonholonomic?

Exercise 2.32 Determine whether the following di↵erential constraints are
holonomic or nonholonomic:

(a)
(1 + cos q1)q̇1 + (1 + cos q2)q̇2 + (cos q1 + cos q2 + 4)q̇3 = 0.

(b)

�q̇1 cos q2 + q̇3 sin(q1 + q2)� q̇4 cos(q1 + q2) = 0

q̇3 sin q1 � q̇4 cos q1 = 0.
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Chapter 3

Rigid-Body Motions

In the previous chapter, we saw that a minimum of six numbers is needed
to specify the position and orientation of a rigid body in three-dimensional
physical space. In this chapter we develop a systematic way to describe a rigid
body’s position and orientation which relies on attaching a reference frame to
the body. The configuration of this frame with respect to a fixed reference frame
is then represented as a 4⇥ 4 matrix. This matrix is an example of an implicit
representation of the C-space, as discussed in the previous chapter: the actual
six-dimensional space of rigid-body configurations is obtained by applying ten
constraints to the 16-dimensional space of 4⇥ 4 real matrices.

Such a matrix not only represents the configuration of a frame, but can also
be used to (1) translate and rotate a vector or a frame, and (2) change the rep-
resentation of a vector or a frame from coordinates in one frame to coordinates
in another frame. These operations can be performed by simple linear algebra,
which is a major reason why we choose to represent a configuration as a 4 ⇥ 4
matrix.

The non-Euclidean (i.e., non-“flat”) nature of the C-space of positions and
orientations leads us to use a matrix representation. A rigid body’s velocity,
however, can be represented simply as a point in R6, defined by three angular
velocities and three linear velocities, which together we call a spatial velocity
or twist. More generally, even though a robot’s C-space may not be a vector
space, the set of feasible velocities at any point in the C-space always forms
a vector space. For example, consider a robot whose C-space is the sphere
S2: although the C-space is not flat, at any point on the sphere the space of
velocities can be thought of as the plane (a vector space) tangent to that point
on the sphere.
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Any rigid-body configuration can be achieved by starting from the fixed
(home) reference frame and integrating a constant twist for a specified time.
Such a motion resembles the motion of a screw, rotating about and translat-
ing along the same fixed axis. The observation that all configurations can be
achieved by a screw motion motivates a six-parameter representation of the
configuration called the exponential coordinates. The six parameters can
be divided into the parameters describing the direction of the screw axis and
a scalar to indicate how far the screw motion must be followed to achieve the
desired configuration.

This chapter concludes with a discussion of forces. Just as angular and linear
velocities are packaged together into a single vector in R6, moments (torques)
and forces are packaged together into a six-vector called a spatial force or
wrench.

To illustrate the concepts and to provide a synopsis of the chapter, we begin
with a motivating planar example. Before doing so, we make some remarks
about vector notation.

A Word about Vectors and Reference Frames

A free vector is a geometric quantity with a length and a direction. Think
of it as an arrow in Rn. It is called “free” because it is not necessarily rooted
anywhere; only its length and direction matter. A linear velocity can be viewed
as a free vector: the length of the arrow is the speed and the direction of the
arrow is the direction of the velocity. A free vector is denoted by an upright
text symbol, e.g., v.

If a reference frame and length scale have been chosen for the underlying
space in which v lies then this free vector can be moved to a position such that
the base of the arrow is at the origin without changing the orientation. The
free vector v can then be represented by its coordinates in the reference frame.
We write the vector in italics, v 2 Rn, where v is at the “head” of the arrow
in the frame’s coordinates. If a di↵erent reference frame and length scale are
chosen then the representation v will change but the underlying free vector v is
unchanged.

In other words, we say that v is coordinate free; it refers to a physical
quantity in the underlying space, and it does not care how we represent it.
However, v is a representation of v that depends on the choice of coordinate
frame.

A point p in physical space can also be represented as a vector. Given
a choice of reference frame and length scale for physical space, the point p
can be represented as a vector from the reference frame origin to p; its vector
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{a} x̂a

ŷa

p

pa

pb

{b}
x̂b

ŷb

Figure 3.1: The point p exists in physical space, and it does not care how we
represent it. If we fix a reference frame {a}, with unit coordinate axes x̂a and ŷa, we
can represent p as pa = (1, 2). If we fix a reference frame {b} at a di↵erent location, a
di↵erent orientation, and a di↵erent length scale, we can represent p as pb = (4,�2).

representation is denoted in italics by p 2 Rn. Here, as before, a di↵erent
choice of reference frame and length scale for physical space leads to a di↵erent
representation p 2 Rn for the same point p in physical space. See Figure 3.1.

In the rest of this book, a choice of length scale will always be assumed, but
we will be dealing with reference frames at di↵erent positions and orientations.
A reference frame can be placed anywhere in space, and any reference frame
leads to an equally valid representation of the underlying space and the objects
in it. We always assume that exactly one stationary fixed frame, or space
frame, denoted {s}, has been defined. This might be attached to a corner of a
room, for example. Similarly, we often assume that at least one frame has been
attached to some moving rigid body, such as the body of a quadrotor flying
in the room. This body frame, denoted {b}, is the stationary frame that is
coincident with the body-attached frame at any instant.

While it is common to attach the origin of the {b} frame to some important
point on the body, such as its center of mass, this is not necessary. The origin of
the {b} frame does not even need to be on the physical body itself, as long as its
configuration relative to the body, viewed from an observer stationary relative
to the body, is constant.

Important! All frames in this book are stationary, inertial, frames.
When we refer to a body frame {b}, we mean a motionless frame that is
instantaneously coincident with a frame that is fixed to a (possibly moving)
body. This is important to keep in mind, since you may have had a dynamics
course that used non-inertial moving frames attached to rotating bodies. Do
not confuse these with the stationary, inertial, body frames of this book.
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x̂

ŷ

ẑ
positive
rotation

Figure 3.2: (Left) The x̂, ŷ, and ẑ axes of a right-handed reference frame are aligned
with the index finger, middle finger, and thumb of the right hand, respectively. (Right)
A positive rotation about an axis is in the direction in which the fingers of the right
hand curl when the thumb is pointed along the axis.

For simplicity, we will usually refer to a body frame as a frame attached
to a moving rigid body. Despite this, at any instant, by “body frame” we
actually mean the stationary frame that is instantaneously coincident with
the frame moving along with the body.

It is worth repeating one more time: all frames are stationary.
All reference frames are right-handed, as illustrated in Figure 3.2. A

positive rotation about an axis is defined as the direction in which the fingers
of the right hand curl when the thumb is pointed along the axis (Figure 3.2).

3.1 Rigid-Body Motions in the Plane

Consider the planar body (the gray shape) in Figure 3.3; its motion is confined
to the plane. Suppose that a length scale and a fixed reference frame {s} have
been chosen as shown, with unit axes x̂s and ŷs. (Throughout this book, the
hat notation indicates a unit vector.) Similarly, we attach a reference frame
with unit axes x̂b and ŷb to the planar body. Because this frame moves with
the body, it is called the body frame and is denoted {b}.

To describe the configuration of the planar body, only the position and
orientation of the body frame with respect to the fixed frame need to be specified.
The body-frame origin p can be expressed in terms of the coordinate axes of
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{s} x̂s

ŷs

p
{b}

✓

x̂b

ŷb

Figure 3.3: The body frame {b} is expressed in the fixed-frame coordinates {s} by the
vector p and the directions of the unit axes x̂b and ŷb. In this example, p = (2, 1) and
✓ = 60�, so x̂b = (cos ✓, sin ✓) = (1/2,

p
3/2) and ŷb = (� sin ✓, cos ✓) = (�

p
3/2, 1/2).

{s} as
p = pxx̂s + pyŷs. (3.1)

You are probably more accustomed to writing this vector as simply p = (px, py);
this is fine when there is no possibility of ambiguity about reference frames, but
writing p as in Equation (3.1) clearly indicates the reference frame with respect
to which (px, py) is defined.

The simplest way to describe the orientation of the body frame {b} relative
to the fixed frame {s} is by specifying the angle ✓, as shown in Figure 3.3.
Another (admittedly less simple) way is to specify the directions of the unit
axes x̂b and ŷb of {b} relative to {s}, in the form

x̂b = cos ✓ x̂s + sin ✓ ŷs, (3.2)

ŷb = � sin ✓ x̂s + cos ✓ ŷs. (3.3)

At first sight this seems to be a rather ine�cient way of representing the body-
frame orientation. However, imagine if the body were to move arbitrarily in
three-dimensional space; a single angle ✓ would not su�ce to describe the ori-
entation of the displaced reference frame. We would actually need three angles,
but it is not yet clear how to define an appropriate set of three angles. However,
expressing the directions of the coordinate axes of {b} in terms of coe�cients
of the coordinate axes of {s}, as we have done above for the planar case, is
straightforward.

Assuming we agree to express everything in terms of {s} then, just as the
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{s} x̂s

ŷs p

r

{b}

x̂b

ŷb

✓

q  
�

{c}
x̂c

ŷc

Figure 3.4: The frame {b} in {s} is given by (P, p), and the frame {c} in {b} is given
by (Q, q). From these we can derive the frame {c} in {s}, described by (R, r). The
numerical values of the vectors p, q, and r and the coordinate-axis directions of the
three frames are evident from the grid of unit squares.

point p can be represented as a column vector p 2 R2 of the form

p =


px
py

�
, (3.4)

the two vectors x̂b and ŷb can also be written as column vectors and packaged
into the following 2⇥ 2 matrix P :

P = [x̂b ŷb] =


cos ✓ � sin ✓
sin ✓ cos ✓

�
. (3.5)

The matrix P is an example of a rotation matrix. Although P consists of
four numbers, they are subject to three constraints (each column of P must be
a unit vector, and the two columns must be orthogonal to each other), and the
one remaining degree of freedom is parametrized by ✓. Together, the pair (P, p)
provides a description of the orientation and position of {b} relative to {s}.

Now refer to the three frames in Figure 3.4. Repeating the approach above,
and expressing {c} in {s} as the pair (R, r), we can write

r =


rx
ry

�
, R =


cos� � sin�
sin� cos�

�
. (3.6)
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We could also describe the frame {c} relative to {b}. Letting q denote the
vector from the origin of {b} to the origin of {c} expressed in {b} coordinates,
and letting Q denote the orientation of {c} relative to {b}, we can write {c}
relative to {b} as the pair (Q, q), where

q =


qx
qy

�
, Q =


cos � sin 
sin cos 

�
. (3.7)

If we know (Q, q) (the configuration of {c} relative to {b}) and (P, p) (the
configuration of {b} relative to {s}), we can compute the configuration of {c}
relative to {s} as follows:

R = PQ (convert Q to the {s} frame) (3.8)

r = Pq + p (convert q to the {s} frame and vector-sum with p). (3.9)

Thus (P, p) not only represents a configuration of {b} in {s}; it can also be used
to convert the representation of a point or frame from {b} coordinates to {s}
coordinates.

Now consider a rigid body with two frames attached to it, {d} and {c}. The
frame {d} is initially coincident with {s}, and {c} is initially described by (R, r)
in {s} (Figure 3.5(a)). Then the body is moved in such a way that {d} moves to
{d0}, becoming coincident with a frame {b} described by (P, p) in {s}. Where
does {c} end up after this motion? Denoting the configuration of the new frame
{c0} as (R0, r0), you can verify that

R0 = PR, (3.10)

r0 = Pr + p, (3.11)

which is similar to Equations (3.8) and (3.9). The di↵erence is that (P, p) is ex-
pressed in the same frame as (R, r), so the equations are not viewed as a change
of coordinates, but instead as a rigid-body displacement (also known as a
rigid-body motion): in Figure 3.5(a) transformation 1� rotates {c} according
to P and transformation 2� translates it by p in {s}.

Thus we see that a rotation matrix–vector pair such as (P, p) can be used
for three purposes:

(a) to represent a configuration of a rigid body in {s} (Figure 3.3);

(b) to change the reference frame in which a vector or frame is represented
(Figure 3.4);

(c) to displace a vector or a frame (Figure 3.5(a)).
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{s,d} {s,d}

{c}{c}
{b,d }

Pr + p

p

r
p

Pr

s

�
{d }

{c } {c }

2

1

(a) (b)

Figure 3.5: (a) The frame {d}, fixed to an elliptical rigid body and initially coincident
with {s}, is displaced to {d0} (which is coincident with the stationary frame {b}),
by first rotating according to P then translating according to p, where (P, p) is the
representation of {b} in {s}. The same transformation takes the frame {c}, also
attached to the rigid body, to {c0}. The transformation marked 1� rigidly rotates
{c} about the origin of {s}, and then transformation 2� translates the frame by p
expressed in {s}. (b) Instead of viewing this displacement as a rotation followed by
a translation, both rotation and translation can be performed simultaneously. The
displacement can be viewed as a rotation of � = 90� about a fixed point s.

Referring to Figure 3.5(b), note that the rigid-body motion illustrated in
Figure 3.5(a), expressed as a rotation followed by a translation, can be obtained
by simply rotating the body about a fixed point s by an angle �. This is a planar
example of a screw motion.1 The displacement can therefore be parametrized
by the three screw coordinates (�, sx, sy), where (sx, sy) = (0, 2) denotes the
coordinates for the point s (i.e., the screw axis out of the page) in the fixed
frame {s}.

Another way to represent the screw motion is to consider it as the dis-
placement obtained by following simultaneous angular and linear velocities for
a given distance. Inspecting Figure 3.5(b), we see that rotating about s with
a unit angular velocity (! = 1 rad/s) means that a point at the origin of the
{s} frame moves at two units per second initially in the +x̂-direction of the {s}
frame, i.e., v = (vx, vy) = (2, 0). We can package these together in the three-

1
If the displacement is a pure translation without rotation, then s lies at infinity.
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vector S = (!, vx, vy) = (1, 2, 0), a representation of the screw axis. Following
this screw axis for an angle ✓ = ⇡/2 yields the final displacement. Thus we
can represent the displacement using the three coordinates S✓ = (⇡/2,⇡, 0).
These coordinates have some advantages, and we call these the exponential
coordinates for the planar rigid-body displacement.

To represent the combination of an angular and a linear velocity, called a
twist, we take a screw axis S = (!, vx, vy), where ! = 1, and scale it by multi-
plying by some rotation speed, ✓̇. The twist is V = S ✓̇. The net displacement
obtained by rotating about the screw axis S by an angle ✓ is equivalent to the
displacement obtained by rotating about S at a speed ✓̇ = ✓ for unit time, so
V = S ✓̇ can also be considered a set of exponential coordinates.

Preview of the remainder of this chapter. In the rest of this chapter we
generalize the concepts above to three-dimensional rigid-body motions. For this
purpose consider a rigid body occupying three-dimensional physical space, as
shown in Figure 3.6. Assume that a length scale for physical space has been
chosen, and that both the fixed frame {s} and body frame {b} have been chosen
as shown. Throughout this book all reference frames are right-handed – the unit
axes {x̂, ŷ, ẑ} always satisfy x̂⇥ ŷ = ẑ. Denote the unit axes of the fixed frame
by {x̂s, ŷs, ẑs} and the unit axes of the body frame by {x̂b, ŷb, ẑb}. Let p denote
the vector from the fixed-frame origin to the body-frame origin. In terms of the
fixed-frame coordinates, p can be expressed as

p = p1x̂s + p2ŷs + p3ẑs. (3.12)

The axes of the body frame can also be expressed as

x̂b = r11x̂s + r21ŷs + r31ẑs, (3.13)

ŷb = r12x̂s + r22ŷs + r32ẑs, (3.14)

ẑb = r13x̂s + r23ŷs + r33ẑs. (3.15)

Defining p 2 R3 and R 2 R3⇥3 as

p =

2

4
p1
p2
p3

3

5 , R = [x̂b ŷb ẑb] =

2

4
r11 r12 r13
r21 r22 r23
r31 r32 r33

3

5 , (3.16)

the 12 parameters given by (R, p) then provide a description of the position and
orientation of the rigid body relative to the fixed frame.

Since the orientation of a rigid body has three degrees of freedom, only three
of the nine entries in R can be chosen independently. One three-parameter
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x̂s

ŷs

ẑs
p

x̂b

ŷb

ẑb

Figure 3.6: Mathematical description of position and orientation.

representation of rotations is provided by the exponential coordinates, which
define an axis of rotation and the angle rotated about that axis. We leave
other popular representations of orientations (the three-parameter Euler an-
gles and the roll–pitch–yaw angles, the Cayley–Rodrigues parameters,
and the unit quaternions, which use four variables subject to one constraint)
to Appendix B.

We then examine the six-parameter exponential coordinates for the config-
uration of a rigid body that arise from integrating a six-dimensional twist con-
sisting of the body’s angular and linear velocities. This representation follows
from the Chasles–Mozzi theorem which states that every rigid-body displace-
ment can be obtained by a finite rotation and translation about a fixed screw
axis.

We conclude with a discussion of forces and moments. Rather than treat
these as separate three-dimensional quantities, we merge the moment and force
vectors into a six-dimensional wrench. The twist and wrench, and rules for
manipulating them, form the basis for the kinematic and dynamic analyses in
subsequent chapters.

3.2 Rotations and Angular Velocities

3.2.1 Rotation Matrices

We argued earlier that, of the nine entries in the rotation matrix R, only three
can be chosen independently. We begin by expressing a set of six explicit con-
straints on the entries of R. Recall that the three columns of R correspond to
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the body-frame unit axes {x̂b, ŷb, ẑb}. The following conditions must therefore
be satisfied.

(a) The unit norm condition: x̂b, ŷb, and ẑb are all unit vectors, i.e.,

r211 + r221 + r231 = 1,

r212 + r222 + r232 = 1, (3.17)

r213 + r223 + r233 = 1.

(b) The orthogonality condition: x̂b · ŷb = x̂b · ẑb = ŷb · ẑb = 0 (here · denotes
the inner product), or

r11r12 + r21r22 + r31r32 = 0,

r12r13 + r22r23 + r32r33 = 0, (3.18)

r11r13 + r21r23 + r31r33 = 0.

These six constraints can be expressed more compactly as a single set of con-
straints on the matrix R,

RTR = I, (3.19)

where RT denotes the transpose of R and I denotes the identity matrix.
There is still the matter of accounting for the fact that the frame is right-

handed (i.e., x̂b ⇥ ŷb = ẑb, where ⇥ denotes the cross product) rather than
left-handed (i.e., x̂b ⇥ ŷb = �ẑb); our six equality constraints above do not dis-
tinguish between right- and left-handed frames. We recall the following formula
for evaluating the determinant of a 3⇥3 matrix M : denoting the three columns
of M by a, b, and c, respectively, its determinant is given by

det M = aT(b⇥ c) = cT(a⇥ b) = bT(c⇥ a). (3.20)

Substituting the columns for R into this formula then leads to the constraint

det R = 1. (3.21)

Note that, had the frame been left-handed, we would have det R = �1. In
summary, the six equality constraints represented by Equation (3.19) imply
that det R = ±1; imposing the additional constraint det R = 1 means that only
right-handed frames are allowed. The constraint det R = 1 does not change the
number of independent continuous variables needed to parametrize R.

The set of 3 ⇥ 3 rotation matrices forms the special orthogonal group
SO(3), which we now formally define.
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Definition 3.1. The special orthogonal group SO(3), also known as the
group of rotation matrices, is the set of all 3⇥ 3 real matrices R that satisfy (i)
RTR = I and (ii) det R = 1.

The set of 2 ⇥ 2 rotation matrices is a subgroup of SO(3) and is denoted
SO(2).

Definition 3.2. The special orthogonal group SO(2) is the set of all 2⇥ 2
real matrices R that satisfy (i) RTR = I and (ii) det R = 1.

From the definition it follows that every R 2 SO(2) can be written

R =


r11 r12
r21 r22

�
=


cos ✓ � sin ✓
sin ✓ cos ✓

�
,

where ✓ 2 [0, 2⇡). The elements of SO(2) represent planar orientations and the
elements of SO(3) represent spatial orientations.

3.2.1.1 Properties of Rotation Matrices

The sets of rotation matrices SO(2) and SO(3) are called groups because they
satisfy the properties required of a mathematical group.2 Specifically, a group
consists of a set of elements and an operation on two elements (matrix multipli-
cation for SO(n)) such that, for all A, B in the group, the following properties
are satisfied:

• closure: AB is also in the group.

• associativity: (AB)C = A(BC).

• identity element existence: There exists an element I in the group
(the identity matrix for SO(n)) such that AI = IA = A.

• inverse element existence: There exists an element A�1 in the group
such that AA�1 = A�1A = I.

Proofs of these properties are given below, using the fact that the identity
matrix I is a trivial example of a rotation matrix.

Proposition 3.3. The inverse of a rotation matrix R 2 SO(3) is also a rotation
matrix, and it is equal to the transpose of R, i.e., R�1 = RT.

2
More specifically, the SO(n) groups are also called matrix Lie groups (where “Lie” is

pronounced “Lee”) because the elements of the group form a di↵erentiable manifold.
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Proof. The condition RTR = I implies that R�1 = RT and RRT = I. Since
det RT = det R = 1, RT is also a rotation matrix.

Proposition 3.4. The product of two rotation matrices is a rotation matrix.

Proof. Given R1, R2 2 SO(3), their product R1R2 satisfies (R1R2)T(R1R2) =
RT

2 RT
1 R1R2 = RT

2 R2 = I. Further, detR1R2 = det R1 · det R2 = 1. Thus R1R2

satisfies the conditions for a rotation matrix.

Proposition 3.5. Multiplication of rotation matrices is associative, (R1R2)R3

= R1(R2R3), but generally not commutative, R1R2 6= R2R1. For the special
case of rotation matrices in SO(2), rotations commute.

Proof. Associativity and nocommutativity follows from the properties of matrix
multiplication in linear algebra. Commutativity for planar rotations follows
from a direct calculation.

Another important property is that the action of a rotation matrix on a
vector (e.g., rotating the vector) does not change the length of the vector.

Proposition 3.6. For any vector x 2 R3 and R 2 SO(3), the vector y = Rx
has the same length as x.

Proof. This follows from kyk2 = yTy = (Rx)TRx = xTRTRx = xTx = kxk2.

3.2.1.2 Uses of Rotation Matrices

Analogously to the discussion after Equations 3.10 and (3.11) in Section 3.1,
there are three major uses for a rotation matrix R:

(a) to represent an orientation;

(b) to change the reference frame in which a vector or a frame is represented;

(c) to rotate a vector or a frame.

In the first use, R is thought of as representing a frame; in the second and third
uses, R is thought of as an operator that acts on a vector or frame (changing
its reference frame or rotating it).

To illustrate these uses, refer to Figure 3.7, which shows three di↵erent coor-
dinate frames – {a}, {b}, and {c} – representing the same space. These frames
are chosen to have the same origin, since we are only representing orientations,
but, to make the axes clear, the figure shows the same space drawn three times.
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{a} {b} {c}

p p p

x̂a ŷa

ẑa

x̂b

ŷb

ẑb x̂c

ŷc
ẑc

Figure 3.7: The same space and the same point p represented in three di↵erent
frames with di↵erent orientations.

A point p in the space is also shown. Not shown is a fixed space frame {s},
which is aligned with {a}. The orientations of the three frames relative to {s}
can be written

Ra =

2

4
1 0 0
0 1 0
0 0 1

3

5 , Rb =

2

4
0 �1 0
1 0 0
0 0 1

3

5 , Rc =

2

4
0 �1 0
0 0 �1
1 0 0

3

5 ,

and the location of the point p in these frames can be written

pa =

2

4
1
1
0

3

5 , pb =

2

4
1
�1
0

3

5 , pc =

2

4
0
�1
�1

3

5 .

Note that {b} is obtained by rotating {a} about ẑa by 90�, and {c} is obtained
by rotating {b} about ŷb by �90�.

Representing an orientation When we write Rc, we are implicitly referring
to the orientation of frame {c} relative to the fixed frame {s}. We can be more
explicit about this by writing it as Rsc: we are representing the frame {c} of the
second subscript relative to the frame {s} of the first subscript. This notation
allows us to express one frame relative to another that is not {s}; for example,
Rbc is the orientation of {c} relative to {b}.

If there is no possibility of confusion regarding the frames involved, we may
simply write R.

Inspecting Figure 3.7, we see that

Rac =

2

4
0 �1 0
0 0 �1
1 0 0

3

5 , Rca =

2

4
0 0 1
�1 0 0
0 �1 0

3

5 .
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A simple calculation shows that RacRca = I; that is, Rac = R�1
ca or, equivalently,

from Proposition 3.3, Rac = RT
ca. In fact, for any two frames {d} and {e},

Rde = R�1
ed = RT

ed.

You can verify this fact using any two frames in Figure 3.7.

Changing the reference frame The rotation matrix Rab represents the
orientation of {b} in {a}, and Rbc represents the orientation of {c} in {b}.
A straightforward calculation shows that the orientation of {c} in {a} can be
computed as

Rac = RabRbc. (3.22)

In the previous equation, Rbc can be viewed as a representation of the orientation
of {c}, while Rab can be viewed as a mathematical operator that changes the
reference frame from {b} to {a}, i.e.,

Rac = RabRbc = change reference frame from {b} to {a} (Rbc).

A subscript cancellation rule helps us to remember this property. When
multiplying two rotation matrices, if the second subscript of the first matrix
matches the first subscript of the second matrix, the two subscripts “cancel”
and a change of reference frame is achieved:

RabRbc = R
a⇤b

R
⇤bc

= Rac.

A rotation matrix is just a collection of three unit vectors, so the reference
frame of a vector can also be changed by a rotation matrix using a modified
version of the subscript cancellation rule:

Rabpb = R
a⇤b

p
⇤b
= pa.

You can verify these properties using the frames and points in Figure 3.7.

Rotating a vector or a frame The final use of a rotation matrix is to rotate
a vector or a frame. Figure 3.8 shows a frame {c} initially aligned with {s} with
axes {x̂, ŷ, ẑ}. If we rotate the frame {c} about a unit axis !̂ by an amount ✓,
the new frame, {c0} (light gray), has coordinate axes {x̂0, ŷ0, ẑ0}. The rotation
matrix R = Rsc0 represents the orientation of {c0} relative to {s}, but instead
we can think of it as representing the rotation operation that takes {s} to {c0}.
Emphasizing our view of R as a rotation operator, instead of as an orientation,
we can write

R = Rot(!̂, ✓),
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Figure 3.8: A coordinate frame with axes {x̂, ŷ, ẑ} is rotated by ✓ about a unit axis
!̂ (which is aligned with �ŷ in this figure). The orientation of the final frame, with
axes {x̂0, ŷ0, ẑ0}, is written as R relative to the original frame.

meaning the operation that rotates the orientation represented by the identity
matrix to the orientation represented by R. Examples of rotation operations
about coordinate frame axes are

Rot(x̂, ✓) =

2

4
1 0 0
0 cos ✓ � sin ✓
0 sin ✓ cos ✓

3

5 , Rot(ŷ, ✓) =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5 ,

Rot(ẑ, ✓) =

2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0

0 0 1

3

5 .

More generally, as we will see in Section 3.2.3.3, for !̂ = (!̂1, !̂2, !̂3),

Rot(!̂, ✓) =
2

4
c✓ + !̂2

1(1� c✓) !̂1!̂2(1� c✓)� !̂3s✓ !̂1!̂3(1� c✓) + !̂2s✓
!̂1!̂2(1� c✓) + !̂3s✓ c✓ + !̂2

2(1� c✓) !̂2!̂3(1� c✓)� !̂1s✓
!̂1!̂3(1� c✓)� !̂2s✓ !̂2!̂3(1� c✓) + !̂1s✓ c✓ + !̂2

3(1� c✓)

3

5 ,

where s✓ = sin ✓ and c✓ = cos ✓. Any R 2 SO(3) can be obtained by rotating
from the identity matrix by some ✓ about some !̂. Note also that Rot(!̂, ✓) =
Rot(�!̂,�✓).

Now, say that Rsb represents some {b} relative to {s} and that we want to
rotate {b} by ✓ about a unit axis !̂, i.e., by a rotation R = Rot(!̂, ✓). To be
clear about what we mean, we have to specify whether the axis of rotation !̂ is
expressed in {s} coordinates or {b} coordinates. Depending on our choice, the
same numerical !̂ (and therefore the same numerical R) corresponds to di↵erent
rotation axes in the underlying space, unless the {s} and {b} frames are aligned.
Letting {b0} be the new frame after a rotation by ✓ about !̂s = !̂ (the rotation
axis !̂ is considered to be in the fixed frame, {s}), and letting {b00} be the new
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x̂
ŷ

ẑ
90�

90�

90�

R = Rot(ẑ, 90�)

x̂

ŷ
ẑ

{s}
x̂s ŷs

ẑs

{b}

x̂b

ŷb

ẑb

ẑs

ẑb

Rsb = RRsb

Rsb = RsbR

{b }

x̂b

ŷb

ẑb

{b }

x̂b

ŷb
ẑb

fixed frame
rotation

body frame
rotation

Figure 3.9: (Top) The rotation operator R = Rot(ẑ, 90�) gives the orientation of
the right-hand frame in the left-hand frame. (Bottom) On the left are shown a fixed
frame {s} and a body frame {b}, which can be expressed as Rsb. The quantity RRsb

rotates {b} by 90� about the fixed-frame axis ẑs to {b0}. The quantity RsbR rotates
{b} by 90� about the body-frame axis ẑb to {b00}.

frame after a rotation by ✓ about !̂b = !̂ (the rotation axis !̂ is considered to be
in the body frame {b}), representations of these new frames can be calculated
as

Rsb0 = rotate by R in {s} frame (Rsb) = RRsb (3.23)

Rsb00 = rotate by R in {b} frame (Rsb) = RsbR. (3.24)

In other words, premultiplying by R = Rot(!̂, ✓) yields a rotation about an
axis !̂ considered to be in the fixed frame, and postmultiplying by R yields a
rotation about !̂ considered as being in the body frame.

Rotation by R in the {s} frame and in the {b} frame is illustrated in Fig-
ure 3.9.

To rotate a vector v, note that there is only one frame involved, the frame
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x̂(t)

ŷ(t)

ẑ(t)

x̂(t + �t)

ŷ(t + �t)

ẑ(t + �t)

!̂

�✓
! = !̂✓̇

˙̂x = ! ⇥ x̂

x̂

ŷ

ẑ

Figure 3.10: (Left) The instantaneous angular velocity vector. (Right) Calculating
˙̂x.

in which v is represented, and therefore !̂ must be interpreted as being in this
frame. The rotated vector v0, in that same frame, is

v0 = Rv.

3.2.2 Angular Velocities

Referring to Figure 3.10(a), suppose that a frame with unit axes {x̂, ŷ, ẑ} is
attached to a rotating body. Let us determine the time derivatives of these unit
axes. Beginning with ˙̂x, first note that x̂ is of unit length; only the direction
of x̂ can vary with time (the same goes for ŷ and ẑ). If we examine the body
frame at times t and t+�t, the change in frame orientation can be described as
a rotation of angle �✓ about some unit axis ŵ passing through the origin. The
axis ŵ is coordinate-free; it is not yet represented in any particular reference
frame.

In the limit as �t approaches zero, the ratio �✓/�t becomes the rate of
rotation ✓̇, and ŵ can similarly be regarded as the instantaneous axis of rotation.
In fact, ŵ and ✓̇ can be combined to define the angular velocity w as follows:

w = ŵ✓̇. (3.25)

Referring to Figure 3.10(b), it should be evident that

˙̂x = w⇥ x̂, (3.26)
˙̂y = w⇥ ŷ, (3.27)
˙̂z = w⇥ ẑ. (3.28)
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To express these equations in coordinates, we have to choose a reference
frame in which to represent w. We can choose any reference frame, but two
natural choices are the fixed frame {s} and the body frame {b}. Let us start
with fixed-frame {s} coordinates. Let R(t) be the rotation matrix describing
the orientation of the body frame with respect to the fixed frame at time t; Ṙ(t)
is its time rate of change. The first column of R(t), denoted r1(t), describes x̂
in fixed-frame coordinates; similarly, r2(t) and r3(t) respectively describe ŷ and
ẑ in fixed-frame coordinates. At a specific time t, let !s 2 R3 be the angular
velocity w expressed in fixed-frame coordinates. Then Equations (3.26)–(3.28)
can be expressed in fixed-frame coordinates as

ṙi = !s ⇥ ri, i = 1, 2, 3.

These three equations can be rearranged into the following single 3⇥ 3 matrix
equation:

Ṙ = [!s ⇥ r1 !s ⇥ r2 !s ⇥ r3] = !s ⇥R. (3.29)

To eliminate the cross product on the right in Equation (3.29), we introduce
some new notation, rewriting !s ⇥ R as [!s]R, where [!s] is a 3 ⇥ 3 skew-
symmetric matrix representation of !s 2 R3:

Definition 3.7. Given a vector x = [x1 x2 x3]T 2 R3, define

[x] =

2

4
0 �x3 x2

x3 0 �x1

�x2 x1 0

3

5 . (3.30)

The matrix [x] is a 3⇥ 3 skew-symmetric matrix representation of x; that is,

[x] = �[x]T.

The set of all 3⇥ 3 real skew-symmetric matrices is called so(3).3

A useful property involving rotations and skew-symmetric matrices is the
following.

Proposition 3.8. Given any ! 2 R3 and R 2 SO(3), the following always
holds:

R[!]RT = [R!]. (3.31)

3
The set of skew-symmetric matrices so(3) is called the Lie algebra of the Lie group SO(3).

It consists of all possible Ṙ when R = I.
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Proof. Letting rTi be the ith row of R, we have

R[!]RT =

2

64
rT1 (! ⇥ r1) rT1 (! ⇥ r2) rT1 (! ⇥ r3)

rT2 (! ⇥ r1) rT2 (! ⇥ r2) rT2 (! ⇥ r3)

rT3 (! ⇥ r1) rT3 (! ⇥ r2) rT3 (! ⇥ r3)

3

75

=

2

64
0 �rT3 ! rT2 !

rT3 ! 0 �rT1 !

�rT2 ! rT1 ! 0

3

75

= [R!], (3.32)

where the second line makes use of the determinant formula for 3⇥ 3 matrices,
i.e., if M is a 3 ⇥ 3 matrix with columns {a, b, c}, then det M = aT(b ⇥ c) =
cT(a⇥ b) = bT(c⇥ a).

With the skew-symmetric notation, we can rewrite Equation (3.29) as

[!s]R = Ṙ. (3.33)

We can post-multiply both sides of Equation (3.33) by R�1 to get

[!s] = ṘR�1. (3.34)

Now let !b be w expressed in body-frame coordinates. To see how to obtain
!b from !s and vice versa, we write R explicitly as Rsb. Then !s and !b are
two di↵erent vector representations of the same angular velocity w and, by our
subscript cancellation rule, !s = Rsb!b. Therefore

!b = R�1
sb !s = R�1!s = RT!s. (3.35)

Let us now express this relation in skew-symmetric matrix form:

[!b] = [RT!s]

= RT[!s]R (by Proposition 3.8)

= RT(ṘRT)R

= RTṘ = R�1Ṙ. (3.36)

In summary, two equations relate R and Ṙ to the angular velocity w:
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Proposition 3.9. Let R(t) denote the orientation of the rotating frame as seen
from the fixed frame. Denote by w the angular velocity of the rotating frame.
Then

ṘR�1 = [!s], (3.37)

R�1Ṙ = [!b], (3.38)

where !s 2 R3 is the fixed-frame vector representation of w and [!s] 2 so(3)
is its 3 ⇥ 3 matrix representation, and where !b 2 R3 is the body-frame vector
representation of w and [!b] 2 so(3) is its 3⇥ 3 matrix representation.

It is important to note that !b is not the angular velocity relative to a moving
frame. Rather, !b is the angular velocity relative to the stationary frame {b}
that is instantaneously coincident with a frame attached to the moving body.

It is also important to note that the fixed-frame angular velocity !s does not
depend on the choice of body frame. Similarly, the body-frame angular velocity
!b does not depend on the choice of fixed frame. While Equations (3.37) and
(3.38) may appear to depend on both frames (since R and Ṙ individually depend
on both {s} and {b}), the product ṘR�1 is independent of {b} and the product
R�1Ṙ is independent of {s}.

Finally, an angular velocity expressed in an arbitrary frame {d} can be
represented in another frame {c} if we know the rotation that takes {c} to {d},
using our now-familiar subscript cancellation rule:

!c = Rcd!d.

3.2.3 Exponential Coordinate Representation of Rotation

We now introduce a three-parameter representation for rotations, the expo-
nential coordinates for rotation. The exponential coordinates parametrize
a rotation matrix in terms of a rotation axis (represented by a unit vector !̂)
and an angle of rotation ✓ about that axis; the vector !̂✓ 2 R3 then serves as the
three-parameter exponential coordinate representation of the rotation. Writing
!̂ and ✓ individually is the axis-angle representation of a rotation.

The exponential coordinate representation !̂✓ for a rotation matrix R can
be interpreted equivalently as:

• the axis !̂ and rotation angle ✓ such that, if a frame initially coincident
with {s} were rotated by ✓ about !̂, its final orientation relative to {s}
would be expressed by R; or
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• the angular velocity !̂✓ expressed in {s} such that, if a frame initially
coincident with {s} followed !̂✓ for one unit of time (i.e., !̂✓ is integrated
over this time interval), its final orientation would be expressed by R; or

• the angular velocity !̂ expressed in {s} such that, if a frame initially
coincident with {s} followed !̂ for ✓ units of time (i.e., !̂ is integrated over
this time interval) its final orientation would be expressed by R.

The latter two views suggest that we consider exponential coordinates in the
setting of linear di↵erential equations. Below we briefly review some key results
from linear di↵erential equations theory.

3.2.3.1 Essential Results from Linear Di↵erential Equations Theory

Let us begin with the simple scalar linear di↵erential equation

ẋ(t) = ax(t), (3.39)

where x(t) 2 R, a 2 R is constant, and the initial condition x(0) = x0 is given.
Equation (3.39) has solution

x(t) = eatx0.

It is also useful to remember the series expansion of the exponential function:

eat = 1 + at +
(at)2

2!
+

(at)3

3!
+ · · · .

Now consider the vector linear di↵erential equation

ẋ(t) = Ax(t), (3.40)

where x(t) 2 Rn, A 2 Rn⇥n is constant, and the initial condition x(0) = x0 is
given. From the above scalar result one can conjecture a solution of the form

x(t) = eAtx0 (3.41)

where the matrix exponential eAt now needs to be defined in a meaningful
way. Again mimicking the scalar case, we define the matrix exponential to be

eAt = I + At +
(At)2

2!
+

(At)3

3!
+ · · · (3.42)

The first question to be addressed is under what conditions this series converges,
so that the matrix exponential is well defined. It can be shown that if A is con-
stant and finite then this series is always guaranteed to converge to a finite limit;
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the proof can be found in most texts on ordinary linear di↵erential equations
and is not covered here.

The second question is whether Equation (3.41), using Equation (3.42), is
indeed a solution to Equation (3.40). Taking the time derivative of x(t) = eAtx0,

ẋ(t) =

✓
d

dt
eAt

◆
x0

=
d

dt

✓
I + At +

A2t2

2!
+

A3t3

3!
+ · · ·

◆
x0

=

✓
A + A2t +

A3t2

2!
+ · · ·

◆
x0

= AeAtx0

= Ax(t), (3.43)

which proves that x(t) = eAtx0 is indeed a solution. That this is a unique
solution follows from the basic existence and uniqueness result for linear ordinary
di↵erential equations, which we invoke here without proof.

While AB 6= BA for arbitrary square matrices A and B, it is always true
that

AeAt = eAtA (3.44)

for any square A and scalar t. You can verify this directly using the series
expansion for the matrix exponential. Therefore, in line four of Equation (3.43),
A could also have been factored to the right, i.e.,

ẋ(t) = eAtAx0.

While the matrix exponential eAt is defined as an infinite series, closed-
form expressions are often available. For example, if A can be expressed as
A = PDP�1 for some D 2 Rn⇥n and invertible P 2 Rn⇥n then

eAt = I + At +
(At)2

2!
+ · · ·

= I + (PDP�1)t + (PDP�1)(PDP�1)
t2

2!
+ · · ·

= P (I + Dt +
(Dt)2

2!
+ · · · )P�1

= PeDtP�1. (3.45)
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If moreover D is diagonal, i.e., D = diag{d1, d2, . . . , dn}, then its matrix expo-
nential is particularly simple to evaluate:

eDt =

2

6664

ed1t 0 · · · 0
0 ed2t · · · 0
...

...
. . .

...
0 0 · · · ednt

3

7775
. (3.46)

We summarize the results above in the following proposition.

Proposition 3.10. The linear di↵erential equation ẋ(t) = Ax(t) with initial
condition x(0) = x0, where A 2 Rn⇥n is constant and x(t) 2 Rn, has solution

x(t) = eAtx0 (3.47)

where

eAt = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · · . (3.48)

The matrix exponential eAt further satisifies the following properties:

(a) d(eAt)/dt = AeAt = eAtA.

(b) If A = PDP�1 for some D 2 Rn⇥n and invertible P 2 Rn⇥n then eAt =
PeDtP�1.

(c) If AB = BA then eAeB = eA+B.

(d) (eA)�1 = e�A.

The third property can be established by expanding the exponentials and
comparing terms. The fourth property follows by setting B = �A in the third
property.

3.2.3.2 Exponential Coordinates of Rotations

The exponential coordinates of a rotation can be viewed equivalently as (1) a
unit axis of rotation !̂ (!̂ 2 R3, k!̂k = 1) together with a rotation angle about
the axis ✓ 2 R, or (2) as the 3-vector obtained by multiplying the two together,
!̂✓ 2 R3. When we represent the motion of a robot joint in the next chapter,
the first view has the advantage of separating the description of the joint axis
from the motion ✓ about the axis.

Referring to Figure 3.11, suppose that a three-dimensional vector p(0) is
rotated by ✓ about !̂ to p(✓); here we assume that all quantities are expressed
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�

✓

p(✓)

p(0)

!̂

Figure 3.11: The vector p(0) is rotated by an angle ✓ about the axis !̂, to p(✓).

in fixed-frame coordinates. This rotation can be achieved by imagining that
p(0) rotates at a constant rate of 1 rad/s (since !̂ has unit magnitude) from
time t = 0 to t = ✓. Let p(t) denote the path traced by the tip of the vector.
The velocity of p(t), denoted ṗ, is then given by

ṗ = !̂ ⇥ p. (3.49)

To see why this is true, let � be the constant angle between p(t) and !̂. Observe
that p traces a circle of radius kpk sin� about the !̂-axis. Then ṗ is tangent to
the path with magnitude kpk sin�, which is equivalent to Equation (3.49).

The di↵erential equation (3.49) can be expressed as (see Equation (3.30))

ṗ = [!̂]p (3.50)

with initial condition p(0). This is a linear di↵erential equation of the form
ẋ = Ax, which we studied earlier; its solution is given by

p(t) = e[!̂]tp(0).

Since t and ✓ are interchangeable, the equation above can also be written

p(✓) = e[!̂]✓p(0).

Let us now expand the matrix exponential e[!̂]✓ in series form. A straight-
forward calculation shows that [!̂]3 = �[!̂], and therefore we can replace [!̂]3

by �[!̂], [!̂]4 by �[!̂]2, [!̂]5 by �[!̂]3 = [!̂], and so on, obtaining

e[!̂]✓ = I + [!̂]✓ + [!̂]2
✓2

2!
+ [!̂]3

✓3

3!
+ · · ·

= I +

✓
✓ � ✓3

3!
+
✓5

5!
� · · ·

◆
[!̂] +

✓
✓2

2!
� ✓4

4!
+
✓6

6!
� · · ·

◆
[!̂]2.
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Now recall the series expansions for sin ✓ and cos ✓:

sin ✓ = ✓ � ✓3

3!
+
✓5

5!
� · · ·

cos ✓ = 1� ✓2

2!
+
✓4

4!
� · · ·

The exponential e[!̂]✓ therefore simplifies to the following:

Proposition 3.11. Given a vector !̂✓ 2 R3, such that ✓ is any scalar and
!̂ 2 R3 is a unit vector, the matrix exponential of [!̂]✓ = [!̂✓] 2 so(3) is

Rot(!̂, ✓) = e[!̂]✓ = I + sin ✓ [!̂] + (1� cos ✓)[!̂]2 2 SO(3). (3.51)

Equation (3.51) is also known as Rodrigues’ formula for rotations.
We have shown how to use the matrix exponential to construct a rotation

matrix from a rotation axis !̂ and an angle ✓. Further, the quantity e[!̂]✓p
has the e↵ect of rotating p 2 R3 about the fixed-frame axis !̂ by an angle ✓.
Similarly, considering that a rotation matrix R consists of three column vectors,
the rotation matrix R0 = e[!̂]✓R = Rot(!̂, ✓)R is the orientation achieved by
rotating R by ✓ about the axis !̂ in the fixed frame. Reversing the order of
matrix multiplication, R00 = Re[!̂]✓ = R Rot(!̂, ✓) is the orientation achieved by
rotating R by ✓ about !̂ in the body frame.

Example 3.12. The frame {b} in Figure 3.12 is obtained by rotation from
an initial orientation aligned with the fixed frame {s} about a unit axis !̂1 =
(0, 0.866, 0.5) by an angle ✓1 = 30� = 0.524 rad. The rotation matrix represen-
tation of {b} can be calculated as

R = e[!̂1]✓1

= I + sin ✓1[!̂1] + (1� cos ✓1)[!̂1]
2

= I + 0.5

2

4
0 �0.5 0.866

0.5 0 0
�0.866 0 0

3

5+ 0.134

2

4
0 �0.5 0.866

0.5 0 0
�0.866 0 0

3

5
2

=

2

4
0.866 �0.250 0.433
0.250 0.967 0.058
�0.433 0.058 0.899

3

5 .

The orientation of the frame {b} can be represented by R or by the unit axis
!̂1 = (0, 0.866, 0.5) and the angle ✓1 = 0.524 rad, i.e., the exponential coordi-
nates !̂1✓1 = (0, 0.453, 0.262).
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x̂s ŷs

ẑs

!̂
✓ = 30�

{b}
x̂b

ŷb

ẑb

{s}

Figure 3.12: The frame {b} is obtained by a rotation from {s} by ✓1 = 30� about
!̂1 = (0, 0.866, 0.5).

If {b} is then rotated by ✓2 about a fixed-frame axis !̂2 6= !̂1, i.e.,

R0 = e[!̂2]✓2R,

then the frame ends up at a di↵erent location than that reached were {b} to be
rotated by ✓2 about an axis expressed as !̂2 in the body frame, i.e.,

R00 = Re[!̂2]✓2 6= R0 = e[!̂2]✓2R.

Our next task is to show that for any rotation matrix R 2 SO(3), one can
always find a unit vector !̂ and scalar ✓ such that R = e[!̂]✓.

3.2.3.3 Matrix Logarithm of Rotations

If !̂✓ 2 R3 represents the exponential coordinates of a rotation matrix R, then
the skew-symmetric matrix [!̂✓] = [!̂]✓ is the matrix logarithm of the rotation
R.4 The matrix logarithm is the inverse of the matrix exponential. Just as the
matrix exponential “integrates” the matrix representation of an angular velocity
[!̂]✓ 2 so(3) for one second to give an orientation R 2 SO(3), the matrix
logarithm “di↵erentiates” an R 2 SO(3) to find the matrix representation of
a constant angular velocity [!̂]✓ 2 so(3) which, if integrated for one second,
rotates a frame from I to R. In other words,

exp : [!̂]✓ 2 so(3) ! R 2 SO(3),
log : R 2 SO(3) ! [!̂]✓ 2 so(3).

4
We use the term “the matrix logarithm” to refer both to a specific matrix which is a

logarithm of R as well as to the algorithm that calculates this specific matrix. Also, while a

matrix R can have more than one matrix logarithm (just as sin
�1

(0) has solutions 0,⇡, 2⇡,

etc.), we commonly refer to “the” matrix logarithm, i.e., the unique solution returned by the

matrix logarithm algorithm.
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To derive the matrix logarithm, let us expand each entry for e[!̂]✓ in Equa-
tion (3.51),

2

4
c✓ + !̂2

1(1� c✓) !̂1!̂2(1� c✓)� !̂3s✓ !̂1!̂3(1� c✓) + !̂2s✓
!̂1!̂2(1� c✓) + !̂3s✓ c✓ + !̂2

2(1� c✓) !̂2!̂3(1� c✓)� !̂1s✓
!̂1!̂3(1� c✓)� !̂2s✓ !̂2!̂3(1� c✓) + !̂1s✓ c✓ + !̂2

3(1� c✓)

3

5 ,

(3.52)
where !̂ = (!̂1, !̂2, !̂3), and we use again the shorthand notation s✓ = sin ✓
and c✓ = cos ✓. Setting the above matrix equal to the given R 2 SO(3) and
subtracting the transpose from both sides leads to the following:

r32 � r23 = 2!̂1 sin ✓,

r13 � r31 = 2!̂2 sin ✓,

r21 � r12 = 2!̂3 sin ✓.

Therefore, as long as sin ✓ 6= 0 (or, equivalently, ✓ is not an integer multiple of
⇡), we can write

!̂1 =
1

2 sin ✓
(r32 � r23),

!̂2 =
1

2 sin ✓
(r13 � r31),

!̂3 =
1

2 sin ✓
(r21 � r12).

The above equations can also be expressed in skew-symmetric matrix form as

[!̂] =

2

4
0 �!̂3 !̂2

!̂3 0 �!̂1

�!̂2 !̂1 0

3

5 =
1

2 sin ✓

�
R�RT

�
. (3.53)

Recall that !̂ represents the axis of rotation for the given R. Because of the
sin ✓ term in the denominator, [!̂] is not well defined if ✓ is an integer multiple
of ⇡.5 We address this situation next, but for now let us assume that sin ✓ 6= 0
and find an expression for ✓. Setting R equal to (3.52) and taking the trace of
both sides (recall that the trace of a matrix is the sum of its diagonal entries),

tr R = r11 + r22 + r33 = 1 + 2 cos ✓. (3.54)

The above follows since !̂2
1 + !̂2

2 + !̂2
3 = 1. For any ✓ satisfying 1+2 cos ✓ = tr R

such that ✓ is not an integer multiple of ⇡, R can be expressed as the exponential
e[!̂]✓ with [!̂] as given in Equation (3.53).

5
Singularities such as this are unavoidable for any three-parameter representation of rota-

tion. Euler angles and roll–pitch–yaw angles su↵er from similar singularities.
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Let us now return to the case ✓ = k⇡, where k is some integer. When k is
an even integer, regardless of !̂ we have rotated back to R = I so the vector
!̂ is undefined. When k is an odd integer (corresponding to ✓ = ±⇡, ±3⇡, . . .,
which in turn implies tr R = �1), the exponential formula (3.51) simplifies to

R = e[!̂]⇡ = I + 2[!̂]2. (3.55)

The three diagonal terms of Equation (3.55) can be manipulated to give

!̂i = ±
r

rii + 1

2
, i = 1, 2, 3. (3.56)

The o↵-diagonal terms lead to the following three equations:

2!̂1!̂2 = r12,

2!̂2!̂3 = r23, (3.57)

2!̂1!̂3 = r13,

From Equation (3.55) we also know that R must be symmetric: r12 = r21,
r23 = r32, r13 = r31. Equations (3.56) and (3.57) may both be necessary to
obtain a solution for !̂. Once such a solution has been found then R = e[!̂]✓,
where ✓ = ±⇡, ±3⇡, . . .

From the above it can be seen that solutions for ✓ exist at 2⇡ intervals. If
we restrict ✓ to the interval [0,⇡] then the following algorithm can be used to
compute the matrix logarithm of the rotation matrix R 2 SO(3).

Algorithm: Given R 2 SO(3), find a ✓ 2 [0,⇡] and a unit rotation axis
!̂ 2 R3, k!̂k = 1, such that e[!̂]✓ = R. The vector !̂✓ 2 R3 comprises the
exponential coordinates for R and the skew-symmetric matrix [!̂]✓ 2 so(3) is
the matrix logarithm of R.

(a) If R = I then ✓ = 0 and !̂ is undefined.

(b) If tr R = �1 then ✓ = ⇡. Set !̂ equal to any of the following three vectors
that is a feasible solution:

!̂ =
1p

2(1 + r33)

2

4
r13
r23

1 + r33

3

5 (3.58)

or

!̂ =
1p

2(1 + r22)

2

4
r12

1 + r22
r32

3

5 (3.59)
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�⇡ ⇡

✓

!̂

Figure 3.13: SO(3) as a solid ball of radius ⇡. The exponential coordinates r = !̂✓
may lie anywhere within the solid ball.

or

!̂ =
1p

2(1 + r11)

2

4
1 + r11

r21
r31

3

5 . (3.60)

(Note that if !̂ is a solution, then so is �!̂.)

(c) Otherwise ✓ = cos�1
�
1
2 (tr R� 1)

�
2 [0,⇡) and

[!̂] =
1

2 sin ✓
(R�RT). (3.61)

Since every R 2 SO(3) satisfies one of the three cases in the algorithm, for
every R there exists a matrix logarithm [!̂]✓ and therefore a set of exponential
coordinates !̂✓.

Because the matrix logarithm calculates exponential coordinates !̂✓ satisfy-
ing ||!̂✓||  ⇡, we can picture the rotation group SO(3) as a solid ball of radius
⇡ (see Figure 3.13): given a point r 2 R3 in this solid ball, let !̂ = r/krk be the
unit axis in the direction from the origin to the point r and let ✓ = krk be the
distance from the origin to r, so that r = !̂✓. The rotation matrix correspond-
ing to r can then be regarded as a rotation about the axis !̂ by an angle ✓. For
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any R 2 SO(3) such that tr R 6= �1, there exists a unique r in the interior of
the solid ball such that e[r] = R. In the event that tr R = �1, log R is given
by two antipodal points on the surface of this solid ball. That is, if there exists
some r such that R = e[r] with krk = ⇡ then R = e[�r] also holds; both r and
�r correspond to the same rotation R.

3.3 Rigid-Body Motions and Twists

In this section we derive representations for rigid-body configurations and ve-
locities that extend, but otherwise are analogous to, those in Section 3.2 for
rotations and angular velocities. In particular, the homogeneous transforma-
tion matrix T is analogous to the rotation matrix R; a screw axis S is analogous
to a rotation axis !̂; a twist V can be expressed as S ✓̇ and is analogous to an
angular velocity ! = !̂✓̇; and exponential coordinates S✓ 2 R6 for rigid-body
motions are analogous to exponential coordinates !̂✓ 2 R3 for rotations.

3.3.1 Homogeneous Transformation Matrices

We now consider representations for the combined orientation and position of
a rigid body. A natural choice would be to use a rotation matrix R 2 SO(3)
to represent the orientation of the body frame {b} in the fixed frame {s} and a
vector p 2 R3 to represent the origin of {b} in {s}. Rather than identifying R
and p separately, we package them into a single matrix as follows.

Definition 3.13. The special Euclidean group SE(3), also known as the
group of rigid-body motions or homogeneous transformation matrices
in R3, is the set of all 4⇥ 4 real matrices T of the form

T =


R p
0 1

�
=

2

664

r11 r12 r13 p1
r21 r22 r23 p2
r31 r32 r33 p3
0 0 0 1

3

775 , (3.62)

where R 2 SO(3) and p 2 R3 is a column vector.

An element T 2 SE(3) will sometimes be denoted (R, p). In this section we
will establish some basic properties of SE(3) and explain why we package R
and p into this matrix form.

Many robotic mechanisms we have encountered thus far are planar. With
planar rigid-body motions in mind, we make the following definition:
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Definition 3.14. The special Euclidean group SE(2) is the set of all 3⇥ 3 real
matrices T of the form

T =


R p
0 1

�
, (3.63)

where R 2 SO(2), p 2 R2, and 0 denotes a row vector of two zeros.

A matrix T 2 SE(2) is always of the form

T =

2

4
r11 r12 p1
r21 r22 p2
0 0 1

3

5 =

2

4
cos ✓ � sin ✓ p1
sin ✓ cos ✓ p2

0 0 1

3

5 ,

where ✓ 2 [0, 2⇡).

3.3.1.1 Properties of Transformation Matrices

We now list some basic properties of transformation matrices, which can be
proven by calculation. First, the identity I is a trivial example of a transforma-
tion matrix. The first three properties confirm that SE(3) is a group.

Proposition 3.15. The inverse of a transformation matrix T 2 SE(3) is also
a transformation matrix, and it has the following form:

T�1 =


R p
0 1

��1

=


RT �RTp
0 1

�
. (3.64)

Proposition 3.16. The product of two transformation matrices is also a trans-
formation matrix.

Proposition 3.17. The multiplication of transformation matrices is associa-
tive, so that (T1T2)T3 = T1(T2T3), but generally not commutative: T1T2 6= T2T1.

Before stating the next proposition, we note that, just as in Section 3.1,
it is often useful to calculate the quantity Rx + p, where x 2 R3 and (R, p)
represents T . If we append a ‘1’ to x, making it a four-dimensional vector, this
computation can be performed as a single matrix multiplication:

T


x
1

�
=


R p
0 1

� 
x
1

�
=


Rx + p

1

�
. (3.65)

The vector [xT 1]T is the representation of x in homogeneous coordinates,
and accordingly T 2 SE(3) is called a homogenous transformation. When, by
an abuse of notation, we write Tx, we mean Rx + p.
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Proposition 3.18. Given T = (R, p) 2 SE(3) and x, y 2 R3, the following
hold:

(a) kTx�Tyk = kx� yk, where k · k denotes the standard Euclidean norm in

R3, i.e., kxk =
p

xTx.

(b) hTx�Tz, Ty�Tzi = hx� z, y� zi for all z 2 R3, where h·, ·i denotes the
standard Euclidean inner product in R3, hx, yi = xTy.

In Proposition 3.18, T is regarded as a transformation on points in R3; T trans-
forms a point x to Tx. Property (a) then asserts that T preserves distances,
while property (b) asserts that T preserves angles. Specifically, if x, y, z 2 R3

represent the three vertices of a triangle then the triangle formed by the trans-
formed vertices {Tx, Ty, Tz} has the same set of lengths and angles as those
of the triangle {x, y, z} (the two triangles are said to be isometric). One can
easily imagine taking {x, y, z} to be the points on a rigid body, in which case
{Tx, Ty, Tz} represents a displaced version of the rigid body. It is in this sense
that SE(3) can be identified with rigid-body motions.

3.3.1.2 Uses of Transformation Matrices

As was the case for rotation matrices, there are three major uses for a transfor-
mation matrix T :

(a) to represent the configuration (position and orientation) of a rigid body;

(b) to change the reference frame in which a vector or frame is represented;

(c) to displace a vector or frame.

In the first use, T is thought of as representing the configuration of a frame; in
the second and third uses, T is thought of as an operator that acts to change
the reference frame or to move a vector or a frame.

To illustrate these uses, we refer to the three reference frames {a}, {b}, and
{c}, and the point v, in Figure 3.14. The frames were chosen in such a way
that the alignment of their axes is clear, allowing the visual confirmation of
calculations.

Representing a configuration. The fixed frame {s} is coincident with {a}
and the frames {a}, {b}, and {c}, represented by Tsa = (Rsa, psa), Tsb =
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v

{b}

x̂b

ŷb

ẑb pab

pac

pbc

{a}
x̂a ŷa

ẑa

{c}
x̂c

ŷc

ẑc

Figure 3.14: Three reference frames in space, and a point v that can be represented
in {b} as vb = (0, 0, 1.5).

(Rsb, psb), and Tsc = (Rsc, psc), respectively, can be expressed relative to {s} by
the rotations

Rsa =

2

4
1 0 0
0 1 0
0 0 1

3

5 , Rsb =

2

4
0 0 1
0 �1 0
1 0 0

3

5 , Rsc =

2

4
�1 0 0

0 0 1
0 1 0

3

5 .

The location of the origin of each frame relative to {s} can be written

psa =

2

4
0
0
0

3

5 , psb =

2

4
0
�2
0

3

5 , psc =

2

4
�1
1
0

3

5 .

Since {a} is collocated with {s}, the transformation matrix Tsa constructed from
(Rsa, psa) is the identity matrix.

Any frame can be expressed relative to any other frame, not just to {s}; for
example, Tbc = (Rbc, pbc) represents {c} relative to {b}:

Rbc =

2

4
0 1 0
0 0 �1
�1 0 0

3

5 , pbc =

2

4
0
�3
�1

3

5 .

It can also be shown, using Proposition 3.15, that

Tde = T�1
ed

for any two frames {d} and {e}.
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Changing the reference frame of a vector or a frame. By a subscript
cancellation rule analogous to that for rotations, for any three reference frames
{a}, {b}, and {c}, and any vector v expressed in {b} as vb,

TabTbc = T
a⇤b

T
⇤bc

= Tac

Tabvb = T
a⇤b

v
⇤b
= va,

where va is the vector v expressed in {a}.

Displacing (rotating and translating) a vector or a frame. A transfor-
mation matrix T , viewed as the pair (R, p) = (Rot(!̂, ✓), p), can act on a frame
Tsb by rotating it by ✓ about an axis !̂ and translating it by p. By a minor
abuse of notation, we can extend the 3 ⇥ 3 rotation operator R = Rot(!̂, ✓) to
a 4⇥ 4 transformation matrix that rotates without translating,

Rot(!̂, ✓) =


R 0
0 1

�
,

and we can similarly define a translation operator that translates without ro-
tating,

Trans(p) =

2

664

1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1

3

775 .

(To parallel the rotation operator more directly, we could write Trans(p̂, kpk),
a translation along the unit direction p̂ by a distance kpk, but we will use the
simpler notation with p = p̂kpk.)

Whether we pre-multiply or post-multiply Tsb by T = (R, p) determines
whether the !̂-axis and p are interpreted as in the fixed frame {s} or in the
body frame {b}:

Tsb0 = TTsb = Trans(p) Rot(!̂, ✓)Tsb (fixed frame)

=


R p
0 1

� 
Rsb psb
0 1

�
=


RRsb Rpsb + p

0 1

�
(3.66)

Tsb00 = TsbT = Tsb Trans(p) Rot(!̂, ✓) (body frame)

=


Rsb psb
0 1

� 
R p
0 1

�
=


RsbR Rsbp + psb

0 1

�
. (3.67)

The fixed-frame transformation (corresponding to pre-multiplication by T ) can
be interpreted as first rotating the {b} frame by ✓ about an axis !̂ in the {s}
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{b}

{b}

x̂b

x̂b

ŷb

ŷb
ẑb

ẑb

{s}

{s}

x̂s

x̂s

ŷs

ŷs

ẑs

ẑs

{b }

x̂b

ŷb ẑb

{b }x̂b

ŷb

ẑb
1

1

2

2

Figure 3.15: Fixed-frame and body-frame transformations corresponding to !̂ =
(0, 0, 1), ✓ = 90�, and p = (0, 2, 0). (Left) The frame {b} is rotated by 90� about ẑs
and then translated by two units in ŷs, resulting in the new frame {b0}. (Right) The
frame {b} is translated by two units in ŷb and then rotated by 90� about its ẑ axis,
resulting in the new frame {b00}.

frame (this rotation will cause the origin of {b} to move if it is not coincident
with the origin of {s}), then translating it by p in the {s} frame to get a frame
{b0}. The body-frame transformation (corresponding to post-multiplication by
T ) can be interpreted as first translating {b} by p considered to be in the {b}
frame, then rotating about !̂ in this new body frame (this does not move the
origin of the frame) to get {b00}.

Fixed-frame and body-frame transformations are illustrated in Figure 3.15
for a transformation T with !̂ = (0, 0, 1), ✓ = 90�, and p = (0, 2, 0), yielding

T = (Rot(!̂, ✓), p) =

2

664

0 �1 0 0
1 0 0 2
0 0 1 0
0 0 0 1

3

775 .

Beginning with the frame {b} represented by

Tsb =

2

664

0 0 1 0
0 �1 0 �2
1 0 0 0
0 0 0 1

3

775 ,

the new frame {b0} achieved by a fixed-frame transformation TTsb and the new
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{a}

{b}

{c}
{d}

}{e

Figure 3.16: Assignment of reference frames.

frame {b00} achieved by a body-frame transformation TsbT are given by

TTsb = Tsb0 =

2

664

0 1 0 2
0 0 1 2
1 0 0 0
0 0 0 1

3

775 , TsbT = Tsb00 =

2

664

0 0 1 0
�1 0 0 �4
0 �1 0 0
0 0 0 1

3

775 .

Example 3.19. Figure 3.16 shows a robot arm mounted on a wheeled mobile
platform moving in a room, and a camera fixed to the ceiling. Frames {b}
and {c} are respectively attached to the wheeled platform and the end-e↵ector
of the robot arm, and frame {d} is attached to the camera. A fixed frame
{a} has been established, and the robot must pick up an object with body
frame {e}. Suppose that the transformations Tdb and Tde can be calculated
from measurements obtained with the camera. The transformation Tbc can
be calculated using the arm’s joint-angle measurements. The transformation
Tad is assumed to be known in advance. Suppose these calculated and known
transformations are given as follows:

Tdb =

2

664

0 0 �1 250
0 �1 0 �150
�1 0 0 200
0 0 0 1

3

775 ,
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Tde =

2

664

0 0 �1 300
0 �1 0 100
�1 0 0 120
0 0 0 1

3

775 ,

Tad =

2

664

0 0 �1 400
0 �1 0 50
�1 0 0 300
0 0 0 1

3

775 ,

Tbc =

2

664

0 �1/
p

2 �1/
p

2 30
0 1/

p
2 �1/

p
2 �40

1 0 0 25
0 0 0 1

3

775 .

In order to calculate how to move the robot arm so as to pick up the object, the
configuration of the object relative to the robot hand, Tce, must be determined.
We know that

TabTbcTce = TadTde,

where the only quantity besides Tce not given to us directly is Tab. However,
since Tab = TadTdb, we can determine Tce as follows:

Tce = (TadTdbTbc)
�1 TadTde.

From the given transformations we obtain

TadTde =

2

664

1 0 0 280
0 1 0 �50
0 0 1 0
0 0 0 1

3

775 ,

TadTdbTbc =

2

664

0 �1/
p

2 �1/
p

2 230
0 1/

p
2 �1/

p
2 160

1 0 0 75
0 0 0 1

3

775 ,

(TadTdbTbc)
�1 =

2

664

0 0 1 �75
�1/
p

2 1/
p

2 0 70/
p

2
�1/
p

2 �1/
p

2 0 390/
p

2
0 0 0 1

3

775 ,
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from which Tce is evaluated to be

Tce =

2

664

0 0 1 �75
�1/
p

2 1/
p

2 0 �260/
p

2
�1/
p

2 �1/
p

2 0 160/
p

2
0 0 0 1

3

775 .

3.3.2 Twists

We now consider both the linear and angular velocities of a moving frame.
As before, {s} and {b} denote the fixed (space) and moving (body) frames,
respectively. Let

Tsb(t) = T (t) =


R(t) p(t)

0 1

�
(3.68)

denote the configuration of {b} as seen from {s}. To keep the notation unclut-
tered, for the time being we write T instead of the usual Tsb.

In Section 3.2.2 we discovered that pre- or post-multiplying Ṙ by R�1 results
in a skew-symmetric representation of the angular velocity vector, either in
fixed- or body-frame coordinates. One might reasonably ask whether a similar
property carries over to Ṫ , i.e., whether T�1Ṫ and Ṫ T�1 carry similar physical
interpretations.

Let us first see what happens when we pre-multiply Ṫ by T�1:

T�1Ṫ =


RT �RTp
0 1

� 
Ṙ ṗ
0 0

�

=


RTṘ RTṗ

0 0

�

=


[!b] vb
0 0

�
. (3.69)

Recall that RTṘ = [!b] is just the skew-symmetric matrix representation of the
angular velocity expressed in {b} coordinates. Also, ṗ is the linear velocity of
the origin of {b} expressed in the fixed frame {s}, and RTṗ = vb is this linear
velocity expressed in the frame {b}. Putting these two observations together,
we can conclude that T�1Ṫ represents the linear and angular velocities of the
moving frame relative to the stationary frame {b} currently aligned with the
moving frame.

The above calculation of T�1Ṫ suggests that it is reasonable to merge !b and
vb into a single six-dimensional velocity vector. We define the spatial velocity
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{s}

vs

�p

{b}
ṗ

Figure 3.17: Physical interpretation of vs. The initial (solid line) and displaced
(dashed line) configurations of a rigid body.

in the body frame, or simply the body twist,6 to be

Vb =


!b

vb

�
2 R6. (3.70)

Just as it is convenient to have a skew-symmetric matrix representation of an
angular velocity vector, it is convenient to have a matrix representation of a
twist, as shown in Equation (3.69). We will stretch the [·] notation, writing

T�1Ṫ = [Vb] =


[!b] vb
0 0

�
2 se(3), (3.71)

where [!b] 2 so(3) and vb 2 R3. The set of all 4 ⇥ 4 matrices of this form is
called se(3) and comprises the matrix representations of the twists associated
with the rigid-body configurations SE(3).7

6
The term “twist” has been used in di↵erent ways in the mechanisms and screw theory

literature. In robotics, however, it is common to use the term to refer to a spatial velocity.

We mostly use the term “twist” instead of “spatial velocity” to minimize verbiage, e.g., “body

twist” versus “spatial velocity in the body frame.”

7
se(3) is called the Lie algebra of the Lie group SE(3). It consists of all possible Ṫ when

T = I.
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Now that we have a physical interpretation for T�1Ṫ , let us evaluate Ṫ T�1:

Ṫ T�1 =


Ṙ ṗ
0 0

� 
RT �RTp
0 1

�

=


ṘRT ṗ� ṘRTp

0 0

�

=


[!s] vs
0 0

�
. (3.72)

Observe that the skew-symmetric matrix [!s] = ṘRT is the angular velocity
expressed in fixed-frame coordinates but that vs = ṗ� ṘRTp is not the linear
velocity of the body-frame origin expressed in the fixed frame (that quantity
would simply be ṗ). If we write vs as

vs = ṗ� !s ⇥ p = ṗ + !s ⇥ (�p), (3.73)

the physical meaning of vs can now be inferred: imagining the moving body
to be infinitely large, vs is the instantaneous velocity of the point on this body
currently at the fixed-frame origin, expressed in the fixed frame (see Figure 3.17).

As we did for !b and vb, we assemble !s and vs into a six-dimensional twist,

Vs =


!s

vs

�
2 R6, [Vs] =


[!s] vs
0 0

�
= Ṫ T�1 2 se(3), (3.74)

where [Vs] is the 4 ⇥ 4 matrix representation of Vs. We call Vs the spatial
velocity in the space frame, or simply the spatial twist.

If we regard the moving body as being infinitely large, there is an appealing
and natural symmetry between Vs = (!s, vs) and Vb = (!b, vb):

(a) !b is the angular velocity expressed in {b}, and !s is the angular velocity
expressed in {s}.

(b) vb is the linear velocity of a point at the origin of {b} expressed in {b},
and vs is the linear velocity of a point at the origin of {s} expressed in
{s}.

We can obtain Vb from Vs as follows:

[Vb] = T�1Ṫ

= T�1 [Vs] T. (3.75)

Going the other way,
[Vs] = T [Vb] T

�1. (3.76)
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Writing out the products in Equation (3.76), we get

[Vs] =


R[!b]RT �R[!b]RTp + Rvb

0 0

�

which, using R[!]RT = [R!] (Proposition 3.8) and [!]p = �[p]! for p,! 2 R3,
can be manipulated into the following relation between Vb and Vs:


!s

vs

�
=


R 0

[p]R R

� 
!b

vb

�
.

Because the 6⇥6 matrix pre-multiplying Vb is useful for changing the frame
of reference for twists and wrenches, as we will see shortly, we give it its own
name.

Definition 3.20. Given T = (R, p) 2 SE(3), its adjoint representation
[AdT ] is

[AdT ] =


R 0

[p]R R

�
2 R6⇥6.

For any V 2 R6, the adjoint map associated with T is

V 0 = [AdT ]V,

which is sometimes also written as

V 0 = AdT (V).

In terms of the matrix form [V] 2 se(3) of V 2 R6,

[V 0] = T [V]T�1.

The adjoint map satisfies the following properties, verifiable by direct calcu-
lation:

Proposition 3.21. Let T1, T2 2 SE(3) and V = (!, v). Then

AdT1 (AdT2(V)) = AdT1T2(V) or [AdT1 ][AdT2 ]V = [AdT1T2 ]V. (3.77)

Also, for any T 2 SE(3) the following holds:

[AdT ]�1 = [AdT�1 ], (3.78)

The second property follows from the first on choosing T1 = T�1 and T2 = T ,
so that

AdT�1 (AdT (V)) = AdT�1T (V) = AdI(V) = V. (3.79)
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3.3.2.1 Summary of Results on Twists

The main results on twists derived thus far are summarized in the following
proposition:

Proposition 3.22. Given a fixed (space) frame {s}, a body frame {b}, and a
di↵erentiable Tsb(t) 2 SE(3), where

Tsb(t) =


R(t) p(t)

0 1

�
, (3.80)

then

T�1
sb Ṫsb = [Vb] =


[!b] vb
0 0

�
2 se(3) (3.81)

is the matrix representation of the body twist, and

ṪsbT
�1
sb = [Vs] =


[!s] vs
0 0

�
2 se(3) (3.82)

is the matrix representation of the spatial twist. The twists Vs and Vb are
related by

Vs =


!s

vs

�
=


R 0

[p]R R

� 
!b

vb

�
= [AdTsb ]Vb, (3.83)

Vb =


!b

vb

�
=


RT 0
�RT[p] RT

� 
!s

vs

�
= [AdTbs ]Vs. (3.84)

More generally, for any two frames {c} and {d}, a twist represented as Vc in
{c} is related to its representation Vd in {d} by

Vc = [AdTcd ]Vd, Vd = [AdTdc ]Vc.

Again analogously to the case of angular velocities, it is important to realize
that, for a given twist, its fixed-frame representation Vs does not depend on the
choice of the body frame {b}, and its body-frame representation Vb does not
depend on the choice of the fixed frame {s}.

Example 3.23. Figure 3.18 shows a top view of a car, with a single steerable
front wheel, driving on a plane. The ẑb-axis of the body frame {b} is into the
page and the ẑs-axis of the fixed frame {s} is out of the page. The angle of
the front wheel of the car causes the car’s motion to be a pure angular velocity
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x̂s

ŷs {b}
x̂b

ŷbvb

r

{s}

vs
w

Figure 3.18: The twist corresponding to the instantaneous motion of the chassis of
a three-wheeled vehicle can be visualized as an angular velocity w about the point r.

w = 2 rad/s about an axis out of the page at the point r in the plane. Inspecting
the figure, we can write r as rs = (2,�1, 0) or rb = (2,�1.4, 0), w as !s = (0, 0, 2)
or !b = (0, 0,�2), and Tsb as

Tsb =


Rsb psb
0 1

�
=

2

664

�1 0 0 4
0 1 0 0.4
0 0 �1 0
0 0 0 1

3

775 .

From the figure and simple geometry, we get

vs = !s ⇥ (�rs) = rs ⇥ !s = (�2,�4, 0),

vb = !b ⇥ (�rb) = rb ⇥ !b = (2.8, 4, 0),

and thus obtain the twists Vs and Vb:

Vs =


!s

vs

�
=

2

6666664

0
0
2
�2
�4
0

3

7777775
, Vb =


!b

vb

�
=

2

6666664

0
0
�2
2.8
4
0

3

7777775
.

To confirm these results, try calculating Vs = [AdTsb ]Vb.

3.3.2.2 The Screw Interpretation of a Twist

Just as an angular velocity ! can be viewed as !̂✓̇, where !̂ is the unit rotation
axis and ✓̇ is the rate of rotation about that axis, a twist V can be interpreted
in terms of a screw axis S and a velocity ✓̇ about the screw axis.
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�ŝ✓̇ ⇥ q

hŝ✓̇

x̂ ŷ

ẑ

q

ŝ

✓̇

h = pitch =
linear speed/angular speed

Figure 3.19: A screw axis S represented by a point q, a unit direction ŝ, and a pitch
h.

A screw axis represents the familiar motion of a screw: rotating about the
axis while also translating along the axis. One representation of a screw axis
S is the collection {q, ŝ, h}, where q 2 R3 is any point on the axis, ŝ is a unit
vector in the direction of the axis, and h is the screw pitch, which defines the
ratio of the linear velocity along the screw axis to the angular velocity ✓̇ about
the screw axis (Figure 3.19).

Using Figure 3.19 and geometry, we can write the twist V = (!, v) corre-
sponding to an angular velocity ✓̇ about S (represented by {q, ŝ, h}) as

V =


!
v

�
=


ŝ✓̇

�ŝ✓̇ ⇥ q + hŝ✓̇

�
.

Note that the linear velocity v is the sum of two terms: one due to translation
along the screw axis, hŝ✓̇, and the other due to the linear motion at the origin
induced by rotation about the axis, �ŝ✓̇ ⇥ q. The first term is in the direction
of ŝ, while the second term is in the plane orthogonal to ŝ. It is not hard to
show that, for any V = (!, v) where ! 6= 0, there exists an equivalent screw axis
{q, ŝ, h} and velocity ✓̇, where ŝ = !/k!k, ✓̇ = k!k, h = !̂Tv/✓̇, and q is chosen
so that the term �ŝ✓̇⇥ q provides the portion of v orthogonal to the screw axis.

If ! = 0, then the pitch h of the screw is infinite. In this case ŝ is chosen as
v/kvk, and ✓̇ is interpreted as the linear velocity kvk along ŝ.

Instead of representing the screw axis S using the cumbersome collection
{q, ŝ, h}, with the possibility that h may be infinite and with the nonuniqueness
of q (any q along the screw axis may be used), we instead define the screw axis
S using a normalized version of any twist V = (!, v) corresponding to motion
along the screw:
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(a) If ! 6= 0 then S = V/k!k = (!/k!k, v/k!k). The screw axis S is simply
V normalized by the length of the angular velocity vector. The angular
velocity about the screw axis is ✓̇ = k!k, such that S ✓̇ = V.

(b) If ! = 0 then S = V/kvk = (0, v/kvk). The screw axis S is simply V
normalized by the length of the linear velocity vector. The linear velocity
along the screw axis is ✓̇ = kvk, such that S ✓̇ = V.

This leads to the following definition of a “unit” (normalized) screw axis:

Definition 3.24. For a given reference frame, a screw axis S is written as

S =


!
v

�
2 R6,

where either (i) k!k = 1 or (ii) ! = 0 and kvk = 1. If (i) holds then v =
�! ⇥ q + h!, where q is a point on the axis of the screw and h is the pitch of
the screw (h = 0 for a pure rotation about the screw axis). If (ii) holds then the
pitch of the screw is infinite and the twist is a translation along the axis defined
by v.

Important: Although we use the pair (!, v) for both a normalized
screw axis S (where one of k!k or kvk must be unity) and a general twist
V (where there are no constraints on ! and v), the meaning should be clear
from the context.

Since a screw axis S is just a normalized twist, the 4⇥4 matrix representation
[S] of S = (!, v) is

[S] =


[!] v
0 0

�
2 se(3), [!] =

2

4
0 �!3 !2

!3 0 �!1

�!2 !1 0

3

5 2 so(3), (3.85)

where the bottom row of [S] consists of all zeros. Also, a screw axis represented
as Sa in a frame {a} is related to the representation Sb in a frame {b} by

Sa = [AdTab ]Sb, Sb = [AdTba ]Sa.

3.3.3 Exponential Coordinate Representation of Rigid-Body
Motions

3.3.3.1 Exponential Coordinates of Rigid-Body Motions

In the planar example in Section 3.1, we saw that any planar rigid-body dis-
placement can be achieved by rotating the rigid body about some fixed point
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in the plane (for a pure translation, this point lies at infinity). A similar result
also exists for spatial rigid-body displacements: the Chasles–Mozzi theorem
states that every rigid-body displacement can be expressed as a displacement
along a fixed screw axis S in space.

By analogy to the exponential coordinates !̂✓ for rotations, we define the six-
dimensional exponential coordinates of a homogeneous transformation
T as S✓ 2 R6, where S is the screw axis and ✓ is the distance that must be
traveled along the screw axis to take a frame from the origin I to T . If the pitch
of the screw axis S = (!, v) is finite then k!k = 1 and ✓ corresponds to the
angle of rotation about the screw axis. If the pitch of the screw is infinite then
! = 0 and kvk = 1 and ✓ corresponds to the linear distance traveled along the
screw axis.

Also by analogy to the rotation case, we define a matrix exponential (exp)
and matrix logarithm (log):

exp : [S]✓ 2 se(3) ! T 2 SE(3),
log : T 2 SE(3) ! [S]✓ 2 se(3).

We begin by deriving a closed-form expression for the matrix exponential
e[S]✓. Expanding the matrix exponential in series form leads to

e[S]✓ = I + [S]✓ + [S]2
✓2

2!
+ [S]3

✓3

3!
+ · · ·

=


e[!]✓ G(✓)v

0 1

�
, G(✓) = I✓ + [!]

✓2

2!
+ [!]2

✓3

3!
+ · · · .(3.86)

Using the identity [!]3 = �[!], G(✓) can be simplified to

G(✓) = I✓ + [!]
✓2

2!
+ [!]2

✓3

3!
+ · · ·

= I✓ +

✓
✓2

2!
� ✓4

4!
+
✓6

6!
� · · ·

◆
[!] +

✓
✓3

3!
� ✓5

5!
+
✓7

7!
� · · ·

◆
[!]2

= I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2. (3.87)

Putting everything together leads to the following proposition:

Proposition 3.25. Let S = (!, v) be a screw axis. If k!k = 1 then, for any
distance ✓ 2 R traveled along the axis,

e[S]✓ =


e[!]✓

�
I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2

�
v

0 1

�
. (3.88)
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If ! = 0 and kvk = 1, then

e[S]✓ =


I v✓
0 1

�
. (3.89)

3.3.3.2 Matrix Logarithm of Rigid-Body Motions

The above derivation essentially provides a constructive proof of the Chasles–
Mozzi theorem. That is, given an arbitrary (R, p) 2 SE(3), one can always find
a screw axis S = (!, v) and a scalar ✓ such that

e[S]✓ =


R p
0 1

�
, (3.90)

i.e., the matrix

[S]✓ =


[!]✓ v✓
0 0

�
2 se(3)

is the matrix logarithm of T = (R, p).

Algorithm: Given (R, p) written as T 2 SE(3), find a ✓ 2 [0,⇡] and a screw
axis S = (!, v) 2 R6 (where at least one of k!k and kvk is unity) such that
e[S]✓ = T . The vector S✓ 2 R6 comprises the exponential coordinates for T and
the matrix [S]✓ 2 se(3) is the matrix logarithm of T .

(a) If R = I then set ! = 0, v = p/kpk, and ✓ = kpk.

(b) Otherwise, use the matrix logarithm on SO(3) to determine ! (written as
!̂ in the SO(3) algorithm) and ✓ for R. Then v is calculated as

v = G�1(✓)p (3.91)

where

G�1(✓) =
1

✓
I � 1

2
[!] +

✓
1

✓
� 1

2
cot

✓

2

◆
[!]2. (3.92)

The verification of Equation (3.92) is left as an exercise.

Example 3.26. In this example, the rigid-body motion is confined to the x̂s–
ŷs-plane. The initial frame {b} and final frame {c} in Figure 3.20 can be repre-
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{s} x̂s

ŷs

v = (3.37,�3.37)

{c}

x̂c

ŷc

{b}
x̂b

ŷb
✓

!3 = 1 rad/s

q = (3.37, 3.37)

Figure 3.20: Two frames in a plane.

sented by the SE(3) matrices

Tsb =

2

664

cos 30� � sin 30� 0 1
sin 30� cos 30� 0 2

0 0 1 0
0 0 0 1

3

775 ,

Tsc =

2

664

cos 60� � sin 60� 0 2
sin 60� cos 60� 0 1

0 0 1 0
0 0 0 1

3

775 .

Because the motion occurs in the x̂s–ŷs-plane, the corresponding screw has an
axis in the direction of the ẑs-axis and has zero pitch. The screw axis S = (!, v),
expressed in {s}, therefore has the form

! = (0, 0,!3),

v = (v1, v2, 0).

We seek the screw motion that displaces the frame at Tsb to Tsc; i.e., Tsc =
e[S]✓Tsb or

TscT
�1
sb = e[S]✓,

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

106 3.4. Wrenches

where

[S] =

2

664

0 �!3 0 v1
!3 0 0 v2
0 0 0 0
0 0 0 0

3

775 .

We can apply the matrix logarithm algorithm directly to TscT
�1
sb to obtain [S]

(and therefore S) and ✓ as follows:

[S] =

2

664

0 �1 0 3.37
1 0 0 �3.37
0 0 0 0
0 0 0 0

3

775 , S =

2

6666664

!1

!2

!3

v1
v2
v3

3

7777775
=

2

6666664

0
0
1

3.37
�3.37

0

3

7777775
, ✓ =

⇡

6
rad (or 30�).

The value of S means that the constant screw axis, expressed in the fixed frame
{s}, is represented by an angular velocity of 1 rad/s about ẑs and a linear velocity
(of a point currently at the origin of {s}) of (3.37,�3.37, 0) expressed in the {s}
frame.

Alternatively, we can observe that the displacement is not a pure translation
– Tsb and Tsc have rotation components that di↵er by an angle of 30� – and we
quickly determine that ✓ = 30� and !3 = 1. We can also graphically determine
the point q = (qx, qy) in the x̂s–ŷs-plane through which the screw axis passes;
for our example this point is given by q = (3.37, 3.37).

For planar rigid-body motions such as this one, we could derive a planar
matrix logarithm algorithm that maps elements of SE(2) to elements of se(2),
which have the form 2

4
0 �! v1
! 0 v2
0 0 0

3

5 .

3.4 Wrenches

Consider a linear force f acting on a rigid body at a point r. Defining a reference
frame {a}, the point r can be represented as ra 2 R3 and the force f can be
represented as fa 2 R3. This force creates a torque or moment ma 2 R3 in
the {a} frame:

ma = ra ⇥ fa.

Note that the point of application of the force along its line of action is imma-
terial.
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{a}

{b}

r

f

ra

rb

Figure 3.21: Relation between wrench representations Fa and Fb.

Just as with twists, we can merge the moment and force into a single six-
dimensional spatial force, or wrench, expressed in the {a} frame, Fa:

Fa =


ma

fa

�
2 R6. (3.93)

If more than one wrench acts on a rigid body, the total wrench on the body is
simply the vector sum of the individual wrenches, provided that the wrenches
are expressed in the same frame. A wrench with a zero linear component is
called a pure moment.

A wrench in the {a} frame can be represented in another frame {b} (Fig-
ure 3.21) if Tba is known. One way to derive the relationship between Fa and Fb

is to derive the appropriate transformations between the individual force and
moment vectors on the basis of techniques we have already used.

A simpler and more insightful way to derive the relationship between Fa

and Fb, however, is to (1) use the results we have already derived relating
representations Va and Vb of the same twist, and (2) use the fact that the power
generated (or dissipated) by an (F , V) pair must be the same regardless of the
frame in which it is represented. (Imagine if we could create power simply
by changing our choice of reference frame!) Recall that the dot product of a
force and a velocity is a power, and power is a coordinate-independent quantity.
Because of this, we know that

VT
b Fb = VT

a Fa. (3.94)

From Proposition 3.22 we know that Va = [AdTab ]Vb, and therefore Equa-
tion (3.94) can be rewritten as

VT
b Fb = ([AdTab ]Vb)

TFa

= VT
b [AdTab ]

TFa.
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ŷf

x̂f

ẑa

x̂a

ŷh

x̂h

L2L1

g

Figure 3.22: A robot hand holding an apple subject to gravity.

Since this must hold for all Vb, this simplifies to

Fb = [AdTab ]
TFa. (3.95)

Similarly,
Fa = [AdTba ]TFb. (3.96)

Proposition 3.27. Given a wrench F, represented in {a} as Fa and in {b} as
Fb, the two representations are related by

Fb = AdT
Tab

(Fa) = [AdTab ]
TFa, (3.97)

Fa = AdT
Tba

(Fb) = [AdTba ]TFb. (3.98)

Since we usually have a fixed space frame {s} and a body frame {b}, we can
define a spatial wrench Fs and a body wrench Fb.

Example 3.28. The robot hand in Figure 3.22 is holding an apple with a mass
of 0.1 kg in a gravitational field g = 10 m/s2 (rounded to keep the numbers
simple) acting downward on the page. The mass of the hand is 0.5 kg. What is
the force and torque measured by the six-axis force–torque sensor between the
hand and the robot arm?

We define frames {f} at the force–torque sensor, {h} at the center of mass
of the hand, and {a} at the center of mass of the apple. According to the
coordinate axes in Figure 3.22, the gravitational wrench on the hand in {h} is
given by the column vector

Fh = (0, 0, 0, 0,�5 N, 0)

and the gravitational wrench on the apple in {a} is

Fa = (0, 0, 0, 0, 0, 1 N).
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Given L1 = 10 cm and L2 = 15 cm, the transformation matrices Thf and Taf

are

Thf =

2

664

1 0 0 �0.1 m
0 1 0 0
0 0 1 0
0 0 0 1

3

775 , Taf =

2

664

1 0 0 �0.25 m
0 0 1 0
0 �1 0 0
0 0 0 1

3

775 .

The wrench measured by the six-axis force–torque sensor is

Ff = [AdThf ]TFh + [AdTaf ]TFa

= [0 0 � 0.5 Nm 0 � 5 N 0]T + [0 0 � 0.25 Nm 0 � 1 N 0]T

= [0 0 � 0.75 Nm 0 � 6 N 0]T.

3.5 Summary

The following table succinctly summarizes some of the key concepts from the
chapter, as well as the parallelism between rotations and rigid-body motions.
For more details, consult the appropriate section of the chapter.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

110 3.5. Summary

Rotations Rigid-Body Motions

R 2 SO(3) : 3⇥ 3 matrices T 2 SE(3) : 4⇥ 4 matrices

RTR = I, det R = 1 T =


R p
0 1

�
,

where R 2 SO(3), p 2 R3

R�1 = RT T�1 =


RT �RTp
0 1

�

change of coordinate frame: change of coordinate frame:
RabRbc = Rac, Rabpb = pa TabTbc = Tac, Tabpb = pa

rotating a frame {b}: displacing a frame {b}:

R = Rot(!̂, ✓) T =


Rot(!̂, ✓) p

0 1

�

Rsb0 = RRsb: Tsb0 = TTsb: rotate ✓ about !̂s = !̂
rotate ✓ about !̂s = !̂ (moves {b} origin), translate p in {s}

Rsb00 = RsbR: Tsb00 = TsbT : translate p in {b},
rotate ✓ about !̂b = !̂ rotate ✓ about !̂ in new body frame

unit rotation axis is !̂ 2 R3, “unit” screw axis is S =


!
v

�
2 R6,

where k!̂k = 1 where either (i) k!k = 1 or
(ii) ! = 0 and kvk = 1

for a screw axis {q, ŝ, h} with finite h,

S =


!
v

�
=


ŝ

�ŝ⇥ q + hŝ

�

angular velocity is ! = !̂✓̇ twist is V = S ✓̇

continued...

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 3. Rigid-Body Motions 111

Rotations (cont.) Rigid-Body Motions (cont.)

for any 3-vector, e.g., ! 2 R3, for V =


!
v

�
2 R6,

[!]=

2

4
0 �!3 !2

!3 0 �!1

�!2 !1 0

3

52so(3) [V] =


[!] v
0 0

�
2 se(3)

identities, !, x 2 R3, R 2 SO(3): (the pair (!, v) can be a twist V
[!] = �[!]T, [!]x = �[x]!, or a “unit” screw axis S,

[!][x] = ([x][!])T, R[!]RT = [R!] depending on the context)

ṘR�1 = [!s], R�1Ṙ = [!b] Ṫ T�1 = [Vs], T�1Ṫ = [Vb]

[AdT ] =


R 0

[p]R R

�
2 R6⇥6

identities: [AdT ]�1 = [AdT�1 ],
[AdT1 ][AdT2 ] = [AdT1T2 ]

change of coordinate frame: change of coordinate frame:
!̂a = Rab!̂b, !a = Rab!b Sa = [AdTab ]Sb, Va = [AdTab ]Vb

exp coords for R 2 SO(3): !̂✓ 2 R3 exp coords for T 2 SE(3): S✓ 2 R6

exp : [!̂]✓ 2 so(3)! R 2 SO(3) exp : [S]✓ 2 se(3)! T 2 SE(3)

R = Rot(!̂, ✓) = e[!̂]✓ = T = e[S]✓ =


e[!]✓ ⇤

0 1

�

I + sin ✓[!̂] + (1� cos ✓)[!̂]2 where ⇤ =
(I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2)v

log : R 2 SO(3)! [!̂]✓ 2 so(3) log : T 2 SE(3)! [S]✓ 2 se(3)
algorithm in Section 3.2.3.3 algorithm in Section 3.3.3.2

moment change of coord frame: wrench change of coord frame:
ma = Rabmb Fa = (ma, fa) = [AdTba ]TFb

3.6 Software

The following functions are included in the software distribution accompany-
ing the book. The code below is in MATLAB format, but it is available in
other languages. For more details on the software, consult the code and its
documentation.

invR = RotInv(R)
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Computes the inverse of the rotation matrix R.

so3mat = VecToso3(omg)
Returns the 3⇥ 3 skew-symmetric matrix corresponding to omg.

omg = so3ToVec(so3mat)
Returns the 3-vector corresponding to the 3⇥3 skew-symmetric matrix so3mat.

[omghat,theta] = AxisAng3(expc3)
Extracts the rotation axis !̂ and the rotation amount ✓ from the 3-vector !̂✓ of
exponential coordinates for rotation, expc3.

R = MatrixExp3(so3mat)
Computes the rotation matrix R 2 SO(3) corresponding to the matrix exponen-
tial of so3mat 2 so(3).

so3mat = MatrixLog3(R)
Computes the matrix logarithm so3mat 2 so(3) of the rotation matrix R 2
SO(3).

T = RpToTrans(R,p)
Builds the homogeneous transformation matrix T corresponding to a rotation
matrix R 2 SO(3) and a position vector p 2 R3.

[R,p] = TransToRp(T)
Extracts the rotation matrix and position vector from a homogeneous transfor-
mation matrix T.

invT = TransInv(T)
Computes the inverse of a homogeneous transformation matrix T.

se3mat = VecTose3(V)
Returns the se(3) matrix corresponding to a 6-vector twist V.

V = se3ToVec(se3mat)
Returns the 6-vector twist corresponding to an se(3) matrix se3mat.

AdT = Adjoint(T)
Computes the 6⇥ 6 adjoint representation [AdT ] of the homogeneous transfor-
mation matrix T.

S = ScrewToAxis(q,s,h)
Returns a normalized screw axis representation S of a screw described by a unit
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vector s in the direction of the screw axis, located at the point q, with pitch h.

[S,theta] = AxisAng6(expc6)
Extracts the normalized screw axis S and the distance traveled along the screw
✓ from the 6-vector of exponential coordinates S✓.

T = MatrixExp6(se3mat)
Computes the homogeneous transformation matrix T 2 SE(3) corresponding to
the matrix exponential of se3mat 2 se(3).

se3mat = MatrixLog6(T)
Computes the matrix logarithm se3mat 2 se(3) of the homogeneous transfor-
mation matrix T 2 SE(3).

3.7 Notes and References

The exponential coordinates for rotations introduced in this chapter are also re-
ferred to in the kinematics literature as the Euler–Rodrigues parameters. Other
representations for rotations such as Euler angles, Cayley–Rodrigues parame-
ters, and unit quaternions are described in Appendix B; further details on these
and related parametrizations of the rotation group SO(3) can be found in, e.g.,
[169, 113, 186, 122, 135].

Classical screw theory has its origins in the works of Mozzi and Chasles,
who independently discovered that the motion of a rigid body can be obtained
as a rotation about some axis followed by a translation about the same axis
[25]. Ball’s treatise [6] is often regarded as the classical reference on screw
theory, while more modern treatments can be found in Bottema and Roth [18],
Angeles [2], and McCarthy [113].

The identification of elements of classical screw theory with the Lie group
structure of the rigid body motions SE(3) was first made by Brockett in [20],
who went considerably further and showed that the forward kinematics of open
chains can be expressed as the product of matrix exponentials (this is the subject
of the next chapter). Derivations of the formulas for the matrix exponentials,
logarithms, their derivatives, and other related formulas can be found in [92,
129, 131, 122].
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3.8 Exercises

Exercise 3.1 In terms of the x̂s, ŷs, ẑs coordinates of a fixed space frame {s},
the frame {a} has its x̂a-axis pointing in the direction (0, 0, 1) and its ŷa-axis
pointing in the direction (�1, 0, 0), and the frame {b} has its x̂b-axis pointing
in the direction (1, 0, 0) and its ŷb-axis pointing in the direction (0, 0,�1).

(a) Draw by hand the three frames, at di↵erent locations so that they are easy
to see.

(b) Write down the rotation matrices Rsa and Rsb.
(c) Given Rsb, how do you calculate R�1

sb without using a matrix inverse?
Write down R�1

sb and verify its correctness using your drawing.
(d) Given Rsa and Rsb, how do you calculate Rab (again without using ma-

trix inverses)? Compute the answer and verify its correctness using your
drawing.

(e) Let R = Rsb be considered as a transformation operator consisting of
a rotation about x̂ by �90�. Calculate R1 = RsaR, and think of Rsa

as a representation of an orientation, R as a rotation of Rsa, and R1 as
the new orientation after the rotation has been performed. Does the new
orientation R1 correspond to a rotation of Rsa by �90� about the world-
fixed x̂s-axis or about the body-fixed x̂a-axis? Now calculate R2 = RRsa.
Does the new orientation R2 correspond to a rotation of Rsa by �90�

about the world-fixed x̂s-axis or about the body-fixed x̂a-axis?
(f) Use Rsb to change the representation of the point pb = (1, 2, 3) (which is

in {b} coordinates) to {s} coordinates.
(g) Choose a point p represented by ps = (1, 2, 3) in {s} coordinates. Calculate

p0 = Rsbps and p00 = RT
sbps. For each operation, should the result be

interpreted as changing coordinates (from the {s} frame to {b}) without
moving the point p or as moving the location of the point without changing
the reference frame of the representation?

(h) An angular velocity w is represented in {s} as !s = (3, 2, 1). What is its
representation !a in {a}?

(i) By hand, calculate the matrix logarithm [!̂]✓ of Rsa. (You may verify your
answer with software.) Extract the unit angular velocity !̂ and rotation
amount ✓. Redraw the fixed frame {s} and in it draw !̂.

(j) Calculate the matrix exponential corresponding to the exponential coor-
dinates of rotation !̂✓ = (1, 2, 0). Draw the corresponding frame relative
to {s}, as well as the rotation axis !̂.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 3. Rigid-Body Motions 115

Exercise 3.2 Let p be a point whose coordinates are p =
⇣

1p
3
,� 1p

6
, 1p

2

⌘
with

respect to the fixed frame x̂–ŷ–ẑ. Suppose that p is rotated about the fixed-
frame x̂-axis by 30 degrees, then about the fixed-frame ŷ-axis by 135 degrees, and
finally about the fixed-frame ẑ-axis by �120 degrees. Denote the coordinates of
this newly rotated point by p0.

(a) What are the coordinates p0?
(b) Find the rotation matrix R such that p0 = Rp for the p0 you obtained in

(a).

Exercise 3.3 Suppose that pi 2 R3 and p0i 2 R3 are related by p0i = Rpi,
i = 1, 2, 3, for some unknown rotation matrix R. Find, if it exists, the rotation
R for the three input–output pairs pi 7! p0i, where

p1 = (
p

2, 0, 2) 7! p01 = (0, 2,
p

2),

p2 = (1, 1,�1) 7! p02 =

✓
1p
2
,

1p
2
,�
p

2

◆
,

p3 = (0, 2
p

2, 0) 7! p03 = (�
p

2,
p

2,�2).

Exercise 3.4 In this exercise you are asked to prove the property RabRbc =
Rac of Equation (3.22). Define the unit axes of frames {a}, {b}, and {c} by
the triplets of orthogonal unit vectors {x̂a, ŷa, ẑa}, {x̂b, ŷb, ẑb}, and {x̂c, ŷc, ẑc},
respectively. Suppose that the unit axes of frame {b} can be expressed in terms
of the unit axes of frame {a} by

x̂b = r11x̂a + r21ŷa + r31ẑa,
ŷb = r12x̂a + r22ŷa + r32ẑa,
ẑb = r13x̂a + r23ŷa + r33ẑa.

Similarly, suppose that the unit axes of frame {c} can be expressed in terms of
the unit axes of frame {b} by

x̂c = s11x̂b + s21ŷb + s31ẑb,
ŷc = s12x̂b + s22ŷb + s32ẑb,
ẑc = s13x̂b + s23ŷb + s33ẑb.
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From the above prove that RabRbc = Rac.

Exercise 3.5 Find the exponential coordinates !̂✓ 2 R3 for the SO(3) matrix
2

4
0 �1 0
0 0 �1
1 0 0

3

5 .

Exercise 3.6 Given R = Rot(x̂,⇡/2)Rot(ẑ,⇡), find the unit vector !̂ and
angle ✓ such that R = e[!̂]✓.

Exercise 3.7
(a) Given the rotation matrix

R =

2

4
0 0 1
0 �1 0
1 0 0

3

5 ,

find all possible values for !̂ 2 R3, k!̂k = 1, and ✓ 2 [0, 2⇡) such that
e[!̂]✓ = R.

(b) The two vectors v1, v2 2 R3 are related by

v2 = Rv1 = e[!̂]✓v1

where !̂ 2 R3 has length 1, and ✓ 2 [�⇡,⇡]. Given !̂ = ( 23 , 2
3 , 1

3 ), v1 =
(1, 0, 1), v2 = (0, 1, 1), find all the angles ✓ that satisfy the above equation.

Exercise 3.8
(a) Suppose that we are seeking the logarithm of a rotation matrix R whose

trace is �1. From the exponential formula

e[!̂]✓ = I + sin ✓ [!̂] + (1� cos ✓)[!̂]2, k!k = 1,

and recalling that tr R = �1 implies ✓ = ⇡, the above equation simplifies
to

R = I + 2[!̂]2 =

2

4
1� 2(!̂2

2 + !̂2
3) 2!̂1!̂2 2!̂1!̂3

2!̂1!̂2 1� 2(!̂2
1 + !̂2

3) 2!̂2!̂3

2!̂1!̂2 2!̂2!̂3 1� 2(!̂2
1 + !̂2

2)

3

5 .

Using the fact that !̂2
1 + !̂2

2 + !̂2
3 = 1, is it correct to conclude that

!̂1 =

r
r11 + 1

2
, !̂2 =

r
r22 + 1

2
, !̂3 =

r
r33 + 1

2
,
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where rij denotes the (i, j)th entry of R, is also a solution?
(b) Using the fact that [!̂]3 = �[!̂], the identity R = I + 2[!̂]2 can be written

in the alternative forms

R� I = 2[!̂]2,

[!̂] (R� I) = 2 [!̂]3 = �2 [!̂] ,

[!̂] (R + I) = 0.

The resulting equation consists of three linear equations in (!̂1, !̂2, !̂3).
What is the relation between the solution to this linear system and the
logarithm of R?

Exercise 3.9 Exploiting the known properties of rotation matrices, determine
the minimum number of arithmetic operations (multiplication and division, ad-
dition and subtraction) required to multiply two rotation matrices.

Exercise 3.10 Because arithmetic precision is only finite, the numerically
obtained product of two rotation matrices is not necessarily a rotation matrix;
that is, the resulting rotation A may not exactly satisfy ATA = I as desired.
Devise an iterative numerical procedure that takes an arbitrary matrix A 2 R3⇥3

and produces a matrix R 2 SO(3) that minimizes

kA�Rk2 = tr (A�R)(A�R)T.

(Hint: See Appendix D for the relevant background on optimization.)

Exercise 3.11 Properties of the matrix exponential.
(a) Under what conditions on general A, B 2 Rn⇥n does eAeB = eA+B hold?
(b) If A = [Va] and B = [Vb], where Va = (!a, va) and Vb = (!b, vb) are

arbitrary twists, then under what conditions on Va and Vb does eAeB =
eA+B hold? Try to give a physical description of this condition.

Exercise 3.12
(a) Given a rotation matrix A = Rot(ẑ,↵), where Rot(ẑ,↵) indicates a rota-

tion about the ẑ-axis by an angle ↵, find all rotation matrices R 2 SO(3)
that satisfy AR = RA.

(b) Given rotation matrices A = Rot(ẑ,↵) and B = Rot(ẑ,�), with ↵ 6= �,
find all rotation matrices R 2 SO(3) that satisfy AR = RB.

(c) Given arbitrary rotation matrices A, B 2 SO(3), find all solutions R 2
SO(3) to the equation AR = RB.
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Exercise 3.13
(a) Show that the three eigenvalues of a rotation matrix R 2 SO(3) each have

unit magnitude, and conclude that they can always be written {µ+ i⌫, µ�
i⌫, 1}, where µ2 + ⌫2 = 1.

(b) Show that a rotation matrix R 2 SO(3) can always be factored in the
form

R = A

2

4
µ ⌫ 0
�⌫ µ 0

0 0 1

3

5A�1,

where A 2 SO(3) and µ2 + ⌫2 = 1. (Hint: Denote the eigenvector associ-
ated with the eigenvalue µ + i⌫ by x + iy, x, y 2 R3, and the eigenvector
associated with the eigenvalue 1 by z 2 R3. For the purposes of this prob-
lem you may assume that the set of vectors {x, y, z} can always be chosen
to be linearly independent.)

Exercise 3.14 Given ! 2 R3, k!k = 1, and ✓ a nonzero scalar, show that

�
I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2

��1
=

1

✓
I � 1

2
[!] +

✓
1

✓
� 1

2
cot

✓

2

◆
[!]2.

(Hint: From the identity [!]3 = �[!], express the inverse as a quadratic matrix
polynomial in [!].)

Exercise 3.15
(a) Given a fixed frame {0} and a moving frame {1} initially aligned with

{0}, perform the following sequence of rotations on {1}:

1. Rotate {1} about the {0} frame x̂-axis by ↵; call this new frame {2}.

2. Rotate {2} about the {0} frame ŷ-axis by �; call this new frame {3}.

3. Rotate {3} about the {0} frame ẑ-axis by �; call this new frame {4}.

What is the final orientation R04?
(b) Suppose that the third step above is replaced by the following: “Rotate

{3} about the ẑ-axis of frame {3} by �; call this new frame {4}.” What
is the final orientation R04?
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(c) Find Tca for the following transformations:

Tab =

2

664

1p
2
� 1p

2
0 �1

1p
2

1p
2

0 0

0 0 1 1
0 0 0 1

3

775 , Tcb =

2

664

1p
2

0 1p
2

0

0 1 0 1
� 1p

2
0 1p

2
0

0 0 0 1

3

775 .

Exercise 3.16 In terms of the x̂s, ŷs, ẑs coordinates of a fixed space frame
{s}, frame {a} has its x̂a-axis pointing in the direction (0, 0, 1) and its ŷa-axis
pointing in the direction (�1, 0, 0), and frame {b} has its x̂b-axis pointing in the
direction (1, 0, 0) and its ŷb-axis pointing in the direction (0, 0,�1). The origin
of {a} is at (3, 0, 0) in {s} and the origin of {b} is at (0, 2, 0) in {s}.

(a) Draw by hand a diagram showing {a} and {b} relative to {s}.
(b) Write down the rotation matrices Rsa and Rsb and the transformation

matrices Tsa and Tsb.
(c) Given Tsb, how do you calculate T�1

sb without using a matrix inverse?
Write T�1

sb and verify its correctness using your drawing.
(d) Given Tsa and Tsb, how do you calculate Tab (again without using ma-

trix inverses)? Compute the answer and verify its correctness using your
drawing.

(e) Let T = Tsb be considered as a transformation operator consisting of a
rotation about x̂ by �90� and a translation along ŷ by 2 units. Calculate
T1 = TsaT . Does T1 correspond to a rotation and translation about x̂s and
ŷs, respectively (a world-fixed transformation of Tsa), or a rotation and
translation about x̂a and ŷa, respectively (a body-fixed transformation of
Tsa)? Now calculate T2 = TTsa. Does T2 correspond to a body-fixed or
world-fixed transformation of Tsa?

(f) Use Tsb to change the representation of the point pb = (1, 2, 3) in {b}
coordinates to {s} coordinates.

(g) Choose a point p represented by ps = (1, 2, 3) in {s} coordinates. Calcu-
late p0 = Tsbps and p00 = T�1

sb ps. For each operation, should the result
be interpreted as changing coordinates (from the {s} frame to {b}) with-
out moving the point p, or as moving the location of the point without
changing the reference frame of the representation?

(h) A twist V is represented in {s} as Vs = (3, 2, 1,�1,�2,�3). What is its
representation Va in frame {a}?

(i) By hand, calculate the matrix logarithm [S]✓ of Tsa. (You may verify your
answer with software.) Extract the normalized screw axis S and rotation
amount ✓. Find a {q, ŝ, h} representation of the screw axis. Redraw the
fixed frame {s} and in it draw S.
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(j) Calculate the matrix exponential corresponding to the exponential coordi-
nates of rigid-body motion S✓ = (0, 1, 2, 3, 0, 0). Draw the corresponding
frame relative to {s}, as well as the screw axis S.

{b}

x̂b

ŷb
ẑb

{c}
x̂c

ŷc
ẑc

{a}

x̂a

ŷa

ẑa

{d}

x̂d

ŷd

ẑd

1

1

2

Figure 3.23: Four reference frames defined in a robot’s workspace.

Exercise 3.17 Four reference frames are shown in the robot workspace of
Figure 3.23: the fixed frame {a}, the end-e↵ector frame e↵ector {b}, the camera
frame {c}, and the workpiece frame {d}.

(a) Find Tad and Tcd in terms of the dimensions given in the figure.
(b) Find Tab given that

Tbc =

2

664

1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1

3

775 .
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{a}

{r}

{s}

{e}

Figure 3.24: A robot arm mounted on a spacecraft.

Exercise 3.18 Consider a robot arm mounted on a spacecraft as shown in
Figure 3.24, in which frames are attached to the Earth {e}, a satellite {s}, the
spacecraft {a}, and the robot arm {r}, respectively.

(a) Given Tea, Tar, and Tes, find Trs.
(b) Suppose that the frame {s} origin as seen from {e} is (1, 1, 1) and that

Ter =

2

664

�1 0 0 1
0 1 0 1
0 0 �1 1
0 0 0 1

3

775 .

Write down the coordinates of the frame {s} origin as seen from frame
{r}.

Exercise 3.19 Two satellites are circling the Earth as shown in Figure 3.25.
Frames {1} and {2} are rigidly attached to the satellites in such a way that their
x̂-axes always point toward the Earth. Satellite 1 moves at a constant speed
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{1}

{2}

v1
v2

R1 R2
30�

ŷ0

ẑ0

x̂1

ŷ1

x̂2

ŷ2

Satellite 1

Satellite 2

{0}
x̂0

Figure 3.25: Two satellites circling the Earth.

v1, while satellite 2 moves at a constant speed v2. To simplify matters, ignore
the rotation of the Earth about its own axis. The fixed frame {0} is located at
the center of the Earth. Figure 3.25 shows the position of the two satellites at
t = 0.

(a) Derive the frames T01, T02 as a function of t.
(b) Using your results from part (a), find T21 as a function of t.

'
{a}

{b}

{c}

x̂

ŷ

ẑ

x̂a

ŷa

ẑa

x̂b

ŷb

ẑb

x̂c

ŷc

ẑc

L

D

radius = r

radius = 2r

Figure 3.26: A high-wheel bicycle.
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Exercise 3.20 Consider the high-wheel bicycle of Figure 3.26, in which the
diameter of the front wheel is twice that of the rear wheel. Frames {a} and {b}
are attached respectively to the centers of the wheels, and frame {c} is attached
to the top of the front wheel. Assuming that the bike moves forward in the
ŷ-direction, find Tac as a function of the front wheel’s rotation angle ✓ (assume
✓ = 0 at the instant shown in the figure).

☆

{a}

{b}

{c}
x̂a

ŷa

ẑa
ŷcẑc

!1

!2

30�

R

p

r

North Star

Docking port
radius: r

Figure 3.27: A spacecraft and space station.

Exercise 3.21 The space station of Figure 3.27 moves in circular orbit around
the Earth, and at the same time rotates about an axis always pointing toward
the North Star. Owing to an instrument malfunction, a spacecraft heading
toward the space station is unable to locate the docking port. An Earth-based
ground station sends the following information to the spacecraft:

Tab =

2

664

0 �1 0 �100
1 0 0 300
0 0 1 500
0 0 0 1

3

775 , pa =

2

4
0

800
0

3

5 ,

where pa is the vector p expressed in {a}-frame coordinates.
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(a) From the given information, find rb, the vector r expressed in {b}-frame
coordinates.

(b) Determine Tbc at the instant shown in the figure. Assume here that the ŷ-
and ẑ-axes of the {a} and {c} frames are coplanar with the docking port.

{1}

{2}

{0}

{3}

x̂0

ŷ0

x̂1

ŷ1

x̂2

ŷ2

ẑ2

ŷ3

ẑ3

!

✓
T1(t = 0)

L1(t = 0)

v

T2

L2

Target

Laser

Figure 3.28: A laser tracking a moving target.

Exercise 3.22 A target moves along a circular path at constant angular ve-
locity ! rad/s in the x̂–ŷ-plane, as shown in Figure 3.28. The target is tracked
by a laser mounted on a moving platform, rising vertically at constant speed v.
Assume that at t = 0 the laser and the platform start at L1, while the target
starts at frame T1.

(a) Derive the frames T01, T12, T03 as functions of t.
(b) Using your results from part (a), derive T23 as a function of t.

Exercise 3.23 Two toy cars are moving on a round table as shown in Fig-
ure 3.29. Car 1 moves at a constant speed v1 along the circumference of the
table, while car 2 moves at a constant speed v2 along a radius; the positions of
the two vehicles at t = 0 are shown in the figures.

(a) Find T01 and T02 as a function of t.
(b) Find T12 as a function of t.
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{1}

{2}

{0}
x̂0

ŷ0

x̂1

ŷ1x̂2

ŷ2

v1

v2

45�
45� R = 2

H = 2

L = 1

L = 1

L = 1

L = 1

{1}
{2}

{0} x̂0

ŷ0
ẑ0

x̂1
ŷ1

ẑ1

x̂2

ŷ2

ẑ2 Top View

Figure 3.29: Two toy cars on a round table.

Exercise 3.24 Figure 3.30 shows the configuration, at t = 0, of a robot
arm whose first joint is a screw joint of pitch h = 2. The arm’s link lengths
are L1 = 10, L2 = L3 = 5, and L4 = 3. Suppose that all joint angular
velocities are constant, with values !1 = ⇡/4, !2 = ⇡/8, !3 = �⇡/4 rad/s. Find
Tsb(4) 2 SE(3), i.e., the configuration of the end-e↵ector frame {b} relative to
the fixed frame {s} at time t = 4.

Exercise 3.25 A camera is rigidly attached to a robot arm, as shown in
Figure 3.31. The transformation X 2 SE(3) is constant. The robot arm moves
from posture 1 to posture 2. The transformations A 2 SE(3) and B 2 SE(3)
are measured and can be assumed to be known.

(a) Suppose that X and A are given as follows:

X =

2

664

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

3

775 , A =

2

664

0 0 1 0
0 1 0 1
�1 0 0 0
0 0 0 1

3

775 .

What is B?
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{s}

{b}

x̂s ŷs

ẑs

x̂b

ŷb

ẑb

L1

L2

L3

L4

!1

!2

!3

A

Figure 3.30: A robot arm with a screw joint.

(b) Now suppose that

A =


RA pA
0 1

�
, B =


RB pB
0 1

�

are known and we wish to find

X =


RX pX
0 1

�
.

Set RA = e[↵] and RB = e[�]. What are the conditions on ↵ 2 R3 and
� 2 R3 for a solution RX to exist?

(c) Now suppose that we have a set of k equations

AiX = XBi for i = 1, . . . , k.

Assume that Ai and Bi are all known. What is the minimum number k
for which a unique solution exists?
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{c}

{t}

{c }

{t }

X

BX

pose 1

pose 2

camera

tip

A

Figure 3.31: A camera rigidly attached to a robot arm.

Exercise 3.26 Draw the screw axis for which q = (3, 0, 0), ŝ = (0, 0, 1), and
h = 2.

Exercise 3.27 Draw the screw axis for the twist V = (0, 2, 2, 4, 0, 0).

Exercise 3.28 Assume that the space-frame angular velocity is !s = (1, 2, 3)
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for a moving body with frame {b} at

R =

2

4
0 �1 0
0 0 �1
1 0 0

3

5

relative to the space frame {s}. Calculate the body’s angular velocity !b in {b}.

Exercise 3.29 Two frames {a} and {b} are attached to a moving rigid body.
Show that the twist of {a} in space-frame coordinates is the same as the twist
of {b} in space-frame coordinates.

{0} {1}

{2}

x̂0

ŷ0

ẑ0

x̂1

ŷ1

ẑ1

x̂2

ŷ2

ẑ2

1

1
(a) A first screw motion.

{0} {1}

{2}

x̂0

ŷ0

ẑ0

x̂1

ŷ1

ẑ1

x̂2ŷ2

ẑ2

1

1

(b) A second screw motion.

Figure 3.32: A cube undergoing two di↵erent screw motions.

Exercise 3.30 A cube undergoes two di↵erent screw motions from frame {1}
to frame {2} as shown in Figure 3.32. In both cases, (a) and (b), the initial
configuration of the cube is

T01 =

2

664

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

3

775 .

(a) For each case, (a) and (b), find the exponential coordinates S✓ = (!, v)✓
such that T02 = e[S]✓T01, where no constraints are placed on ! or v.

(b) Repeat (a), this time with the constraint that k!✓k 2 [�⇡,⇡].

Exercise 3.31 In Example 3.19 and Figure 3.16, the block that the robot must
pick up weighs 1 kg, which means that the robot must provide approximately
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10 N of force in the ẑe-direction of the block’s frame {e} (which you can assume
is at the block’s center of mass). Express this force as a wrench Fe in the {e}
frame. Given the transformation matrices in Example 3.19, express this same
wrench in the end-e↵ector frame {c} as Fc.

Exercise 3.32 Given two reference frames {a} and {b} in physical space, and
a fixed frame {o}, define the distance between frames {a} and {b} as

dist(Toa, Tob) ⌘
p
✓2 + ||pab||2

where Rab = e[!̂]✓. Suppose that the fixed frame is displaced to another frame
{o0} and that To0a = SToa, To0b = STo0b for some constant S = (Rs, ps) 2 SE(3).
(a) Evaluate dist(To0a, To0b) using the above distance formula.
(b) Under what conditions on S does dist(Toa, Tob) = dist(To0a, To0b)?

Exercise 3.33 (a) Find the general solution to the di↵erential equation ẋ =
Ax, where

A =


�2 1
0 �1

�
.

What happens to the solution x(t) as t!1?
(b) Do the same for

A =


2 �1
1 2

�
.

What happens to the solution x(t) as t!1?

Exercise 3.34 Let x 2 R2, A 2 R2⇥2, and consider the linear di↵erential
equation ẋ(t) = Ax(t). Suppose that

x(t) =


e�3t

�3e�3t

�

is a solution for the initial condition x(0) = (1,�3), and

x(t) =


et

et

�

is a solution for the initial condition x(0) = (1, 1). Find A and eAt.

Exercise 3.35 Given a di↵erential equation of the form ẋ = Ax+ f(t), where
x 2 Rn and f(t) is a given di↵erentiable function of t, show that the general
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solution can be written

x(t) = eAtx(0) +

Z t

0
eA(t�s)f(s) ds.

(Hint: Define z(t) = e�Atx(t) and evaluate ż(t).)

Exercise 3.36 Referring to Appendix B, answer the following questions re-
lated to ZXZ Euler angles.

(a) Derive a procedure for finding the ZXZ Euler angles of a rotation matrix.
(b) Using the results of (a), find the ZXZ Euler angles for the following rota-

tion matrix: 2

64
� 1p

2
1p
2

0

� 1
2 � 1

2
1p
2

1
2

1
2

1p
2

3

75 .

Exercise 3.37 Consider a wrist mechanism with two revolute joints ✓1 and
✓2, in which the end-e↵ector frame orientation R 2 SO(3) is given by

R = e[!̂1]✓1e[!̂2]✓2 ,

with !̂1 = (0, 0, 1) and !̂2 = (0, 1p
2
,� 1p

2
). Determine whether the following

orientation is reachable (that is, find, if it exists, a solution (✓1, ✓2) for the
following R):

R =

2

4
1p
2

0 � 1p
2

0 1 0
1p
2

0 1p
2

3

5

Exercise 3.38 Show that rotation matrices of the form
2

4
r11 r12 0
r21 r22 r23
r31 r32 r33

3

5

can be parametrized using just two parameters ✓ and � as follows:
2

4
cos ✓ � sin ✓ 0

sin ✓ cos� cos ✓ cos� � sin�
sin ✓ sin� cos ✓ sin� cos�

3

5 .

What should the range of values be for ✓ and �?
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{0}

{3}

x̂0

ŷ0

ẑ0

ẑ0

x̂3

ŷ3

ẑ3

↵

�
45�

�

Figure 3.33: A three-degree-of-freedom wrist mechanism.

Exercise 3.39 Figure 3.33 shows a three-dof wrist mechanism in its zero
position (i.e., all joint angles are set to zero).

(a) Express the tool-frame orientation R03 = R(↵,�, �) as a product of three
rotation matrices.

(b) Find all possible angles (↵,�, �) for the two values of R03 given below. If
no solution exists, explain why this is so in terms of the analogy between
SO(3) and a solid ball of radius ⇡.
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(i) R03 =

2

4
0 1 0
1 0 0
0 0 �1

3

5 .

(ii) R03 = e[!̂]⇡/2, where !̂ = (0, 1p
5
, 2p

5
).

Exercise 3.40 Refer to Appendix B.
(a) Verify formulas (B.10) and (B.11) for the unit quaternion representation

of a rotation R 2 SO(3).
(b) Verify formula (B.12) for the rotation matrix R representation of a unit

quaternion q 2 S3.
(c) Verify the product rule for two unit quaternions. That is, given two unit

quaternions q, p 2 S3 corresponding respectively to the rotations R, Q 2
SO(3), find a formula for the unit quaternion representation of the product
RQ 2 SO(3).

Exercise 3.41 The Cayley transform of Equation (B.18) in Appendix B can
be generalized to higher orders as follows:

R = (I � [r])k(I + [r])�k. (3.99)

(a) For the case k = 2, show that the rotation R corresponding to r can be
computed from the formula

R = I � 4
1� rTr

(1 + rTr)2
[r] +

8

(1 + rTr)2
[r]2. (3.100)

(b) Conversely, given a rotation matrix R, show that a vector r that satisfies
Equation (3.100) can be obtained as

r = �!̂ tan
✓

4
, (3.101)

where, as before, !̂ is the unit vector along the axis of rotation for R, and
✓ is the corresponding rotation angle. Is this solution unique?

(c) Show that the angular velocity in the body frame obeys the following
relation:

ṙ =
1

4

�
(1� rTr)I + 2[r] + 2rrT

�
!. (3.102)

(d) Explain what happens to the singularity at ⇡ that exists for the standard
Cayley–Rodrigues parameters. Discuss the relative advantages and dis-
advantages of the modified Cayley–Rodrigues parameters, particularly for
order k = 4 and higher.
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(e) Compare the number of arithmetic operations needed for multiplying two
rotation matrices, two unit quaternions, or two Cayley–Rodrigues repre-
sentations. Which requires the fewest arithmetic operations?

Exercise 3.42 Rewrite the software for Chapter 3 in your favorite program-
ming language.

Exercise 3.43 Write a function that returns “true” if a given 3⇥ 3 matrix is
within ✏ of being a rotation matrix and “false” otherwise. It is up to you how
to define the “distance” between a random 3 ⇥ 3 real matrix and the closest
member of SO(3). If the function returns “true,” it should also return the
“nearest” matrix in SO(3). See, for example, Exercise 3.10.

Exercise 3.44 Write a function that returns “true” if a given 4⇥ 4 matrix is
within ✏ of an element of SE(3) and “false” otherwise.

Exercise 3.45 Write a function that returns “true” if a given 3⇥ 3 matrix is
within ✏ of an element of so(3) and “false” otherwise.

Exercise 3.46 Write a function that returns “true” if a given 4⇥ 4 matrix is
within ✏ of an element of se(3) and “false” otherwise.

Exercise 3.47 The primary purpose of the provided software is to be easy
to read and educational, reinforcing the concepts in the book. The code is
optimized neither for e�ciency nor robustness, nor does it do full error-checking
on its inputs.

Familiarize yourself with the whole code in your favorite language by reading
the functions and their comments. This should help cement your understanding
of the material in this chapter. Then:

(a) Rewrite one function to do full error-checking on its input, and have the
function return a recognizable error value if the function is called with an
improper input (e.g., an argument to the function is not an element of
SO(3), SE(3), so(3), or se(3), as expected).

(b) Rewrite one function to improve its computational e�ciency, perhaps by
using what you know about properties of rotation or transformation ma-
trices.

(c) Can you reduce the numerical sensitivity of either of the matrix logarithm
functions?
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Exercise 3.48 Use the provided software to write a program that allows the
user to specify an initial configuration of a rigid body by T , a screw axis specified
by {q, ŝ, h} in the fixed frame {s}, and the total distance traveled along the
screw axis, ✓. The program should calculate the final configuration T1 = e[S]✓T
attained when the rigid body follows the screw S a distance ✓, as well as the
intermediate configurations at ✓/4, ✓/2, and 3✓/4. At the initial, intermediate,
and final configurations, the program should plot the {b} axes of the rigid
body. The program should also calculate the screw axis S1 and the distance
✓1 following S1 that takes the rigid body from T1 to the origin and it should
plot the screw axis S1. Test the program with q = (0, 2, 0), ŝ = (0, 0, 1), h = 2,
✓ = ⇡, and

T =

2

664

1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

3

775 .

Exercise 3.49 In this chapter, we developed expressions for the matrix expo-
nential for spatial motions mapping elements of so(3) to SO(3) and elements
of se(3) to SE(3). Similarly, we developed algorithms for the matrix logarithm
going the other direction.

We could also develop matrix exponentials for planar motions, from so(2)
to SO(2) and from se(2) to SE(2), as well as the matrix logarithms going
from SO(2) to so(2) and SE(2) to se(2). For the so(2) to SO(2) case there
is a single exponential coordinate. For the se(2) to SE(2) case there are three
exponential coordinates, corresponding to a twist with three elements set to
zero, V = (0, 0,!z, vx, vy, 0).

For planar rotations and planar twists we could apply the matrix exponen-
tials and logarithms that we derived for the spatial case by simply expressing
the so(2), SO(2), se(2), and SE(2) elements as elements of so(3), SO(3), se(3),
and SE(3). Instead, in this problem, write down explicitly the matrix expo-
nential and logarithm for the so(2) to SO(2) case using a single exponential
coordinate, and the matrix exponential and logarithm for the se(2) to SE(2)
case using three exponential coordinates. Then provide software implementa-
tions of each of the four functions in your favorite programming language, and
provide execution logs that show that they function as expected.
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Chapter 4

Forward Kinematics

The forward kinematics of a robot refers to the calculation of the position
and orientation of its end-e↵ector frame from its joint coordinates ✓. Figure 4.1
illustrates the forward kinematics problem for a 3R planar open chain. The link
lengths are L1, L2, and L3. Choose a fixed frame {0} with origin located at the
base joint as shown, and assume an end-e↵ector frame {4} has been attached to
the tip of the third link. The Cartesian position (x, y) and orientation � of the
end-e↵ector frame as functions of the joint angles (✓1, ✓2, ✓3) are then given by

x = L1 cos ✓1 + L2 cos(✓1 + ✓2) + L3 cos(✓1 + ✓2 + ✓3), (4.1)

y = L1 sin ✓1 + L2 sin(✓1 + ✓2) + L3 sin(✓1 + ✓2 + ✓3), (4.2)

� = ✓1 + ✓2 + ✓3. (4.3)

If one is only interested in the (x, y) position of the end-e↵ector, the robot’s
task space is then taken to be the x–y-plane, and the forward kinematics would
consist of Equations (4.1) and (4.2) only. If the end-e↵ector’s position and orien-
tation both matter, the forward kinematics would consist of the three equations
(4.1)–(4.3).

While the above analysis can be done using only basic trigonometry, it is
not di�cult to imagine that for more general spatial chains the analysis can
become considerably more complicated. A more systematic method of deriving
the forward kinematics might involve attaching reference frames to each link;
in Figure 4.1 the three link reference frames are respectively labeled {1}, {2},
and {3}. The forward kinematics can then be written as a product of four
homogeneous transformation matrices:

T04 = T01T12T23T34, (4.4)

135

136

{0}

{1}

{2}

{3}

{4}

✓1

✓2

✓3

(x, y)

�

L 1

L 3

L 2

Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the x̂-
and ŷ-axis is shown; the ẑ-axes are parallel and out of the page.

where

T01 =

2

664

cos ✓1 � sin ✓1 0 0
sin ✓1 cos ✓1 0 0

0 0 1 0
0 0 0 1

3

775 , T12 =

2

664

cos ✓2 � sin ✓2 0 L1

sin ✓2 cos ✓2 0 0
0 0 1 0
0 0 0 1

3

775 ,

T23 =

2

664

cos ✓3 � sin ✓3 0 L2

sin ✓3 cos ✓3 0 0
0 0 1 0
0 0 0 1

3

775 , T34 =

2

664

1 0 0 L3

0 1 0 0
0 0 1 0
0 0 0 1

3

775 . (4.5)

Observe that T34 is constant and that each remaining Ti�1,i depends only on
the joint variable ✓i.

As an alternative to this approach, let us define M to be the position and
orientation of frame {4} when all joint angles are set to zero (the “home” or
“zero” position of the robot). Then

M =

2

664

1 0 0 L1 + L2 + L3

0 1 0 0
0 0 1 0
0 0 0 1

3

775 , (4.6)
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Now consider each revolute joint axis to be a zero-pitch screw axis. If ✓1 and
✓2 are held at their zero position then the screw axis corresponding to rotating
about joint 3 can be expressed in the {0} frame as

S3 =


!3

v3

�
=

2

6666664

0
0
1
0

�(L1 + L2)
0

3

7777775
.

You should be able to confirm this by simple visual inspection of Figure 4.1.
When the arm is stretched out straight to the right at its zero configuration,
imagine a turntable rotating with an angular velocity of !3 = 1 rad/s about
the axis of joint 3. The linear velocity v3 of the point on the turntable at the
origin of {0} is in the �ŷ0-direction at a rate of L1 + L2 units/s. Algebraically,
v3 = �!3 ⇥ q3, where q3 is any point on the axis of joint 3 expressed in {0},
e.g., q3 = (L1 + L2, 0, 0).

The screw axis S3 can be expressed in se(3) matrix form as

[S3] =


[!] v
0 0

�
=

2

664

0 �1 0 0
1 0 0 �(L1 + L2)
0 0 0 0
0 0 0 0

3

775 .

Therefore, for any ✓3, the matrix exponential representation for screw motions
from the previous chapter allows us to write

T04 = e[S3]✓3M (for ✓1 = ✓2 = 0). (4.7)

Now, for ✓1 = 0 and any fixed (but arbitrary) ✓3, rotation about joint 2 can be
viewed as applying a screw motion to the rigid (link 2)/(link 3) pair, i.e.,

T04 = e[S2]✓2e[S3]✓3M (for ✓1 = 0), (4.8)

where [S3] and M are as defined previously, and

[S2] =

2

664

0 �1 0 0
1 0 0 �L1

0 0 0 0
0 0 0 0

3

775 . (4.9)
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Finally, keeping ✓2 and ✓3 fixed, rotation about joint 1 can be viewed as applying
a screw motion to the entire rigid three-link assembly. We can therefore write,
for arbitrary values of (✓1, ✓2, ✓3),

T04 = e[S1]✓1e[S2]✓2e[S3]✓3M, (4.10)

where

[S1] =

2

664

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3

775 . (4.11)

Thus the forward kinematics can be expressed as a product of matrix exponen-
tials, each corresponding to a screw motion. Note that this latter derivation of
the forward kinematics does not use any link reference frames; only {0} and M
must be defined.

In this chapter we consider the forward kinematics of general open chains.
One widely used representation for the forward kinematics of open chains relies
on the Denavit–Hartenberg parameters (D–H parameters), and this rep-
resentation uses Equation (4.4). Another representation relies on the product
of exponentials (PoE) formula, which corresponds to Equation (4.10). The
advantage of the D–H representation is that it requires the minimum number of
parameters to describe the robot’s kinematics: for an n-joint robot, it uses 3n
numbers to describe the robot’s structure and n numbers to describe the joint
values. The PoE representation is not minimal (it requires 6n numbers to de-
scribe the n screw axes, in addition to the n joint values), but it has advantages
over the D–H representation (e.g., no link frames are necessary) and it is our
preferred choice of forward kinematics representation. The D–H representation,
and its relationship to the PoE representation, is described in Appendix C.

4.1 Product of Exponentials Formula

To use the PoE formula, it is only necessary to assign a stationary frame {s} (e.g.,
at the fixed base of the robot or anywhere else that is convenient for defining
a reference frame) and a frame {b} at the end-e↵ector, described by M when
the robot is at its zero position. It is common to define a frame at each link,
though, typically at the joint axis; these are needed for the D–H representation
and they are useful for displaying a graphic rendering of a geometric model of
the robot and for defining the mass properties of the link, which we will need
starting in Chapter 8. Thus when we are defining the kinematics of an n-joint
robot, we may either (1) minimally use the frames {s} and {b} if we are only
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M

✓n
✓n�1

✓n�2
✓1

e[Sn]✓nM

e[Sn�1]✓n�1e[Sn]✓nM

e[Sn�2]✓n�2e[Sn�1]✓n�1e[Sn]✓n M

Figure 4.2: Illustration of the PoE formula for an n-link spatial open chain.

interested in the kinematics, or (2) refer to {s} as frame {0}, use frames {i} for
i = 1, . . . , n (the frames for links i at joints i), and use one more frame {n + 1}
(corresponding to {b}) at the end-e↵ector. The frame {n + 1} (i.e., {b}) is
fixed relative to {n}, but it is at a more convenient location to represent the
configuration of the end-e↵ector. In some cases we dispense with frame {n + 1}
and simply refer to {n} as the end-e↵ector frame {b}.

4.1.1 First Formulation: Screw Axes in the Base Frame

The key concept behind the PoE formula is to regard each joint as applying
a screw motion to all the outward links. To illustrate this consider a general
spatial open chain like the one shown in Figure 4.2, consisting of n one-dof joints
that are connected serially. To apply the PoE formula, you must choose a fixed
base frame {s} and an end-e↵ector frame {b} attached to the last link. Place the
robot in its zero position by setting all joint values to zero, with the direction
of positive displacement (rotation for revolute joints, translation for prismatic
joints) for each joint specified. Let M 2 SE(3) denote the configuration of the
end-e↵ector frame relative to the fixed base frame when the robot is in its zero
position.

Now suppose that joint n is displaced to some joint value ✓n. The end-
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e↵ector frame M then undergoes a displacement of the form

T = e[Sn]✓nM, (4.12)

where T 2 SE(3) is the new configuration of the end-e↵ector frame and Sn =
(!n, vn) is the screw axis of joint n as expressed in the fixed base frame. If joint
n is revolute (corresponding to a screw motion of zero pitch) then !n 2 R3 is a
unit vector in the positive direction of joint axis n; vn = �!n⇥ qn, with qn any
arbitrary point on joint axis n as written in coordinates in the fixed base frame;
and ✓n is the joint angle. If joint n is prismatic then !n = 0, vn 2 R3 is a unit
vector in the direction of positive translation, and ✓n represents the prismatic
extension/retraction.

If we assume that joint n� 1 is also allowed to vary then this has the e↵ect
of applying a screw motion to link n� 1 (and by extension to link n, since link
n is connected to link n� 1 via joint n). The end-e↵ector frame thus undergoes
a displacement of the form

T = e[Sn�1]✓n�1

⇣
e[Sn]✓nM

⌘
. (4.13)

Continuing with this reasoning and now allowing all the joints (✓1, . . . , ✓n) to
vary, it follows that

T (✓) = e[S1]✓1 · · · e[Sn�1]✓n�1e[Sn]✓nM. (4.14)

This is the product of exponentials formula describing the forward kinematics
of an n-dof open chain. Specifically, we call Equation (4.14) the space form
of the product of exponentials formula, referring to the fact that the screw axes
are expressed in the fixed space frame.

To summarize, to calculate the forward kinematics of an open chain using
the space form of the PoE formula (4.14), we need the following elements:

(a) the end-e↵ector configuration M 2 SE(3) when the robot is at its home
position;

(b) the screw axes S1, . . . , Sn expressed in the fixed base frame, corresponding
to the joint motions when the robot is at its home position;

(c) the joint variables ✓1, . . . , ✓n.

Unlike the D–H representation, no link reference frames need to be defined.
Further advantages will come to light when we examine the velocity kinematics
in the next chapter.
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Figure 4.3: A 3R spatial open chain.

4.1.2 Examples

We now derive the forward kinematics for some common spatial open chains
using the PoE formula.

Example 4.1 (3R spatial open chain). Consider the 3R open chain of Fig-
ure 4.3, shown in its home position (all joint variables set equal to zero). Choose
the fixed frame {0} and end-e↵ector frame {3} as indicated in the figure, and ex-
press all vectors and homogeneous transformations in terms of the fixed frame.
The forward kinematics has the form

T (✓) = e[S1]✓1e[S2]✓2e[S3]✓3M,

where M 2 SE(3) is the end-e↵ector frame configuration when the robot is in
its zero position. By inspection M can be obtained as

M =

2

664

0 0 1 L1

0 1 0 0
�1 0 0 �L2

0 0 0 1

3

775 .

The screw axis S1 = (!1, v1) for joint axis 1 is then given by !1 = (0, 0, 1)
and v1 = (0, 0, 0) (the fixed frame origin (0,0,0) is a convenient choice for the
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point q1 lying on joint axis 1). To determine the screw axis S2 for joint axis
2, observe that joint axis 2 points in the �ŷ0-direction, so that !2 = (0,�1, 0).
Choose q2 = (L1, 0, 0), in which case v2 = �!2 ⇥ q2 = (0, 0,�L1). Finally, to
determine the screw axis S3 for joint axis 3, note that !3 = (1, 0, 0). Choosing
q3 = (0, 0,�L2), it follows that v3 = �!3 ⇥ q3 = (0,�L2, 0).

In summary, we have the following 4⇥4 matrix representations for the three
joint screw axes S1, S2, and S3:

[S1] =

2

664

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3

775 ,

[S2] =

2

664

0 0 �1 0
0 0 0 0
1 0 0 �L1

0 0 0 0

3

775 ,

[S3] =

2

664

0 0 0 0
0 0 �1 �L2

0 1 0 0
0 0 0 0

3

775 .

It will be more convenient to list the screw axes in the following tabular form:

i !i vi

1 (0, 0, 1) (0, 0, 0)
2 (0,�1, 0) (0, 0,�L1)
3 (1, 0, 0) (0,�L2, 0)

Example 4.2 (3R planar open chain). For the robot in Figure 4.1, we expressed
the end-e↵ector home configuration M (Equation (4.6)) and the screw axes Si

as follows:

i !i vi

1 (0, 0, 1) (0, 0, 0)
2 (0, 0, 1) (0,�L1, 0)
3 (0, 0, 1) (0,�(L1 + L2), 0)

Since the motion is in the x̂–ŷ-plane, we could equivalently write each screw
axis Si as a 3-vector (!z, vx, vy):
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{s} {b}
x̂s

ŷs

ẑs

x̂b ŷb

ẑb

L L L

Figure 4.4: PoE forward kinematics for the 6R open chain.

i !i vi

1 1 (0, 0)
2 1 (0,�L1)
3 1 (0,�(L1 + L2))

and M as an element of SE(2):

M =

2

4
1 0 L1 + L2 + L3

0 1 0
0 0 1

3

5 .

In this case, the forward kinematics would use the simplified matrix exponential
for planar motions (Exercise 3.49).

Example 4.3 (6R spatial open chain). We now derive the forward kinematics
of the 6R open chain of Figure 4.4. Six-dof arms play an important role in
robotics because they have the minimum number of joints that allows the end-
e↵ector to move a rigid body in all its degrees of freedom, subject only to limits
on the robot’s workspace. For this reason, six-dof robot arms are sometimes
called general purpose manipulators.

The zero position and the direction of positive rotation for each joint axis
are as shown in the figure. A fixed frame {s} and end-e↵ector frame {b} are
also assigned as shown. The end-e↵ector frame M in the zero position is then

M =

2

664

1 0 0 0
0 1 0 3L
0 0 1 0
0 0 0 1

3

775 (4.15)
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x̂s

ŷs

ẑs

x̂b
ŷb

ẑb

L1

L2

Figure 4.5: The RRPRRR spatial open chain.

The screw axis for joint 1 is in the direction !1 = (0, 0, 1). The most convenient
choice for point q1 lying on joint axis 1 is the origin, so that v1 = (0, 0, 0). The
screw axis for joint 2 is in the ŷ-direction of the fixed frame, so !2 = (0, 1, 0).
Choosing q2 = (0, 0, 0), we have v2 = (0, 0, 0). The screw axis for joint 3 is
in the direction !3 = (�1, 0, 0). Choosing q3 = (0, 0, 0) leads to v3 = (0, 0, 0).
The screw axis for joint 4 is in the direction !4 = (�1, 0, 0). Choosing q4 =
(0, L, 0) leads to v4 = (0, 0, L). The screw axis for joint 5 is in the direction
!5 = (�1, 0, 0); choosing q5 = (0, 2L, 0) leads to v5 = (0, 0, 2L). The screw
axis for joint 6 is in the direction !6 = (0, 1, 0); choosing q6 = (0, 0, 0) leads
to v6 = (0, 0, 0). In summary, the screw axes Si = (!i, vi), i = 1, . . . , 6, are as
follows:

i !i vi

1 (0, 0, 1) (0, 0, 0)
2 (0, 1, 0) (0, 0, 0)
3 (�1, 0, 0) (0, 0, 0)
4 (�1, 0, 0) (0, 0, L)
5 (�1, 0, 0) (0, 0, 2L)
6 (0, 1, 0) (0, 0, 0)

Example 4.4 (An RRPRRR spatial open chain). In this example we consider
the six-degree-of-freedom RRPRRR spatial open chain of Figure 4.5. The end-
e↵ector frame in the zero position is given by

M =

2

664

1 0 0 0
0 1 0 L1 + L2

0 0 1 0
0 0 0 1

3

775 .
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The screw axes Si = (!i, vi) are listed in the following table:

i !i vi

1 (0, 0, 1) (0, 0, 0)
2 (1, 0, 0) (0, 0, 0)
3 (0, 0, 0) (0, 1, 0)
4 (0, 1, 0) (0, 0, 0)
5 (1, 0, 0) (0, 0,�L1)
6 (0, 1, 0) (0, 0, 0)

Note that the third joint is prismatic, so that !3 = 0 and v3 is a unit vector in
the direction of positive translation.

Example 4.5 (Universal Robots’ UR5 6R robot arm). Universal Robots’ UR5
6R robot arm is shown in Figure 4.6. Each joint is directly driven by a brushless
motor combined with 100:1 zero-backlash harmonic drive gearing, which greatly
increases the torque available at the joint while reducing its maximum speed.
Figure 4.6 shows the screw axes S1, . . . , S6 when the robot is at its zero position.
The end-e↵ector frame {b} in the zero position is given by

M =

2

664

�1 0 0 L1 + L2

0 0 1 W1 + W2

0 1 0 H1 �H2

0 0 0 1

3

775 .

The screw axes Si = (!i, vi) are listed in the following table:

i !i vi

1 (0, 0, 1) (0, 0, 0)
2 (0, 1, 0) (�H1, 0, 0)
3 (0, 1, 0) (�H1, 0, L1)
4 (0, 1, 0) (�H1, 0, L1 + L2)
5 (0, 0,�1) (�W1, L1 + L2, 0)
6 (0, 1, 0) (H2 �H1, 0, L1 + L2)

As an example of the forward kinematics, set ✓2 = �⇡/2 and ✓5 = ⇡/2, with
all other joint angles equal to zero. Then the configuration of the end-e↵ector
is

T (✓) = e[S1]✓1e[S2]✓2e[S3]✓3e[S4]✓4e[S5]✓5e[S6]✓6M

= Ie�[S2]⇡/2I2e[S5]⇡/2IM

= e�[S2]⇡/2e[S5]⇡/2M
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S1

S2

S6

S5

S4

S3

Figure 4.6: (Left) Universal Robots’ UR5 6R robot arm. (Right) Shown at its zero
position. Positive rotations about the axes indicated are given by the usual right-hand
rule. W1 is the distance along the ŷs-direction between the anti-parallel axes of joints
1 and 5. W1 = 109 mm, W2 = 82 mm, L1 = 425 mm, L2 = 392 mm, H1 = 89 mm,
H2 = 95 mm.

since e0 = I. Evaluating, we get

e�[S2]⇡/2 =

2

664

0 0 �1 0.089
0 1 0 0
1 0 0 0.089
0 0 0 1

3

775 , e[S5]⇡/2 =

2

664

0 1 0 0.708
�1 0 0 0.926
0 0 1 0
0 0 0 1

3

775 ,

where the linear units are meters, and

T (✓) = e�[S2]⇡/2e[S5]⇡/2M =

2

664

0 �1 0 0.095
1 0 0 0.109
0 0 1 0.988
0 0 0 1

3

775

as shown in Figure 4.7.

4.1.3 Second Formulation: Screw Axes in the End-E↵ector
Frame

The matrix identity eM
�1PM = M�1ePM (Proposition 3.10) can also be ex-

pressed as MeM
�1PM = ePM . Beginning with the rightmost term of the pre-

viously derived product of exponentials formula, if we repeatedly apply this
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x̂b

ẑb

x̂s
ẑs

✓5 = ⇡/2

✓2 = �⇡/2

x̂b

ẑb

Figure 4.7: (Left) The UR5 at its home position, with the axes of joints 2 and 5
indicated. (Right) The UR5 at joint angles ✓ = (✓1, . . . , ✓6) = (0,�⇡/2, 0, 0,⇡/2, 0).

identity then after n iterations we obtain

T (✓) = e[S1]✓1 · · · e[Sn]✓nM

= e[S1]✓1 · · · MeM
�1[Sn]M✓n

= e[S1]✓1 · · · MeM
�1[Sn�1]M✓n�1eM

�1[Sn]M✓n

= MeM
�1[S1]M✓1 · · · eM

�1[Sn�1]M✓n�1eM
�1[Sn]M✓n

= Me[B1]✓1 · · · e[Bn�1]✓n�1e[Bn]✓n , (4.16)

where each [Bi] is given by M�1[Si]M , i.e., Bi = [AdM�1 ]Si, i = 1, . . . , n.
Equation (4.16) is an alternative form of the product of exponentials formula,
representing the joint axes as screw axes Bi in the end-e↵ector (body) frame
when the robot is at its zero position. We call Equation (4.16) the body form
of the product of exponentials formula.

It is worth thinking about the order of the transformations expressed in
the space-form PoE formula (Equation (4.14)) and in the body-form formula
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(Equation (4.16)). In the space form, M is first transformed by the most distal
joint, progressively moving inward to more proximal joints. Note that the fixed
space-frame representation of the screw axis for a more proximal joint is not
a↵ected by the joint displacement at a distal joint (e.g., joint 3’s displacement
does not a↵ect joint 2’s screw axis representation in the space frame). In the
body form, M is first transformed by the first joint, progressively moving out-
ward to more distal joints. The body-frame representation of the screw axis for
a more distal joint is not a↵ected by the joint displacement at a proximal joint
(e.g., joint 2’s displacement does not a↵ect joint 3’s screw axis representation
in the body frame.) Therefore, it makes sense that we need to determine the
screw axes only at the robot’s zero position: any Si is una↵ected by more distal
transformations, and any Bi is una↵ected by more proximal transformations.

Example 4.6 (6R spatial open chain). We now express the forward kinematics
of the 6R open chain of Figure 4.4 in the second form,

T (✓) = Me[B1]✓1e[B2]✓2 · · · e[B6]✓6 .

Assume the same fixed and end-e↵ector frames and zero position as found pre-
viously; M is still the same as in Equation (4.15), obtained as the end-e↵ector
frame as seen from the fixed frame with the chain in its zero position. The screw
axis for each joint axis, expressed with respect to the end-e↵ector frame in its
zero position, is given in the following table:

i !i vi

1 (0, 0, 1) (�3L, 0, 0)
2 (0, 1, 0) (0, 0, 0)
3 (�1, 0, 0) (0, 0,�3L)
4 (�1, 0, 0) (0, 0,�2L)
5 (�1, 0, 0) (0, 0,�L)
6 (0, 1, 0) (0, 0, 0)

Example 4.7 (Barrett Technology’s WAM 7R robot arm). Barrett Technol-
ogy’s WAM 7R robot arm is shown in Figure 4.8. The extra (seventh) joint
means that the robot is redundant for the task of positioning its end-e↵ector
frame in SE(3); in general, for a given end-e↵ector configuration in the robot’s
workspace, there is a one-dimensional set of joint variables in the robot’s seven-
dimensional joint space that achieves that configuration. This extra degree of
freedom can be used for obstacle avoidance or to optimize some objective func-
tion such as minimizing the motor power needed to hold the end-e↵ector at that
configuration.
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x̂b

ẑb

x̂s

ẑsL  = 550 mm1

L  = 60 mm3

L  = 300 mm2

Elbow J4

Shoulder
J1,J2,J3

Wrist
J5,J6,J7

W  = 45 mm1

Figure 4.8: Barrett Technology’s WAM 7R robot arm at its zero configuration (right).
At the zero configuration, axes 1, 3, 5, and 7 are along ẑs and axes 2, 4, and 6 are
aligned with ŷs out of the page. Positive rotations are given by the right-hand rule.
Axes 1, 2, and 3 intersect at the origin of {s} and axes 5, 6, and 7 intersect at a point
60mm from {b}. The zero configuration is singular, as discussed in Section 5.3.

Also, some joints of the WAM are driven by motors placed at the base of
the robot, reducing the robot’s moving mass. Torques are transferred from
the motors to the joints by cables winding around drums at the joints and
motors. Because the moving mass is reduced, the motor torque requirements
are decreased, allowing low (cable) gear ratios and high speeds. This design is
in contrast with that of the UR5, where the motor and harmonic drive gearing
for each joint are directly at the joint.

Figure 4.8 illustrates the WAM’s end-e↵ector frame screw axes B1, . . . , B7

when the robot is at its zero position. The end-e↵ector frame {b} in the zero
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position is given by

M =

2

664

1 0 0 0
0 1 0 0
0 0 1 L1 + L2 + L3

0 0 0 1

3

775 .

The screw axes Bi = (!i, vi) are listed in the following table:

i !i vi

1 (0, 0, 1) (0, 0, 0)
2 (0, 1, 0) (L1 + L2 + L3, 0, 0)
3 (0, 0, 1) (0, 0, 0)
4 (0, 1, 0) (L2 + L3, 0, W1)
5 (0, 0, 1) (0, 0, 0)
6 (0, 1, 0) (L3, 0, 0)
7 (0, 0, 1) (0, 0, 0)

Figure 4.9 shows the WAM arm with ✓2 = 45�, ✓4 = �45�, ✓6 = �90� and
all other joint angles equal to zero, giving

T (✓) = Me[B2]⇡/4e�[B4]⇡/4e�[B6]⇡/2 =

2

664

0 0 �1 0.3157
0 1 0 0
1 0 0 0.6571
0 0 0 1

3

775 .

4.2 The Universal Robot Description Format

The Universal Robot Description Format (URDF) is an XML (eXtensible
Markup Language) file format used by the Robot Operating System (ROS) to
describe the kinematics, inertial properties, and link geometry of robots. A
URDF file describes the joints and links of a robot:

• Joints. Joints connect two links: a parent link and a child link. A
few of the possible joint types include prismatic, revolute (including joint
limits), continuous (revolute without joint limits), and fixed (a virtual
joint that does not permit any motion). Each joint has an origin frame
that defines the position and orientation of the child link frame relative
to the parent link frame when the joint variable is zero. The origin is on
the joint’s axis. Each joint has an axis 3-vector, a unit vector expressed in
the child link’s frame, in the direction of positive rotation for a revolute
joint or positive translation for a prismatic joint.
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x̂b

ẑb

x̂s

ẑs

✓6 = �⇡/2

✓4 = �⇡/4

✓2 = ⇡/4

x̂b

ẑb

Figure 4.9: (Left) The WAM at its home configuration, with the axes of joints 2, 4,
and 6 indicated. (Right) The WAM at ✓ = (✓1, . . . , ✓7) = (0,⇡/4, 0,�⇡/4, 0,�⇡/2, 0).

• Links. While the joints fully describe the kinematics of a robot, the links
define its mass properties. These start to be needed in Chapter 8, when
we begin to study the dynamics of robots. The elements of a link include
its mass; an origin frame that defines the position and orientation of a
frame at the link’s center of mass relative to the link’s joint frame described
above; and an inertia matrix, relative to the link’s center of mass frame,
specified by the six elements on or above the diagonal. (As we will see
in Chapter 8, the inertia matrix for a rigid body is a 3 ⇥ 3 symmetric
positive-definite matrix. Since the inertia matrix is symmetric, it is only
necessary to define the terms on and above the diagonal.)

Note that most links have two frames rigidly attached: a first frame at the joint
(defined by the joint element that connects the link to its parent) and a second
frame at the link’s center of mass (defined by the link element).

A URDF file can represent any robot with a tree structure. This includes
serial-chain robot arms and robot hands, but not a Stewart platform or other
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base link, 
L0

J1 L1

J2
J3

J4

J5

L2

L3 L4

L5

L1

L5

L2

L3

L4

L0

J1

J2

J3

J4

J5

parent: J1’s parent link, L0
child:  J1’s child link, L1
origin: the x–y–z and roll–pitch–yaw coords 

of the L1 frame relative to the
L0 frame when J1 is zero

axis:   the x–y–z unit vector along the
rotation axis in the L1 frame

mass:    L5’s mass
origin:  the x–y–z and roll–pitch–yaw coords

of a frame at the center of
mass of L5, relative to the L5 frame

inertia: six unique entries of inertia
matrix in the origin frame

Figure 4.10: A five-link robot represented as a tree, where the nodes of the tree are
the links and the edges of the tree are the joints.

mechanisms with closed loops. An example of a robot with a tree structure is
shown in Figure 4.10.

The orientation of a frame {b} relative to a frame {a} is represented using
roll–pitch–yaw coordinates: first, a roll about the fixed x̂a-axis; then a pitch
about the fixed ŷa-axis; then a yaw about the fixed ẑa-axis.

The kinematics and mass properties of the UR5 robot arm (Figure 4.11) are
defined in the URDF file below, which demonstrates the syntax of the joint’s
elements (parent, child, origin, and axis) and the link’s elements (mass,
origin, and inertia). A URDF requires a frame defined at every joint, so we
define frames {1} to {6} in addition to the fixed base frame {0} (i.e., {s}) and
the end-e↵ector frame {7} (i.e., {b}). Figure 4.11 gives the extra information
needed to fully write the URDF.

Although the joint types in the URDF are defined as “continuous,” the UR5
joints do in fact have joint limits; they are omitted here for simplicity. The mass
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{1}

{2}

{3}

{4}
{5}

{6}

{s}

{b}

{b}

{1}

{2}

{4}{5}

{6}

{s}

{3}

x̂

ŷ

ẑ

ŷ

x̂
ŷ ŷ

x̂

89.159 mm
+z

135
.85

 m
m +y

425 m
m
 +x

119.7
 mm

�y

392.25 mm +x

93 mm

  +y

94.65 mm
      �z

82.3 m
m

    +y

Figure 4.11: The orientations of the frames {s} (also called {0}), {b} (also called
{7}), and {1} through {6} are illustrated on the translucent UR5. The frames {s}
and {1} are aligned with each other; frames {2} and {3} are aligned with each other;
and frames {4}, {5}, and {6} are aligned with each other. Therefore, only the axes
of frames {s}, {2}, {4}, and {b} are labeled. Just below the image of the robot is a
skeleton indicating how the frames are o↵set from each other, including distances and
directions (expressed in the {s} frame).

and inertial properties listed here are not exact.

The UR5 URDF file (kinematics and inertial properties only).

<?xml version="1.0" ?>

<robot name="ur5">

<!-- ********** KINEMATIC PROPERTIES (JOINTS) ********** -->

<joint name="world_joint" type="fixed">

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

154 4.2. The Universal Robot Description Format

<parent link="world"/>

<child link="base_link"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0"/>

</joint>

<joint name="joint1" type="continuous">

<parent link="base_link"/>

<child link="link1"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.089159"/>

<axis xyz="0 0 1"/>

</joint>

<joint name="joint2" type="continuous">

<parent link="link1"/>

<child link="link2"/>

<origin rpy="0.0 1.570796325 0.0" xyz="0.0 0.13585 0.0"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="joint3" type="continuous">

<parent link="link2"/>

<child link="link3"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 -0.1197 0.425"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="joint4" type="continuous">

<parent link="link3"/>

<child link="link4"/>

<origin rpy="0.0 1.570796325 0.0" xyz="0.0 0.0 0.39225"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="joint5" type="continuous">

<parent link="link4"/>

<child link="link5"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.093 0.0"/>

<axis xyz="0 0 1"/>

</joint>

<joint name="joint6" type="continuous">

<parent link="link5"/>

<child link="link6"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.09465"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="ee_joint" type="fixed">

<origin rpy="-1.570796325 0 0" xyz="0 0.0823 0"/>

<parent link="link6"/>

<child link="ee_link"/>

</joint>

<!-- ********** INERTIAL PROPERTIES (LINKS) ********** -->

<link name="world"/>

<link name="base_link">

<inertial>
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<mass value="4.0"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.00443333156" ixy="0.0" ixz="0.0"

iyy="0.00443333156" iyz="0.0" izz="0.0072"/>

</inertial>

</link>

<link name="link1">

<inertial>

<mass value="3.7"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.010267495893" ixy="0.0" ixz="0.0"

iyy="0.010267495893" iyz="0.0" izz="0.00666"/>

</inertial>

</link>

<link name="link2">

<inertial>

<mass value="8.393"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.28"/>

<inertia ixx="0.22689067591" ixy="0.0" ixz="0.0"

iyy="0.22689067591" iyz="0.0" izz="0.0151074"/>

</inertial>

</link>

<link name="link3">

<inertial>

<mass value="2.275"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.25"/>

<inertia ixx="0.049443313556" ixy="0.0" ixz="0.0"

iyy="0.049443313556" iyz="0.0" izz="0.004095"/>

</inertial>

</link>

<link name="link4">

<inertial>

<mass value="1.219"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.111172755531" ixy="0.0" ixz="0.0"

iyy="0.111172755531" iyz="0.0" izz="0.21942"/>

</inertial>

</link>

<link name="link5">

<inertial>

<mass value="1.219"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.111172755531" ixy="0.0" ixz="0.0"

iyy="0.111172755531" iyz="0.0" izz="0.21942"/>

</inertial>

</link>

<link name="link6">

<inertial>

<mass value="0.1879"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>
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<inertia ixx="0.0171364731454" ixy="0.0" ixz="0.0"

iyy="0.0171364731454" iyz="0.0" izz="0.033822"/>

</inertial>

</link>

<link name="ee_link"/>

</robot>

Beyond the properties described above, a URDF can describe other proper-
ties of a robot, such as its visual appearance (including geometric models of the
links) as well as simplified representations of link geometries that can be used
for collision detection in motion planning algorithms.

4.3 Summary

• Given an open chain with a fixed reference frame {s} and a reference
frame {b} attached to some point on its last link – this frame is denoted
the end-e↵ector frame – the forward kinematics is the mapping T (✓) from
the joint values ✓ to the position and orientation of {b} in {s}.

• In the Denavit–Hartenberg representation the forward kinematics of an
open chain is described in terms of the relative displacements between
reference frames attached to each link. If the link frames are sequentially
labeled {0}, . . . , {n + 1}, where {0} is the fixed frame {s}, {i} is a frame
attached to link i at joint i (with i = 1, . . . , n), and {n + 1} is the end-
e↵ector frame {b} then the forward kinematics is expressed as

T0,n+1(✓) = T01(✓1) · · · Tn�1,n(✓n)Tn,n+1

where ✓i denotes the joint i variable and Tn,n+1 indicates the (fixed) con-
figuration of the end-e↵ector frame in {n}. If the end-e↵ector frame {b}
is chosen to be coincident with {n} then we can dispense with the frame
{n + 1}.

• The Denavit–Hartenberg convention requires that reference frames as-
signed to each link obey a strict convention (see Appendix C). Follow-
ing this convention, the link frame transformation Ti�1,i between link
frames {i � 1} and {i} can be parametrized using only four parameters,
the Denavit–Hartenberg parameters. Three of these parameters describe
the kinematic structure, while the fourth is the joint value. Four numbers
is the minimum needed to represent the displacement between two link
frames.
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• The forward kinematics can also be expressed as the following product of
exponentials (the space form),

T (✓) = e[S1]✓1 · · · e[Sn]✓nM,

where Si = (!i, vi) denotes the screw axis associated with positive motion
along joint i expressed in fixed-frame {s} coordinates, ✓i is the joint-i
variable, and M 2 SE(3) denotes the position and orientation of the end-
e↵ector frame {b} when the robot is in its zero position. It is not necessary
to define individual link frames; it is only necessary to define M and the
screw axes S1, . . . , Sn.

• The product of exponentials formula can also be written in the equivalent
body form,

T (✓) = Me[B1]✓1 · · · e[Bn]✓n ,

where Bi = [AdM�1 ]Si, i = 1, . . . , n; Bi = (!i, vi) is the screw axis cor-
responding to joint axis i, expressed in {b}, with the robot in its zero
position.

• The Universal Robot Description Format (URDF) is a file format used
by the Robot Operating System and other software for representing the
kinematics, inertial properties, visual properties, and other information
for general tree-like robot mechanisms, including serial chains. A URDF
file includes descriptions of joints, which connect a parent link and a child
link and fully specify the kinematics of the robot, as well as descriptions
of links, which specify its inertial properties.

4.4 Software

Software functions associated with this chapter are listed in MATLAB format
below.

T = FKinBody(M,Blist,thetalist)
Computes the end-e↵ector frame given the zero position of the end-e↵ector M,
the list of joint screws Blist expressed in the end-e↵ector frame, and the list of
joint values thetalist.

T = FKinSpace(M,Slist,thetalist)
Computes the end-e↵ector frame given the zero position of the end-e↵ector M,
the list of joint screws Slist expressed in the fixed-space frame, and the list of
joint values thetalist.
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4.5 Notes and References

The literature on robot kinematics is quite extensive, and with very few excep-
tions most approaches are based on the Denavit–Hartenberg (D–H) parameters
originally presented in [34] and summarized in Appendix C. Our approach is
based on the Product of Exponentials (PoE) formula first presented by Brockett
in [20]. Computational aspects of the PoE formula are discussed in [132].

Appendix C also elucidates in some detail the many advantages of the PoE
formula over the D–H parameters, e.g., the elimination of link reference frames,
the uniform treatment of revolute and prismatic joints, and the intuitive geo-
metric interpretation of the joint axes as screws. These advantages more than
o↵set the lone advantage of the D–H parameters, namely that they constitute
a minimal set. Moreover, it should be noted that when using D–H parameters,
there are di↵ering conventions for assigning link frames, e.g., some methods
align the joint axis with the x̂-axis rather than the ẑ-axis of the link frame as we
have done. Both the link frames and the accompanying D–H parameters need
to be specified together in order to have a complete description of the robot’s
forward kinematics.

In summary, unless using a minimal set of parameters to represent a joint’s
spatial motion is critical, there is no compelling reason to prefer the D–H pa-
rameters over the PoE formula. In the next chapter, an even stronger case can
be made for preferring the PoE formula to model the forward kinematics.

4.6 Exercises

Exercise 4.1 Familiarize yourself with the functions FKinBody and FKinSpace
in your favorite programming language. Can you make these functions more
computationally e�cient? If so, indicate how. If not, explain why not.

Exercise 4.2 The RRRP SCARA robot of Figure 4.12 is shown in its zero
position. Determine the end-e↵ector zero position configuration M , the screw
axes Si in {0}, and the screw axes Bi in {b}. For `0 = `1 = `2 = 1 and the joint
variable values ✓ = (0,⇡/2,�⇡/2, 1), use both the FKinSpace and the FKinBody
functions to find the end-e↵ector configuration T 2 SE(3). Confirm that they
agree with each other.

Exercise 4.3 Determine the end-e↵ector frame screw axes Bi for the 3R robot
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✓1
✓2 ✓3

✓4

{0}
{b}

x̂0

ŷ0

ẑ0
x̂b

ŷb

ẑb

`1 `2

`0

Figure 4.12: An RRRP SCARA robot for performing pick-and-place operations.

in Figure 4.3.

Exercise 4.4 Determine the end-e↵ector frame screw axes Bi for the RRPRRR
robot in Figure 4.5.

Exercise 4.5 Determine the end-e↵ector frame screw axes Bi for the UR5
robot in Figure 4.6.

Exercise 4.6 Determine the space frame screw axes Si for the WAM robot in
Figure 4.8.

Exercise 4.7 The PRRRRR spatial open chain of Figure 4.13 is shown in its
zero position. Determine the end-e↵ector zero position configuration M , the
screw axes Si in {0}, and the screw axes Bi in {b}.

Exercise 4.8 The spatial RRRRPR open chain of Figure 4.14 is shown in its
zero position, with fixed and end-e↵ector frames chosen as indicated. Determine
the end-e↵ector zero position configuration M , the screw axes Si in {0}, and
the screw axes Bi in {b}.
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Figure 4.13: A PRRRRR spatial open chain at its zero configuration.
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x̂b
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ẑb

Figure 4.14: A spatial RRRRPR open chain.

Exercise 4.9 The spatial RRPPRR open chain of Figure 4.15 is shown in its
zero position. Determine the end-e↵ector zero position configuration M , the
screw axes Si in {0}, and the screw axes Bi in {b}.

Exercise 4.10 The URRPR spatial open chain of Figure 4.16 is shown in its
zero position. Determine the end-e↵ector zero position configuration M , the
screw axes Si in {0}, and the screw axes Bi in {b}.

Exercise 4.11 The spatial RPRRR open chain of Figure 4.17 is shown in its
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ẑb

Figure 4.15: A spatial RRPPRR open chain with prescribed fixed and end-e↵ector
frames.

zero position. Determine the end-e↵ector zero position configuration M , the
screw axes Si in {0}, and the screw axes Bi in {b}.

Exercise 4.12 The RRPRRR spatial open chain of Figure 4.18 is shown in
its zero position (all joints lie on the same plane). Determine the end-e↵ector
zero position configuration M , the screw axes Si in {0}, and the screw axes Bi

in {b}. Setting ✓5 = ⇡ and all other joint variables to zero, find T06 and T60.

Exercise 4.13 The spatial RRRPRR open chain of Figure 4.19 is shown in
its zero position. Determine the end-e↵ector zero position configuration M , the
screw axes Si in {0}, and the screw axes Bi in {b}.

Exercise 4.14 The RPH robot of Figure 4.20 is shown in its zero position.
Determine the end-e↵ector zero position configuration M , the screw axes Si in
{s}, and the screw axes Bi in {b}. Use both the FKinSpace and the FKinBody
functions to find the end-e↵ector configuration T 2 SE(3) when ✓ = (⇡/2, 3,⇡).
Confirm that the results agree.

Exercise 4.15 The HRR robot in Figure 4.21 is shown in its zero position.
Determine the end-e↵ector zero position configuration M , the screw axes Si in
{0}, and the screw axes Bi in {b}.

Exercise 4.16 The forward kinematics of a four-dof open chain in its zero
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Figure 4.16: A URRPR spatial open-chain robot.

position is written in the following exponential form:

T (✓) = e[A1]✓1e[A2]✓2Me[A3]✓3e[A4]✓4 .

Suppose that the manipulator’s zero position is redefined as follows:

(✓1, ✓2, ✓3, ✓4) = (↵1,↵2,↵3,↵4).

Defining ✓0i = ✓i � ↵i, i = 1, . . . , 4, the forward kinematics can then be written

T04(✓
0
1, ✓

0
2, ✓

0
3, ✓

0
4) = e[A

0
1]✓

0
1e[A

0
2]✓

0
2M 0e[A

0
3]✓

0
3e[A

0
4]✓

0
4 .

Find M 0 and each of the A0
i.

Exercise 4.17 Figure 4.22 shows a snake robot with end-e↵ectors at each end.
Reference frames {b1} and {b2} are attached to the two end-e↵ectors, as shown.
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Figure 4.17: An RPRRR spatial open chain.
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Figure 4.18: An RRPRRR spatial open chain.

(a) Suppose that end-e↵ector 1 is grasping a tree (which can be thought of
as “ground”) and end-e↵ector 2 is free to move. Assume that the robot
is in its zero configuration. Then Tb1b2 2 SE(3) can be expressed in the
following product of exponentials form:

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

Find S3, S5, and M .
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Figure 4.19: A spatial RRRPRR open chain with prescribed fixed and end-e↵ector
frames.

 

x̂b

ŷb

ẑb

ẑs

x̂s

ŷs

{s}
{b}

L1

L0

L2

L3

✓1
✓2

✓3
pitch h = 0.1 m/rad

Figure 4.20: An RPH open chain shown at its zero position. All arrows along/about
the joint axes are drawn in the positive direction (i.e., in the direction of increasing
joint value). The pitch of the screw joint is 0.1 m/rad, i.e., it advances linearly by
0.1 m for every radian rotated. The link lengths are L0 = 4, L1 = 3, L2 = 2, and
L3 = 1 (figure not drawn to scale).

(b) Now suppose that end-e↵ector 2 is rigidly grasping a tree and end-e↵ector
1 is free to move. Then Tb2b1 2 SE(3) can be expressed in the following
product of exponentials form:

Tb2b1 = e[A5]✓5e[A4]✓4e[A3]✓3Ne[A2]✓2e[A1]✓1 .

Find A2, A4, and N .

Exercise 4.18 The two identical PUPR open chains of Figure 4.23 are shown
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ẑ0

x̂b ŷb
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ŷ0
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✓1
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Figure 4.21: HRR robot. The pitch of the screw joint is denoted by h.

in their zero position.
(a) In terms of the given fixed frame {A} and end-e↵ector frame {a}, the

forward kinematics for the robot on the left (robot A) can be expressed
in the following product of exponentials form:

TAa = e[S1]✓1e[S2]✓2 · · · e[S5]✓5Ma.

Find S2 and S4.
(b) Suppose that the end-e↵ector of robot A is inserted into the end-e↵ector

of robot B in such a way that the origins of the end-e↵ectors coincide; the
two robots then form a single-loop closed chain. Then the configuration
space of the single-loop closed chain can be expressed in the form

M = e�[B5]�5e�[B4]�4e�[B3]�3e�[B2]�2e�[B1]�1e[S1]✓1e[S2]✓2e[S3]✓3e[S4]✓4e[S5]✓5

for some constant M 2 SE(3) and Bi = (!i, vi), for i = 1, . . . , 5. Find B3,
B5, and M . (Hint: Given any A 2 Rn⇥n, (eA)�1 = e�A).

Exercise 4.19 The RRPRR spatial open chain of Figure 4.24 is shown in its
zero position.
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Figure 4.22: Snake robot.

(a) The forward kinematics can be expressed in the form

Tsb = M1e
[A1]✓1M2e

[A2]✓2 · · · M5e
[A5]✓5 .

Find M2, M3, A2, and A3. (Hint: Appendix C may be helpful.)
(b) Expressing the forward kinematics in the form

Tsb = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M,

find M and S1, . . . , S5 in terms of the quantities M1, . . . , M5, A1, . . . , A5

appearing in (a).

Exercise 4.20 The spatial PRRPRR open chain of Figure 4.25 is shown in its
zero position, with space and end-e↵ector frames chosen as indicated. Derive
its forward kinematics in the form

T0n = e[S1]✓1e[S2]✓2e[S3]✓3e[S4]✓4e[S5]✓5Me[S6]✓6 ,
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ẑA

x̂B

ŷB
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ŷb

ẑb
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Figure 4.23: Two PUPR open chains.

where M 2 SE(3).

Exercise 4.21 (Refer to Appendix C.) For each T 2 SE(3) below, find, if
they exist, values for the four parameters (↵, a, d,�) that satisfy

T = Rot(x̂,↵) Trans(x̂, a) Trans(ẑ, d) Rot(ẑ,�).

(a) T =

2

664

0 1 1 3
1 0 0 0
0 1 0 1
0 0 0 1

3

775.

(b) T =

2

664

cos� sin� 0 1
sin� � cos� 0 0

0 0 �1 �2
0 0 0 1

3

775.

(c) T =

2

664

0 �1 0 �1
0 0 �1 0
1 0 0 2
0 0 0 1

3

775.
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Figure 4.24: A spatial RRPRR open chain.
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Figure 4.25: A spatial PRRPRR open chain.
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Chapter 5

Velocity Kinematics and
Statics

In the previous chapter we saw how to calculate the robot end-e↵ector frame’s
position and orientation for a given set of joint positions. In this chapter we
examine the related problem of calculating the twist of the end-e↵ector of an
open chain from a given set of joint positions and velocities.

Before we reach the representation of the end-e↵ector twist as V 2 R6, start-
ing in Section 5.1, let us consider the case where the end-e↵ector configuration
is represented by a minimal set of coordinates x 2 Rm and the velocity is given
by ẋ = dx/dt 2 Rm. In this case, the forward kinematics can be written as

x(t) = f(✓(t)),

where ✓ 2 Rn is a set of joint variables. By the chain rule, the time derivative
at time t is

ẋ =
@f(✓)

@✓

d✓(t)

dt
=
@f(✓)

@✓
✓̇

= J(✓)✓̇,

where J(✓) 2 Rm⇥n is called the Jacobian. The Jacobian matrix represents
the linear sensitivity of the end-e↵ector velocity ẋ to the joint velocity ✓̇, and it
is a function of the joint variables ✓.

To provide a concrete example, consider a 2R planar open chain (left-hand

169

170

x̂1

x̂2

L1

L2

✓1

✓2

J1(✓)

�J1(✓)

J2(✓)

�J2(✓)

Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian
correspond to the endpoint velocity when ✓̇1 = 1 (and ✓̇2 = 0) and when ✓̇2 = 1 (and
✓̇1 = 0), respectively.

side of Figure 5.1) with forward kinematics given by

x1 = L1 cos ✓1 + L2 cos(✓1 + ✓2)

x2 = L1 sin ✓1 + L2 sin(✓1 + ✓2).

Di↵erentiating both sides with respect to time yields

ẋ1 = �L1✓̇1 sin ✓1 � L2(✓̇1 + ✓̇2) sin(✓1 + ✓2)

ẋ2 = L1✓̇1 cos ✓1 + L2(✓̇1 + ✓̇2) cos(✓1 + ✓2),

which can be rearranged into an equation of the form ẋ = J(✓)✓̇:


ẋ1

ẋ2

�
=


�L1 sin ✓1 � L2 sin(✓1 + ✓2) �L2 sin(✓1 + ✓2)
L1 cos ✓1 + L2 cos(✓1 + ✓2) L2 cos(✓1 + ✓2)

� 
✓̇1
✓̇2

�
. (5.1)

Writing the two columns of J(✓) as J1(✓) and J2(✓), and the tip velocity ẋ as
vtip, Equation (5.1) becomes

vtip = J1(✓)✓̇1 + J2(✓)✓̇2. (5.2)

As long as J1(✓) and J2(✓) are not collinear, it is possible to generate a tip
velocity vtip in any arbitrary direction in the x1–x2-plane by choosing appropri-
ate joint velocities ✓̇1 and ✓̇2. Since J1(✓) and J2(✓) depend on the joint values
✓1 and ✓2, one may ask whether there are any configurations at which J1(✓)
and J2(✓) become collinear. For our example the answer is yes: if ✓2 is 0� or
180� then, regardless of the value of ✓1, J1(✓) and J2(✓) will be collinear and
the Jacobian J(✓) becomes a singular matrix. Such configurations are therefore
called singularities; they are characterized by a situation where the robot tip
is unable to generate velocities in certain directions.
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✓̇2

ẋ1

ẋ2

J(✓)
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Figure 5.2: Mapping the set of possible joint velocities, represented as a square in the
✓̇1–✓̇2 space, through the Jacobian to find the parallelogram of possible end-e↵ector
velocities. The extreme points A, B, C, and D in the joint velocity space map to the
extreme points A, B, C, and D in the end-e↵ector velocity space.

Now let’s substitute L1 = L2 = 1 and consider the robot at two di↵erent
nonsingular postures: ✓ = (0,⇡/4) and ✓ = (0, 3⇡/4). The Jacobians J(✓) at
these two configurations are

J

✓
0
⇡/4

�◆
=


�0.71 �0.71
1.71 0.71

�
and J

✓
0

3⇡/4

�◆
=


�0.71 �0.71
0.29 �0.71

�
.

The right-hand side of Figure 5.1 illustrates the robot at the ✓2 = ⇡/4 configu-
ration. Column i of the Jacobian matrix, Ji(✓), corresponds to the tip velocity
when ✓̇i = 1 and the other joint velocity is zero. These tip velocities (and
therefore columns of the Jacobian) are indicated in Figure 5.1.

The Jacobian can be used to map bounds on the rotational speed of the joints
to bounds on vtip, as illustrated in Figure 5.2. Rather than mapping a polygon
of joint velocities through the Jacobian as in Figure 5.2, we could instead map
a unit circle of joint velocities in the ✓1–✓2-plane. This circle represents an
“iso-e↵ort” contour in the joint velocity space, where total actuator e↵ort is
considered to be the sum of squares of the joint velocities. This circle maps
through the Jacobian to an ellipse in the space of tip velocities, and this ellipse
is referred to as the manipulability ellipsoid.1 Figure 5.3 shows examples of
this mapping for the two di↵erent postures of the 2R arm. As the manipulator
configuration approaches a singularity, the ellipse collapses to a line segment,
since the ability of the tip to move in one direction is lost.

1
A two-dimensional ellipsoid, as in our example, is commonly referred to as an ellipse.
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✓̇1
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ẋ1

ẋ2

ẋ1

ẋ2
J(✓)

Figure 5.3: Manipulability ellipsoids for two di↵erent postures of the 2R planar open
chain.

Using the manipulability ellipsoid one can quantify how close a given posture
is to a singularity. For example, we can compare the lengths of the major and
minor principal semi-axes of the manipulability ellipsoid, respectively denoted
`max and `min. The closer the ellipsoid is to a circle, i.e., the closer the ratio
`max/`min is to 1, the more easily can the tip move in arbitrary directions and
thus the more removed it is from a singularity.

The Jacobian also plays a central role in static analysis. Suppose that an
external force is applied to the robot tip. What are the joint torques required
to resist this external force?

This question can be answered via a conservation of power argument. As-
suming that negligible power is used to move the robot, the power measured at
the robot’s tip must equal the power generated at the joints. Denoting the tip
force vector generated by the robot as ftip and the joint torque vector by ⌧ , the
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T

Figure 5.4: Mapping joint torque bounds to tip force bounds.

conservation of power then requires that

fT
tipvtip = ⌧T✓̇,

for all arbitrary joint velocities ✓̇. Since vtip = J(✓)✓̇, the equality

fT
tipJ(✓)✓̇ = ⌧T✓̇

must hold for all possible ✓̇.2 This can only be true if

⌧ = JT(✓)ftip. (5.3)

The joint torque ⌧ needed to create the tip force ftip is calculated from the
equation above.

For our two-link planar chain example, J(✓) is a square matrix dependent
on ✓. If the configuration ✓ is not a singularity then both J(✓) and its transpose
are invertible, and Equation (5.3) can be written

ftip = ((J(✓))T)�1⌧ = J�T(✓)⌧. (5.4)

Using the equation above one can now determine, under the same static equi-
librium assumption, what input torques are needed to generate a desired tip
force, e.g., the joint torques needed for the robot tip to push against a wall with

2
Since the robot is at equilibrium, the joint velocity ✓̇ is technically zero. This can be

considered the limiting case as ✓̇ approaches zero. To be more formal, we could invoke the

“principle of virtual work,” which deals with infinitesimal joint displacements instead of joint

velocities.
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Figure 5.5: Force ellipsoids for two di↵erent postures of the 2R planar open chain.

a specified normal force. For a given posture ✓ of the robot at equilibrium and
a set of joint torque limits such as

�1 Nm ⌧1  1 Nm,

�1 Nm ⌧2  1 Nm,

then Equation (5.4) can be used to generate the set of all possible tip forces as
indicated in Figure 5.4.

As for the manipulability ellipsoid, a force ellipsoid can be drawn by map-
ping a unit circle “iso-e↵ort” contour in the ⌧1–⌧2-plane to an ellipsoid in the
f1–f2 tip-force plane via the Jacobian transpose inverse J�T(✓) (see Figure 5.5).
The force ellipsoid illustrates how easily the robot can generate forces in dif-
ferent directions. As is evident from the manipulability and force ellipsoids, if
it is easy to generate a tip velocity in a given direction then it is di�cult to
generate a force in that same direction, and vice versa (Figure 5.6). In fact, for
a given robot configuration, the principal axes of the manipulability ellipsoid
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ẋ1

ẋ2

f1
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ẋ1

ẋ2

f1

f2

Figure 5.6: Left-hand column: Manipulability ellipsoids at two di↵erent arm configu-
rations. Right-hand column: The force ellipsoids for the same two arm configurations.

and force ellipsoid are aligned, and the lengths of the principal semi-axes of the
force ellipsoid are the reciprocals of the lengths of the principal semi-axes of the
manipulability ellipsoid.

At a singularity, the manipulability ellipsoid collapses to a line segment.
The force ellipsoid, on the other hand, becomes infinitely long in a direction
orthogonal to the manipulability ellipsoid line segment (i.e., the direction of the
aligned links) and skinny in the orthogonal direction. Consider, for example,
carrying a heavy suitcase with your arm. It is much easier if your arm hangs
straight down under gravity (with your elbow fully straightened at a singularity),
because the force you must support passes directly through your joints, therefore
requiring no torques about the joints. Only the joint structure bears the load,
not the muscles generating torques. The manipulability ellipsoid loses dimension
at a singularity and therefore its area drops to zero, but the force ellipsoid’s area
goes to infinity (assuming that the joints can support the load!).

In this chapter we present methods for deriving the Jacobian for general open
chains, where the configuration of the end-e↵ector is expressed as T 2 SE(3)
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and its velocity is expressed as a twist V in the fixed base frame or the end-
e↵ector body frame. We also examine how the Jacobian can be used for velocity
and static analysis, including identifying kinematic singularities and determining
the manipulability and force ellipsoids. Later chapters on inverse kinematics,
motion planning, dynamics, and control make extensive use of the Jacobian and
related notions introduced in this chapter.

5.1 Manipulator Jacobian

In the 2R planar open chain example, we saw that, for any joint configuration
✓, the tip velocity vector vtip and joint velocity vector ✓̇ are linearly related
via the Jacobian matrix J(✓), i.e., vtip = J(✓)✓̇. The tip velocity vtip depends
on the coordinates of interest for the tip, which in turn determine the specific
form of the Jacobian. For example, in the most general case vtip can be taken
to be a six-dimensional twist, while, for pure orienting devices such as a wrist,
vtip is usually taken to be the angular velocity of the end-e↵ector frame. Other
choices for vtip lead to di↵erent formulations for the Jacobian. We begin with
the general case where vtip is taken to be a six-dimensional twist V.

All the derivations below are mathematical expressions of the same simple
idea, embodied in Equation (5.2): given the configuration ✓ of the robot, the
6-vector Ji(✓), which is column i of J(✓), is the twist V when ✓̇i = 1 and all
other joint velocities are zero. This twist is determined in the same way as the
joint screw axes were determined in the previous chapter, using a point qi on
joint axis i for revolute joints. The only di↵erence is that the screw axes of the
Jacobian depend on the joint variables ✓ whereas the screw axes for the forward
kinematics of Chapter 4 were always for the case ✓ = 0.

The two standard types of Jacobian that we will consider are: the space
Jacobian Js(✓) satisfying Vs = Js(✓)✓̇, where each column Jsi(✓) corresponds
to a screw axis expressed in the fixed space frame {s}; and the body Jacobian
Jb(✓) satisfying Vb = Jb(✓)✓̇, where each column Jbi(✓) corresponds to a screw
axis expressed in the end-e↵ector frame {b}. We start with the space Jacobian.

5.1.1 Space Jacobian

In this section we derive the relationship between an open chain’s joint velocity
vector ✓̇ and the end-e↵ector’s spatial twist Vs. We first recall a few basic prop-
erties from linear algebra and linear di↵erential equations: (i) if A, B 2 Rn⇥n are
both invertible then (AB)�1 = B�1A�1; (ii) if A 2 Rn⇥n is constant and ✓(t)
is a scalar function of t then d(eA✓)/dt = AeA✓ ✓̇ = eA✓A✓̇; (iii) (eA✓)�1 = e�A✓.
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Consider an n-link open chain whose forward kinematics is expressed in the
following product of exponentials form:

T (✓1, . . . , ✓n) = e[S1]✓1e[S2]✓2 · · · e[Sn]✓nM. (5.5)

The spatial twist Vs is given by [Vs] = Ṫ T�1, where

Ṫ =

✓
d

dt
e[S1]✓1

◆
· · · e[Sn]✓nM + e[S1]✓1

✓
d

dt
e[S2]✓2

◆
· · · e[Sn]✓nM + · · ·

= [S1]✓̇1e
[S1]✓1 · · · e[Sn]✓nM + e[S1]✓1 [S2]✓̇2e

[S2]✓2 · · · e[Sn]✓nM + · · ·

Also,
T�1 = M�1e�[Sn]✓n · · · e�[S1]✓1 .

Calculating Ṫ T�1 we obtain

[Vs] = [S1]✓̇1 + e[S1]✓1 [S2]e
�[S1]✓1 ✓̇2 + e[S1]✓1e[S2]✓2 [S3]e

�[S2]✓2e�[S1]✓1 ✓̇3 + · · · .

The above can also be expressed in vector form by means of the adjoint mapping:

Vs = S1|{z}
Js1

✓̇1 + Ade[S1]✓1 (S2)| {z }
Js2

✓̇2 + Ade[S1]✓1e[S2]✓2 (S3)| {z }
Js3

✓̇3 + · · · (5.6)

Observe that Vs is a sum of n spatial twists of the form

Vs = Js1✓̇1 + Js2(✓)✓̇2 + · · · + Jsn(✓)✓̇n, (5.7)

where each Jsi(✓) = (!si(✓), vsi(✓)) depends explictly on the joint values ✓ 2 Rn

for i = 2, . . . , n. In matrix form,

Vs =
⇥

Js1 Js2(✓) · · · Jsn(✓)
⇤
2

64
✓̇1
...
✓̇n

3

75

= Js(✓)✓̇.

(5.8)

The matrix Js(✓) is said to be the Jacobian in fixed (space) frame coordinates,
or more simply the space Jacobian.

Definition 5.1. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = e[S1]✓1 · · · e[Sn]✓nM. (5.9)
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The space Jacobian Js(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn to the
spatial twist Vs via

Vs = Js(✓)✓̇. (5.10)

The ith column of Js(✓) is

Jsi(✓) = Ade[S1]✓1 ···e[Si�1]✓i�1 (Si), (5.11)

for i = 2, . . . , n, with the first column Js1 = S1.

To understand the physical meaning behind the columns of Js(✓), observe
that the ith column is of the form AdTi�1(Si), where Ti�1 = e[S1]✓1 · · · e[Si�1]✓i�1 ;
recall that Si is the screw axis describing the ith joint axis in terms of the fixed
frame with the robot in its zero position. AdTi�1(Si) is therefore the screw
axis describing the ith joint axis after it undergoes the rigid body displacement
Ti�1. Physically this is the same as moving the first i� 1 joints from their zero
position to the current values ✓1, . . . , ✓i�1. Therefore, the ith column Jsi(✓) of
Js(✓) is simply the screw vector describing joint axis i, expressed in fixed-frame
coordinates, as a function of the joint variables ✓1, . . . , ✓i�1.

In summary, the procedure for determining the columns Jsi of Js(✓) is similar
to the procedure for deriving the joint screws Si in the product of exponentials
formula e[S1]✓1 · · · e[Sn]✓nM : each column Jsi(✓) is the screw vector describing
joint axis i, expressed in fixed-frame coordinates, but for arbitrary ✓ rather than
✓ = 0.

Example 5.2 (Space Jacobian for a spatial RRRP chain). We now illustrate
the procedure for finding the space Jacobian for the spatial RRRP chain of
Figure 5.7. Denote the ith column of Js(✓) by Jsi = (!si, vsi). The [AdTi�1 ]
matrices are implicit in our calculations of the screw axes of the displaced joint
axes.

• Observe that !s1 is constant and in the ẑs-direction: !s1 = (0, 0, 1).
Choosing q1 as the origin, vs1 = (0, 0, 0).

• !s2 is also constant in the ẑs-direction, so !s2 = (0, 0, 1). Choose q2 as
the point (L1c1, L1s1, 0), where c1 = cos ✓1, s1 = sin ✓1. Then vs2 =
�!2 ⇥ q2 = (L1s1,�L1c1, 0).

• The direction of !s3 is always fixed in the ẑs-direction regardless of the
values of ✓1 and ✓2, so !s3 = (0, 0, 1). Choosing q3 = (L1c1+L2c12, L1s1+
L2s12, 0), where c12 = cos(✓1 + ✓2), s12 = sin(✓1 + ✓2), it follows that
vs3 = (L1s1 + L2s12,�L1c1 � L2c12, 0).
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Figure 5.7: Space Jacobian for a spatial RRRP chain.

• Since the final joint is prismatic, !s4 = (0, 0, 0), and the joint-axis direction
is given by vs4 = (0, 0, 1).

The space Jacobian is therefore

Js(✓) =

2

6666664

0 0 0 0
0 0 0 0
1 1 1 0
0 L1s1 L1s1 + L2s12 0
0 �L1c1 �L1c1 � L2c12 0
0 0 0 1

3

7777775
.

Example 5.3 (Space Jacobian for a spatial RRPRRR chain). We now derive
the space Jacobian for the spatial RRPRRR chain of Figure 5.8. The base frame
is chosen as shown in the figure.

• The first joint axis is in the direction !s1 = (0, 0, 1). Choosing q1 =
(0, 0, L1), we get vs1 = �!1 ⇥ q1 = (0, 0, 0).

• The second joint axis is in the direction !s2 = (�c1,�s1, 0). Choosing
q2 = (0, 0, L1), we get vs2 = �!2 ⇥ q2 = (L1s1,�L1c1, 0).
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✓1
✓2

q1

L1

L2

qw

✓3

✓4

✓5

✓6

{s}

Figure 5.8: Space Jacobian for the spatial RRPRRR chain.

• The third joint is prismatic, so !s3 = (0, 0, 0). The direction of the pris-
matic joint axis is given by

vs3 = Rot(ẑ, ✓1)Rot(x̂,�✓2)

2

4
0
1
0

3

5 =

2

4
�s1c2
c1c2
�s2

3

5 .

• Now consider the wrist portion of the chain. The wrist center is located
at the point

qw =

2

4
0
0
L1

3

5+ Rot(ẑ, ✓1)Rot(x̂,�✓2)

2

4
0

L2 + ✓3
0

3

5 =

2

4
�(L2 + ✓3)s1c2
(L2 + ✓3)c1c2

L1 � (L2 + ✓3)s2

3

5 .

Observe that the directions of the wrist axes depend on ✓1, ✓2, and the

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 5. Velocity Kinematics and Statics 181

preceding wrist axes. These are

!s4 = Rot(ẑ, ✓1)Rot(x̂,�✓2)

2

4
0
0
1

3

5 =

2

4
�s1s2
c1s2
c2

3

5 ,

!s5 = Rot(ẑ, ✓1)Rot(x̂,�✓2)Rot(ẑ, ✓4)

2

4
�1
0
0

3

5 =

2

4
�c1c4 + s1c2s4
�s1c4 � c1c2s4

s2s4

3

5 ,

!s6 = Rot(ẑ, ✓1)Rot(x̂,�✓2)Rot(ẑ, ✓4)Rot(x̂,�✓5)

2

4
0
1
0

3

5

=

2

4
�c5(s1c2c4 + c1s4) + s1s2s5
c5(c1c2c4 � s1s4)� c1s2s5

�s2c4c5 � c2s5

3

5 .

The space Jacobian can now be computed and written in matrix form as follows:

Js(✓) =


!s1 !s2 0 !s4 !s5 !s6

0 �!s2 ⇥ q2 vs3 �!s4 ⇥ qw �!s5 ⇥ qw �!s6 ⇥ qw

�
.

Note that we were able to obtain the entire Jacobian directly, without having
to explicitly di↵erentiate the forward kinematic map.

5.1.2 Body Jacobian

In the previous section we derived the relationship between the joint rates and
[Vs] = Ṫ T�1, the end-e↵ector’s twist expressed in fixed-frame coordinates. Here
we derive the relationship between the joint rates and [Vb] = T�1Ṫ , the end-
e↵ector twist in end-e↵ector-frame coordinates. For this purpose it will be
more convenient to express the forward kinematics in the alternative product of
exponentials form:

T (✓) = Me[B1]✓1e[B2]✓2 · · · e[Bn]✓n . (5.12)
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Computing Ṫ ,

Ṫ =Me[B1]✓1 · · · e[Bn�1]✓n�1

✓
d

dt
e[Bn]✓n

◆

+ Me[B1]✓1 · · ·
✓

d

dt
e[Bn�1]✓n�1

◆
e[Bn]✓n + · · ·

=Me[B1]✓1 · · · e[Bn]✓n [Bn]✓̇n

+ Me[B1]✓1 · · · e[Bn�1]✓n�1 [Bn�1]e
[Bn]✓n ✓̇n�1 + · · ·

+ Me[B1]✓1 [B1]e
[B2]✓2 · · · e[Bn]✓n ✓̇1.

Also,
T�1 = e�[Bn]✓n · · · e�[B1]✓1M�1.

Evaluating T�1Ṫ ,

[Vb] = [Bn]✓̇n + e�[Bn]✓n [Bn�1]e
[Bn]✓n ✓̇n�1 + · · ·

+ e�[Bn]✓n · · · e�[B2]✓2 [B1]e
[B2]✓2 · · · e[Bn]✓n ✓̇1

or, in vector form,

Vb = Bn|{z}
Jbn

✓̇n +Ade�[Bn]✓n (Bn�1)| {z }
Jb,n�1

✓̇n�1 + · · ·+Ade�[Bn]✓n ···e�[B2]✓2 (B1)| {z }
Jb1

✓̇1. (5.13)

The twist Vb can therefore be expressed as a sum of n body twists:

Vb = Jb1(✓)✓̇1 + · · · + Jbn�1(✓)✓̇n�1 + Jbn✓̇n, (5.14)

where each Jbi(✓) = (!bi(✓), vbi(✓)) depends explictly on the joint values ✓ for
i = 1, . . . , n� 1. In matrix form,

Vb =
⇥

Jb1(✓) · · · Jbn�1(✓) Jbn

⇤
2

64
✓̇1
...
✓̇n

3

75 = Jb(✓)✓̇. (5.15)

The matrix Jb(✓) is the Jacobian in the end-e↵ector- (or body-) frame coordi-
nates and is called, more simply, the body Jacobian.

Definition 5.4. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = Me[B1]✓1 · · · e[Bn]✓n . (5.16)
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The body Jacobian Jb(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn to the
end-e↵ector twist Vb = (!b, vb) via

Vb = Jb(✓)✓̇. (5.17)

The ith column of Jb(✓) is

Jbi(✓) = Ade�[Bn]✓n ···e�[Bi+1]✓i+1 (Bi), (5.18)

for i = n� 1, . . . , 1, with Jbn = Bn.

A physical interpretation can be given to the columns of Jb(✓): each column
Jbi(✓) = (!bi(✓), vbi(✓)) of Jb(✓) is the screw vector for joint axis i, expressed in
the coordinates of the end-e↵ector frame rather than those of the fixed frame.
The procedure for determining the columns of Jb(✓) is similar to the proce-
dure for deriving the forward kinematics in the product of exponentials form
Me[B1]✓1 · · · e[Bn]✓n , the only di↵erence being that each of the end-e↵ector-frame
joint screws Jbi(✓) are expressed for arbitrary ✓ rather than ✓ = 0.

5.1.3 Visualizing the Space and Body Jacobian

Another, perhaps simpler, way to derive the formulas for the ith column of the
space Jacobian (5.11) and the ith column of the body Jacobian (5.18) comes
from inspecting the 5R robot in Figure 5.9. Let’s start with the third column,
Js3, of the space Jacobian using the left-hand column of Figure 5.9.

The screw corresponding to joint axis 3 is written as S3 in {s} when the robot
is at its zero configuration. Clearly the joint variables ✓3, ✓4, and ✓5 have no
impact on the spatial twist resulting from the joint velocity ✓̇3, because they do
not displace axis 3 relative to {s}. So we fix those joint variables at zero, making
the robot from joint 2 outward a rigid body B. If ✓1 = 0 and ✓2 is arbitrary then
the frame {s0} at Tss0 = e[S2]✓2 is at the same position and orientation relative
to B as frame {s} when ✓1 = ✓2 = 0. Now, if ✓1 is also arbitrary then the frame
{s00} at Tss00 = e[S1]✓1e[S2]✓2 is at the same position and orientation relative to
B as frame {s} when ✓1 = ✓2 = 0. Thus S3 represents the screw relative to
{s00} for arbitrary joint angles ✓1 and ✓2. The column Js3, though, is the screw
relative to {s}. The mapping that changes the frame of representation of S3

from {s00} to {s} is [AdTss00 ] = [Ade[S1]✓1e[S2]✓2 ], i.e., Js3 = [AdTss00 ]S3, precisely
Equation (5.11) for joint i = 3. Equation (5.11) is the generalization of the
reasoning above for any joint i = 2, . . . , n.

Now let’s derive the third column, Jb3, of the body Jacobian by inspecting
the right-hand column of Figure 5.9. The screw corresponding to joint 3 is
written B3 in {b} when the robot is at its zero configuration. Clearly the joint
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{s}

{b}

{b0}

{b00}

bb0T = e[B4]✓4

Tbb00 = e[B4]✓4e[B5]✓5

S3 B3

✓5

Tss0 = e[S2]✓2{s0}

✓2

{s00} Tss00 = e[S1]✓1e[S2]✓2

✓1

✓2

✓4

✓4

Figure 5.9: A 5R robot. (Left-hand column) Derivation of Js3, the third column of
the space Jacobian. (Right-hand column) Derivation of Jb3, the third column of the
body Jacobian.

variables ✓1, ✓2, and ✓3 have no impact on the body twist resulting from the
joint velocity ✓̇3, because they do not displace axis 3 relative to {b}. So we fix
those joint variables at zero, making the robot a rigid body B from the base to
joint 4. If ✓5 = 0 and ✓4 is arbitrary, then the frame {b0} at Tbb0 = e[B4]✓4 is
the new end-e↵ector frame. Now if ✓5 is also arbitrary, then the frame {b00} at
Tbb00 = e[B4]✓4e[B5]✓5 is the new end-e↵ector frame. The column Jb3 is simply the
screw axis of joint 3 expressed in {b00}. Since B3 is expressed in {b}, we have

Jb3 = [AdTb00b ]B3

= [AdT�1
bb00

]B3

= [Ade�[B5]✓5e�[B4]✓4 ]B3.

where we have made use of the fact that (T1T2)�1 = T�1
2 T�1

1 . This formula
for Jb3 is precisely Equation (5.18) for joint i = 3. Equation (5.18) is the
generalization of the reasoning above for any joint i = 1, . . . , n� 1.
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5.1.4 Relationship between the Space and Body Jacobian

Denoting the fixed frame by {s} and the end-e↵ector frame by {b}, the forward
kinematics can be written as Tsb(✓). The twist of the end-e↵ector frame can be
written in terms of the fixed- and end-e↵ector-frame coordinates as

[Vs] = ṪsbT
�1
sb ,

[Vb] = T�1
sb Ṫsb,

with Vs and Vb related by Vs = AdTsb(Vb) and Vb = AdTbs(Vs). The twists Vs

and Vb are also related to their respective Jacobians via

Vs = Js(✓)✓̇, (5.19)

Vb = Jb(✓)✓̇. (5.20)

Equation (5.19) can therefore be written

AdTsb(Vb) = Js(✓)✓̇. (5.21)

Applying [AdTbs ] to both sides of Equation (5.21) and using the general property
[AdX ][AdY ] = [AdXY ] of the adjoint map, we obtain

AdTbs(AdTsb(Vb)) = AdTbsTsb(Vb) = Vb = AdTbs(Js(q)✓̇).

Since we also have Vb = Jb(✓)✓̇ for all ✓̇, it follows that Js(✓) and Jb(✓) are
related by

Jb(✓) = AdTbs (Js(✓)) = [AdTbs ]Js(✓). (5.22)

The space Jacobian can in turn be obtained from the body Jacobian via

Js(✓) = AdTsb (Jb(✓)) = [AdTsb ]Jb(✓). (5.23)

The fact that the space and body Jacobians, and the space and body twists, are
similarly related by the adjoint map should not be surprising since each column
of the space or body Jacobian corresponds to a twist.

An important implication of Equations (5.22) and (5.23) is that Jb(✓) and
Js(✓) always have the same rank; this is shown explicitly in Section 5.3 on
singularity analysis.

5.1.5 Alternative Notions of the Jacobian

The space and body Jacobians derived above are matrices that relate joint
rates to the twist of the end-e↵ector. There exist alternative notions of the
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Jacobian that are based on a representation of the end-e↵ector configuration
using a minimum set of coordinates q. Such representations are particularly
relevant when the task space is considered to be a subspace of SE(3). For
example, the configuration of the end-e↵ector of a planar robot could be treated
as q = (x, y, ✓) 2 R3 instead of as an element of SE(2).

When using a minimum set of coordinates, the end-e↵ector velocity is not
given by a twist V but by the time derivative of the coordinates q̇, and the Jaco-
bian Ja in the velocity kinematics q̇ = Ja(✓)✓̇ is sometimes called the analytic
Jacobian as opposed to the geometric Jacobian in space and body form,
described above.3

For an SE(3) task space, a typical choice of the minimal coordinates q 2 R6

includes three coordinates for the origin of the end-e↵ector frame in the fixed
frame and three coordinates for the orientation of the end-e↵ector frame in the
fixed frame. Example coordinates for the orientation include the Euler angles
(see Appendix B) and exponential coordinates for rotation.

Example 5.5 (Analytic Jacobian with exponential coordinates for rotation).
In this example, we find the relationship between the geometric Jacobian Jb in
the body frame and an analytic Jacobian Ja that uses exponential coordinates
r = !̂✓ to represent the orientation. (Recall that k!̂k = 1 and ✓ 2 [0,⇡].)

First, consider an open chain with n joints and the body Jacobian

Vb = Jb(✓)✓̇,

where Jb(✓) 2 R6⇥n. The angular and linear velocity components of Vb =
(!b, vb) can be written explicitly as

Vb =


!b

vb

�
= Jb(✓)✓̇ =


J!(✓)
Jv(✓)

�
✓̇,

where J! is the 3⇥ n matrix corresponding to the top three rows of Jb and Jv

is the 3⇥ n matrix corresponding to the bottom three rows of Jb.
Now suppose that our minimal set of coordinates q 2 R6 is given by q =

(r, x), where x 2 R3 is the position of the origin of the end-e↵ector frame and
r = !̂✓ 2 R3 is the exponential coordinate representation for the rotation. The

3
The term “geometric Jacobian” has also been used to describe the relationship between

joint rates and a representation of the end-e↵ector velocity that combines the rate of change

of the position coordinates of the end-e↵ector (which is neither the linear portion of a body

twist nor the linear portion of a spatial twist) and a representation of the angular velocity.

Unlike a body or spatial twist, which depends only on the body or space frame, respectively,

this “hybrid” notion of a spatial velocity depends on the definition of both frames.
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coordinate time derivative ẋ is related to vb by a rotation that gives vb in the
fixed coordinates:

ẋ = Rsb(✓)vb = Rsb(✓)Jv(✓)✓̇,

where Rsb(✓) = e[r] = e[!̂]✓.
The time-derivative ṙ is related to the body angular velocity !b by

!b = A(r)ṙ,

where

A(r) = I � 1� cos krk
krk2 [r] +

krk � sin krk
krk3 [r]2.

(The derivation of this formula is explored in Exercise 5.10.) Provided that the
matrix A(r) is invertible, ṙ can be obtained from !b:

ṙ = A�1(r)!b = A�1(r)J!(✓)✓̇.

Putting these together, we obtain

q̇ =


ṙ
ẋ

�
=


A�1(r) 0

0 Rsb

� 
!b

vb

�
, (5.24)

i.e., the analytic Jacobian Ja is related to the body Jacobian Jb by

Ja(✓) =


A�1(r) 0

0 Rsb(✓)

� 
J!(✓)
Jv(✓)

�
=


A�1(r) 0

0 Rsb(✓)

�
Jb(✓). (5.25)

5.1.6 Looking Ahead to Inverse Velocity Kinematics

In the above sections we asked the question “What twist results from a given set
of joint velocities?” The answer, written independently of the frame in which
the twists are represented, was given by

V = J(✓)✓̇.

Often we are interested in the inverse question: given a desired twist V, what
joint velocities ✓̇ are needed? This is a question of inverse velocity kinematics,
which is discussed in more detail in Section 6.3. Briefly, if J(✓) is square (so that
the number of joints n is equal to six, the number of elements of a twist) and of
full rank then ✓̇ = J�1(✓)V. If n 6= 6 or the robot is at a singularity, however,
then J(✓) is not invertible. In the case n < 6, arbitrary twists V cannot be
achieved – the robot does not have enough joints. If n > 6 then we call the
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robot redundant. In this case, a desired twist V places six constraints on the
joint rates, and the remaining n� 6 freedoms correspond to internal motions of
the robot that are not evident in the motion of the end-e↵ector. For example,
if you consider your arm from your shoulder to your palm as a seven-joint open
chain, when you place your palm at a fixed configuration in space (e.g., on the
surface of a table), you still have one internal degree of freedom corresponding
to the position of your elbow.

5.2 Statics of Open Chains

Using our familiar principle of conservation of power, we have

power at the joints = (power to move the robot) + (power at the end-e↵ector)

and, considering the robot to be at static equilibrium (no power is being used
to move the robot), we can equate the power at the joints to the power at the
end-e↵ector,4

⌧T✓̇ = FT
b Vb,

where ⌧ is the column vector of the joint torques. Using the identity Vb = Jb(✓)✓̇,
we get

⌧ = JT
b (✓)Fb,

relating the joint torques to the wrench written in the end-e↵ector frame. Sim-
ilarly,

⌧ = JT
s (✓)Fs

in the fixed space frame. Independently of the choice of the frame, we can
simply write

⌧ = JT(✓)F . (5.26)

If an external wrench �F is applied to the end-e↵ector when the robot is at
equilibrium with joint values ✓, Equation (5.26) calculates the joint torques ⌧
needed to generate the opposing wrench F , keeping the robot at equilibrium.5

This is important in force control of a robot, for example.
One could also ask the opposite question, namely, what is the end-e↵ector

wrench generated by a given set of joint torques? If JT is a 6 ⇥ 6 invertible
matrix, then clearly F = J�T(✓)⌧ . If the number of joints n is not equal to six
then JT is not invertible, and the question is not well posed.

4
We are considering the limiting case as ✓̇ goes to zero, consistent with our assumption

that the robot is at equilibrium.
5
If the robot has to support itself against gravity to maintain static equilibrium, the torques

⌧ must be added to the torques that o↵set gravity.
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If the robot is redundant (n > 6) then, even if the end-e↵ector is embedded in
concrete, the robot is not immobilized and the joint torques may cause internal
motions of the links. The static equilibrium assumption is no longer satisfied,
and we need to include dynamics to know what will happen to the robot.

If n  6 and JT 2 Rn⇥6 has rank n then embedding the end-e↵ector in
concrete will immobilize the robot. If n < 6, no matter what ⌧ we choose, the
robot cannot actively generate forces in the 6� n wrench directions defined by
the null space of JT,

Null(JT(✓)) = {F | JT(✓)F = 0},

since no actuators act in these directions. The robot can, however, resist ar-
bitrary externally applied wrenches in the space Null(JT(✓)) without moving,
owing to the lack of joints that would allow motions due to these forces. For
example, consider a motorized rotating door with a single revolute joint (n = 1)
and an end-e↵ector frame at the door knob. The door can only actively gener-
ate a force at the knob that is tangential to the allowed circle of motion of the
knob (defining a single direction in the wrench space), but it can resist arbitrary
wrenches in the orthogonal five-dimensional wrench space without moving.

5.3 Singularity Analysis

The Jacobian allows us to identify postures at which the robot’s end-e↵ector
loses the ability to move instantaneously in one or more directions. Such a
posture is called a kinematic singularity, or simply a singularity. Math-
ematically, a singular posture is one in which the Jacobian J(✓) fails to be of
maximal rank. To understand why, consider the body Jacobian Jb(✓), whose
columns are denoted Jbi, i = 1, . . . , n. Then

Vb =
⇥

Jb1(✓) · · · Jbn�1(✓) Jbn

⇤

2

6664

✓̇1
...

✓̇n�1

✓̇n

3

7775

= Jb1(✓)✓̇1 + · · · + Jbn�1(✓)✓̇n�1 + Jbn✓̇n.

Thus, the tip frame can achieve twists that are linear combinations of the Jbi.
As long as n � 6, the maximum rank that Jb(✓) can attain is six. Singular
postures correspond to those values of ✓ at which the rank of Jb(✓) drops below
the maximum possible value; at such postures the tip frame loses the ability
to generate instantaneous spatial velocities in in one or more dimensions. This
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loss of mobility at a singularity is accompanied by the ability to resist arbitrary
wrenches in the direction corresponding to the lost mobility.

The mathematical definition of a kinematic singularity is independent of the
choice of body or space Jacobian. To see why, recall the relationship between
Js(✓) and Jb(✓): Js(✓) = AdTsb (Jb(✓)) = [AdTsb ]Jb(✓) or, more explicitly,

Js(✓) =


Rsb 0

[psb] Rsb Rsb

�
Jb(✓).

We now claim that the matrix [AdTsb ] is always invertible. This can be estab-
lished by examining the linear equation


Rsb 0

[psb] Rsb Rsb

� 
x
y

�
= 0.

Its unique solution is x = y = 0, implying that the matrix [AdTsb ] is invertible.
Since multiplying any matrix by an invertible matrix does not change its rank,
it follows that

rank Js(✓) = rank Jb(✓),

as claimed; singularities of the space and body Jacobian are one and the same.
Kinematic singularities are also independent of the choice of fixed frame

and end-e↵ector frame. Choosing a di↵erent fixed frame is equivalent to simply
relocating the robot arm, which should have absolutely no e↵ect on whether a
particular posture is singular. This obvious fact can be verified by referring to
Figure 5.10(a). The forward kinematics with respect to the original fixed frame
is denoted T (✓), while the forward kinematics with respect to the relocated
fixed frame is denoted T 0(✓) = PT (✓), where P 2 SE(3) is constant. Then the
body Jacobian of T 0(✓), denoted J 0

b(✓), is obtained from (T 0)�1Ṫ 0. A simple
calculation reveals that

(T 0)�1Ṫ 0 = (T�1P�1)(PṪ ) = T�1Ṫ ,

i.e., J 0
b(✓) = Jb(✓), so that the singularities of the original and relocated robot

arms are the same.
To see that singularities are independent of the end-e↵ector frame, refer to

Figure 5.10(b) and suppose the forward kinematics for the original end-e↵ector
frame is given by T (✓) while the forward kinematics for the relocated end-e↵ector
frame is T 0(✓) = T (✓)Q, where Q 2 SE(3) is constant. This time, looking at the
space Jacobian – recall that singularities of Jb(✓) coincide with those of Js(✓) –
let J 0

s(✓) denote the space Jacobian of T 0(✓). A simple calculation reveals that

Ṫ 0(T 0)�1 = (ṪQ)(Q�1T�1) = Ṫ T�1.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 5. Velocity Kinematics and Statics 191

T (✓)

P

T (✓) = PT (✓)

T (✓)

(a)

T (✓)

Q

T (✓) = T (✓)Q

(b)

Figure 5.10: Kinematic singularities are invariant with respect to the choice of fixed
and end-e↵ector frames. (a) Choosing a di↵erent fixed frame, which is equivalent to
relocating the base of the robot arm; (b) choosing a di↵erent end-e↵ector frame.

That is, J 0
s(✓) = Js(✓), so that the kinematic singularities are invariant with

respect to the choice of end-e↵ector frame.
In the remainder of this section we consider some common kinematic singu-

larities that occur in six-dof open chains with revolute and prismatic joints. We
now know that either the space or body Jacobian can be used for our analysis;
we use the space Jacobian in the examples below.

Case I: Two Collinear Revolute Joint Axes

The first case we consider is one in which two revolute joint axes are collinear
(see Figure 5.11(a)). Without loss of generality these joint axes can be labeled
1 and 2. The corresponding columns of the Jacobian are

Js1(✓) =


!s1

�!s1 ⇥ q1

�
and Js2(✓) =


!s2

�!s2 ⇥ q2

�
.

Since the two joint axes are collinear, we must have !s1 = ±!s2; let us assume
the positive sign. Also, !si ⇥ (q1 � q2) = 0 for i = 1, 2. Then Js1 = Js2, the set
{Js1, Js2, . . . , Js6} cannot be linearly independent, and the rank of Js(✓) must
be less than six.
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(a)

x̂

ŷẑ

q1 q2 q3

(b)

Figure 5.11: (a) A kinematic singularity in which two joint axes are collinear. (b) A
kinematic singularity in which three revolute joint axes are parallel and coplanar.

Case II: Three Coplanar and Parallel Revolute Joint Axes

The second case we consider is one in which three revolute joint axes are par-
allel and also lie on the same plane (three coplanar axes: see Figure 5.11(b)).
Without loss of generality we label these as joint axes 1, 2, and 3. In this case
we choose the fixed frame as shown in the figure; then

Js(✓) =


!s1 !s1 !s1 · · ·
0 �!s1 ⇥ q2 �!s1 ⇥ q3 · · ·

�
.

Since q2 and q3 are points on the same unit axis, it is not di�cult to verify that
the first three columns cannot be linearly independent.

Case III: Four Revolute Joint Axes Intersecting at a Common Point

Here we consider the case where four revolute joint axes intersect at a common
point (Figure 5.12). Again, without loss of generality, label these axes from 1
to 4. In this case we choose the fixed-frame origin to be the common point of
intersection, so that q1 = · · · = q4 = 0, and therefore

Js(✓) =


!s1 !s2 !s3 !s4 · · ·
0 0 0 0 · · ·

�
.

The first four columns clearly cannot be linearly independent; one can be writ-
ten as a linear combination of the other three. Such a singularity occurs, for
example, when the wrist center of an elbow-type robot arm is directly above
the shoulder.
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S1

S2

S3

S4

Figure 5.12: A kinematic singularity in which four revolute joint axes intersect at a
common point.

Case IV: Four Coplanar Revolute Joints

Here we consider the case in which four revolute joint axes are coplanar. Again,
without loss of generality, label these axes from 1 to 4. Choose a fixed frame
such that the joint axes all lie on the x–y-plane; in this case the unit vector
!si 2 R3 in the direction of joint axis i is of the form

!si =

2

4
!six

!siy

0

3

5 .

Similarly, any reference point qi 2 R3 lying on joint axis i is of the form

qi =

2

4
qix
qiy
0

3

5 ,

and subsequently

vsi = �!si ⇥ qi =

2

4
0
0

!siyqix � !sixqiy

3

5 .
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The first four columns of the space Jacobian Js(✓) are

2

6666664

!s1x !s2x !s3x !s4x

!s1y !s2y !s3y !s4y

0 0 0 0
0 0 0 0
0 0 0 0

!s1yq1x � !s1xq1y !s2yq2x � !s2xq2y !s3yq3x � !s3xq3y !s4yq4x � !s4xq4y

3

7777775

and cannot be linearly independent since they only have three nonzero compo-
nents.

Case V: Six Revolute Joints Intersecting a Common Line

The final case we consider is six revolute joint axes intersecting a common line.
Choose a fixed frame such that the common line lies along the ẑ-axis, and select
the intersection between this common line and joint axis i as the reference point
qi 2 R3 for axis i; each qi is thus of the form qi = (0, 0, qiz), and

vsi = �!si ⇥ qi = (!siyqiz,�!sixqiz, 0),

for i = 1, . . . , 6. The space Jacobian Js(✓) thus becomes

2

6666664

!s1x !s2x !s3x !s4x !s5x !s6x

!s1y !s2y !s3y !s4y !s5y !s6y

!s1z !s2z !s3z !s4z !s5z !s6z

!s1yq1z !s2yq2z !s3yq3z !s4yq4z !s5yq5z !s6yq6z
�!s1xq1z �!s2xq2z �!s3xq3z �!s4xq4z �!s5xq5z �!s6xq6z

0 0 0 0 0 0

3

7777775
,

which is clearly singular.

5.4 Manipulability

In the previous section we saw that, at a kinematic singularity, a robot’s end-
e↵ector loses the ability to translate or rotate in one or more directions. A
kinematic singularity presents a binary proposition – a particular configuration
is either kinematically singular or it is not – and it is reasonable to ask if a
nonsingular configuration is “close” to being singular. The answer is yes; in
fact, one can even determine the directions in which the end-e↵ector’s ability to
move is diminished, and to what extent. The manipulability ellipsoid allows one
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to visualize geometrically the directions in which the end-e↵ector moves with
least e↵ort or with greatest e↵ort.

Manipulability ellipsoids are illustrated for a 2R planar arm in Figure 5.3.
The Jacobian is given by Equation (5.1).

For a general n-joint open chain and a task space with coordinates q 2
Rm, where m  n, the manipulability ellipsoid corresponds to the end-e↵ector
velocities for joint rates ✓̇ satisfying k✓̇k = 1, a unit sphere in the n-dimensional
joint-velocity space.6 Assuming J is invertible, the unit joint-velocity condition
can be written

1 = ✓̇T✓̇

= (J�1q̇)T(J�1q̇)

= q̇TJ�TJ�1q̇

= q̇T(JJT)�1q̇ = q̇TA�1q̇. (5.27)

If J is full rank (i.e., of rank m), the matrix A = JJT 2 Rm⇥m is square,
symmetric, and positive definite, as is A�1.

Consulting a textbook on linear algebra, we see that for any symmetric
positive-definite A�1 2 Rm⇥m, the set of vectors q̇ 2 Rm satisfying

q̇TA�1q̇ = 1

defines an ellipsoid in the m-dimensional space. Letting vi and �i be the eigen-
vectors and eigenvalues of A, the directions of the principal axes of the ellipsoid
are vi and the lengths of the principal semi-axes are

p
�i, as illustrated in Fig-

ure 5.13. Furthermore, the volume V of the ellipsoid is proportional to the
product of the semi-axis lengths:

V is proportional to
p
�1�2 · · ·�m =

p
det(A) =

q
det(JJT).

For the geometric Jacobian J (either Jb in the end-e↵ector frame or Js in
the fixed frame), we can express the 6⇥ n Jacobian as

J(✓) =


J!(✓)
Jv(✓)

�
,

6
A two-dimensional ellipsoid is usually referred to as an “ellipse,” and an ellipsoid in more

than three dimensions is often referred to as a “hyperellipsoid,” but here we use the term

ellipsoid independently of the dimension. Similarly, we refer to a “sphere” independently of

the dimension, instead of using “circle” for two dimensions and “hypersphere” for more than

three dimensions.
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v1v2

v3

p
�1

p
�2

p
�3

Figure 5.13: An ellipsoid visualization of q̇TA�1q̇ = 1 in the q̇ space R3, where the
principal semi-axis lengths are the square roots of the eigenvalues �i of A and the
directions of the principal semi-axes are the eigenvectors vi.

where J! comprises the top three rows of J and Jv the bottom three rows of
J . It makes sense to separate the two because the units of angular velocity and
linear velocity are di↵erent. This leads to two three-dimensional manipulability
ellipsoids, one for angular velocities and one for linear velocities. These ma-
nipulability ellipsoids have principal semi-axes aligned with the eigenvectors of
A, with lengths given by the square roots of the eigenvalues, where A = J!JT

!

for the angular velocity manipulability ellipsoid and A = JvJT
v for the linear

velocity manipulability ellipsoid.
When calculating the linear-velocity manipulability ellipsoid, it generally

makes more sense to use the body Jacobian Jb instead of the space Jacobian Js,
since we are usually interested in the linear velocity of a point at the origin of
the end-e↵ector frame rather than that of a point at the origin of the fixed-space
frame.

Apart from the geometry of the manipulability ellipsoid, it can be useful to
assign a single scalar measure defining how easily the robot can move at a given
posture. One measure is the ratio of the longest and shortest semi-axes of the
manipulability ellipsoid,

µ1(A) =

p
�max(A)p
�min(A)

=

s
�max(A)

�min(A)
� 1,

where A = JJT. When µ1(A) is low (i.e., close to 1) then the manipulability
ellipsoid is nearly spherical or isotropic, meaning that it is equally easy to move
in any direction. This situation is generally desirable. As the robot approaches
a singularity, however, µ1(A) goes to infinity.

A similar measure µ2(A) is just the square of µ1(A), which is known as the
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condition number of the matrix A = JJT,

µ2(A) =
�max(A)

�min(A)
� 1.

Again, smaller values (close to 1) are preferred. The condition number of a ma-
trix is commonly used to characterize the sensitivity of the result of multiplying
that matrix by a vector to small errors in the vector.

A final measure is simply proportional to the volume of the manipulability
ellipsoid,

µ3(A) =
p
�1�2 · · · =

p
det(A).

In this case, unlike the first two measures, a larger value is better.
Just like the manipulability ellipsoid, a force ellipsoid can be drawn for joint

torques ⌧ satisfying k⌧k = 1. Beginning from ⌧ = JT(✓)F , we arrive at similar
results to those above, except that now the ellipsoid satisfies

1 = fTJJTf = fTB�1f,

where B = (JJT)�1 = A�1. For the force ellipsoid, the matrix B plays the
same role as A in the manipulability ellipsoid; it is the eigenvectors and the
square roots of eigenvalues of B that define the shape of the force ellipsoid.

Since eigenvectors of any invertible matrix A are also eigenvectors of B =
A�1, the principal axes of the force ellipsoid are aligned with the principal axes
of the manipulability ellipsoid. Furthermore, since the eigenvalues of B = A�1

associated with each principal axis are the reciprocals of the corresponding
eigenvalues of A, the lengths of the principal semi-axes of the force ellipsoid
are given by 1/

p
�i, where �i are the eigenvalues of A. Thus the force ellipsoid

is obtained from the manipulability ellipsoid simply by stretching the manipu-
lability ellipsoid along each principal axis i by a factor 1/�i. Furthermore, since
the volume VA of the manipulability ellipsoid is proportional to the product of
the semi-axes,

p
�1�2 · · ·, and the volume VB of the force ellipsoid is propor-

tional to 1/
p
�1�2 · · ·, the product of the two volumes VAVB is constant inde-

pendently of the joint variables ✓. Therefore, positioning the robot to increase
the manipulability-ellipsoid volume measure µ3(A) simultaneously reduces the
force-ellipsoid volume measure µ3(B). This also explains the observation made
at the start of the chapter that, as the robot approaches a singularity, VA goes
to zero while VB goes to infinity.
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5.5 Summary

• Let the forward kinematics of an n-link open chain be expressed in the
following product of exponentials form:

T (✓) = e[S1]✓1 · · · e[Sn]✓nM.

The space Jacobian Js(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn to
the spatial twist Vs, via Vs = Js(✓)✓̇. The ith column of Js(✓) is given by

Jsi(✓) = Ade[S1]✓1 ···e[Si�1]✓i�1 (Si),

for i = 2, . . . , n, with the first column Js1 = S1. The screw vector Jsi

for joint i is expressed in space-frame coordinates, with the joint values ✓
assumed to be arbitrary rather than zero.

• Let the forward kinematics of an n-link open chain be expressed in the
following product of exponentials form:

T (✓) = Me[B1]✓1 · · · e[Bn]✓n .

The body Jacobian Jb(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn to
the end-e↵ector body twist Vb = (!b, vb) via Vb = Jb(✓)✓̇. The ith column
of Jb(✓) is given by

Jbi(✓) = Ade�[Bn]✓n ···e�[Bi+1]✓i+1 (Bi),

for i = n � 1, . . . , 1, with Jbn = Bn. The screw vector Jbi for joint i is
expressed in body-frame coordinates, with the joint values ✓ assumed to
be arbitrary rather than zero.

• The body and space Jacobians are related via

Js(✓) = [AdTsb ]Jb(✓),

Jb(✓) = [AdTbs ]Js(✓),

where Tsb = T (✓).

• Consider a spatial open chain with n one-dof joints that is assumed to be
in static equilibrium. Let ⌧ 2 Rn denote the vector of the joint torques
and forces and F 2 R6 be the wrench applied at the end-e↵ector, in either
space- or body-frame coordinates. Then ⌧ and F are related by

⌧ = JT
b (✓)Fb = JT

s (✓)Fs.
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• A kinematically singular configuration for an open chain, or more simply
a kinematic singularity, is any configuration ✓ 2 Rn at which the rank of
the Jacobian is not maximal. For six-dof spatial open chains consisting of
revolute and prismatic joints, some common singularities include (i) two
collinear revolute joint axes; (ii) three coplanar and parallel revolute joint
axes; (iii) four revolute joint axes intersecting at a common point; (iv) four
coplanar revolute joints; and (v) six revolute joints intersecting a common
line.

• The manipulability ellipsoid describes how easily the robot can move in
di↵erent directions. For a Jacobian J , the principal axes of the manip-
ulability ellipsoid are defined by the eigenvectors of JJT and the corre-
sponding lengths of the principal semi-axes are the square roots of the
eigenvalues.

• The force ellipsoid describes how easily the robot can generate forces in
di↵erent directions. For a Jacobian J , the principal axes of the force
ellipsoid are defined by the eigenvectors of (JJT)�1 and the corresponding
lengths of the principal semi-axes are the square roots of the eigenvalues.

• Measures of the manipulability and force ellipsoids include the ratio of
the longest principal semi-axis to the shortest; the square of this measure;
and the volume of the ellipsoid. The first two measures indicate that the
robot is far from being singular if they are small (close to 1).

5.6 Software

Software functions associated with this chapter are listed below.

Jb = JacobianBody(Blist,thetalist)
Computes the body Jacobian Jb(✓) 2 R6⇥n given a list of joint screws Bi ex-
pressed in the body frame and a list of joint angles.

Js = JacobianSpace(Slist,thetalist)
Computes the space Jacobian Js(✓) 2 R6⇥n given a list of joint screws Si ex-
pressed in the fixed space frame and a list of joint angles.

5.7 Notes and References

One of the key advantages of the PoE formulation is in the derivation of the
Jacobian; the columns of the Jacobian are simply the (configuration-dependent)
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ŷs

{s}

{b}
x̂b
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Figure 5.14: A rolling wheel.

screws for the joint axes. Compact closed-form expressions for the columns of
the Jacobian are also obtained because taking derivatives of matrix exponentials
is particularly straightforward.

There is extensive literature on the singularity analysis of 6R open chains. In
addition to the three cases presented in this chapter, other cases are examined in
[122] and in exercises at the end of this chapter, including the case when some of
the revolute joints are replaced by prismatic joints. Many of the mathematical
techniques and analyses used in open chain singularity analysis can also be used
to determine the singularities of parallel mechanisms, which are the subject of
Chapter 7.

The concept of a robot’s manipulability was first formulated in a quantitative
way by Yoshikawa [195]. There is now a vast literature on the manipulability
analysis of open chains, see, e.g., [75, 134].

5.8 Exercises

Exercise 5.1 A wheel of unit radius is rolling to the right at a rate of 1 rad/s
(see Figure 5.14; the dashed circle shows the wheel at t = 0).

(a) Find the spatial twist Vs(t) as a function of t.
(b) Find the linear velocity of the {b}-frame origin expressed in {s}-frame

coordinates.

Exercise 5.2 The 3R planar open chain of Figure 5.15(a) is shown in its zero
position.

(a) Suppose that the last link must apply a wrench corresponding to a force
of 5 N in the x̂s-direction of the {s} frame, with zero component in the
ŷs-direction and zero moment about the ẑs axis. What torques should be
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(x, y)

x̂s
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(b)

Figure 5.15: (a) A 3R planar open chain. The length of each link is 1 m. (b) A 4R
planar open chain.

applied at each joint?
(b) Suppose that the last link must apply a force of 5 N in the ŷs-direction,

with zero components in the other wrench directions. What torques should
be applied at each joint?

Exercise 5.3 Answer the following questions for the 4R planar open chain of
Figure 5.15(b).

(a) For the forward kinematics of the form

T (✓) = e[S1]✓1e[S2]✓2e[S3]✓3e[S4]✓4M,

write down M 2 SE(2) and each Si = (!zi, vxi, vyi) 2 R3.
(b) Write down the body Jacobian.
(c) Suppose that the chain is in static equilibrium at the configuration ✓1 =

✓2 = 0, ✓3 = ⇡/2, ✓4 = �⇡/2 and that a force f = (10, 10, 0) and a moment
m = (0, 0, 10) are applied to the tip (both f and m are expressed with
respect to the fixed frame). What are the torques experienced at each
joint?

(d) Under the same conditions as (c), suppose that a force f = (�10, 10, 0)
and a moment m = (0, 0,�10), also expressed in the fixed frame, are
applied to the tip. What are the torques experienced at each joint?
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Figure 5.16: Two fingers grasping a can.

(e) Find all kinematic singularities for this chain.

Exercise 5.4 Figure 5.16 shows two fingers grasping a can. Frame {b} is
attached to the center of the can. Frames {b1} and {b2} are attached to the
can at the two contact points as shown. The force f1 = (f1,x, f1,y, f1,z) is the
force applied by fingertip 1 to the can, expressed in {b1} coordinates. Similarly,
f2 = (f2,x, f2,y, f2,z) is the force applied by fingertip 2 to the can, expressed in
{b2} coordinates.

(a) Assume that the system is in static equilibrium, and find the total wrench
Fb applied by the two fingers to the can. Express your result in {b}
coordinates.

(b) Suppose that Fext is an arbitrary external wrench applied to the can (Fext

is also expressed in frame-{b} coordinates). Find all Fext that cannot be
resisted by the fingertip forces.

Exercise 5.5 Referring to Figure 5.17, a rigid body, shown at the top right,
rotates about the point (L, L) with angular velocity ✓̇ = 1.

(a) Find the position of point P on the moving body relative to the fixed
reference frame {s} in terms of ✓.

(b) Find the velocity of point P in terms of the fixed frame.
(c) What is Tsb, the configuration of frame {b}, as seen from the fixed frame

{s}?
(d) Find the twist of Tsb in body coordinates.
(e) Find the twist of Tsb in space coordinates.
(f) What is the relationship between the twists from (d) and (e)?
(g) What is the relationship between the twist from (d) and Ṗ from (b)?
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ŷb

x̂s

ŷs
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Figure 5.17: A rigid body rotating in the plane.

(h) What is the relationship between the twist from (e) and Ṗ from (b)?

Exercise 5.6 Figure 5.18 shows a design for a new amusement park ride. A
rider sits at the location indicated by the moving frame {b}. The fixed frame
{s} is attached to the top shaft as shown. The dimensions indicated in the
figure are R = 10 m and L = 20 m, and the two joints each rotate at a constant
angular velocity of 1 rad/s.

(a) Suppose t = 0 at the instant shown in the figure. Find the linear velocity
vb and angular velocity !b of the rider as functions of time t. Express your
answer in frame-{b} coordinates.

(b) Let p be the linear coordinates expressing the position of the rider in {s}.
Find the linear velocity ṗ(t).

Exercise 5.7 The RRP robot in Figure 5.19 is shown in its zero position.
(a) Write down the screw axes in the space frame. Evaluate the forward

kinematics when ✓ = (90�, 90�, 1). Hand-draw or use a computer to show
the arm and the end-e↵ector frame in this configuration. Obtain the space
Jacobian Js for this configuration.

(b) Write down the screw axes in the end-e↵ector body frame. Evaluate the
forward kinematics when ✓ = (90�, 90�, 1) and confirm that you get the
same result as in part (a). Obtain the body Jacobian Jb for this configu-
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ŷb

ẑb
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Figure 5.18: A new amusement park ride.
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Figure 5.19: RRP robot shown in its zero position.

ration.
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Figure 5.20: RPR robot.

Exercise 5.8 The RPR robot of Figure 5.20 is shown in its zero position. The
fixed and end-e↵ector frames are respectively denoted {s} and {b}.

(a) Find the space Jacobian Js(✓) for arbitrary configurations ✓ 2 R3.
(b) Assume the manipulator is in its zero position. Suppose that an external

force f 2 R3 is applied to the {b} frame origin. Find all the directions in
which f can be resisted by the manipulator with ⌧ = 0.

Exercise 5.9 Find the kinematic singularities of the 3R wrist given the forward
kinematics

R = e[!̂1]✓1e[!̂2]✓2e[!̂3]✓3 ,

where !̂1 = (0, 0, 1), !̂2 = (1/
p

2, 0, 1/
p

2), and !̂3 = (1, 0, 0).

Exercise 5.10 In this exercise, for an n-link open chain we derive the analytic
Jacobian corresponding to the exponential coordinates on SO(3).

(a) Given an n ⇥ n matrix A(t) parametrized by t that is also di↵erentiable
with respect to t, its exponential X(t) = eA(t) is then an n ⇥ n matrix
that is always nonsingular. Prove the following:

X�1Ẋ =

Z 1

0
e�A(t)sȦ(t)eA(t)sds,

ẊX�1 =

Z 1

0
eA(t)sȦ(t)e�A(t)sds.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

206 5.8. Exercises

(Hint: The formula

d

d✏
e(A+✏B)t|✏=0 =

Z t

0
eAsBeA(t�s)ds

may be useful.)
(b) Use the result above to show that, for r(t) 2 R3 and R(t) = e[r(t)], the

angular velocity in the body frame, [!b] = RTṘ, is related to ṙ by

!b = A(r)ṙ,

A(r) = I � 1� cos krk
krk2 [r] +

krk � sin krk
krk3 [r]2.

(c) Derive the corresponding formula relating the angular velocity in the space
frame, [!s] = ṘRT, to ṙ.

Exercise 5.11 The spatial 3R open chain of Figure 5.21 is shown in its zero
position. Let p be the coordinates of the origin of {b} expressed in {s}.

(a) In its zero position, suppose we wish to make the end-e↵ector move with
linear velocity ṗ = (10, 0, 0). Is this motion possible? If so, what are the
required input joint velocities ✓̇1, ✓̇2, and ✓̇3?

(b) Suppose that the robot is in the configuration ✓1 = 0, ✓2 = 45�, ✓3 = �45�.
Assuming static equilibrium, suppose that we wish to generate an end-
e↵ector force fb = (10, 0, 0), where fb is expressed with respect to the
end-e↵ector frame {b}. What are the required input joint torques ⌧1, ⌧2,
and ⌧3?

(c) Under the same conditions as in (b), suppose that we now seek to generate
an end-e↵ector moment mb = (10, 0, 0), where mb is expressed with respect
to the end-e↵ector frame {b}. What are the required input joint torques
⌧1, ⌧2, ⌧3?

(d) Suppose that the maximum allowable torques for each joint motor are

k⌧1k  10, k⌧2k  20, and k⌧3k  5.

In the zero position, what is the maximum force that can be applied by
the tip in the end-e↵ector-frame x̂-direction?

Exercise 5.12 The RRRP chain of Figure 5.22 is shown in its zero position.
Let p be the coordinates of the origin of {b} expressed in {s}.

(a) Determine the body Jacobian Jb(✓) when ✓1 = ✓2 = 0, ✓3 = ⇡/2, ✓4 = L.
(b) Find ṗ when ✓1 = ✓2 = 0, ✓3 = ⇡/2, ✓4 = L and ✓̇1 = ✓̇2 = ✓̇3 = ✓̇4 = 1.
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Figure 5.21: A spatial 3R open chain.
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Figure 5.22: An RRRP spatial open chain.

Exercise 5.13 For the 6R spatial open chain of Figure 5.23,
(a) Determine its space Jacobian Js(✓).
(b) Find its kinematic singularities. Explain each singularity in terms of the

alignment of the joint screws and of the directions in which the end-e↵ector
loses one or more degrees of freedom of motion.

Exercise 5.14 Show that a six-dof spatial open chain is at a kinematic sin-
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L L L

x̂b ŷb

ẑbẑs

ŷs
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Figure 5.23: Singularities of a 6R open chain.

Prismatic joint axis

Revolute joint axis

Figure 5.24: A kinematic singularity involving prismatic and revolute joints.

gularity when any two of its revolute joint axes are parallel, and any prismatic
joint axis is normal to the plane spanned by the two parallel revolute joint axes
(see Figure 5.24).

Exercise 5.15 The spatial PRRRRP open chain of Figure 5.25 is shown in
its zero position.

(a) At the zero position, find the first three columns of the space Jacobian.
(b) Find all configurations for which the first three columns of the space Ja-

cobian become linearly dependent.
(c) Suppose that the chain is in the configuration ✓1 = ✓2 = ✓3 = ✓5 =

✓6 = 0, ✓4 = 90�. Assuming static equilibrium, suppose that a pure force
fb = (10, 0, 10), where fb is expressed in terms of the end-e↵ector frame,
is applied to the origin of the end-e↵ector frame. Find the torques ⌧1, ⌧2,
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Figure 5.25: A spatial PRRRRP open chain.
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ẑb
ẑs
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Figure 5.26: A PRPRRR spatial open chain.

and ⌧3 experienced at the first three joints.

Exercise 5.16 Consider the PRPRRR spatial open chain of Figure 5.26, shown
in its zero position. The distance from the origin of the fixed frame to the origin
of the end-e↵ector frame at the home position is L.

(a) Determine the first three columns of the space Jacobian Js.
(b) Determine the last two columns of the body Jacobian Jb.
(c) For what value of L is the home position a singularity?
(d) In the zero position, what joint forces and torques ⌧ must be applied in

order to generate a pure end-e↵ector force of 100 N in the �ẑb-direction?
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Figure 5.27: A PRRRRP robot.

Exercise 5.17 The PRRRRP robot of Figure 5.27 is shown in its zero position.
(a) Find the first three columns of the space Jacobian Js(✓).
(b) Assuming the robot is in its zero position and ✓̇ = (1, 0, 1,�1, 2, 0), find

the spatial twist Vs.
(c) Is the zero position a kinematic singularity? Explain your answer.

Exercise 5.18 The six-dof RRPRPR open chain of Figure 5.28 has a fixed
frame {s} and an end-e↵ector frame {b} attached as shown. At its zero position,
joint axes 1, 2, and 6 lie in the ŷ–ẑ-plane of the fixed frame, and joint axis 4 is
aligned along the fixed-frame x̂-axis.

(a) Find the first three columns of the space Jacobian Js(✓).
(b) At the zero position, let ✓̇ = (1, 0, 1,�1, 2, 0). Find the spatial twist Vs.
(c) Is the zero position a kinematic singularity? Explain your answer.

Exercise 5.19 The spatial PRRRRP open chain of Figure 5.29 is shown in
its zero position.

(a) Determine the first four columns of the space Jacobian Js(✓).
(b) Determine whether the zero position is a kinematic singularity.
(c) Calculate the joint forces and torques required for the tip to apply the

following end-e↵ector wrenches:

(i) Fs = (0, 1,�1, 1, 0, 0).
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ẑs

x̂s
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Figure 5.28: An RRPRPR open chain shown at its zero position.
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Figure 5.29: A spatial PRRRRP open chain with a skewed joint axis.

(ii) Fs = (1,�1, 0, 1, 0,�1).

Exercise 5.20 The spatial RRPRRR open chain of Figure 5.30 is shown in
its zero position.

(a) For the fixed frame {0} and tool (end-e↵ector) frame {t} as shown, express
the forward kinematics in the product of exponentials form

T (✓) = e[S1]✓1e[S2]✓2e[S3]✓3e[S4]✓4e[S5]✓5e[S6]✓6M.

(b) Find the first three columns of the space Jacobian Js(✓).
(c) Suppose that the fixed frame {0} is moved to another location {00} as

shown in the figure. Find the first three columns of the space Jacobian
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Figure 5.30: A spatial RRPRRR open chain.

Js(✓) with respect to this new fixed frame.
(d) Determine whether the zero position is a kinematic singularity and, if so,

provide a geometric description in terms of the joint screw axes.

Exercise 5.21 Figure 5.31 shows an RRPRRR exercise robot used for stroke
patient rehabilitation.

(a) Assume the manipulator is in its zero position. Suppose that M0c 2 SE(3)
is the displacement from frame {0} to frame {c} and Mct 2 SE(3) is the
displacement from frame {c} to frame {t}. Express the forward kinematics
T0t in the form

T0t = e[A1]✓1e[A2]✓2M0ce[A3]✓3e[A4]✓4Mcte[A5]✓5e[A6]✓6 .

Find A2, A4, and A5.
(b) Suppose that ✓2 = 90� and all the other joint variables are fixed at zero.

Set the joint velocities to (✓̇1, ✓̇2, ✓̇3, ✓̇4, ✓̇5, ✓̇6) = (1, 0, 1, 0, 0, 1), and find
the spatial twist Vs in frame-{0} coordinates.

(c) Is the configuration described in part (b) a kinematic singularity? Explain
your answer.

(d) Suppose that a person now operates the rehabilitation robot. At the
configuration described in part (b), a wrench Felbow is applied to the
elbow link, and a wrench Ftip is applied to the last link. Both Felbow and
Ftip are expressed in frame {0} coordinates and are given by Felbow =
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ẑ0

L

(b) Kinematic model of the ARMin III.

Figure 5.31: The ARMin III rehabilitation robot.

(1, 0, 0, 0, 0, 1) and Ftip = (0, 1, 0, 1, 1, 0). Find the joint forces and torques
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⌧ that must be applied for the robot to maintain static equilibrium.

Exercise 5.22 Consider an n-link open chain, with reference frames attached
to each link. Let

T0k = e[S1]✓1 · · · e[Sk]✓kMk, k = 1, . . . , n

be the forward kinematics up to link frame {k}. Let Js(✓) be the space Jacobian
for T0n; Js(✓) has columns Jsi as shown below:

Js(✓) =
⇥

Js1(✓) · · · Jsn(✓)
⇤
.

Let [Vk] = Ṫ0kT
�1
0k be the twist of link frame {k} in fixed frame {0} coordinates.

(a) Derive explicit expressions for V2 and V3.
(b) On the basis of your results from (a), derive a recursive formula for Vk+1

in terms of Vk, Js1, . . . , Js,k+1, and ✓̇.

Exercise 5.23 Write a program that allows the user to enter the link lengths
L1 and L2 of a 2R planar robot (Figure 5.32) and a list of robot configurations
(each defined by the joint angles (✓1, ✓2)) and plots the manipulability ellipse
at each of those configurations. The program should plot the arm (as two line
segments) at each configuration and the manipulability ellipse centered at the
endpoint of the arm. Choose the same scaling for all the ellipses so that they
can be easily visualized (e.g., the ellipse should usually be shorter than the arm
but not so small that you cannot easily see it). The program should also print
the three manipulability measures µ1, µ2, and µ3 for each configuration.

(a) Choose L1 = L2 = 1 and plot the arm and its manipulability ellipse at the
four configurations (�10�, 20�), (60�, 60�), (135�, 90�), and (190�, 160�). At
which of these configurations does the manipulability ellipse appear most
isotropic? Does this agree with the manipulability measures calculated by
the program?

(b) Does the ratio of the length of the major axis of the manipulability ellipse
and the length of the minor axis depend on ✓1? On ✓2? Explain your
answers.

(c) Choose L1 = L2 = 1. Hand-draw the following: the arm at (�45�, 90�);
the endpoint linear velocity vector arising from ✓̇1 = 1 rad/s and ✓̇2 = 0;
the endpoint linear velocity vector arising from ✓̇1 = 0 and ✓̇2 = 1 rad/s;
and the vector sum of these two vectors to get the endpoint linear velocity
when ✓̇1 = 1 rad/s and ✓̇2 = 1 rad/s.

Exercise 5.24 Modify the program in the previous exercise to plot the force
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x̂1

x̂2

L1

L2

✓1

✓2

Figure 5.32: Left: The 2R robot arm. Right: The arm at four di↵erent configura-
tions.

ellipse. Demonstrate it at the same four configurations as in the first part of
the previous exercise.

Exercise 5.25 The kinematics of the 6R UR5 robot are given in Section 4.1.2.
(a) Give the numerical space Jacobian Js when all joint angles are ⇡/2. Sep-

arate the Jacobian matrix into an angular velocity portion J! (the joint
rates act on the angular velocity) and a linear velocity portion Jv (the
joint rates act on the linear velocity).

(b) For this configuration, calculate the directions and lengths of the prin-
cipal semi-axes of the three-dimensional angular-velocity manipulability
ellipsoid (based on J!) and the directions and lengths of the principal
semi-axes of the three-dimensional linear-velocity manipulability ellipsoid
(based on Jv). Comment on why it is usually preferred to use the body
Jacobian instead of the space Jacobian for the manipulability ellipsoid.

(c) For this configuration, calculate the directions and lengths of the principal
semi-axes of the three-dimensional moment (torque) force ellipsoid (based
on J!) and the directions and lengths of the principal semi-axes of the
three-dimensional linear force ellipsoid (based on Jv).

Exercise 5.26 The kinematics of the 7R WAM robot are given in Section 4.1.3.
(a) Give the numerical body Jacobian Jb when all joint angles are ⇡/2. Sep-

arate the Jacobian matrix into an angular-velocity portion J! (the joint
rates act on the angular velocity) and a linear-velocity portion Jv (the
joint rates act on the linear velocity).

(b) For this configuration, calculate the directions and lengths of the prin-
cipal semi-axes of the three-dimensional angular-velocity manipulability
ellipsoid (based on J!) and the directions and lengths of the principal
semi-axes of the three-dimensional linear-velocity manipulability ellipsoid
(based on Jv).
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(c) For this configuration, calculate the directions and lengths of the principal
semi-axes of the three-dimensional moment (torque) force ellipsoid (based
on J!) and the directions and lengths of the principal semi-axes of the
three-dimensional linear force ellipsoid (based on Jv).

Exercise 5.27 Examine the software functions for this chapter in your favorite
programming language. Verify that they work in the way that you expect. Can
you make them more computationally e�cient?
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Chapter 6

Inverse Kinematics

For a general n degree-of-freedom open chain with forward kinematics T (✓),
✓ 2 Rn, the inverse kinematics problem can be stated as follows: given a ho-
mogeneous transform X 2 SE(3), find solutions ✓ that satisfy T (✓) = X. To
highlight the main features of the inverse kinematics problem, let us examine
the two-link planar open chain of Figure 6.1(a) as a motivational example. Con-
sidering only the position of the end-e↵ector and ignoring its orientation, the
forward kinematics can be expressed as


x
y

�
=


L1 cos ✓1 + L2 cos(✓1 + ✓2)
L1 sin ✓1 + L2 sin(✓1 + ✓2)

�
. (6.1)

Assuming L1 > L2, the set of reachable points, or the workspace, is an annulus
of inner radius L1 � L2 and outer radius L1 + L2. Given some end-e↵ector
position (x, y), it is not hard to see that there will be either zero, one, or
two solutions depending on whether (x, y) lies in the exterior, boundary, or
interior of this annulus, respectively. When there are two solutions, the angle
at the second joint (the “elbow” joint) may be positive or negative. These two
solutions are sometimes called “lefty” and “righty” solutions, or “elbow-up” and
“elbow-down” solutions.

Finding an explicit solution (✓1, ✓2) for a given (x, y) is also not di�cult.
For this purpose, we will find it useful to introduce the two-argument arctan-
gent function atan2(y, x), which returns the angle from the origin to a point
(x, y) in the plane. It is similar to the inverse tangent tan�1(y/x), but whereas
tan�1(y/x) is equal to tan�1(�y/�x), and therefore tan�1 only returns angles
in the range (�⇡/2,⇡/2), the atan2 function returns angles in the range (�⇡,⇡].
For this reason, atan2 is sometimes called the four-quadrant arctangent.

217

218

Workspace

✓1

L1 ✓2

L2

(x, y)

(a) A workspace, and lefty and righty

configurations.

✓1

L1

✓2

L2

↵
�

�x2 + y2

(b) Geometric solution.

Figure 6.1: Inverse kinematics of a 2R planar open chain.

We also recall the law of cosines,

c2 = a2 + b2 � 2ab cos C,

where a, b, and c are the lengths of the three sides of a triangle and C is the
interior angle of the triangle opposite the side of length c.

Referring to Figure 6.1(b), angle �, restricted to lie in the interval [0,⇡], can
be determined from the law of cosines,

L2
1 + L2

2 � 2L1L2 cos� = x2 + y2,

from which it follows that

� = cos�1

✓
L2
1 + L2

2 � x2 � y2

2L1L2

◆
.

Also from the law of cosines,

↵ = cos�1

 
x2 + y2 + L2

1 � L2
2

2L1

p
x2 + y2

!
.

The angle � is determined using the two-argument arctangent function, � =
atan2(y, x). With these angles, the righty solution to the inverse kinematics is

✓1 = � � ↵, ✓2 = ⇡ � �
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and the lefty solution is

✓1 = � + ↵, ✓2 = � � ⇡.

If x2 + y2 lies outside the range [L1 � L2, L1 + L2] then no solution exists.
This simple motivational example illustrates that, for open chains, the in-

verse kinematics problem may have multiple solutions; this situation is in con-
trast with the forward kinematics, where a unique end-e↵ector displacement T
exists for given joint values ✓. In fact, three-link planar open chains have an in-
finite number of solutions for points (x, y) lying in the interior of the workspace;
in this case the chain possesses an extra degree of freedom and is said to be
kinematically redundant.

In this chapter we first consider the inverse kinematics of spatial open chains
with six degrees of freedom. At most a finite number of solutions exists in this
case, and we consider two popular structures – the PUMA and Stanford robot
arms – for which analytic inverse kinematic solutions can be easily obtained. For
more general open chains, we adapt the Newton–Raphson method to the inverse
kinematics problem. The result is an iterative numerical algorithm which, pro-
vided that an initial guess of the joint variables is su�ciently close to a true
solution, converges quickly to that solution.

6.1 Analytic Inverse Kinematics

We begin by writing the forward kinematics of a spatial six-dof open chain in
the following product of exponentials form:

T (✓) = e[S1]✓1e[S2]✓2e[S3]✓3e[S4]✓4e[S5]✓5e[S6]✓6M.

Given some end-e↵ector frame X 2 SE(3), the inverse kinematics problem is
to find solutions ✓ 2 R6 satisfying T (✓) = X. In the following subsections we
derive analytic inverse kinematic solutions for the PUMA and Stanford arms.

6.1.1 6R PUMA-Type Arm

We first consider a 6R arm of the PUMA type. Referring to Figure 6.2, when
the arm is placed in its zero position: (i) the two shoulder joint axes intersect
orthogonally at a common point, with joint axis 1 aligned in the ẑ0-direction and
joint axis 2 aligned in the �ŷ0-direction; (ii) joint axis 3 (the elbow joint) lies in
the x̂0–ŷ0-plane and is aligned parallel with joint axis 2; (iii) joint axes 4, 5, and
6 (the wrist joints) intersect orthogonally at a common point (the wrist center)
to form an orthogonal wrist and, for the purposes of this example, we assume
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0
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r✓1 px

py

pz

ŷ
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Figure 6.2: Inverse position kinematics of a 6R PUMA-type arm.

ẑ0 d1

(a) Elbow arm

with o↵set.
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ŷ0
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ŷ0
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px x̂0

r

✓1

(b) Kinematic diagram.

Figure 6.3: A 6R PUMA-type arm with a shoulder o↵set.

that these joint axes are aligned in the ẑ0-, ŷ0-, and x̂0-directions, respectively.
The lengths of links 2 and 3 are a2 and a3, respectively. The arm may also have
an o↵set at the shoulder (see Figure 6.3). The inverse kinematics problem for
PUMA-type arms can be decoupled into inverse-position and inverse-orientation
subproblems, as we now show.

We first consider the simple case of a zero-o↵set PUMA-type arm. Referring
to Figure 6.2 and expressing all vectors in terms of fixed-frame coordinates,
denote the components of the wrist center p 2 R3 by p = (px, py, pz). Projecting
p onto the x̂0–ŷ0-plane, it can be seen that

✓1 = atan2(py, px).
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ẑ0

Figure 6.4: Singular configuration of the zero-o↵set 6R PUMA-type arm.

Note that a second valid solution for ✓1 is given by

✓1 = atan2(py, px) + ⇡,

when the original solution for ✓2 is replaced by ⇡ � ✓2. As long as px, py 6= 0
both these solutions are valid. When px = py = 0 the arm is in a singular
configuration (see Figure 6.4), and there are infinitely many possible solutions
for ✓1.

If there is an o↵set d1 6= 0 as shown in Figure 6.3, then in general there will
be two solutions for ✓1, the righty and lefty solutions (Figure 6.3). As seen from
the figure, ✓1 = � � ↵ where � = atan2(py, px) and ↵ = atan2(d1,

p
r2 � d21).

The second solution is given by

✓1 = ⇡ + atan2(py, px) + atan2
⇣
�
q

p2x + p2y � d21, d1
⌘

.

Determining angles ✓2 and ✓3 for the PUMA-type arm now reduces to the inverse
kinematics problem for a planar two-link chain:

cos ✓3 =
r2 � d21 + p2z � a2

2 � a2
3

2a2a3

=
p2x + p2y + p2z � d21 � a2

2 � a2
3

2a2a3
= D.

Using D defined above, ✓3 is given by

✓3 = atan2
⇣
±
p

1�D2, D
⌘
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Figure 6.5: Four possible inverse kinematics solutions for the 6R PUMA-type arm
with shoulder o↵set.

and ✓2 can be obtained in a similar fashion as

✓2 = atan2

✓
pz,
q

r2 � d21

◆
� atan2 (a3s3, a2 + a3c3)

= atan2
⇣
pz,
q

p2x + p2y � d21

⌘
� atan2 (a3s3, a2 + a3c3) ,

where s3 = sin ✓3 and c3 = cos ✓3. The two solutions for ✓3 correspond to
the well-known elbow-up and elbow-down configurations for the two-link planar
arm. In general, a PUMA-type arm with an o↵set will have four solutions to
the inverse position problem, as shown in Figure 6.5; the postures in the upper
panel are lefty solutions (elbow-up and elbow-down), while those in the lower
panel are righty solutions (elbow-up and elbow-down).

We now solve the inverse orientation problem of finding (✓4, ✓5, ✓6) given the
end-e↵ector orientation. This problem is completely straightforward: having
found (✓1, ✓2, ✓3), the forward kinematics can be manipulated into the form

e[S4]✓4e[S5]✓5e[S6]✓6 = e�[S3]✓3e�[S2]✓2e�[S1]✓1XM�1, (6.2)

where the right-hand side is now known, and the !i-components of S4, S5, and
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Figure 6.6: The first three joints of a Stanford-type arm.

S6 are

!4 = (0, 0, 1),

!5 = (0, 1, 0),

!6 = (1, 0, 0).

Denoting the SO(3) component of the right-hand side of Equation (6.2) by R,
the wrist joint angles (✓4, ✓5, ✓6) can be determined as the solution to

Rot(ẑ, ✓4)Rot(ŷ, ✓5)Rot(x̂, ✓6) = R,

which correspond exactly to the ZYX Euler angles, derived in Appendix B.

6.1.2 Stanford-Type Arms

If the elbow joint in a 6R PUMA-type arm is replaced by a prismatic joint, as
shown in Figure 6.6, we then have an RRPRRR Stanford-type arm. Here we
consider the inverse position kinematics for the arm of Figure 6.6; the inverse
orientation kinematics is identical to that for the PUMA-type arm and so is not
repeated here.

The first joint variable ✓1 can be found in similar fashion to the PUMA-type
arm: ✓1 = atan2(py, px) (provided that px and py are not both zero). The
variable ✓2 is then found from Figure 6.6 to be

✓2 = atan2(s, r),
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where r2 = p2x + p2y and s = pz � d1. Similarly to the case of the PUMA-type
arm, a second solution for ✓1 and ✓2 is given by

✓1 = ⇡ + atan2(py, px),

✓2 = ⇡ � atan2(s, r).

The translation distance ✓3 is found from the relation

(✓3 + a2)
2 = r2 + s2

as

✓3 =
p

r2 + s2 =
q

p2x + p2y + (pz � d1)2 � a2.

Ignoring the negative square root solution for ✓3, we obtain two solutions to
the inverse position kinematics as long as the wrist center p does not intersect
the ẑ0-axis of the fixed frame. If there is an o↵set then, as in the case of the
PUMA-type arm, there will be lefty and righty solutions.

6.2 Numerical Inverse Kinematics

Iterative numerical methods can be applied if the inverse kinematics equations
do not admit analytic solutions. Even in cases where an analytic solution does
exist, numerical methods are often used to improve the accuracy of these solu-
tions. For example, in a PUMA-type arm, the last three axes may not exactly
intersect at a common point, and the shoulder joint axes may not be exactly or-
thogonal. In such cases, rather than throw away any analytic inverse kinematic
solutions that are available, such solutions can be used as the initial guess in an
iterative numerical procedure for solving the inverse kinematics.

There exist a variety of iterative methods for finding the roots of a nonlinear
equation, and our aim is not to discuss these in detail – any text on numerical
analysis will cover these methods in depth – but rather to develop ways in which
to transform the inverse kinematics equations so that they become amenable to
existing numerical methods. We will make use of an approach fundamental to
nonlinear root-finding, the Newton–Raphson method. Also, methods of opti-
mization are needed in situations where an exact solution may not exist and
we seek the closest approximate solution; or, conversely, an infinity of inverse
kinematics solutions exists (i.e., if the robot is kinematically redundant) and we
seek a solution that is optimal with respect to some criterion. We now therefore
discuss the Newton–Raphson method for nonlinear root-finding and also the
first-order necessary conditions for optimization.
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6.2.1 Newton–Raphson Method

To solve the equation g(✓) = 0 numerically for a given di↵erentiable function
g : R ! R, assume ✓0 is an initial guess for the solution. Write the Taylor
expansion of g(✓) at ✓0 and truncate it at first order:

g(✓) = g(✓0) +
@g

@✓
(✓0)(✓ � ✓0) + higher-order terms (h.o.t).

Keeping only the terms up to first order, set g(✓) = 0 and solve for ✓ to obtain

✓ = ✓0 �
✓
@g

@✓
(✓0)

◆�1

g(✓0).

Using this value of ✓ as the new guess for the solution and repeating the above,
we get the following iteration:

✓k+1 = ✓k �
✓
@g

@✓
(✓k)

◆�1

g(✓k).

The above iteration is repeated until some stopping criterion is satisified, e.g.,
|g(✓k)� g(✓k+1)|/|g(✓k)|  ✏ for some user-prescribed threshold value ✏.

The same formula applies for the case when g is multi-dimensional, i.e.,
g : Rn ! Rn, in which case

@g

@✓
(✓) =

2

64

@g1
@✓1

(✓) · · · @g1
@✓n

(✓)
...

. . .
...

@gn
@✓1

(✓) · · · @gn
@✓n

(✓)

3

75 2 Rn⇥n.

The case where the above matrix fails to be invertible is discussed in Sec-
tion 6.2.2.

6.2.2 Numerical Inverse Kinematics Algorithm

Suppose we express the end-e↵ector frame using a coordinate vector x governed
by the forward kinematics x = f(✓), a nonlinear vector equation mapping the n
joint coordinates to the m end-e↵ector coordinates. Assume that f : Rn ! Rm

is di↵erentiable, and let xd be the desired end-e↵ector coordinates. Then g(✓)
for the Newton-Raphson method is defined as g(✓) = xd � f(✓), and the goal is
to find joint coordinates ✓d such that

g(✓d) = xd � f(✓d) = 0.
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xd � f(✓)

xd � f(✓0) slope = �@f
@✓ (✓0)

✓0 ✓1 ✓d

�✓ = @f
@✓ (✓0)

�1
(xd � f(✓0))

✓

Figure 6.7: The first step of the Newton–Raphson method for nonlinear root-finding
for a scalar x and ✓. In the first step, the slope �@f/@✓ is evaluated at the point
(✓0, xd�f(✓0)). In the second step, the slope is evaluated at the point (✓1, xd�f(✓1))
and eventually the process converges to ✓d. Note that an initial guess to the left of
the plateau of xd � f(✓) would be likely to result in convergence to the other root of
xd � f(✓), and an initial guess at or near the plateau would result in a large initial
|�✓| and the iterative process might not converge at all.

Given an initial guess ✓0 which is “close to” a solution ✓d, the kinematics can
be expressed as the Taylor expansion

xd = f(✓d) = f(✓0) +
@f

@✓

����
✓0| {z }

J(✓0)

(✓d � ✓0)| {z }
�✓

+ h.o.t., (6.3)

where J(✓0) 2 Rm⇥n is the coordinate Jacobian evaluated at ✓0. Truncating
the Taylor expansion at first order, we can approximate Equation (6.3) as

J(✓0)�✓ = xd � f(✓0). (6.4)

Assuming that J(✓0) is square (m = n) and invertible, we can solve for �✓ as

�✓ = J�1(✓0)
�
xd � f(✓0)

�
. (6.5)

If the forward kinematics is linear in ✓, i.e., the higher-order terms in Equa-
tion (6.3) are zero, then the new guess ✓1 = ✓0+�✓ exactly satisfies xd = f(✓1).
If the forward kinematics is not linear in ✓, as is usually the case, the new guess
✓1 should still be closer to the root than ✓0, and the process is then repeated,
producing a sequence {✓0, ✓1, ✓2, . . .} converging to ✓d (Figure 6.7).
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As indicated in Figure 6.7, if there are multiple inverse kinematics solutions,
the iterative process tends to converge to the solution that is “closest” to the
initial guess ✓0. You can think of each solution as having its own basin of
attraction. If the initial guess is not in one of these basins (e.g., the initial guess
is not su�ciently close to a solution), the iterative process may not converge.

In practice, for computational e�ciency reasons, Equation (6.4) is often
solved without directly calculating the inverse J�1(✓0). More e�cient tech-
niques exist for solving a set of linear equations Ax = b for x. For example, for
invertible square matrices A, the LU decomposition of A can be used to solve
for x with fewer operations. In MATLAB, for example, the syntax

x = A\b

solves Ax = b for x without computing A�1.
If J is not invertible, either because it is not square or because it is singular,

then J�1 in Equation (6.5) does not exist. Equation (6.4) can still be solved
(or approximately solved) for �✓ by replacing J�1 in Equation (6.5) with the
Moore–Penrose pseudoinverse J†. For any equation of the form Jy = z, where
J 2 Rm⇥n, y 2 Rn, and z 2 Rm, the solution

y⇤ = J†z

falls into one of two categories:

• The solution y⇤ exactly satisfies Jy⇤ = z and, for any solution y exactly
satisfying Jy = z, we have ky⇤k  kyk. In other words, among all so-
lutions, y⇤ minimizes the two-norm. There can be an infinite number of
solutions y to Jy = z if the robot has more joints n than end-e↵ector
coordinates m, i.e., the Jacobian J is “fat.”

• If there is no y that exactly satisfies Jy = z then y⇤ minimizes the two-
norm of the error, i.e., kJy⇤ � zk  kJy � zk for any y 2 Rn. This
case corresponds to rank J < m, i.e., the robot has fewer joints n than
end-e↵ector coordinates m (a “tall” Jacobian J) or it is at a singularity.

Many programming languages provide functions to calculate the pseudoin-
verse; for example, the usage in MATLAB is

y = pinv(J) * z

In the case where J is full rank (rank m for n > m or rank n for n < m), i.e.,
the robot is not at a singularity, the pseudoinverse can be calculated as

J† = JT(JJT)�1 if J is fat, n > m (called a right inverse since JJ† = I)

J† = (JTJ)�1JT if J is tall, n < m (called a left inverse since J†J = I).
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Replacing the Jacobian inverse with the pseudoinverse, Equation (6.5) be-
comes

�✓ = J†(✓0)
�
xd � f(✓0)

�
. (6.6)

If rank(J) < m then the solution �✓ calculated in Equation (6.6) may not
exactly satisfy Equation (6.4), but it satisfies this condition as closely as possible
in a least-squares sense. If n > m then the solution is the smallest joint variable
change (in the two-norm sense) that exactly satisfies Equation (6.4).

Equation (6.6) suggests using the Newton–Raphson iterative algorithm for
finding ✓d:

(a) Initialization: Given xd 2 Rm and an initial guess ✓0 2 Rn, set i = 0.

(b) Set e = xd � f(✓i). While kek > ✏ for some small ✏:

• Set ✓i+1 = ✓i + J†(✓i)e.

• Increment i.

To modify this algorithm to work with a desired end-e↵ector configuration
represented as Tsd 2 SE(3) instead of as a coordinate vector xd, we can replace
the coordinate Jacobian J with the end-e↵ector body Jacobian Jb 2 R6⇥n.
Note, however, that the vector e = xd � f(✓i), representing the direction from
the current guess (evaluated through the forward kinematics) to the desired
end-e↵ector configuration, cannot simply be replaced by Tsd�Tsb(✓i); the pseu-
doinverse of Jb should act on a body twist Vb 2 R6. To find the right analogy,
we should think of e = xd � f(✓i) as a velocity vector which, if followed for
unit time, would cause a motion from f(✓i) to xd. Similarly, we should look
for a body twist Vb which, if followed for unit time, would cause a motion from
Tsb(✓i) to the desired configuration Tsd.

To find this Vb, we first calculate the desired configuration in the body frame,

Tbd(✓
i) = T�1

sb (✓i)Tsd = Tbs(✓
i)Tsd.

Then Vb is determined using the matrix logarithm,

[Vb] = log Tbd(✓
i).

This leads to the following inverse kinematics algorithm, which is analogous
to the above coordinate-vector algorithm:

(a) Initialization: Given Tsd and an initial guess ✓0 2 Rn, set i = 0.

(b) Set [Vb] = log
�
T�1
sb (✓i)Tsd

�
. While k!bk > ✏! or kvbk > ✏v for small ✏!, ✏v:
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Figure 6.8: (Left) A 2R robot. (Right) The goal is to find the joint angles yielding
the end-e↵ector frame {goal} corresponding to ✓1 = 30� and ✓2 = 90�. The initial
guess is (0�, 30�). After one Newton–Raphson iteration, the calculated joint angles
are (34.23�, 79.18�). The screw axis that takes the initial frame to the goal frame (by
means of the curved dashed line) is also indicated.

• Set ✓i+1 = ✓i + J†
b (✓i)Vb.

• Increment i.

An equivalent form can be derived in the space frame, using the space Ja-
cobian Js(✓) and the spatial twist Vs = [AdTsb ]Vb.

For this numerical inverse kinematics method to converge, the initial guess
✓0 should be su�ciently close to a solution ✓d. This condition can be satisfied
by starting the robot from an initial home configuration where both the actual
end-e↵ector configuration and the joint angles are known and ensuring that the
requested end-e↵ector position Tsd changes slowly relative to the frequency of
the calculation of the inverse kinematics. Then, for the rest of the robot’s run,
the calculated ✓d at the previous timestep serves as the initial guess ✓0 for the
new Tsd at the next timestep.

Example 6.1 (Planar 2R robot). Now we apply the body Jacobian Newton–
Raphson inverse kinematics algorithm to the 2R robot in Figure 6.8. Each link
is 1 m in length, and we would like to find the joint angles that place the tip of
the robot at (x, y) = (0.366 m, 1.366 m), which corresponds to ✓d = (30�, 90�)
and

Tsd =

2

664

�0.5 �0.866 0 0.366
0.866 �0.5 0 1.366

0 0 1 0
0 0 0 1

3

775

as shown by the frame {goal} in Figure 6.8. The forward kinematics, expressed
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in the end-e↵ector frame, is given by

M =

2

664

1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

3

775 , B1 =

2

6666664

0
0
1
0
2
0

3

7777775
, B2 =

2

6666664

0
0
1
0
1
0

3

7777775
.

Our initial guess at the solution is ✓0 = (0, 30�), and we specify an error tolerance
of ✏! = 0.001 rad (or 0.057�) and ✏v = 10�4 m (100 microns). The progress
of the Newton–Raphson method is illustrated in the table below, where only
the (!zb, vxb, vyb)-components of the body twist Vb are given since the robot’s
motion is restricted to the x–y-plane:

i (✓1, ✓2) (x, y) Vb = (!zb, vxb, vyb) k!bk kvbk
0 (0.00, 30.00�) (1.866, 0.500) (1.571, 0.498, 1.858) 1.571 1.924
1 (34.23�, 79.18�) (0.429, 1.480) (0.115,�0.074, 0.108) 0.115 0.131
2 (29.98�, 90.22�) (0.363, 1.364) (�0.004, 0.000,�0.004) 0.004 0.004
3 (30.00�, 90.00�) (0.366, 1.366) (0.000, 0.000, 0.000) 0.000 0.000

The iterative procedure converges to within the tolerances after three it-
erations. Figure 6.8 shows the initial guess, the goal configuration, and the
configuration after one iteration. Notice that the first vxb calculated is positive,
even though the origin of the goal frame is in the �x̂b-direction of the initial
guess. The reason is that the constant body velocity Vb that takes the initial
guess to {goal} in one second is a rotation about the screw axis indicated in the
figure.

6.3 Inverse Velocity Kinematics

One solution for controlling a robot so that it follows a desired end-e↵ector
trajectory Tsd(t) is to calculate the inverse kinematics ✓d(k�t) at each discrete
timestep k, then control the joint velocities ✓̇ as follows

✓̇ =
�
✓d(k�t)� ✓((k � 1)�t)

�
/�t

during the time interval [(k�1)�t, k�t]. This amounts to a feedback controller
since the desired new joint angles ✓d(k�t) are being compared with the most
recently measured actual joint angles ✓((k � 1)�t) in order to calculate the
required joint velocities.
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Another option that avoids the computation of inverse kinematics is to cal-
culate the required joint velocities ✓̇ directly from the relationship J ✓̇ = Vd,
where the desired end-e↵ector twist Vd and J are expressed with respect to the
same frame:

✓̇ = J†(✓)Vd. (6.7)

The matrix form [Vd(t)] of the desired twist is either T�1
sd (t)Ṫsd(t) (the matrix

form of the body twist of the desired trajectory at time t) or Ṫsd(t)T
�1
sd (t) (the

matrix form of the spatial twist), depending on whether the body Jacobian or
space Jacobian is used; however, small velocity errors are likely to accumulate
over time, resulting in increasing position error. Thus, a position feedback
controller should choose Vd(t) so as to keep the end-e↵ector following Tsd(t)
with little position error. Feedback control is discussed in Chapter 11.

In the case of a redundant robot with n > 6 joints, of the (n�6)-dimensional
set of joint velocities satisfying Equation (6.7), the use of the pseudoinverse J†(✓)

returns joint velocities ✓̇ minimizing the two-norm k✓̇k =
p
✓̇T✓̇.

The use of the pseudoinverse in Equation (6.7) implicitly weights the cost of
each joint velocity identically. We could instead give the joint velocities di↵erent
weights; for example, the velocity at the first joint, which moves a lot of the
robot’s mass, could be weighted more heavily than the velocity at the last joint,
which moves little of the robot’s mass. As we will see later, the kinetic energy
of a robot can be written

1

2
✓̇TM(✓)✓̇,

where M(✓) is the symmetric, positive-definite, configuration-dependent mass
matrix of the robot. The mass matrix M(✓) can be used as a weighting function
in the inverse velocity kinematics, and the goal is to find the ✓̇ that minimizes
the kinetic energy while also satisfying J(✓)✓̇ = Vd.

Another possibility is to find the ✓̇ that causes the robot to minimize a
configuration-dependent potential energy function h(✓) while satisfying J(✓)✓̇ =
Vd. For example, h(✓) could be the gravitational potential energy, or an artificial
potential function whose value increases as the robot approaches an obstacle.
Then the rate of change of h(✓) is

d

dt
h(✓) =

dh(✓)

d✓

d✓

dt
= rh(✓)T✓̇,

where rh(✓) points in the direction of maximum ascent of h(✓).
More generally, we may wish to minimize the sum of the kinetic energy and

the rate of change of the potential energy:

min
✓̇

1

2
✓̇TM(✓)✓̇ +rh(✓)T✓̇,
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subject to the constraint J(✓)✓̇ = Vd. From the first-order necessary conditions
for optimality (Appendix D)

JT� = M ✓̇ +rh,

Vd = J ✓̇,

the optimal ✓̇ and � can be derived as follows:

✓̇ = GVd + (I �GJ)M�1rh,

� = BVd + BJM�1rh,

where B 2 Rm⇥m and G 2 Rn⇥m are defined by

B = (JM�1JT)�1,

G = M�1JT(JM�1JT)�1 = M�1JTB.

Recalling the static relation ⌧ = JTF from the previous chapter, the Lagrange
multiplier � (see Appendix D) can be interpreted as a wrench in task space.
Moreover, in the expression � = BVd + BJM�1rh, the first term, BVd, can be
interpreted as a dynamic force generating the end-e↵ector velocity Vd while the
second term, BJM�1rh, can be interpreted as the static wrench counteracting
gravity.

If the potential function h(✓) is zero or unspecified, the kinetic-energy-
minimizing solution is

✓̇ = M�1JT(JM�1JT)�1Vd,

where M�1JT(JM�1JT)�1 is the weighted pseudoinverse according to the mass
matrix M(✓).

6.4 A Note on Closed Loops

A desired end-e↵ector trajectory over a time interval [0, tf ] is a closed loop if
Tsd(0) = Tsd(tf ). It should be noted that numerical methods for calculating
inverse kinematics for redundant robots, at either the configuration or velocity
levels, are likely to yield motions that are not closed loops in the joint space,
i.e., ✓(0) 6= ✓(tf ). If closed-loop motions in joint space are required, an extra
set of conditions on the inverse kinematics must be satisfied.
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6.5 Summary

• Given a spatial open chain with forward kinematics T (✓), ✓ 2 Rn, in the
inverse kinematics problem one seeks to find, for a desired end-e↵ector
configuration X 2 SE(3), solutions ✓ that satisfy X = T (✓). Unlike
the forward kinematics problem, the inverse kinematics problem can pos-
sess multiple solutions, or no solutions in the event that X lies outside
the workspace. For a spatial open chain with n joints and an X in the
workspace, n = 6 typically leads to a finite number of inverse kinematic
solutions while n > 6 leads to an infinite number of solutions.

• The inverse kinematics can be solved analytically for the six-dof PUMA-
type robot arm, a popular 6R design consisting of a 3R orthogonal axis
wrist connected to a 2R orthogonal axis shoulder by an elbow joint.

• Stanford-type arms also admit analytic inverse kinematics solutions. These
arms are obtained by replacing the elbow joint in the generalized 6R
PUMA-type arm by a prismatic joint. Geometric inverse kinematic al-
gorithms similar to those for PUMA-type arms have been developed.

• Iterative numerical methods are used in cases where analytic inverse kine-
matic solutions are unavailable. These methods typically involve solv-
ing the inverse kinematics equations using an iterative procedure like the
Newton–Raphson method, and they require an initial guess at the joint
variables. The performance of the iterative procedure depends to a large
extent on the quality of the initial guess and, in the case where there are
several possible inverse kinematic solutions, the method finds the solution
that is “closest” to the initial guess. Each iteration is of the form

✓̇i+1 = ✓i + J†(✓i)V,

where J†(✓) is the pseudoinverse of the Jacobian J(✓) and V is the twist
that takes T (✓i) to Tsd in one second.

6.6 Software

Software functions associated with this chapter are listed below.

[thetalist,success] = IKinBody(Blist,M,T,thetalist0,eomg,ev)
This function uses iterative Newton–Raphson to calculate the inverse kinematics
given the list of joint screws Bi expressed in the end-e↵ector frame, the end-
e↵ector home configuration M , the desired end-e↵ector configuration T , an
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initial guess at the joint angles ✓0, and the tolerances ✏! and ✏v on the final
error. If a solution is not found within a maximum number of iterations, then
success is false.

[thetalist,success] = IKinSpace(Slist,M,T,thetalist0,eomg,ev)
This is similar to IKinBody, except that the joint screws Si are expressed in the
space frame and the tolerances are interpreted in the space frame, also.

6.7 Notes and References

The inverse kinematics of the most general 6R open chain is known to have up
to 16 solutions; this result was proved by Lee and Liang [87] and by Raghavan
and Roth [143]. Procedures for finding closed-form inverse kinematics solutions
to somewhat more general six-dof open chains than those treated in this chapter
are described in [129, 122]; these procedures use solutions to a collection of some
basic screw-theoretic subproblems, called the Paden–Kahan subproblems, e.g.,
finding the angle of rotation for a zero-pitch screw motion between a pair of
given points. Iterative numerical procedures for finding all 16 solutions of a
general 6R open chain are reported in [104].

A comprehensive summary of inverse kinematics methods for kinematically
redundant robot arms are discussed in [26]. Many of these methods rely on
results and solution techniques from least-squares optimization, and for this
reason we provide a brief review of the basics of optimization in Appendix D; a
classic reference for optimization is [98]. The repeatability (or cyclicity) condi-
tions for a general class of inverse kinematic redundancy resolution schemes are
examined in [162].

6.8 Exercises

Exercise 6.1 Write a program that solves the analytical inverse kinematics
for a planar 3R robot with link lengths L1 = 3, L2 = 2, and L3 = 1, given the
desired position (x, y) and orientation ✓ of a frame fixed to the tip of the robot.
Each joint has no joint limits. Your program should find all the solutions (how
many are there in the general case?), give the joint angles for each, and draw the
robot in these configurations. Test the code for the case of (x, y, ✓) = (4, 2, 0).

Exercise 6.2 Solve the inverse position kinematics (you do not need to solve
the orientation kinematics) of the 6R open chain shown in Figure 6.9.
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Figure 6.9: A 6R open chain.

✓1

✓2
✓3 ✓4

✓5

✓6

{T }

{s}s

s

ẑs

ẑ

L

p
2L

ŷ
x̂

x̂ ŷ

L L

x̂ ŷ

ẑ {T}

Figure 6.10: A 6R open chain.

Exercise 6.3 Find the inverse kinematics solutions when the end-e↵ector
frame {T} of the 6R open chain shown in Figure 6.10 is set to {T0} as shown.
The orientation of {T} at the zero position is the same as that of the fixed frame
{s}, and {T0} is the result of a pure translation of {T} along the ŷs-axis.

Exercise 6.4 The RRP open chain of Figure 6.11 is shown in its zero position.
Joint axes 1 and 2 intersect at the fixed frame origin, and the end-e↵ector frame
origin p is located at (0, 1, 0) when the robot is in its zero position.

(a) Suppose that ✓1 = 0. Solve for ✓2 and ✓3 when the end-e↵ector frame
origin p is at (�6, 5,

p
3).

(b) If joint 1 is not fixed to zero but instead allowed to vary, find all the inverse
kinematic solutions (✓1, ✓2, ✓3) for the p given in (a).

Exercise 6.5 The four-dof robot of Figure 6.12 is shown in its zero position.
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✓1

✓2

✓3

⇡
6

ẑ
p

L = 1

x̂ ŷ

Figure 6.11: An RRP open chain.

Joint 1 is a screw joint of pitch h. Given the end-e↵ector position p = (px, py, pz)
and orientation R = e[ẑ]↵, where ẑ = (0, 0, 1) and ↵ 2 [0, 2⇡], find the inverse
kinematics solution (✓1, ✓2, ✓3, ✓4) as a function of p and ↵.

Exercise 6.6 Figure 6.13(a) shows a surgical robot, which can be modeled as
an RRPRRP open chain as shown in Figure 6.13(b).

(a) In the general case, how many inverse kinematic solutions will exist for a
given end-e↵ector frame?

(b) Consider points A and B on the surgical robot shown in Figure 6.13(b).
Given coordinates (xA, yA, zA) and (xB , yB , zB) for the points A and B
in the fixed frame, find the joint variables ✓1, ✓2, ✓3, ✓4, and ✓5. You
should find an explicit formula for (✓1, ✓2, ✓3) while for (✓4, ✓5) you can
just describe the procedure.

Exercise 6.7 In this exercise you are asked to draw a plot of a scalar xd�f(✓)
versus a scalar ✓ (similar to Figure 6.7) with two roots. Draw it so that, for
some initial guess ✓0, the iterative process actually jumps over the closest root
and eventually converges to the further root. Hand-draw the plot and show the
iteration process that results in convergence to the further root. Comment on
the basins of attraction of the two roots in your plot.

Exercise 6.8 Use Newton–Raphson iterative numerical root finding to per-
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ẑs

ẑb
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✓2

✓3
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L

L

L
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L

x̂s ŷs

ŷbx̂b

Figure 6.12: An open chain with a screw joint.

form two steps in finding the root of

g(x, y) =


x2 � 4
y2 � 9

�

when your initial guess is (x0, y0) = (1, 1). Write the general form of the gradient
(for any guess (x, y)) and compute the results of the first two iterations. You
can do this by hand or write a program. Also, give all the correct roots, not
just the one that would be found from your initial guess. How many are there?

Exercise 6.9 Modify the function IKinBody to print out the results of each
Newton–Raphson iteration, in a table similar to that for the 2R robot example
in Section 6.2. Show the table produced when the initial guess for the 2R robot
of Figure 6.8 is (0, 30�) and the goal configuration corresponds to (90�, 120�).

Exercise 6.10 The 3R orthogonal axis wrist mechanism of Figure 6.14 is
shown in its zero position, with joint axes 1 and 3 collinear.

(a) Given a desired wrist orientation R 2 SO(3), derive an iterative numerical
procedure for solving its inverse kinematics.

(b) Perform a single iteration of Newton–Raphson root-finding using body-

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

238 6.8. Exercises

(a) da Vinci S Surgical System instrument arm,

c� 2016 Intuitive Surgical, Inc.

✓1 ✓2

✓3

✓4 ✓5
✓6point A

point B

end-e↵ector

{0}

6}

L

{

2L

2L
2L 2L 2L

2L

L

45�

x̂0
ŷ0

ẑ0

(b) RRPRRP robot at zero position.

Figure 6.13: Surgical robot and kinematic model.

frame numerical inverse kinematics. First write down the forward kine-
matics and Jacobian for general configurations of the wrist. Then apply
your results for the specific case of an initial guess of ✓1 = ✓3 = 0, ✓2 = ⇡/6,
with a desired end-e↵ector frame at

R =

2

4
1p
2
� 1p

2
0

1p
2

1p
2

0

0 0 1

3

5 2 SO(3).

Exercise 6.11 The 3R nonorthogonal chain of Figure 6.15 is shown in its zero
position.
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ẑ
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✓2

✓3

x̂
ŷ

Figure 6.14: A 3R wrist.

ẑs
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4

Figure 6.15: A 3R nonorthogonal chain.

(a) Derive a numerical procedure for solving the inverse position kinematics;
that is, given some end-e↵ector position p as indicated in the figure, find
(✓1, ✓2, ✓3).

(b) Given an end-e↵ector orientation R 2 SO(3), find all inverse kinematic

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

240 6.8. Exercises

solutions (✓1, ✓2, ✓3).

Exercise 6.12 Use the function IKinSpace to find joint variables ✓d of the
UR5 (Section 4.1.2) satisfying

T (✓d) = Tsd =

2

664

0 1 0 �0.5
0 0 �1 0.1
�1 0 0 0.1
0 0 0 1

3

775 .

The distances are in meters. Use ✏! = 0.001 rad (0.057�) and ✏v = 0.0001
(0.1 mm). For your initial guess ✓0, choose all joint angles as 0.1 rad. If Tsd

is outside the workspace, or if you find that your initial guess is too far from a
solution to converge, you may demonstrate IKinBody using another Tsd.

Note that numerical inverse kinematics is intended to find a solution close
to the initial guess. Since your initial guess is not close to a solution (and
remember that there are generally multiple solutions), the procedure may thrash
about before finding a solution far from the initial guess. This solution may not
respect joint limits. You can post-process the solution so that all joint angles
are in the range [0, 2⇡).

Exercise 6.13 Use the function IKinBody to find joint variables ✓d of the
WAM (Section 4.1.3) satisfying

T (✓d) = Tsd =

2

664

1 0 0 0.5
0 1 0 0
0 0 1 0.4
0 0 0 1

3

775 .

Distances are in meters. Use ✏! = 0.001 rad (0.057�) and ✏v = 0.0001 (0.1 mm).
For your initial guess ✓0, choose all joint angles as 0.1 rad. If Tsd is outside the
workspace, or if you find that your initial guess is too far from a solution to
converge, you may demonstrate IKinBody using another Tsd.

Note that numerical inverse kinematics is intended to find a solution close to
the initial guess. Since your initial guess is not close to a solution (and remember
that there are generally multiple solutions), the procedure may thrash about
before finding a solution far away from the initial guess. This solution may not
respect joint limits. You can post-process the solution so that all joint angles
are in the range [0, 2⇡).

Exercise 6.14 The fundamental theorem of linear algebra (FTLA) states that,
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given a matrix A 2 Rm⇥n,

null(A) = range(AT)?,

null(AT) = range(A)?,

where null(A) denotes the null space of A (i.e., the subspace of Rn of vectors
x that satisfy Ax = 0), range(A) denotes the range or column space of A (i.e.,
the subspace of Rm spanned by the columns of A), and range(A)? denotes the
orthogonal complement to range(A) (i.e., the set of all vectors in Rm that are
orthogonal to every vector in range(A)).

In this problem you are asked to use the FTLA to prove the existence of
Lagrange multipliers (see Appendix D) for the equality-constrained optimization
problem. Let f : Rn ! R, assumed di↵erentiable, be the objective function to
be minimized. The vector x must satisfy the equality constraint g(x) = 0 for
given di↵erentiable g : Rn ! Rm.

Suppose that x⇤ is a local minimum. Let x(t) be any arbitrary curve on the
surface parametrized implicitly by g(x) = 0 (implying that g(x(t)) = 0 for all t)
such that x(0) = x⇤. Further, assume that x⇤ is a regular point of the surface.
Taking the time derivative of both sides of g(x(t)) = 0 at t = 0 then leads to

@g

@x
(x⇤)ẋ(0) = 0. (6.8)

At the same time, because x(0) = x⇤ is a local minimum it follows that f(x(t))
(viewed as an objective function in t) has a local minimum at t = 0, implying
that

d

dt
f(x(t))

����
t=0

=
@f

@x
(x⇤)ẋ(0) = 0. (6.9)

Since (6.8) and (6.9) must hold for all arbitrary curves x(t) on the surface defined
by g(x) = 0, use the FTLA to prove the existence of a Lagrange multiplier
�⇤ 2 Rm such that the first-order necessary condition,

rf(x⇤) +
@g

@x
(x⇤)T�⇤ = 0,

holds.

Exercise 6.15
(a) For matrices A, B, C, and D, if A�1 exists show that


A D
C B

��1

=


A�1 + EG�1F �EG�1

�G�1F G�1

�
,

where G = B � CA�1D, E = A�1D, and F = CA�1.
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(b) Use the above result to solve for the first-order necessary conditions for
the equality-constrained optimization problem

min
x2Rn

1

2
xTQx + cTx

subject to Hx = b, where Q 2 Rn⇥n is symmetric and positive definite
and H 2 Rm⇥n is some matrix of maximal rank m. See Appendix D.
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Chapter 7

Kinematics of Closed
Chains

Any kinematic chain that contains one or more loops is called a closed chain.
Several examples of closed chains were encountered in Chapter 2, from the
planar four-bar linkage to spatial mechanisms like the Stewart–Gough platform
and the Delta robot (Figure 7.1). These mechanisms are examples of parallel
mechanisms: closed chains consisting of fixed and moving platforms connected
by a set of “legs.” The legs themselves are typically open chains but sometimes
can also be other closed chains (like the Delta robot in Figure 7.1(b)). In this
chapter we analyze the kinematics of closed chains, paying special attention to
parallel mechanisms.

The Stewart–Gough platform is used widely as both a motion simulator and
a six-axis force–torque sensor. When used as a force–torque sensor, the six
prismatic joints experience internal linear forces whenever any external force
is applied to the moving platform; by measuring these internal linear forces
one can estimate the applied external force. The Delta robot is a three-dof
mechanism whose moving platform moves in such a way that it always remains
parallel to the fixed platform. Because the three actuators are all attached to
the three revolute joints of the fixed platform, the moving parts are relatively
light; this allows the Delta to achieve very fast motions.

Closed chains admit a much greater variety of designs than open chains, and
their kinematic and static analysis is consequently more complicated. This com-
plexity can be traced to two defining features of closed chains: (i) not all joints
are actuated, and (ii) the joint variables must satisfy a number of loop-closure
constraint equations, which may or may not be independent depending on the
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(a) Stewart–Gough platform.
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(b) Delta robot.

Figure 7.1: Two popular parallel mechanisms.

configuration of the mechanism. The presence of unactuated (or passive) joints,
together with the fact that the number of actuated joints may deliberately be
designed to exceed the mechanism’s kinematic degrees of freedom – such mech-
anisms are said to be redundantly actuated – not only makes the kinematics
analysis more challenging but also introduces new types of singularities not
present in open chains.

Recall also that, for open chains, the kinematic analysis proceeds in a more
or less straightforward fashion, with the formulation of the forward kinematics
(e.g., via the product of exponentials formalism) followed by that of the inverse
kinematics. For general closed chains it is usually di�cult to obtain an explicit
set of equations for the forward kinematics in the form X = T (✓), where X 2
SE(3) is the end-e↵ector frame and ✓ 2 Rn are the joint coordinates. The more
e↵ective approaches exploit, as much as possible, any kinematic symmetries and
other special features of the mechanism.

In this chapter we begin with a series of case studies involving some well-
known parallel mechanisms and eventually build up a repertoire of kinematic
analysis tools and methodologies for handling more general closed chains. Our
focus will be on parallel mechanisms that are exactly actuated, i.e., the number
of actuated degrees of freedom is equal to the number of degrees of freedom
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of the mechanism. Methods for the forward and inverse position kinematics of
parallel mechanisms are discussed; this is followed by the characterization and
derivation of the constraint Jacobian, and the Jacobians of both the inverse and
forward kinematics. The chapter concludes with a discussion of the di↵erent
types of kinematic singularities that arise in closed chains.

7.1 Inverse and Forward Kinematics

One general observation that can be made for serial mechanisms versus par-
allel mechanisms is the following: for serial chains, the forward kinematics is
generally straightforward while inverse kinematics may be complex (e.g., there
may be multiple solutions or no solution). For parallel mechanisms, the inverse
kinematics is often relatively straightforward (e.g., given the configuration of a
platform, it may not be hard to determine the joint variables), while the for-
ward kinematics may be quite complex: an arbitrarily chosen set of joint values
may be infeasible or it may correspond to multiple possible configurations of
the platform.

We now continue with two case studies, the 3⇥RPR planar parallel mech-
anism and its spatial counterpart, the 3⇥SPS Stewart–Gough platform. The
analysis of these two mechanisms draws upon some simplification techniques
that result in a reduced form of the governing kinematic equations, which in
turn can be applied to the analysis of more general parallel mechanisms.

7.1.1 3⇥RPR Planar Parallel Mechanism

The first example we consider is the 3-dof planar 3⇥RPR parallel mechanism
shown in Figure 7.2. A fixed frame {s} and body frame {b} are assigned to the
platform as shown. The three prismatic joints are typically actuated while the
six revolute joints are passive. Denote the lengths of each of the three legs by
si, i = 1, 2, 3. The forward kinematics problem is to determine, for given values
of s = (s1, s2, s3), the body frame’s position and orientation. Conversely, the
inverse kinematics problem is to determine s from Tsb 2 SE(2).

Let p be the vector from the origin of the {s} frame to the origin of the {b}
frame. Let � denote the angle measured from the x̂s-axis of the {s} frame to
the x̂b-axis of the {b} frame. Further, define the vectors ai, bi, di, i = 1, 2, 3, as
shown in the figure. From these definitions, clearly

di = p + bi � ai, (7.1)
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b1

d1

a2

b2
d2

a1

a3

b3

d3

p

{s}

{b}

Figure 7.2: 3⇥RPR planar parallel mechanism.

for i = 1, 2, 3. Let


px
py

�
= p in {s}-frame coordinates,


aix

aiy

�
= ai in {s}-frame coordinates,


dix
diy

�
= di in {s}-frame coordinates,


bix
biy

�
= bi in {b}-frame coordinates.

Note that (aix, aiy) and (bix, biy) for i = 1, 2, 3 are all constant, and that, with
the exception of the (bix, biy), all other vectors are expressed in {s}-frame coor-
dinates. To express Equation (7.1) in terms of {s}-frame coordinates, bi must
be expressed in {s}-frame coordinates. This is straightforward: defining

Rsb =


cos� � sin�
sin� cos�

�
,

it follows that


dix
diy

�
=


px
py

�
+ Rsb


bix
biy

�
�


aix

aiy

�
,
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for i = 1, 2, 3. Also, since s2i = d2ix + d2iy, we have

s2i = (px + bix cos�� biy sin�� aix)
2

+ (py + bix sin�+ biy cos�� aiy)
2, (7.2)

for i = 1, 2, 3.
Formulated as above, the inverse kinematics is trivial to compute: given

values for (px, py,�), the leg lengths (s1, s2, s3) can be directly calculated from
the above equations (negative values of si will not be physically realizable in
most cases and can be ignored). In contrast, the forward kinematics problem of
determining the body frame’s position and orientation (px, py,�) from the leg
lengths (s1, s2, s3) is not trivial. The following tangent half-angle substitution
transforms the three equations in (7.2) into a system of polynomials in t, where

t = tan
�

2
,

sin� =
2t

1 + t2
,

cos� =
1� t2

1 + t2
.

After some algebraic manipulation, the system of polynomials (7.2) can even-
tually be reduced to a single sixth-order polynomial in t; this e↵ectively shows
that the 3⇥RPR mechanism may have up to six forward kinematics solutions.
Showing that all six mathematical solutions are physically realizable requires
further verification.

Figure 7.3(a) shows the mechanism at a singular configuration, where each
leg length is identical and as short as possible. This configuration is a sin-
gularity, because extending the legs from this symmetric configuration causes
the platform to rotate either clockwise or counterclockwise; we cannot predict
which.1 Singularities are covered in greater detail in Section 7.3. Figure 7.3(b)
shows two solutions to the forward kinematics when all leg lengths are identical.

7.1.2 Stewart–Gough Platform

We now examine the inverse and forward kinematics of the 6⇥SPS Stewart–
Gough platform of Figure 7.1(a). In this design the fixed and moving platforms
are connected by six serial SPS structures, with the spherical joints passive
and the prismatic joints actuated. The derivation of the kinematic equations is

1
A third possibility is that the extending legs crush the platform!
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(a) (b)

Figure 7.3: (a) The 3⇥RPR at a singular configuration. From this configuration,
extending the legs may cause the platform to snap to a counterclockwise rotation or
a clockwise rotation. (b) Two solutions to the forward kinematics when all prismatic
joint extensions are identical.

close to that for the 3⇥RPR planar mechanism discussed above. Let {s} and
{b} denote the fixed and body frames, respectively, and let di be the vector
directed from joint Ai to joint Bi, i = 1, . . . , 6. Referring to Figure 7.1(a), we
make the following definitions:

p 2 R3 = p in {s}-frame coordinates,

ai 2 R3 = ai in {s}-frame coordinates,

bi 2 R3 = bi in {b}-frame coordinates,

di 2 R3 = di in {s}-frame coordinates,

R 2 SO(3) is the orientation of {b} as seen from {s}.

In order to derive the kinematic constraint equations, note that, vectorially,

di = p + bi � ai, i = 1, . . . , 6.

Writing the above equations explicitly in {s}-frame coordinates yields

di = p + Rbi � ai, i = 1, . . . , 6.

Denoting the length of leg i by si, we have

s2i = dTi di = (p + Rbi � ai)
T(p + Rbi � ai),

for i = 1, . . . , 6. Note that ai and bi are all known constant vectors. Writing
the constraint equations in this form, the inverse kinematics becomes straight-
forward: given p and R, the six leg lengths si can be determined directly from
the above equations.

The forward kinematics is not as straightforward: given each leg length si,
i = 1, . . . , 6, we must solve for p 2 R3 and R 2 SO(3). These six constraint equa-
tions, together with six further constraints imposed by the condition RTR = I,
constitute a set of 12 equations in 12 unknowns (three for p, nine for R).
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Figure 7.4: A general parallel mechanism.

7.1.3 General Parallel Mechanisms

For both the 3⇥RPR mechanism and the Stewart–Gough platform, we were
able to exploit certain features of the mechanism that resulted in a reduced set
of equations; for example, the fact that the legs of the Stewart–Gough platform
can be modeled as straight lines considerably simplified the analysis. In this
section we briefly consider the case when the legs are general open chains.

Consider such a parallel mechanism, as shown in Figure 7.4; here the fixed
and moving platforms are connected by three open chains. Let the configuration
of the moving platform be given by Tsb. Denote the forward kinematics of the
three chains by T1(✓), T2(�), and T3( ), respectively, where ✓ 2 Rm, � 2 Rn,
and  2 Rp. The loop-closure conditions can be written Tsb = T1(✓) = T2(�) =
T3( ). Eliminating Tsb, we get

T1(✓) = T2(�), (7.3)

T2(�) = T3( ). (7.4)

Equations (7.3) and (7.4) each consist of 12 equations (nine for the rotation
component and three for the position component), six of which are independent:
from the rotation matrix constraint RTR = I, the nine equations for the rotation
component can be reduced to a set of three independent equations. Thus there
are 24 constraint equations, 12 of which are independent, with n+m+p unknown
variables. The mechanism therefore has d = n + m + p� 12 degrees of freedom.

In the forward kinematics problem, given d values for the joint variables
(✓,�, ), Equations (7.3) and (7.4) can be solved for the remaining joint vari-
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ables. Generally this is not trivial and multiple solutions are likely. Once the
joint values for any one of the open chain legs are known, the forward kinematics
of that leg can then be evaluated to determine the forward kinematics of the
closed chain.

In the inverse kinematics problem, given the body-frame displacement Tsb 2
SE(3), we set T = T1 = T2 = T3 and solve Equations (7.3) and (7.4) for the
joint variables (✓,�, ). As suggested by these case studies, for most parallel
mechanisms there are features of the mechanism that can be exploited to elim-
inate some of these equations and simplify them to a more computationally
amenable form.

7.2 Di↵erential Kinematics

We now consider the di↵erential kinematics of parallel mechanisms. Unlike
the case for open chains, in which the objective is to relate the input joint
velocities to the twist of the end-e↵ector frame, the analysis for closed chains is
complicated by the fact that not all the joints are actuated. Only the actuated
joints can be prescribed input velocities; the velocities of the remaining passive
joints must then be determined from the kinematic constraint equations. These
passive joint velocities are usually required in order to eventually determine the
twist of the closed chain’s end-e↵ector frame.

For open chains, the Jacobian of the forward kinematics is central to the
velocity and static analysis. For closed chains, in addition to the forward kine-
matics Jacobian, the Jacobian defined by the kinematic constraint equations –
we will call this the constraint Jacobian – also plays a central role in the
velocity and static analysis. Usually there are features of the mechanism that
can be exploited to simplify and reduce the procedure for obtaining the two
Jacobians. We illustrate this with a case study of the Stewart–Gough platform,
and show that the Jacobian of the inverse kinematics can be obtained straight-
forwardly via static analysis. The velocity analysis for more general parallel
mechanisms is then detailed.

7.2.1 Stewart–Gough Platform

Earlier we saw that the inverse kinematics for the Stewart–Gough platform can
be solved analytically. That is, given the body-frame orientation R 2 SO(3)
and position p 2 R3, the leg lengths s 2 R6 can be obtained analytically in the
functional form s = g(R, p). In principle one could di↵erentiate this equation
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and manipulate it into the form

ṡ = G(R, p)Vs, (7.5)

where ṡ 2 R6 denotes the leg velocities, Vs 2 R6 is the spatial twist, and
G(R, p) 2 R6⇥6 is the Jacobian of the inverse kinematics. In most cases this
procedure will require considerable algebraic manipulation.

Here we take a di↵erent approach, based on the conservation of power prin-
ciple used to determine the static relationship ⌧ = JTF for open chains. The
static relationship for closed chains can be expressed in exactly the same form.
We illustrate this with an analysis of the Stewart–Gough platform.

In the absence of external forces, the only forces applied to the moving
platform occur at the spherical joints. In what follows, all vectors are expressed
in {s}-frame coordinates. Let

fi = n̂i⌧i

be the three-dimensional linear force applied by leg i, where n̂i 2 R3 is a unit
vector indicating the direction of the applied force and ⌧i 2 R is the magnitude
of the linear force. The moment mi generated by fi is

mi = ri ⇥ fi,

where ri 2 R3 denotes the vector from the {s}-frame origin to the point of
application of the force (the location of spherical joint i in this case). Since
neither the spherical joint at the moving platform nor the spherical joint at the
fixed platform can resist any torques about them, the force fi must be along
the line of the leg. Therefore, instead of calculating the moment mi using the
spherical joint at the moving platform, we can calculate the moment using the
spherical joint at the fixed platform:

mi = qi ⇥ fi,

where qi 2 R3 denotes the vector from the fixed-frame origin to the base joint
of leg i. Since qi is constant, expressing the moment as qi ⇥ fi is preferable.

Combining fi and mi into the six-dimensional wrench Fi = (mi, fi), the
resultant wrench Fs on the moving platform is given by

Fs =
6X

i=1

Fi =
6X

i=1


ri ⇥ n̂i

n̂i

�
⌧i

=


�n̂1 ⇥ q1 · · · �n̂6 ⇥ q6

n̂1 · · · n̂6

�
2

64
⌧1
...
⌧6

3

75

= J�T
s ⌧,
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where Js is the spatial Jacobian of the forward kinematics, with inverse given
by

J�1
s =


�n̂1 ⇥ q1 · · · �n̂6 ⇥ q6

n̂1 · · · n̂6

�T
.

7.2.2 General Parallel Mechanisms

Because of its kinematic structure, the Stewart–Gough platform lends itself par-
ticularly well to a static analysis, as each of the six joint forces are directed along
their respective legs. The Jacobian (or more precisely, the inverse Jacobian) can
therefore be derived in terms of the screws associated with each straight-line leg.
In this subsection we consider more general parallel mechanisms where the static
analysis is less straightforward. Using the previous three-legged spatial parallel
mechanism of Figure 7.4 as an illustrative example, we derive a procedure for
determining the forward kinematics Jacobian that can be generalized to other
types of parallel mechanisms.

The mechanism of Figure 7.4 consists of two platforms connected by three
legs with m, n, and p joints, respectively. For simplicity, we will take m = n =
p = 5, so that the mechanism has d = n + m + p � 12 = 3 degrees of freedom
(generalizing what follows to di↵erent types and numbers of legs is completely
straightforward). For the fixed and body frames indicated in the figure, we can
write the forward kinematics for the three chains as follows:

T1(✓1, ✓2, . . . , ✓5) = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M1,

T2(�1,�2, . . . ,�5) = e[P1]�1e[P2]�2 · · · e[P5]�5M2,

T3( 1, 2, . . . , 5) = e[Q1] 1e[Q2] 2 · · · e[Q5] 5M3.

The kinematic loop constraints can be expressed as

T1(✓) = T2(�), (7.6)

T2(�) = T3( ). (7.7)

Since these constraints must be satisfied at all times, we can express their time
derivatives in terms of their spatial twists, using

Ṫ1T
�1
1 = Ṫ2T

�1
2 , (7.8)

Ṫ2T
�1
2 = Ṫ3T

�1
3 . (7.9)

Since ṪiT
�1
i = [Vi], where Vi is the spatial twist of chain i’s end-e↵ector frame,

the above identities can also be expressed in terms of the forward kinematics
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Jacobian for each chain:

J1(✓)✓̇ = J2(�)�̇, (7.10)

J2(�)�̇ = J3( ) ̇, (7.11)

which can be rearranged as


J1(✓) �J2(�) 0

0 �J2(�) J3( )

�2

4
✓̇
�̇
 ̇

3

5 = 0. (7.12)

Now we rearrange the 15 joints into those that are actuated and those that
are passive. Assume without loss of generality that the three actuated joints
are (✓1,�1, 1). Define the vector of the actuated joints qa 2 R3 and the vector
of the passive joints qp 2 R12 as

qa =

2

4
✓1
�1
 1

3

5 , qp =

2

64
✓2
...
 5

3

75 ,

and we have q = (qa, qp) 2 R15. Equation (7.12) can now be rearranged into
the form

⇥
Ha(q) Hp(q)

⇤  q̇a
q̇p

�
= 0, (7.13)

or, equivalently,
Haq̇a + Hpq̇p = 0, (7.14)

where Ha 2 R12⇥3 and Hp 2 R12⇥12. If Hp is invertible, we have

q̇p = �H�1
p Haq̇a. (7.15)

So, assuming that Hp is invertible, once the velocities of the actuated joints
are given, then the velocities of the remaining passive joints can be obtained
uniquely via Equation (7.15).

It still remains to derive the forward kinematics Jacobian with respect to
the actuated joints, i.e., to find Ja(q) 2 R6⇥3 satisfying Vs = Ja(q)q̇a, where Vs

is the spatial twist of the end-e↵ector frame. For this purpose we can use the
forward kinematics for any of the three open chains: for example, in terms of
chain 1, J1(✓)✓̇ = Vs, and from Equation (7.15) we can write

✓̇2 = gT2 q̇a, (7.16)

✓̇3 = gT3 q̇a, (7.17)

✓̇4 = gT4 q̇a, (7.18)

✓̇5 = gT5 q̇a, (7.19)
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where each gi(q) 2 R3, for i = 2, . . . , 5, can be obtained from Equation (7.15).
Defining the row vector eT1 = [1 0 0], the di↵erential forward kinematics for
chain 1 can now be written

Vs = J1(✓)

2

666664

eT1
gT2
gT3
gT4
gT5

3

777775

2

4
✓̇1
�̇1
 ̇1

3

5 . (7.20)

Since we are seeking Ja(q) in Vs = Ja(q)q̇a, and since q̇Ta = [✓̇1 �̇1  ̇1], from the
above it now follows that

Ja(q) = J1(q1, . . . , q5)

2

666664

eT1
g2(q)T

g3(q)T

g4(q)T

g5(q)T

3

777775
; (7.21)

this equation could also have been derived using either chain 2 or chain 3.
Given values for the actuated joints qa, we still need to solve for the pas-

sive joints qp from the loop-constraint equations. Eliminating in advance as
many elements of qp as possible will obviously simplify matters. The second
point to note is that Hp(q) may become singular, in which case q̇p cannot be
obtained from q̇a. Configurations in which Hp(q) becomes singular correspond
to actuator singularities, which are discussed in the next section.

7.3 Singularities

Characterizing the singularities of closed chains involves many more subtleties
than for open chains. In this section we highlight the essential features of closed-
chain singularities via two planar examples: a four-bar linkage (see Figure 7.5)
and a five-bar linkage (see Figure 7.6). On the basis of these examples we clas-
sify closed-chain singularities into three basic types: actuator singularities,
configuration space singularities, and end-e↵ector singularities.

We begin with the four-bar linkage of Figure 7.5. Recall from Chapter 2 that
its C-space is a one-dimensional curve embedded in a four-dimensional ambient
space (each dimension is parametrized by one of the four joints). Projecting the
C-space onto the joint angles (✓,�) leads to the bold curve shown in Figure 7.5.
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L1

L2

L3

L4

✓ �

⇡

�⇡ 0

�

⇡
✓

�⇡

Figure 7.5: (Left) A planar four-bar linkage and (right) its one-dimensional C-space,
represented in bold in the ✓–� space. Also shown on the right are five sample config-
urations (bold dots), three of which are near bifurcation points and two of which are
far removed from a bifurcation point.

In terms of ✓ and �, the kinematic loop constraint equations for the four-bar
linkage can be expressed as

� = tan�1

✓
�

↵

◆
± cos�1

 
�p

↵2 + �2

!
, (7.22)

where

↵ = 2L3L4 � 2L1L3 cos ✓, (7.23)

� = �2L1L3 sin ✓, (7.24)

� = L2
2 � L2

4 � L2
3 � L2

1 + 2L1L4 cos ✓. (7.25)

The existence and uniqueness of solutions to the equations above depend on the
link lengths L1, . . . , L4. In particular, a solution will fail to exist if �2  ↵2+�2.
Figure 7.5 depicts the feasible configurations for the choice of link lengths L1 =
L2 = 4 and L3 = L4 = 2. For this set of link lengths, ✓ and � both range from
0 to 2⇡.

A distinctive feature of Figure 7.5 is the presence of bifurcation points
where branches of the curve meet. As the mechanism approaches these config-
urations, it has a choice of which branch to follow. Figure 7.5 shows sample
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Figure 7.6: A planar five-bar linkage.

configurations on the di↵erent branches near, and also far from, the bifurcation
points.

We now turn to the five-bar linkage of Figure 7.6. The kinematic loop-
constraint equations can be written

L1 cos ✓1 + · · · + L4 cos(✓1 + ✓2 + ✓3 + ✓4) = L5, (7.26)

L1 sin ✓1 + · · · + L4 sin(✓1 + ✓2 + ✓3 + ✓4) = 0, (7.27)

where we have eliminated in advance the joint variable ✓5 from the loop-closure
conditions. Writing these two equations in the form f(✓1, . . . , ✓4) = 0, where f :
R4 ! R2, the configuration space can be regarded as a two-dimensional surface
in R4. Like the bifurcation points of the four-bar linkage, self-intersections of
the surface can also occur. At such points the constraint Jacobian loses rank.
For the five-bar linkage, any point ✓ at which

rank

✓
@f

@✓
(✓)

◆
< 2 (7.28)

corresponds to what we call a configuration space singularity. Figure 7.7
illustrates the possible configuration space singularities of the five-bar linkage.
Notice that so far we have made no mention of which joints of the five-bar
linkage are actuated, or where the end-e↵ector frame is placed. The notion
of a configuration space singularity is completely independent of the choice of
actuated joints or where the end-e↵ector frame is placed.

We now consider the case when two joints of the five-bar linkage are actu-
ated. Referring to Figure 7.8, the two revolute joints fixed to ground are the
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Figure 7.7: Configuration space singularities of the planar five-bar linkage.

Figure 7.8: Actuator singularities of the planar five-bar linkage, where in each case
the two actuated joints are shaded gray. The singularity on the left is nondegenerate,
while the singularity on the right is degenerate.

actuated joints. Under normal operating conditions, the motions of the actu-
ated joints can be independently controlled. Alternatively, locking the actuated
joints should immobilize the five-bar linkage and turn it into a rigid structure.

For the nondegenerate actuator singularity shown in the left-hand panel
of Figure 7.8, rotating the two actuated joints oppositely and outward will pull
the mechanism apart; rotating them oppositely and inward would either crush
the inner two links or cause the center joint to unpredictably buckle upward
or downward. For the degenerate actuator singularity shown on the right,
even when the actuated joints are locked in place the inner two links are free to
rotate.

The reason for classifying these singularities as actuator singularities is
that, by relocating the actuators to a di↵erent set of joints, such singularities can

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

258 7.3. Singularities

Figure 7.9: End-e↵ector singularity of the planar five-bar linkage.

be eliminated. For both the degenerate and nondegenerate actuator singularities
of the five-bar linkage, relocating one actuator to one of the other three passive
joints eliminates the singularity.

Visualizing the actuator singularities of the planar five-bar linkage is straight-
forward enough but, for more complex spatial closed chains, visualization may
be di�cult. Actuator singularities can be characterized mathematically by the
rank of the constraint Jacobian. As before, write the kinematic loop constraints
in di↵erential form:

H(q)q̇ =
⇥

Ha(q) Hp(q)
⇤  q̇a

q̇p

�
= 0, (7.29)

where qa 2 Ra is the vector of the a actuated joints and qp 2 Rp is the vector of
the p passive joints. It follows that H(q) 2 Rp⇥(a+p) and that Hp(q) is a p⇥ p
matrix.

With the above definitions, we have the following:

• If rank Hp(q) < p then q is an actuator singularity. Distinguishing be-
tween degenerate and nondegenerate singularities involves additional
mathematical subtleties and relies on second-order derivative information;
we do not pursue this further here.

• If rank H(q) < p then q is a configuration space singularity. Note
that under this condition Hp(q) is also singular (the converse is not true,
however). The configuration space singularities can therefore be regarded
as the intersection of all possible actuator singularities obtained over all
possible combinations of actuated joints.
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The final class of singularities depends on the choice of end-e↵ector frame.
For the five-bar linkage, let us ignore the orientation of the end-e↵ector frame
and focus exclusively on the x–y location of the end-e↵ector frame. Figure 7.9
shows the five-bar linkage in an end-e↵ector singularity for a given choice of
end-e↵ector location. Note that velocities along the dashed line are not possible
in this configuration, similarly to the case of singularities for open chains. To
see why these velocities are not possible, consider the e↵ective 2R open chain
created by the rightmost joint, the link connecting it to the platform, the joint
on the platform, and the e↵ective link connecting the platform joint to the end-
e↵ector frame. Since the two links of the 2R robot are aligned, the end-e↵ector
frame can have no component of motion along the direction of the links.

End-e↵ector singularities are independent of the choice of actuated joints.
They can be mathematically characterized as follows. Choose any valid set of
actuated joints qa such that the mechanism is not at an actuator singularity.
Write the forward kinematics in the form

f(qa) = Tsb. (7.30)

One can then check for rank deficiencies in the Jacobian of f , as was done for
open chains, to determine the presence of an end-e↵ector singularity.

7.4 Summary

• Any kinematic chain that contains one or more loops is called a closed
chain. Parallel mechanisms are a class of closed chains that are char-
acterized by two platforms – one moving and one stationary – connected
by several legs; the legs are typically open chains, but can themselves be
closed chains. The kinematic analysis of closed chains is complicated com-
pared with that of open chains because only a subset of joints is actuated
and because the joint variables must satisfy a number of loop-closure con-
straint equations which may or may not be independent, depending on
the configuration of the mechanism.

• For a parallel mechanism with equal numbers of actuators and degrees of
freedom, the inverse kinematics problem involves finding, from the given
position and orientation of the moving platform, the joint coordinates of
the actuated joints. For well-known parallel mechanisms like the planar
3⇥RPR and the spatial Stewart–Gough platform, the inverse kinematics
admits unique solutions.

• For a parallel mechanism with equal numbers of actuators and degrees of
freedom, the forward kinematics problem involves finding the position and
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orientation of the moving platform given coordinates for all the actuated
joints. For well-known parallel mechanisms like the planar 3⇥RPR and
the spatial Stewart–Gough platform, the forward kinematics usually ad-
mits multiple solutions. In the case of the most general Stewart–Gough
platform, a maximum of 40 solutions is possible.

• The di↵erential kinematics of a closed chain relates the velocities of the
actuated joints to the linear and angular velocities of the moving plat-
form’s end-e↵ector frame. For an m-dof closed chain consisting of n one-
dof joints, let qa 2 Rm and qp 2 Rn�m respectively denote the vector
of actuated and passive joints. The kinematic loop-closure constraints
can then be expressed in di↵erential form as Haq̇a + Hpq̇p = 0, where
Ha 2 R(n�m)⇥m and Hp 2 R(n�m)⇥(n�m) are configuration-dependent
matrices. If Hp is invertible then q̇p = �H�1

p Haq̇a; the di↵erential for-
ward kinematics can then be expressed in the form V = J(qa, qp)q̇a,
where V is the twist of the end-e↵ector frame and J(qa, qp) 2 R6⇥m is
a configuration-dependent Jacobian matrix. For closed chains like the
Stewart–Gough platform, the di↵erential forward kinematics can also be
obtained from a static analysis by exploiting the fact that, just as for
open chains, the wrench F applied by the end-e↵ector is related to the
joint forces or torques ⌧ by ⌧ = JTF .

• Singularities for closed chains can be classified into three types: (i) config-
uration space singularities at self-intersections of the configuration space
surface (also called bifurcation points for one-dimensional configuration
spaces); (ii) nondegenerate actuator singularities, when the actuated joints
cannot be independently actuated, and degenerate actuator singularities
when locking all joints fails to make the mechanism a rigid structure;
and (iii) end-e↵ector singularities when the end-e↵ector loses one or more
degrees of freedom of motion. Configuration space singularities are in-
dependent of the choice of actuated joints, while actuator singularities
depend on which joints are actuated. End-e↵ector singularities depend on
the placement of the end-e↵ector frame but do not depend on the choice
of actuated joints.

7.5 Notes and References

A comprehensive reference for all aspects of parallel robots is [116]; [117] pro-
vides a more compact summary but with more recent references. One of the
major outstanding problems in parallel mechanism kinematics in the 1990s was
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the question of how many forward kinematics solutions can exist for the gen-
eral 6–6 platform consisting of six SPS legs (with the prismatic joints actuated)
connecting a fixed platform to a moving platform. Raghavan and Roth [143]
showed that there can be at most 40 solutions, while Husty [62] developed an
algorithm for finding all 40 solutions.

Singularities of closed chains have also received considerable attention in the
literature. The terminology for closed-chain singularities used in this chapter
was introduced in [136]; in particular, the distinction between degenerate and
nondegenerate actuator singularities derives in part from similar terminology
used in Morse theory to identify those critical points where the Hessian is sin-
gular (i.e., degenerate). The 3⇥UPU mechanism, which is addressed in the
exercises in both Chapter 2 and the current chapter, can exhibit rather unusual
singularity behavior; a more detailed singularity analysis of this mechanism can
be found in [52, 35].

7.6 Exercises

O
A

P

1

B1

B2

B3

A3

A2

x̂

ŷ

x̂

ŷ

Figure 7.10: 3⇥RPR planar parallel mechanism.

Exercise 7.1 In the 3⇥RPR planar parallel mechanism of Figure 7.10 the
prismatic joints are actuated. Define ai 2 R2 to be the vector from the fixed-
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frame origin O to joint Ai, i = 1, 2, 3, expressed in fixed-frame coordinates.
Define bi 2 R2 to be the vector from the moving-platform-frame origin P to
joint Bi, i = 1, 2, 3, defined in terms of the moving-platform-frame coordinates.

(a) Solve the inverse kinematics.
(b) Derive a procedure to solve the forward kinematics.
(c) Is the configuration shown in the figure an end-e↵ector singularity? Ex-

plain your answer by examining the inverse kinematics Jacobian. Is this
also an actuator singularity?

Exercise 7.2 For the 3⇥RPR planar parallel mechanism in Figure 7.11(a),
let � be the angle measured from the {s}-frame x̂-axis to the {b}-frame x̂-axis,
and p 2 R2 be the vector from the {s}-frame origin to the {b}-frame origin,
expressed in {s}-frame coordinates. Let ai 2 R2 be the vector from the {s}-
frame origin to the three joints fixed to ground, i = 1, 2, 3 (note that two of
the joints are overlapping), expressed in {s}-frame coordinates. Let bi 2 R2 be
the vector from the {b}-frame origin to the three joints attached to the moving
platform, i = 1, 2, 3 (note that two of the joints are overlapping), expressed in
{b}-frame coordinates. The three prismatic joints are actuated, and the leg
lengths are ✓1, ✓2, and ✓3, as shown.

(a) Derive a set of independent equations relating (�, p) and (✓1, ✓2, ✓3).
(b) What is the maximum possible number of forward kinematics solutions?
(c) Assuming static equilibrium, given joint forces ⌧ = (1, 0,�1) applied at

joints (✓1, ✓2, ✓3), find the planar wrench (mbz, fbx, fby) in the end-e↵ector
frame {b}.

(d) Now construct a mechanism with three connected 3⇥RPR parallel mech-
anisms as shown in Figure 7.11(b). How many degrees of freedom does
this mechanism have?

Exercise 7.3 For the 3⇥RRR planar parallel mechanism shown in Figure 7.12,
let � be the orientation of the end-e↵ector frame and p 2 R2 be the vector p
expressed in fixed-frame coordinates. Let ai 2 R2 be the vector ai expressed in
fixed-frame coordinates and bi 2 R2 be the vector bi expressed in the moving
body-frame coordinates.

(a) Derive a set of independent equations relating (�, p) and (✓1, ✓2, ✓3).
(b) What is the maximum possible number of inverse and forward kinematic

solutions for this mechanism?

Exercise 7.4 Figure 7.13 shows a six-bar linkage in its zero position. Let (px,
py) be the position of the {b}-frame origin expressed in {s}-frame coordinates,
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✓1
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✓3
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p
1
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(a) 3⇥RPR planar parallel mechanism.

(b) Truss.

Figure 7.11: 3⇥RPR planar parallel mechanism and truss structure.

and let � be the orientation of the {b} frame. The inverse kinematics problem
is defined as that of finding the joint variables (✓, ) given (px, py,�).

(a) In order to solve the inverse kinematics problem, how many equations are
needed? Derive these equations.

(b) Assume that joints A, D, and E are actuated. Determine whether the
configuration shown in Figure 7.13 is an actuator singularity by analyzing
an equation of the form

⇥
Ha Hp

⇤  q̇a
q̇p

�
= 0,

where qa is the vector of the actuated joints and qp is the vector of the
passive joints.

(c) Suppose instead that joints A, B, and D are actuated. Find the forward
kinematics Jacobian Ja from Vs = Jaq̇a, where Vs is the twist in {s}-frame
coordinates and q̇a is the vector of actuated joint rates.
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Figure 7.12: 3⇥RRR planar parallel mechanism.
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Figure 7.13: A six-bar-linkage.

Exercise 7.5 Consider the 3⇥PSP spatial parallel mechanism of Figure 7.14.
(a) How many degrees of freedom does this mechanism have?
(b) Let Rsb = Rot(ẑ, ✓)Rot(ŷ,�)Rot(x̂, ) be the orientation of the body frame
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{b}, and let psb = (x, y, z) 2 R3 be the vector from the {s}-frame origin
to the {b}-frame origin (both Rsb and psb are expressed in {s}-frame
coordinates). The vectors ai, bi, di, i = 1, 2, 3, are defined as shown in the
figure. Derive a set of independent kinematic constraint equations relating
(✓,�, , x, y, z) and the defined vectors.

(c) Given values for (x, y, z), is it possible to solve for the vertical prismatic
joint values si, where si = kdik for i = 1, 2, 3? If so, derive an algorithm
for doing so.

Prismatic
   joint

Prismatic
   joint

Spherical
   joint

end-e↵ector

120�

120�

60�

ẑ

ẑ
{b}

{s}

psb

ai

bi

di

ŷ

ŷ

x̂

stationary

x̂

Figure 7.14: 3⇥PSP spatial parallel manipulator.

Exercise 7.6 The Eclipse mechanism of Figure 7.15 is a six-dof parallel mech-
anism whose moving platform can tilt by ±90� with respect to ground and can
also rotate by 360� about the vertical axis. Assume that the six sliding joints
are actuated.

(a) Derive the forward and inverse kinematics. How many forward kinematic
solutions are there for general nonsingular configurations?

(b) Find and classify all singularities of this mechanism.

Exercise 7.7 For the Delta robot of Figure 7.1(b), obtain the following:
(a) the forward kinematics,
(b) the inverse kinematics,

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

266 7.6. Exercises
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Figure 7.15: The Eclipse mechanism.

(c) the Jacobian Ja (assume that the revolute joints at the fixed base are
actuated).

(d) Identify all actuator singularities of the Delta robot.

Exercise 7.8 In the 3⇥UPU platform of Figure 7.16, the axes of the universal
joints are attached to the fixed and moving platforms in the sequence indicated,
i.e., axis 1 is attached orthogonally to the fixed base, while axis 4 is attached
orthogonally to the moving platform. Obtain the following:

(a) the forward kinematics,
(b) the inverse kinematics,
(c) the Jacobian Ja (assume that the revolute joints at the fixed base are

actuated).
(d) Identify all actuator singularities of this robot.
(e) If you can, build a mechanical prototype and see whether the mechanism

behaves as predicted by your analysis.
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Figure 7.16: The 3⇥UPU mechanism.
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Chapter 8

Dynamics of Open Chains

In this chapter we study once again the motions of open-chain robots, but this
time taking into account the forces and torques that cause them; this is the
subject of robot dynamics. The associated dynamic equations – also referred
to as the equations of motion – are a set of second-order di↵erential equations
of the form

⌧ = M(✓)✓̈ + h(✓, ✓̇), (8.1)

where ✓ 2 Rn is the vector of joint variables, ⌧ 2 Rn is the vector of joint forces
and torques, M(✓) 2 Rn⇥n is a symmetric positive-definite mass matrix, and
h(✓, ✓̇) 2 Rn are forces that lump together centripetal, Coriolis, gravity, and
friction terms that depend on ✓ and ✓̇. One should not be deceived by the
apparent simplicity of these equations; even for “simple” open chains, e.g., those
with joint axes that are either orthogonal or parallel to each other, M(✓) and
h(✓, ✓̇) can be extraordinarily complex.

Just as a distinction was made between a robot’s forward and inverse kine-
matics, it is also customary to distinguish between a robot’s forward and in-
verse dynamics. The forward problem is the problem of determining the
robot’s acceleration ✓̈ given the state (✓, ✓̇) and the joint forces and torques,

✓̈ = M�1(✓)
⇣
⌧ � h(✓, ✓̇)

⌘
, (8.2)

and the inverse problem is finding the joint forces and torques ⌧ corresponding
to the robot’s state and a desired acceleration, i.e., Equation (8.1).

A robot’s dynamic equations are typically derived in one of two ways: by a
direct application of Newton’s and Euler’s dynamic equations for a rigid body
(often called the Newton–Euler formulation) or by the Lagrangian dy-
namics formulation derived from the kinetic and potential energy of the robot.

269
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The Lagrangian formalism is conceptually elegant and quite e↵ective for robots
with simple structures, e.g., with three or fewer degrees of freedom. The calcula-
tions can quickly become cumbersome for robots with more degrees of freedom,
however. For general open chains, the Newton–Euler formulation leads to e�-
cient recursive algorithms for both the inverse and forward dynamics that can
also be assembled into closed-form analytic expressions for, e.g., the mass matrix
M(✓) and the other terms in the dynamics equation (8.1). The Newton–Euler
formulation also takes advantage of tools we have already developed in this
book.

In this chapter we study both the Lagrangian and Newton–Euler dynamics
formulations for an open-chain robot. While we usually express the dynamics
in terms of the joint space variables ✓, it is sometimes convenient to express it
in terms of the configuration, twist, and rate of change of the twist of the end-
e↵ector. This is the task-space dynamics, studied in Section 8.6. Sometimes
robots are subject to a set of constraints on their motion, such as when the
robot makes contact with a rigid environment. This leads to a formulation of
the constrained dynamics (Section 8.7), whereby the space of joint torques and
forces is divided into a subspace that causes motion of the robot and a subspace
that causes forces against the constraints. The URDF file format for specifying
robot inertial properties is described in Section 8.8. Finally, some practical
issues that arise in the derivation of robot dynamics, such as the e↵ect of motor
gearing and friction, are described in Section 8.9.

8.1 Lagrangian Formulation

8.1.1 Basic Concepts and Motivating Examples

The first step in the Lagrangian formulation of dynamics is to choose a set of
independent coordinates q 2 Rn that describes the system’s configuration. The
coordinates q are called generalized coordinates. Once generalized coordi-
nates have been chosen, these then define the generalized forces f 2 Rn. The
forces f and the coordinate rates q̇ are dual to each other in the sense that the
inner product fTq̇ corresponds to power. A Lagrangian function L(q, q̇) is then
defined as the overall system’s kinetic energy K(q, q̇) minus the potential energy
P(q),

L(q, q̇) = K(q, q̇)� P(q).

The equations of motion can now be expressed in terms of the Lagrangian as
follows:

f =
d

dt

@L
@q̇
� @L
@q

, (8.3)
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x̂
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✓1

✓2

L1

L2

g
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✓2 = ⇡/2m1

m2

Figure 8.1: (Left) A 2R open chain under gravity. (Right) At ✓ = (0,⇡/2).

These equations are also referred to as the Euler–Lagrange equations with
external forces.1 The derivation can be found in dynamics texts.

We illustrate the Lagrangian dynamics formulation through two examples.
In the first example, consider a particle of mass m constrained to move on
a vertical line. The particle’s configuration space is this vertical line, and a
natural choice for a generalized coordinate is the height of the particle, which
we denote by the scalar variable x 2 R. Suppose that the gravitational force mg
acts downward, and an external force f is applied upward. By Newton’s second
law, the equation of motion for the particle is

f �mg = mẍ. (8.4)

We now apply the Lagrangian formalism to derive the same result. The kinetic
energy is mẋ2/2, the potential energy is mgx, and the Lagrangian is

L(x, ẋ) = K(x, ẋ)� P(x) =
1

2
mẋ2 �mgx. (8.5)

The equation of motion is then given by

f =
d

dt

@L
@ẋ
� @L
@x

= mẍ + mg, (8.6)

which matches Equation (8.4).
We now derive the dynamic equations for a planar 2R open chain moving

in the presence of gravity (Figure 8.1). The chain moves in the x̂–ŷ-plane, with
gravity g acting in the �ŷ-direction. Before the dynamics can be derived, the
mass and inertial properties of all the links must be specified. To keep things
simple the two links are modeled as point masses m1 and m2 concentrated at

1
The external force f is zero in the standard form of the Euler–Lagrange equations.
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the ends of each link. The position and velocity of the link-1 mass are then
given by


x1

y1

�
=


L1 cos ✓1
L1 sin ✓1

�
,


ẋ1

ẏ1

�
=


�L1 sin ✓1
L1 cos ✓1

�
✓̇1,

while those of the link-2 mass are given by


x2

y2

�
=


L1 cos ✓1 + L2 cos(✓1 + ✓2)
L1 sin ✓1 + L2 sin(✓1 + ✓2)

�
,


ẋ2

ẏ2

�
=


�L1 sin ✓1 � L2 sin(✓1 + ✓2) �L2 sin(✓1 + ✓2)
L1 cos ✓1 + L2 cos(✓1 + ✓2) L2 cos(✓1 + ✓2)

� 
✓̇1
✓̇2

�
.

We choose the joint coordinates ✓ = (✓1, ✓2) as the generalized coordinates.
The generalized forces ⌧ = (⌧1, ⌧2) then correspond to joint torques (since ⌧T✓̇
corresponds to power). The Lagrangian L(✓, ✓̇) is of the form

L(✓, ✓̇) =
2X

i=1

(Ki � Pi), (8.7)

where the link kinetic energy terms K1 and K2 are

K1 =
1

2
m1(ẋ

2
1 + ẏ2

1) =
1

2
m1L

2
1✓̇

2
1

K2 =
1

2
m2(ẋ

2
2 + ẏ2

2)

=
1

2
m2

⇣
(L2

1 + 2L1L2 cos ✓2 + L2
2)✓̇

2
1 + 2(L2

2 + L1L2 cos ✓2)✓̇1✓̇2 + L2
2✓̇

2
2

⌘
,

and the link potential energy terms P1 and P2 are

P1 = m1gy1 = m1gL1 sin ✓1,

P2 = m2gy2 = m2g(L1 sin ✓1 + L2 sin(✓1 + ✓2)).

The Euler–Lagrange equations (8.3) for this example are of the form

⌧i =
d

dt

@L
@✓̇i
� @L
@✓i

, i = 1, 2. (8.8)

The dynamic equations for the 2R planar chain follow from explicit evaluation
of the right-hand side of (8.8) (we omit the detailed calculations, which are
straightforward but tedious):
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⌧1 =
�
m1L2

1 + m2(L2
1 + 2L1L2 cos ✓2 + L2

2)
�
✓̈1

+ m2(L1L2 cos ✓2 + L2
2)✓̈2 �m2L1L2 sin ✓2(2✓̇1✓̇2 + ✓̇22)

+ (m1 + m2)L1g cos ✓1 + m2gL2 cos(✓1 + ✓2),

⌧2 = m2(L1L2 cos ✓2 + L2
2)✓̈1 + m2L2

2✓̈2 + m2L1L2✓̇21 sin ✓2

+ m2gL2 cos(✓1 + ✓2).

9
>>>>>>>=

>>>>>>>;

(8.9)

We can gather terms together into an equation of the form

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓)| {z }
h(✓,✓̇)

, (8.10)

with

M(✓) =


m1L2

1 + m2(L2
1 + 2L1L2 cos ✓2 + L2

2) m2(L1L2 cos ✓2 + L2
2)

m2(L1L2 cos ✓2 + L2
2) m2L2

2

�
,

c(✓, ✓̇) =


�m2L1L2 sin ✓2(2✓̇1✓̇2 + ✓̇22)

m2L1L2✓̇21 sin ✓2

�
,

g(✓) =


(m1 + m2)L1g cos ✓1 + m2gL2 cos(✓1 + ✓2)

m2gL2 cos(✓1 + ✓2)

�
,

where M(✓) is the symmetric positive-definite mass matrix, c(✓, ✓̇) is the vector
containing the Coriolis and centripetal torques, and g(✓) is the vector containing
the gravitational torques. These reveal that the equations of motion are linear
in ✓̈, quadratic in ✓̇, and trigonometric in ✓. This is true in general for serial
chains containing revolute joints, not just for the 2R robot.

The M(✓)✓̈ + c(✓, ✓̇) terms in Equation (8.10) could have been derived by
writing fi = miai for each point mass, where the accelerations ai are written
in terms of ✓, by di↵erentiating the expressions for (ẋ1, ẏ1) and (ẋ2, ẏ2) given
above:

f1 =

2

4
fx1
fy1
fz1

3

5 = m1

2

4
ẍ1

ÿ1
z̈1

3

5 = m1

2

4
�L1✓̇21c1 � L1✓̈1s1
�L1✓̇21s1 + L1✓̈1c1

0

3

5 , (8.11)

f2 = m2

2

4
�L1✓̇21c1 � L2(✓̇1 + ✓̇2)2c12 � L1✓̈1s1 � L2(✓̈1 + ✓̈2)s12
�L1✓̇21s1 � L2(✓̇1 + ✓̇2)2s12 + L1✓̈1c1 + L2(✓̈1 + ✓̈2)c12

0

3

5 , (8.12)
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where s12 indicates sin(✓1 + ✓2), etc. Defining r11 as the vector from joint 1 to
m1, r12 as the vector from joint 1 to m2, and r22 as the vector from joint 2 to
m2, the moments in world-aligned frames {i} attached to joints 1 and 2 can be
expressed as m1 = r11 ⇥ f1 + r12 ⇥ f2 and m2 = r22 ⇥ f2. (Note that joint 1
must provide torques to move both m1 and m2, but joint 2 only needs to provide
torque to move m2.) The joint torques ⌧1 and ⌧2 are just the third elements of
m1 and m2, i.e., the moments about the ẑi axes out of the page, respectively.

In (x, y) coordinates, the accelerations of the masses are written simply as
second time-derivatives of the coordinates, e.g., (ẍ2, ÿ2). This is because the
x̂-ŷ frame is an inertial frame. The joint coordinates (✓1, ✓2) are not in an
inertial frame, however, so accelerations are expressed as a sum of terms that
are linear in the second derivatives of joint variables, ✓̈, and quadratic of the
first derivatives of joint variables, ✓̇T✓̇, as seen in Equations (8.11) and (8.12).
Quadratic terms containing ✓̇2i are called centripetal terms, and quadratic
terms containing ✓̇i✓̇j , i 6= j, are called Coriolis terms. In other words, ✓̈ = 0
does not mean zero acceleration of the masses, due to the centripetal and Coriolis
terms.

To better understand the centripetal and Coriolis terms, consider the arm
at the configuration (✓1, ✓2) = (0,⇡/2), i.e., cos ✓1 = sin(✓1 + ✓2) = 1, sin ✓1 =
cos(✓1 + ✓2) = 0. Assuming ✓̈ = 0, the acceleration (ẍ2, ÿ2) of m2 from Equa-
tion (8.12) can be written


ẍ2

ÿ2

�
=


�L1✓̇21

�L2✓̇21 � L2✓̇22

�

| {z }
centripetal terms

+


0

�2L2✓̇1✓̇2

�

| {z }
Coriolis terms

.

Figure 8.2 shows the centripetal acceleration acent1 = (�L1✓̇21,�L2✓̇21) when
✓̇2 = 0, the centripetal acceleration acent2 = (0,�L2✓̇22) when ✓̇1 = 0, and the
Coriolis acceleration acor = (0,�2L2✓̇1✓̇2) when both ✓̇1 and ✓̇2 are positive.
As illustrated in Figure 8.2, each centripetal acceleration acenti pulls m2 toward
joint i to keep m2 rotating about the center of the circle defined by joint i.2

Therefore acenti creates zero torque about joint i. The Coriolis acceleration acor

in this example passes through joint 2, so it creates zero torque about joint 2
but it creates negative torque about joint 1; the torque about joint 1 is negative
because m2 gets closer to joint 1 (due to joint 2’s motion). Therefore the inertia
due to m2 about the ẑ1-axis is dropping, meaning that the positive momentum
about joint 1 drops while joint 1’s speed ✓̇1 is constant. Therefore joint 1 must
apply a negative torque, since torque is defined as the rate of change of angular

2
Without this centripetal acceleration, and therefore centripetal force, the mass m2 would

fly o↵ along a tangent to the circle.
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acent1 acent1
acent2

acent2

acor

Figure 8.2: Accelerations of m2 when ✓ = (0,⇡/2) and ✓̈ = 0. (Left) The centripetal
acceleration acent1 = (�L1✓̇

2
1,�L2✓̇

2
1) of m2 when ✓̇2 = 0. (Middle) The centripetal

acceleration acent2 = (0,�L2✓̇
2
2) of m2 when ✓̇1 = 0. (Right) When both joints are

rotating with ✓̇i > 0, the acceleration is the vector sum of acent1, acent2, and the
Coriolis acceleration acor = (0,�2L2✓̇1✓̇2).

momentum. Otherwise ✓̇1 would increase as m2 gets closer to joint 1, just as
a skater’s rotation speed increases as she pulls in her outstretched arms while
doing a spin.

8.1.2 General Formulation

We now describe the Lagrangian dynamics formulation for general n-link open
chains. The first step is to select a set of generalized coordinates ✓ 2 Rn for
the configuration space of the system. For open chains all of whose joints are
actuated, it is convenient and always possible to choose ✓ to be the vector of the
joint values. The generalized forces will be denoted ⌧ 2 Rn. If ✓i is a revolute
joint then ⌧i will correspond to a torque, while if ✓i is a prismatic joint then ⌧i
will correspond to a force.

Once ✓ has been chosen and the generalized forces ⌧ identified, the next step
is to formulate the Lagrangian L(✓, ✓̇) as follows:

L(✓, ✓̇) = K(✓, ✓̇)� P(✓), (8.13)

where K(✓, ✓̇) is the kinetic energy and P(✓) is the potential energy of the overall
system. For rigid-link robots the kinetic energy can always be written in the
form

K(✓, ✓̇) =
1

2

nX

i=1

nX

j=1

mij(✓)✓̇i✓̇j =
1

2
✓̇TM(✓)✓̇, (8.14)

where mij(✓) is the (i, j)th element of the n ⇥ n mass matrix M(✓); a con-
structive proof of this assertion is provided when we examine the Newton–Euler
formulation.
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The dynamic equations are analytically obtained by evaluating the right-
hand side of

⌧i =
d

dt

@L
@✓̇i
� @L
@✓i

, i = 1, . . . , n. (8.15)

With the kinetic energy expressed as in Equation (8.14), the dynamics can be
written explicitly as

⌧i =
nX

j=1

mij(✓)✓̈j +
nX

j=1

nX

k=1

�ijk(✓)✓̇j ✓̇k +
@P
@✓i

, i = 1, . . . , n, (8.16)

where the �ijk(✓), known as the Christo↵el symbols of the first kind, are
defined as follows:

�ijk(✓) =
1

2

✓
@mij

@✓k
+
@mik

@✓j
� @mjk

@✓i

◆
. (8.17)

This shows that the Christo↵el symbols, which generate the Coriolis and cen-
tripetal terms c(✓, ✓̇), are derived from the mass matrix M(✓).

As we have already seen, the equations (8.16) are often gathered together in
the form

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓) or M(✓)✓̈ + h(✓, ✓̇),

where g(✓) is simply @P/@✓.
We can see explicitly that the Coriolis and centripetal terms are quadratic

in the velocity by using the form

⌧ = M(✓)✓̈ + ✓̇T�(✓)✓̇ + g(✓), (8.18)

where �(✓) is an n⇥n⇥n matrix and the product ✓̇T�(✓)✓̇ should be interpreted
as follows:

✓̇T�(✓)✓̇ =

2

6664

✓̇T�1(✓)✓̇
✓̇T�2(✓)✓̇

...
✓̇T�n(✓)✓̇

3

7775
,

where �i(✓) is an n⇥ n matrix with (j, k)th entry �ijk.
It is also common to see the dynamics written as

⌧ = M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓),
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where C(✓, ✓̇) 2 Rn⇥n is called the Coriolis matrix, with (i, j)th entry

cij(✓, ✓̇) =
nX

k=1

�ijk(✓)✓̇k. (8.19)

The Coriolis matrix is used to prove the following passivity property (Propo-
sition 8.1), which can be used to prove the stability of certain robot control
laws, as we will see in Section 11.4.2.2.

Proposition 8.1. The matrix Ṁ(✓) � 2C(✓, ✓̇) 2 Rn⇥n is skew symmetric,
where M(✓) 2 Rn⇥n is the mass matrix, Ṁ(✓) its time derivative, and C(✓, ✓̇) 2
Rn⇥n is the Coriolis matrix as defined in Equation (8.19).

Proof. The (i, j)th component of Ṁ � 2C is

ṁij(✓)� 2cij(✓, ✓̇) =
nX

k=1

@mij

@✓k
✓̇k �

@mij

@✓k
✓̇k �

@mik

@✓j
✓̇k +

@mkj

@✓i
✓̇k

=
nX

k=1

@mkj

@✓i
✓̇k �

@mik

@✓j
✓̇k.

By switching the indices i and j, it can be seen that

ṁji(✓)� 2cji(✓, ✓̇) = �(ṁij(✓)� 2cij(✓, ✓̇)),

thus proving that (Ṁ � 2C)T = �(Ṁ � 2C) as claimed.

8.1.3 Understanding the Mass Matrix

The kinetic energy 1
2 ✓̇

TM(✓)✓̇ is a generalization of the familiar expression
1
2mvTv for a point mass. The fact that the mass matrix M(✓) is positive

definite, meaning that ✓̇TM(✓)✓̇ > 0 for all ✓̇ 6= 0, is a generalization of the fact
that the mass of a point mass is always positive, m > 0. In both cases, if the
velocity is nonzero, the kinetic energy must be positive.

On the one hand, for a point mass with dynamics expressed in Cartesian
coordinates as f = mẍ, the mass is independent of the direction of acceleration,
and the acceleration ẍ is always “parallel” to the force, in the sense that ẍ
is a scalar multiple of f . A mass matrix M(✓), on the other hand, presents a
di↵erent e↵ective mass in di↵erent acceleration directions, and ✓̈ is not generally
a scalar multiple of ⌧ even when ✓̇ = 0. To visualize the direction dependence
of the e↵ective mass, we can map a unit ball of joint accelerations {✓̈ | ✓̈T✓̈ = 1}
through the mass matrix M(✓) to generate a joint force–torque ellipsoid when
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✓̈1

✓̈2

✓̈1

✓̈2

⌧1

⌧2

⌧1

⌧2

M(✓) =


3 1
1 1

�

✓1 = 0�

✓2 = 90�

✓1 = 0�

✓2 = 150�

M�1(✓) =


0.5 �0.5

�0.5 1.5

�

M(✓) =


1.27 0.13
0.13 1

�

M�1(✓) =


0.8 �0.11

�0.11 1.01

�

Figure 8.3: (Bold lines) A unit ball of accelerations in ✓̈ maps through the mass
matrix M(✓) to a torque ellipsoid that depends on the configuration of the 2R arm.
These torque ellipsoids may be interpreted as mass ellipsoids. The mapping is shown
for two arm configurations: (0�, 90�) and (0�, 150�). (Dotted lines) A unit ball in ⌧
maps through M�1(✓) to an acceleration ellipsoid.

the mechanism is at rest (✓̇ = 0). An example is shown in Figure 8.3 for
the 2R arm of Figure 8.1, with L1 = L2 = m1 = m2 = 1, at two di↵erent
joint configurations: (✓1, ✓2) = (0�, 90�) and (✓1, ✓2) = (0�, 150�). The torque
ellipsoid can be interpreted as a direction-dependent mass ellipsoid: the same
joint acceleration magnitude k✓̈k requires di↵erent joint torque magnitudes k⌧k
depending on the acceleration direction. The directions of the principal axes
of the mass ellipsoid are given by the eigenvectors vi of M(✓) and the lengths
of the principal semi-axes are given by the corresponding eigenvalues �i. The
acceleration ✓̈ is only a scalar multiple of ⌧ when ⌧ is along a principal axis of
the ellipsoid.

It is easier to visualize the mass matrix if it is represented as an e↵ective mass
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of the end-e↵ector, since it is possible to feel this mass directly by grabbing and
moving the end-e↵ector. If you grabbed the endpoint of the 2R robot, depending
on the direction you applied force to it, how massy would it feel? Let us denote
the e↵ective mass matrix at the end-e↵ector as ⇤(✓), and the velocity of the
end-e↵ector as V = (ẋ, ẏ). We know that the kinetic energy of the robot must
be the same regardless of the coordinates we use, so

1

2
✓̇TM(✓)✓̇ =

1

2
V T⇤(✓)V. (8.20)

Assuming the Jacobian J(✓) satisfying V = J(✓)✓̇ is invertible, Equation (8.20)
can be rewritten as follows:

V T⇤V = (J�1V )TM(J�1V )

= V T(J�TMJ�1)V.

In other words, the end-e↵ector mass matrix is

⇤(✓) = J�T(✓)M(✓)J�1(✓). (8.21)

Figure 8.4 shows the end-e↵ector mass ellipsoids, with principal-axis directions
given by the eigenvectors of ⇤(✓) and principal semi-axis lengths given by its
eigenvalues, for the same two 2R robot configurations as in Figure 8.3. The
endpoint acceleration (ẍ, ÿ) is a scalar multiple of the force (fx, fy) applied at
the endpoint only if the force is along a principal axis of the ellipsoid. Unless
⇤(✓) is of the form cI, where c > 0 is a scalar and I is the identity matrix, the
mass at the endpoint feels di↵erent from a point mass.

The change in apparent endpoint mass as a function of the configuration of
the robot is an issue for robots used as haptic displays. One way to reduce the
sensation of a changing mass to the user is to make the mass of the links as
small as possible.

Note that the ellipsoidal interpretations of the relationship between forces
and accelerations defined here are only relevant at zero velocity, where there are
no Coriolis or centripetal terms.

8.1.4 Lagrangian Dynamics vs. Newton–Euler Dynamics

In the rest of this chapter, we focus on the Newton–Euler recursive method
for calculating robot dynamics. Using the tools we have developed so far, the
Newton–Euler formulation allows computationally e�cient computer implemen-
tation, particularly for robots with many degrees of freedom, without the need
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ẍ

ÿ

ẍ

ÿ

fx

fy

fx

fy

✓1 = 0�

✓2 = 90�
⇤(✓) =


1 0
0 2

�

⇤�1(✓) =


1 0
0 0.5

�

⇤(✓) =


4 �1.73

�1.73 2

�

⇤�1(✓) =


0.4 0.35
0.35 0.8

�

✓1 = 0�

✓2 = 150�

Figure 8.4: (Bold lines) A unit ball of accelerations in (ẍ, ÿ) maps through the
end-e↵ector mass matrix ⇤(✓) to an end-e↵ector force ellipsoid that depends on the
configuration of the 2R arm. For the configuration (✓1, ✓2) = (0�, 90�), a force in the
fy-direction exactly feels both masses m1 and m2, while a force in the fx-direction
feels only m2. (Dotted lines) A unit ball in f maps through ⇤�1(✓) to an acceleration
ellipsoid. The ⇥ symbols for (✓1, ✓2) = (0�, 150�) indicate an example endpoint force
(fx, fy) = (1, 0) and its corresponding acceleration (ẍ, ÿ) = (0.4, 0.35), showing that
the force and acceleration at the endpoint are not aligned.

for di↵erentiation. The resulting equations of motion are, and must be, identical
with those derived using the energy-based Lagrangian method.

The Newton–Euler method builds on the dynamics of a single rigid body, so
we begin there.
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8.2 Dynamics of a Single Rigid Body

8.2.1 Classical Formulation

Consider a rigid body consisting of a number of rigidly connected point masses,
where point mass i has mass mi and the total mass is m =

P
i mi. Let ri =

(xi, yi, zi) be the fixed location of mass i in a body frame {b}, where the origin
of this frame is the unique point such that

X

i

miri = 0.

This point is known as the center of mass. If some other point happens to
be inconveniently chosen as the origin, then the frame {b} should be moved
to the center of mass at (1/m)

P
i miri (in the inconvenient frame) and the ri

recalculated in the center-of-mass frame.
Now assume that the body is moving with a body twist Vb = (!b, vb), and

let pi(t) be the time-varying position of mi, initially located at ri, in the inertial
frame {b}. Then

ṗi = vb + !b ⇥ pi,

p̈i = v̇b +
d

dt
!b ⇥ pi + !b ⇥

d

dt
pi

= v̇b + !̇b ⇥ pi + !b ⇥ (vb + !b ⇥ pi).

Substituting ri for pi on the right-hand side and using our skew-symmetric
notation (see Equation (3.30)), we get

p̈i = v̇b + [!̇b]ri + [!b]vb + [!b]
2ri.

Taking as a given that fi = mip̈i for a point mass, the force acting on mi is

fi = mi(v̇b + [!̇b]ri + [!b]vb + [!b]
2ri),

which implies a moment
mi = [ri]fi.

The total force and moment acting on the body is expressed as the wrench Fb:

Fb =


mb

fb

�
=

 P
i miP
i fi

�
.

To simplify the expressions for fb and mb, keep in mind that
P

i miri = 0
(and therefore

P
i mi[ri] = 0) and, for a, b 2 R3, [a] = �[a]T, [a]b = �[b]a, and
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[a][b] = ([b][a])T. Focusing on the linear dynamics,

fb =
X

i

mi(v̇b + [!̇b]ri + [!b]vb + [!b]
2ri)

=
X

i

mi(v̇b + [!b]vb)�
������*

0X

i

mi[ri]!̇b +
⇠⇠⇠⇠⇠⇠⇠⇠:0X

i

mi[ri][!b]!b

=
X

i

mi(v̇b + [!b]vb)

= m(v̇b + [!b]vb). (8.22)

The velocity product term m[!b]vb arises from the fact that, for !b 6= 0, a
constant vb 6= 0 corresponds to a changing linear velocity in an inertial frame.

Now focusing on the rotational dynamics,

mb =
X

i

mi[ri](v̇b + [!̇b]ri + [!b]vb + [!b]
2ri)

=

������*
0X

i

mi[ri]v̇b +
⇠⇠⇠⇠⇠⇠⇠⇠:0X

i

mi[ri][!b]vb

+
X

i

mi[ri]([!̇b]ri + [!b]
2ri)

=
X

i

mi

�
�[ri]

2!̇b � [ri]
T[!b]

T[ri]!b

�

=
X

i

mi

�
�[ri]

2!̇b � [!b][ri]
2!b

�

=

 
�
X

i

mi[ri]
2

!
!̇b + [!b]

 
�
X

i

mi[ri]
2

!
!b

= Ib!̇b + [!b]Ib!b, (8.23)

where Ib = �
P

i mi[ri]2 2 R3⇥3 is the body’s rotational inertia matrix.
Equation (8.23) is known as Euler’s equation for a rotating rigid body.

In Equation (8.23), note the presence of a term linear in the angular accel-
eration, Ib!̇b, and a term quadratic in the angular velocities, [!b]Ib!b, just as
we saw for the mechanisms in Section 8.1. Also, Ib is symmetric and positive
definite, just like the mass matrix for a mechanism, and the rotational kinetic
energy is given by the quadratic

K =
1

2
!T
b Ib!b.
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One di↵erence is that Ib is constant whereas the mass matrix M(✓) changes
with the configuration of the mechanism.

Writing out the individual entries of Ib, we get

Ib =

2

4

P
mi(y2

i + z2i ) �
P

mixiyi �
P

mixizi
�
P

mixiyi
P

mi(x2
i + z2i ) �

P
miyizi

�
P

mixizi �
P

miyizi
P

mi(x2
i + y2

i )

3

5

=

2

4
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

3

5 .

The summations can be replaced by volume integrals over the body B, using the
di↵erential volume element dV , with the point masses mi replaced by a mass
density function ⇢(x, y, z):

Ixx =

Z

B
(y2 + z2)⇢(x, y, z) dV

Iyy =

Z

B
(x2 + z2)⇢(x, y, z) dV

Izz =

Z

B
(x2 + y2)⇢(x, y, z) dV

Ixy = �
Z

B
xy⇢(x, y, z) dV

Ixz = �
Z

B
xz⇢(x, y, z) dV

Iyz = �
Z

B
yz⇢(x, y, z) dV.

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

(8.24)

If the body has uniform density, Ib is determined exclusively by the shape of
the rigid body (see Figure 8.5).

Given an inertia matrix Ib, the principal axes of inertia are given by
the eigenvectors and eigenvalues of Ib. Let v1, v2, v3 be the eigenvectors of
Ib and �1,�2,�3 be the corresponding eigenvalues. Then the principal axes
of inertia are in the directions of v1, v2, v3, and the scalar moments of inertia
about these axes, the principal moments of inertia, are �1,�2,�3 > 0. One
principal axis maximizes the moment of inertia among all axes passing through
the center of mass, and another minimizes the moment of inertia. For bodies
with symmetry, often the principal axes of inertia are apparent. They may not
be unique; for a uniform-density solid sphere, for example, any three orthogonal
axes intersecting at the center of mass constitute a set of principal axes, and
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c

rectangular parallelepiped: circular cylinder: ellipsoid:
volume = hlw, volume = ⇡r2h, volume = 4⇡abc/3,

Ixx = m(w2 + h2)/12, Ixx = m(3r2 + h2)/12, Ixx = m(b2 + c2)/5,
Iyy = m(`2 + h2)/12, Iyy = m(3r2 + h2)/12, Iyy = m(a2 + c2)/5,
Izz = m(`2 + w2)/12 Izz = mr2/2 Izz = m(a2 + b2)/5

Figure 8.5: The principal axes and the inertia about the principal axes for uniform-
density bodies of mass m. Note that the x̂ and ŷ principal axes of the cylinder are not
unique.

the minimum principal moment of inertia is equal to the maximum principal
moment of inertia.

If the principal axes of inertia are aligned with the axes of {b}, the o↵-
diagonal terms of Ib are all zero, and the eigenvalues are the scalar moments of
inertia Ixx, Iyy, and Izz about the x̂-, ŷ-, and ẑ-axes, respectively. In this case,
the equations of motion (8.23) simplify to

mb =

2

4
Ixx!̇x + (Izz � Iyy)!y!z

Iyy!̇y + (Ixx � Izz)!x!z

Izz!̇z + (Iyy � Ixx)!x!y

3

5 , (8.25)

where !b = (!x,!y,!z). When possible, we choose the axes of {b} to be aligned
with the principal axes of inertia, in order to reduce the number of nonzero
entries in Ib and to simplify the equations of motion.

Examples of common uniform-density solid bodies, their principal axes of
inertia, and the principal moments of inertia obtained by solving the inte-
grals (8.24), are given in Figure 8.5.

An inertia matrix Ib can be expressed in a rotated frame {c} described by
the rotation matrix Rbc. Denoting this inertia matrix as Ic, and knowing that
the kinetic energy of the rotating body is independent of the chosen frame, we
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have

1

2
!T
c Ic!c =

1

2
!T
b Ib!b

=
1

2
(Rbc!c)

TIb(Rbc!c)

=
1

2
!T
c (RT

bcIbRbc)!c.

In other words,
Ic = RT

bcIbRbc. (8.26)

If the axes of {b} are not aligned with the principal axes of inertia then we can
diagonalize the inertia matrix by expressing it instead in the rotated frame {c},
where the columns of Rbc correspond to the eigenvectors of Ib.

Sometimes it is convenient to represent the inertia matrix in a frame at a
point not at the center of mass of the body, for example at a joint. Steiner’s
theorem can be stated as follows.

Theorem 8.2. The inertia matrix Iq about a frame aligned with {b}, but at a
point q = (qx, qy, qz) in {b}, is related to the inertia matrix Ib calculated at the
center of mass by

Iq = Ib + m(qTqI � qqT), (8.27)

where I is the 3⇥ 3 identity matrix and m is the mass of the body.

Steiner’s theorem is a more general statement of the parallel-axis theorem,
which states that the scalar inertia Id about an axis parallel to, but a distance
d from, an axis through the center of mass is related to the scalar inertia Icm

about the axis through the center of mass by

Id = Icm + md2. (8.28)

Equations (8.26) and (8.27) are useful for calculating the inertia of a rigid
body consisting of component rigid bodies. First we calculate the inertia matri-
ces of the n component bodies in terms of frames at their individual centers of
mass. Then we choose a common frame {common} (e.g., at the center of mass
of the composite rigid body) and use Equations (8.26) and (8.27) to express each
inertia matrix in this common frame. Once the individual inertia matrices are
expressed in {common}, they can be summed to get the inertia matrix Icommon

for the composite rigid body.
In the case of motion confined to the x̂–ŷ-plane, where !b = (0, 0,!z) and

the inertia of the body about the ẑ-axis through the center of mass is given
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by the scalar Izz, the spatial rotational dynamics (8.23) reduces to the planar
rotational dynamics

mz = Izz!̇z,

and the rotational kinetic energy is

K =
1

2
Izz!

2
z .

8.2.2 Twist–Wrench Formulation

The linear dynamics (8.22) and the rotational dynamics (8.23) can be written
in the following combined form:


mb

fb

�
=


Ib 0
0 mI

� 
!̇b

v̇b

�
+


[!b] 0
0 [!b]

� 
Ib 0
0 mI

� 
!b

vb

�
, (8.29)

where I is the 3 ⇥ 3 identity matrix. With the benefit of hindsight, and also
making use of the fact that [v]v = v ⇥ v = 0 and [v]T = �[v], we can write
Equation (8.29) in the following equivalent form:


mb

fb

�
=


Ib 0
0 mI

� 
!̇b

v̇b

�
+


[!b] [vb]
0 [!b]

� 
Ib 0
0 mI

� 
!b

vb

�

=


Ib 0
0 mI

� 
!̇b

v̇b

�
�


[!b] 0
[vb] [!b]

�T  Ib 0
0 mI

� 
!b

vb

�
. (8.30)

Written this way, each term can now be identified with six-dimensional spa-
tial quantities as follows:

(a) The vectors (!b, vb) and (mb, fb) can be respectively identified with the
body twist Vb and body wrench Fb,

Vb =


!b

vb

�
, Fb =


mb

fb

�
. (8.31)

(b) The spatial inertia matrix Gb 2 R6⇥6 is defined as

Gb =


Ib 0
0 mI

�
. (8.32)

As an aside, the kinetic energy of the rigid body can be expressed in terms
of the spatial inertia matrix as

kinetic energy =
1

2
!T
b Ib!b +

1

2
mvTb vb =

1

2
VT
b GbVb. (8.33)
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(c) The spatial momentum Pb 2 R6 is defined as

Pb =


Ib!b

mvb

�
=


Ib 0
0 mI

� 
!b

vb

�
= GbVb. (8.34)

Observe that the term involving Pb in Equation (8.30) is left-multiplied by
the matrix

�


[!b] 0
[vb] [!b]

�T
. (8.35)

We now explain the origin and geometric significance of this matrix. First, recall
that the cross product of two vectors !1,!2 2 R3 can be calculated, using the
skew-symmetric matrix notation, as follows:

[!1 ⇥ !2] = [!1][!2]� [!2][!1]. (8.36)

The matrix in (8.35) can be thought of as a generalization of the cross-product
operation to six-dimensional twists. Specifically, given two twists V1 = (!1, v1)
and V2 = (!2, v2), we perform a calculation analogous to (8.36):

[V1][V2]� [V2][V1] =


[!1] v1
0 0

� 
[!2] v2
0 0

�
�


[!2] v2
0 0

� 
[!1] v1
0 0

�

=


[!1][!2]� [!2][!1] [!1]v2 � [!2]v1

0 0

�

=


[!0] v0

0 0

�
,

which can be written more compactly in vector form as

!0

v0

�
=


[!1] 0
[v1] [!1]

� 
!2

v2

�
.

This generalization of the cross product to two twists V1 and V2 is called the
Lie bracket of V1 and V2.

Definition 8.3. Given two twists V1 = (!1, v1) and V2 = (!2, v2), the Lie
bracket of V1 and V2, written either as [adV1 ]V2 or adV1(V2), is defined as
follows: 

[!1] 0
[v1] [!1]

� 
!2

v2

�
= [adV1 ]V2 = adV1(V2) 2 R6, (8.37)

where

[adV ] =


[!] 0
[v] [!]

�
2 R6⇥6. (8.38)
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Definition 8.4. Given a twist V = (!, v) and a wrench F = (m, f), define the
mapping

adT
V (F) = [adV ]TF =


[!] 0
[v] [!]

�T 
m
f

�
=


�[!]m� [v]f
�[!]f

�
. (8.39)

Using the notation and definitions above, the dynamic equations for a single
rigid body can now be written as

Fb = GbV̇b � adT
Vb

(Pb)

= GbV̇b � [adVb ]
TGbVb. (8.40)

Note the analogy between Equation (8.40) and the moment equation for a ro-
tating rigid body:

mb = Ib!̇b � [!b]
TIb!b. (8.41)

Equation (8.41) is simply the rotational component of (8.40).

8.2.3 Dynamics in Other Frames

The derivation of the dynamic equations (8.40) relies on the use of a center-of-
mass frame {b}. It is straightforward to express the dynamics in other frames,
however. Let’s call one such frame {a}.

Since the kinetic energy of the rigid body must be independent of the frame
of representation,

1

2
VT
a GaVa =

1

2
VT
b GbVb

=
1

2
([AdTba ]Va)

TGb[AdTba ]Va

=
1

2
VT
a [AdTba ]TGb[AdTba ]| {z }

Ga

Va;

for the adjoint representation Ad (see Definition 3.20). In other words, the
spatial inertia matrix Ga in {a} is related to Gb by

Ga = [AdTba ]TGb[AdTba ]. (8.42)

This is a generalization of Steiner’s theorem.
Using the spatial inertia matrix Ga, the equations of motion (8.40) in the

{b} frame can be expressed equivalently in the {a} frame as

Fa = GaV̇a � [adVa ]TGaVa, (8.43)
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where Fa and Va are the wrench and twist written in the {a} frame. (See
Exercise 8.3.) Thus the form of the equations of motion is independent of the
frame of representation.

8.3 Newton–Euler Inverse Dynamics

We now consider the inverse dynamics problem for an n-link open chain con-
nected by one-dof joints. Given the joint positions ✓ 2 Rn, velocities ✓̇ 2 Rn,
and accelerations ✓̈ 2 Rn, the objective is to calculate the right-hand side of the
dynamics equation

⌧ = M(✓)✓̈ + h(✓, ✓̇).

The main result is a recursive inverse dynamics algorithm consisting of a forward
and a backward iteration stage. In the former, the positions, velocities, and
accelerations of each link are propagated from the base to the tip while in
the backward iterations the forces and moments experienced by each link are
propagated from the tip to the base.

8.3.1 Derivation

A body-fixed reference frame {i} is attached to the center of mass of each link
i, i = 1, . . . , n. The base frame is denoted {0}, and a frame at the end-e↵ector
is denoted {n + 1}. This frame is fixed in {n}.

When the manipulator is at the home position, with all joint variables zero,
we denote the configuration of frame {j} in {i} as Mi,j 2 SE(3), and the
configuration of {i} in the base frame {0} using the shorthand Mi = M0,i.
With these definitions, Mi�1,i and Mi,i�1 can be calculated as

Mi�1,i = M�1
i�1Mi and Mi,i�1 = M�1

i Mi�1.

The screw axis for joint i, expressed in the link frame {i}, is Ai. This same
screw axis is expressed in the space frame {0} as Si, where the two are related
by

Ai = AdM�1
i

(Si).

Defining Ti,j 2 SE(3) to be the configuration of frame {j} in {i} for arbitrary
joint variables ✓ then Ti�1,i(✓i), the configuration of {i} relative to {i�1} given
the joint variable ✓i, and Ti,i�1(✓i) = T�1

i�1,i(✓i) are calculated as

Ti�1,i(✓i) = Mi�1,ie
[Ai]✓i and Ti,i�1(✓i) = e�[Ai]✓iMi,i�1.

We further adopt the following notation:
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(a) The twist of link frame {i}, expressed in frame-{i} coordinates, is denoted
Vi = (!i, vi).

(b) The wrench transmitted through joint i to link frame {i}, expressed in
frame-{i} coordinates, is denoted Fi = (mi, fi).

(c) Let Gi 2 R6⇥6 denote the spatial inertia matrix of link i, expressed relative
to link frame {i}. Since we are assuming that all link frames are situated
at the link center of mass, Gi has the block-diagonal form

Gi =


Ii 0
0 miI

�
, (8.44)

where Ii denotes the 3⇥ 3 rotational inertia matrix of link i and mi is the
link mass.

With these definitions, we can recursively calculate the twist and acceleration
of each link, moving from the base to the tip. The twist Vi of link i is the sum
of the twist of link i � 1, but expressed in {i}, and the added twist due to the
joint rate ✓̇i:

Vi = Ai✓̇i + [AdTi,i�1 ]Vi�1. (8.45)

The accelerations V̇i can also be found recursively. Taking the time derivative
of Equation (8.45), we get

V̇i = Ai✓̈i + [AdTi,i�1 ]V̇i�1 +
d

dt

�
[AdTi,i�1 ]

�
Vi�1. (8.46)

To calculate the final term in this equation, we express Ti,i�1 and Ai as

Ti,i�1 =


Ri,i�1 p

0 1

�
and Ai =


!
v

�
.

From the fact Ṫi,i�1T
�1
i,i�1 = �[Ai✓̇i], we have

Ṙi,i�1 = �[!✓̇i]Ri,i�1, ṗ = �[!✓̇i]p� v✓̇i.
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Then

d

dt
([AdTi,i�1 ])Vi�1

=
d

dt


Ri,i�1 0

[p]Ri,i�1 Ri,i�1

�
Vi�1

=


�[!✓̇i]Ri,i�1 0

[�[!✓̇i]p� v✓̇i]Ri,i�1 � [p][!✓̇i]Ri,i�1 �[!✓̇i]Ri,i�1

�
Vi�1

=


�[!✓̇i] 0
�[v✓̇i] �[!✓̇i]

�

| {z }
�[adAi✓̇i

]


Ri,i�1 0

[p]Ri,i�1 Ri,i�1

�

| {z }
[AdTi,i�1 ]

Vi�1

= �[adAi✓̇i
]Vi

= [adVi ]Ai✓̇i,

where the transition from the second equality to the third follows from the
Jacobi identity a ⇥ (b ⇥ c) + b ⇥ (c ⇥ a) + c ⇥ (a ⇥ b) = 0 for all a, b, c 2 R3,
and the transition from the fourth equality to the fifth follows from the identity
[adV1 ]V2 = �[adV2 ]V1. Substituting this result into Equation (8.46), we get

V̇i = Ai✓̈i + [AdTi,i�1 ]V̇i�1 + [adVi ]Ai✓̇i, (8.47)

i.e., the acceleration of link i is the sum of three components: a component due
to the joint acceleration ✓̈i, a component due to the acceleration of link i � 1
expressed in {i}, and a velocity-product component.

Once we have determined all the link twists and accelerations moving out-
ward from the base, we can calculate the joint torques or forces by moving
inward from the tip. The rigid-body dynamics (8.40) tells us the total wrench
that acts on link i given Vi and V̇i. Furthermore, the total wrench acting on
link i is the sum of the wrench Fi transmitted through joint i and the wrench
applied to the link through joint i + 1 (or, for link n, the wrench applied to the
link by the environment at the end-e↵ector frame {n + 1}), expressed in the
frame i. Therefore, we have the equality

GiV̇i � adT
Vi

(GiVi) = Fi �AdT
Ti+1,i

(Fi+1); (8.48)

see Figure 8.6. Solving from the tip toward the base, at each link i we solve
for the only unknown in Equation (8.48): Fi. Since joint i has only one degree
of freedom, five dimensions of the six-vector Fi are provided “for free” by the
structure of the joint, and the actuator only has to provide the scalar force or
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Fi

V̇i

Vi

{i}

� AdT
Ti+1,i

(Fi+1)

join
 axis i

t

Figure 8.6: Free-body diagram illustrating the moments and forces exerted on link
i.

torque in the direction of the joint’s screw axis:

⌧i = FT
i Ai. (8.49)

Equation (8.49) provides the torques required at each joint, solving the inverse
dynamics problem.

8.3.2 Newton-Euler Inverse Dynamics Algorithm

Initialization Attach a frame {0} to the base, frames {1} to {n} to the centers
of mass of links {1} to {n}, and a frame {n+1} at the end-e↵ector, fixed in the
frame {n}. Define Mi,i�1 to be the configuration of {i� 1} in {i} when ✓i = 0.
Let Ai be the screw axis of joint i expressed in {i}, and Gi be the 6⇥ 6 spatial
inertia matrix of link i. Define V0 to be the twist of the base frame {0} expressed
in {0} coordinates. (This quantity is typically zero.) Let g 2 R3 be the gravity
vector expressed in base-frame coordinates, and define V̇0 = (!̇0, v̇0) = (0,�g).
(Gravity is treated as an acceleration of the base in the opposite direction.)
Define Fn+1 = Ftip = (mtip, ftip) to be the wrench applied to the environment
by the end-e↵ector, expressed in the end-e↵ector frame {n + 1}.

Forward iterations Given ✓, ✓̇, ✓̈, for i = 1 to n do

Ti,i�1 = e�[Ai]✓iMi,i�1, (8.50)

Vi = AdTi,i�1(Vi�1) + Ai✓̇i, (8.51)

V̇i = AdTi,i�1(V̇i�1) + adVi(Ai)✓̇i + Ai✓̈i. (8.52)
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Backward iterations For i = n to 1 do

Fi = AdT
Ti+1,i

(Fi+1) + GiV̇i � adT
Vi

(GiVi), (8.53)

⌧i = FT
i Ai. (8.54)

8.4 Dynamic Equations in Closed Form

In this section we show how the equations in the recursive inverse dynamics
algorithm can be organized into a closed-form set of dynamics equations ⌧ =
M(✓)✓̈ + c(✓, ✓̇) + g(✓).

Before doing so, we prove our earlier assertion that the total kinetic energy
K of the robot can be expressed as K = 1

2 ✓̇
TM(✓)✓̇. We do so by noting that K

can be expressed as the sum of the kinetic energies of each link:

K =
1

2

nX

i=1

VT
i GiVi, (8.55)

where Vi is the twist of link frame {i} and Gi is the spatial inertia matrix
of link i as defined by Equation (8.32) (both are expressed in link-frame-{i}
coordinates). Let T0i(✓1, . . . , ✓i) denote the forward kinematics from the base
frame {0} to link frame {i}, and let Jib(✓) denote the body Jacobian obtained
from T�1

0i Ṫ0i. Note that Jib as defined is a 6⇥ i matrix; we turn it into a 6⇥ n
matrix by filling in all entries of the last n � i columns with zeros. With this
definition of Jib, we can write

Vi = Jib(✓)✓̇, i = 1, . . . , n.

The kinetic energy can then be written

K =
1

2
✓̇T
 

nX

i=1

JT
ib(✓)GiJib(✓)

!
✓̇. (8.56)

The term inside the parentheses is precisely the mass matrix M(✓):

M(✓) =
nX

i=1

JT
ib(✓)GiJib(✓). (8.57)

We now return to the original task of deriving a closed-form set of dynamic
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equations. We start by defining the following stacked vectors:

V =

2

64
V1
...

Vn

3

75 2 R6n, (8.58)

F =

2

64
F1
...

Fn

3

75 2 R6n. (8.59)

Further, define the following matrices:

A =

2

6664

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · · · · An

3

7775
2 R6n⇥n, (8.60)

G =

2

6664

G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 · · · · · · Gn

3

7775
2 R6n⇥6n, (8.61)

[adV ] =

2

6664

[adV1 ] 0 · · · 0
0 [adV2 ] · · · 0
...

...
. . .

...
0 · · · · · · [adVn ]

3

7775
2 R6n⇥6n, (8.62)

⇥
adA✓̇

⇤
=

2

6664

[adA1✓̇1
] 0 · · · 0

0 [adA2✓̇2
] · · · 0

...
...

. . .
...

0 · · · · · · [adAn✓̇n
]

3

7775
2 R6n⇥6n, (8.63)

W(✓) =

2

666664

0 0 · · · 0 0
[AdT21 ] 0 · · · 0 0

0 [AdT32 ] · · · 0 0
...

...
. . .

...
...

0 0 · · ·
⇥
AdTn,n�1

⇤
0

3

777775
2 R6n⇥6n.(8.64)

We write W(✓) to emphasize the dependence of W on ✓. Finally, define the
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following stacked vectors:

Vbase =

2

6664

AdT10(V0)
0
...
0

3

7775
2 R6n, (8.65)

V̇base =

2

6664

AdT10(V̇0)
0
...
0

3

7775
2 R6n, (8.66)

Ftip =

2

6664

0
...
0

AdT
Tn+1,n

(Fn+1)

3

7775
2 R6n. (8.67)

Note that A 2 R6n⇥n and G 2 R6n⇥6n are constant block-diagonal matrices,
in which A contains only the kinematic parameters while G contains only the
mass and inertial parameters for each link.

With the above definitions, our earlier recursive inverse dynamics algorithm
can be assembled into the following set of matrix equations:

V = W(✓)V + A✓̇ + Vbase, (8.68)

V̇ = W(✓)V̇ + A✓̈ � [adA✓̇](W(✓)V + Vbase) + V̇base, (8.69)

F = WT(✓)F + GV̇ � [adV ]TGV + Ftip, (8.70)

⌧ = ATF . (8.71)

The matrix W(✓) has the property that Wn(✓) = 0 (such a matrix is said to be
nilpotent of order n), and one consequence verifiable through direct calculation
is that (I�W(✓))�1 = I+W(✓)+· · ·+Wn�1(✓). Defining L(✓) = (I�W(✓))�1,
it can further be verified via direct calculation that

L(✓) =

2

666664

I 0 0 · · · 0
[AdT21 ] I 0 · · · 0
[AdT31 ] [AdT32 ] I · · · 0

...
...

...
. . .

...
[AdTn1 ] [AdTn2 ] [AdTn3 ] · · · I

3

777775
2 R6n⇥6n. (8.72)

We write L(✓) to emphasize the dependence of L on ✓. The earlier matrix
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equations can now be reorganized as follows:

V = L(✓)
⇣
A✓̇ + Vbase

⌘
, (8.73)

V̇ = L(✓)
⇣
A✓̈ � [adA✓̇]W(✓)V � [adA✓̇]Vbase + V̇base

⌘
, (8.74)

F = LT(✓)
⇣
GV̇ � [adV ]TGV + Ftip

⌘
, (8.75)

⌧ = ATF . (8.76)

If the robot applies an external wrench Ftip at the end-e↵ector, this can be
included into the dynamics equation

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓) + JT(✓)Ftip, (8.77)

where J(✓) denotes the Jacobian of the forward kinematics expressed in the
same reference frame as Ftip, and

M(✓) = ATLT(✓)GL(✓)A, (8.78)

c(✓, ✓̇) = �ATLT(✓)
�
GL(✓) [adA✓̇]W(✓) + [adV ]TG

�
L(✓)A✓̇, (8.79)

g(✓) = ATLT(✓)GL(✓)V̇base. (8.80)

8.5 Forward Dynamics of Open Chains

The forward dynamics problem involves solving

M(✓)✓̈ = ⌧(t)� h(✓, ✓̇)� JT(✓)Ftip (8.81)

for ✓̈, given ✓, ✓̇, ⌧ , and the wrench Ftip applied by the end-e↵ector (if ap-
plicable). The term h(✓, ✓̇) can be computed by calling the inverse dynamics
algorithm with ✓̈ = 0 and Ftip = 0. The inertia matrix M(✓) can be computed
using Equation (8.57). An alternative is to use n calls of the inverse dynamics
algorithm to build M(✓) column by column. In each of the n calls, set g = 0,
✓̇ = 0, and Ftip = 0. In the first call, the column vector ✓̈ is all zeros except
for a 1 in the first row. In the second call, ✓̈ is all zeros except for a 1 in the
second row, and so on. The ⌧ vector returned by the ith call is the ith column
of M(✓), and after n calls the n⇥ n matrix M(✓) is constructed.

With M(✓), h(✓, ✓̇), and Ftip we can use any e�cient algorithm for solving
Equation (8.81), which is of the form M ✓̈ = b, for ✓̈.

The forward dynamics can be used to simulate the motion of the robot given
its initial state, the joint forces–torques ⌧(t), and an optional external wrench
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Ftip(t), for t 2 [0, tf ]. First define the function ForwardDynamics returning the
solution to Equation (8.81), i.e.,

✓̈ = ForwardDynamics(✓, ✓̇, ⌧, Ftip).

Defining the variables q1 = ✓, q2 = ✓̇, the second-order dynamics (8.81) can be
converted to two first-order di↵erential equations,

q̇1 = q2,

q̇2 = ForwardDynamics(q1, q2, ⌧, Ftip).

The simplest method for numerically integrating a system of first-order di↵er-
ential equations of the form q̇ = f(q, t), q 2 Rn, is the first-order Euler iteration

q(t + �t) = q(t) + �tf(q(t), t),

where the positive scalar �t denotes the timestep. The Euler integration of the
robot dynamics is thus

q1(t + �t) = q1(t) + q2(t)�t,

q2(t + �t) = q2(t) + ForwardDynamics(q1, q2, ⌧, Ftip)�t.

Given a set of initial values for q1(0) = ✓(0) and q2(0) = ✓̇(0), the above equa-
tions can be iterated forward in time to obtain the motion ✓(t) = q1(t) numeri-
cally.

Euler Integration Algorithm for Forward Dynamics

• Inputs: The initial conditions ✓(0) and ✓̇(0), the input torques ⌧(t) and
wrenches at the end-e↵ector Ftip(t) for t 2 [0, tf ], and the number of
integration steps N .

• Initialization: Set the timestep �t = tf/N , and set ✓[0] = ✓(0), ✓̇[0] =
✓̇(0).

• Iteration: For k = 0 to N � 1 do

✓̈[k] = ForwardDynamics(✓[k], ✓̇[k], ⌧(k�t), Ftip(k�t)),

✓[k + 1] = ✓[k] + ✓̇[k]�t,

✓̇[k + 1] = ✓̇[k] + ✓̈[k]�t.

• Output: The joint trajectory ✓(k�t) = ✓[k], ✓̇(k�t) = ✓̇[k], k = 0, . . . , N .
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The result of the numerical integration converges to the theoretical result
as the number of integration steps N goes to infinity. Higher-order numerical
integration schemes, such as fourth-order Runge–Kutta, can yield a closer ap-
proximation with fewer computations than the simple first-order Euler method.

8.6 Dynamics in the Task Space

In this section we consider how the dynamic equations change under a trans-
formation to coordinates of the end-e↵ector frame (task-space coordinates). To
keep things simple we consider a six-degree-of-freedom open chain with joint-
space dynamics

⌧ = M(✓)✓̈ + h(✓, ✓̇), ✓ 2 R6, ⌧ 2 R6. (8.82)

We also ignore, for the time being, any end-e↵ector forces Ftip. The twist
V = (!, v) of the end-e↵ector is related to the joint velocity ✓̇ by

V = J(✓)✓̇, (8.83)

with the understanding that V and J(✓) are always expressed in terms of the
same reference frame. The time derivative V̇ is then

V̇ = J̇(✓)✓̇ + J(✓)✓̈. (8.84)

At configurations ✓ where J(✓) is invertible, we have

✓̇ = J�1V, (8.85)

✓̈ = J�1V̇ � J�1J̇J�1V. (8.86)

Substituting for ✓̇ and ✓̈ in Equation (8.82) leads to

⌧ = M(✓)
⇣
J�1V̇ � J�1J̇J�1V

⌘
+ h(✓, J�1V). (8.87)

Let J�T denote (J�1)T = (JT)�1. Pre-multiply both sides by J�T to get

J�T⌧ = J�TMJ�1V̇ � J�TMJ�1J̇J�1V
+ J�Th(✓, J�1V).

(8.88)

Expressing J�T⌧ as the wrench F , the above can be written

F = ⇤(✓)V̇ + ⌘(✓, V), (8.89)
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where

⇤(✓) = J�TM(✓)J�1, (8.90)

⌘(✓, V) = J�Th(✓, J�1V)� ⇤(✓)J̇J�1V. (8.91)

These are the dynamic equations expressed in end-e↵ector frame coordinates.
If an external wrench F is applied to the end-e↵ector frame then, assuming the
actuators provide zero forces and torques, the motion of the end-e↵ector frame
is governed by these equations.

Note that J(✓) must be invertible (i.e., there must be a one-to-one mapping
between joint velocities and end-e↵ector twists) in order to derive the task-
space dynamics above. Also note the dependence of ⇤(✓) and ⌘(✓, V) on ✓. In
general, we cannot replace the dependence on ✓ by a dependence on the end-
e↵ector configuration X because there may be multiple solutions to the inverse
kinematics, and the dynamics depends on the specific joint configuration ✓.

8.7 Constrained Dynamics

Now consider the case where the n-joint robot is subject to a set of k holonomic
or nonholonomic Pfa�an velocity constraints of the form

A(✓)✓̇ = 0, A(✓) 2 Rk⇥n. (8.92)

(See Section 2.4 for an introduction to Pfa�an constraints.) Such constraints
can come from loop-closure constraints; for example, the motion of an end-
e↵ector rigidly holding a door handle is subject to k = 5 constraints due to the
hinges of the door. As another example, a robot writing with a pen is subject
to a single constraint that keeps the height of the tip of the pen above the paper
at zero. In any case, we assume that the constraints do no work on the robot,
i.e., the generalized forces ⌧con due to the constraints satisfy

⌧Tcon✓̇ = 0.

This assumption means that ⌧con must be a linear combination of the columns
of AT(✓), i.e., ⌧con = AT(✓)� for some � 2 Rk, since these are the generalized
forces that do no work when ✓̇ is subject to the constraints (8.92):

(AT(✓)�)T✓̇ = �TA(✓)✓̇ = 0 for all � 2 Rk.

For the writing-robot example, the assumption that the constraint is workless
means that there can be no friction between the pen and the paper.
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Adding the constraint forces AT(✓)� to the equations of motion, we can
write the n + k constrained equations of motion

⌧ = M(✓)✓̈ + h(✓, ✓̇) + AT(✓)�, (8.93)

A(✓)✓̇ = 0, (8.94)

where � is a set of Lagrange multipliers and AT(✓)� are the forces applied
against the constraints as expressed as joint forces and torques. From these
equations, it should be clear that the robot has n � k velocity freedoms and
k “force freedoms” – the constraints allow the robot to create any generalized
force of the form AT(✓)�, independent of the robot’s motion. (For the writing
robot, there is also an inequality constraint: the robot can only apply pushing
forces into the paper and table, not pulling forces.)

Since the constraints A(✓)✓̇ = 0 are satisfied at all times, the time rate of
change of the constraints satisfies

Ȧ(✓)✓̇ + A(✓)✓̈ = 0. (8.95)

Assuming that M(✓) and A(✓) are full rank, we can solve Equation (8.93) for ✓̈,

✓̈ = M�1(✓)(⌧ � h(✓, ✓̇)�AT(✓)�), (8.96)

substitute into Equation (8.95), and omit the dependences on ✓ and ✓̇ for con-
ciseness, to get

Ȧ✓̇ + AM�1(⌧ � h�AT�) = 0. (8.97)

After some manipulation, we can solve for the Lagrange multipliers:

� = (AM�1AT)�1(AM�1(⌧ � h) + Ȧ✓̇). (8.98)

The constraint force depends on both ⌧ and the state.
Now, to solve the constrained forward dynamics for ✓̈ and � given ⌧ , we can

solve Equation (8.98) for � and plug into Equation (8.96).
Equation (8.93) can be used directly to solve the constrained inverse dynam-

ics for ⌧ given � and a ✓̈ chosen from the (n� k)-dimensional space of accelera-
tions satisfying Equation (8.95). If the constraint acts at the end-e↵ector of the
robot, � is related to the wrench the end-e↵ector applies to the constraint by

JT(✓)Ftip = AT(✓)�,

where J(✓) is the Jacobian satisfying V = J(✓)✓̇. If J(✓) is invertible, then
Ftip = J�T(✓)AT(✓)�. In hybrid motion–force control (Section 11.6), where
the objective is to control the motion tangent to the constraints and the wrench
against the constraints, the requested wrench Fd must lie in the column space
of J�T(✓)AT(✓), and the Lagrange multipliers are � = (J�T(✓)AT(✓))†Fd.
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Example 8.5. Consider the 2R robot of Figure 8.1, reproduced in Figure 8.7
with gravity g equal to zero. The lengths of each link are L1 = L2 = 1, and the
point masses at the ends of each link are m1 = m2 = 1. The tip of the robot is
at (x, y), and the robot’s forward kinematics can be written


x
y

�
=


c1 + c12
s1 + s12

�
,

where s12 and c12 are sin(✓1 +✓2) and cos(✓1 +✓2), respectively. The derivatives
of the forward kinematics are


ẋ
ẏ

�
=


�s1 � s12 �s12
c1 + c12 c12

�

| {z }
J(✓)


✓̇1
✓̇2

�
,


ẍ
ÿ

�
= J(✓)✓̈ +


�✓̇1c1 � (✓̇1 + ✓̇2)c12 �(✓̇1 + ✓̇2)c12
�✓̇1s1 � (✓̇1 + ✓̇2)s12 �(✓̇1 + ✓̇2)s12

�

| {z }
J̇(✓)


✓̇1
✓̇2

�
,

where J(✓) is the Jacobian for velocities expressed as (ẋ, ẏ).
The tip of the robot is constrained to move in a frictionless linear channel

at x = 1. This holonomic constraint can be expressed in joint coordinates ✓ as
c1 + c12 = 1, and its time derivative can be written A(✓)✓̇ = 0, i.e.,

[�s1 � s12 �s12]| {z }
A(✓)


✓̇1
✓̇2

�
=


0
0

�
.

There are n = 2 joint coordinates and k = 1 constraint, so A(✓) 2 R1⇥2. The
time derivative of A(✓) is

Ȧ(✓) = [�✓̇1c1 � (✓̇1 + ✓̇2)c12 �(✓̇1 + ✓̇2)c12].

Consider the case where ✓1 = �⇡/3 and ✓2 = 2⇡/3, as shown in Figure 8.7.
The tip is currently moving with the velocity (ẋ, ẏ) = (0, 1), which implies
✓̇1 = 1 and ✓̇2 = 0. At this state, A(✓) = [0 �0.866] and Ȧ(✓) = [�1 �0.5].
Consulting Equation (8.10) for the mass matrix and velocity-product term, we
get

M(✓) =


2 0.5

0.5 1

�
, h(✓, ✓̇) =


0

0.866

�
.

Constrained forward dynamics
Let’s solve the constrained forward dynamics for ✓̈ = (✓̈1, ✓̈2) and � when the
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Figure 8.7: A 2R robot whose tip is constrained to move in a frictionless channel.

joint torques are ⌧ = (⌧1, ⌧2). Solving Equation (8.98) for � and plugging into
Equation (8.96), we get

� = 0.289⌧1 � 1.155⌧2 � 0.167,

✓̈1 = 0.5⌧1 + 0.289,

✓̈2 = �1.155.

A few things to notice about the solution:

• At the current state, � = �0.167 if ⌧ = 0.

• At the current state, joint torques lying in the one-dimensional subspace
satisfying 0.289⌧1 � 1.155⌧2 = 0 do not a↵ect the constraint force.

• At the current state, joint torques lying in the one-dimensional subspace
satisfying ⌧1 = 0 do not a↵ect the motion of the robot.

The last two observations are illustrated in Figure 8.8. Any set of joint
torques ⌧ can be expressed as the sum of two components: a component that
a↵ects the motion of the robot, but not the constraint force, and a component
that a↵ects the constraint force, but not the motion.

Task-space constraint forces
The force the robot applies against the constraint can be written in terms of a
force ftip = [fx fy]T in the task space using the relationship

JT(✓)ftip = AT(✓)�.

Since the Jacobian in this example is invertible, ftip = J�T(✓)AT(✓)�, i.e.,

ftip =


0.577 �1.155

1 0

� 
0

�0.866

�
� =


1
0

�
� =


0.289⌧1 � 1.155⌧2 � 0.167

0

�
,
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Figure 8.8: The (⌧1, ⌧2) joint torque space is partitioned into components against
the constraint and components tangent to the constraint, as indicated by the arrowed
lines ⌧1 = 0 and 0.289⌧1 � 1.155⌧2 = 0, respectively. A set of joint torques ⌧ can be
expressed as ⌧ = P ⌧ + (I � P )⌧ , where the matrix P projects ⌧ to its component
tangent to the constraint, the matrix I � P projects ⌧ to its component against the
constraint, and I is the identity matrix. Joint torques on the dotted line all have the
same component against the constraint as ⌧ but cause di↵erent motions of the robot,
while joint torques on the dashed line all cause the same motion of the robot as ⌧ but
create di↵erent constraint forces.

which agrees with our understanding that the robot can only apply forces against
the constraint (and vice-versa) in the fx-direction. In this example, if ⌧ = 0,
the task-space constraint force is ftip = [�0.167 0]T, meaning that the robot’s
tip pushes to the left on the constraint while the constraint pushes back equally
to the right to enforce the constraint. In the absence of the constraint, the
acceleration of the tip of the robot would have a component to the left.

Constrained inverse dynamics
The constrained inverse dynamics involves solving for ⌧ given a ✓̈ satisfying
Equation (8.95) and �. From the results above, we see that any constraint-
satisfying ✓̈ is of the form (✓̈1, ✓̈2) = (a,�1.155) for any a 2 R. Also, assuming
we wish to apply a force of (fx, fy) = (f, 0) against the channel, since J(✓) is
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invertible in this example we have

� = (J�T(✓)AT(✓))†

f
0

�
=


1
0

�† 
f
0

�
= [1 0]


f
0

�
= f.

The solution to the constrained inverse dynamics for ✓̈ = (a,�1.155) and � = f
is given by Equation (8.93):

⌧1 = 2a� 0.578,

⌧2 = 0.5a� 0.866f � 0.289.

In hybrid motion-force control, a is specifed by a motion controller to track
a desired motion along the channel and f is specified by a force controller to
achieve a desired force against the channel.

Example 8.5 above considers a particular state of a particular constrained
robot with n = 2 and k = 1. For more general constrained robots, the con-
straints specify an (n� k)-dimensional subspace of actuator forces and torques
tangent to the constraints and a k-dimensional subpace against the constraints.

Combining Equations (8.98) and (8.93) and manipulating, we can write the
dynamics projected to the (n�k)-dimensional space tangent to the constraints,

P ⌧ = P (M ✓̈ + h), (8.99)

where
P = I �AT(AM�1AT)�1AM�1 (8.100)

and I is the n⇥ n identity matrix. The n⇥ n projection matrix P (✓) has rank
n�k, and it maps generalized forces ⌧ to P (✓)⌧ , projecting away the generalized
force components (I � P (✓))⌧ that act against the constraints while retaining
the generalized forces tangent to the constraints. In Example 8.5, illustrated in
Figure 8.8, the projections P and I � P are

P =


1 0

0.25 0

�
, I � P =


0 0

�0.25 1

�
.

Equation (8.99) can be rearranged into the related form

P✓̈ ✓̈ = P✓̈M
�1(⌧ � h), (8.101)

where the rank n� k matrix P✓̈ is

P✓̈ = M�1PM = I �M�1AT(AM�1AT)�1A = PT. (8.102)
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In Section 11.6 we discuss the related topic of hybrid motion–force control,
in which the goal at each instant is to simultaneously achieve a desired motion
tangent to the constraints and a desired force against the constraints. In that
section we use the task-space dynamics to represent the task-space end-e↵ector
motions and wrenches more naturally.

8.8 Robot Dynamics in the URDF

As described in Section 4.2 and illustrated in the UR5 Universal Robot Descrip-
tion Format file, the inertial properties of link i are described in the URDF by
the link elements mass, origin (the position and orientation of the center-of-
mass frame relative to a frame attached at joint i), and inertia, which specifies
the six elements of the symmetric rotational inertia matrix on or above the di-
agonal. To fully write the robot’s dynamics, for joint i we need in addition the
joint element origin, specifying the position and orientation of link i’s joint
frame relative to link (i � 1)’s joint frame when ✓i = 0, and the element axis,
which specifies the axis of motion of joint i. We leave to the exercises the trans-
lation of these elements into the quantities needed for the Newton–Euler inverse
dynamics algorithm.

8.9 Actuation, Gearing, and Friction

Until now we have been assuming the existence of actuators that directly provide
commanded forces and torques. In practice there are many types of actuators
(e.g., electric, hydraulic, and pneumatic) and mechanical power transformers
(e.g., gearheads), and the actuators can be located at the joints themselves or
remotely, with mechanical power transmitted by cables or timing belts. Each
combination of these has its own characteristics that can play a significant role
in the “extended dynamics” mapping the actual control inputs (e.g., the current
requested of amplifiers connected to electric motors) to the motion of the robot.

In this section we provide an introduction to some of the issues associated
with one particular, and common, configuration: geared DC electric motors
located at each joint. This is the configuration used in the Universal Robots
UR5, for example.

Figure 8.9 shows the electrical block diagram for a typical n-joint robot
driven by DC electric motors. For concreteness, we assume that each joint is
revolute. A power supply converts the wall AC voltage to a DC voltage to power
the amplifier associated with each motor. A control box takes user input, for
example in the form of a desired trajectory, as well as position feedback from
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Figure 8.9: A block diagram of a typical n-joint robot. The bold lines correspond
to high-power signals while the thin lines correspond to communication signals.

encoders located at each joint. Using the desired trajectory, a model of the
robot’s dynamics, and the measured error in the current robot state relative
to the desired robot state, the controller calculates the torque required of each
actuator. Since DC electric motors nominally provide a torque proportional to
the current through the motor, this torque command is equivalent to a current
command. Each motor amplifier then uses a current sensor (shown as external to
the amplifier in Figure 8.9, but in reality internal to the amplifier) to continually
adjust the voltage across the motor to try to achieve the requested current.3

The motion of the motor is sensed by the motor encoder, and the position
information is sent back to the controller.

The commanded torque is typically updated at around 1000 times per second
(1 kHz), and the amplifier’s voltage control loop may be updated at a rate ten
times that or more.

Figure 8.10 is a conceptual representation of the motor and other components
for a single axis. The motor has a single shaft extending from both ends of
the motor: one end drives a rotary encoder, which measures the position of
the joint, and the other end becomes the input to a gearhead. The gearhead

3
The voltage is typically a time-averaged voltage achieved by the duty cycle of a voltage

rapidly switching between a maximum positive voltage and a maximum negative voltage.
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encoder motor gearhead bearing link i+1

position
feedback

current

Figure 8.10: The outer cases of the encoder, motor, gearhead, and bearing are fixed
in link i, while the gearhead output shaft supported by the bearing is fixed in link
i+ 1.

increases the torque while reducing the speed, since most DC electric motors
with an appropriate power rating provide torques that are too low to be useful
for robotics applications. The purpose of the bearing is to support the gearhead
output, freely transmitting torques about the gearhead axis while isolating the
gearhead (and motor) from wrench components due to link i + 1 in the other
five directions. The outer cases of the encoder, motor, gearhead, and bearing
are all fixed relative to each other and to link i. It is also common for the motor
to have some kind of brake, not shown.

8.9.1 DC Motors and Gearing

A DC motor consists of a stator and a rotor that rotates relative to the stator.
DC electric motors create torque by sending current through windings in a
magnetic field created by permanent magnets, where the magnets are attached
to the stator and the windings are attached to the rotor, or vice versa. A DC
motor has multiple windings, some of which are energized and some of which
are inactive at any given time. The windings that are energized are chosen as a
function of the angle of the rotor relative to the stator. This “commutation” of
the windings occurs mechanically using brushes (brushed motors) or electrically
using control circuitry (brushless motors). Brushless motors have the advantage
of no brush wear and higher continuous torque, since the windings are typically
attached to the motor housing where the heat due to the resistance of the
windings can be more easily dissipated. In our basic introduction to DC motor
modeling, we do not distinguish between brushed and brushless motors.

Figure 8.11 shows a brushed DC motor with an encoder and a gearhead.
The torque ⌧ , measured in newton-meters (Nm), created by a DC motor is

governed by the equation
⌧ = ktI,
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Figure 8.11: (Top) A cutaway view of a Maxon brushed DC motor with an encoder
and gearhead. (Cutaway image courtesy of Maxon Precision Motors, Inc., maxonmo-
torusa.com.) The motor’s rotor consists of the windings, commutator ring, and shaft.
Each of the several windings connects di↵erent segments of the commutator, and as
the motor rotates, the two brushes slide over the commutator ring and make contact
with di↵erent segments, sending current through one or more windings. One end of the
motor shaft turns the encoder, and the other end is input to the gearhead. (Bottom)
A simplified cross-section of the motor only, showing the stator (brushes, housing, and
magnets) in dark gray and the rotor (windings, commutator, and shaft) in light gray.

where I, measured in amps (A), is the current through the windings. The
constant kt, measured in newton-meters per amp (Nm/A), is called the torque
constant. The power dissipated as heat by the windings, measured in watts
(W), is governed by

Pheat = I2R,
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where R is the resistance of the windings in ohms (⌦). To keep the motor wind-
ings from overheating, the continuous current flowing through the motor must
be limited. Accordingly, in continuous operation, the motor torque must be kept
below a continuous-torque limit ⌧cont determined by the thermal properties of
the motor.

A simplified model of a DC motor, where all units are in the SI system, can
be derived by equating the electrical power consumed by the motor Pelec = IV
in watts (W) to the mechanical power Pmech = ⌧w (also in W) and other power
produced by the motor,

IV = ⌧w + I2R + LI
dI

dt
+ friction and other power-loss terms,

where V is the voltage applied to the motor in volts (V), w is the angular speed
of the motor in radians per second (1/s), and L is the inductance due to the
windings in henries (H). The terms on the right-hand side are the mechanical
power produced by the motor, the power lost to heating the windings due to
the resistance of the wires, the power consumed or produced by energizing or
de-energizing the inductance of the windings (since the energy stored in an
inductor is 1

2LI2, and power is the time derivative of energy), and the power
lost to friction in bearings, etc. Dropping this last term, replacing ⌧w by ktIw,
and dividing by I, we get the voltage equation

V = ktw + IR + L
dI

dt
. (8.103)

Often Equation (8.103) is written with the electrical constant ke (with units
of V s) instead of the torque constant kt, but in SI units (V s or N m/A) the
numerical values of the two are identical; they represent the same constant
property of the motor. So we prefer to use kt.

The voltage term ktw in Equation (8.103) is called the back electromotive
force or back-emf for short, and it is what di↵erentiates a motor from being
simply a resistor and inductor in series. It also allows a motor, which we usually
think of as converting electrical power to mechanical, to be run as a generator,
converting mechanical power to electrical. If the motor’s electrical inputs are
disconnected (so no current can flow) and the shaft is forced to turn by some
external torque, you can measure the back-emf voltage ktw across the motor’s
inputs.

For simplicity, in the rest of this section we ignore the L dI/dt term. This as-
sumption is exactly satisfied when the motor is operating at a constant current.
With this assumption, Equation (8.103) can be rearranged to

w =
1

kt
(V � IR) =

V

kt
� R

k2
t

⌧,
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Figure 8.12: The operating region (light gray) of a current- and voltage-limited DC
electric motor, and its continuous operating region (dark gray).

expressing the speed w as a linear function of ⌧ (with a slope of�R/k2
t ) for a con-

stant V . Now assume that the voltage across the motor is limited to the range
[�Vmax, +Vmax] and the current through the motor is limited to [�Imax, +Imax],
perhaps by the amplifier or power supply. Then the operating region of the mo-
tor in the torque–speed plane is as shown in Figure 8.12. Note that the signs of ⌧
and w are opposite in the second and fourth quadrants of this plane, and there-
fore the product ⌧w is negative. When the motor operates in these quadrants,
it is actually consuming mechanical power, not producing mechanical power.
The motor is acting like a damper.

Focusing on the first quadrant (⌧ � 0, w � 0, ⌧w � 0), the boundary of
the operating region is called the speed–torque curve. The no-load speed
w0 = Vmax/kt at one end of the speed–torque curve is the speed at which
the motor spins when it is powered by Vmax but is providing no torque. In
this operating condition, the back-emf ktw is equal to the applied voltage, so
there is no voltage remaining to create current (or torque). The stall torque
⌧stall = ktVmax/R at the other end of the speed–torque curve is achieved when
the shaft is blocked from spinning, so there is no back-emf.
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Figure 8.12 also indicates the continuous operating region where |⌧ |  ⌧cont.
The motor may be operated intermittently outside the continuous operating
region, but extended operation outside the continuous operating region raises
the possibility that the motor will overheat.

The motor’s rated mechanical power is Prated = ⌧contwcont, where wcont is
the speed on the speed–torque curve corresponding to ⌧cont. Even if the motor’s
rated power is su�cient for a particular application, the torque generated by
a DC motor is typically too low to be useful. As mentioned earlier, gearing is
therefore used to increase the torque while also decreasing the speed. For a gear
ratio G, the output speed of the gearhead is

wgear =
wmotor

G
.

For an ideal gearhead, no power is lost in the torque conversion, so ⌧motorwmotor =
⌧gearwgear, which implies that

⌧gear = G⌧motor.

In practice, some mechanical power is lost due to friction and impacts between
gear teeth, bearings, etc., so

⌧gear = ⌘G⌧motor,

where ⌘  1 is the e�ciency of the gearhead.
Figure 8.13 shows the operating region of the motor from Figure 8.12 when

the motor is geared by G = 2 (with ⌘ = 1). The maximum torque doubles,
while the maximum speed shrinks by a factor of two. Since many DC motors
are capable of no-load speeds of 10 000 rpm or more, robot joints often have
gear ratios of 100 or more to achieve an appropriate compromise between speed
and torque.

8.9.2 Apparent Inertia

The motor’s stator is attached to one link and the rotor is attached to another
link, possibly through a gearhead. Therefore, when calculating the contribution
of a motor to the masses and inertias of the links, the mass and inertia of the
stator must be assigned to one link and the mass and inertia of the rotor must
be assigned to the other link.

Consider a stationary link 0 with the stator of the joint-1 gearmotor attached
to it. The rotational speed of joint 1, the output of the gearhead, is ✓̇. Therefore

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

312 8.9. Actuation, Gearing, and Friction

w

⌧

G = 2

Figure 8.13: The original motor operating region, and the operating region with a
gear ratio G = 2 showing the increased torque and decreased speed.

the motor’s rotor rotates at G✓̇. The kinetic energy of the rotor is therefore

K =
1

2
Irotor(G✓̇)

2 =
1

2
G2Irotor| {z }

apparent inertia

✓̇2,

where Irotor is the rotor’s scalar inertia about the rotation axis and G2Irotor is
the apparent inertia (often called the reflected inertia) of the rotor about
the axis. In other words, if you were to grab link 1 and rotate it manually, the
inertia contributed by the rotor would feel as if it were a factor G2 larger than
its actual inertia, owing to the gearhead.

While the inertia Irotor is typically much less than the inertia Ilink of the
rest of the link about the rotation axis, the apparent inertia G2Irotor may be
on the order of, or even larger than, Ilink.

One consequence as the gear ratio becomes large is that the inertia seen by
joint i becomes increasingly dominated by the apparent inertia of the rotor. In
other words, the torque required of joint i becomes relatively more dependent
on ✓̈i than on other joint accelerations, i.e., the robot’s mass matrix becomes
more diagonal. In the limit when the mass matrix has negligible o↵-diagonal
components (and in the absence of gravity), the dynamics of the robot are
decoupled – the dynamics at one joint has no dependence on the configuration
or motion of the other joints.

As an example, consider the 2R arm of Figure 8.1 with L1 = L2 = m1 =
m2 = 1. Now assume that each of joint 1 and joint 2 has a motor of mass 1,
with a stator of inertia 0.005 and a rotor of inertia 0.00125, and a gear ratio G
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(with ⌘ = 1). With a gear ratio G = 10, the mass matrix is

M(✓) =


4.13 + 2 cos ✓2 1.01 + cos ✓2
1.01 + cos ✓2 1.13

�
.

With a gear ratio G = 100, the mass matrix is

M(✓) =


16.5 + 2 cos ✓2 1.13 + cos ✓2
1.13 + cos ✓2 13.5

�
.

The o↵-diagonal components are relatively less important for this second robot.
The available joint torques of the second robot are ten times that of the first
robot so, despite the increases in the mass matrix elements, the second robot is
capable of significantly higher accelerations and end-e↵ector payloads. The top
speed of each joint of the second robot is ten times less than that of the first
robot, however.

If the apparent inertia of the rotor is non-negligible relative to the inertia
of the rest of the link, the Newton–Euler inverse dynamics algorithm must be
modified to account for it. One approach is to treat the link as consisting of
two separate bodies, the geared rotor driving the link and the rest of the link,
each with its own center of mass and inertial properties (where the link inertial
properties include the inertial properties of the stator of any motor mounted on
the link). In the forward iteration, the twist and acceleration of each body is
determined while accounting for the gearhead in calculating the rotor’s motion.
In the backward iteration, the wrench on the link is calculated as the sum of two
wrenches: (i) the link wrench as given by Equation (8.53) and (ii) the reaction
wrench from the distal rotor. The resultant wrench projected onto the joint
axis is then the gear torque ⌧gear; dividing ⌧gear by the gear ratio and adding
to this the torque resulting from the acceleration of the rotor results in the
required motor torque ⌧motor. The current command to the DC motor is then
Icom = ⌧motor/(⌘kt).

8.9.3 Newton–Euler Inverse Dynamics Algorithm Accounting
for Motor Inertias and Gearing

We now reformulate the recursive Newton–Euler inverse dynamics algorithm
taking into account the apparent inertias as discussed above. Figure 8.14 il-
lustrates the setup. We assume massless gears and shafts and that the friction
between gears as well as the friction between shafts and links is negligible.

Initialization Attach a frame {0}L to the base, frames {1}L to {n}L to the
centers of mass of links 1 to n, and frames {1}R to {n}R to the centers of mass of
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rotor

stator motor i

link i

link i � 1

joint i axis

rotor i axis
gearhead

(a)

FiL

� AdT
T(i+1)L,iL

(F(i+1)L)

{i}L

{i + 1}R

(b)

Figure 8.14: (a) Schematic of a geared motor between links i � 1 and i. (b) The
free-body diagram for link i, which is analogous to Figure 8.6.

rotors 1 to n. Frame {n + 1}L is attached to the end-e↵ector, which is assumed
fixed with respect to frame {n}L. Define MiR,(i�1)L and MiL,(i�1)L to be the
configuration of {i� 1}L in {i}R and in {i}L, respectively, when ✓i = 0. Let Ai

be the screw axis of joint i expressed in {i}L. Similarly, let Ri be the screw axis
of rotor i expressed in {i}R. Let GiL be the 6⇥ 6 spatial inertia matrix of link
i that includes the inertia of the attached stator and GiR be the 6 ⇥ 6 spatial
inertia matrix of rotor i. The gear ratio of motor i is Gi. The twists V0L and
V̇0L and the wrench F(n+1)L are defined in the same way as V0, V̇0, and Fn+1

in Section 8.3.2.

Forward iterations Given ✓, ✓̇, ✓̈, for i = 1 to n do

TiR,(i�1)L = e�[Ri]Gi✓iMiR,(i�1)L , (8.104)

TiL,(i�1)L = e�[Ai]✓iMiL,(i�1)L , (8.105)

ViR = AdTiR,(i�1)L
(V(i�1)L) + RiGi✓̇i, (8.106)

ViL = AdTiL,(i�1)L
(V(i�1)L) + Ai✓̇i, (8.107)

V̇iR = AdTiR,(i�1)L
(V̇(i�1)L) + adViR

(Ri)Gi✓̇i + RiGi✓̈i, (8.108)

V̇iL = AdTiL,(i�1)L
(V̇(i�1)L) + adViL

(Ai)✓̇i + Ai✓̈i. (8.109)
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Backward iterations For i = n to 1 do

FiL = AdT
T(i+1)L,iL

(F(i+1)L) + GiL V̇iL � adT
ViL

(GiLViL)

+ AdT
T(i+1)R,iL

(G(i+1)R V̇(i+1)R � adT
V(i+1)R

(G(i+1)RV(i+1)R)),(8.110)

⌧i,gear = AT
i FiL , (8.111)

⌧i,motor =
⌧i,gear

Gi
+ RT

i (GiR V̇iR � adT
ViR

(GiRViR)). (8.112)

In the backward iteration stage, the quantity F(n+1)L occurring in the first
step of the backward iteration is taken to be the external wrench applied to the
end-e↵ector (expressed in the {n + 1}L frame), with G(n+1)R set to zero; FiL

denotes the wrench applied to link i via the motor i gearhead (expressed in the
{iL} frame); ⌧i,gear is the torque generated at the motor i gearhead; and ⌧i,motor

is the torque at rotor i.
Note that if there is no gearing then no modification to the original Newton–

Euler inverse dynamics algorithm is necessary; the stator is attached to one link
and the rotor is attached to another link. Robots constructed with a motor at
each axis and no gearheads are sometimes called direct-drive robots. Direct-
drive robots have low friction, but they see limited use because typically the
motors must be large and heavy to generate appropriate torques.

No modification is needed to the Lagrangian approach to the dynamics to
handle geared motors, provided that we can correctly represent the kinetic en-
ergy of the faster-spinning rotors.

8.9.4 Friction

The Lagrangian and Newton–Euler dynamics do not account for friction at
the joints, but the friction forces and torques in gearheads and bearings may be
significant. Friction is a complex phenomenon that is the subject of considerable
current research; any friction model is a gross attempt to capture the average
behavior of the micromechanics of contact.

Friction models often include a static friction term and a velocity-dependent
viscous friction term. The presence of a static friction term means that a
nonzero torque is required to cause the joint to begin to move. The viscous fric-
tion term indicates that the amount of friction torque increases with increasing
velocity of the joint. See Figure 8.15 for some examples of velocity-dependent
friction models.

Other factors may contribute to the friction at a joint, including the loading
of the joint bearings, the time the joint has been at rest, the temperature, etc.
The friction in a gearhead often increases as the gear ratio G increases.
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⌧fric

✓̇

⌧fric

✓̇

(a) (b) (c) (d) (e) (f)

⌧fric

✓̇

⌧fric

✓̇

⌧fric

✓̇

⌧fric

✓̇

Figure 8.15: Examples of velocity-dependent friction models. (a) Viscous friction,
⌧fric = bviscous✓̇. (b) Coulomb friction, ⌧fric = bstatic sgn(✓̇); ⌧fric can take any value in
[�bstatic, bstatic] at zero velocity. (c) Static plus viscous friction, ⌧fric = bstatic sgn(✓̇)+
bviscous✓̇. (d) Static and kinetic friction, requiring ⌧fric � |bstatic| to initiate motion and
then ⌧fric = bkinetic sgn(✓̇) during motion, where bstatic > bkinetic. (e) Static, kinetic,
and viscous friction. (f) A friction law exhibiting the Stribeck e↵ect – at low velocities,
the friction decreases as the velocity increases.

8.9.5 Joint and Link Flexibility

In practice, a robot’s joints and links are likely to exhibit some flexibility. For
example, the flexspline element of a harmonic drive gearhead achieves essentially
zero backlash by being somewhat flexible. A model of a joint with harmonic
drive gearing, then, could include a relatively sti↵ torsional spring between the
motor’s rotor and the link to which the gearhead is attached.

Similarly, links themselves are not infinitely sti↵. Their finite sti↵ness is
exhibited as vibrations along the link.

Flexible joints and links introduce extra states to the dynamics of the robot,
significantly complicating the dynamics and control. While many robots are
designed to be sti↵ in order to minimize these complexities, in some cases this
is impractical owing to the extra link mass required to create the sti↵ness.

8.10 Summary

• Given a set of generalized coordinates ✓ and generalized forces ⌧ , the
Euler–Lagrange equations can be written

⌧ =
d

dt

@L
@✓̇
� @L

@✓
,

where L(✓, ✓̇) = K(✓, ✓̇) � P(✓), K is the kinetic energy of the robot, and
P is the potential energy of the robot.

• The equations of motion of a robot can be written in the following equiv-
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alent forms:

⌧ = M(✓)✓̈ + h(✓, ✓̇)

= M(✓)✓̈ + c(✓, ✓̇) + g(✓)

= M(✓)✓̈ + ✓̇T�(✓)✓̇ + g(✓)

= M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓),

where M(✓) is the n⇥n symmetric positive-definite mass matrix, h(✓, ✓̇) is
the sum of the generalized forces due to the gravity and quadratic velocity
terms, c(✓, ✓̇) are quadratic velocity forces, g(✓) are gravitational forces,
�(✓) is an n⇥n⇥n matrix of Christo↵el symbols of the first kind obtained
from partial derivatives of M(✓) with respect to ✓, and C(✓, ✓̇) is the n⇥n
Coriolis matrix whose (i, j)th entry is given by

cij(✓, ✓̇) =
nX

k=1

�ijk(✓)✓̇k.

If the end-e↵ector of the robot is applying a wrench Ftip to the environ-
ment, the term JT(✓)Ftip should be added to the right-hand side of the
robot’s dynamic equations.

• The symmetric positive-definite rotational inertia matrix of a rigid body
is

Ib =

2

4
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

3

5 ,

where

Ixx =
R
B(y2 + z2)⇢(x, y, z)dV, Iyy =

R
B(x2 + z2)⇢(x, y, z)dV,

Izz =
R
B(x2 + y2)⇢(x, y, z)dV, Ixy = �

R
B xy⇢(x, y, z)dV,

Ixz = �
R
B xz⇢(x, y, z)dV, Iyz = �

R
B yz⇢(x, y, z)dV,

B is the volume of the body, dV is a di↵erential volume element, and
⇢(x, y, z) is the density function.

• If Ib is defined in a frame {b} at the center of mass, with axes aligned
with the principal axes of inertia, then Ib is diagonal.

• If {b} is at the center of mass but its axes are not aligned with the principal
axes of inertia, there always exists a rotated frame {c} defined by the
rotation matrix Rbc such that Ic = RT

bcIbRbc is diagonal.
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• If Ib is defined in a frame {b} at the center of mass then Iq, the inertia
in a frame {q} aligned with {b} but displaced from the origin of {b} by
q 2 R3 in {b} coordinates, is

Iq = Ib + m(qTqI � qqT).

• The spatial inertia matrix Gb expressed in a frame {b} at the center of
mass is defined as the 6⇥ 6 matrix

Gb =


Ib 0
0 mI

�
.

In a frame {a} at a configuration Tba relative to {b}, the spatial inertia
matrix is

Ga = [AdTba ]TGb[AdTba ].

• The Lie bracket of two twists V1 and V2 is

adV1(V2) = [adV1 ]V2,

where

[adV ] =


[!] 0
[v] [!]

�
2 R6⇥6.

• The twist–wrench formulation of the rigid-body dynamics of a single rigid
body is

Fb = GbV̇b � [adVb ]
TGbVb.

The equations have the same form if F , V, and G are all expressed in the
same frame, regardless of the frame.

• The kinetic energy of a rigid body is 1
2VT

b GbVb, and the kinetic energy of

an open-chain robot is 1
2 ✓̇

TM(✓)✓̇.

• The forward–backward Newton–Euler inverse dynamics algorithm is the
following:
Initialization: Attach a frame {0} to the base, frames {1} to {n} to the
centers of mass of links {1} to {n}, and a frame {n+1} at the end-e↵ector,
fixed in the frame {n}. Define Mi,i�1 to be the configuration of {i � 1}
in {i} when ✓i = 0. Let Ai be the screw axis of joint i expressed in {i},
and Gi be the 6 ⇥ 6 spatial inertia matrix of link i. Define V0 to be the
twist of the base frame {0} expressed in base-frame coordinates. (This
quantity is typically zero.) Let g 2 R3 be the gravity vector expressed in
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base-frame-{0} coordinates, and define V̇0 = (0,�g). (Gravity is treated
as an acceleration of the base in the opposite direction.) Define Fn+1 =
Ftip = (mtip, ftip) to be the wrench applied to the environment by the
end-e↵ector expressed in the end-e↵ector frame {n + 1}.

Forward iterations: Given ✓, ✓̇, ✓̈, for i = 1 to n do

Ti,i�1 = e�[Ai]✓iMi,i�1,

Vi = AdTi,i�1(Vi�1) + Ai✓̇i,

V̇i = AdTi,i�1(V̇i�1) + adVi(Ai)✓̇i + Ai✓̈i.

Backward iterations: For i = n to 1 do

Fi = AdT
Ti+1,i

(Fi+1) + GiV̇i � adT
Vi

(GiVi),

⌧i = FT
i Ai.

• Let Jib(✓) be the Jacobian relating ✓̇ to the body twist Vi in link i’s center-
of-mass frame {i}. Then the mass matrix M(✓) of the manipulator can
be expressed as

M(✓) =
nX

i=1

JT
ib(✓)GiJib(✓).

• The forward dynamics problem involves solving

M(✓)✓̈ = ⌧(t)� h(✓, ✓̇)� JT(✓)Ftip

for ✓̈, using any e�cient solver of equations of the form Ax = b.

• The robot’s dynamics M(✓)✓̈ + h(✓, ✓̇) can be expressed in the task space
as

F = ⇤(✓)V̇ + ⌘(✓, V),

where F is the wrench applied to the end-e↵ector, V is the twist of the end-
e↵ector, and F , V, and the Jacobian J(✓) are all defined in the same frame.
The task-space mass matrix ⇤(✓) and gravity and quadratic velocity forces
⌘(✓, V) are

⇤(✓) = J�TM(✓)J�1,

⌘(✓, V) = J�Th(✓, J�1V)� ⇤(✓)J̇J�1V.
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• Define two n⇥ n projection matrices of rank n� k

P (✓) = I �AT(AM�1AT)�1AM�1,

P✓̈(✓) = M�1PM = I �M�1AT(AM�1AT)�1A,

corresponding to the k Pfa�an constraints, A(✓)✓̇ = 0, A 2 Rk⇥n, acting
on the robot. Then the n + k constrained equations of motion

⌧ = M(✓)✓̈ + h(✓, ✓̇) + AT(✓)�,

A(✓)✓̇ = 0

can be reduced to the following equivalent forms by eliminating the La-
grange multipliers �:

P ⌧ = P (M ✓̈ + h),

P✓̈ ✓̈ = P✓̈M
�1(⌧ � h).

The matrix P projects away the joint force–torque components that act
on the constraints without doing work on the robot, and the matrix P✓̈
projects away acceleration components that do not satisfy the constraints.

• An ideal gearhead (one that is 100% e�cient) with a gear ratio G multi-
plies the torque at the output of a motor by a factor G and divides the
speed by the factor G, leaving the mechanical power unchanged. The in-
ertia of the motor’s rotor about its axis of rotation, as it appears at the
output of the gearhead, is G2Irotor.

8.11 Software

Software functions associated with this chapter are listed below.

adV = ad(V)
Computes [adV ].

taulist = InverseDynamics(thetalist,dthetalist,ddthetalist,g,Ftip,
Mlist,Glist,Slist)
Uses Newton–Euler inverse dynamics to compute the n-vector ⌧ of the required
joint forces–torques given ✓, ✓̇, ✓̈, g, Ftip, a list of transforms Mi�1,i specifying
the configuration of the center-of-mass frame of link {i} relative to {i�1} when
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the robot is at its home position, a list of link spatial inertia matrices Gi, and a
list of joint screw axes Si expressed in the base frame.

M = MassMatrix(thetalist,Mlist,Glist,Slist)
Computes the mass matrix M(✓) given the joint configuration ✓, a list of trans-
forms Mi�1,i, a list of link spatial inertia matrices Gi, and a list of joint screw
axes Si expressed in the base frame.

c = VelQuadraticForces(thetalist,dthetalist,Mlist,Glist,Slist)
Computes c(✓, ✓̇) given the joint configuration ✓, the joint velocities ✓̇, a list of
transforms Mi�1,i, a list of link spatial inertia matrices Gi, and a list of joint
screw axes Si expressed in the base frame.

grav = GravityForces(thetalist,g,Mlist,Glist,Slist)
Computes g(✓) given the joint configuration ✓, the gravity vector g, a list of
transforms Mi�1,i, a list of link spatial inertia matrices Gi, and a list of joint
screw axes Si expressed in the base frame.

JTFtip = EndEffectorForces(thetalist,Ftip,Mlist,Glist,Slist)
Computes JT(✓)Ftip given the joint configuration ✓, the wrench Ftip applied by
the end-e↵ector, a list of transforms Mi�1,i, a list of link spatial inertia matrices
Gi, and a list of joint screw axes Si expressed in the base frame.

ddthetalist = ForwardDynamics(thetalist,dthetalist,taulist,g,Ftip,
Mlist,Glist,Slist)
Computes ✓̈ given the joint configuration ✓, the joint velocities ✓̇, the joint forces-
torques ⌧ , the gravity vector g, the wrench Ftip applied by the end-e↵ector, a
list of transforms Mi�1,i, a list of link spatial inertia matrices Gi, and a list of
joint screw axes Si expressed in the base frame.

[thetalistNext,dthetalistNext] = EulerStep(thetalist,dthetalist,
ddthetalist,dt)
Computes a first-order Euler approximation to {✓(t + �t), ✓̇(t + �t)} given the
joint configuration ✓(t), the joint velocities ✓̇(t), the joint accelerations ✓̈(t), and
a timestep �t.

taumat = InverseDynamicsTrajectory(thetamat,dthetamat,ddthetamat,
g,Ftipmat,Mlist,Glist,Slist)
The variable thetamat is an N ⇥ n matrix of robot joint variables ✓, where the
ith row corresponds to the n-vector of joint variables ✓(t) at time t = (i� 1)�t,
where �t is the timestep. The variables dthetamat, ddthetamat, and Ftipmat
similarly represent ✓̇, ✓̈, and Ftip as a function of time. Other inputs include the
gravity vector g, a list of transforms Mi�1,i, a list of link spatial inertia matrices
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Gi, and a list of joint screw axes Si expressed in the base frame. This function
computes an N ⇥ n matrix taumat representing the joint forces-torques ⌧(t)
required to generate the trajectory specified by ✓(t) and Ftip(t). Note that it is
not necessary to specify �t. The velocities ✓̇(t) and accelerations ✓̈(t) should be
consistent with ✓(t).

[thetamat,dthetamat] = ForwardDynamicsTrajectory(thetalist,
dthetalist,taumat,g,Ftipmat,Mlist,Glist,Slist,dt,intRes)
This function numerically integrates the robot’s equations of motion using Euler
integration. The outputs are N ⇥ n matrices thetamat and dthetamat, where
the ith rows correspond respectively to the n-vectors ✓((i�1)�t) and ✓̇((i�1)�t).
The inputs are the initial state ✓(0), ✓̇(0), an N ⇥ n matrix of joint forces or
torques ⌧(t), the gravity vector g, an N ⇥ n matrix of end-e↵ector wrenches
Ftip(t), a list of transforms Mi�1,i, a list of link spatial inertia matrices Gi, a
list of joint screw axes Si expressed in the base frame, the timestep �t, and the
number of integration steps to take during each timestep (a positive integer).

8.12 Notes and References

An accessible general reference on rigid-body dynamics that covers both the
Newton–Euler and Lagrangian formulations is [51]. A more classical reference
that covers a wide range of topics in dynamics is [193].

A recursive inverse dynamics algorithm for open chains using the classical
screw-theoretic machinery of twists and wrenches was first formulated by Feath-
erstone (the collection of twists, wrenches, and the corresponding analogues of
accelerations, momentum, and inertias, are collectively referred to as spatial
vector notation); this formulation, as well as more e�cient extensions based on
articulated body inertias, are described in [46, 47].

The recursive inverse dynamics algorithm presented in this chapter was first
described in [133] and makes use of standard operators from the theory of Lie
groups and Lie algebras. One of the important practical advantages of this ap-
proach is that analytic formulas can be derived for taking first- and higher-order
derivatives of the dynamics. This has important consequences for dynamics-
based motion optimization: the availability of analytic gradients can greatly
improve the convergence and robustness for motion optimization algorithms.
These and other related issues are explored in, e.g., [88].

The task-space formulation was first initiated by Khatib [74], who referred
to it as the operational space formulation. Note that the task-space formula-
tion involves taking time derivatives of the forward kinematics Jacobian, i.e.,
J̇(✓). Using either the body or space Jacobian, J̇(✓) can in fact be evaluated
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analytically; this is explored in one of the exercises at the end this chapter.
A brief history of the evolution of robot dynamics algorithms, as well as

pointers to references on the more general subject of multibody system dynamics
(of which robot dynamics can be considered a subfield) can be found in [48].

8.13 Exercises

Exercise 8.1 Derive the formulas given in Figure 8.5 for:
(a) a rectangular parallelpiped;
(b) a circular cylinder;
(c) an ellipsoid.

Exercise 8.2 Consider a cast iron dumbbell consisting of a cylinder connecting
two solid spheres at either end of the cylinder. The density of the dumbbell is
7500 kg/m3. The cylinder has a diameter of 4 cm and a length of 20 cm. Each
sphere has a diameter of 20 cm.

(a) Find the approximate rotational inertia matrix Ib in a frame {b} at the
center of mass with axes aligned with the principal axes of inertia of the
dumbbell.

(b) Write down the spatial inertia matrix Gb.

Exercise 8.3 Rigid-body dynamics in an arbitrary frame.
(a) Show that Equation (8.42) is a generalization of Steiner’s theorem.
(b) Derive Equation (8.43).

Exercise 8.4 The 2R open-chain robot of Figure 8.16, referred to as a ro-
tational inverted pendulum or Furuta pendulum, is shown in its zero position.
Assuming that the mass of each link is concentrated at the tip and neglecting
its thickness, the robot can be modeled as shown in the right-hand figure. As-
sume that m1 = m2 = 2, L1 = L2 = 1, g = 10, and the link inertias I1 and I2

(expressed in their respective link frames {b1} and {b2}) are

I1 =

2

4
0 0 0
0 4 0
0 0 4

3

5 , I2 =

2

4
4 0 0
0 4 0
0 0 0

3

5 .

(a) Derive the dynamic equations and determine the input torques ⌧1 and ⌧2
when ✓1 = ✓2 = ⇡/4 and the joint velocities and accelerations are all zero.
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Figure 8.16: 2R rotational inverted pendulum. (Left) Its construction; (right) the
model.

(b) Draw the torque ellipsoid for the mass matrix M(✓) when ✓1 = ✓2 = ⇡/4.

Exercise 8.5 Prove the following Lie bracket identity (called the Jacobi iden-
tity) for arbitrary twists V1, V2, V3:

adV1(adV2(V3)) + adV3(adV1(V2)) + adV2(adV3(V1)) = 0.

Exercise 8.6 The evaluation of J̇(✓), the time derivative of the forward kine-
matics Jacobian, is needed in the calculation of the frame accelerations V̇i in
the Newton–Euler inverse dynamics algorithm and also in the formulation of
the task-space dynamics. Letting Ji(✓) denote the ith column of J(✓), we have

d

dt
Ji(✓) =

nX

j=1

@Ji

@✓j
✓̇j .

(a) Suppose that J(✓) is the space Jacobian. Show that

@Ji

@✓j
=

⇢
adJj (Ji) for i > j

0 for i  j.

(b) Now suppose that J(✓) is the body Jacobian. Show that

@Ji

@✓j
=

⇢
adJi(Jj) for i < j

0 for i � j.
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Exercise 8.7 Show that the time derivative of the mass matrix Ṁ(✓) can be
written explicitly as

Ṁ = �ATLTWT[adA✓̇]
TLTGLA�ATLTGL[adA✓̇]WLA,

with the matrices as defined in the closed-form dynamics formulation.

Exercise 8.8 Explain intuitively the shapes of the end-e↵ector force ellipsoids
in Figure 8.4 on the basis of the point masses and the Jacobians.

Exercise 8.9 Consider a motor with rotor inertia Irotor connected through
a gearhead of gear ratio G to a load with scalar inertia Ilink about the rota-
tion axis. The load and motor are said to be inertia matched if, for any
given torque ⌧m at the motor, the acceleration of the load is maximized. The
acceleration of the load can be written

✓̈ =
G⌧m

Ilink + G2Irotor
.

Solve for the inertia-matching gear ratio
p

Ilink/Irotor by solving d✓̈/dG = 0.

Exercise 8.10 Give the steps that rearrange Equation (8.99) to get Equa-
tion (8.101). Remember that P (✓) is not full rank and cannot be inverted.

Exercise 8.11 Program a function to calculate h(✓, ✓̇) = c(✓, ✓̇) + g(✓) e�-
ciently using Newton–Euler inverse dynamics.

Exercise 8.12 Give the equations that would convert the joint and link de-
scriptions in a robot’s URDF file to the data Mlist, Glist, and Slist, suitable
for using with the Newton–Euler algorithm InverseDynamicsTrajectory.

Exercise 8.13 The e�cient evaluation of M(✓).
(a) Develop conceptually a computationally e�cient algorithm for determin-

ing the mass matrix M(✓) using Equation (8.57).
(b) Implement this algorithm.

Exercise 8.14 The function InverseDynamicsTrajectory requires the user
to enter not only a time sequence of joint variables thetamat but also a time
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sequence of joint velocities dthetamat and accelerations ddthetamat. Instead,
the function could use numerical di↵erencing to find approximately the joint
velocities and accelerations at each timestep, using only thetamat. Write an
alternative InverseDynamicsTrajectory function that does not require the
user to enter dthetamat and ddthetamat. Verify that it yields similar results.

Exercise 8.15 Dynamics of the UR5 robot.
(a) Write the spatial inertia matrices Gi of the six links of the UR5, given

the center-of-mass frames and mass and inertial properties defined in the
URDF in Section 4.2.

(b) Simulate the UR5 falling under gravity with acceleration g = 9.81 m/s2

in the �ẑs-direction. The robot starts at its zero configuration and zero
joint torques are applied. Simulate the motion for three seconds, with at
least 100 integration steps per second. (Ignore the e↵ects of friction and
the geared rotors.)

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 9

Trajectory Generation

During robot motion, the robot controller is provided with a steady stream of
goal positions and velocities to track. This specification of the robot position
as a function of time is called a trajectory. In some cases, the trajectory is
completely specified by the task – for example, the end-e↵ector may be required
to track a known moving object. In other cases, as when the task is simply to
move from one position to another in a given time, we have freedom to design
the trajectory to meet these constraints. This is the domain of trajectory
planning. The trajectory should be a su�ciently smooth function of time, and
it should respect any given limits on joint velocities, accelerations, or torques.

In this chapter we consider a trajectory as the combination of a path, a
purely geometric description of the sequence of configurations achieved by the
robot, and a time scaling, which specifies the times when those configurations
are reached. We consider three cases: point-to-point straight-line trajectories
in both joint space and task space; trajectories passing through a sequence of
timed via points; and minimum-time trajectories along specified paths taking
actuator limits into consideration. Finding paths that avoid obstacles is left to
Chapter 10.

9.1 Definitions

A path ✓(s) maps a scalar path parameter s, assumed to be 0 at the start
of the path and 1 at the end, to a point in the robot’s configuration space ⇥,
✓ : [0, 1] ! ⇥. As s increases from 0 to 1, the robot moves along the path.
Sometimes s is taken to be time and is allowed to vary from time s = 0 to
the total motion time s = T , but it is often useful to separate the role of the
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geometric path parameter s from the time parameter t. A time scaling s(t)
assigns a value s to each time t 2 [0, T ], s : [0, T ]! [0, 1].

Together, a path and a time scaling define a trajectory ✓(s(t)), or ✓(t) for
short. Using the chain rule, the velocity and acceleration along the trajectory
can be written as

✓̇ =
d✓

ds
ṡ, (9.1)

✓̈ =
d✓

ds
s̈ +

d2✓

ds2
ṡ2. (9.2)

To ensure that the robot’s acceleration (and therefore dynamics) is well defined,
each of ✓(s) and s(t) must be twice di↵erentiable.

9.2 Point-to-Point Trajectories

The simplest type of motion is from rest at one configuration to rest at another.
We call this a point-to-point motion. The simplest type of path for point-to-
point motion is a straight line. Straight-line paths and their time scalings are
discussed below.

9.2.1 Straight-Line Paths

A “straight line” from a start configuration ✓start to an end configuration ✓end
could be defined in joint space or in task space. The advantage of a straight-line
path from ✓start to ✓end in joint space is simplicity: since joint limits typically
take the form ✓i,min  ✓i  ✓i,max for each joint i, the allowable joint configu-
rations form a convex set ⇥free in joint space, so the straight line between any
two endpoints in ⇥free also lies in ⇥free. The straight line can be written

✓(s) = ✓start + s(✓end � ✓start), s 2 [0, 1] (9.3)

with derivatives

d✓

ds
= ✓end � ✓start, (9.4)

d2✓

ds2
= 0. (9.5)

Straight lines in joint space generally do not yield straight-line motion of the
end-e↵ector in task space. If task-space straight-line motions are desired, the
start and end configurations can be specified by Xstart and Xend in task space. If
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✓end
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Figure 9.1: (Left) A 2R robot with joint limits 0�  ✓1  180�, 0�  ✓2  150�. (Top
center) A straight-line path in joint space and (top right) the corresponding motion
of the end-e↵ector in task space (dashed line). The reachable endpoint configurations,
subject to joint limits, are indicated in gray. (Bottom center) This curved line in joint
space and (bottom right) the corresponding straight-line path in task space (dashed
line) would violate the joint limits.

Xstart and Xend are represented by a minimum set of coordinates then a straight
line is defined as X(s) = Xstart+s(Xend�Xstart), s 2 [0, 1]. Compared with the
case when joint coordinates are used, the following issues must be addressed:

• If the path passes near a kinematic singularity, the joint velocities may
become unreasonably large for almost all time scalings of the path.

• Since the robot’s reachable task space may not be convex in X coordinates,
some points on a straight line between two reachable endpoints may not
be reachable (Figure 9.1).

In addition to the issues above, if Xstart and Xend are represented as elements
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of SE(3) instead of as a minimum set of coordinates, then there is the question
of how to define a “straight” line in SE(3). A configuration of the form Xstart+
s(Xend �Xstart) does not generally lie in SE(3).

One option is to use the screw motion (simultaneous rotation about and
translation along a fixed screw axis) that moves the robot’s end-e↵ector from
Xstart = X(0) to Xend = X(1). To derive this X(s), we can write the start and
end configurations explicitly in the {s} frame as Xs,start and Xs,end and use our
subscript cancellation rule to express the end configuration in the start frame:

Xstart,end = Xstart,sXs,end = X�1
s,startXs,end.

Then log(X�1
s,startXs,end) is the matrix representation of the twist, expressed in

the {start} frame, that takes Xstart to Xend in unit time. The path can therefore
be written as

X(s) = Xstart exp(log(X�1
startXend)s), (9.6)

where Xstart is post-multiplied by the matrix exponential since the twist is
represented in the {start} frame, not the fixed world frame {s}.

This screw motion provides a “straight-line” motion in the sense that the
screw axis is constant. The origin of the end-e↵ector does not generally follow
a straight line in Cartesian space, since it is following a screw motion. It may
be preferable to decouple the rotational motion from the translational motion.
Writing X = (R, p), we can define the path

p(s) = pstart + s(pend � pstart), (9.7)

R(s) = Rstart exp(log(RT
startRend)s) (9.8)

where the frame origin follows a straight line while the axis of rotation is constant
in the body frame. Figure 9.2 illustrates a screw path and a decoupled path for
the same Xstart and Xend.

9.2.2 Time Scaling a Straight-Line Path

A time scaling s(t) of a path should ensure that the motion is appropriately
smooth and that any constraints on robot velocity and acceleration are satisfied.
For a straight-line path in joint space of the form (9.3), the time-scaled joint
velocities and accelerations are ✓̇ = ṡ(✓end � ✓start) and ✓̈ = s̈(✓end � ✓start),
respectively. For a straight-line path in task space parametrized by a minimum
set of coordinates X 2 Rm, simply replace ✓, ✓̇, and ✓̈ by X, Ẋ, and Ẍ.
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screw path

 decoupled rotation and translation
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Figure 9.2: A path following a constant screw motion versus a decoupled path where
the frame origin follows a straight line and the angular velocity is constant.
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Figure 9.3: Plots of s(t), ṡ(t), and s̈(t) for a third-order polynomial time scaling.

9.2.2.1 Polynomial Time Scaling

Third-order Polynomials A convenient form for the time scaling s(t) is a
cubic polynomial of time,

s(t) = a0 + a1t + a2t
2 + a3t

3. (9.9)

A point-to-point motion in time T imposes the initial constraints s(0) = ṡ(0) = 0
and the terminal constraints s(T ) = 1 and ṡ(T ) = 0. Evaluating Equation (9.9)
and its derivative

ṡ(t) = a1 + 2a2t + 3a3t
2 (9.10)

at t = 0 and t = T and solving the four constraints for a0, . . . , a3, we find

a0 = 0, a1 = 0, a2 =
3

T 2
, a3 = � 2

T 3
.

Plots of s(t), ṡ(t), and s̈(t) are shown in Figure 9.3.
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Substituting s = a2t2 + a3t3 into Equation (9.3) yields

✓(t) = ✓start +

✓
3t2

T 2
� 2t3

T 3

◆
(✓end � ✓start), (9.11)

✓̇(t) =

✓
6t

T 2
� 6t2

T 3

◆
(✓end � ✓start), (9.12)

✓̈(t) =

✓
6

T 2
� 12t

T 3

◆
(✓end � ✓start). (9.13)

The maximum joint velocities are achieved at the halfway point of the motion,
t = T/2:

✓̇max =
3

2T
(✓end � ✓start).

The maximum joint accelerations and decelerations are achieved at t = 0 and
t = T :

✓̈max =

����
6

T 2
(✓end � ✓start)

���� , ✓̈min = �
����

6

T 2
(✓end � ✓start)

���� .

If there are known limits on the maximum joint velocities |✓̇|  ✓̇limit and maxi-
mum joint accelerations |✓̈|  ✓̈limit, these bounds can be checked to see whether
the requested motion time T is feasible. Alternatively, one could solve for T
to find the minimum possible motion time that satisfies the most restrictive
velocity or acceleration constraint.

Fifth-order Polynomials Because third-order time scaling does not con-
strain the endpoint path accelerations s̈(0) and s̈(T ) to be zero, the robot is
asked to achieve a discontinuous jump in acceleration at both t = 0 and t = T .
This implies an infinite jerk, the derivative of acceleration, which may cause
vibration of the robot.

One solution is to constrain the endpoint accelerations to s̈(0) = s̈(T ) = 0.
Adding these two constraints to the problem formulation requires the addition
of two more design freedoms in the polynomial, yielding a quintic polynomial of
time, s(t) = a0 + · · · + a5t5. We can use the six terminal position, velocity, and
acceleration constraints to solve uniquely for a0, . . . , a5 (Exercise 9.5), which
yields a smoother motion with a higher maximum velocity than a cubic time
scaling. A plot of the time scaling is shown in Figure 9.4.

9.2.2.2 Trapezoidal Motion Profiles

Trapezoidal time scalings are quite common in motor control, particularly for
the motion of a single joint, and they get their name from their velocity profiles.
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Figure 9.4: Plots of s(t), ṡ(t), and s̈(t) for a fifth-order polynomial time scaling.
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Figure 9.5: Plots of s(t) and ṡ(t) for a trapezoidal motion profile.

The point-to-point motion consists of a constant acceleration phase s̈ = a of
time ta, followed by a constant velocity phase ṡ = v of time tv = T � 2ta,
followed by a constant deceleration phase s̈ = �a of time ta. The resulting ṡ
profile is a trapezoid and the s profile is the concatenation of a parabola, linear
segment, and parabola as a function of time (Figure 9.5).

The trapezoidal time scaling is not as smooth as the cubic time scaling, but it
has the advantage that if there are known constant limits on the joint velocities
✓̇limit 2 Rn and on the joint accelerations ✓̈limit 2 Rn then the trapezoidal
motion using the largest v and a satisfying

|(✓end � ✓start)v|  ✓̇limit, (9.14)

|(✓end � ✓start)a|  ✓̈limit (9.15)

is the fastest straight-line motion possible. (See Exercise 9.8.)
If v2/a > 1, the robot never reaches the velocity v during the motion (Ex-

ercise 9.10). The three-phase accelerate–coast–decelerate motion becomes a
two-phase accelerate–decelerate “bang-bang” motion, and the trapezoidal pro-
file ṡ(t) in Figure 9.5 becomes a triangle.
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Assuming that v2/a  1, the trapezoidal motion is fully specified by v, a,
ta, and T , but only two of these can be specified independently since they must
satisfy s(T ) = 1 and v = ata. It is unlikely that we would specify ta indepen-
dently, so we can eliminate it from the equations of motion by the substitution
ta = v/a. The motion profile during the three stages (acceleration, coast, de-
celeration) can then be written in terms of v, a, and T as follows:

for 0  t  v

a
, s̈(t) = a, (9.16)

ṡ(t) = at, (9.17)

s(t) =
1

2
at2; (9.18)

for
v

a
< t  T � v

a
, s̈(t) = 0, (9.19)

ṡ(t) = v, (9.20)

s(t) = vt� v2

2a
; (9.21)

for T � v

a
< t  T , s̈(t) = �a, (9.22)

ṡ(t) = a(T � t), (9.23)

s(t) =
2avT � 2v2 � a2(t� T )2

2a
. (9.24)

Since only two of v, a, and T can be chosen independently, we have three
options:

• Choose v and a such that v2/a  1, ensuring a three-stage trapezoidal
profile, and solve s(T ) = 1 (using Equation (9.24)) for T :

T =
a + v2

va
.

If v and a correspond to the highest possible joint velocities and acceler-
ations, this is the minimum possible time for the motion.

• Choose v and T such that 2 � vT > 1, ensuring a three-stage trapezoidal
profile and that the top speed v is su�cient to reach s = 1 in time T , and
solve s(T ) = 1 for a:

a =
v2

vT � 1
.
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Figure 9.6: Plot of ṡ(t) for an S-curve motion profile consisting of seven stages: (1)
constant positive jerk, (2) constant acceleration, (3) constant negative jerk, (4) con-
stant velocity, (5) constant negative jerk, (6) constant deceleration, and (7) constant
positive jerk.

• Choose a and T such that aT 2 � 4, ensuring that the motion is completed
in time, and solve s(T ) = 1 for v:

v =
1

2

⇣
aT �

p
a
p

aT 2 � 4
⌘

.

9.2.2.3 S-Curve Time Scalings

Just as cubic polynomial time scalings lead to infinite jerk at the beginning
and end of the motion, trapezoidal motions cause discontinuous jumps in ac-
celeration at t 2 {0, ta, T � ta, T}. A solution is a smoother S-curve time
scaling, a popular motion profile in motor control because it avoids vibrations
or oscillations induced by step changes in acceleration. An S-curve time scaling
consists of seven stages: (1) constant jerk d3s/dt3 = J until a desired accelera-
tion s̈ = a is achieved; (2) constant acceleration until the desired ṡ = v is being
approached; (3) constant negative jerk �J until s̈ equals zero exactly at the
time ṡ reaches v; (4) coasting at constant v; (5) constant negative jerk �J ; (6)
constant deceleration �a; and (7) constant positive jerk J until s̈ and ṡ reach
zero exactly at the time s reaches 1.

The ṡ(t) profile for an S-curve is shown in Figure 9.6.
Given some subset of v, a, J , and the total motion time T , algebraic manipu-

lation reveals the switching time between stages and conditions that ensure that
all seven stages are actually achieved, similarly to the case of the trapezoidal
motion profile.
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start end start end

(a) (b)

via 2 via 3 via 2 via 3

x̂

ŷ

x̂

ŷ

Figure 9.7: Two paths in an (x, y) space corresponding to piecewise-cubic trajectories
interpolating four via points, including a start point and an end point. The velocities
at the start and end are zero, and the velocities at vias 2 and 3 are indicated by the
dashed tangent vectors. The shape of the path depends on the velocities specified at
the via points.

9.3 Polynomial Via Point Trajectories

If the goal is to have the robot joints pass through a series of via points at
specified times, without a strict specification on the shape of path between
consecutive points, a simple solution is to use polynomial interpolation to find
joint histories ✓(t) directly without first specifying a path ✓(s) and then a time
scaling s(t) (Figure 9.7).

Let the trajectory be specified by k via points, with the start point occurring
at T1 = 0 and the final point at Tk = T . Since each joint history is interpolated
individually, we focus on a single joint variable and call it � to avoid a prolifera-
tion of subscripts. At each via point i 2 {1, . . . , k}, the user specifies the desired
position �(Ti) = �i and velocity �̇(Ti) = �̇i. The trajectory has k� 1 segments,
and the duration of segment j 2 {1, . . . , k � 1} is �Tj = Tj+1 � Tj . The joint
trajectory during segment j is expressed as the third-order polynomial

�(Tj + �t) = aj0 + aj1�t + aj2�t2 + aj3�t3 (9.25)

in terms of the time �t elapsed in segment j, where 0  �t  �Tj . Segment j
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Figure 9.8: The coordinate time histories for the cubic via-point interpolation of
Figure 9.7(a).

is subject to the four constraints

�(Tj) = �j , �̇(Tj) = �̇j ,

�(Tj + �Tj) = �j+1, �̇(Tj + �Tj) = �̇j+1.

Solving these constraints for aj0, . . . , aj3 yields

aj0 = �j , (9.26)

aj1 = �̇j , (9.27)

aj2 =
3�j+1 � 3�j � 2�̇j�Tj � �̇j+1�Tj

�T 2
j

, (9.28)

aj3 =
2�j + (�̇j + �̇j+1)�Tj � 2�j+1

�T 3
j

. (9.29)

Figure 9.8 shows the time histories for the interpolation of Figure 9.7(a).
In this two-dimensional (x, y) coordinate space the via points 1, . . . , 4 occur at
times T1 = 0, T2 = 1, T3 = 2, and T4 = 3. The via points are at (0, 0), (0, 1),
(1, 1), and (1, 0) with velocities (0, 0), (1, 0), (0,�1), and (0, 0).

Two issues are worth mentioning:

• The quality of the interpolated trajectories is improved by “reasonable”
combinations of via-point times and via-point velocities. For example,
if the user wants to specify a via-point location and time, but not the
velocity, a heuristic could be used to choose a via velocity on the basis of
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the times and coordinate vectors to the via points before and after the via
in question. As an example, the trajectory of Figure 9.7(b) is smoother
than the trajectory of Figure 9.7(a).

• Cubic via-point interpolation ensures that velocities are continuous at via
points, but not accelerations. The approach is easily generalized to the
use of fifth-order polynomials and specification of the accelerations at the
via points, at the cost of increased complexity of the solution.

If only two points are used (the start and end point), and the velocities
at each are zero, the resulting trajectory is identical to the straight-line cubic
polynomial time-scaled trajectory discussed in Section 9.2.2.1.

There are many other methods for interpolating a set of via points. For
example, B-spline interpolation is popular. In B-spline interpolation, the path
may not pass exactly through the via points, but the path is guaranteed to be
confined to the convex hull of the via points, unlike the paths in Figure 9.7.
This can be important to ensure that joint limits or workspace obstacles are
respected.

9.4 Time-Optimal Time Scaling

In the case where the path ✓(s) is fully specified by the task or an obstacle-
avoiding path planner (e.g., Figure 9.9), the trajectory planning problem reduces
to finding a time scaling s(t). One could choose the time scaling to minimize
the energy consumed while meeting a time constraint, or to prevent spilling a
glass of water that the robot is carrying. One of the most useful time scalings
minimizes the time of motion along the path, subject to the robot’s actuator
limits. Such time-optimal trajectories maximize the robot’s productivity.

While the trapezoidal time scalings of Section 9.2.2.2 can yield time-optimal
trajectories, this is only under the assumption of straight-line motions, constant
maximum acceleration a, and constant maximum coasting velocity v. For most
robots, because of state-dependent joint actuator limits and the state-dependent
dynamics

M(✓)✓̈ + c(✓, ✓̇) + g(✓) = ⌧, (9.30)

the maximum available velocities and accelerations change along the path.
In this section we consider the problem of finding the fastest possible time

scaling s(t) that respects the robot’s actuator limits. We write the limits on the
ith actuator as

⌧min
i (✓, ✓̇)  ⌧i  ⌧max

i (✓, ✓̇). (9.31)
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x̂

ŷ

s = 0s = 1

R

(xc, yc)

Figure 9.9: A path planner has returned a semicircular path of radius R around
an obstacle in (x, y) space for a robot with two prismatic joints. The path can be
represented in terms of a path parameter s, as x(s) = xc + R cos s⇡ and y(s) =
yc � R sin s⇡ for s 2 [0, 1]. For a 2R robot, inverse kinematics would be used to
express the path as a function of s in joint coordinates.

The available actuator torque is typically a function of the current joint speed
(see Section 8.9.1). For example, for a given maximum voltage of a DC motor,
the maximum torque available from the motor drops linearly with the motor’s
speed.

Before proceeding we recall that the quadratic velocity terms c(✓, ✓̇) in Equa-
tion (9.30) can be written equivalently as

c(✓, ✓̇) = ✓̇T�(✓)✓̇,

where �(✓) is the three-dimensional tensor of Christo↵el symbols constructed
from partial derivatives of components of the mass matrix M(✓) with respect to
✓. This form shows more clearly the quadratic dependence on velocities. Now,
beginning with Equation (9.30), replacing ✓̇ by (d✓/ds)ṡ and ✓̈ by (d✓/ds)s̈ +
(d2✓/ds2)ṡ2, and rearranging, we get

✓
M(✓(s))

d✓

ds

◆

| {z }
m(s)2Rn

s̈ +

 
M(✓(s))

d2✓

ds2
+

✓
d✓

ds

◆T

�(✓(s))
d✓

ds

!

| {z }
c(s)2Rn

ṡ2 + g(✓(s))| {z }
g(s)2Rn

= ⌧,

(9.32)
expressed more compactly as the vector equation

m(s)s̈ + c(s)ṡ2 + g(s) = ⌧, (9.33)
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where m(s) is the e↵ective inertia of the robot when it is confined to the path
✓(s), c(s)ṡ2 comprises the quadratic velocity terms, and g(s) is the gravitational
torque.

Similarly, the actuation constraints (9.31) can be expressed as a function of
s:

⌧min
i (s, ṡ)  ⌧i  ⌧max

i (s, ṡ). (9.34)

Substituting the ith component of Equation (9.33), we get

⌧min
i (s, ṡ)  mi(s)s̈ + ci(s)ṡ

2 + gi(s)  ⌧max
i (s, ṡ). (9.35)

Let Li(s, ṡ) and Ui(s, ṡ) be the minimum and maximum accelerations s̈ sat-
isfying the ith component of Equation (9.35). Depending on the sign of mi(s),
we have three possibilities:

if mi(s) > 0, Li(s, ṡ) =
⌧min
i (s, ṡ)� c(s)ṡ2 � g(s)

mi(s)
,

Ui(s, ṡ) =
⌧max
i (s, ṡ)� c(s)ṡ2 � g(s)

mi(s)

if mi(s) < 0, Li(s, ṡ) =
⌧max
i (s, ṡ)� c(s)ṡ2 � g(s)

mi(s)
,

Ui(s, ṡ) =
⌧min
i (s, ṡ)� c(s)ṡ2 � g(s)

mi(s)
if mi(s) = 0, we have a zero-inertia point , discussed in Section 9.4.4.

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(9.36)
Defining

L(s, ṡ) = max
i

Li(s, ṡ) and U(s, ṡ) = min
i

Ui(s, ṡ),

the actuator limits (9.35) can be written as the state-dependent time-scaling
constraints

L(s, ṡ)  s̈  U(s, ṡ). (9.37)

The time-optimal time-scaling problem can now be stated:

Given a path ✓(s), s 2 [0, 1], an initial state (s0, ṡ0) = (0, 0), and a final state
(sf , ṡf ) = (1, 0), find a monotonically increasing twice-di↵erentiable time scaling
s : [0, T ]! [0, 1] that

(a) satisfies s(0) = ṡ(0) = ṡ(T ) = 0 and s(T ) = 1, and

(b) minimizes the total travel time T along the path while respecting the actu-
ator constraints (9.37).

The problem formulation is easily generalized to the case of nonzero initial
and final velocities along the path, ṡ(0) > 0 and ṡ(T ) > 0.
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time scaling ṡ(s)

ṡ

s0 1

Figure 9.10: A time scaling in the (s, ṡ) phase plane is a curve, with ṡ � 0 at all
times, connecting the initial path position and velocity (0, 0) to the final position and
velocity (1, 0).

9.4.1 The (s, ṡ) Phase Plane

The problem is easily visualized in the (s, ṡ) phase plane of the path-constrained
robot, with s running from 0 to 1 on a horizontal axis and ṡ on a vertical
axis. Since s(t) is monotonically increasing, ṡ(t) � 0 for all times t and for all
s 2 [0, 1]. A time scaling of the path is any curve in the phase plane that moves
monotonically to the right from (0, 0) to (1, 0) (Figure 9.10). Not all such curves
satisfy the acceleration constraints (9.37), however.

To see the e↵ect of the acceleration constraints, at each (s, ṡ) in the phase
plane, we can plot the limits L(s, ṡ)  s̈  U(s, ṡ) as a cone constructed from ṡ,
L, and U , as illustrated in two dimensions in Figure 9.11(a). If L(s, ṡ) � U(s, ṡ),
the cone disappears – there are no actuator commands that can keep the robot
on the path at this state. These inadmissible states are indicated in gray
in Figure 9.11(a). For any s, typically there is a single limit velocity ṡlim(s)
above which all velocities are inadmissible. The function ṡlim(s) is called the
velocity limit curve. On the velocity limit curve, L(s, ṡ) = U(s, ṡ), and the
cone reduces to a single vector.

For a time scaling to satisfy the acceleration constraints, the tangent of the
time-scaling curve must lie inside the feasible cone at all points on the curve.
Figure 9.11(b) shows an example of an infeasible time scaling, which demands
more deceleration than the actuators can provide at the state indicated.

For a minimum-time motion, the “speed” ṡ must be as high as possible
at every s while still satisfying the acceleration constraints and the endpoint
constraints. To see this, write the total time of motion T as

T =

Z T

0
1 dt. (9.38)
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s.

velocity
limit curve

ṡ

s0 1

ṡ

s0 1

U(s, ṡ)

L(s, ṡ)

(a) (b)

Figure 9.11: (a) Acceleration-limited motion cones at four di↵erent states. The
upper ray of the cone is the sum of U(s, ṡ) plotted in the vertical direction (the change
in velocity) and ṡ plotted in the horizontal direction (the change in position). The
lower ray of the cone is constructed from L(s, ṡ) and ṡ. The points in gray, bounded
by the velocity limit curve, have L(s, ṡ) � U(s, ṡ): the state is inadmissible and there
is no motion cone. On the velocity limit curve the cone is reduced to a single tangent
vector. (b) The proposed time scaling is infeasible because the tangent to the curve is
outside the motion cone at the state indicated.

Making the substitution ds/ds = 1, and changing the limits of integration from
0 to T (time) to 0 to 1 (s), we get

T =

Z T

0
1 dt =

Z T

0

ds

ds
dt =

Z 1

0

dt

ds
ds =

Z 1

0
ṡ�1(s) ds. (9.39)

Thus for time to be minimized, ṡ�1(s) should be as small as possible, and
therefore ṡ(s) must be as large as possible, at all s, while still satisfying the
acceleration constraints (9.37) and the boundary constraints.

This implies that the time scaling must always operate either at the limit
U(s, ṡ) or at the limit L(s, ṡ), and our only choice is when to switch between
these limits. A common solution is a bang-bang trajectory: maximum accel-
eration U(s, ṡ) followed by a switch to maximum deceleration L(s, ṡ). (This is
similar to the trapezoidal motion profile that never reaches the coasting velocity
v in Section 9.2.2.2.) In this case the time scaling is calculated by numerically
integrating U(s, ṡ) forward in s from (0, 0), integrating L(s, ṡ) backward in s
from (1, 0), and finding the intersection of these curves (Figure 9.12(a)). The
switch between maximum acceleration and maximum deceleration occurs at the
intersection.

In some cases, the velocity limit curve prevents a single-switch solution (Fig-
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optimal bang-bang
time scaling

non-optimal

ṡ ṡ

s s0
1

U(s, ṡ)

L(s, ṡ)

(a) (b)

0s⇤

Figure 9.12: (a) A time-optimal bang-bang time scaling integrates U(s, ṡ) from
(0, 0) and switches to L(s, ṡ) at a switching point s⇤. Also shown is a non-optimal
time scaling with a tangent inside a motion cone. (b) Sometimes the velocity limit
curve prevents a single-switch solution.

ure 9.12(b)). These cases require an algorithm to find multiple switching points.

9.4.2 The Time-Scaling Algorithm

Finding the optimal time scaling is reduced to finding the switches between
maximum acceleration U(s, ṡ) and maximum deceleration L(s, ṡ), maximizing
the “height” of the curve in the (s, ṡ) phase plane.

Time-scaling algorithm

1. Initialize an empty list of switches S = {} and a switch counter i = 0. Set
(si, ṡi) = (0, 0).

2. Integrate the equation s̈ = L(s, ṡ) backward in time from (1, 0) until
L(s, ṡ) > U(s, ṡ) (the velocity limit curve is penetrated) or s = 0. Call
this phase plane curve F .

3. Integrate the equation s̈ = U(s, ṡ) forward in time from (si, ṡi) until it
crosses F or until U(s, ṡ) < L(s, ṡ) (the velocity limit curve is penetrated).
Call this curve Ai. If Ai crosses F then increment i, set (si, ṡi) to the (s, ṡ)
value at which the crossing occurs, and append si to the list of switches
S. This is a switch from maximum acceleration to maximum deceleration.
The problem is solved and S is the set of switches expressed in the path
parameter. If instead the velocity limit curve is penetrated, let (slim, ṡlim)
be the point of penetration and proceed to the next step.
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4. Perform a binary search on the velocity in the range [0, ṡlim] to find the ve-
locity ṡ0 such that the curve integrating s̈ = L(s, ṡ) forward from (slim, ṡ0)
touches the velocity limit curve without penetrating it. The binary search
is initiated with ṡhigh = ṡlim and ṡlow = 0.

(a) Set the test velocity halfway between ṡlow and ṡhigh: ṡtest = (ṡhigh +
ṡlow)/2. The test point is (slim, ṡtest).

(b) If the curve from the test point penetrates the velocity limit curve,
set ṡhigh equal to ṡtest. If instead the curve from the test point hits
ṡ = 0, set ṡlow equal to ṡtest. Return to step 4(a).

Continue the binary search until a specified tolerance. Let (stan, ṡtan) be
the point where the resulting curve just touches the velocity limit curve
tangentially (or comes closest to the curve without hitting it). The motion
cone at this point is reduced to a single vector (L(s, ṡ) = U(s, ṡ)), tangent
to the velocity limit curve.

5. Integrate s̈ = L(s, ṡ) backwards from (stan, ṡtan) until it intersects Ai.
Increment i, set (si, ṡi) to the (s, ṡ) value at the intersection, and label
as Ai the curve segment from (si, ṡi) to (stan, ṡtan). Append si to the list
of switches S. This is a switch from maximum acceleration to maximum
deceleration.

6. Increment i and set (si, ṡi) to (stan, ṡtan). Append si to the list of switches
S. This is a switch from maximum deceleration to maximum acceleration.
Go to step 3.

Figure 9.13 shows steps 2–6 of the time-scaling algorithm. (Step 2) Integra-
tion of s̈ = L(s, ṡ) backward from (1, 0) until the velocity limit curve is reached.
(Step 3) Integration of s̈ = U(s, ṡ) forward from (0, 0) to the intersection
(slim, ṡlim) with the velocity limit curve. (Step 4) Binary search to find (slim, ṡ0)
from which s̈ = L(s, ṡ), integrated forward from (slim, ṡ0), touches the veloc-
ity limit curve tangentially. (Step 5) Integration backward along L(s, ṡ) from
(stan, ṡtan) to find the first switch from acceleration to deceleration. (Step 6)
The second switch, from deceleration to acceleration, is at (s2, ṡ2) = (stan, ṡtan).
(Step 3) Integration forward along U(s, ṡ) from (s2, ṡ2) results in intersection
with F at (s3, ṡ3), where a switch occurs from acceleration to deceleration. The
optimal time scaling consists of switches at S = {s1, s2, s3}.

9.4.3 A Variation on the Time-Scaling Algorithm

Remember that each point (s, ṡ) below the velocity limit curve has a cone of
feasible motions, while each point on the velocity limit curve has a single feasible
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Figure 9.13: The time-scaling algorithm.
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Figure 9.14: A point on the velocity limit curve can only be a part of a time-optimal
time scaling if the feasible motion vector at that point is tangential to the curve. A
search along the velocity limit curve illustrated reveals that there are only two points
on this particular curve (marked by dots) that can belong to a time-optimal time
scaling.

vector. The only points on the velocity limit curve that can be part of an optimal
solution are those where the feasible motion vector is tangent to the velocity
limit curve; these are the points (stan, ṡtan) referred to above. Recognizing this,
the binary search in step 4 of the time-scaling algorithm, which is essentially
searching for a point (stan, ṡtan), can be replaced by explicit construction of the
velocity limit curve and a search for points on this curve satisfying the tangency
condition. See Figure 9.14.

9.4.4 Assumptions and Caveats

The description above covers the major points of the optimal time-scaling algo-
rithm. A few assumptions were glossed over; they are made explicit now.

• Static posture maintenance. The algorithm, as described, assumes
that the robot can maintain its configuration against gravity at any state
(s, ṡ = 0). This ensures the existence of valid time scalings, namely, time
scalings that move the robot along the path arbitrarily slowly. For some
robots and paths this assumption may be violated owing to weakness of
the actuators. For example, some paths may require some momentum to
carry the motion through configurations that the robot cannot maintain
statically. The algorithm can be modified to handle such cases.

• Inadmissible states. The algorithm assumes that at every s there is a
unique velocity limit ṡlim(s) > 0 such that all velocities ṡ  ṡlim(s) are
admissible and all velocities ṡ > ṡlim(s) are inadmissible. For some models
of actuator dynamics or friction this assumption may be violated – there
may be isolated “islands” of inadmissible states. The algorithm can be
modified to handle this case.

• Zero-inertia points. The algorithm assumes that there are no zero-
inertia points (Equation (9.36)). If mi(s) = 0 in (9.36) then the torque

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 9. Trajectory Generation 347

provided by actuator i has no dependence on the acceleration s̈, and the
ith actuator constraint in (9.35) directly defines a velocity constraint on ṡ.
At a point s with one or more zero components in m(s), the velocity limit
curve is defined by the minimum of (a) the velocity constraints defined
by the zero-inertia components and (b) the ṡ values satisfying Li(s, ṡ) =
Ui(s, ṡ) for the other components. For the algorithm as described, singular
arcs of zero-inertia points on the velocity limit curve may lead to rapid
switching between s̈ = U(s, ṡ) and s̈ = L(s, ṡ). In such cases, choosing an
acceleration tangent to the velocity limit curve and lying between U(s, ṡ)
and L(s, ṡ), preserves time optimality without causing chattering of the
controls.

It is worth noting that the time-scaling algorithm generates trajectories with
discontinuous acceleration, which could lead to vibrations. Beyond this, inaccu-
racies in models of robot inertial properties and friction make direct application
of the time-scaling algorithm impractical. Finally, since a minimum-time time
scaling always saturates at least one actuator, if the robot moves o↵ the planned
trajectory, there may be no torque left for corrective action by a feedback con-
troller.

Despite these drawbacks, the time-scaling algorithm provides a deep under-
standing of the true maximum capabilities of a robot following a path.

9.5 Summary

• A trajectory ✓(t), ✓ : [0, T ] ! ⇥, can be written as ✓(s(t)), i.e., as the
composition of a path ✓(s), ✓ : [0, 1] ! ⇥, and a time scaling s(t), s :
[0, T ]! [0, 1].

• A straight-line path in joint space can be written ✓(s) = ✓start + s(✓end �
✓start), s 2 [0, 1]. A similar form holds for straight-line paths in a minimum
set of task-space coordinates. A “straight-line” path in SE(3), where
X = (R, p), can be decoupled to a Cartesian path and a rotation path:

p(s) = pstart + s(pend � pstart), (9.40)

R(s) = Rstart exp(log(RT
startRend)s). (9.41)

• A cubic polynomial s(t) = a0 + a1t + a2t2 + a3t3 can be used to time
scale a point-to-point motion with zero initial and final velocities. The
acceleration undergoes a step change (an infinite jerk) at t = 0 and t = T .
Such an impulse in jerk can cause vibration of the robot.
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• A quintic polynomial s(t) = a0+a1t+a2t2+a3t3+a4t4+a5t5 can be used
to time-scale a point-to-point motion with zero initial and final velocities
and accelerations. The jerk is finite at all times.

• The trapezoidal motion profile is a popular time scaling in point-to-point
control, particularly the control of a single motor. The motion consists
of three phases: constant acceleration, constant velocity, and constant
deceleration, resulting in a trapezoid in ṡ(t). Trapezoidal motion involves
step changes in acceleration.

• The S-curve motion profile is also popular in point-to-point control of a
motor. It consists of seven phases: (1) constant positive jerk, (2) constant
acceleration, (3) constant negative jerk, (4) constant velocity, (5) constant
negative jerk, (6) constant deceleration, and (7) constant positive jerk.

• Given a set of via points including a start state, a goal state, and other via
states through which the robot’s motion must pass, as well as the times
Ti at which these states should be reached, a series of cubic-polynomial
time scalings can be used to generate a trajectory ✓(t) interpolating the
via points. To prevent step changes in acceleration at the via points, a
series of quintic polynomials can be used instead.

• Given a robot path ✓(s), the dynamics of the robot, and limits on the
actuator torques, the actuator constraints can be expressed in terms of
(s, ṡ) as the vector inequalities

L(s, ṡ)  s̈  U(s, ṡ).

The time-optimal time scaling s(t) is such that the “height” of the curve in
the (s, ṡ) phase plane is maximized while satisfying s(0) = ṡ(0) = ṡ(T ) =
0, s(T ) = 1, and the actuator constraints. The optimal solution always op-
erates at maximum acceleration U(s, ṡ) or maximum deceleration L(s, ṡ).

9.6 Software

Software functions associated with this chapter are listed below.

s = CubicTimeScaling(Tf,t)
Computes s(t) for a cubic time scaling, given t and the total time of motion
Tf .

s = QuinticTimeScaling(Tf,t)

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 9. Trajectory Generation 349

Computes s(t) for a quintic time scaling, given t and the total time of motion
Tf .

traj = JointTrajectory(thetastart,thetaend,Tf,N,method)
Computes a straight-line trajectory in joint space as an N ⇥ n matrix, where
each of the N rows is an n-vector of the joint variables at an instant in time.
The first row is ✓start and the Nth row is ✓end. The elapsed time between each
row is Tf/(N � 1). The parameter method equals either 3 for a cubic time
scaling or 5 for a quintic time scaling.

traj = ScrewTrajectory(Xstart,Xend,Tf,N,method)
Computes a trajectory as a list of N SE(3) matrices, where each matrix repre-
sents the configuration of the end-e↵ector at an instant in time. The first matrix
is Xstart, the Nth matrix is Xend, and the motion is along a constant screw axis.
The elapsed time between each matrix is Tf/(N � 1). The parameter method
equals either 3 for a cubic time scaling or 5 for a quintic time scaling.

traj = CartesianTrajectory(Xstart,Xend,Tf,N,method)
Computes a trajectory as a list of N SE(3) matrices, where each matrix repre-
sents the configuration of the end-e↵ector at an instant in time. The first matrix
is Xstart, the Nth matrix is Xend, and the origin of the end-e↵ector frame fol-
lows a straight line, decoupled from the rotation. The elapsed time between
each matrix is Tf/(N � 1). The parameter method equals either 3 for a cubic
time scaling or 5 for a quintic time scaling.

9.7 Notes and References

In 1985, Bobrow et al. [15] and Shin and McKay [168] published papers nearly
simultaneously that independently derived the essence of the time-optimal time-
scaling algorithm outlined in Section 9.4. A year earlier, Hollerbach addressed
the restricted problem of finding dynamically feasible time-scaled trajectories for
uniform time scalings where the time variable t is replaced by ct for c > 0 [59].

The original papers of Bobrow et al. and Shin and McKay were followed by
a number of papers refining the methods by addressing zero-inertia points, sin-
gularities, algorithm e�ciency, and even the presence of constraints and obsta-
cles [138, 173, 163, 164, 165, 166, 167, 139, 140]. In particular, a computationally
e�cient method for finding the points (stan, ṡtan), where the optimal time scal-
ing touches the velocity limit curve, is described in [138, 173]. This algorithm is
used to improve the computational e�ciency of the time-scaling algorithm; see,
for example, the description and supporting open-source code in [139, 140]. In
this chapter the binary search approach in step 4 of the time-scaling algorithm
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x̂

ŷ

(0, 0)

(2, 1)

(4, 0)

(2, �1)

Figure 9.15: An elliptical path.

follows the presentation in [15] because of its conceptual simplicity.
Other research has focused on numerical methods such as dynamic pro-

gramming or nonlinear optimization to minimize cost functions such as actu-
ator energy. One early example of work in this area is by Vukobratović and
Kirćanski [191].

9.8 Exercises

Exercise 9.1 Consider an elliptical path in the (x, y)-plane. The path starts
at (0, 0) and proceeds clockwise to (2, 1), (4, 0), (2,�1), and back to (0, 0)
(Figure 9.15). Write the path as a function of s 2 [0, 1].

Exercise 9.2 A cylindrical path in X = (x, y, z) is given by x = cos 2⇡s,
y = sin 2⇡s, z = 2s, s 2 [0, 1], and its time scaling is s(t) = 1

4 t + 1
8 t2, t 2 [0, 2].

Write down Ẋ and Ẍ.

Exercise 9.3 Consider a path from X(0) = Xstart 2 SE(3) to X(1) = Xend 2
SE(3) consisting of motion along a constant screw axis. The path is time scaled
by some s(t). Write down the twist V and acceleration V̇ at any point on the
path given ṡ and s̈.

Exercise 9.4 Consider a straight-line path ✓(s) = ✓start + s(✓end � ✓start), s 2
[0, 1] from ✓start = (0, 0) to ✓end = (⇡,⇡/3). The motion starts and ends at
rest. The feasible joint velocities are |✓̇1|, |✓̇2|  2 rad/s and the feasible joint
accelerations are |✓̈1|, |✓̈2|  0.5 rad/s2. Find the fastest motion time T using a
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cubic time scaling that satisfies the joint velocity and acceleration limits.

Exercise 9.5 Find the fifth-order polynomial time scaling that satisfies s(T ) =
1 and s(0) = ṡ(0) = s̈(0) = ṡ(T ) = s̈(T ) = 0.

Exercise 9.6 As a function of the total time of motion T , find the times at
which the acceleration s̈ of the fifth-order polynomial point-to-point time scaling
is a maximum or a minimum.

Exercise 9.7 If you want to use a polynomial time scaling for point-to-point
motion with zero initial and final velocities, accelerations, and jerks, what would
be the minimum order of the polynomial?

Exercise 9.8 Prove that the trapezoidal time scaling, using the maximum
allowable acceleration a and velocity v, minimizes the time of motion T .

Exercise 9.9 Plot by hand the acceleration profile s̈(t) for a trapezoidal time
scaling.

Exercise 9.10 If v and a are specified for a trapezoidal time scaling of a
robot, prove that v2/a  1 is a necessary condition for the robot to reach the
maximum velocity v during the path.

Exercise 9.11 If v and T are specified for a trapezoidal time scaling, prove
that vT > 1 is a necessary condition for the motion to be able to complete in
time T . Prove that vT  2 is a necessary condition for a three-stage trapezoidal
motion.

Exercise 9.12 If a and T are specified for a trapezoidal time scaling, prove
that aT 2 � 4 is a necessary condition to ensure that the motion completes in
time.

Exercise 9.13 Consider the case where the maximum velocity v is never
reached in a trapezoidal time scaling. The motion becomes a bang-bang motion:
constant acceleration a for time T/2 followed by constant deceleration �a for
time T/2. Write down the position s(t), velocity ṡ(t), and acceleration s̈(t) for
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both phases, in analogy to Equations (9.16)–(9.24).

Exercise 9.14 Plot by hand the acceleration profile s̈(t) for an S-curve time
scaling.

Exercise 9.15 A seven-stage S-curve is fully specified by the time tJ (the
duration of a constant positive or negative jerk), the time ta (the duration of
constant positive or negative acceleration), the time tv (the duration of constant
velocity), the total time T , the jerk J , the acceleration a, and the velocity v.
Of these seven quantities, how many can be specified independently?

Exercise 9.16 A nominal S-curve has seven stages, but it can have fewer if
certain inequality constraints are not satisfied. Indicate which cases are possible
with fewer than seven stages. Sketch by hand the ṡ(t) velocity profiles for these
cases.

Exercise 9.17 If the S-curve achieves all seven stages and uses a jerk J , an
acceleration a, and a velocity v, what is the constant-velocity coasting time tv
in terms of v, a, J , and the total motion time T?

Exercise 9.18 Write your own via-point cubic-polynomial interpolation tra-
jectory generator program for a two-dof robot. A new position and velocity
specification is required for each joint at 1000 Hz. The user specifies a sequence
of via-point positions, velocities, and times, and the program generates an array
consisting of the joint angles and velocities at every millisecond from time t = 0
to time t = T , the total duration of the movement. For a test case with at
least three via points (one at the start and and one at the end, both with zero
velocity, and at least one more via point), plot

(a) the path in the joint angle space (similar to Figure 9.7), and
(b) the position and velocity of each joint as a function of time (these plots

should look similar to Figure 9.8).

Exercise 9.19 Via points with specified positions, velocities, and accelerations
can be interpolated using fifth-order polynomials of time. For a fifth-order
polynomial segment between via points j and j + 1, of duration �Tj , with �j ,
�j+1, �̇j , �̇j+1, �̈j , and �̈j+1 specified, solve for the coe�cients of the fifth-order
polynomial (which is similar to Equations (9.26)–(9.29)). A symbolic math
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Figure 9.16: A, B, and C are candidate integral curves, originating from the dots
indicated, while a, b, and c are candidate motion cones at ṡ = 0. Two of the integral
curves and two of the motion cones are incorrect.

solver will simplify the problem.

Exercise 9.20 By hand or by computer, plot a trapezoidal motion profile in
the (s, ṡ)-plane.

Exercise 9.21 Figure 9.16 shows three candidate motion curves in the (s, ṡ)-
plane (A, B, and C) and three candidate motion cones at ṡ = 0 (a, b, and c).
Two of the three curves and two of the three motion cones cannot be correct for
any robot dynamics. Indicate which are incorrect and explain your reasoning.
Explain why the remaining curve and motion cone are possibilities.

Exercise 9.22 Under the assumptions of Section 9.4.4, explain why the time-
scaling algorithm of Section 9.4.2 (see Figure 9.13) is correct. In particular,

(a) explain why, in the binary search of step 4, the curve integrated forward
from (slim, ṡtest) must either hit (or run tangent to) the velocity limit curve
or hit the ṡ = 0 axis (and does not hit the curve F , for example);

(b) explain why the final time scaling can only touch the velocity limit curve
tangentially; and

(c) explain why the acceleration switches from minimum to maximum at
points where the time scaling touches the velocity limit curve.

Exercise 9.23 Explain how the time-scaling algorithm should be modified to
handle the case where the initial and final velocities, at s = 0 and s = 1, are
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nonzero.

Exercise 9.24 Explain how the time-scaling algorithm should be modified if
the robot’s actuators are too weak to hold it statically at some configurations
of the path (the static-posture-maintenance assumption is violated), but the
assumptions on inadmissible states and zero-inertia points are satisfied. Valid
time scalings may no longer exist. Under what condition(s) should the algo-
rithm terminate and indicate that no valid time scaling exists? (Under the
assumptions of Section 9.4.4 the original algorithm always finds a solution and
therefore does not check for failure cases.) What do the motion cones look like
at states (s, ṡ = 0) where the robot cannot hold itself statically?

Exercise 9.25 Create a computer program that plots the motion cones in
the (s, ṡ)-plane for a 2R robot in a horizontal plane. The path is a straight
line in joint space from (✓1, ✓2) = (0, 0) to (⇡/2,⇡/2). Use the dynamics from
Equation (8.9) (with g = 0), then rewrite the dynamics in terms of s, ṡ, s̈ instead
of ✓, ✓̇, ✓̈. The actuators can provide torques in the range �⌧i,limit � b✓̇i 
⌧i  ⌧i,limit � b✓̇i, where b > 0 indicates the velocity dependence of the torque.
The cones should be drawn at a grid of points in (s, ṡ). To keep the figure
manageable, normalize each cone ray to the same length.

Exercise 9.26 We have been assuming forward motion on a path, ṡ > 0.
What if we allowed backward motion on a path, ṡ < 0? This exercise involves
drawing motion cones and an integral curve in the (s, ṡ)-plane, including both
positive and negative values of ṡ. Assume that the maximum acceleration is
U(s, ṡ) = U > 0 (constant over the (s, ṡ)-plane) and the maximum deceleration
is L(s, ṡ) = L = �U . You can assume, for example, that U = 1 and L = �1.

(a) For any constant s, draw the motion cones at the five points where ṡ takes
the values {�2,�1, 0, 1, 2}.

(b) Assume the motion starts at (s, ṡ) = (0, 0) and follows the maximum
acceleration U for time t. Then it follows the maximum deceleration L for
time 2t. Then it follows U for time t. Sketch by hand the integral curve.
(The exact shape does not matter, but the curve should have the correct
features.)
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Chapter 10

Motion Planning

Motion planning is the problem of finding a robot motion from a start state
to a goal state that avoids obstacles in the environment and satisfies other
constraints, such as joint limits or torque limits. Motion planning is one of the
most active subfields of robotics, and it is the subject of entire books. The
purpose of this chapter is to provide a practical overview of a few common
techniques, using robot arms and mobile robots as the primary example systems
(Figure 10.1).

The chapter begins with a brief overview of motion planning. This is followed
by foundational material including configuration space obstacles and graph
search. We conclude with summaries of several di↵erent planning methods.

10.1 Overview of Motion Planning

A key concept in motion planning is configuration space, or C-space for short.
Every point in the C-space C corresponds to a unique configuration q of the
robot, and every configuration of the robot can be represented as a point in
C-space. For example, the configuration of a robot arm with n joints can be
represented as a list of n joint positions, q = (✓1, . . . , ✓n). The free C-space
Cfree consists of the configurations where the robot neither penetrates an obstacle
nor violates a joint limit.

In this chapter, unless otherwise stated, we assume that q is an n-vector and
that C ⇢ Rn. With some generalization, the concepts of this chapter apply to
non-Euclidean C-spaces such as C = SE(3).

The control inputs available to drive the robot are written as an m-vector
u 2 U ⇢ Rm, where m = n for a typical robot arm. If the robot has second-
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Figure 10.1: (Left) A robot arm executing an obstacle-avoiding motion plan. The
motion plan was generated using MoveIt! [180] and visualized using rviz in ROS (the
Robot Operating System). (Right) A car-like mobile robot executing parallel parking.

order dynamics, such as that for a robot arm, and the control inputs are forces
(equivalently, accelerations), the state of the robot is defined by its configuration
and velocity, x = (q, v) 2 X . For q 2 Rn, typically we write v = q̇. If we can
treat the control inputs as velocities, the state x is simply the configuration q.
The notation q(x) indicates the configuration q corresponding to the state x,
and Xfree = {x | q(x) 2 Cfree}.

The equations of motion of the robot are written

ẋ = f(x, u) (10.1)

or, in integral form,

x(T ) = x(0) +

Z T

0
f(x(t), u(t))dt. (10.2)

10.1.1 Types of Motion Planning Problems

With the definitions above, a fairly broad specification of the motion planning
problem is the following:

Given an initial state x(0) = xstart and a desired final state xgoal, find a time
T and a set of controls u : [0, T ] ! U such that the motion (10.2) satisfies
x(T ) = xgoal and q(x(t)) 2 Cfree for all t 2 [0, T ].

It is assumed that a feedback controller (Chapter 11) is available to ensure
that the planned motion x(t), t 2 [0, T ], is followed closely. It is also assumed
that an accurate geometric model of the robot and environment is available to
evaluate Cfree during motion planning.

There are many variations of the basic problem; some are discussed below.
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Path planning versus motion planning. The path planning problem is a
subproblem of the general motion planning problem. Path planning is the
purely geometric problem of finding a collision-free path q(s), s 2 [0, 1],
from a start configuration q(0) = qstart to a goal configuration q(1) = qgoal,
without concern for the dynamics, the duration of motion, or constraints
on the motion or on the control inputs. It is assumed that the path
returned by the path planner can be time scaled to create a feasible tra-
jectory (Chapter 9). This problem is sometimes called the piano mover’s
problem, emphasizing the focus on the geometry of cluttered spaces.

Control inputs: m = n versus m < n. If there are fewer control inputs m
than degrees of freedom n, then the robot is incapable of following many
paths, even if they are collision-free. For example, a car has n = 3 (the
position and orientation of the chassis in the plane) but m = 2 (forward–
backward motion and steering); it cannot slide directly sideways into a
parking space.

Online versus o✏ine. A motion planning problem requiring an immediate re-
sult, perhaps because obstacles appear, disappear, or move unpredictably,
calls for a fast, online, planner. If the environment is static then a slower
o✏ine planner may su�ce.

Optimal versus satisficing. In addition to reaching the goal state, we might
want the motion plan to minimize (or approximately minimize) a cost J ,
e.g.,

J =

Z T

0
L(x(t), u(t))dt.

For example, minimizing with L = 1 yields a time-optimal motion while
minimizing with L = uT(t)u(t) yields a “minimum-e↵ort” motion.

Exact versus approximate. We may be satisfied with a final state x(T ) that
is su�ciently close to xgoal, e.g., kx(T )� xgoalk < ✏.

With or without obstacles. The motion planning problem can be challeng-
ing even in the absence of obstacles, particularly if m < n or optimality is
desired.

10.1.2 Properties of Motion Planners

Planners must conform to the properties of the motion planning problem as
outlined above. In addition, planners can be distinguished by the following
properties.
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Multiple-query versus single-query planning. If the robot is being asked
to solve a number of motion planning problems in an unchanging envi-
ronment, it may be worth spending the time building a data structure
that accurately represents Cfree. This data structure can then be searched
to solve multiple planning queries e�ciently. Single-query planners solve
each new problem from scratch.

“Anytime” planning. An anytime planner is one that continues to look for
better solutions after a first solution is found. The planner can be stopped
at any time, for example when a specified time limit has passed, and the
best solution returned.

Completeness. A motion planner is said to be complete if it is guaranteed to
find a solution in finite time if one exists, and to report failure if there is
no feasible motion plan. A weaker concept is resolution completeness.
A planner is resolution complete if it is guaranteed to find a solution if
one exists at the resolution of a discretized representation of the problem,
such as the resolution of a grid representation of Cfree. Finally, a planner
is probabilistically complete if the probability of finding a solution, if
one exists, tends to 1 as the planning time goes to infinity.

Computational complexity. The computational complexity refers to charac-
terizations of the amount of time the planner takes to run or the amount of
memory it requires. These are measured in terms of the description of the
planning problem, such as the dimension of the C-space or the number of
vertices in the representation of the robot and obstacles. For example, the
time for a planner to run may be exponential in n, the dimension of the
C-space. The computational complexity may be expressed in terms of the
average case or the worst case. Some planning algorithms lend themselves
easily to computational complexity analysis, while others do not.

10.1.3 Motion Planning Methods

There is no single planner applicable to all motion planning problems. Below
is a broad overview of some of the many motion planners available. Details are
left to the sections indicated.

Complete methods (Section 10.3). These methods focus on exact repre-
sentations of the geometry or topology of Cfree, ensuring completeness.
For all but simple or low-degree-of-freedom problems, these representa-
tions are mathematically or computationally prohibitive to derive.
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Grid methods (Section 10.4). These methods discretize Cfree into a grid and
search the grid for a motion from qstart to a grid point in the goal region.
Modifications of the approach may discretize the state space or control
space or they may use multi-scale grids to refine the representation of Cfree

near obstacles. These methods are relatively easy to implement and can
return optimal solutions but, for a fixed resolution, the memory required
to store the grid, and the time to search it, grow exponentially with the
number of dimensions of the space. This limits the approach to low-
dimensional problems.

Sampling methods (Section 10.5). A generic sampling method relies on a
random or deterministic function to choose a sample from the C-space
or state space; a function to evaluate whether the sample is in Xfree; a
function to determine the “closest” previous free-space sample; and a lo-
cal planner to try to connect to, or move toward, the new sample from
the previous sample. This process builds up a graph or tree representing
feasible motions of the robot. Sampling methods are easy to implement,
tend to be probabilistically complete, and can even solve high-degree-of-
freedom motion planning problems. The solutions tend to be satisficing,
not optimal, and it can be di�cult to characterize the computational com-
plexity.

Virtual potential fields (Section 10.6). Virtual potential fields create forces
on the robot that pull it toward the goal and push it away from obstacles.
The approach is relatively easy to implement, even for high-degree-of-
freedom systems, and fast to evaluate, often allowing online implementa-
tion. The drawback is local minima in the potential function: the robot
may get stuck in configurations where the attractive and repulsive forces
cancel but the robot is not at the goal state.

Nonlinear optimization (Section 10.7). The motion planning problem can
be converted to a nonlinear optimization problem by representing the path
or controls by a finite number of design parameters, such as the coe�cients
of a polynomial or a Fourier series. The problem is to solve for the design
parameters that minimize a cost function while satisfying constraints on
the controls, obstacles, and goal. While these methods can produce near-
optimal solutions, they require an initial guess at the solution. Because
the objective function and feasible solution space are generally not convex,
the optimization process can get stuck far away from a feasible solution,
let alone an optimal solution.

Smoothing (Section 10.8). Often the motions found by a planner are jerky.
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A smoothing algorithm can be run on the result of the motion planner to
improve the smoothness.

A major trend in recent years has been toward sampling methods, which are
easy to implement and can handle high-dimensional problems.

10.2 Foundations

Before discussing motion planning algorithms, we establish concepts used in
many of them: configuration space obstacles, collision detection, graphs, and
graph search.

10.2.1 Configuration Space Obstacles

Determining whether a robot at a configuration q is in collision with a known
environment generally requires a complex operation involving a CAD model of
the environment and robot. There are a number of free and commercial software
packages that can perform this operation, and we will not delve into them here.
For our purposes, it is enough to know that the workspace obstacles partition
the configuration space C into two sets, the free space Cfree and the obstacle
space Cobs, where C = Cfree [ Cobs. Joint limits are treated as obstacles in the
configuration space.

With the concepts of Cfree and Cobs, the path planning problem reduces to
the problem of finding a path for a point robot among the obstacles Cobs. If
the obstacles break Cfree into separate connected components, and qstart and
qgoal do not lie in the same connected component, then there is no collision-free
path.

The explicit mathematical representation of a C-obstacle can be exceedingly
complex, and for that reason C-obstacles are rarely represented exactly. Despite
this, the concept of C-obstacles is very important for understanding motion
planning algorithms. The ideas are best illustrated by examples.

10.2.1.1 A 2R Planar Arm

Figure 10.2 shows a 2R planar robot arm, with configuration q = (✓1, ✓2), among
obstacles A, B, and C in the workspace. The C-space of the robot is represented
by a portion of the plane with 0  ✓1 < 2⇡, 0  ✓2 < 2⇡. Remember from
Chapter 2, however, that the topology of the C-space is a torus (or doughnut)
since the edge of the square at ✓1 = 2⇡ is connected to the edge ✓1 = 0; similarly,
✓2 = 2⇡ is connected to ✓2 = 0. The square region of R2 is obtained by slicing
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Figure 10.2: (Left) The joint angles of a 2R robot arm. (Middle) The arm navigating
among obstacles A, B, and C. (Right) The same motion in C-space. Three intermediate
points, 4, 7, and 10, along the path are labeled.

the surface of the doughnut twice, at ✓1 = 0 and ✓2 = 0, and laying it flat on
the plane.

The C-space on the right in Figure 10.2 shows the workspace obstacles A, B,
and C represented as C-obstacles. Any configuration lying inside a C-obstacle
corresponds to penetration of the obstacle by the robot arm in the workspace. A
free path for the robot arm from one configuration to another is shown in both
the workspace and C-space. The path and obstacles illustrate the topology of the
C-space. Note that the obstacles break Cfree into three connected components.

10.2.1.2 A Circular Planar Mobile Robot

Figure 10.3 shows a top view of a circular mobile robot whose configuration is
given by the location of its center, (x, y) 2 R2. The robot translates (moves with-
out rotating) in a plane with a single obstacle. The corresponding C-obstacle
is obtained by “growing” (enlarging) the workspace obstacle by the radius of
the mobile robot. Any point outside this C-obstacle represents a free config-
uration of the robot. Figure 10.4 shows the workspace and C-space for two
obstacles, indicating that in this case the mobile robot cannot pass between the
two obstacles.

10.2.1.3 A Polygonal Planar Mobile Robot That Translates

Figure 10.5 shows the C-obstacle for a polygonal mobile robot translating in
the presence of a polygonal obstacle. The C-obstacle is obtained by sliding the
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(a) (b)

x̂

ŷ (x, y)

x̂

ŷ (x, y)

Figure 10.3: (a) A circular mobile robot (open circle) and a workspace obstacle
(gray triangle). The configuration of the robot is represented by (x, y), the center
of the robot. (b) In the C-space, the obstacle is “grown” by the radius of the robot
and the robot is treated as a point. Any (x, y) configuration outside the bold line is
collision-free.

Figure 10.4: The “grown” C-space obstacles corresponding to two workspace obsta-
cles and a circular mobile robot. The overlapping boundaries mean that the robot
cannot move between the two obstacles.

robot along the boundary of the obstacle and tracing the position of the robot’s
reference point.

10.2.1.4 A Polygonal Planar Mobile Robot That Translates and Rotates

Figure 10.6 illustrates the C-obstacle for the workspace obstacle and triangular
mobile robot of Figure 10.5 if the robot is now allowed to rotate. The C-space
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(a) (b)
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ŷ
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x̂

ŷ
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Figure 10.5: (a) The configuration of a triangular mobile robot, which can translate
but not rotate, is represented by the (x, y) location of a reference point. Also shown is
a workspace obstacle in gray. (b) The corresponding C-space obstacle (bold outline)
is obtained by sliding the robot around the boundary of the obstacle and tracing the
position of the reference point.

is now three dimensional, given by (x, y, ✓) 2 R2 ⇥ S1. The three-dimensional
C-obstacle is the union of two-dimensional C-obstacle slices at angles ✓ 2 [0, 2⇡).
Even for this relatively low-dimensional C-space, an exact representation of the
C-obstacle is quite complex. For this reason, C-obstacles are rarely described
exactly.
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x̂ ŷ

✓̂

x̂ ŷ

✓̂(x, y)

✓

Figure 10.6: (Top) A triangular mobile robot that can both rotate and translate, rep-
resented by the configuration (x, y, ✓). (Left) The C-space obstacle from Figure 10.5(b)
when the robot is restricted to ✓ = 0. (Right) The full three-dimensional C-space ob-
stacle shown in slices at 10� increments.

10.2.2 Distance to Obstacles and Collision Detection

Given a C-obstacle B and a configuration q, let d(q, B) be the distance between
the robot and the obstacle, where

d(q, B) > 0 (no contact with the obstacle),

d(q, B) = 0 (contact),

d(q, B) < 0 (penetration).

The distance could be defined as the Euclidean distance between the two closest
points of the robot and the obstacle, respectively.

A distance-measurement algorithm is one that determines d(q, B). A
collision–detection routine determines whether d(q, Bi)  0 for any C-
obstacle Bi. A collision-detection routine returns a binary result and may or
may not utilize a distance-measurement algorithm at its core.

One popular distance-measurement algorithm is the Gilbert–Johnson–Keerthi
(GJK) algorithm, which e�ciently computes the distance between two convex
bodies, possibly represented by triangular meshes. Any robot or obstacle can be
treated as the union of multiple convex bodies. Extensions of this algorithm are
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Figure 10.7: A lamp represented by spheres. The approximation improves as the
number of spheres used to represent the lamp increases. Figure from [61] used with
permission.

used in many distance-measurement algorithms and collision-detection routines
for robotics, graphics, and game-physics engines.

A simpler approach is to approximate the robot and obstacles as unions
of overlapping spheres. Approximations must always be conservative – the
approximation must cover all points of the object – so that if a collision-detection
routine indicates a free configuration q, then we are guaranteed that the actual
geometry is collision-free. As the number of spheres in the representation of the
robot and obstacles increases, the closer the approximations come to the actual
geometry. An example is shown in Figure 10.7.

Given a robot at q represented by k spheres of radius Ri centered at ri(q),
i = 1, . . . , k, and an obstacle B represented by ` spheres of radius Bj centered
at bj , j = 1, . . . , `, the distance between the robot and the obstacle can be
calculated as

d(q, B) = min
i,j
kri(q)� bjk �Ri �Bj .

Apart from determining whether a particular configuration of the robot is
in collision, another useful operation is determining whether the robot collides
during a particular motion segment. While exact solutions have been developed
for particular object geometries and motion types, the general approach is to
sample the path at finely spaced points and to “grow” the robot to ensure that
if two consecutive configurations are collision-free for the grown robot then the
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Figure 10.8: (a) A weighted digraph. (b) A weighted undirected graph. (c) A tree.
The leaves are shaded gray.

volume swept out by the actual robot between the two configurations is also
collision-free.

10.2.3 Graphs and Trees

Many motion planners explicitly or implicitly represent the C-space or state
space as a graph. A graph consists of a collection of nodes N and a collection
of edges E , where each edge e connects two nodes. In motion planning, a node
typically represents a configuration or state while an edge between nodes n1 and
n2 indicates the ability to move from n1 to n2 without penetrating an obstacle
or violating other constraints.

A graph can be either directed or undirected. In an undirected graph,
each edge is bidirectional: if the robot can travel from n1 to n2 then it can also
travel from n2 to n1. In a directed graph, or digraph for short, each edge allows
travel in only one direction. The same two nodes can have two edges between
them, allowing travel in opposite directions.

Graphs can also be weighted or unweighted. In a weighted graph, each
edge has a positive cost associated with traversing it. In an unweighted graph
each edge has the same cost (e.g., 1). Thus the most general type of graph we
consider is a weighted digraph.

A tree is a digraph in which (1) there are no cycles and (2) each node has
at most one parent node (i.e., at most one edge leading to the node). A tree
has one root node with no parents and a number of leaf nodes with no child.

A digraph, undirected graph, and tree are illustrated in Figure 10.8.
Given N nodes, any graph can be represented by a matrix A 2 RN⇥N , where

element aij of the matrix represents the cost of the edge from node i to node
j; a zero or negative value indicates no edge between the nodes. Graphs and
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trees can be represented more compactly as a list of nodes, each with links to
its neighbors.

10.2.4 Graph Search

Once the free space is represented as a graph, a motion plan can be found by
searching the graph for a path from the start to the goal. One of the most
powerful and popular graph search algorithms is A⇤ (pronounced “A star”)
search.

10.2.4.1 A⇤ Search

The A⇤ search algorithm e�ciently finds a minimum-cost path on a graph when
the cost of the path is simply the sum of the positive edge costs along the path.

Given a graph described by a set of nodes N = {1, . . . , N}, where node 1 is
the start node, and a set of edges E , the A⇤ algorithm makes use of the following
data structures:

• a sorted list OPEN of the nodes from which exploration is still to be done,
and a list CLOSED of nodes for which exploration has already taken place;

• a matrix cost[node1,node2] encoding the set of edges, where a positive
value corresponds to the cost of moving from node1 to node2 (a negative
value indicates that no edge exists);

• an array past_cost[node] of the minimum cost found so far to reach
node node from the start node; and

• a search tree defined by an array parent[node], which contains for each
node a link to the node preceding it in the shortest path found so far from
the start node to that node.

To initialize the search, the matrix cost is constructed to encode the edges,
the list OPEN is initialized to the start node 1, the cost to reach the start node
(past_cost[1]) is initialized to 0, and past_cost[node] for node 2 {2, . . . , N}
is initialized to infinity (or a large number), indicating that currently we have
no idea of the cost of reaching those nodes.

At each step of the algorithm, the first node in OPEN is removed from OPEN
and called current. The node current is also added to CLOSED. The first node
in OPEN is one that minimizes the total estimated cost of the best path to the
goal that passes through that node. The estimated cost is calculated as
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est_total_cost[node] = past_cost[node]
+ heuristic_cost_to_go(node)

where heuristic_cost_to_go(node) � 0 is an optimistic (underestimating)
estimate of the actual cost-to-go to the goal from node. For many path planning
problems, an appropriate choice for the heuristic is the straight-line distance to
the goal, ignoring any obstacles.

Because OPEN is a list sorted according to the estimated total cost, inserting
a new node at the correct location in OPEN entails a small computational price.

If the node current is in the goal set then the search is finished and the
path is reconstructed from the parent links. If not, for each neighbor nbr of
current in the graph which is not also in CLOSED, the tentative_past_cost
for nbr is calculated as past cost[current] + cost[current,nbr]. If

tentative_past_cost < past_cost[nbr],

then nbr can be reached with less cost than previously known, so past_cost[nbr]
is set to tentative_past_cost and parent[nbr] is set to current. The node
nbr is then added (or moved) in OPEN according to its estimated total cost.

The algorithm then returns to the beginning of the main loop, removing the
first node from OPEN and calling it current. If OPEN is empty then there is no
solution.

The A⇤ algorithm is guaranteed to return a minimum-cost path, as nodes
are only checked for inclusion in the goal set when they have the minimum
total estimated cost of all nodes. If the node current is in the goal set then
heuristic_cost_to_go(current) is zero and, since all edge costs are positive,
we know that any path found in the future must have a cost greater than
or equal to past_cost[current]. Therefore the path to current must be a
shortest path. (There may be other paths of the same cost.)

If the heuristic “cost-to-go” is calculated exactly, considering obstacles, then
A⇤ will explore from the minimum number of nodes necessary to solve the
problem. Of course, calculating the cost-to-go exactly is equivalent to solving
the path planning problem, so this is impractical. Instead, the heuristic cost-to-
go should be calculated quickly and should be as close as possible to the actual
cost-to-go to ensure that the algorithm runs e�ciently. Using an optimistic
cost-to-go ensures an optimal solution.

The A⇤ algorithm is an example of the general class of best-first searches,
which always explore from the node currently deemed “best” by some measure.

The A⇤ search algorithm is described in pseudocode in Algorithm 10.1.
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Algorithm 10.1 A⇤ search.

1: OPEN  {1}
2: past_cost[1]  0, past_cost[node]  infinity for node 2 {2, . . . , N}
3: while OPEN is not empty do
4: current  first node in OPEN, remove from OPEN
5: add current to CLOSED
6: if current is in the goal set then
7: return SUCCESS and the path to current
8: end if
9: for each nbr of current not in CLOSED do

10: tentative_past_cost  past_cost[current]+cost[current,nbr]
11: if tentative past cost < past cost[nbr] then
12: past_cost[nbr]  tentative_past_cost
13: parent[nbr]  current
14: put (or move) nbr in sorted list OPEN according to

est_total_cost[nbr]  past_cost[nbr] +
heuristic_cost_to_go(nbr)

15: end if
16: end for
17: end while
18: return FAILURE

10.2.4.2 Other Search Methods

• Dijkstra’s algorithm. If the heuristic cost-to-go is always estimated as
zero then A⇤ always explores from the OPEN node that has been reached
with minimum past cost. This variant is called Dijkstra’s algorithm, which
preceded A⇤ historically. Dijkstra’s algorithm is also guaranteed to find
a minimum-cost path but on many problems it runs more slowly than
A⇤ owing to the lack of a heuristic look-ahead function to help guide the
search.

• Breadth-first search. If each edge in E has the same cost, Dijkstra’s
algorithm reduces to breadth-first search. All nodes one edge away from
the start node are considered first, then all nodes two edges away, etc.
The first solution found is therefore a minimum-cost path.

• Suboptimal A⇤ search. If the heuristic cost-to-go is overestimated by
multiplying the optimistic heuristic by a constant factor ⌘ > 1, the A⇤

search will be biased to explore from nodes closer to the goal rather than
nodes with a low past cost. This may cause a solution to be found more
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quickly but, unlike the case of an optimistic cost-to-go heuristic, the so-
lution will not be guaranteed to be optimal. One possibility is to run A⇤

with an inflated cost-to-go to find an initial solution, then rerun the search
with progressively smaller values of ⌘ until the time allotted for the search
has expired or a solution is found with ⌘ = 1.

10.3 Complete Path Planners

Complete path planners rely on an exact representation of the free C-space Cfree.
These techniques tend to be mathematically and algorithmically sophisticated,
and impractical for many real systems, so we do not delve into them in detail.

One approach to complete path planning, which we will see in modified
form in Section 10.5, is based on representing the complex high-dimensional
space Cfree by a one-dimensional roadmap R with the following properties:

(a) Reachability. From every point q 2 Cfree, a free path to a point q0 2 R
can be found trivially (e.g., a straight-line path).

(b) Connectivity. For each connected component of Cfree, there is one con-
nected component of R.

With such a roadmap, the planner can find a path between any two points qstart
and qgoal in the same connected component of Cfree by simply finding paths from
qstart to a point q0start 2 R, from a point q0goal 2 R to qgoal, and from q0start to
q0goal on the roadmap R. If a path can be found trivially between qstart and
qgoal, the roadmap may not even be used.

While constructing a roadmap of Cfree is complex in general, some problems
admit simple roadmaps. For example, consider a polygonal robot translating
among polygonal obstacles in the plane. As can be seen in Figure 10.5, the
C-obstacles in this case are also polygons. A suitable roadmap is the weighted
undirected visibility graph, with nodes at the vertices of the C-obstacles and
edges between the nodes that can “see” each other (i.e., the line segment between
the vertices does not intersect an obstacle). The weight associated with each
edge is the Euclidean distance between the nodes.

Not only is this a suitable roadmap R, but it allows us to use an A⇤ search
to find a shortest path between any two configurations in the same connected
component of Cfree, as the shortest path is guaranteed either to be a straight
line from qstart to qgoal or to consist of a straight line from qstart to a node
q0start 2 R, a straight line from a node q0goal 2 R to qgoal, and a path along the
straight edges of R from q0start to q0goal (Figure 10.9). Note that the shortest
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(a)   (b)       (c)

(d)   (e)       (f)

start goal

Figure 10.9: (a) The start and goal configurations for a square mobile robot (ref-
erence point shown) in an environment with a triangular and a rectangular obstacle.
(b) The grown C-obstacles. (c) The visibility graph roadmap R of Cfree. (d) The full
graph consists of R plus nodes at qstart and qgoal, along with the links connecting these
nodes to the visible nodes of R. (e) Searching the graph results in the shortest path,
shown in bold. (f) The robot is shown traversing the path.

path requires the robot to graze the obstacles, so we implicitly treat Cfree as
including its boundary.

10.4 Grid Methods

A search algorithm like A⇤ requires a discretization of the search space. The
simplest discretization of C-space is a grid. For example, if the configuration
space is n-dimensional and we desire k grid points along each dimension, the
C-space is represented by kn grid points.

The A⇤ algorithm can be used as a path planner for a C-space grid, with
the following minor modifications:

• The definition of a “neighbor” of a grid point must be chosen: is the robot
constrained to move in axis-aligned directions in configuration space or
can it move in multiple dimensions simultaneously? For example, for a
two-dimensional C-space, neighbors could be 4-connected (on the cardi-
nal points of a compass: north, south, east, and west) or 8-connected
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(diagonals allowed), as shown in Figure 10.10(a). If diagonal motions are
allowed, the cost to diagonal neighbors should be penalized appropriately.
For example, the cost to a north, south, east or west neighbor could be 1,
while the cost to a diagonal neighbor could be

p
2. If integers are desired,

for e�ciency of the implementation, the approximate costs 5 and 7 could
be used.

• If only axis-aligned motions are used, the heuristic cost-to-go should be
based on the Manhattan distance, not the Euclidean distance. The
Manhattan distance counts the number of “city blocks” that must be
traveled, with the rule that diagonals through a block are not possible
(Figure 10.10(b)).

• A node nbr is added to OPEN only if the step from current to nbr is
collision-free. (The step may be considered collision-free if a grown version
of the robot at nbr does not intersect any obstacles.)

• Other optimizations are possible, owing to the known regular structure of
the grid.

An A⇤ grid-based path planner is resolution-complete: it will find a solution
if one exists at the level of discretization of the C-space. The path will be a
shortest path subject to the allowed motions.

Figure 10.10(c) illustrates grid-based path planning for the 2R robot example
of Figure 10.2. The C-space is represented as a grid with k = 32, i.e., there is a
resolution of 360�/32 = 11.25� for each joint. This yields a total of 322 = 1024
grid points.

The grid-based planner, as described, is a single-query planner: it solves
each path planning query from scratch. However, if the same qgoal will be
used in the same environment for multiple path planning queries, it may be
worth preprocessing the entire grid to enable fast path planning. This is the
wavefront planner, illustrated in Figure 10.11.

Although grid-based path planning is easy to implement, it is only appropri-
ate for low-dimensional C-spaces. The reason is that the number of grid points,
and hence the computational complexity of the path planner, increases expo-
nentially with the number of dimensions n. For instance, a resolution k = 100
in a C-space with n = 3 dimensions leads to kn = 1 million grid nodes, while
n = 5 leads to 10 billion grid nodes and n = 7 leads to 100 trillion nodes. An
alternative is to reduce the resolution k along each dimension, but this leads to
a coarse representation of C-space that may miss free paths.
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Figure 10.10: (a) A 4-connected grid point and an 8-connected grid point for a space
n = 2. (b) Grid points spaced at unit intervals. The Euclidean distance between the
two points indicated is

p
5 while the Manhattan distance is 3. (c) A grid representation

of the C-space and a minimum-length Manhattan-distance path for the problem of
Figure 10.2.
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Figure 10.11: A wavefront planner on a two-dimensional grid. The goal configuration
is given a score of 0. Then all collision-free 4-neighbors are given a score of 1. The
process continues, breadth-first, with each free neighbor (that does not have a score
already) assigned the score of its parent plus 1. Once every grid cell in the connected
component of the goal configuration is assigned a score, planning from any location in
the connected component is trivial: at every step, the robot simply moves “downhill”
to a neighbor with a lower score. Grid points in collision receive a high score.
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original cell

subdivision 1

subdivision 2

subdivision 3

original cell     subdivision 1    subdivision 2    subdivision 3

Figure 10.12: At the original C-space cell resolution, a small obstacle (indicated
by the dark square) causes the whole cell to be labeled an obstacle. Subdividing the
cell once shows that at least three-quarters of the cell is actually free. Three levels of
subdivision results in a representation using ten total cells: four at subdivision level
3, three at subdivision level 2, and three at subdivision level 1. The cells shaded light
gray are the obstacle cells in the final representation. The subdivision of the original
cell is shown in the lower panel as a tree, specifically a quadtree, where the leaves of
the tree are the final cells in the representation.

10.4.1 Multi-Resolution Grid Representation

One way to reduce the computational complexity of a grid-based planner is to
use a multi-resolution grid representation of Cfree. Conceptually, a grid point is
considered an obstacle if any part of the rectilinear cell centered on the grid point
touches a C-obstacle. To refine the representation of the obstacle, an obstacle
cell can be subdivided into smaller cells. Each dimension of the original cell
is split in half, resulting in 2n subcells for an n-dimensional space. Any cells
that are still in contact with a C-obstacle are then subdivided further, up to a
specified maximum resolution.

The advantage of this representation is that only the portions of C-space
near obstacles are refined to high resolution, while those away from obstacles
are represented by a coarse resolution. This allows the planner to find paths
using short steps through cluttered spaces while taking large steps through wide
open space. The idea is illustrated in Figure 10.12, which uses only 10 cells to
represent an obstacle at the same resolution as a fixed grid that uses 64 cells.
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q

q̇

Figure 10.13: Sample trajectories emanating from three initial states in the phase
space of a dynamic system with q 2 R. If the initial state has q̇ > 0, the trajectory can-
not move to the left (corresponding to negative motion in q) instantaneously. Similarly,
if the initial state has q̇ < 0, the trajectory cannot move to the right instantaneously.

For n = 2, this multi-resolution representation is called a quadtree, as
each obstacle cell subdivides into 2n = 4 cells. For n = 3, each obstacle cell
subdivides into 2n = 8 cells, and the representation is called an octree.

The multi-resolution representation of Cfree can be built in advance of the
search or incrementally as the search is being performed. In the latter case, if
the step from current to nbr is found to be in collision, the step size can be
halved until the step is free or the minimum step size is reached.

10.4.2 Grid Methods with Motion Constraints

The above grid-based planners operate under the assumption that the robot
can go from one cell to any neighboring cell in a regular C-space grid. This
may not be possible for some robots. For example, a car cannot reach, in one
step, a “neighbor” cell that is to the side of it. Also, motions for a fast-moving
robot arm should be planned in the state space, not just C-space, to take the
arm dynamics into account. In the state space, the robot arm cannot move in
certain directions (Figure 10.13).

Grid-based planners must be adapted to account for the motion constraints
of the particular robot. In particular, the constraints may result in a directed
graph. One approach is to discretize the robot controls while still making use
of a grid on the C-space or state space, as appropriate. Details for a wheeled
mobile robot and a dynamic robot arm are described next.
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Figure 10.14: Discretizations of the control sets for unicycle, di↵-drive, and car-like
robots.

10.4.2.1 Grid-Based Path Planning for a Wheeled Mobile Robot

As described in Section 13.3, the controls for simplified models of unicycle, di↵-
drive, and car-like robots are (v,!), i.e., the forward–backward linear velocity
and the angular velocity. The control sets for these mobile robots are shown in
Figure 10.14. Also shown are proposed discretizations of the controls, as dots.
Other discretizations could be chosen.

Using the control discretization, we can use a variant of Dijkstra’s algorithm
to find short paths (Algorithm 10.2).

The search expands from qstart by integrating forward each control for a time
�t, creating new nodes for the paths that are collision-free. Each node keeps
track of the control used to reach the node as well as the cost of the path to the
node. The cost of the path to a new node is the sum of the cost of the previous
node, current, plus the cost of the action.

Integration of the controls does not move the mobile robot to exact grid
points. Instead, the C-space grid comes into play in lines 9 and 10. When a
node is expanded, the grid cell it sits in is marked “occupied.” Subsequently,
any node in this occupied cell will be pruned from the search. This prevents the
search from expanding nodes that are close by nodes reached with a lower cost.

No more than MAXCOUNT nodes, where MAXCOUNT is a value chosen by the
user, are considered during the search.

The time �t should be chosen so that each motion step is “small.” The
size of the grid cells should be chosen as large as possible while ensuring that
integration of any control for a time �t will move the mobile robot outside its
current grid cell.

The planner terminates when current lies inside the goal region, or when
there are no more nodes left to expand (perhaps because of obstacles), or when
MAXCOUNT nodes have been considered. Any path found is optimal for the choice
of cost function and other parameters to the problem. The planner actually
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Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.

1: OPEN  {qstart}
2: past_cost[qstart]  0
3: counter  1
4: while OPEN is not empty and counter < MAXCOUNT do
5: current  first node in OPEN, remove from OPEN
6: if current is in the goal set then
7: return SUCCESS and the path to current
8: end if
9: if current is not in a previously occupied C-space grid cell then

10: mark grid cell occupied
11: counter  counter + 1
12: for each control in the discrete control set do
13: integrate control forward a short time �t from current to qnew
14: if the path to qnew is collision-free then
15: compute cost of the path to qnew
16: place qnew in OPEN, sorted by cost
17: parent[qnew]  current
18: end if
19: end for
20: end if
21: end while
22: return FAILURE

runs faster in somewhat cluttered spaces, as the obstacles help to guide the
exploration.

Some examples of motion plans for a car are shown in Figure 10.15.

10.4.2.2 Grid-Based Motion Planning for a Robot Arm

One method for planning the motion for a robot arm is to decouple the problem
into a path planning problem followed by a time scaling of the path:

(a) Apply a grid-based or other path planner to find an obstacle-free path in
C-space.

(b) Time scale the path to find the fastest trajectory that respects the robot’s
dynamics, as described in Section 9.4, or use any less aggressive time
scaling.
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start goal

start

goal

Figure 10.15: (Left) A minimum-cost path for a car-like robot where each action has
identical cost, favoring a short path. (Right) A minimum-cost path where reversals
are penalized. Penalizing reversals requires a modification to Algorithm 10.2.

Since the motion planning problem is broken into two steps (path planning fol-
lowed by time scaling), the resultant motion will not be time-optimal in general.

Another approach is to plan directly in the state space. Given a state (q, q̇)
of the robot arm, let A(q, q̇) represent the set of accelerations that are feasible
on the basis of the limited joint torques. To discretize the controls, the set
A(q, q̇) is intersected with a grid of points of the form

nX

i=1

caiêi,

where c is an integer, ai > 0 is the acceleration step size in the q̈i-direction, and
êi is a unit vector in the ith direction (Figure 10.16).

As the robot moves, the acceleration set A(q, q̇) changes but the grid remains
fixed. Because of this, and assuming a fixed integration time �t at each “step”
in a motion plan, the reachable states of the robot (after any integral number of
steps) are confined to a grid in state space. To see this, consider a single joint
angle of the robot, q1, and assume for simplicity zero initial velocity, q̇1(0) = 0.
The velocity at timestep k takes the form

q̇1(k) = q̇1(k � 1) + c(k)a1�t,

where c(k) is any value in a finite set of integers. By induction, the velocity at
any timestep must be of the form a1kv�t, where kv is an integer. The position
at timestep k takes the form

q1(k) = q1(k � 1) + q̇1(k � 1)�t +
1

2
c(k)a1(�t)2.
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q̈1

A(q, q̇)

a1

a2

q̈2

Figure 10.16: The instantaneously available acceleration set A(q, q̇) for a two-joint
robot, intersected with a grid spaced at a1 in q̈1 and a2 in q̈2, gives the discretized
control actions (shown as larger dots).

Substituting the velocity from the previous equation, we find that the position
at any timestep must be of the form a1kp(�t)2/2+q1(0), where kp is an integer.

To find a trajectory from a start node to a goal set, a breadth-first search can
be employed to create a search tree on the state space nodes. When exploration
is made from a node (q, q̇) in the state space, the set A(q, q̇) is evaluated to find
the discrete set of control actions. New nodes are created by integrating the
control actions for time �t. A node is discarded if the path to it is in collision
or if it has been reached previously (i.e., by a trajectory taking the same or less
time).

Because the joint angles and angular velocities are bounded, the state space
grid is finite and therefore it can be searched in finite time. The planner is
resolution-complete and returns a time-optimal trajectory, subject to the reso-
lution specified in the control grid and timestep �t.

The control-grid step sizes ai must be chosen small enough that A(q, q̇), for
any feasible state (q, q̇), contains a representative set of points of the control
grid. Choosing a finer grid for the controls, or a smaller timestep �t, creates a
finer grid in the state space and a higher likelihood of finding a solution amidst
obstacles. It also allows the choice of a smaller goal set while keeping points of
the state space grid inside the set.

Finer discretization comes at a computational cost. If the resolution of the
control discretization is increased by a factor r in each dimension (i.e., each ai is
reduced to ai/r), and the timestep size is divided by a factor ⌧ , the computation
time spent growing the search tree for a given robot motion duration increases
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by a factor rn⌧ , where n is the number of joints. For example, increasing the
control-grid resolution by a factor r = 2 and decreasing the timestep by a factor
⌧ = 4 for a three-joint robot results in a search that is likely to take 23⇥4 = 4096
times longer to complete. The high computational complexity of the planner
makes it impractical beyond a few degrees of freedom.

The description above ignores one important issue: the feasible control set
A(q, q̇) changes during a timestep, so the control chosen at the beginning of the
timestep may no longer be feasible by the end of the timestep. For that reason,
a conservative approximation Ã(q, q̇) ⇢ A(q, q̇) should be used instead. This
set should remain feasible over the duration of a timestep regardless of which
control action is chosen. How to determine such a conservative approximation
Ã(q, q̇) is beyond the scope of this chapter, but it has to do with bounds on how
rapidly the arm’s mass matrix M(q) changes with q and how fast the robot is
moving. At low speeds q̇ and short durations �t, the conservative set Ã(q, q̇) is
very close to A(q, q̇).

10.5 Sampling Methods

Each grid-based method discussed above delivers optimal solutions subject to
the chosen discretization. A drawback of these approaches, however, is their
high computational complexity, making them unsuitable for systems having
more than a few degrees of freedom.

A di↵erent class of planners, known as sampling methods, relies on a random
or deterministic function to choose a sample from the C-space or state space:
a function to evaluate whether a sample or motion is in Xfree; a function to
determine nearby previous free-space samples; and a simple local planner to try
to connect to, or move toward, the new sample. These functions are used to
build up a graph or tree representing feasible motions of the robot.

Sampling methods generally give up on the resolution-optimal solutions of
a grid search in exchange for the ability to find satisficing solutions quickly in
high-dimensional state spaces. The samples are chosen to form a roadmap or
search tree that quickly approximates the free space Xfree using fewer samples
than would typically be required by a fixed high-resolution grid, where the
number of grid points increases exponentially with the dimension of the search
space. Most sampling methods are probabilistically complete: the probability of
finding a solution, when one exists, approaches 100% as the number of samples
goes to infinity.

Two major classes of sampling methods are rapidly exploring random trees
(RRTs) and probabilistic roadmaps (PRMs). The former use a tree represen-
tation for single-query planning in either C-space or state space, while PRMs
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are primarily C-space planners that create a roadmap graph for multiple-query
planning.

10.5.1 The RRT Algorithm

The RRT algorithm searches for a collision-free motion from an initial state
xstart to a goal set Xgoal. It is applied to kinematic problems, where the state x
is simply the configuration q, as well as to dynamic problems, where the state
includes the velocity. The basic RRT grows a single tree from xstart as outlined
in Algorithm 10.3.

Algorithm 10.3 RRT algorithm.

1: initialize search tree T with xstart

2: while T is less than the maximum tree size do
3: xsamp  sample from X
4: xnearest  nearest node in T to xsamp

5: employ a local planner to find a motion from xnearest to xnew in
the direction of xsamp

6: if the motion is collision-free then
7: add xnew to T with an edge from xnearest to xnew

8: if xnew is in Xgoal then
9: return SUCCESS and the motion to xnew

10: end if
11: end if
12: end while
13: return FAILURE

In a typical implementation for a kinematic problem (where x is simply q),
the sampler in line 3 chooses xsamp randomly from an almost-uniform distribu-
tion over X , with a slight bias toward states in Xgoal. The closest node xnearest

in the search tree T (line 4) is the node minimizing the Euclidean distance to
xsamp. The state xnew (line 5) is chosen as the state a small distance d from
xnearest on the straight line to xsamp. Because d is small, a very simple local
planner, e.g., one that returns a straight-line motion, will often find a motion
connecting xnearest to xnew. If the motion is collision-free, the new state xnew is
added to the search tree T .

The net e↵ect is that the nearly uniformly distributed samples “pull” the
tree toward them, causing the tree to rapidly explore Xfree. An example of the
e↵ect of this pulling action on exploration is shown in Figure 10.17.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

382 10.5. Sampling Methods

Figure 10.17: (Left) A tree generated by applying a uniformly-distributed random
motion from a randomly chosen tree node does not explore very far. (Right) A tree
generated by the RRT algorithm using samples drawn randomly from a uniform dis-
tribution. Both trees have 2000 nodes. Figure from [84] used with permission.

The basic algorithm leaves the programmer with many choices: how to sam-
ple from X (line 3), how to define the “nearest” node in T (line 4), and how to
plan the motion to make progress toward xsamp (line 5). Even a small change
to the sampling method, for example, can yield a dramatic change in the run-
ning time of the planner. A wide variety of planners have been proposed in the
literature based on these choices and other variations. Some of these variations
are described below.

10.5.1.1 Line 3: The Sampler

The most obvious sampler is one that samples randomly from a uniform distri-
bution over X . This is straightforward for Euclidean C-spaces Rn, as well as
for n-joint robot C-spaces Tn = S1 ⇥ · · · ⇥ S1 (n times), where we can choose
a uniform distribution over each joint angle, and for the C-space R2 ⇥ S1 for a
mobile robot in the plane, where we can choose a uniform distribution over R2

and S1 individually. The notion of a uniform distribution on some other curved
C-spaces, for example SO(3), is less straightforward.

For dynamic systems, a uniform distribution over the state space can be
defined as the cross product of a uniform distribution over C-space and a uniform
distribution over a bounded velocity set.

Although the name “rapidly-exploring random trees” is derived from the
idea of a random sampling strategy, in fact the samples need not be gener-
ated randomly. For example, a deterministic sampling scheme that generates a
progressively finer (multi-resolution) grid on X could be employed instead. To
reflect this more general view, the approach has been called rapidly-exploring
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Figure 10.18: Which of the three dashed configurations of the car is “closest” to the
configuration in gray?

dense trees (RDTs), emphasizing the key point that the samples should even-
tually become dense in the state space (i.e., as the number of samples goes to
infinity, the samples become arbitrarily close to every point in X ).

10.5.1.2 Line 4: Defining the Nearest Node

Finding the “nearest” node depends on a definition of distance on X . For an
unconstrained kinematic robot on C = Rn, a natural choice for the distance
between two points is simply the Euclidean distance. For other spaces, the
choice is less obvious.

As an example, for a car-like robot with a C-space R2⇥S1, which configura-
tion is closest to the configuration xsamp: one that is rotated 20 degrees relative
to xsamp, one that is 2 meters straight behind it, or one that is 1 meter straight
to the side of it (Figure 10.18)? Since the motion constraints prevent spinning
in place or moving directly sideways, the configuration that is 2 meters straight
behind is best positioned to make progress toward xsamp. Thus defining a notion
of distance requires

• combining components of di↵erent units (e.g., degrees, meters, degrees/s,
meters/s) into a single distance measure; and

• taking into account the motion constraints of the robot.

The closest node xnearest should perhaps be defined as the one that can reach
xsamp the fastest, but computing this is as hard as solving the motion planning
problem.

A simple choice of a distance measure from x to xsamp is the weighted sum
of the distances along the di↵erent components of xsamp � x. The weights
express the relative importance of the di↵erent components. If more is known
about the set of states that the robot can reach from a state x in limited time,
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this information can be used in determining the nearest node. In any case,
the nearest node should be computed quickly. Finding a nearest neighbor is a
common problem in computational geometry, and various algorithms, such as
kd trees and hashing, can be used to solve it e�ciently.

10.5.1.3 Line 5: The Local Planner

The job of the local planner is to find a motion from xnearest to some point
xnew which is closer to xsamp. The planner should be simple and it should run
quickly. Three examples are as follows.

A straight-line planner. The plan is a straight line to xnew, which may be
chosen at xsamp or at a fixed distance d from xnearest on the straight line to
xsamp. This is suitable for kinematic systems with no motion constraints.

Discretized controls planner. For systems with motion constraints, such as
wheeled mobile robots or dynamic systems, the controls can be discretized
into a discrete set {u1, u2, . . .}, as in the grid methods with motion con-
straints (Section 10.4.2 and Figures 10.14 and 10.16). Each control is
integrated from xnearest for a fixed time �t using ẋ = f(x, u). Among the
new states reached without collision, the state that is closest to xsamp is
chosen as xnew.

Wheeled robot planners. For a wheeled mobile robot, local plans can be
found using Reeds–Shepp curves, as described in Section 13.3.3.

Other robot-specific local planners can be designed.

10.5.1.4 Other RRT Variants

The performance of the basic RRT algorithm depends heavily on the choice of
sampling method, distance measure, and local planner. Beyond these choices,
two other variants of the basic RRT are outlined below.

Bidirectional RRT. The bidirectional RRT grows two trees: one “forward”
from xstart and one “backward” from xgoal. The algorithm alternates between
growing the forward tree and growing the backward tree, and every so often
it attempts to connect the two trees by choosing xsamp from the other tree.
The advantage of this approach is that a single goal state xgoal can be reached
exactly, rather than just a goal set Xgoal. Another advantage is that, in many
environments, the two trees are likely to find each other much more quickly than
a single “forward” tree will find a goal set.
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The major problem is that the local planner might not be able to connect
the two trees exactly. For example, the discretized controls planner of Sec-
tion 10.5.1.3 is highly unlikely to create a motion exactly to a node in the other
tree. In this case, the two trees may be considered more or less connected when
points on each tree are su�ciently close. The “broken” discontinuous trajectory
can be returned and patched by a smoothing method (Section 10.8).

RRT⇤. The basic RRT algorithm returns SUCCESS once a motion to Xgoal is
found. An alternative is to continue running the algorithm and to terminate the
search only when another termination condition is reached (e.g., a maximum
running time or a maximum tree size). Then the motion with the minimum
cost can be returned. In this way, the RRT solution may continue to improve as
time goes by. Because edges in the tree are never deleted or changed, however,
the RRT generally does not converge to an optimal solution.

The RRT⇤ algorithm is a variation on the single-tree RRT that continually
rewires the search tree to ensure that it always encodes the shortest path from
xstart to each node in the tree. The basic approach works for C-space path
planning with no motion constraints, allowing exact paths from any node to
any other node.

To modify the RRT to the RRT⇤, line 7 of the RRT algorithm, which inserts
xnew in T with an edge from xnearest to xnew, is replaced by a test of all the nodes
x 2 Xnear in T that are su�ciently near to xnew. An edge to xnew is created
from the x 2 Xnear by the local planner that (1) has a collision-free motion and
(2) minimizes the total cost of the path from xstart to xnew, not just the cost of
the added edge. The total cost is the cost to reach the candidate x 2 Xnear plus
the cost of the new edge.

The next step is to consider each x 2 Xnear to see whether it could be reached
at lower cost by a motion through xnew. If so, the parent of x is changed to xnew.
In this way, the tree is incrementally rewired to eliminate high-cost motions in
favor of the minimum-cost motions available so far.

The definition of Xnear depends on the number of samples in the tree, details
of the sampling method, the dimension of the search space, and other factors.

Unlike the RRT, the solution provided by RRT⇤ approaches the optimal
solution as the number of sample nodes increases. Like the RRT, the RRT⇤

algorithm is probabilistically complete. Figure 10.19 demonstrates the rewiring
behavior of RRT⇤ compared to that of RRT for a simple example in C = R2.
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Figure 10.19: (Left) The tree generated by an RRT after 5,000 nodes. The goal
region is the square at the top right corner, and the shortest path is indicated. (Right)
The tree generated by RRT⇤ after 5,000 nodes. Figure from [67] used with permission.

10.5.2 The PRM Algorithm

The PRM uses sampling to build a roadmap representation of Cfree (Section 10.3)
before answering any specific queries. The roadmap is an undirected graph: the
robot can move in either direction along any edge exactly from one node to the
next. For this reason, PRMs primarily apply to kinematic problems for which
an exact local planner exists that can find a path (ignoring obstacles) from any
q1 to any other q2. The simplest example is a straight-line planner for a robot
with no kinematic constraints.

Once the roadmap is built, a particular start node qstart can be added to
the graph by attempting to connect it to the roadmap, starting with the closest
node. The same is done for the goal node qgoal. The graph is then searched for
a path, typically using A⇤. Thus the query can be answered e�ciently once the
roadmap has been built.

The use of PRMs allows the possibility of building a roadmap quickly and
e�ciently relative to constructing a roadmap using a high-resolution grid repre-
sentation. The reason is that the volume fraction of the C-space that is “visible”
by the local planner from a given configuration does not typically decrease ex-
ponentially with increasing dimension of the C-space.

The algorithm for constructing a roadmap R with N nodes is outlined in
Algorithm 10.4 and illustrated in Figure 10.20.

A key choice in the PRM roadmap-construction algorithm is how to sample
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Algorithm 10.4 PRM roadmap construction algorithm (undirected graph).

1: for i = 1, . . . , N do
2: qi  sample from Cfree

3: add qi to R
4: end for
5: for i = 1, . . . , N do
6: N (qi) k closest neighbors of qi
7: for each q 2 N (qi) do
8: if there is a collision-free local path from q to qi and

there is not already an edge from q to qi then
9: add an edge from q to qi to the roadmap R

10: end if
11: end for
12: end for
13: return R

Figure 10.20: An example PRM roadmap for a point robot in C = R2. The k = 3
closest neighbors are taken into consideration for connection to a sample node q. The
degree of a node can be greater than three since it may be a close neighbor of many
nodes.

from Cfree. While the default might be sampling randomly from a uniform
distribution on C and eliminating configurations in collision, it has been shown
that sampling more densely near obstacles can improve the likelihood of finding
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narrow passages, thus significantly reducing the number of samples needed to
properly represent the connectivity of Cfree. Another option is deterministic
multi-resolution sampling.

10.6 Virtual Potential Fields

Virtual potential field methods are inspired by potential energy fields in nature,
such as gravitational and magnetic fields. From physics we know that a potential
field P(q) defined over C induces a force F = �@P/@q that drives an object from
high to low potential. For example, if h is the height above the Earth’s surface in
a uniform gravitational potential field (g = 9.81 m/s2) then the potential energy
of a mass m is P(h) = mgh and the force acting on it is F = �@P/@h = �mg.
The force will cause the mass to fall to the Earth’s surface.

In robot motion control, the goal configuration qgoal is assigned a low virtual
potential and obstacles are assigned a high virtual potential. Applying a force to
the robot proportional to the negative gradient of the virtual potential naturally
pushes the robot toward the goal and away from the obstacles.

A virtual potential field is very di↵erent from the planners we have seen so
far. Typically the gradient of the field can be calculated quickly, so the motion
can be calculated in real time (reactive control) instead of planned in advance.
With appropriate sensors, the method can even handle obstacles that move or
appear unexpectedly. The drawback of the basic method is that the robot can
get stuck in local minima of the potential field, away from the goal, even when
a feasible motion to the goal exists. In certain cases it is possible to design the
potential to guarantee that the only local minimum is at the goal, eliminating
this problem.

10.6.1 A Point in C-space

Let’s begin by assuming a point robot in its C-space. A goal configuration qgoal
is typically encoded by a quadratic potential energy “bowl” with zero energy at
the goal,

Pgoal(q) =
1

2
(q � qgoal)

TK(q � qgoal),

where K is a symmetric positive-definite weighting matrix (for example, the
identity matrix). The force induced by this potential is

Fgoal(q) = �@Pgoal

@q
= K(qgoal � q),

an attractive force proportional to the distance from the goal.
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The repulsive potential induced by a C-obstacle B can be calculated from
the distance d(q, B) to the obstacle (Section 10.2.2):

PB(q) =
k

2d2(q, B)
, (10.3)

where k > 0 is a scaling factor. The potential is only properly defined for points
outside the obstacle, d(q, B) > 0. The force induced by the obstacle potential is

FB(q) = �@PB
@q

=
k

d3(q, B)

@d

@q
.

The total potential is obtained by summing the attractive goal potential and
the repulsive obstacle potentials,

P(q) = Pgoal(q) +
X

i

PBi(q),

yielding a total force

F (q) = Fgoal(q) +
X

i

FBi(q).

Note that the sum of the attractive and repulsive potentials may not give a
minimum (zero force) exactly at qgoal. Also, it is common to put a bound
on the maximum potential and force, as the simple obstacle potential (10.3)
would otherwise yield unbounded potentials and forces near the boundaries of
obstacles.

Figure 10.21 shows a potential field for a point in R2 with three circular
obstacles. The contour plot of the potential field clearly shows the global min-
imum near the center of the space (near the goal marked with a +), a local
minimum near the two obstacles on the left, as well as saddles (critical points
that are a maximum in one direction and a minimum in the other direction)
near the obstacles. Saddles are generally not a problem, as a small perturbation
allows continued progress toward the goal. Local minima away from the goal
are a problem, however, as they attract nearby states.

To actually control the robot using the calculated F (q), we have several
options, two of which are:

• Apply the calculated force plus damping,

u = F (q)�Bq̇. (10.4)

If B is positive definite then it dissipates energy for all q̇ 6= 0, reducing
oscillation and guaranteeing that the robot will come to rest. If B = 0, the
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Figure 10.21: (Top left) Three obstacles and a goal point, marked with a +, in R2.
(Top right) The potential function summing the bowl-shaped potential pulling the
robot to the goal with the repulsive potentials of the three obstacles. The potential
function saturates at a specified maximum value. (Bottom left) A contour plot of the
potential function, showing the global minimum, a local minimum, and four saddles:
between each obstacle and the boundary of the workspace, and between the two small
obstacles. (Bottom right) Forces induced by the potential function.

robot continues to move while maintaining constant total energy, which
is the sum of the initial kinetic energy 1

2 q̇T(0)M(q(0))q̇(0) and the initial
virtual potential energy P(q(0)).

The motion of the robot under the control law (10.4) can be visualized as
a ball rolling in gravity on the potential surface of Figure 10.21, where the
dissipative force is rolling friction.
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• Treat the calculated force as a commanded velocity instead:

q̇ = F (q). (10.5)

This automatically eliminates oscillations.

Using the simple obstacle potential (10.3), even distant obstacles have a
nonzero e↵ect on the motion of the robot. To speed up evaluation of the repul-
sive terms, distant obstacles could be ignored. We can define a range of influence
of the obstacles drange > 0 so that the potential is zero for all d(q, B) � drange:

UB(q) =

8
><

>:

k

2

✓
drange � d(q, B)

dranged(q, B)

◆2

if d(q, B) < drange

0 otherwise.

Another issue is that d(q, B) and its gradient are generally di�cult to calcu-
late. An approach to dealing with this is described in Section 10.6.3.

10.6.2 Navigation Functions

A significant problem with the potential field method is local minima. While
potential fields may be appropriate for relatively uncluttered spaces or for rapid
response to unexpected obstacles, they are likely to get the robot stuck in local
minima for many practical applications.

One method that avoids this issue is the wavefront planner of Figure 10.11.
The wavefront algorithm creates a local-minimum-free potential function by
a breadth-first traversal of every cell reachable from the goal cell in a grid
representation of the free space. Therefore, if a solution exists to the motion
planning problem then simply moving “downhill” at every step is guaranteed
to bring the robot to the goal.

Another approach to local-minimum-free gradient following is based on re-
placing the virtual potential function with a navigation function. A naviga-
tion function '(q) is a type of virtual potential function that

1. is smooth (or at least twice di↵erentiable) on q;

2. has a bounded maximum value (e.g., 1) on the boundaries of all obstacles;

3. has a single minimum at qgoal; and

4. has a full-rank Hessian @2'/@q2 at all critical points q where @'/@q = 0
(i.e., '(q) is a Morse function).
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Condition 1 ensures that the Hessian @2'/@q2 exists. Condition 2 puts an upper
bound on the virtual potential energy of the robot. The key conditions are 3
and 4. Condition 3 ensures that of the critical points of '(q) (including minima,
maxima, and saddles), there is only one minimum, at qgoal. This ensures that
qgoal is at least locally attractive. There may be saddle points that are minima
along a subset of directions, but condition 4 ensures that the set of initial states
that are attracted to any saddle point has empty interior (zero measure), and
therefore almost every initial state converges to the unique minimum qgoal.

While constructing navigation potential functions with only a single mini-
mum is nontrivial, [152] showed how to construct them for the particular case
of an n-dimensional Cfree consisting of all points inside an n-sphere of radius
R and outside smaller spherical obstacles Bi of radius ri centered at qi, i.e.,
{q 2 Rn | kqk  R and kq � qik > ri for all i}. This is called a sphere world.
While a real C-space is unlikely to be a sphere world, Rimon and Koditschek
showed that the boundaries of the obstacles, and the associated navigation func-
tion, can be deformed to a much broader class of star-shaped obstacles. A
star-shaped obstacle is one that has a center point from which the line segment
to any point on the obstacle boundary is contained completely within the ob-
stacle. A star world is a star-shaped C-space which has star-shaped obstacles.
Thus finding a navigation function for an arbitrary star world reduces to find-
ing a navigation function for a “model” sphere world that has centers at the
centers of the star-shaped obstacles, then stretching and deforming that navi-
gation function to one that fits the star world. Rimon and Koditschek gave a
systematic procedure to accomplish this.

Figure 10.22 shows a deformation of a navigation function on a model sphere
world to a star world for the case C ⇢ R2.

10.6.3 Workspace Potential

A di�culty in calculating the repulsive force from an obstacle is obtaining the
distance to the obstacle, d(q, B). One approach that avoids an exact calculation
is to represent the boundary of an obstacle as a set of point obstacles, and to
represent the robot by a small set of control points. Let the Cartesian location
of control point i on the robot be written fi(q) 2 R3 and boundary point j of the
obstacle be cj 2 R3. Then the distance between the two points is kfi(q)� cjk,
and the potential at the control point i due to the obstacle point j is

P 0
ij(q) =

k

2kfi(q)� cjk2
,
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Figure 10.22: (Left) A model “sphere world” with five circular obstacles. The
contour plot of a navigation function is shown. The goal is at (0, 0). Note that the
obstacles induce saddle points near the obstacles, but no local minima. (Right) A
“star world” obtained by deforming the obstacles and the potential while retaining
a navigation function. Figure from [152] used with permission from the American
Mathematical Society.

yielding the repulsive force at the control point

F 0
ij(q) = �

@P 0
ij

@q
=

k

kfi(q)� cjk4

✓
@fi
@q

◆T

(fi(q)� cj) 2 R3.

To turn the linear force F 0
ij(q) 2 R3 into a generalized force Fij(q) 2 Rn

acting on the robot arm or mobile robot, we first find the Jacobian Ji(q) 2 R3⇥n

relating q̇ to the linear velocity of the control point ḟi:

ḟi =
@fi
@q

q̇ = Ji(q)q̇.

By the principle of virtual work, the generalized force Fij(q) 2 Rn due to the
repulsive linear force F 0

ij(q) 2 R3 is simply

Fij(q) = JT
i (q)F 0

ij(q).

Now the total force F (q) acting on the robot is the sum of the easily calculated
attractive force Fgoal(q) and the repulsive forces Fij(q) for all i and j.

10.6.4 Wheeled Mobile Robots

The preceding analysis assumes that a control force u = F (q) � Bq̇ (control
law (10.4)) or a velocity q̇ = F (q) (control law (10.5)) can be applied in any
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direction. If the robot is a wheeled mobile robot subject to rolling constraints
A(q)q̇ = 0, however, the calculated F (q) must be projected to controls Fproj(q)
that move the robot tangentially to the constraints. For a kinematic robot
employing the control law q̇ = Fproj(q), a suitable projection is

Fproj(q) =
⇣
I �AT(q)

�
A(q)AT(q)

��1
A(q)

⌘
F (q).

For a dynamic robot employing the control law u = Fproj(q)�Bq̇, the projection
was discussed in Section 8.7.

10.6.5 Use of Potential Fields in Planners

A potential field can be used in conjunction with a path planner. For example, a
best-first search such as A⇤ can use the potential as an estimate of the cost-to-go.
Incorporating a search function prevents the planner from getting permanently
stuck in local minima.

10.7 Nonlinear Optimization

The motion planning problem can be expressed as a general nonlinear optimiza-
tion, with equality and inequality constraints, taking advantage of a number of
software packages to solve such problems. Nonlinear optimization problems can
be solved by gradient-based methods, such as sequential quadratic programming
(SQP), or non-gradient methods, such as simulated annealing, Nelder–Mead op-
timization, and genetic programming. Like many nonlinear optimization prob-
lems, these methods are not generally guaranteed to find a feasible solution
when one exists, let alone an optimal one. For methods that use gradients of
the objective function and constraints, however, we can expect a locally optimal
solution if we start the process with a guess that is “close” to a solution.

The general problem can be written as follows:

find u(t), q(t), T (10.6)

minimizing J(u(t), q(t), T ) (10.7)

subject to ẋ(t) = f(x(t), u(t)), 8t 2 [0, T ], (10.8)

u(t) 2 U , 8t 2 [0, T ], (10.9)

q(t) 2 Cfree, 8t 2 [0, T ], (10.10)

x(0) = xstart, (10.11)

x(T ) = xgoal. (10.12)
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To solve this problem approximately by nonlinear optimization, the con-
trol u(t), trajectory q(t), and equality and inequality constraints (10.8)–(10.12)
must be discretized. This is typically done by ensuring that the constraints are
satisfied at a fixed number of points distributed evenly over the interval [0, T ]
and choosing a finite-parameter representation of the position and/or control
histories. We have at least three choices of how to parametrize the position and
controls:

(a) Parametrize the trajectory q(t). In this case, we solve for the tra-
jectory parameters directly. The controls u(t) at any time are calculated
using the equations of motion. This approach does not apply to systems
with fewer controls than configuration variables, m < n.

(b) Parametrize the control u(t). We solve for u(t) directly. Calculating
the state x(t) requires integrating the equations of motion.

(c) Parametrize both q(t) and u(t). We have a larger number of variables,
since we parametrize both q(t) and u(t). Also, we have a larger number
of constraints, as q(t) and u(t) must satisfy the dynamic equations ẋ =
f(x, u) explicitly, typically at a fixed number of points distributed evenly
over the interval [0, T ]. We must be careful to choose the parametrizations
of q(t) and u(t) to be consistent with each other, so that the dynamic
equations can be satisfied at these points.

A trajectory or control history can be parametrized in any number of ways.
The parameters can be the coe�cients of a polynomial in time, the coe�cients
of a truncated Fourier series, spline coe�cients, wavelet coe�cients, piecewise
constant acceleration or force segments, etc. For example, the control ui(t)
could be represented by p + 1 coe�cients aj of a polynomial in time:

ui(t) =
pX

j=0

ajt
j .

In addition to the parameters for the state or control history, the total time
T may be another control parameter. The choice of parametrization has impli-
cations for the e�ciency of the calculation of q(t) and u(t) at a given time t. It
also determines the sensitivity of the state and control to the parameters and
whether each parameter a↵ects the profiles at all times [0, T ] or just on a finite-
time support base. These are important factors in the stability and e�ciency
of the numerical optimization.
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10.8 Smoothing

The axis-aligned motions of a grid planner and the randomized motions of sam-
pling planners may lead to jerky motion of a robot. One approach to dealing
with this issue is to let the planner handle the work of searching globally for a
solution, then post-process the resulting motion to make it smoother.

There are many ways to do this; two possibilities are outlined below.

Nonlinear Optimization While gradient-based nonlinear optimization may
fail to find a solution if initialized with a random initial trajectory, it can make
an e↵ective post-processing step, since the plan initializes the optimization with
a “reasonable” solution. The initial motion must be converted to a parametrized
representation of the controls, and the cost J(u(t), q(t), T ) can be expressed as
a function of u(t) or q(t). For example, the cost function

J =
1

2

Z T

0
u̇T(t)u̇(t)dt

penalizes rapidly changing controls. This has an analogy in human motor con-
trol, where the smoothness of human arm motions has been attributed to min-
imization of the rate of change of torques at the joints [188].

Subdivide and Reconnect A local planner can be used to attempt a con-
nection between two distant points on a path. If this new connection is collision-
free, it replaces the original path segment. Since the local planner is designed to
produce short, smooth, paths, the new path is likely to be shorter and smoother
than the original. This test-and-replace procedure can be applied iteratively to
randomly chosen points on the path. Another possibility is to use a recursive
procedure that subdivides the path first into two pieces and attempts to replace
each piece with a shorter path; then, if either portion cannot be replaced by a
shorter path, it subdivides again; and so on.

10.9 Summary

• A fairly general statement of the motion planning problem is as follows.
Given an initial state x(0) = xstart and a desired final state xgoal, find a
time T and a set of controls u : [0, T ] ! U such that the motion satisfies
x(T ) 2 Xgoal and q(x(t)) 2 Cfree for all t 2 [0, T ].

• Motion planning problems can be classified in the following categories:
path planning versus motion planning; fully actuated versus constrained
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or underactuated; online versus o✏ine; optimal versus satisficing; exact
versus approximate; with or without obstacles.

• Motion planners can be characterized by the following properties: multiple-
query versus single-query; anytime planning or not; complete, resolution
complete, probabilistically complete, or none of the above; and their de-
gree of computational complexity.

• Obstacles partition the C-space into free C-space, Cfree, and obstacle space,
Cobs, where C = Cfree [ Cobs. Obstacles may split Cfree into separate con-
nected components. There is no feasible path between configurations in
di↵erent connected components.

• A conservative check of whether a configuration q is in collision uses a sim-
plified “grown” representation of the robot and obstacles. If there is no
collision between the grown bodies, then the configuration is guaranteed
collision-free. Checking whether a path is collision-free usually involves
sampling the path at finely spaced points and ensuring that if the indi-
vidual configurations are collision-free then the swept volume of the robot
path is collision-free.

• The C-space geometry is often represented by a graph consisting of nodes
and edges between the nodes, where edges represent feasible paths. The
graph can be undirected (edges flow in both directions) or directed (edges
flow in only one direction). Edges can be unweighted or weighted according
to their cost of traversal. A tree is a directed graph with no cycles in which
each node has at most one parent.

• A roadmap path planner uses a graph representation of Cfree, and path
planning problems can be solved using a simple path from qstart onto the
roadmap, a path along the roadmap, and a simple path from the roadmap
to qgoal.

• The A⇤ algorithm is a popular search method that finds minimum-cost
paths on a graph. It operates by always exploring from a node that is (1)
unexplored and (2) on a path with minimum estimated total cost. The
estimated total cost is the sum of the weights for the edges encountered in
reaching the node from the start node plus an estimate of the cost-to-go
to the goal. To ensure that the search returns an optimal solution, the
cost-to-go estimate should be optimistic.

• A grid-based path planner discretizes the C-space into a graph consisting
of neighboring points on a regular grid. A multi-resolution grid can be used
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to allow large steps in wide open spaces and smaller steps near obstacle
boundaries.

• Discretizing the control set allows robots with motion constraints to take
advantage of grid-based methods. If integrating a control does not land
the robot exactly on a grid point, the new state may still be pruned if a
state in the same grid cell has already been achieved with a lower cost.

• The basic RRT algorithm grows a single search tree from xstart to find a
motion to Xgoal. It relies on a sampler to find a sample xsamp in X , an
algorithm to find the closest node xnearest in the search tree, and a local
planner to find a motion from xnearest to a point closer to xsamp. The
sampling is chosen to cause the tree to explore Xfree quickly.

• The bidirectional RRT grows a search tree from both xstart and xgoal and
attempts to join them up. The RRT⇤ algorithm returns solutions that
tend toward the optimal as the planning time goes to infinity.

• The PRM builds a roadmap of Cfree for multiple-query planning. The
roadmap is built by sampling Cfree N times, then using a local planner to
attempt to connect each sample with several of its nearest neighbors. The
roadmap is searched using A⇤.

• Virtual potential fields are inspired by potential energy fields such as grav-
itational and electromagnetic fields. The goal point creates an attractive
potential while obstacles create repulsive potentials. The total potential
P(q) is the sum of these, and the virtual force applied to the robot is
F (q) = �@P/@q. The robot is controlled by applying this force plus
damping or by simulating first-order dynamics and driving the robot with
F (q) as a velocity. Potential field methods are conceptually simple but
may get the robot stuck in local minima away from the goal.

• A navigation function is a potential function with no local minima. Nav-
igation functions result in near-global convergence to qgoal. While they
are di�cult to design in general, they can be designed systematically for
certain environments.

• Motion planning problems can be converted to general nonlinear optimiza-
tion problems with equality and inequality constraints. While optimiza-
tion methods can be used to find smooth near-optimal motions, they tend
to get stuck in local minima in cluttered C-spaces. Optimization methods
typically require a good initial guess at a solution.
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• Motions returned by grid-based and sampling-based planners tend to be
jerky. Smoothing the plan using nonlinear optimization or subdivide-and-
reconnect can improve the quality of the motion.

10.10 Notes and References

Excellent textbooks covering motion planning broadly include the original text
by Latombe [80] in 1991 and the more recent texts by Choset et al. [27] and
LaValle [83]. Other summaries of the state-of-the-art in motion planning can
be found in the Handbook of Robotics [70], and, particularly for robots subject
to nonholonomic and actuation constraints, in the Control Handbook [101], the
Encyclopedia of Systems and Control [100], and the textbook by Murray et
al. [122]. Search algorithms and other algorithms for artificial intelligence are
covered in detail by Russell and Norvig [155].

Landmark early work on motion planning for Shakey the Robot at SRI led
to the development of A⇤ search in 1968 by Hart, Nilsson, and Raphael [53].
This work built on the newly established approach to dynamic programming
for optimal decision-making, as described by Bellman and Dreyfus [10], and
it improved on the performance of Dijkstra’s algorithm [37]. A suboptimal
anytime variant of A⇤ was proposed in [90]. Early work on multiresolution path
planning is described in [65, 96, 45, 54] based on hierarchical decompositions of
C-space [156].

One early line of work focused on exact characterization of the free C-space
in the presence of obstacles. The visibility graph approach for polygons mov-
ing among polygons was developed by Lozano-Pérez and Wesley in 1979 [97].
In more general settings, researchers used sophisticated algorithms and math-
ematical methods to develop cellular decompositions and exact roadmaps of
the free C-space. Important examples of this work are a series of papers by
Schwartz and Sharir on the piano movers’ problem [159, 160, 161] and Canny’s
PhD thesis [23].

As a result of the mathematical sophistication and high computational com-
plexity needed to exactly represent the topology of C-spaces, a movement formed
in the 1990s to approximately represent C-space using samples, and that move-
ment carries on strong today. That line of work has followed two main branches,
probabilistic roadmaps (PRMs) [69] and rapidly exploring random trees (RRTs)
[84, 86, 85]. Due to their ability to handle complex high-dimensional C-spaces
relatively e�ciently, research in sampling-based planners has exploded, and
some of the subsequent work is summarized in [27, 83]. The bidirectional RRT
and RRT⇤, highlighted in this chapter, are described in [83] and [68], respec-
tively.
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The grid-based approach to motion planning for a wheeled mobile robot was
introduced by Barraquand and Latombe [8], and the grid-based approach to
time-optimal motion planning for a robot arm with dynamic constraints was
introduced in [24, 40, 39].

The GJK algorithm for collision detection was derived in [50]. Open-source
collision-detection packages are implemented in the Open Motion Planning Li-
brary (OMPL) [181] and the Robot Operating System (ROS). An approach to
approximating polyhedra with spheres for fast collision detection is described
in [61].

The potential field approach to motion planning and real-time obstacle
avoidance was first introduced by Khatib and is summarized in [73]. A search-
based planner using a potential field to guide the search is described by Bar-
raquand et al. [7]. The construction of navigation functions, potential functions
with a unique local minimum, is described in a series of papers by Koditschek
and Rimon [78, 76, 77, 152, 153].

Nonlinear optimization-based motion planning has been formulated in a
number of publications, including the classic computer graphics paper by Witkin
and Kass [194] using optimization to generate the motions of an animated jump-
ing lamp; work on generating motion plans for dynamic nonprehensile manip-
ulation [103]; Newton algorithms for optimal motions of mechanisms [88]; and
more recent developments in short-burst sequential action control, which solves
both the motion planning and feedback control problems [3, 187]. Path smooth-
ing for mobile robot paths by subdivide and reconnect is described by Laumond
et al. [82].

10.11 Exercises

Exercise 10.1 One path is homotopic to another if it can be continuously
deformed into the other without moving the endpoints. In other words, it can
be stretched and pulled like a rubber band, but it cannot be cut and pasted
back together. For the C-space in Figure 10.2, draw a path from the start to
the goal that is not homotopic to the one shown.

Exercise 10.2 Label the connected components in Figure 10.2. For each
connected component, draw a picture of the robot for one configuration in the
connected component.

Exercise 10.3 Assume that ✓2 joint angles in the range [175�, 185�] result in
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reference
point

Figure 10.23: Exercise 10.4.

self-collision for the robot of Figure 10.2. Draw the new joint-limit C-obstacle
on top of the existing C-obstacles and label the resulting connected components
of Cfree. For each connected component, draw a picture of the robot for one
configuration in the connected component.

Exercise 10.4 Draw the C-obstacle corresponding to the obstacle and trans-
lating planar robot in Figure 10.23.

Exercise 10.5 Write a program that accepts as input the coordinates of a
polygonal robot (relative to a reference point on the robot) and the coordinates
of a polygonal obstacle and produces as output a drawing of the correspond-
ing C-space obstacle. In Mathematica, you may find the function ConvexHull
useful. In MATLAB, try convhull.

Exercise 10.6 Calculating a square root can be computationally expensive.
For a robot and an obstacle represented as collections of spheres (Section 10.2.2),
provide a method for calculating the distance between the robot and obstacle
that minimizes the use of square roots.

Exercise 10.7 Draw the visibility roadmap for the C-obstacles and qstart and
qgoal in Figure 10.24. Indicate the shortest path.

Exercise 10.8 Not all edges of the visibility roadmap described in Section 10.3
are needed. Prove that an edge between two vertices of C-obstacles need not
be included in the roadmap if either end of the edge does not hit the obstacle
tangentially (i.e., it hits at a concave vertex). In other words, if the edge ends
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start

goal

Figure 10.24: Planning problem for Exercise 10.7.

by “colliding” with an obstacle, it will never be used in a shortest path.

Exercise 10.9 Implement an A⇤ path planner for a point robot in a plane
with obstacles. The planar region is a 100⇥100 area. The program generates
a graph consisting of N nodes and E edges, where N and E are chosen by the
user. After generating N randomly chosen nodes, the program should connect
randomly chosen nodes by edges until E unique edges have been generated.
The cost associated with each edge is the Euclidean distance between the nodes.
Finally, the program should display the graph, search the graph using A⇤ for the
shortest path between nodes 1 and N , and display the shortest path or indicate
FAILURE if no path exists. The heuristic cost-to-go is the Euclidean distance
to the goal.

Exercise 10.10 Modify the A⇤ planner in Exercise 10.9 to use a heuristic cost-
to-go equal to ten times the distance to the goal node. Compare the running
time with the original A⇤ when they are run on the same graphs. (You may
need to use large graphs to notice any e↵ect.) Are the solutions found with the
new heuristic optimal?

Exercise 10.11 Modify the A⇤ algorithm from Exercise 10.9 to use Dijkstra’s
algorithm instead. Comment on the relative running times of A⇤ and Dijkstra’s
algorithm when each is run on the same graphs.

Exercise 10.12 Write a program that accepts the vertices of polygonal ob-
stacles from a user, as well as the specification of a 2R robot arm, rooted at
(x, y) = (0, 0), with link lengths L1 and L2. Each link is simply a line segment.
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Generate the C-space obstacles for the robot by sampling the two joint angles
at k-degree intervals (e.g., k = 5) and checking for intersections between the
line segments and the polygon. Plot the obstacles in the workspace, and in the
C-space grid use a black square or dot at each configuration colliding with an
obstacle. (Hint: At the core of this program is a subroutine to see whether two
line segments intersect. If the segments’ corresponding infinite lines intersect,
you can check whether this intersection is within the line segments.)

Exercise 10.13 Write an A⇤ grid path planner for a 2R robot with obsta-
cles and display on the C-space the paths you find. (See Exercise 10.12 and
Figure 10.10.)

Exercise 10.14 Implement the grid-based path planner for a wheeled mo-
bile robot (Algorithm 10.2), given the control discretization. Choose a simple
method to represent obstacles and check for collisions. Your program should
plot the obstacles and show the path that is found from the start to the goal.

Exercise 10.15 Write an RRT planner for a point robot moving in a plane
with obstacles. Free space and obstacles are represented by a two-dimensional
array, where each element corresponds to a grid cell in the two-dimensional
space. The occurrence of a 1 in an element of the array means that there is an
obstacle there, and a 0 indicates that the cell is in free space. Your program
should plot the obstacles, the tree that is formed, and show the path that is
found from the start to the goal.

Exercise 10.16 Do the same as for the previous exercise, except that obstacles
are now represented by line segments. The line segments can be thought of as
the boundaries of obstacles.

Exercise 10.17 Write a PRM planner to solve the same problem as in Exer-
cise 10.15.

Exercise 10.18 Write a program to implement a virtual potential field for a
2R robot in an environment with point obstacles. The two links of the robot
are line segments, and the user specifies the goal configuration of the robot,
the start configuration of the robot, and the location of the point obstacles in
the workspace. Put two control points on each link of the robot and transform
the workspace potential forces to configuration space potential forces. In one
workspace figure, draw an example environment consisting of a few point ob-
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stacles and the robot at its start and goal configurations. In a second C-space
figure, plot the potential function as a contour plot over (✓1, ✓2), and overlay a
planned path from a start configuration to a goal configuration. The robot uses
the kinematic control law q̇ = F (q).

See whether you can create a planning problem that results in convergence
to an undesired local minimum for some initial arm configurations but succeeds
in finding a path to the goal for other initial arm configurations.
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Robot Control

A robot arm can exhibit a number of di↵erent behaviors, depending on the task
and its environment. It can act as a source of programmed motions for tasks
such as moving an object from one place to another or tracing a trajectory
for a spray paint gun. It can act as a source of forces, as when applying a
polishing wheel to a workpiece. In tasks such as writing on a chalkboard, it
must control forces in some directions (the force must press the chalk against
the board) and motions in others (the motion must be in the plane of the board).
When the purpose of the robot is to act as a haptic display, rendering a virtual
environment, we may want it to act like a spring, damper, or mass, yielding in
response to forces applied to it.

In each of these cases, it is the job of the robot controller to convert the
task specification to forces and torques at the actuators. Control strategies that
achieve the behaviors described above are known as motion control, force
control, hybrid motion–force control, or impedance control. Which of
these behaviors is appropriate depends on both the task and the environment.
For example, a force-control goal makes sense when the end-e↵ector is in con-
tact with something but not when it is moving in free space. We also have a
fundamental constraint imposed by the mechanics, irrespective of the environ-
ment: the robot cannot independently control the motion and force in the same
direction. If the robot imposes a motion then the environment will determine
the force, and if the robot imposes a force then the environment will determine
the motion.

Once we have chosen a control goal consistent with the task and environ-
ment, we can use feedback control to achieve it. Feedback control uses position,
velocity, and force sensors to measure the actual behavior of the robot, com-
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pares it with the desired behavior, and modulates the control signals sent to the
actuators. Feedback is used in nearly all robot systems.

In this chapter we focus on: feedback control for motion control, both in the
joint space and in the task space; force control; hybrid motion–force control;
and impedance control.

11.1 Control System Overview

A typical control block diagram is shown in Figure 11.1(a). The sensors are
typically: potentiometers, encoders, or resolvers for joint position and angle
sensing; tachometers for joint velocity sensing; joint force–torque sensors; and/or
multi-axis force–torque sensors at the “wrist” between the end of the arm and
the end-e↵ector. The controller samples the sensors and updates its control
signals to the actuators at a rate of hundreds to a few thousands of Hz. In
most robotic applications control update rates higher than this are of limited
benefit, given the time constants associated with the dynamics of the robot and
environment. In our analysis we will ignore the fact that the sampling time is
nonzero and treat controllers as if they were implemented in continuous time.

While tachometers can be used for direct velocity sensing, a common ap-
proach is to use a digital filter to numerically-di↵erence the position signals at
successive timesteps. A low-pass filter is often used in combination with the dif-
ferencing filter to reduce the high-frequency signal content due to quantization
of the di↵erenced position signals.

As discussed in Section 8.9, there are a number of di↵erent technologies for
creating mechanical power, transforming the speeds and forces, and transmitting
to the robot joints. In this chapter we lump each joint’s amplifier, actuator, and
transmission together and treat them as a transformer from low-power control
signals to forces and torques. This assumption, along with the assumption of
perfect sensors, allows us to simplify the block diagram of Figure 11.1(a) to
the one shown in Figure 11.1(b), where the controller produces the forces and
torques directly. The rest of this chapter deals with the control algorithms that
go inside the “controller” box in Figure 11.1(b).

Real robot systems are subject to flexibility and vibrations in the joints and
links, backlash at the gears and transmissions, actuator saturation limits, and
limited resolution of the sensors. These raise significant issues in design and
control but they are beyond the scope of this chapter.
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Figure 11.1: (a) A typical robot control system. An inner control loop is used to help
the amplifier and actuator to achieve the desired force or torque. For example, a DC
motor amplifier in torque control mode may sense the current actually flowing through
the motor and implement a local controller to better match the desired current, since
the current is proportional to the torque produced by the motor. Alternatively the
motor controller may directly sense the torque by using a strain gauge on the motor’s
output gearing, and close a local torque-control loop using that feedback. (b) A
simplified model with ideal sensors and a controller block that directly produces forces
and torques. This assumes ideal behavior of the amplifier and actuator blocks in part
(a). Not shown are the disturbance forces that can be injected before the dynamics
block, or disturbance forces or motions injected after the dynamics block.

11.2 Error Dynamics

In this section we focus on the controlled dynamics of a single joint, as the
concepts generalize easily to the case of a multi-joint robot.

If the desired joint position is ✓d(t) and the actual joint position is ✓(t) then
we define the joint error to be

✓e(t) = ✓d(t)� ✓(t).
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The di↵erential equation governing the evolution of the joint error ✓e(t) of the
controlled system is called the error dynamics. The purpose of the feedback
controller is to create an error dynamics such that ✓e(t) tends to zero, or a small
value, as t increases.

11.2.1 Error Response

A common way to test how well a controller works is to specify a nonzero initial
error ✓e(0) and see how quickly, and how completely, the controller reduces
the initial error. We define the (unit) error response to be the response
✓e(t), t > 0, of the controlled system for the initial conditions ✓e(0) = 1 and
✓̇e(0) = ✓̈e(0) = · · · = 0.

An ideal controller would drive the error to zero instantly and keep the
error at zero for all time. In practice it takes time to reduce the error, and
the error may never be completely eliminated. As illustrated in Figure 11.2,
a typical error response ✓e(t) can be described by a transient response and
a steady-state response. The steady-state response is characterized by the
steady-state error ess, which is the asymptotic error ✓e(t) as t ! 1. The
transient response is characterized by the overshoot and (2%) settling time.
The 2% settling time is the first time T such that |✓e(t)�ess|  0.02(✓e(0)�ess)
for all t � T (see the pair of long-dashed lines). Overshoot occurs if the error
response initially overshoots the final steady-state error, and in this case the
overshoot is defined as

overshoot =

����
✓e,min � ess
✓e(0)� ess

����⇥ 100%,

where ✓e,min is the least positive value achieved by the error.
A good error response is characterized by

• little or no steady-state error,

• little or no overshoot, and

• a short 2% settling time.

11.2.2 Linear Error Dynamics

In this chapter we work primarily with linear systems with error dynamics
described by linear ordinary di↵erential equations of the form

ap✓
(p)
e + ap�1✓

(p�1)
e + · · · + a2✓̈e + a1✓̇e + a0✓e = c. (11.1)
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Figure 11.2: An example error response showing steady-state error ess, the overshoot,
and the 2% settling time.

This is a pth-order di↵erential equation, because p time derivatives of ✓e are
present. The di↵erential equation (11.1) is homogeneous if the constant c is
zero and nonhomogeneous if c 6= 0.

For homogeneous (c = 0) linear error dynamics, the pth-order di↵erential
equation (11.1) can be rewritten as

✓(p)e = � 1

ap
(ap�1✓

(p�1)
e + · · · + a2✓̈e + a1✓̇e + a0✓e)

= �a0
p�1✓

(p�1)
e � · · ·� a0

2✓̈e � a0
1✓̇e � a0

0✓e. (11.2)

This pth-order di↵erential equation can be expressed as p coupled first-order
di↵erential equations by defining the vector x = (x1, . . . , xp), where

x1 = ✓e,

x2 = ẋ1 = ✓̇e,

...
...

xp = ẋp�1 = ✓(p�1)
e ,
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and writing Equation (11.2) as

ẋp = �a0
0x1 � a0

1x2 � · · ·� a0
p�1xp.

Then ẋ(t) = Ax(t), where

A =

2

66666664

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
�a0

0 �a0
1 �a0

2 · · · �a0
p�2 �a0

p�1

3

77777775

2 Rp⇥p.

By analogy with the scalar first-order di↵erential equation ẋ(t) = ax(t), which
has solution x(t) = eatx(0), the vector di↵erential equation ẋ(t) = Ax(t) has so-
lution x(t) = eAtx(0) using the matrix exponential, as we saw in Section 3.2.3.1.
Also analogous to the scalar di↵erential equation, whose solution converges to
the equilibrium x = 0 from any initial condition if a is negative, the di↵erential
equation ẋ(t) = Ax(t) converges to x = 0 if the matrix A is negative definite,
i.e., all eigenvalues of A (which may be complex) have negative real components.

The eigenvalues of A are given by the roots of the characteristic polynomial
of A, i.e., the complex values s satisfying

det(sI �A) = sp + a0
p�1s

p�1 + · · · + a0
2s

2 + a0
1s + a0

0 = 0. (11.3)

Equation (11.3) is also the characteristic equation associated with the pth-order
di↵erential equation (11.1).

A necessary condition for each root of Equation (11.3) to have a negative real
component is that all coe�cients a0

0, . . . , a
0
p�1 must be positive. This condition

is also su�cient for p = 1 and 2. For p = 3, the condition a0
2a

0
1 > a0

0 must also
hold. For higher-order systems, other conditions must hold.

If each root of Equation (11.3) has a negative real component, we call the
error dynamics stable. If any of the roots has a positive real component, the
error dynamics are unstable, and the error k✓e(t)k can grow without bound as
t!1.

For second-order error dynamics, a good mechanical analogy to keep in mind
is the linear mass–spring–damper (Figure 11.3). The position of the mass m is
✓e and an external force f is applied to the mass. The damper applies a force
�b✓̇e to the mass, where b is the damping constant, and the spring applies a
force �k✓e to the mass, where k is the spring constant. Therefore the equation
of motion of the mass can be written as

m✓̈e + b✓̇e + k✓e = f. (11.4)
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m f

e✓

Figure 11.3: A linear mass–spring–damper.

In the limit as the mass m approaches zero, the second-order dynamics (11.4)
reduces to the first-order dynamics

b✓̇e + k✓e = f. (11.5)

By the first-order dynamics, an external force generates a velocity rather than
an acceleration.

In the following subsections we consider the first- and second-order error
responses for the homogeneous case (f = 0) with b, k > 0, ensuring that the
error dynamics are stable and that the error converges to zero (ess = 0).

11.2.2.1 First-Order Error Dynamics

The first-order error dynamics (11.5) with f = 0 can be written in the form

✓̇e(t) +
k

b
✓e(t) = 0

or

✓̇e(t) +
1

t
✓e(t) = 0, (11.6)

where t = b/k is called the time constant of the first-order di↵erential equation.
The solution to the di↵erential equation (11.6) is

✓e(t) = e�t/t✓e(0). (11.7)

The time constant t is the time at which the first-order exponential decay has
decayed to approximately 37% of its initial value. The error response ✓e(t) is
defined by the initial condition ✓e(0) = 1. Plots of the error response are shown
in Figure 11.4 for di↵erent time constants. The steady-state error is zero, there
is no overshoot in the decaying exponential error response, and the 2% settling
time is determined by solving

✓e(t)

✓e(0)
= 0.02 = e�t/t
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time

1

0

e✓
decreasingt

Figure 11.4: The first-order error response for three di↵erent time constants t.

for t. Solving, we get

ln 0.02 = �t/t ! t = 3.91t,

a 2% settling time of approximately 4t. The response gets faster as the spring
constant k increases or the damping constant b decreases.

11.2.2.2 Second-Order Error Dynamics

The second-order error dynamics

✓̈e(t) +
b

m
✓̇e(t) +

k

m
✓e(t) = 0

can be written in the standard second-order form

✓̈e(t) + 2⇣!n✓̇e(t) + !2
n✓e(t) = 0, (11.8)

where !n is called the natural frequency and ⇣ is called the damping ratio.
For the mass–spring–damper, !n =

p
k/m and ⇣ = b/(2

p
km). The two roots

of the characteristic polynomial

s2 + 2⇣!ns + !2
n = 0 (11.9)

are

s1 = �⇣!n + !n

p
⇣2 � 1 and s2 = �⇣!n � !n

p
⇣2 � 1. (11.10)

The second-order error dynamics (11.8) is stable if and only if ⇣!n > 0 and
!2
n > 0.

If the error dynamics is stable, then there are three types of solutions ✓e(t)
to the di↵erential equation, depending on whether the roots s1,2 are real and
unequal (⇣ > 1), real and equal (⇣ = 1), or complex conjugates (⇣ < 1).
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• Overdamped: ⇣ > 1. The roots s1,2 are real and distinct, and the
solution to the di↵erential equation (11.8) is

✓e(t) = c1e
s1t + c2e

s2t,

where c1 and c2 can be calculated from the initial conditions. The response
is the sum of two decaying exponentials, with time constants t1 = �1/s1
and t2 = �1/s2. The “slower” time constant in the solution is given by
the less negative root, s1 = �⇣!n + !n

p
⇣2 � 1.

The initial conditions for the (unit) error response are ✓e(0) = 1 and
✓̇e(0) = 0, and the constants c1 and c2 can be calculated as

c1 =
1

2
+

⇣

2
p
⇣2 � 1

and c2 =
1

2
� ⇣

2
p
⇣2 � 1

.

• Critically damped: ⇣ = 1. The roots s1,2 = �!n are equal and real,
and the solution is

✓e(t) = (c1 + c2t)e
�!nt,

i.e., a decaying exponential multiplied by a linear function of time. The
time constant of the decaying exponential is t = 1/!n. For the error
response with ✓e(0) = 1 and ✓̇e(0) = 0,

c1 = 1 and c2 = !n.

• Underdamped: ⇣ < 1. The roots s1,2 are complex conjugates at s1,2 =

�⇣!n±j!d, where !d = !n

p
1� ⇣2 is the damped natural frequency.

The solution is

✓e(t) = (c1 cos!dt + c2 sin!dt) e�⇣!nt,

i.e., a decaying exponential (time constant t = 1/(⇣!n)) multiplied by a
sinusoid. For the error response with ✓e(0) = 1 and ✓̇e(0) = 0,

c1 = 1 and c2 =
⇣p

1� ⇣2
.

Example root locations for the overdamped, critically damped, and under-
damped cases, as well as their error responses ✓e(t), are shown in Figure 11.5.
This figure also shows the relationship between the root locations and proper-
ties of the transient response: roots further to the left in the complex plane
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Figure 11.5: (Top) Example root locations for overdamped, critically damped, and
underdamped second-order systems. (Bottom left) Error responses for overdamped,
critically damped, and underdamped second-order systems. (Bottom right) Relation-
ship of the root locations to properties of the transient response.

correspond to shorter settling times, and roots further away from the real axis
correspond to greater overshoot and oscillation. These general relationships be-
tween root locations and transient response properties also hold for higher-order
systems with more than two roots.

If the second-order error dynamics (11.8) is stable, the steady-state error ess
is zero regardless of whether the error dynamics is overdamped, underdamped,
or critically damped. The 2% settling time is approximately 4t, where t cor-
responds to the “slower” root s1 if the error dynamics is overdamped. The
overshoot is zero for overdamped and critically damped error dynamics and, for
underdamped error dynamics, the overshoot can be calculated by finding the
first time (after t = 0) where the error response satisfies ✓̇e = 0. This is the
peak of the overshoot, and it occurs at

tp = ⇡/!d.
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Substituting this into the underdamped error response, we get

✓e(tp) = ✓e

✓
⇡

!d

◆
=

 
cos

✓
!d

⇡

!d

◆
+

⇣p
1� ⇣2

sin

✓
!d

⇡

!d

◆!
e�⇣!n⇡/!d

= �e�⇡⇣/
p

1�⇣2 .

Therefore, by our definition of overshoot, the overshoot is e�⇡⇣/
p

1�⇣2 ⇥ 100%.
Thus ⇣ = 0.1 gives an overshoot of 73%, ⇣ = 0.5 gives an overshoot of 16%, and
⇣ = 0.8 gives an overshoot of 1.5%.

11.3 Motion Control with Velocity Inputs

As discussed in Chapter 8, we typically assume that there is direct control of
the forces or torques at robot joints, and the robot’s dynamics transforms those
controls to joint accelerations. In some cases, however, we can assume that
there is direct control of the joint velocities, for example when the actuators are
stepper motors. In this case the velocity of a joint is determined directly by
the frequency of the pulse train sent to the stepper.1 Another example occurs
when the amplifier for an electric motor is placed in velocity control mode – the
amplifier attempts to achieve the joint velocity requested by the user, rather
than a joint force or torque.

In this section we will assume that the control inputs are joint velocities.
In Section 11.4, and indeed in the rest of the chapter, the control inputs are
assumed to be joint forces and torques.

The motion control task can be expressed in joint space or task space. When
the trajectory is expressed in task space, the controller is fed a steady stream
of end-e↵ector configurations Xd(t), and the goal is to command joint velocities
that cause the robot to track this trajectory. In joint space, the controller is fed
a steady stream of desired joint positions ✓d(t).

The main ideas are well illustrated by a robot with a single joint, so we begin
there and then generalize to a multi-joint robot.

1
This assumes that the torque requirements are low enough that the stepper motor can

keep up with the pulse train.
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11.3.1 Motion Control of a Single Joint

11.3.1.1 Feedforward Control

Given a desired joint trajectory ✓d(t), the simplest type of control would be to
choose the commanded velocity ✓̇(t) as

✓̇(t) = ✓̇d(t), (11.11)

where ✓̇d(t) comes from the desired trajectory. This is called a feedforward or
open-loop controller, since no feedback (sensor data) is needed to implement
it.

11.3.1.2 Feedback Control

In practice, position errors will accumulate over time under the feedforward
control law (11.11). An alternative strategy is to measure the actual position
of each joint continually and implement a feedback controller.

P Control and First-Order Error Dynamics The simplest feedback con-
troller is

✓̇(t) = Kp(✓d(t)� ✓(t)) = Kp✓e(t), (11.12)

where Kp > 0. This controller is called a proportional controller, or P con-
troller, because it creates a corrective control proportional to the position error
✓e(t) = ✓d(t)� ✓(t). In other words, the constant control gain Kp acts some-
what like a virtual spring that tries to pull the actual joint position to the
desired joint position.

The P controller is an example of a linear controller, as it creates a con-
trol signal that is a linear combination of the error ✓e(t) and possibly its time
derivatives and time integrals.

The case where ✓d(t) is constant, i.e., ✓̇d(t) = 0, is called setpoint control.
In setpoint control, the error dynamics

✓̇e(t) =���*
0

✓̇d(t)� ✓̇(t)

is written as follows after substituting in the P controller ✓̇(t) = Kp✓e(t):

✓̇e(t) = �Kp✓e(t) ! ✓̇e(t) + Kp✓e(t) = 0.

This is a first-order error dynamic equation (11.6) with time constant t = 1/Kp.
The decaying exponential error response is illustrated in Figure 11.4. The
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steady-state error is zero, there is no overshoot, and the 2% settling time is
4/Kp. A larger Kp means a faster response.

Now consider the case where ✓d(t) is not constant but ✓̇d(t) is constant, i.e.,
✓̇d(t) = c. Then the error dynamics under the P controller can be written

✓̇e(t) = ✓̇d(t)� ✓̇(t) = c�Kp✓e(t),

which we rewrite as
✓̇e(t) + Kp✓e(t) = c.

This is a first-order nonhomogeneous linear di↵erential equation with solution

✓e(t) =
c

Kp
+

✓
✓e(0)� c

Kp

◆
e�Kpt,

which converges to the nonzero value c/Kp as time goes to infinity. Unlike the
case of setpoint control, the steady-state error ess is nonzero; the joint position
always lags behind the moving reference. The steady-state error c/Kp can be
made small by choosing the control gain Kp large, but there are practical limits
on how large Kp can be. For one thing, real joints have velocity limits that may
prevent the realization of the large commanded velocities associated with a large
Kp. For another, large values of Kp may cause instability when implemented by
a discrete-time digital controller – the large gain may result in a large change in
✓e during a single servo cycle, meaning that the control action late in the servo
cycle is in response to sensor data that is no longer relevant.

PI Control and Second-Order Error Dynamics An alternative to using
a large gain Kp is to introduce another term in the control law. A proportional-
integral controller, or PI controller, adds a term that is proportional to the
time-integral of the error:

✓̇(t) = Kp✓e(t) + Ki

Z t

0
✓e(t) dt, (11.13)

where t is the current time and t is the variable of integration. The PI controller
block diagram is illustrated in Figure 11.6.

With this controller, the error dynamics for a constant ✓̇d(t) becomes

✓̇e(t) + Kp✓e(t) + Ki

Z t

0
✓e(t) dt = c.

Taking the time derivative of this dynamics, we get

✓̈e(t) + Kp✓̇e(t) + Ki✓e(t) = 0. (11.14)
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Figure 11.6: The block diagram of a PI controller that produces a commanded
velocity ✓̇ as input to the robot.

We can rewrite this equation in the standard second-order form (11.8), with
natural frequency !n =

p
Ki and damping ratio ⇣ = Kp/(2

p
Ki).

Relating the PI controller of Equation (11.14) to the mass–spring–damper
of Figure 11.3, the gain Kp plays the role of b/m for the mass–spring–damper (a
larger Kp means a larger damping constant b), and the gain Ki plays the role
of k/m (a larger Ki means a larger spring constant k).

The PI-controlled error dynamics equation is stable if Ki > 0 and Kp > 0,
and the roots of the characteristic equation are

s1,2 = �Kp

2
±
r

K2
p

4
�Ki.

Let’s hold Kp equal to 20 and plot the roots in the complex plane as Ki grows
from zero (Figure 11.7). This plot, or any plot of the roots as one parameter is
varied, is called a root locus.

For Ki = 0, the characteristic equation s2+Kps+Ki = s2+20s = s(s+20) =
0 has roots at s1 = 0 and s2 = �20. As Ki increases, the roots move toward
each other on the real axis of the s-plane as shown in the left-hand panel in
Figure 11.7. Because the roots are real and unequal, the error dynamics equation
is overdamped (⇣ = Kp/(2

p
Ki) > 1, case I) and the error response is sluggish

due to the time constant t1 = �1/s1 of the exponential corresponding to the
“slow” root. As Ki increases, the damping ratio decreases, the “slow” root
moves left (while the “fast” root moves right), and the response gets faster.
When Ki reaches 100, the two roots meet at s1,2 = �10 = �!n = Kp/2, and
the error dynamics equation is critically damped (⇣ = 1, case II). The error
response has a short 2% settling time of 4t = 4/(⇣!n) = 0.4 s and no overshoot
or oscillation. As Ki continues to grow, the damping ratio ⇣ falls below 1 and
the roots move vertically o↵ the real axis, becoming complex conjugates at
s1,2 = �10 ± j

p
Ki � 100 (case III). The error dynamics is underdamped, and
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Figure 11.7: (Left) The complex roots of the characteristic equation of the error
dynamics of the PI velocity-controlled joint for a fixed Kp = 20 as Ki increases from
zero. This is known as a root locus plot. (Right) The error response to an initial
error ✓e = 1, ✓̇e = 0, is shown for overdamped (⇣ = 1.5, Ki = 44.4, case I), critically
damped (⇣ = 1, Ki = 100, case II), and underdamped (⇣ = 0.5, Ki = 400, case III)
cases.

the response begins to exhibit overshoot and oscillation as Ki increases. The
settling time is una↵ected as the time constant t = 1/(⇣!n) remains constant.

According to our simple model of the PI controller, we could always choose
Kp and Ki for critical damping (Ki = K2

p/4) and increase Kp and Ki without
bound to make the error response arbitrarily fast. As described above, however,
there are practical limits. Within these practical limits, Kp and Ki should be
chosen to yield critical damping.

Figure 11.8 shows for comparison the performances of a P controller and a PI
controller attempting to track a constant-velocity trajectory. The proportional
gain Kp is the same in both cases, while Ki = 0 for the P controller. From the
shape of the response, it appears that Ki in the PI controller was chosen to be
a bit too large, making the system underdamped. It is also clear that ess = 0
for the PI controller but ess 6= 0 for the P controller, agreeing with our analysis
above.

If the desired velocity ✓̇d(t) is anything other than constant, the PI controller
cannot be expected to eliminate steady-state error completely. If it changes
slowly, however, then a well-designed PI controller can be expected to provide
better tracking performance than a P controller.
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Figure 11.8: The motion of P-controlled and PI-controlled joints, with initial position
error, tracking a reference trajectory (dashed) where ✓̇d(t) is constant. (Left) The
responses ✓(t). (Right) The error responses ✓e(t) = ✓d(t)� ✓(t).

11.3.1.3 Feedforward Plus Feedback Control

A drawback of feedback control is that an error is required before the joint
begins to move. It would be preferable to use our knowledge of the desired
trajectory ✓d(t) to initiate motion before any error accumulates.

We can combine the advantages of feedforward control, which commands
motion even when there is no error, with the advantages of feedback control,
which limits the accumulation of error, as follows:

✓̇(t) = ✓̇d(t) + Kp✓e(t) + Ki

Z t

0
✓e(t) dt. (11.15)

This feedforward–feedback controller, illustrated in Figure 11.9, is our preferred
control law for producing a commanded velocity to the joint.

11.3.2 Motion Control of a Multi-joint Robot

The single-joint PI feedback plus feedforward controller (11.15) generalizes im-
mediately to robots with n joints. The reference position ✓d(t) and actual po-
sition ✓(t) are now n-vectors, and the gains Kp and Ki are diagonal n ⇥ n
matrices of the form kpI and kiI, where the scalars kp and ki are positive and
I is the n ⇥ n identity matrix. Each joint is subject to the same stability and
performance analysis as the single joint in Section 11.3.1.
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Figure 11.9: The block diagram of feedforward plus PI feedback control that pro-
duces a commanded velocity ✓̇ as input to the robot.

11.3.3 Task-Space Motion Control

We can express the feedforward plus feedback control law in task space. Let
X(t) 2 SE(3) be the configuration of the end-e↵ector as a function of time
and Vb(t) be the end-e↵ector twist expressed in the end-e↵ector frame {b}, i.e.,
[Vb] = X�1Ẋ. The desired motion is given by Xd(t) and [Vd] = X�1

d Ẋd. A
task-space version of the control law (11.15) is

Vb(t) = [AdX�1Xd
]Vd(t) + KpXe(t) + Ki

Z t

0
Xe(t) dt. (11.16)

The term [AdX�1Xd
]Vd expresses the feedforward twist Vd in the actual end-

e↵ector frame at X (which could also be written Xsb) rather than the desired
end-e↵ector frame Xd (which could also be written Xsd). When the end-e↵ector
is at the desired configuration (X = Xd), this term reduces to Vd. Also, the
configuration error Xe(t) is not simply Xd(t) � X(t), since it does not make
sense to subtract elements of SE(3). Instead, as we saw in Section 6.2, Xe

should refer to the twist which, if followed for unit time, takes X to Xd. The
se(3) representation of this twist, expressed in the end-e↵ector frame, is [Xe] =
log(X�1Xd).

As in Section 11.3.2, the diagonal gain matrices Kp, Ki 2 R6⇥6 take the form
kpI and kiI, respectively, where kp, ki > 0.

The commanded joint velocities ✓̇ realizing Vb from the control law (11.16)
can be calculated using the inverse velocity kinematics from Section 6.3,

✓̇ = J†
b (✓)Vb,
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where J†
b (✓) is the pseudoinverse of the body Jacobian.

Motion control in task space can be defined using other representations of the
end-e↵ector configuration and velocity. For example, for a minimal coordinate
representation of the end-e↵ector configuration x 2 Rm, the control law can be
written

ẋ(t) = ẋd(t) + Kp(xd(t)� x(t)) + Ki

Z t

0
(xd(t)� x(t)) dt. (11.17)

For a hybrid configuration representation X = (R, p), with velocities represented
by (!b, ṗ):


!b(t)
ṗ(t)

�
=


RT(t)Rd(t) 0

0 I

� 
!d(t)
ṗd(t)

�
+ KpXe(t) + Ki

Z t

0
Xe(t) dt,

(11.18)
where

Xe(t) =


!e(t)

pd(t)� p(t)

�
,

where [!e(t)] = log(RT(t)Rd(t))
Figure 11.10 shows the performance of the control law (11.16), where the

end-e↵ector velocity is the body twist Vb, and the performance of the control
law (11.18), where the end-e↵ector velocity is (!b, ṗ). The control task is to
stabilize Xd at the origin from the initial configuration

R0 =

2

4
0 �1 0
1 0 0
0 0 1

3

5 , p0 =

2

4
1
1
0

3

5 .

The feedforward velocity is zero and Ki = 0. Figure 11.10 shows the di↵erent
paths followed by the end-e↵ector. The decoupling of linear and angular control
in the control law (11.18) is visible in the straight-line motion of the origin of
the end-e↵ector frame.

An application of the control law (11.16) to mobile manipulation can be
found in Section 13.5.

11.4 Motion Control with Torque or Force Inputs

Stepper-motor-controlled robots are generally limited to applications with low
or predictable force–torque requirements. Also, robot-control engineers do not
rely on the velocity-control modes of o↵-the-shelf amplifiers for electric motors,
because these velocity-control algorithms do not make use of a dynamic model
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Figure 11.10: (Left) The end-e↵ector configuration converging to the origin under
the control law (11.16), where the end-e↵ector velocity is represented as the body twist
Vb. (Right) The end-e↵ector configuration converging to the origin under the control
law (11.18), where the end-e↵ector velocity is represented as (!b, ṗ).

of the robot. Instead, robot-control engineers use amplifiers in torque-control
mode: the input to the amplifier is the desired torque (or force). This allows
the robot-control engineer to use a dynamic model of the robot in the design of
the control law.

In this section, the controller generates joint torques and forces to try to
track a desired trajectory in joint space or task space. Once again, the main
ideas are well illustrated by a robot with a single joint, so we begin there and
then generalize to a multi-joint robot.

11.4.1 Motion Control of a Single Joint

Consider a single motor attached to a single link, as shown in Figure 11.11. Let
⌧ be the motor’s torque and ✓ be the angle of the link. The dynamics can be
written as

⌧ = M ✓̈ + mgr cos ✓, (11.19)

where M is the scalar inertia of the link about the axis of rotation, m is the
mass of the link, r is the distance from the axis to the center of mass of the link,
and g � 0 is the gravitational acceleration.

According to the model (11.19) there is no dissipation: if the link were
made to move and ⌧ were then set to zero, the link would move forever. This
is unrealistic, of course; there is bound to be friction at the various bearings,
gears, and transmissions. Friction modeling is an active research area, but in a
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r
✓

gm

Figure 11.11: A single-joint robot rotating under gravity. The center of mass is
indicated by the checkered disk.

simple model, rotational friction is due to viscous friction forces, so that

⌧fric = b✓̇, (11.20)

where b > 0. Adding the friction torque, our final model is

⌧ = M ✓̈ + mgr cos ✓ + b✓̇, (11.21)

which we may write more compactly as

⌧ = M ✓̈ + h(✓, ✓̇), (11.22)

where h contains all terms that depend only on the state, not the acceleration.
For concreteness in the following simulations, we set M = 0.5 kg m2, m =

1 kg, r = 0.1 m, and b = 0.1 N m s/rad. In some examples the link moves in
a horizontal plane, so g = 0. In other examples, the link moves in a vertical
plane, so g = 9.81 m/s2.

11.4.1.1 Feedback Control: PID Control

A common feedback controller is linear proportional-integral-derivative con-
trol, or PID control. The PID controller is simply the PI controller (Equa-
tion (11.13)) with an added term proportional to the time derivative of the
error,

⌧ = Kp✓e + Ki

Z
✓e(t)dt + Kd✓̇e, (11.23)

where the control gains Kp, Ki, and Kd are positive. The proportional gain Kp

acts as a virtual spring that tries to reduce the position error ✓e = ✓d � ✓. The
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Figure 11.12: Block diagram of a PID controller.

derivative gain Kd acts as a virtual damper that tries to reduce the velocity error
✓̇e = ✓̇d � ✓̇. The integral gain can be used to reduce or eliminate steady-state
errors. The PID controller block diagram is given in Figure 11.12.

PD Control and Second-Order Error Dynamics For now let’s consider
the case where Ki = 0. This is known as PD control. Let’s also assume the
robot moves in a horizontal plane (g = 0). Substituting the PD control law into
the dynamics (11.21), we get

M ✓̈ + b✓̇ = Kp(✓d � ✓) + Kd(✓̇d � ✓̇). (11.24)

If the control objective is setpoint control at a constant ✓d with ✓̇d = ✓̈d = 0,
then ✓e = ✓d � ✓, ✓̇e = �✓̇, and ✓̈e = �✓̈. Equation (11.24) can be rewritten as

M ✓̈e + (b + Kd)✓̇e + Kp✓e = 0, (11.25)

or, in the standard second-order form (11.8), as

✓̈e +
b + Kd

M
✓̇e +

Kp

M
✓e = 0 ! ✓̈e + 2⇣!n✓̇e + !2

n✓e = 0, (11.26)

where the damping ratio ⇣ and the natural frequency !n are

⇣ =
b + Kd

2
p

KpM
and !n =

r
Kp

M
.

For stability, b+Kd and Kp must be positive. If the error dynamics equation is
stable then the steady-state error is zero. For no overshoot and a fast response,
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the gains Kd and Kp should be chosen to satisfy critical damping (⇣ = 1). For a
fast response, Kp should be chosen to be as high as possible, subject to practical
issues such as actuator saturation, undesired rapid torque changes (chattering),
vibrations of the structure due to unmodeled flexibility in the joints and links,
and possibly even instability due to the finite servo rate frequency.

PID Control and Third-Order Error Dynamics Now consider the case
of setpoint control where the link moves in a vertical plane (g > 0). With the
PD control law above, the error dynamics can now be written

M ✓̈e + (b + Kd)✓̇e + Kp✓e = mgr cos ✓. (11.27)

This implies that the joint comes to rest at a configuration ✓ satisfying Kp✓e =
mgr cos ✓, i.e., the final error ✓e is nonzero when ✓d 6= ±⇡/2. The reason is that
the robot must provide a nonzero torque to hold the link at rest at ✓ 6= ±⇡/2,
but the PD control law creates a nonzero torque at rest only if ✓e 6= 0. We can
make this steady-state error small by increasing the gain Kp but, as discussed
above, there are practical limits.

To eliminate the steady-state error, we return to the PID controller by setting
Ki > 0. This allows a nonzero steady-state torque even with zero position error;
only the integrated error must be nonzero. Figure 11.13 demonstrates the e↵ect
of adding the integral term to the controller.

To see how this works, write down the setpoint error dynamics

M ✓̈e + (b + Kd)✓̇e + Kp✓e + Ki

Z
✓e(t)dt = ⌧dist, (11.28)

where ⌧dist is a disturbance torque substituted for the gravity term mgr cos ✓.
Taking derivatives of both sides, we get the third-order error dynamics

M✓(3)e + (b + Kd)✓̈e + Kp✓̇e + Ki✓e = ⌧̇dist. (11.29)

If ⌧dist is constant then the right-hand side of Equation (11.29) is zero, and its
characteristic equation is

s3 +
b + Kd

M
s2 +

Kp

M
s +

Ki

M
= 0. (11.30)

If all roots of Equation (11.30) have a negative real part then the error dynamics
is stable, and ✓e converges to zero. (While the disturbance torque due to gravity
is not constant as the link rotates, it approaches a constant as ✓̇ goes to zero,
and therefore similar reasoning holds close to the equilibrium ✓e = 0.)
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PD control
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time (s)
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desired config =
  PID final config
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✓e

0
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Figure 11.13: (Left) The tracking errors for a PD controller with Kd = 2 Nms/rad
and Kp = 2.205 Nm/rad for critical damping, and a PID controller with the same
PD gains and Ki = 1 Nm/(rad s). The arm starts at ✓(0) = �⇡/2, ✓̇(0) = 0, with
a goal state ✓d = 0, ✓̇d = 0. (Middle) The individual contributions of the terms in
the PD and PID control laws. Note that the nonzero I (integral) term for the PID
controller allows the P (proportional) term to drop to zero. (Right) The initial and
final configurations, with the center of mass indicated by checkered disks.

For all the roots of Equation (11.30) to have a negative real component, the
following conditions on the control gains must be satisfied for stability (Sec-
tion 11.2.2.2):

Kd > �b

Kp > 0

(b + Kd)Kp

M
> Ki > 0.

Thus the new gain Ki must satisfy both a lower and an upper bound (Fig-
ure 11.14). A reasonable design strategy is to choose Kp and Kd for a good
transient response and then choose Ki large enough that it is helpful in reducing
or eliminating steady-state errors but small enough that it does not significantly
impact stability. In the example of Figure 11.13, the relatively large Ki wors-
ens the transient response, giving significant overshoot, but steady-state error
is eliminated.

In practice, Ki = 0 for many robot controllers, since stability is paramount.
Other techniques can be employed to limit the adverse stability e↵ects of integral
control, such as integrator anti-windup, which places a limit on how large
the error integral is allowed to grow.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

428 11.4. Motion Control with Torque or Force Inputs

Im(s)

Re(s)

Figure 11.14: The movement of the three roots of Equation (11.30) as Ki increases
from zero. First a PD controller is chosen with Kp and Kd yielding critical damping,
giving rise to two collocated roots on the negative real axis. Adding an infinitesimal
gain Ki > 0 creates a third root at the origin. As we increase Ki, one of the two
collocated roots moves to the left on the negative real axis while the other two roots
move toward each other, meet, break away from the real axis, begin curving to the
right, and finally move into the right half-plane when Ki = (b + Kd)Kp/M . The
system is unstable for larger values of Ki.

Pseudocode for the PID control algorithm is given in Figure 11.15.
While our analysis has focused on setpoint control, the PID controller applies

perfectly well to trajectory following, where ✓̇d(t) 6= 0. Integral control will not
eliminate tracking error along arbitrary trajectories, however.

11.4.1.2 Feedforward Control

Another strategy for trajectory following is to use a model of the robot’s dy-
namics to proactively generate torques instead of waiting for errors. Let the
controller’s model of the dynamics be

⌧ = M̃(✓)✓̈ + h̃(✓, ✓̇), (11.31)

where the model is perfect if M̃(✓) = M(✓) and h̃(✓, ✓̇) = h(✓, ✓̇). Note that the
inertia model M̃(✓) is written as a function of the configuration ✓. While the
inertia of our simple one-joint robot is not a function of configuration, writing
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time = 0 // dt = servo cycle time
eint = 0 // error integral
qprev = senseAngle // initial joint angle q
loop

[qd,qdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle
qdot = (q - qprev)/dt // simple velocity calculation
qprev = q

e = qd - q
edot = qdotd - qdot
eint = eint + e*dt

tau = Kp*e + Kd*edot + Ki*eint
commandTorque(tau)

time = time + dt
end loop

Figure 11.15: Pseudocode for PID control.

the equations in this way allows us to re-use Equation (11.31) for multi-joint
systems in Section 11.4.2.

Given ✓d, ✓̇d, and ✓̈d from a trajectory generator, the feedforward torque is
calculated as

⌧(t) = M̃(✓d(t))✓̈d(t) + h̃(✓d(t), ✓̇d(t)). (11.32)

If the model of the robot dynamics is exact, and there are no initial state errors,
then the robot follows the desired trajectory exactly.

A pseudocode implementation of feedforward control is given in Figure 11.16.
Figure 11.17 shows two examples of feedforward-trajectory following for the

link under gravity. Here, the controller’s dynamic model is correct except that
it has r̃ = 0.08 m, when actually r = 0.1 m. In Task 1 the error stays small, as
unmodeled gravity e↵ects provide a spring-like force to ✓ = �⇡/2, accelerating
the robot at the beginning and decelerating it at the end. In Task 2, unmodeled
gravity e↵ects act against the desired motion, resulting in a larger tracking error.

Because there are always modeling errors, feedforward control is always used
in conjunction with feedback, as discussed next.
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time = 0 // dt = servo cycle time
loop

[qd,qdotd,qdotdotd] = trajectory(time) // trajectory generator
tau = Mtilde(qd)*qdotdotd + htilde(qd,qdotd) // calculate dynamics
commandTorque(tau)
time = time + dt

end loop

Figure 11.16: Pseudocode for feedforward control.

Task 1

Task 2

actual

actual

desired

desired

time (s)

✓

✓

�⇡/4

�3⇡/4

⇡/4

3⇡/4

0 1 2 3 4

g

Figure 11.17: Results of feedforward control with an incorrect model: r̃ = 0.08 m,
but r = 0.1 m. The desired trajectory in Task 1 is ✓d(t) = �⇡/2 � (⇡/4) cos(t) for
0  t  ⇡. The desired trajectory for Task 2 is ✓d(t) = ⇡/2� (⇡/4) cos(t), 0  t  ⇡.

11.4.1.3 Feedforward Plus Feedback Linearization

All practical controllers use feedback, as no model of robot and environment
dynamics will be perfect. Nonetheless, a good model can be used to improve
performance and simplify analysis.
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Let’s combine PID control with a model of the robot dynamics {M̃, h̃} to
achieve the error dynamics

✓̈e + Kd✓̇e + Kp✓e + Ki

Z
✓e(t)dt = 0 (11.33)

along arbitrary trajectories, not just to a setpoint. The error dynamics (11.33)
and a proper choice of PID gains ensure exponential decay of the trajectory
error.

Since ✓̈e = ✓̈d�✓̈, to achieve the error dynamics (11.33) we choose the robot’s
commanded acceleration to be

✓̈ = ✓̈d � ✓̈e,

then combine this with Equation (11.33) to get

✓̈ = ✓̈d + Kd✓̇e + Kp✓e + Ki

Z
✓e(t)dt. (11.34)

Substituting ✓̈ from Equation (11.34) into a model of the robot dynamics {M̃, h̃},
we get the feedforward plus feedback linearizing controller, also called
the inverse dynamics controller or the computed torque controller:

⌧ = M̃(✓)

✓
✓̈d + Kp✓e + Ki

Z
✓e(t)dt + Kd✓̇e

◆
+ h̃(✓, ✓̇). (11.35)

This controller includes a feedforward component due to the use of the planned
acceleration ✓̈d and is called feedback linearizing because feedback of ✓ and ✓̇
is used to generate the linear error dynamics. The h̃(✓, ✓̇) term cancels the
dynamics that depends nonlinearly on the state, and the inertia model M̃(✓)
converts the desired joint accelerations into joint torques, realizing the simple
linear error dynamics (11.33).

A block diagram of the computed torque controller is shown in Figure 11.18.
The gains Kp, Ki, and Kd are chosen to place the roots of the characteristic
equation so as to achieve good transient response. In practice Ki is often chosen
to be zero.

Figure 11.19 shows the typical behavior of computed torque control relative
to feedforward and feedback only. Pseudocode is given in Figure 11.20.

11.4.2 Motion Control of a Multi-joint Robot

The methods applied above for a single-joint robot carry over directly to n-joint
robots. The di↵erence is that the dynamics (11.22) now takes the more general,

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

432 11.4. Motion Control with Torque or Force Inputs
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Figure 11.18: Computed torque control. The feedforward acceleration ✓̈d is added to
the acceleration ✓̈fb computed by the PID feedback controller to create the commanded
acceleration ✓̈.

dt

Figure 11.19: Performance of feedforward only (↵), feedback only (fb), and com-
puted torque control (↵+fb). The PID gains are taken from Figure 11.13, and the
feedforward modeling error is taken from Figure 11.17. The desired motion is Task 2
from Figure 11.17 (left-hand plot). The center plot shows the tracking performance of
the three controllers. The right-hand plot shows

R
⌧2(t)dt, a standard measure of the

control e↵ort, for each of the three controllers. These plots show typical behavior: the
computed torque controller yields better tracking than either feedforward or feedback
alone, with less control e↵ort than feedback alone.

vector-valued, form
⌧ = M(✓)✓̈ + h(✓, ✓̇), (11.36)

where the n⇥ n positive-definite mass matrix M is now a function of the con-
figuration ✓. In general, the components of the dynamics (11.36) are coupled –
the acceleration of a joint is a function of the positions, velocities, and torques
at other joints.

We distinguish between two types of control for multi-joint robots: decen-
tralized control, where each joint is controlled separately with no sharing of
information between joints, and centralized control, where full state informa-
tion for each of the n joints is available to calculate the controls for each joint.
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time = 0 // dt = cycle time
eint = 0 // error integral
qprev = senseAngle // initial joint angle q
loop

[qd,qdotd,qdotdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle
qdot = (q - qprev)/dt // simple velocity calculation
qprev = q

e = qd - q
edot = qdotd - qdot
eint = eint + e*dt

tau = Mtilde(q)*(qdotdotd+Kp*e+Kd*edot+Ki*eint) + htilde(q,qdot)
commandTorque(tau)

time = time + dt
end loop

Figure 11.20: Pseudocode for the computed torque controller.

11.4.2.1 Decentralized Multi-joint Control

The simplest method for controlling a multi-joint robot is to apply at each
joint an independent controller, such as the single-joint controllers discussed
in Section 11.4.1. Decentralized control is appropriate when the dynamics are
decoupled, at least approximately. The dynamics are decoupled when the ac-
celeration of each joint depends only on the torque, position, and velocity of
that joint. This requires that the mass matrix be diagonal, as in Cartesian or
gantry robots, where the first three axes are prismatic and orthogonal. This
kind of robot is equivalent to three single-joint systems.

Approximate decoupling is also achieved in highly geared robots in the ab-
sence of gravity. The mass matrix M(✓) is nearly diagonal, as it is dominated
by the apparent inertias of the motors themselves (see Section 8.9.2). Signifi-
cant friction at the individual joints also contributes to the decoupling of the
dynamics.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

434 11.4. Motion Control with Torque or Force Inputs

11.4.2.2 Centralized Multi-joint Control

When gravity forces and torques are significant and coupled, or when the mass
matrix M(✓) is not well approximated by a diagonal matrix, decentralized con-
trol may not yield acceptable performance. In this case the computed torque
controller (11.35) of Figure 11.18 can be generalized to a multi-joint robot. The
configurations ✓ and ✓d and the error ✓e = ✓d � ✓ are now n-vectors, and the
positive scalar gains become positive-definite matrices Kp, Ki, Kd:

⌧ = M̃(✓)

✓
✓̈d + Kp✓e + Ki

Z
✓e(t)dt + Kd✓̇e

◆
+ h̃(✓, ✓̇). (11.37)

Typically, we choose the gain matrices as kpI, kiI, and kdI, where kp, ki, and
kd are nonnegative scalars. Commonly, ki is chosen to be zero. In the case of an
exact dynamics model for M̃ and h̃, the error dynamics of each joint reduces to
the linear dynamics (11.33). The block diagram and pseudocode for this control
algorithm are found in Figures 11.18 and 11.20, respectively.

Implementing the control law (11.37) requires calculating potentially com-
plex dynamics. We may not have a good model of these dynamics, or the
equations may be too computationally expensive to calculate at servo rate. In
this case, if the desired velocities and accelerations are small, an approximation
to (11.37) can be obtained using only PID control and gravity compensation:

⌧ = Kp✓e + Ki

Z
✓e(t)dt + Kd✓̇e + g̃(✓). (11.38)

With zero friction, perfect gravity compensation, and PD setpoint control (Ki =
0 and ✓̇d = ✓̈d = 0), the controlled dynamics can be written as

M(✓)✓̈ + C(✓, ✓̇)✓̇ = Kp✓e �Kd✓̇, (11.39)

where the Coriolis and centripetal terms are written C(✓, ✓̇)✓̇. We can now
define a virtual “error energy,” which is the sum of an “error potential energy”
stored in the virtual spring Kp and an “error kinetic energy”:

V (✓e, ✓̇e) =
1

2
✓Te Kp✓e +

1

2
✓̇Te M(✓)✓̇e. (11.40)

Since ✓̇d = 0, this reduces to

V (✓e, ✓̇) =
1

2
✓Te Kp✓e +

1

2
✓̇TM(✓)✓̇. (11.41)
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Taking the time derivative and substituting (11.39) into it, we get

V̇ = �✓̇TKp✓e + ✓̇TM(✓)✓̈ +
1

2
✓̇TṀ(✓)✓̇

= �✓̇TKp✓e + ✓̇T
⇣
Kp✓e �Kd✓̇ � C(✓, ✓̇)✓̇

⌘
+

1

2
✓̇TṀ(✓)✓̇. (11.42)

Rearranging, and using the fact that Ṁ � 2C is skew symmetric (Proposi-
tion 8.1.2), we get

V̇ = �✓̇TKp✓e + ✓̇T
⇣
Kp✓e �Kd✓̇

⌘
+
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
1

2
✓̇T
⇣
Ṁ(✓)� 2C(✓, ✓̇)

⌘
✓̇

= �✓̇TKd✓̇  0. (11.43)

This shows that the error energy is decreasing when ✓̇ 6= 0. If ✓̇ = 0 and ✓ 6= ✓d,
the virtual spring ensures that ✓̈ 6= 0, so ✓̇e will again become nonzero and more
error energy will be dissipated. Thus, by the Krasovskii–LaSalle invariance
principle (Exercise 11.12), the total error energy decreases monotonically and
the robot converges to rest at ✓d (✓e = 0) from any initial state.

11.4.3 Task-Space Motion Control

In Section 11.4.2 we focused on motion control in joint space. On the one hand,
this is convenient because joint limits are easily expressed in this space, and the
robot should be able to execute any joint-space path respecting these limits.
Trajectories are naturally described by the joint variables, and there are no
issues of singularities or redundancy.

On the other hand, since the robot interacts with the external environment
and objects in it, it may be more convenient to express the motion as a trajectory
of the end-e↵ector in task space. Let the end-e↵ector trajectory be specified by
(X(t), Vb(t)), where X 2 SE(3) and [Vb] = X�1Ẋ, i.e., the twist Vb is expressed
in the end-e↵ector frame {b}. Provided that the corresponding trajectory in
joint space is feasible, we now have two options for control: (1) convert to
a joint-space trajectory and proceed with controls as in Section 11.4.2 or (2)
express the robot dynamics and control law in the task space.

The first option is to convert the trajectory to joint space. The forward
kinematics are X = T (✓) and Vb = Jb(✓)✓̇. Then the joint-space trajectory is
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obtained from the task-space trajectory using inverse kinematics (Chapter 6):

(inverse kinematics) ✓(t) = T�1(X(t)), (11.44)

✓̇(t) = J†
b (✓(t))Vb(t), (11.45)

✓̈(t) = J†
b (✓(t))

⇣
V̇b(t)� J̇b(✓(t))✓̇(t)

⌘
. (11.46)

A drawback of this approach is that we must calculate the inverse kinematics,
J†
b , and J̇b, which may require significant computing power.

The second option is to express the robot’s dynamics in task-space coordi-
nates, as discussed in Section 8.6. Recall the task-space dynamics

Fb = ⇤(✓)V̇b + ⌘(✓, Vb).

The joint forces and torques ⌧ are related to the wrenches Fb expressed in the
end-e↵ector frame by ⌧ = JT

b (✓)Fb.
We can now write a control law in task space inspired by the computed

torque control law in joint coordinates (11.37),

⌧ =

JT
b (✓)

✓
⇤̃(✓)

✓
d

dt
([AdX�1Xd

]Vd) + KpXe + Ki

Z
Xe(t)dt + KdVe

◆
+ ⌘̃(✓, Vb)

◆
,

(11.47)

where {⇤̃, ⌘̃} represents the controller’s dynamics model and d
dt ([AdX�1Xd

]Vd)
is the feedforward acceleration expressed in the actual end-e↵ector frame at X
(this term can be approximated as V̇d at states close to the reference state). The
configuration error Xe satisfies [Xe] = log(X�1Xd): Xe is the twist, expressed in
the end-e↵ector frame, which, if followed for unit time, would move the current
configuration X to the desired configuration Xd. The velocity error is calculated
as

Ve = [AdX�1Xd
]Vd � V.

The transform [AdX�1Xd
] expresses the reference twist Vd, which is expressed

in the frame Xd, as a twist in the end-e↵ector frame at X, in which the actual
velocity V is represented, so the two expressions can be di↵erenced.

11.5 Force Control

When the task is not to create motions at the end-e↵ector but to apply forces and
torques to the environment, force control is needed. Pure force control is only
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possible if the environment provides resistance forces in every direction (e.g.,
if the end-e↵ector is embedded in concrete or attached to a spring providing
resistance in every motion direction). Pure force control is something of an
abstraction, as robots are usually able to move freely in at least some direction.
It is a useful abstraction, however, that leads to hybrid motion-force control as
discussed in Section 11.6.

In ideal force control, the force applied by the end-e↵ector is una↵ected by
disturbance motions applied to the end-e↵ector. This is dual to the case of ideal
motion control, where the motion is una↵ected by disturbance forces.

Let Ftip be the wrench applied by the manipulator to the environment. The
manipulator dynamics can be written as

M(✓)✓̈ + c(✓, ✓̇) + g(✓) + b(✓̇) + JT(✓)Ftip = ⌧, (11.48)

where Ftip and J(✓) are defined in the same frame (the space frame or the end-
e↵ector frame). Since the robot typically moves slowly (or not at all) during a
force control task, we can ignore the acceleration and velocity terms to get

g(✓) + JT(✓)Ftip = ⌧. (11.49)

In the absence of any direct measurements of the force–torque at the robot
end-e↵ector, joint-angle feedback alone can be used to implement the force-
control law

⌧ = g̃(✓) + JT(✓)Fd, (11.50)

where g̃(✓) is a model of the gravitational torques and Fd is the desired wrench.
This control law requires a good model for gravity compensation as well as
precise control of the torques produced at the robot joints. In the case of a DC
electric motor without gearing, torque control can be achieved by current control
of the motor. In the case of a highly geared actuator, a large friction torque in
the gearing can degrade the quality of torque control achieved using only current
control. In this case, the output of the gearing can be instrumented with strain
gauges to measure the joint torque directly; this information is fed back to a
local controller that modulates the motor current to achieve the desired output
torque.

Another solution is to equip the robot arm with a six-axis force-torque sensor
between the arm and the end-e↵ector to directly measure the end-e↵ector wrench
Ftip (Figure 11.21). Consider a PI force controller2 with a feedforward term and

2
Derivative control is not typically relevant for two reasons: (1) force measurements are

often noisy, so their computed time derivatives are nearly meaningless; and (2) we are assuming

the direct control of the joint torques and forces, and our simple rigid-body dynamics models

imply direct transmission to the end-e↵ector forces – there is no dynamics that integrates our

control commands to produce the desired behavior, unlike with motion control.
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six-axis
force-torque

sensor

Figure 11.21: A six-axis force–torque sensor mounted between a robot arm and its
end-e↵ector.

gravity compensation,

⌧ = g̃(✓) + JT(✓)

✓
Fd + KfpFe + Kfi

Z
Fe(t)dt

◆
, (11.51)

where Fe = Fd � Ftip and Kfp and Kfi are positive-definite proportional and
integral gain matrices, respectively. In the case of perfect gravity modeling,
plugging the force controller (11.51) into the dynamics (11.49), we get the error
dynamics

KfpFe + Kfi

Z
Fe(t)dt = 0. (11.52)

In the case of a nonzero but constant force disturbance on the right-hand side
of (11.52), arising from an incorrect model of g̃(✓), for example, we take the
derivative to get

KfpḞe + KfiFe = 0, (11.53)

showing that Fe converges to zero for positive-definite Kfp and Kfi.
The control law (11.51) is simple and appealing but potentially dangerous

if incorrectly applied. If there is nothing for the robot to push against, it
will accelerate in a failing attempt to create end-e↵ector forces. Since a typical
force-control task requires little motion, we can limit this acceleration by adding

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 11. Robot Control 439

velocity damping. This gives the modified control law

⌧ = g̃(✓) + JT(✓)

✓
Fd + KfpFe + Kfi

Z
Fe(t)dt�KdampV

◆
, (11.54)

where Kdamp is positive definite.

11.6 Hybrid Motion–Force Control

Most tasks requiring the application of controlled forces also require the gener-
ation of controlled motions. Hybrid motion-force control is used to achieve
this. If the the task space is n-dimensional then we are free to specify n of
the 2n forces and motions at any time t; the other n are determined by the
environment. Apart from this constraint, we also should not specify forces and
motions in the “same direction,” as then they are not independent.

For example, consider a two-dimensional environment modeled by a damper,
f = Benvv, where

Benv =


2 1
1 1

�
.

Defining the components of v and f as (v1, v2) and (f1, f2), we have f1 = 2v1+v2
and f2 = v1 + v2. We have n = 2 freedoms to choose among the 2n = 4
velocities and forces at any time. As an example, we can specify both f1 and
v1 independently, because Benv is not diagonal. Then v2 and f2 are determined
by Benv. We cannot independently control both f1 and 2v1 + v2, as these are
in the “same direction” according to the environment.

11.6.1 Natural and Artificial Constraints

A particularly interesting case occurs when the environment is infinitely sti↵
(rigid constraints) in k directions and unconstrained in n � k directions. In
this case, we cannot choose which of the 2n motions and forces to specify – the
contact with the environment chooses the k directions in which the robot can
freely apply forces and the n�k directions of free motion. For example, consider
a task space with the n = 6 dimensions of SE(3). Then a robot firmly grasping
a cabinet door has 6 � k = 1 motion freedom of its end-e↵ector, i.e., rotation
about the cabinet hinges, and therefore k = 5 force freedoms; the robot can
apply any wrench that has zero moment about the axis of the hinges without
moving the door.
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As another example, a robot writing on a chalkboard may freely control the
force into the board (k = 1), but it cannot penetrate the board; it may freely
move with 6� k = 5 degrees of freedom (two specifying the motion of the tip of
the chalk in the plane of the board and three describing the orientation of the
chalk), but it cannot independently control the forces in these directions.

The chalk example comes with two caveats. The first is due to friction –
the chalk-wielding robot can actually control forces tangent to the plane of the
board provided that the requested motion in the plane of the board is zero and
the requested tangential forces do not exceed the static friction limit determined
by the friction coe�cient and the normal force into the board (see the discussion
of friction modeling in Section 12.2). Within this regime, the robot has three
motion freedoms (rotations about three axes intersecting at the contact between
the chalk and the board) and three linear force freedoms. Second, the robot
could decide to pull away from the board. In this regime, the robot would
have six motion freedoms and no force freedoms. Thus the configuration of the
robot is not the only factor determining the directions of the motion and force
freedoms. Nonetheless, in this section we consider the simplified case where the
motion and force freedoms are determined solely by the robot’s configuration,
and all constraints are equality constraints. For example, the inequality velocity
constraint of the board (the chalk cannot penetrate the board) is treated as an
equality constraint (the robot also does not pull the chalk away from the board).

As a final example, consider a robot erasing a frictionless chalkboard us-
ing an eraser modeled as a rigid block (Figure 11.22). Let X(t) 2 SE(3)
be the configuration of the block’s frame {b} relative to a space frame {s}.
The body-frame twist and wrench are written Vb = (!x,!y,!z, vx, vy, vz) and
Fb = (mx, my, mz, fx, fy, fz), respectively. Maintaining contact with the board
puts k = 3 constraints on the twist:

!x = 0,

!y = 0,

vz = 0.

In the language of Chapter 2, these velocity constraints are holonomic – the
di↵erential constraints can be integrated to give configuration constraints.

These constraints are called natural constraints, specified by the en-
vironment. There are 6 � k = 3 natural constraints on the wrench, too:
mz = fx = fy = 0. In light of the natural constraints, we can freely spec-
ify any twist of the eraser satisfying the k = 3 velocity constraints and any
wrench satisfying the 6 � k = 3 wrench constraints (provided that fz < 0, to
maintain contact with the board). These motion and force specifications are
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{s}

{b}

x̂s ŷs

ẑs

x̂b

ŷb

ẑb

Figure 11.22: The fixed space frame {s} is attached to the chalkboard and the body
frame {b} is attached to the center of the eraser.

called artificial constraints. Below is an example set of artificial constraints
with the corresponding natural constraints:

natural constraint artificial constraint

!x = 0 mx = 0
!y = 0 my = 0
mz = 0 !z = 0
fx = 0 vx = k1
fy = 0 vy = 0
vz = 0 fz = k2 < 0

The artificial constraints cause the eraser to move with vx = k1 while apply-
ing a constant force k2 against the board.

11.6.2 A Hybrid Motion–Force Controller

We now return to the problem of designing a hybrid motion–force controller. If
the environment is rigid, then we can express the k natural constraints on the
velocity in task space as the Pfa�an constraints

A(✓)V = 0, (11.55)
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where A(✓) 2 Rk⇥6 for twists V 2 R6. This formulation includes holonomic and
nonholonomic constraints.

If the task-space dynamics of the robot (Section 8.6), in the absence of
constraints, is given by

F = ⇤(✓)V̇ + ⌘(✓, V),

where ⌧ = JT(✓)F are the joint torques and forces created by the actuators,
then the constrained dynamics, following Section 8.7, is

F = ⇤(✓)V̇ + ⌘(✓, V) + AT(✓)�| {z }
Ftip

, (11.56)

where � 2 Rk are Lagrange multipliers and Ftip is the wrench that the robot
applies against the constraints. The requested wrench Fd must lie in the column
space of AT(✓).

Since Equation (11.55) must be satisfied at all times, we can replace it by
the time derivative

A(✓)V̇ + Ȧ(✓)V = 0. (11.57)

To ensure that Equation (11.57) is satisfied when the system state already sat-
isfies A(✓)V = 0, any requested acceleration V̇d should satisfy A(✓)V̇d = 0.

Now solving Equation (11.56) for V̇, substituting the result into (11.57), and
solving for �, we get

� = (A⇤�1AT)�1(A⇤�1(F � ⌘)�AV̇), (11.58)

where we have used �AV̇ = ȦV from Equation (11.57). Using Equation (11.58),
we can calculate the wrench Ftip = AT(✓)� that the robot applies against the
constraints.

Substituting Equation (11.58) into Equation (11.56) and manipulating, the
n equations of the constrained dynamics (11.56) can be expressed as the n� k
independent motion equations

P (✓)F = P (✓)(⇤(✓)V̇ + ⌘(✓, V)), (11.59)

where
P = I �AT(A⇤�1AT)�1A⇤�1 (11.60)

and I is the identity matrix. The n ⇥ n matrix P (✓) has rank n � k and
projects an arbitrary manipulator wrench F onto the subspace of wrenches that
move the end-e↵ector tangent to the constraints. The rank-k matrix I � P (✓)
projects an arbitrary wrench F onto the subspace of wrenches that act against
the constraints. Thus P partitions the n-dimensional force space into wrenches
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that address the motion control task and wrenches that address the force control
task.

Our hybrid motion–force controller is simply the sum of a task-space motion
controller, derived from the computed torque control law (11.47), and a task-
space force controller (11.51), each projected to generate forces in its appropriate
subspace. Assuming wrenches and twists expressed in the end-e↵ector frame
{b},

⌧ = JT
b (✓)

✓
P (✓)

✓
⇤̃(✓)

✓
d

dt
([AdX�1Xd

]Vd) + KpXe + Ki

Z
Xe(t)dt + KdVe

◆◆

| {z }
motion control

+ (I � P (✓))

✓
Fd + KfpFe + Kfi

Z
Fe(t)dt

◆

| {z }
force control

+ ⌘̃(✓, Vb)| {z }
Coriolis and gravity

◆
. (11.61)

Because the dynamics of the two controllers are decoupled by the orthogonal
projections P and I � P , the controller inherits the error dynamics and stabil-
ity analyses of the individual force and motion controllers on their respective
subspaces.

A di�culty in implementing the hybrid control law (11.61) in rigid environ-
ments is knowing the form of the constraints A(✓)V = 0 active at any time.
This is necessary to specify the desired motion and force and to calculate the
projections, but any model of the environment will have some uncertainty. One
approach to dealing with this issue is to use a real-time estimation algorithm
to identify the constraint directions on the basis of force feedback. Another is
to sacrifice some performance by choosing low feedback gains, which makes the
motion controller “soft” and the force controller more tolerant of force error.
We can also build passive compliance into the structure of the robot itself to
achieve a similar e↵ect. In any case, some passive compliance is unavoidable,
owing to flexibility in the joints and links.

11.7 Impedance Control

Ideal hybrid motion–force control in rigid environments demands extremes in
robot impedance, which characterizes the change in endpoint motion as a func-
tion of disturbance forces. Ideal motion control corresponds to high impedance
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k

b x

m

Figure 11.23: A robot creating a one-dof mass–spring–damper virtual environment.
A human hand applies a force f to the haptic interface.

(little change in motion due to force disturbances) while ideal force control cor-
responds to low impedance (little change in force due to motion disturbances).
In practice, there are limits to a robot’s achievable impedance range.

In this section we consider the problem of impedance control, where the
robot end-e↵ector is asked to render particular mass, spring, and damper prop-
erties.3 For example, a robot used as a haptic surgical simulator could be tasked
with mimicking the mass, sti↵ness, and damping properties of a virtual surgical
instrument in contact with virtual tissue.

The dynamics for a one-dof robot rendering an impedance can be written

mẍ + bẋ + kx = f, (11.62)

where x is the position, m is the mass, b is the damping, k is the sti↵ness,
and f is the force applied by the user (Figure 11.23). Loosely, we say that the
robot renders high impedance if one or more of the {m, b, k} parameters, usually
including b or k, is large. Similarly, we say that the impedance is low if all these
parameters are small.

More formally, taking the Laplace transform4 of Equation (11.62), we get

(ms2 + bs + k)X(s) = F (s), (11.63)

and the impedance is defined by the transfer function from position perturba-
tions to forces, Z(s) = F (s)/X(s). Thus impedance is frequency dependent,
with a low-frequency response dominated by the spring and a high-frequency
response dominated by the mass. The admittance, Y (s), is the inverse of the
impedance: Y (s) = Z�1(s) = X(s)/F (s).

A good motion controller is characterized by high impedance (low admit-
tance), since �X = Y �F . If the admittance Y is small then force perturbations

3
A popular subcategory of impedance control is sti↵ness control or compliance control,

where the robot renders a virtual spring only.
4
If you are unfamiliar with the Laplace transform and transfer functions, do not panic! We

do not need the details here.
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�F produce only small position perturbations �X. Similarly, a good force con-
troller is characterized by low impedance (high admittance), since �F = Z�X
and a small Z implies that motion perturbations produce only small force per-
turbations.

The goal of impedance control is to implement the task-space behavior

Mẍ + Bẋ + Kx = fext, (11.64)

where x 2 Rn is the task-space configuration in a minimum set of coordinates,
e.g., x 2 R3; M, B, and K are the positive-definite virtual mass, damping, and
sti↵ness matrices to be simulated by the robot, and fext is a force applied to the
robot, perhaps by a user. The values of M, B, and K may change, depending
on the location in the virtual environment, in order to represent distinct objects
for instance, but we focus on the case of constant values. We could also replace
ẍ, ẋ, and x with small displacements �ẍ, �ẋ, and �x from reference values
in a controlled motion of the robot, but we will dispense with any such extra
notation here.

The behavior (11.64) could be implemented in terms of twists and wrenches
instead, replacing fext by the (body or spatial) wrench Fext, ẋ by the twist V,
ẍ by V̇, and x by the exponential coordinates S✓. Alternatively, the linear and
rotational behaviors can be decoupled, as discussed in Section 11.4.3.

There are two common ways to achieve the behavior (11.64).

• The robot senses the endpoint motion x(t) and commands joint torques
and forces to create �fext, the force to display to the user. Such a robot
is called impedance controlled, as it implements a transfer function
Z(s) from motions to forces. Theoretically, an impedance-controlled robot
should only be coupled to an admittance-type environment.

• The robot senses fext using a wrist force–torque sensor and controls its
motions in response. Such a robot is called admittance controlled, as it
implements a transfer function Y (s) from forces to motions. Theoretically,
an admittance-controlled robot should only be coupled to an impedance-
type environment.

11.7.1 Impedance-Control Algorithm

In an impedance-control algorithm, encoders, tachometers, and possibly ac-
celerometers are used to estimate the joint and endpoint positions, velocities,
and possibly accelerations. Often impedance-controlled robots are not equipped
with a wrist force–torque sensor and instead rely on their ability to precisely
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control joint torques to render the appropriate end-e↵ector force �fext (Equa-
tion (11.64)). A good control law might be

⌧ = JT(✓)

0

B@ ⇤̃(✓)ẍ + ⌘̃(✓, ẋ)| {z }
arm dynamics compensation

� (Mẍ + Bẋ + Kx)| {z }
fext

1

CA , (11.65)

where the task-space dynamics model {⇤̃, ⌘̃} is expressed in terms of the co-
ordinates x. Addition of an end-e↵ector force–torque sensor allows the use of
feedback terms to achieve more closely the desired interaction force �fext.

In the control law (11.65), it is assumed that ẍ, ẋ, and x are measured di-
rectly. Measurement of the acceleration ẍ is likely to be noisy, and there is the
problem of attempting to compensate for the robot’s mass after the acceleration
has been sensed. Therefore, it is not uncommon to eliminate the mass compen-
sation term ⇤̃(✓)ẍ and to set M = 0. The mass of the arm will be apparent
to the user, but impedance-controlled manipulators are often designed to be
lightweight. It is also not uncommon to assume small velocities and replace the
nonlinear dynamics compensation with a simpler gravity-compensation model.

Problems can arise when (11.65) is used to simulate sti↵ environments (the
case of large K). On the one hand, small changes in position, measured by
encoders for example, lead to large changes in motor torques. This e↵ective
high gain, coupled with delays, sensor quantization, and sensor errors, can lead
to oscillatory behavior or instability. On the other hand, the e↵ective gains are
low when emulating low-impedance environments. A lightweight backdrivable
manipulator can excel at emulating such environments.

11.7.2 Admittance-Control Algorithm

In an admittance-control algorithm the force fext applied by the user is sensed
by the wrist load cell, and the robot responds with an end-e↵ector acceleration
satisfying Equation (11.64). A simple approach is to calculate the desired end-
e↵ector acceleration ẍd according to

Mẍd + Bẋ + Kx = fext,

where (x, ẋ) is the current state. Solving, we get

ẍd = M�1(fext �Bẋ�Kx). (11.66)

For the Jacobian J(✓) defined by ẋ = J(✓)✓̇, the desired joint accelerations ✓̈d
can be solved as

✓̈d = J†(✓)(ẍd � J̇(✓)✓̇),
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and inverse dynamics used to calculate the commanded joint forces and torques
⌧ . Simplified versions of this control law can be obtained when the goal is to
simulate only a spring or a damper. To make the response smoother in the face
of noisy force measurements, the force readings can be low-pass filtered.

Simulating a low-mass environment is challenging for admittance-controlled
robots, as small forces produce large accelerations. The e↵ective large gains can
produce instability. Admittance control by a highly geared robot can excel at
emulating sti↵ environments, however.

11.8 Low-Level Joint Force/Torque Control

Throughout this chapter we have been assuming that each joint produces the
torque or force requested of it. In practice this ideal is not exactly achieved, and
there are di↵erent approaches to approximating it. Some of the most common
approaches using electric motors (Section 8.9.1) are listed below, along with
their advantages and disadvantages relative to the previously listed approach.
Here we assume a revolute joint and a rotary motor.

Current Control of a Direct-Drive Motor In this configuration, each joint
has a motor amplifier and an electric motor with no gearhead. The torque of
the motor approximately obeys the relationship ⌧ = ktI, i.e., the torque is pro-
portional to the current through the motor. The amplifier takes the requested
torque, divides by the torque constant kt, and generates the motor current I. To
create the desired current, a current sensor integrated with the amplifier contin-
uously measures the actual current through the motor, and the amplifier uses a
local feedback control loop to adjust the time-averaged voltage across the motor
to achieve the desired current. This local feedback loop runs at a higher rate
than the control loop that generates the requested torques. A typical example
is 10 kHz for the local current control loop and 1 kHz for the outer control loop
requesting joint torques.

An issue with this configuration is that often an ungeared motor must be
quite large to create su�cient torque for the application. The configuration can
work if the motors are fixed to the ground and connected to the end-e↵ector
through cables or a closed-chain linkage. If the motors are moving, as do the
motors at the joints of a serial chain, for example, large ungeared motors are
often impractical.

Current Control of a Geared Motor This configuration is similar to the
previous one, except that the motor has a gearhead (Section 8.9.1). A gear ratio
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G > 1 increases the torque available to the joint.
Advantage: A smaller motor can provide the necessary torques. The motor
also operates at higher speeds, where it is more e�cient at converting electrical
power to mechanical power.
Disadvantage: The gearhead introduces backlash (the output of the gearhead
can move without the input moving, making motion control near zero velocity
challenging) and friction. Backlash can be nearly eliminated by using particular
types of gearing, such as harmonic drive gears. Friction, however, cannot be
eliminated. The nominal torque at the gearhead output is GktI, but friction in
the gearhead reduces the torque available and creates significant uncertainty in
the torque actually produced.

Current Control of a Geared Motor with Local Strain Gauge Feedback
This configuration is similar to the previous one, except that the harmonic drive
gearing is instrumented with strain gauges that sense how much torque is actu-
ally being delivered at the output of the gearhead. This torque information is
used by the amplifier in a local feedback controller to adjust the current in the
motor so as to achieve the requested torque.
Advantage: Putting the sensor at the output of the gearing allows compensa-
tion of frictional uncertainties.
Disadvantage: There is additional complexity of the joint configuration. Also,
harmonic drive gearing achieves near-zero backlash by introducing some tor-
sional compliance in the gearset, and the added dynamics due to the presence
of this torsional spring can complicate high-speed motion control.

Series Elastic Actuator A series elastic actuator (SEA) consists of an elec-
tric motor with a gearhead (often a harmonic drive gearhead) and a torsional
spring attaching the output of the gearhead to the output of the actuator. It is
similar to the previous configuration, except that the torsional spring constant
of the added spring is much lower than the spring constant of the harmonic
drive gearing. The angular deflection �� of the spring is often measured by
optical, magnetic, or capacitive encoders. The torque delivered to the output
of the actuator is k��, where k is the torsional spring constant. The spring’s
deflection is fed to a local feedback controller that controls the current to the
motor so as to achieve the desired spring deflection, and therefore the desired
torque.
Advantage: The addition of the torsional spring makes the joint naturally
“soft,” and therefore well suited for human-robot interaction tasks. It also pro-
tects the gearing and motor from shocks at the output, such as when the output
link hits something hard in the environment.
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Figure 11.24: (Top left) The Robonaut 2 on the International Space Station. (Top
middle) R2’s hip joint SEA. (Top right) The custom torsional spring. The inner ring
of hole mounts connects to the harmonic gearhead output, and the outer ring of hole
mounts is the output of the SEA, connecting to the next link. The spring is designed
with hard stops after approximately 0.07 rad of deflection. (Bottom) A cross-section
of the SEA. The deflection �� of the torsional spring is determined by di↵erencing the
deflection readings at the spring input and the spring output. The optical encoder and
spring deflection sensors provide an estimate of the joint angle. The motor controller–
amplifier is located at the SEA, and it communicates with the centralized controller
using a serial communication protocol. The hollow bore allows cables to pass through
the interior of the SEA. All images courtesy of NASA.

Disadvantage: There is additional complexity of the joint configuration. Also,
the added dynamics due to the softer spring make it more challenging to control
high-speed or high-frequency motions at the output.

In 2011, NASA’s Robonaut 2 (R2) became the first humanoid robot in space,
performing operations on the International Space Station. Robonaut 2 incor-
porates a number of SEAs, including the hip actuator shown in Figure 11.24.
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11.9 Other Topics

Robust Control While all stable feedback controllers confer some amount of
robustness of operation to uncertainty, the field of robust control deals with de-
signing controllers that explicitly guarantee the performance of a robot subject
to bounded parametric uncertainties such as those in its inertial properties.

Adaptive Control The adaptive control of robots involves estimating the
robot’s inertial or other parameters during execution and updating the control
law in real time to incorporate those estimates.

Iterative Learning Control Iterative learning control (ILC) generally fo-
cuses on repetitive tasks. If a robot performs the same pick-and-place operation
over and over again, the trajectory errors from the previous execution can be
used to modify the feedforward control for the next execution. In this way,
the robot improves its performance over time, driving the execution error to-
ward zero. This type of learning control di↵ers from adaptive control in that the
“learned” information is generally nonparametric and useful only for a single tra-
jectory. However, ILC can account for e↵ects that have not been parametrized
in a particular model.

Passive Compliance and Flexible Manipulators All robots unavoidably
have some passive compliance. Modeling this compliance can be as simple as
assuming torsional springs at each revolute joint (e.g., to account for finite sti↵-
ness in the flexsplines of harmonic drive gearing) or as complicated as treating
links as flexible beams. Two significant e↵ects of flexibility are (1) a mismatch
between the motor angle reading, the true joint angle, and the endpoint loca-
tion of the attached link, and (2) increased order of the dynamics of the robot.
These issues raise challenging problems in control, particularly when the vibra-
tion modes are at low frequencies.

Some robots are specifically designed for passive compliance, particularly
those meant for contact interactions with humans or the environment. Such
robots may sacrifice motion-control performance in favor of safety. One passively
compliant actuator is the series elastic actuator, described above.

Variable-Impedance Actuators The impedance of a joint is typically con-
trolled using a feedback control law, as described in Section 11.7. There are
limits to the bandwidth of this control, however; a joint that is actively con-
trolled to behave as a spring will only achieve spring-like behavior in respect of
low-frequency perturbations.
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A new class of actuators, called variable-impedance or variable-sti↵ness
actuators, is intended to give actuators desired passive mechanical impedance
without the bandwidth limitations of an active control law. As an example, a
variable-sti↵ness actuator may consist of two motors, with one motor indepen-
dently controlling the mechanical sti↵ness of the joint (e.g., using the setpoint
of an internal nonlinear spring) while the other motor produces a torque.

11.10 Summary

• The performance of a feedback controller is often tested by specifying a
nonzero initial error ✓e(0). The error response is typically characterized
by the overshoot, the 2% settling time, and the steady-state error.

• The linear error dynamics

ap✓
(p)
e + ap�1✓

(p�1)
e + · · · + a2✓̈e + a1✓̇e + a0✓e = 0

is stable, and all initial errors converge to zero, if and only if all the
complex roots s1, . . . , sp of the characteristic equation

aps
p + ap�1s

p�1 + · · · + a2s
2 + a1s + a0 = 0

have real components less than zero, i.e., Re(si) < 0 for all i = 1, . . . , p.

• Stable second-order linear error dynamics can be written in the standard
form

✓̈e + 2⇣!n✓̇e + !2
n✓e = 0,

where ⇣ is the damping ratio and !n is the natural frequency. The roots
of the characteristic equation are

s1,2 = �⇣!n ± !n

p
⇣2 � 1.

The error dynamics are overdamped if ⇣ > 1, critically damped if ⇣ = 1,
and underdamped if ⇣ < 1.

• The feedforward plus PI feedback controller generating joint velocity com-
mands for a multi-joint robot is

✓̇(t) = ✓̇d(t) + Kp✓e(t) + Ki

Z t

0
✓e(t) dt,

where Kp = kpI and Ki = kiI. The joint error ✓e(t) converges to zero
as t goes to infinity, for setpoint control or constant reference velocities,
provided that kp > 0 and ki > 0.
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• A task-space version of the feedforward plus PI feedback controller gener-
ating twists expressed in the end-e↵ector frame is written

Vb(t) = [AdX�1Xd
]Vd(t) + KpXe(t) + Ki

Z t

0
Xe(t) dt,

where [Xe] = log(X�1Xd).

• The PID joint-space feedback controller generating joint forces and torques
is

⌧ = Kp✓e + Ki

Z
✓e(t)dt + Kd✓̇e,

where ✓e = ✓d � ✓ and ✓d is the vector of the desired joint angles.

• The joint-space computed torque controller is

⌧ = M̃(✓)

✓
✓̈d + Kp✓e + Ki

Z
✓e(t)dt + Kd✓̇e

◆
+ h̃(✓, ✓̇).

This controller cancels nonlinear terms, uses feedforward control to proac-
tively generate the desired acceleration ✓̈d, and uses linear feedback control
for stabilization.

• For robots without joint friction and a perfect model of gravity forces,
joint-space PD setpoint control plus gravity compensation,

⌧ = Kp✓e + Kd✓̇ + g̃(✓),

yields global convergence to ✓e = 0 by the Krasovskii–LaSalle invariance
principle.

• Task-space force control can be achieved by the controller

⌧ = g̃(✓) + JT(✓)

✓
Fd + KfpFe + Kfi

Z
Fe(t)dt�KdampV

◆
,

consisting of gravity compensation, feedforward force control, PI force
feedback, and damping to prevent fast motion.

• Rigid constraints in the environment specify 6� k free motion directions
and k constraint directions in which forces can be applied. These con-
straints can be represented as A(✓)V = 0. A wrench F can be partitioned
as F = P (✓)F + (I � P (✓))F , where P (✓) projects onto wrenches that
move the end-e↵ector tangent to the constraints and I�P (✓) projects onto
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wrenches that act against the constraints. The projection matrix P (✓) is
written in terms of the task-space mass matrix ⇤(✓) and constraints A(✓)
as

P = I �AT(A⇤�1AT)�1A⇤�1.

• An impedance controller measures end-e↵ector motions and creates end-
point forces to mimic a mass–spring–damper system. An admittance
controller measures end-e↵ector forces and creates endpoint motions to
achieve the same purpose.

11.11 Software

Software functions associated with this chapter are listed below.

taulist = ComputedTorque(thetalist,dthetalist,eint,g,
Mlist,Glist,Slist,thetalistd,dthetalistd,ddthetalistd,Kp,Ki,Kd)
This function computes the joint controls ⌧ for the computed torque control
law (11.35) at a particular time instant. The inputs are the n-vectors of joint
variables, joint velocities, and joint error integrals; the gravity vector g; a list
of transforms Mi�1,i describing the link center of mass locations; a list of link
spatial inertia matrices Gi; a list of joint screw axes Si expressed in the base
frame; the n-vectors ✓d, ✓̇d, and ✓̈d describing the desired motion; and the scalar
PID gains kp, ki, and kd, where the gain matrices are just Kp = kpI, Ki = kiI,
and Kd = kdI.

[taumat,thetamat] = SimulateControl(thetalist,dthetalist,g,
Ftipmat,Mlist,Glist,Slist,thetamatd,dthetamatd,ddthetamatd,
gtilde,Mtildelist,Gtildelist,Kp,Ki,Kd,dt,intRes)
This function simulates the computed torque controller (11.35) over a given
desired trajectory. The inputs include the initial state of the robot, given by
✓(0) and ✓̇(0); the gravity vector g; an N ⇥ 6 matrix of wrenches applied by
the end-e↵ector, where each of the N rows corresponds to an instant in time
in the trajectory; a list of transforms Mi�1,i describing the link center-of-mass
locations; a list of link spatial-inertia matrices Gi; a list of joint screw axes Si

expressed in the base frame; the N ⇥ n matrices of the desired joint positions,
velocities, and accelerations, where each of the N rows corresponds to an instant
in time; a (possibly incorrect) model of the gravity vector; a (possibly incorrect)
model of the transforms Mi�1,i; a (possibly incorrect) model of the link inertia
matrices; the scalar PID gains kp, ki, and kd, where the gain matrices are
Kp = kpI, Ki = kiI, and Kd = kdI; the timestep between each of the N rows
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in the matrices defining the desired trajectory; and the number of integration
steps to take during each timestep.

11.12 Notes and References

The computed torque controller originates from research in the 1970’s [137, 106,
9, 145], and issues with its practical implementation (e.g., its computational
complexity and modeling errors) have driven much of the subsequent research
in nonlinear control, robust control, iterative learning control, and adaptive
control. PD control plus gravity compensation was suggested and analyzed
in [184], and subsequent analysis and modification of the basic controller is
reviewed in [71].

The task-space approach to motion control, also called operational space
control, was originally outlined in [99, 74]. A geometric approach to tracking
control for mechanical systems is presented in [22], where the configuration space
for the system can be a generic manifold, including SO(3) and SE(3).

The notion of natural and artificial constraints in hybrid motion–force con-
trol was first described by Mason [107], and an early hybrid motion–force con-
troller based on these concepts is reported in [144]. As pointed out by Du↵y [42],
one must take care in specifying the subspaces in which motions and forces can
be controlled. The approach to hybrid motion–force control in this chapter mir-
rors the geometric approach of Liu and Li [91]. Impedance control was first
described in a series of papers by Hogan [56, 57, 58]. The sti↵ness matrix for
a rigid body whose configuration is represented by X 2 SE(3) is discussed
in [60, 93].

Robot control builds on the well-established field of linear control (e.g.,
[49, 4]) and the growing field of nonlinear control [63, 64, 72, 126, 158]. Gen-
eral references on robot control include the edited volume [33]; the textbooks
by Spong et al. [177], Siciliano et al. [171], Craig [32], and Murray et al. [122];
chapters in the Handbook of Robotics on Motion Control [29] and Force Con-
trol [190]; the Robot Motion Control chapter in the Encyclopedia of Systems and
Control [176]; and, for underactuated and nonholonomic robots, the chapters in
the Control Handbook [101] and the Encyclopedia of Systems and Control [100].

The principles governing SEAs are laid out in [141], and NASA’s Robonaut 2
and its SEAs are described in [1, 36, 115]. Variable impedance actuators are
reviewed in [189].

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 11. Robot Control 455

11.13 Exercises

Exercise 11.1 Classify the following robot tasks as motion control, force
control, hybrid motion–force control, impedance control, or some combination.
Justify your answer.

(a) Tightening a screw with a screwdriver.
(b) Pushing a box along the floor.
(c) Pouring a glass of water.
(d) Shaking hands with a human.
(e) Throwing a baseball to hit a target.
(f) Shoveling snow.
(g) Digging a hole.
(h) Giving a back massage.
(i) Vacuuming the floor.
(j) Carrying a tray of glasses.

Exercise 11.2 The 2% settling time of an underdamped second-order system
is approximately t = 4/(⇣!n), for e�⇣!nt = 0.02. What is the 5% settling time?

Exercise 11.3 Solve for any constants and give the specific equation for an
underdamped second-order system with !n = 4, ⇣ = 0.2, ✓e(0) = 1, and ✓̇e(0) =
0. Calculate the damped natural frequency, approximate overshoot, and 2%
settling time. Plot the solution on a computer and measure the exact overshoot
and settling time.

Exercise 11.4 Solve for any constants and give the specific equation for an
underdamped second-order system with !n = 10, ⇣ = 0.1, ✓e(0) = 0, and
✓̇e(0) = 1. Calculate the damped natural frequency. Plot the solution on a
computer.

Exercise 11.5 Consider a pendulum in a gravitational field with g = 10 m/s2.
The pendulum consists of a 2 kg mass at the end of a 1 m massless rod. The
pendulum joint has a viscous-friction coe�cient of b = 0.1 N m s/rad.

(a) Write the equation of motion of the pendulum in terms of ✓, where ✓ = 0
corresponds to the “hanging down” configuration.

(b) Linearize the equation of motion about the stable “hanging down” equi-
librium. To do this, replace any trigonometric terms in ✓ with the linear
term in the Taylor expansion. Give the e↵ective mass and spring con-
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stants m and k in the linearized dynamics m✓̈+ b✓̇+k✓ = 0. At the stable
equilibrium, what is the damping ratio? Is the system underdamped, crit-
ically damped, or overdamped? If it is underdamped, what is the damped
natural frequency? What is the time constant of convergence to the equi-
librium and the 2% settling time?

(c) Now write the linearized equations of motion for ✓ = 0 at the balanced
upright configuration. What is the e↵ective spring constant k?

(d) You add a motor at the joint of the pendulum to stabilize the upright
position, and you choose a P controller ⌧ = Kp✓. For what values of Kp

is the upright position stable?

Exercise 11.6 Develop a controller for a one-dof mass–spring–damper system
of the form mẍ + bẋ + kx = f , where f is the control force and m = 4 kg,
b = 2 Ns/m, and k = 0.1 N/m.

(a) What is the damping ratio of the uncontrolled system? Is the uncon-
trolled system overdamped, underdamped, or critically damped? If it is
underdamped, what is the damped natural frequency? What is the time
constant of convergence to the origin?

(b) Choose a P controller f = Kpxe, where xe = xd � x is the position error
and xd = 0. What value of Kp yields critical damping?

(c) Choose a D controller f = Kdẋe, where ẋd = 0. What value of Kd yields
critical damping?

(d) Choose a PD controller that yields critical damping and a 2% settling time
of 0.01 s.

(e) For the PD controller above, if xd = 1 and ẋd = ẍd = 0, what is the
steady-state error xe(t) as t goes to infinity? What is the steady-state
control force?

(f) Now insert a PID controller for f . Assume xd 6= 0 and ẋd = ẍd = 0. Write
the error dynamics in terms of ẍe, ẋe, xe, and

R
xe(t)dt on the left-hand

side and a constant forcing term on the right-hand side. (Hint: You can
write kx as �k(xd � x) + kxd.) Take the time derivative of this equation
and give the conditions on Kp, Ki, and Kd for stability. Show that zero
steady-state error is possible with a PID controller.

Exercise 11.7 Simulation of a one-dof robot and robot controller.
(a) Write a simulator for a one-joint robot consisting of a motor rotating a

link in gravity using the model parameters given in Section 11.4.1. The
simulator should consist of: (1) a dynamics function that takes as input the
current state of the robot and the torque applied by the motor and gives as
output the acceleration of the robot; and (2) a numerical integrator that
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uses the dynamics function to calculate the new state of the system over a
series of timesteps �t. A first-order Euler integration method su�ces for
this problem (e.g., ✓(k + 1) = ✓(k) + ✓̇(k)�t, ✓̇(k + 1) = ✓̇(k) + ✓̈(k)�t).
Test the simulator in two ways: (1) starting the robot at rest at ✓ = �⇡/2
and applying a constant torque of 0.5 Nm; and (2) starting the robot
at rest at ✓ = �⇡/4 and applying zero torque. For both examples, plot
the position as a function of time for su�cient duration to see the basic
behavior. Ensure that the behavior makes sense. A reasonable choice of
�t is 1 ms.

(b) Add two more functions to your simulator: (1) a trajectory generator
function that takes the current time and returns the desired state and
acceleration of the robot; and (2) a control function that takes the cur-
rent state of the robot and information from the trajectory generator and
returns a control torque. The simplest trajectory generator would return
✓ = ✓d1 and ✓̇ = ✓̈ = 0 for all time t < T , and ✓ = ✓d2 6= ✓d1 and ✓̇ = ✓̈ = 0
for all time t � T . This trajectory is a step function in position. Use a PD
feedback controller for the control function and set Kp = 10 N m/rad. For
a well-tuned choice of Kd, give Kd (including units) and plot the position
as a function of time over 2 seconds for an initial state at rest at ✓ = �⇡/2
and a step trajectory with ✓d1 = �⇡/2 and ✓d2 = 0. The step occurs at
T = 1 s.

(c) Demonstrate two di↵erent choices of Kd that yield (1) overshoot and (2)
sluggish response with no overshoot. Give the gains and the position plots.

(d) Add a nonzero Ki to your original well-tuned PD controller to eliminate
steady-state error. Give the PID gains and plot the results of the step
test.

Exercise 11.8 Modify the simulation of the one-joint robot in Exercise 11.7
to model a flexible transmission from the motor to the link with a sti↵ness
of 500 Nm/rad. Tune a PID controller to give a good response for a desired
trajectory with a step transition from ✓ = �⇡/2 to ✓ = 0. Give the gains and
plot the response.

Exercise 11.9 Simulation of a two-dof robot and robot controller (Fig-
ure 11.25).

(a) Dynamics. Derive the dynamics of a 2R robot under gravity (Figure 11.25).
The mass of link i is mi, the center of mass is a distance ri from the joint,
the scalar inertia of link i about the joint is Ii, and the length of link i is
Li. There is no friction at the joints.

(b) Direct drive. Assume each joint is directly driven by a DC motor with
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no gearing. Each motor comes with specifications of the mass mstator
i

and inertia Istator
i of the stator and the mass mrotor

i and inertia Irotor
i of

the rotor (the spinning portion). For the motor at joint i, the stator is
attached to link i � 1 and the rotor is attached to link i. The links are
thin uniform-density rods of mass mi and length Li.
In terms of the quantities given above, for each link i 2 {1, 2} give equa-
tions for the total inertia Ii about the joint, the mass mi, and the distance
ri from the joint to the center of mass. Think about how to assign the
mass and inertia of the motors to the di↵erent links.

(c) Geared robot. Assume that motor i has gearing with gear ratio Gi and
that the gearing itself is massless. As in part (b) above, for each link
i 2 {1, 2}, give equations for the total inertia Ii about the joint, mass mi,
and distance ri from the joint to the center of mass.

(d) Simulation and control. As in Exercise 11.7, write a simulator with (at
least) four functions: a dynamics function, a numerical integrator, a tra-
jectory generator, and a controller. Assume that there is zero friction at
the joints, g = 9.81 m/s2 in the direction indicated, Li = 1 m, ri = 0.5 m,
m1 = 3 kg, m2 = 2 kg, I1 = 2 kg m2, and I2 = 1 kg m2. Program a
PID controller, find gains that give a good response, and plot the joint
angles as a function of time for a reference trajectory which is constant
at (✓1, ✓2) = (�⇡/2, 0) for t < 1 s and constant at (✓1, ✓2) = (0,�⇡/2) for
t � 1 s. The initial state of the robot is at rest with (✓1, ✓2) = (�⇡/2, 0).

(e) Torque limits. Real motors have limits on the available torque. While
these limits are generally velocity dependent, here we assume that each
motor’s torque limit is independent of velocity, ⌧i  |⌧max

i |. Assume that
⌧max
1 = 100 N m and ⌧max

2 = 20 N m. The control law may request greater
torque but the actual torque is saturated at these values. Rerun the PID
control simulation in (d) and plot the torques as well as the position as a
function of time.

(f) Friction. Add a viscous friction coe�cient of bi = 1 Nm s/rad to each
joint and rerun the PID control simulation in (e).

Exercise 11.10 For the two-joint robot of Exercise 11.9, write a more so-
phisticated trajectory generator function. The trajectory generator should take
the following as input:

• the desired initial position, velocity, and acceleration of each joint;

• the desired final position, velocity, and acceleration; and

• the total time of motion T .
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x̂
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r2 m2
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Figure 11.25: A two-link robot arm. The length of link i is Li and its inertia about
the joint is Ii. The acceleration due to gravity is g = 9.81 m/s2.

A call of the form

[qd,qdotd,qdotdotd] = trajectory(time)

returns the desired position, velocity, and acceleration of each joint at time
time. The trajectory generator should provide a trajectory that is a smooth
function of time.

As an example, each joint could follow a fifth-order polynomial trajectory of
the form

✓d(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5. (11.67)

Given the desired positions, velocities, and accelerations of the joints at times
t = 0 and t = T , you can uniquely solve for the six coe�cients a0, . . . , a5 by
evaluating Equation (11.67) and its first and second derivatives at t = 0 and
t = T .

Tune a PID controller to track a fifth-order polynomial trajectory moving
from rest at (✓1, ✓2) = (�⇡/2, 0) to rest at (✓1, ✓2) = (0,�⇡/2) in T = 2 s. Give
the values of your gains and plot the reference positions of both joints and the
actual positions of both joints. You are free to ignore torque limits and friction.

Exercise 11.11 For the two-joint robot of Exercise 11.9 and fifth-order poly-
nomial trajectory of Exercise 11.10, simulate a computed torque controller to
stabilize the trajectory. The robot has no joint friction or torque limits. The
modeled link masses should be 20% greater than their actual values to create
error in the feedforward model. Give the PID gains and plot the reference and

460 11.13. Exercises

actual joint angles for the computed torque controller as well as for PID control
only.

Exercise 11.12 The Krasovskii–LaSalle invariance principle states the follow-
ing. Consider a system ẋ = f(x), x 2 Rn such that f(0) = 0 and any energy-like
function V (x) such that:

• V (x) > 0 for all x 6= 0;

• V (x)!1 as x!1;

• V (0) = V̇ (0) = 0; and

• V̇ (x)  0 along all trajectories of the system.

Let S be the largest set of Rn such that V̇ (x) = 0 and trajectories beginning
in S remain in S for all time. Then, if S contains only the origin, the origin is
globally asymptotically stable – all trajectories converge to the origin.

Using the energy function V (x) from Equation (11.40), show how the Krasov-
skii–LaSalle principle is violated for centralized multi-joint PD setpoint control
with gravity compensation if Kp = 0 or Kd = 0. For a practical robot system,
is it possible to use the Krasovskii–LaSalle invariance principle to demonstrate
global asymptotic stability even if Kd = 0? Explain your answer.

Exercise 11.13 The two-joint robot of Exercise 11.9 can be controlled in task
space using the endpoint task coordinates X = (x, y), as shown in Figure 11.25.
The task-space velocity is V = Ẋ. Give the Jacobian J(✓) and the task-space
dynamics model {⇤̃(✓), ⌘̃(✓, V)} in the computed torque-control law (11.47).

Exercise 11.14 Choose appropriate space and end-e↵ector reference frames
{s} and {b} and express natural and artificial constraints, six each, that achieve
the following tasks: (a) opening a cabinet door; (b) turning a screw that ad-
vances linearly a distance p for every revolution; and (c) drawing a circle on a
chalkboard with a piece of chalk.

Exercise 11.15 Assume that the end-e↵ector of the two-joint robot in Fig-
ure 11.25 is constrained to move on the line x� y = 1. The robot’s link lengths
are L1 = L2 = 1. Write the constraint as A(✓)V = 0, where X = (x, y) and
V = Ẋ.

Exercise 11.16 Derive the constrained motion equations (11.59) and (11.60).
Show all the steps.
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Figure 11.26: Two methods for controlling the torque at a joint driven by a geared
DC motor. (Upper) The current to the motor is measured by measuring the voltage
across a small resistance in the current path. A PI controller works to make the actual
current match better the requested current Icom. (Lower) The actual torque delivered
to the link is measured by strain gauges.

Exercise 11.17 We have been assuming that each actuator delivers the torque
requested by the control law. In fact, there is typically an inner control loop
running at each actuator, typically at a higher servo rate than the outer loop,
to try to track the torque requested. Figure 11.26 shows two possibilities for a
DC electric motor, where the torque ⌧ delivered by the motor is proportional
to the current I through the motor, ⌧ = ktI. The torque from the motor is
amplified by the gearhead with gear ratio G.

In the upper control scheme the motor current is measured by a current
sensor and compared with the desired current Icom; the error is passed through
a PI controller which sets the duty cycle of a low-power pulse-width-modulation
(PWM) digital signal and the PWM signal is sent to an H-bridge that generates
the actual motor current. In the lower scheme, a strain gauge torque sensor is
inserted between the output of the motor gearing and the link, and the measured
torque is compared directly with the requested torque ⌧com. Since a strain gauge
measures deflection, the element on which it is mounted must have a finite
torsional sti↵ness. Series elastic actuators are designed to have particularly
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flexible torsional elements, so much so that encoders are used to measure the
larger deflections. The torque is estimated from the encoder reading and the
torsional spring constant.

(a) For the current sensing scheme, what multiplicative factor should go in
the block labeled Icom/⌧com? Even if the PI current controller does its job
perfectly (Ierror = 0) and the torque constant kt is perfectly known, what
e↵ect may contribute to error in the generated torque?

(b) For the strain gauge measurement method, explain the drawbacks, if any,
of having a flexible element between the gearhead and the link.

Exercise 11.18 Modify the SimulateControl function to allow initial state
errors.
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Chapter 12

Grasping and Manipulation

Most of the book so far has been concerned with kinematics, dynamics, motion
planning, and control of the robot itself. Only in Chapter 11, on the topics of
force control and impedance control, did the robot finally begin interacting with
an environment other than free space. Now the robot really becomes valuable
– when it can perform useful work on objects in the environment.

In this chapter our focus moves outward from the robot itself to the interac-
tion between the robot and its environment. The desired behavior of the robot
hand or end-e↵ector, whether motion control, force control, hybrid motion–
force control, or impedance control, is assumed to be achieved perfectly using
the methods discussed so far. Our focus now is on the contact interface between
the robot and objects as well as on contacts among objects and between ob-
jects and constraints in the environment. In short, our focus is on manipulation
rather than the manipulator. Examples of manipulation include grasping, push-
ing, rolling, throwing, catching, tapping, etc. To limit our scope, we will assume
that the manipulator, objects, and obstacles in the environment are rigid.

To simulate, plan, and control robotic manipulation tasks, we need an under-
standing of (at least) three elements: contact kinematics; forces applied through
contacts; and the dynamics of rigid bodies. In contact kinematics we study how
rigid bodies can move relative to each other without penetration and classify
these feasible motions according to whether the contacts are rolling, sliding,
or separating. Contact force models address the normal and frictional forces
that can be transmitted through rolling and sliding contacts. Finally, the ac-
tual motions of the bodies are those that simultaneously satisfy the kinematic
constraints, contact force model, and rigid-body dynamics.

This chapter introduces contact kinematics (Section 12.1) and contact force
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(a)           (b)    (c)   (d)

Figure 12.1: (a) Three vectors in R2, drawn as arrows from the origin. (b) The
linear span of the vectors is the entire plane. (c) The positive linear span is the cone
shaded gray. (d) The convex span is the polygon and its interior.

modeling (Section 12.2) and applies these models to problems in robot grasping
and other types of manipulation.

The following definitions from linear algebra will be useful in this chapter.

Definition 12.1. Given a set of j vectors A = a1, . . . , aj 2 Rn, we define the
linear span, or the set of linear combinations, of the vectors to be

span(A) =

(
jX

i=1

kiai

�� ki 2 R
)

,

the nonnegative linear combinations, sometimes called the positive or
conical span, to be

pos(A) =

(
jX

i=1

kiai

�� ki � 0

)
,

and the convex span to be

conv(A) =

(
jX

i=1

kiai

�� ki � 0 and
X

i

ki = 1

)
.

Clearly conv(A) ✓ pos(A) ✓ span(A) (see Figure 12.1). The following facts
from linear algebra will also be useful.

1. The space Rn can be linearly spanned by n vectors, but no fewer.

2. The space Rn can be positively spanned by n + 1 vectors, but no fewer.
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The first fact is implicit in our use of n coordinates to represent n-dimensional
Euclidean space. Fact 2 follows from the fact that for any choice of n vectors
A = {a1, . . . , an} there exists a vector c 2 Rn such that aT

i c  0 for all i. In
other words, no nonnegative combination of vectors in A can create a vector in
the direction c. However, if we choose a1, . . . , an to be orthogonal coordinate
bases of Rn and then choose an+1 = �

Pn
i=1 ai, we see that this set of n + 1

vectors positively spans Rn.

12.1 Contact Kinematics

Contact kinematics is the study of how two or more rigid bodies can move
relative to each other while respecting the impenetrability constraint. It also
classifies motion at a contact as either rolling or sliding. Let’s start by looking
at a single contact between two rigid bodies.

12.1.1 First-Order Analysis of a Single Contact

Consider two rigid bodies whose configurations are given by the local coordinate
column vectors q1 and q2, respectively. Writing the composite configuration as
q = (q1, q2), we define a distance function d(q) between the bodies that is
positive when they are separated, zero when they are touching, and negative
when they are in penetration. When d(q) > 0, there are no constraints on the
motions of the bodies; each is free to move with six degrees of freedom. When
the bodies are in contact (d(q) = 0), we look at the time derivatives ḋ, d̈, etc.,
to determine whether the bodies stay in contact or break apart as they follow
a particular trajectory q(t). This can be determined by the following table of
possibilities:

d ḋ d̈ · · ·
> 0 no contact
< 0 infeasible (penetration)
= 0 > 0 in contact, but breaking free
= 0 < 0 infeasible (penetration)
= 0 = 0 > 0 in contact, but breaking free
= 0 = 0 < 0 infeasible (penetration)
etc.

The contact is maintained only if all time derivatives are zero.
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A

B

n̂

contact
tangent plane

contact
normal

Figure 12.2: (Left) The bodies A and B in single-point contact define a contact
tangent plane and a contact normal vector n̂ perpendicular to the tangent plane. By
default, the positive direction of the normal is chosen into body A. Since contact
curvature is not addressed in this chapter, the contact places the same restrictions on
the motions of the rigid bodies in the middle and right panels.

Now let’s assume that the two bodies are initially in contact (d = 0) at a
single point. The first two time derivatives of d are written

ḋ =
@d

@q
q̇, (12.1)

d̈ = q̇T
@2d

@q2
q̇ +

@d

@q
q̈. (12.2)

The terms @d/@q and @2d/@q2 carry information about the local contact geom-
etry. The gradient vector @d/@q corresponds to the separation direction in q
space associated with the contact normal (Figure 12.2). The matrix @2d/@q2

encodes information about the relative curvature of the bodies at the contact
point.

In this chapter we assume that only contact-normal information @d/@q is
available at contacts; other information about the local contact geometry, in-
cluding the contact curvature @2d/@q2 and higher derivatives, is unknown. With
this assumption, we truncate our analysis at Equation (12.1) and assume that
the bodies remain in contact if ḋ = 0. Since we are dealing only with the first-
order contact derivative @d/@q, we refer to our analysis as a first-order analysis.
In such a first-order analysis, the contacts in Figure 12.2 are treated identically
since they have the same contact normal.

As indicated in the table above, a second-order analysis incorporating the
contact curvature @2d/@q2 may indicate that the contact is actually breaking or
penetrating even when d = ḋ = 0. We will see examples of this, but a detailed
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analysis of second-order contact conditions is beyond the scope of this chapter.

12.1.2 Contact Types: Rolling, Sliding, and Breaking Free

Given two bodies in single-point contact, they undergo a roll–slide motion
if the contact is maintained. The constraint that contact is maintained is a
holonomic constraint, d(q) = 0. A necessary condition for maintaining contact
is ḋ = 0.

Let’s write the velocity constraint ḋ = 0 in a form, based on the contact
normal, that does not require an explicit distance function (Figure 12.2). Let
n̂ 2 R3 be a unit vector aligned with the contact normal, expressed in a world
frame. Let pA 2 R3 be the representation of the contact point on body A in
the world frame, and let pB 2 R3 be the representation of the contact point on
body B. Although the contact-point vectors pA and pB are identical initially,
the velocities ṗA and ṗB may be di↵erent. Thus the condition ḋ = 0 can be
written

n̂T(ṗA � ṗB) = 0. (12.3)

Since the direction of the contact normal is defined as being into body A, the
impenetrability constraint ḋ � 0 is written as

n̂T(ṗA � ṗB) � 0. (12.4)

Let us rewrite the constraint (12.4) in terms of the twists VA = (!A, vA) and
VB = (!B , vB) of bodies A and B in a space frame.1 Note that

ṗA = vA + !A ⇥ pA = vA + [!A]pA,

ṗB = vB + !B ⇥ pB = vB + [!B ]pB .

We can also define the wrench F = (m, f) corresponding to a unit force applied
along the contact normal:

F = (pA ⇥ n̂, n̂) = ([pA]n̂, n̂).

It is not necessary to appeal to forces in a purely kinematic analysis of rigid
bodies, but we will find it convenient to adopt this notation now in anticipation
of the discussion of contact forces in Section 12.2.

With these expressions, the inequality constraint (12.4) can be written

(impenetrability constraint) FT(VA � VB) � 0 (12.5)

1
All twists and wrenches are expressed in a space frame in this chapter.
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(see Exercise 12.1). If

(active constraint) FT(VA � VB) = 0 (12.6)

then, to first order, the constraint is active and the bodies remain in contact.
In the case where B is a stationary fixture, the impenetrability constraint

(12.5) simplifies to
FTVA � 0. (12.7)

If FTVA > 0, F and VA are said to be repelling. If FTVA = 0, F and VA are
said to be reciprocal and the constraint is active.

Twists VA and VB satisfying (12.6) are called first-order roll–slide mo-
tions – the contact may be either sliding or rolling. Roll–slide contacts may
be further separated into rolling contacts and sliding contacts. The contact
is rolling if the bodies have no motion relative to each other at the contact:

(rolling constraint) ṗA = vA + [!A]pA = vB + [!B ]pB = ṗB . (12.8)

Note that “rolling” contacts include those where the two bodies remain station-
ary relative to each other, i.e., no relative rotation. Thus “sticking” is another
term for these contacts.

If the twists satisfy Equation (12.6) but not the rolling equations of (12.8)
then they are sliding.

We assign to a rolling contact the contact label R, to a sliding contact the
label S, and to a contact that is breaking free (the impenetrability constraint
(12.5) is satisfied but not the active constraint (12.6)) the label B.

The distinction between rolling and sliding contacts becomes especially im-
portant when we consider friction forces in Section 12.2.

Example 12.2. Consider the contact shown in Figure 12.3. Bodies A and B
are in contact at pA = pB = [1 2 0]T with contact normal direction n̂ = [0 1 0]T.
The impenetrability constraint (12.5) is

FT(VA � VB) � 0,

which becomes

[([pA]n̂)T n̂T]


!A � !B

vA � vB

�
� 0.

Substituting values, we obtain

[0 0 1 0 1 0][!Ax�!Bx !Ay�!By !Az�!Bz vAx�vBx vAy�vBy vAz�vBz]
T

� 0
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B
breaking free

penetrating

roll-slide m
otions

!Az

vAy

F

A

n̂ = [0 1 0]T

B

x̂
ŷ

ẑ

pA = [1 2 0]T

penetrating

vAx

!Az + vAy = 0

B
breaking free

!Az

vAy

F

rolling
R

sliding
S

Figure 12.3: Example 12.2. (Top) Body B makes contact with A at pA = pB =
[1 2 0]T with normal n̂ = [0 1 0]T. (Bottom left) The twists VA and their corresponding
contact labels for B stationary and A confined to a plane. The contact normal wrench
F is [mx my mz fx fy fz]

T = [0 0 1 0 1 0]T. (Bottom right) Looking down the
�vAx-axis.

or

!Az � !Bz + vAy � vBy � 0;

and therefore roll–slide twists satisfy

!Az � !Bz + vAy � vBy = 0. (12.9)

Equation (12.9) defines an 11-dimensional hyperplane in the 12-dimensional
space of twists (VA, VB).
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The rolling constraint (12.8) is equivalent to

vAx � !AzpAy + !AypAz = vBx � !BzpBy + !BypBz,

vAy + !AzpAx � !AxpAz = vBy + !BzpBx � !BxpBz,

vAz + !AxpAy � !AypAx = vBz + !BxpBy � !BypBx;

substituting values for pA and pB , we get

vAx � 2!Az = vBx � 2!Bz, (12.10)

vAy + !Az = vBy + !Bz, (12.11)

vAz + 2!Ax � !Ay = vBz + 2!Bx � !By. (12.12)

The constraint equations (12.10)–(12.12) define a nine-dimensional hyperplane
subspace of the 11-dimensional hyperplane of roll–slide twists.

To visualize the constraints in a low-dimensional space, let’s assume that
B is stationary (VB = 0) and A is confined to the z = 0 plane, i.e., VA =
[!Ax !Ay !Az vAx vAy vAz]T = [0 0 !Az vAx vAy 0]T. The wrench F is written
[mz fx fy]T = [1 0 1]T. The roll–slide constraint (12.9) reduces to

vAy + !Az = 0,

while the rolling constraints simplify to

vAx � 2!Az = 0,

vAy + !Az = 0.

The single roll–slide constraint yields a plane in (!Az, vAx, vAy) space, and the
two rolling constraints yield a line in that plane. Because VB = 0, the constraint
surfaces pass through the origin VA = 0. If VB 6= 0, this is no longer the case
in general.

Figure 12.3 shows graphically that nonpenetrating twists VA must have a
nonnegative dot product with the constraint wrench F when VB = 0.

12.1.3 Multiple Contacts

Now suppose that a body A is subject to n contacts with m other bodies, where
n � m. The contacts are numbered i = 1, . . . , n, and the other bodies are
numbered j = 1, . . . , m. Let j(i) 2 {1, . . . , m} denote the number of the other
body participating in contact i. Each contact i constrains VA to a half-space of
its six-dimensional twist space that is bounded by a five-dimensional hyperplane
of the form FTVA = FTVj(i). Taking the union of the set of constraints from
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all the contacts, we get a polyhedral convex set (polytope2 for short) V of
feasible twists in the VA space, written as

V = {VA | FT
i (VA � Vj(i)) � 0 for all i},

where Fi corresponds to the ith contact normal (pointing into the body A)
and Vj(i) is the twist of the other body at contact i. The constraint at contact
i is redundant if the half-space constraint contributed by contact i does not
change the feasible twist polytope V . In general, the feasible twist polytope for
a body can consist of a six-dimensional interior (where no contact constraint is
active), five-dimensional faces where one constraint is active, four-dimensional
faces where two constraints are active, and so on, down to one-dimensional
edges and zero-dimensional points. A twist VA on a k-dimensional facet of the
polytope indicates that 6� k independent (non-redundant) contact constraints
are active.

If all the bodies providing constraints are stationary, i.e., Vj = 0 for all
j, then each constraint hyperplane defined by (12.5) passes through the origin
of VA space. We call such a constraint homogeneous. The feasible twist
set becomes a cone rooted at the origin, called a (homogeneous) polyhedral
convex cone. Let Fi be the constraint wrench of stationary contact i. Then
the feasible twist cone V is

V = {VA | FT
i VA � 0 for all i}.

If the Fi positively span the six-dimensional wrench space or, equivalently, the
convex span of the Fi contains the origin in the interior then the feasible twist
polytope V reduces to a point at the origin, the stationary contacts completely
constrain the motion of the body, and we have form closure, discussed in more
detail in Section 12.1.7.

As mentioned in Section 12.1.2, each point contact i can be given a label
corresponding to the type of contact: B if the contact is breaking, R if the contact
is rolling, and S if the contact is sliding, i.e., (12.6) is satisfied but (12.8) is not.
The contact mode for the entire system can be written as the concatenation
of the contact labels at the contacts. Since we have three distinct contact
labels, a system of bodies with n contacts can have a maximum of 3n contact
labels. Some of these contact modes may not be feasible, as their corresponding
kinematic constraints may not be compatible.

2
We use the term “polytope” to refer generally to a convex set bounded by hyperplanes in

an arbitrary vector space. The set need not be finite; it could be a cone with infinite volume.

It could also be a point, or the null set if the constraints are incompatible with the rigid-body

assumption.
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(a)             (b)      (c)
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SBB

RRB
BSB

BBB BSS
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SBSvAy

vAx

vAyvAy

vAx vAx

V3

V3
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Figure 12.4: Motion-controlled fingers contacting a hexagon that is constrained to
translate in a plane only (Example 12.3). (a) A single stationary finger provides a
single half-space constraint on the hexagon’s twist VA. The feasible-motion half-space
is shaded gray. The two-dimensional set of twists corresponding to breaking contact B,
the one-dimensional set corresponding to sliding contact S, and the zero-dimensional
set corresponding to rolling (fixed) contact R are shown. (b) The union of constraints
from two stationary fingers creates a cone of feasible twists. This cone corresponds
to four possible contact modes: RR, SB, BS, and BB. The contact label for the finger
at upper left is given first. (c) Three fingers, one of which is moving with a linear
velocity V3, create a closed polygon of feasible twists. There are seven possible contact
modes corresponding to the feasible twists: a two-dimensional set where all contacts
are breaking, three one-dimensional sets where one contact constraint is active, and
three zero-dimensional sets where two contact constraints are active. Note that rolling
contact at the moving finger is not feasible, since translation of the hexagon to “follow”
the moving finger, as indicated by the � at the lower right of the lower figure, would
violate one of the impenetrability constraints. If the third finger were stationary, the
only feasible motion of the hexagon would be zero velocity, with contact mode RRR.

Example 12.3. Figure 12.4 shows triangular fingers contacting a hexagonal
body A. To more easily visualize the contact constraints the hexagon is re-
stricted to translational motion in a plane only, so that its twist can be written
VA = (0, 0, 0, vAx, vAy, 0). In Figure 12.4(a) the single stationary finger creates
a contact wrench F1 that can be drawn in VA space. All feasible twists have
a nonnegative component in the direction of F1. Roll–slide twists satisfying
FT

1 VA = 0 lie on the constraint line. Since no rotations are allowed, the only
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x̂

ŷ contact 1

contact 2 contact 3

!Az

vAx vAy

contact 2

contact 3

contact 1

Figure 12.5: Example 12.4. (Left) Arrows representing the lines of force corre-
sponding to the contact normals of three stationary contacts on a planar body. If
we are concerned only with feasible motions, and do not distinguish between rolling
and sliding, contacts anywhere along the lines, with the contact normals shown, are
equivalent. (Right) The three constraint half-spaces define a polyhedral convex cone
of feasible twists. In the figure the cone is truncated at the plane vAy = 2. The outer
faces of the cone are indicated by hatching on a white background, and the inner faces
by hatching on a gray background. Twists in the interior of the cone correspond to
all contacts breaking, while twists on the faces of the cone correspond to one active
constraint and twists on one of the three edges of the cone correspond to two active
constraints.

twist yielding a rolling contact is VA = 0. In Figure 12.4(b) the union of the
constraints due to two stationary fingers creates a (polyhedral convex) cone
of feasible twists. Figure 12.4(c) shows three fingers in contact, one of which
is moving with twist V3. Because the moving finger has nonzero velocity, its
constraint half-space is displaced from the origin by V3. The result is a closed
polygon of feasible twists.

Example 12.4. Figure 12.5 shows the contact normals of three stationary
contacts with a planar body A, not shown. The body moves in a plane, so vAz =
!Ax = !Ay = 0. In this example we do not distinguish between rolling and
sliding motions, so the locations of the contacts along the normals are irrelevant.
The three contact wrenches, written (mz, fx, fy), are F1 = (�2, 0, 1), F2 =
(1,�1, 0), and F3 = (1, 1, 0), yielding the motion constraints

vAy � 2!Az � 0,

�vAx + !Az � 0,

vAx + !Az � 0.

These constraints describe a polyhedral convex cone of feasible twists rooted at
the origin, as illustrated on the right in Figure 12.5.
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12.1.4 Collections of Bodies

The discussion above can be generalized to find the feasible twists of multiple
bodies in contact. If bodies i and j make contact at a point p, where n̂ points
into body i and F = ([p]n̂, n̂) then their spatial twists Vi and Vj must satisfy
the constraint

FT(Vi � Vj) � 0 (12.13)

to avoid penetration. This is a homogeneous half-space constraint in the com-
posite (Vi, Vj) twist space. In an assembly of m bodies, each pairwise contact
contributes another constraint in the 6m-dimensional composite twist space
(3m-dimensional for planar bodies) and the result is a polyhedral convex cone
of kinematically feasible twists rooted at the origin of the composite twist space.
The contact mode for the entire assembly is the concatenation of the contact
labels at each contact in the assembly.

If there are bodies whose motion is controlled, e.g., robot fingers, the con-
straints on the motion of the remaining bodies are no longer homogeneous. As
a result, the convex polyhedral set of feasible twists of the uncontrolled bodies,
in their composite twist space, is no longer a cone rooted at the origin.

12.1.5 Other Types of Contacts

We have been considering point contacts of the type shown in Figure 12.6(a),
where at least one of the bodies in contact uniquely defines the contact normal.
Figures 12.6(b)–(e) show other types of contact. The kinematic constraints pro-
vided by the convex–concave vertex, line, and plane contacts of Figures 12.6(b)–
(d) are, to first order, identical to those provided by finite collections of single-
point contacts. The degenerate case in Figure 12.6(e) is ignored, as there is no
unique definition of a contact normal.

The impenetrability constraint (12.5) derives from the fact that arbitrarily
large contact forces can be applied in the normal direction to prevent pene-
tration. In Section 12.2, we will see that tangential forces due to friction may
also be applied, and these forces may prevent slipping between two bodies in
contact. Normal and tangential contact forces are subject to constraints: the
normal force must be pushing into a body, not pulling, and the maximum fric-
tion force is proportional to the normal force.

If we wish to apply a kinematic analysis that can approximate the e↵ects of
friction without explicitly modeling forces, we can define three purely kinematic
models of point contacts: a frictionless point contact, a point contact with
friction, and a soft contact, also called a soft-finger contact. A frictionless
point contact enforces only the roll–slide constraint (12.5). A point contact with
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(a)     (b)            (c)                                 (d)             (e)

Figure 12.6: (a) Vertex–face contact. (b) The contact between a convex vertex and
a concave vertex can be treated as multiple point contacts, one at each face adjacent
to the concave vertex. These faces define the contact normals. (c) A line contact can
be treated as two point contacts at either end of the line. (d) A plane contact can
be treated as point contacts at the corners of the convex hull of the contact area. (e)
Convex vertex–vertex contact. This case is degenerate and so is not considered.

friction also enforces the rolling constraints (12.8), implicitly modeling friction
forces su�cient to prevent slip at the contact. A soft contact enforces the rolling
constraints (12.8) as well as one more constraint: the two bodies in contact may
not spin relative to each other about the contact normal axis. This models
deformation and the resulting friction moment resisting any spin due to the
nonzero contact area between the two bodies. For planar problems, a point
contact with friction and a soft contact are identical.

12.1.6 Planar Graphical Methods

Planar problems allow the possibility of using graphical methods to visualize the
feasible motions for a single body, since the space of twists is three dimensional.
An example planar twist cone is shown in Figure 12.5. Such a figure would be
very di�cult to draw for a system with more than three degrees of freedom.

A convenient way to represent a planar twist, V = (!z, vx, vy), in {s} is as
a center of rotation (CoR) at (�vy/!z, vx/!z) plus the angular velocity !z.
The CoR is the point in the (projective) plane that remains stationary under
the motion, i.e., the point where the screw axis intersects the plane.3 In the case
where the speed of motion is immaterial, we may simply label the CoR with
a ‘+’, ‘�’, or 0 sign representing the direction of rotation (Figure 12.7). The
mapping from planar twists to CoRs is illustrated in Figure 12.8, which shows
that the space of CoRs consists of a plane of ‘+’ CoRs (counterclockwise), a
plane of ‘�’ CoRs (clockwise), and a circle of translation directions.

3
Note that the case !z = 0 must be treated with care, as it corresponds to a CoR at

infinity.
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+CoR

Figure 12.7: Given the velocity of two points on a planar body, the lines normal to
the velocities intersect at the CoR. The CoR shown is labeled ‘+’ corresponding to
the (counterclockwise) positive angular velocity of the body.

x̂

ŷ

vx
vy

!z

V

CCW
rotations

translations

x̂

ŷ

CW
rotations

Figure 12.8: Mapping a planar twist V to a CoR. The ray containing the vector V
intersects the plane of ‘+’ CoRs at !z = 1, or the plane of ‘�’ CoRs at !z = �1, or
the circle of translation directions.

Given two di↵erent twists V1 and V2 and their corresponding CoRs, the set
of linear combinations of these twists, k1V1+k2V2 where k1, k2 2 R, corresponds
to the line of CoRs passing through CoR(V1) and CoR(V2). Since k1 and k2
can have either sign, it follows that if either !1z or !2z is nonzero then the
CoRs on this line can have either sign. If !1z = !2z = 0 then the set of linear
combinations corresponds to the set of all translation directions.

A more interesting case is when k1, k2 � 0. Given two twists V1 and V2, the
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Figure 12.9: The intersection of a twist cone with the unit twist sphere, and the
representation of the cone as a set of CoRs (the two hatched regions join at infinity to
form a single set).

nonnegative linear combination of these two velocities is written

V = pos({V1, V2}) = {k1V1 + k2V2 | k1, k2 � 0},

which is a planar twist cone rooted at the origin, with V1 and V2 defining
the edges of the cone. If !1z and !2z have the same sign then the CoRs of
their nonnegative linear combinations CoR(pos({V1, V2})) all have that sign
and lie on the line segment between the two CoRs. If CoR(V1) and CoR(V2)
are labeled ‘+’ and ‘�’ respectively, then CoR(pos({V1, V2})) consists of the
line containing the two CoRs, minus the segment between the CoRs. This
set consists of a ray of CoRs labeled ‘+’ attached to CoR(V1), a ray of CoRs
labeled ‘�’ attached to CoR(V2), and a point at infinity labeled 0, corresponding
to translation. This collection of elements should be considered as a single line
segment (though one passing through infinity), just like the first case mentioned
above. Figures 12.9 and 12.10 show examples of CoR regions corresponding to
positive linear combinations of planar twists.

The CoR representation of planar twists is particularly useful for represent-
ing the feasible motions of one movable body in contact with stationary bodies.
Since the constraints are stationary, as noted in Section 12.1.3, the feasible
twists form a polyhedral convex cone rooted at the origin. Such a cone can
be represented uniquely by a set of CoRs with ‘+’, ‘�’, and 0 labels. A gen-
eral twist polytope, as would be generated by moving constraints, cannot be
uniquely represented by a set of CoRs with such labels.

Given a contact between a stationary body and a movable body, we can plot
the CoRs that do not violate the impenetrability constraint. Label all points on
the contact normal ‘±’, points to the left of the inward normal ‘+’, and points
to the right ‘�’. All points labeled ‘+’ can serve as CoRs with positive angular
velocity for the movable body, and all points labeled ‘�’ can serve as CoRs with
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(a)         (b)      (c)    (d)
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Figure 12.10: (a) Positive linear combination of two CoRs labeled ‘+’. (b) Positive
linear combination of a ‘+’ CoR and a ‘�’ CoR. (c) Positive linear combination of
three ‘+’ CoRs. (d) Positive linear combination of two ‘+’ CoRs and a ‘�’ CoR.

+, Sr

+, B ±, R –, B

–, Sl

+, Sl –, Sr

+,B

-,Sl

-,Sr

Figure 12.11: The stationary triangle makes contact with a movable body. The
CoRs to the left of the contact normal are labeled ‘+’, to the right are labeled ‘�’,
and on the normal are labeled ‘±’. Also given are the contact labels for the CoRs.
For points on the contact normal, the sign assigned to the Sl and Sr CoRs switches
at the contact point. Three CORs and their associated labels are illustrated.

negative angular velocity, without violating the first-order contact constraint.
We can further assign contact labels to each CoR corresponding to the first-
order conditions for breaking contact B, sliding contact S, or rolling contact R.
For planar sliding, we subdivide the label S into two subclasses: Sr, where the
moving body slips to the right relative to the fixed constraint, and Sl, where
the moving body slips to the left. Figure 12.11 illustrates the labeling.

If there is more than one contact, we simply take the union of the constraints
and contact labels from the individual contacts. This unioning of the constraints
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Figure 12.12: Example 12.5. (a) A body resting on a table with two contact con-
straints provided by the table and a single contact constraint provided by the sta-
tionary finger. (b) The feasible twists represented as CoRs, shown in gray. Note that
the lines that extend o↵ to the left and to the bottom “wrap around” at infinity and
come back in from the right and the top, respectively, so this CoR region should be
interpreted as a single connected convex region. (c) The contact modes assigned to
each feasible motion. The zero velocity contact mode is RRR.

implies that the feasible CoR region is convex, as is the homogeneous polyhedral
twist cone.

Example 12.5. Figure 12.12(a) shows a planar body standing on a table while
being contacted by a stationary robot finger. The finger defines an inequality
constraint on the body’s motion and the table defines two more. The cone of
twists that do not violate the impenetrability constraints is represented by the
CoRs that are consistently labeled for each contact (Figure 12.12(b)). Each
feasible CoR is labeled with a contact mode that concatenates the labels for the
individual contacts (Figure 12.12(c)).

Now look more closely at the CoR indicated by (+, SrBSr) in Figure 12.12(c).
Is this motion really possible? It should be apparent that it is, in fact, not
possible: the body would immediately penetrate the stationary finger. Our
incorrect conclusion that the motion was possible was due to the fact that our
first-order analysis ignored the local contact curvature. A second-order analysis
would show that this motion is indeed impossible. However, if the radius of
curvature of the body at the contact were su�ciently small then the motion
would be possible.
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+

_ _

Figure 12.13: (Left) The body from Figure 12.12, with three stationary point con-
tacts and the body’s feasible twist cone represented as a convex CoR region. (Middle)
A fourth contact reduces the size of the feasible twist cone. (Right) By changing the
angle of the fourth contact normal, no twist is feasible; the body is in form closure.

Thus a first-order roll–slide motion might be classified as penetrating or
breaking by a second-order analysis. Similarly, if our second-order analysis
indicates a roll–slide motion, a third- or higher-order analysis may indicate
penetration or breaking free. In any case, if an nth-order analysis indicates that
the contact is breaking or penetrating, then no analysis of order greater than n
will change the conclusion.

12.1.7 Form Closure

Form closure of a body is achieved if a set of stationary constraints prevents
all motion of the body. If these constraints are provided by robot fingers, we
call this a form-closure grasp. An example is shown in Figure 12.13.

12.1.7.1 Number of Contacts Needed for First-Order Form Closure

Each stationary contact i provides a half-space twist constraint of the form

FT
i V � 0.

Form closure holds if the only twist V satisfying the constraints is the zero twist.
For j contacts, this condition is equivalent to

pos({F1, . . . , Fj}) = R6

for bodies in three dimensions. Therefore, by fact 2 from the beginning of the
chapter, at least 6 + 1 = 7 contacts are needed for the first-order form closure
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  (a)      (b)                 (c)  (d)     (e)        (f)

± ± ±±
±

Figure 12.14: (a) Four fingers yielding planar form closure. The first-order analysis
treats (b) and (c) identically, saying that the triangle can rotate about its center in
each case. A second-order analysis shows this is not possible for (b). The grasps in
(d), (e), and (f) are identical by a first-order analysis, which says that rotation about
any center on the vertical line is possible. This is true for (d), while for (e), rotation
is possible about only some of these centers. No motion is possible in (f).

of spatial bodies. For planar bodies, the condition is

pos({F1, . . . , Fj}) = R3,

and 3+1 = 4 contacts are needed for first-order form closure. These results are
summarized in the following theorem.

Theorem 12.6. For a planar body, at least four point contacts are needed for
first-order form closure. For a spatial body, at least seven point contacts are
needed.

Now consider the problem of grasping a circular disk in the plane. It should
be clear that kinematically preventing motion of the disk is impossible regardless
of the number of contacts; it will always be able to spin about its center. Such
objects are called exceptional – the positive span of the contact normal forces
at all points on the object is not equal to Rn, where n = 3 in the planar case
and n = 6 in the spatial case. Examples of such objects in three dimensions
include surfaces of revolution, such as spheres and ellipsoids.

Figure 12.14 shows examples of planar grasps. The graphical methods of
Section 12.1.6 indicate that the four contacts in Figure 12.14(a) immobilize the
body. Our first-order analysis indicates that the bodies in Figures 12.14(b)
and 12.14(c) can each rotate about their centers in the three-finger grasps, but
in fact this is not possible for the body in Figure 12.14(b) – a second-order
analysis would tell us that this body is actually immobilized. Finally, the first-
order analysis tells us that the two-fingered grasps in Figures 12.14(d)–(f) are
identical, but in fact the body in Figure 12.14(f) is immobilized by only two
fingers owing to curvature e↵ects.
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To summarize, our first-order analysis always correctly labels breaking and
penetrating motions but second- and higher-order e↵ects may change first-order
roll–slide motions to breaking or penetrating. If a body is in form closure
by first-order analysis, it is in form closure for any analysis. If only roll-slide
motions are feasible by first-order analysis, the body could be in form closure
by a higher-order analysis; otherwise, the body is not in form closure by any
analysis.

12.1.7.2 A Linear Programming Test for First-Order Form Closure

Let F = [F1 F2 · · · Fj ] 2 Rn⇥j be a matrix whose columns are formed by the
j contact wrenches. For spatial bodies, n = 6 and for planar bodies, n = 3 with
Fi = [miz fix fiy]T. The contacts yield form closure if there exists a vector of
weights k 2 Rj , k � 0, such that Fk + Fext = 0 for all Fext 2 Rn.

Clearly the body is not in form closure if the rank of F is not full (rank(F ) <
n). If F is full rank, the form-closure condition is equivalent to the existence of
strictly positive coe�cients k > 0 such that Fk = 0. We can formulate this test
as the following set of conditions, which is an example of a linear program:

find k
minimizing 1Tk

such that Fk = 0
ki � 1, i = 1, . . . , j,

(12.14)

where 1 is a j-vector of ones. If F is full rank and there exists a solution k
to (12.14), the body is in first-order form closure. Otherwise it is not. Note
that the objective function 1Tk is not necessary to answer the binary question,
depending on the LP solver, but it is included to make sure the problem is well
posed.

Example 12.7. The planar body in Figure 12.15 has a hole in the center. Two
fingers each touch two di↵erent edges of the hole, creating four contact normals.
The matrix F = [F1 F2 F3 F4] is given by

F =

2

4
0 0 �1 2
�1 0 1 0

0 �1 0 1

3

5 .

The matrix F is clearly rank 3. The linear program of (12.14) returns a solution
with k1 = k3 = 2, k2 = k4 = 1, so with this grasp the body is in form closure.
You could test this in MATLAB, for example, using the linprog function, which
takes as arguments: the objective function, expressed as a vector of weights f
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x̂

ŷ

F1

F2

F3

F4

Figure 12.15: Two fingers grasping the interior of an object.

on the elements of k; a set of inequality constraints on k of the form Ak  b
(used to encode ki � 1); and a set of equality constraints of the form Aeqk = beq
(used to encode Fk = 0);

f = [1,1,1,1];
A = [[-1,0,0,0]; [0,-1,0,0]; [0,0,-1,0]; [0,0,0,-1]];
b = [-1,-1,-1,-1];
F = [[0,0,-1,2]; [-1,0,1,0]; [0,-1,0,1]]; % the F matrix
Aeq = F;
beq = [0,0,0];
k = linprog(f,A,b,Aeq,beq);

which yields the result

k =
2.0000
1.0000
2.0000
1.0000

If the right-hand finger were moved to the bottom right corner of the hole,
the new F matrix

F =

2

4
0 0 0 �2
�1 0 1 0

0 �1 0 �1

3

5

would still be full rank, but there would be no solution to the linear program.
This grasp does not yield form closure: the body can slide downward on the
page.
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Figure 12.16: Both grasps yield form closure, but which is better?

12.1.7.3 Measuring the Quality of a Form-Closure Grasp

Consider the two form-closure grasps shown in Figure 12.16. Which is a better
grasp?

Answering this question requires a metric measuring the quality of a grasp.
A grasp metric takes the set of contacts {Fi} and returns a single value
Qual({Fi}), where Qual({Fi}) < 0 indicates that the grasp does not yield form
closure, and larger positive values indicate better grasps.

There are many reasonable choices of grasp metric. As an example, suppose
that, to avoid damaging the body, we require that the magnitude of the force
at contact i be less than or equal to fi,max > 0. Then the total set of contact
wrenches that can be applied by the j contacts is given by

CF =

(
jX

i=1

fiFi

�� fi 2 [0, fi,max]

)
. (12.15)

See Figure 12.17 for an example in two dimensions. This shows the convex sets
of wrenches that the contacts can apply to resist disturbance wrenches applied
to the body. If the grasp yields form closure, the set includes the origin of the
wrench space in its interior.

Now the problem is to turn this polytope into a single number representing
the quality of the grasp. Ideally this process would use some idea of the distur-
bance wrenches that the body can be expected to experience. A simpler choice
is to set Qual({Fi}) to be the radius of the largest ball of wrenches, centered at
the origin of the wrench space, that fits inside the convex polytope. In evaluat-
ing this radius, two caveats should be considered: (1) moments and forces have
di↵erent units, so there is no obvious way to equate force and moment mag-
nitudes, and (2) the moments due to contact forces depend on the location of
the space-frame origin. To address (1), it is common to choose a characteristic
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d

Figure 12.17: (a) A set of three contact wrenches in a two-dimensional wrench space,
and the radius d of the largest ball of wrenches centered at the origin that fits inside
the wrench polygon. (b) A di↵erent set of three wrenches yielding a larger inscribed
ball.

length r of the grasped body and convert contact moments m to forces m/r.
To address (2), the origin can be chosen somewhere near the geometric center
of the body or at its center of mass.

Given the choice of the space frame and the characteristic length r, we
simply calculate the signed distance from the origin of the wrench space to
each hyperplane on the boundary of CF . The minimum of these distances is
Qual({Fi}) (Figure 12.17).

Returning to our original example in Figure 12.16, we can see that if each
finger is allowed to apply the same force then the grasp on the left may be
considered better, as the contacts can resist greater moments about the center
of the object.

12.1.7.4 Choosing Contacts for Form Closure

Many methods have been suggested for choosing form-closure contacts for fix-
turing or grasping. One approach is to sample candidate grasp points on the
surface of the body (four for planar bodies or seven for spatial) until a set is
found yielding form closure. From there, the candidate grasp points may be
incrementally repositioned according to gradient ascent, using the grasp metric,
i.e., @Qual(p)/@p, where p is the vector of all the coordinates of the contact
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locations.4

12.2 Contact Forces and Friction

12.2.1 Friction

A commonly used model of friction in robotic manipulation is Coulomb fric-
tion. This experimental law states that the tangential friction force magnitude
ft is related to the normal force magnitude fn by ft  µfn, where µ is called
the friction coe�cient. If the contact is sliding, or currently rolling but with
incipient slip (i.e., at the next instant the contacts are sliding), then ft = µfn
and the direction of the friction force is opposite to that of the sliding direction,
i.e., friction dissipates energy. The friction force is independent of the speed of
sliding.

Often two friction coe�cients are defined, a static friction coe�cient µs

and a kinetic (or sliding) friction coe�cient µk, where µs � µk. This implies
that a larger friction force is available to resist the initial motion but, once
motion has begun, the resisting force is smaller. Many other friction models
have been developed with di↵erent functional dependencies on factors such as
the speed of sliding and the duration of static contact before sliding. All these
are aggregate models of complex microscopic behavior. For simplicity, we will
use the simplest Coulomb friction model with a single friction coe�cient µ. This
model is reasonable for hard, dry, materials. The friction coe�cient depends on
the two materials in contact and typically ranges from 0.1 to 1.

For a contact normal in the +ẑ-direction, the set of forces that can be trans-
mitted through the contact satisfies

q
f2
x + f2

y  µfz, fz � 0. (12.16)

Figure 12.18(a) shows that this set of forces forms a friction cone. The set
of forces that the finger can apply to the plane lies inside the cone shown.
Figure 12.18(b) shows the same cone from a side view, illustrating the friction
angle ↵ = tan�1 µ, which is the half-angle of the cone. If the contact is not
sliding, the force may be anywhere inside the cone. If the finger slides to the
right, the force it applies lies on the right-hand edge of the friction cone, with
magnitude determined by the normal force. Correspondingly, the plane applies
the opposing force to the finger, and the direction of the tangential (frictional)
portion of this force opposes the sliding direction.

4
The gradient vector @ Qual(p)/@p must be projected onto the tangent planes at the points

of contact to keep the contact locations on the surface of the object.
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Figure 12.18: (a) A friction cone illustrating all possible forces that can be trans-
mitted through the contact. (b) A side view of the same friction cone showing the
friction coe�cient µ and the friction angle ↵ = tan�1 µ. (c) An inscribed polyhedral
convex cone approximation to the circular friction cone.

To allow linear formulations of contact mechanics problems, it is often con-
venient to represent the convex circular cone by a polyhedral convex cone. Fig-
ure 12.18(c) shows an inscribed four-sided pyramidal approximation of the fric-
tion cone, defined by the positive span of the (fx, fy, fz) cone edges (µ, 0, 1),
(�µ, 0, 1), (0, µ, 1), and (0,�µ, 1). We can obtain a tighter approximation to
the circular cone by using more edges. An inscribed cone underestimates the
friction forces available, while a circumscribed cone overestimates the friction
forces. The choice of which to use depends on the application. For example, if
we want to ensure that a robot hand can grasp an object, it is a good idea to
underestimate the friction forces available.

For planar problems, no approximation is necessary – a friction cone is ex-
actly represented by the positive span of the two edges of the cone, similarly to
the side view illustrated in Figure 12.18(b).

Once we choose a coordinate frame, any contact force can be expressed as a
wrench F = ([p]f, f), where p is the contact location. This turns a friction cone
into a wrench cone. A planar example is shown in Figure 12.19. The two edges
of the planar friction cone give two rays in the wrench space, and the wrenches
that can be transmitted to the body through the contact give the positive span
of basis vectors along these edges. If F1 and F2 are basis vectors for these
wrench cone edges, we write the wrench cone as WC = pos({F1, F2}).

If multiple contacts act on a body, then the total set of wrenches that can
be transmitted to the body through the contacts is the positive span of all the
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ŷ

f1

f2

µ
↵1

F1

F2

F3

F4

mz

fx
fy

(a) (b)

(c) (d)

x̂
ŷ
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Figure 12.19: (a) A planar friction cone with friction coe�cient µ and corresponding
friction angle ↵ = tan�1 µ. (b) The corresponding wrench cone. (c) Two friction cones.
(d) The corresponding composite wrench cone.

individual wrench cones WCi,

WC = pos({WCi}) =

(
X

i

kiFi

�� Fi 2WCi, ki � 0

)
.

This composite wrench cone is a convex cone rooted at the origin. An example
of such a composite wrench cone is shown in Figure 12.19(d) for a planar body
with the two friction cones shown in Figure 12.19(c). For planar problems, the
composite wrench cone in the three-dimensional wrench space is polyhedral.
For spatial problems, wrench cones in the six-dimensional wrench space are not
polyhedral unless the individual friction cones are approximated by polyhedral
cones, as in Figure 12.18(c).

If a contact or set of contacts acting on a body is ideally force-controlled, the
wrench Fcont specified by the controller must lie within the composite wrench
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x̂

ŷ

F2

F1 + F2
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ŷ

F1

Figure 12.20: (Left) The planar wrench F = (mz, fx, fy) = (2.5,�1, 2) represented
as an arrow in the x̂–ŷ-plane. (Middle) The same wrench can be represented by an
arrow anywhere along the line of action. (Right) Two wrenches are summed by sliding
their arrows along their lines of action until the bases of the arrows are coincident,
then doing a vector sum by the parallelogram construction.

cone corresponding to those contacts. If there are other non-force-controlled
contacts acting on the body, then the cone of possible wrenches on the body
is equivalent to the wrench cone from the non-force-controlled contacts but
translated to be rooted at Fcont.

12.2.2 Planar Graphical Methods

12.2.2.1 Representing Wrenches

Any planar wrench F = (mz, fx, fy) with a nonzero linear component can be
represented as an arrow drawn in the plane, where the base of the arrow is at
the point

(x, y) =
1

f2
x + f2

y

(mzfy,�mzfx)

and the head of the arrow is at (x+fx, y +fy). The moment is unchanged if we
slide the arrow anywhere along its line, so any arrow of the same direction and
length along this line represents the same wrench (Figure 12.20). If fx = fy = 0
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and mz 6= 0, the wrench is a pure moment, and we do not try to represent it
graphically.

Two wrenches, represented as arrows, can be summed graphically by sliding
the arrows along their lines until the bases of the arrows are coincident. The
arrow corresponding to the sum of the two wrenches is obtained as shown in Fig-
ure 12.20. The approach can be applied sequentially to sum multiple wrenches
represented as arrows.

12.2.2.2 Representing Wrench Cones

In the previous section each wrench had a specified magnitude. However, a rigid-
body contact implies that the contact normal force can be arbitrarily large;
the normal force achieves the magnitude needed to prevent two bodies from
penetrating. Therefore it is useful to have a representation of all wrenches of
the form kF , where k � 0 and F 2 R3 is a basis vector.

One such representation is moment labeling. The arrow for the basis
wrench F is drawn as described in Section 12.2.2.1. Then all points in the plane
to the left of the line of the arrow are labeled ‘+’, indicating that any positive
scaling of F creates a positive moment mz about those points, and all points in
the plane to the right of the arrow are labeled ‘�’, indicating that any positive
scaling of F creates a negative moment about those points. Points on the line
are labeled ‘±’.

Generalizing, moment labels can represent any homogeneous convex planar
wrench cone, much as a homogeneous convex planar twist cone can be rep-
resented as a convex CoR region. Given a collection of directed force lines
corresponding to wrenches kiFi for all ki � 0, the wrench cone pos({Fi}) can
be represented by labeling each point in the plane with a ‘+’ if each Fi makes a
nonnegative moment about that point, with a ‘�’ if each Fi makes a nonpositive
moment about that point, with a ‘±’ if each Fi makes zero moment about that
point, or with a blank label if at least one wrench makes a positive moment and
at least one wrench makes a negative moment about that point.

The idea is best illustrated by an example. In Figure 12.21(a), the basis
wrench F1 is represented by labeling the points to the left of the force line with
a ‘+’ and points to the right of the line with a ‘�’. Points on the line are
labeled ‘±’. In Figure 12.21(b), another basis wrench is added, which could
represent the other edge of a planar friction cone. Only the points in the plane
that are consistently labeled for both lines of force retain their labels; inconsis-
tently labeled points lose their labels. Finally, a third basis wrench is added in
Figure 12.21(c). The result is a single region labeled ‘+’. A nonnegative linear
combination of the three basis wrenches can create any line of force in the plane
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Figure 12.21: (a) Representing a line of force by moment labels. (b) Representing
the positive span of two lines of force by moment labels. (c) The positive span of three
lines of force.

that passes around this region in a counterclockwise sense. No other wrench
can be created.

If an additional basis wrench were added passing clockwise around the region
labeled ‘+’ in Figure 12.21(c), then there would be no consistently labeled point
in the plane; the positive linear span of the four wrenches would be the entire
wrench space R3.

The moment-labeling representation is equivalent to a homogeneous convex
wrench cone representation. The moment-labeling regions in each part, (a), (b)
and (c), of Figure 12.21 are properly interpreted as a single convex region, much
like the CoR regions of Section 12.1.6.

12.2.3 Force Closure

Consider a single movable body and a number of frictional contacts. We say
the contacts result in force closure if the composite wrench cone contains
the entire wrench space, so that any external wrench Fext on the body can be
balanced by contact forces.

We can derive a simple linear test for force closure which is exact for planar
cases and approximate for spatial cases. Let Fi, i = 1, . . . , j, be the wrenches
corresponding to the edges of the friction cones for all the contacts. For planar
problems, each friction cone contributes two edges and, for spatial problems,
each friction cone contributes three or more edges, depending on the polyhedral
approximation chosen (see Figure 12.18(c)). The columns of an n ⇥ j matrix
F are the Fi, where n = 3 for planar problems and n = 6 for spatial problems.
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_
+

(a)        (b)

Figure 12.22: An equilateral triangle can be force-closure-grasped by two fingers on
the edges of the triangle if µ � tan 30� ⇡ 0.577. (a) The grasp shown with µ = 0.25
would not be in force closure, as indicated by the consistently labeled moment-labeling
region. (b) The grasp shown is in force closure with µ = 1; the dashed line indicates
that the two contacts can “see” each other, i.e., their line of sight is inside both friction
cones.

Now, the test for force closure is identical to that for form closure. The contacts
yield force closure if

• rank F = n, and

• there exists a solution to the linear programming problem (12.14).

In the case of µ = 0, each contact can provide forces only along the normal
direction, and force closure is equivalent to first-order form closure.

12.2.3.1 Number of Contacts Needed for Force Closure

For planar problems, four contact wrenches are su�cient to positively span
the three-dimensional wrench space, which means that as few as two frictional
contacts (with two friction cone edges each) are su�cient for force closure. Using
moment labeling, we see that force closure is equivalent to having no consistent
moment labels. For example, if the two contacts can “see” each other by a line
of sight inside both friction cones, we have force closure (Figure 12.22(b)).

It is important to note that force closure simply means that the contact
friction cones can generate any wrench. It does not necessarily mean that the
body will not move in the presence of an external wrench. For the example
of Figure 12.22(b), whether the triangle falls under gravity depends on the
internal forces between the fingers. If the motors powering the fingers cannot
provide su�cient forces, or if they are restricted to generate forces only in certain
directions, the triangle may fall despite force closure.
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ẑ
plane S

contact 1
contact 2

contact 3

Figure 12.23: A spatial rigid body restrained by three point contacts with friction.

Two frictional point contacts are insu�cient to yield force closure for spatial
bodies, as there is no way to generate a moment about the axis joining the two
contacts. A force-closure grasp can be obtained with as few as three frictional
contacts, however. A particularly simple and appealing result due to [89] reduces
the force-closure analysis of spatial frictional grasps to a planar force-closure
problem. Referring to Figure 12.23, suppose that a rigid body is constrained by
three frictional point contacts. If the three contact points happen to be collinear
then obviously any moment applied about this line cannot be resisted by the
three contacts. We can therefore exclude this case and assume that the three
contact points are not collinear. The three contacts then define a unique plane
S and, at each contact point, three possibilities arise (see Figure 12.24):

• the friction cone intersects S in a planar cone;

• the friction cone intersects S in a line;

• the friction cone intersects S at a point.

The body is in force closure if and only if each friction cone intersects S in a
planar cone and S is also in planar force closure.

Theorem 12.8. Given a spatial rigid body restrained by three point contacts
with friction, the body is in force closure if and only if the friction cone at each
contact intersects the plane S of the contacts in a cone and the plane S is in
planar force closure.

Proof. First, the necessity condition – if the spatial rigid body is in force closure
then each friction cone intersects S in a planar cone and S is also in planar force
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Figure 12.24: Three possibilities for the intersection between a friction cone and a
plane.

closure – is easily verified: if the body is in spatial force closure then S (which is
a part of the body) must also be in planar force closure. Moreover, if even one
friction cone intersects S in a line or point then there will be external moments
(e.g., about the line between the remaining two contact points) that cannot be
resisted by the grasp.

To prove the su�ciency condition – if each friction cone intersects S in a
planar cone and S is also in planar force closure then the spatial rigid body is in
force closure – choose a fixed reference frame such that S lies in the x̂–ŷ-plane
and let ri 2 R3 denote the vector from the fixed-frame origin to contact point
i (see Figure 12.23). Denoting the contact force at i by fi 2 R3, the contact
wrench Fi 2 R6 is then of the form

Fi =


mi

fi

�
, (12.17)

where each mi = ri ⇥ fi, i = 1, 2, 3. Denote the arbitrary external wrench
Fext 2 R6 by

Fext =


mext

fext

�
2 R6. (12.18)

Force closure then requires that there exist contact wrenches Fi, i = 1, 2, 3, each
lying inside its respective friction cone, such that, for any external disturbance
wrench Fext, the following equality is satisfied:

F1 + F2 + F3 + Fext = 0 (12.19)

or, equivalently,

f1 + f2 + f3 + fext = 0, (12.20)

(r1 ⇥ f1) + (r2 ⇥ f2) + (r3 ⇥ f3) + mext = 0. (12.21)

If each contact force and moment, as well as the external force and moment,
is orthogonally decomposed into components lying on the plane spanned by S
(corresponding to the x̂–ŷ-plane in our chosen reference frame) and its normal
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subspace N (corresponding to the ẑ-axis in our chosen reference frame) then the
previous force-closure equalities can be written as

f1S + f2S + f3S = �fext,S , (12.22)

(r1 ⇥ f1S) + (r2 ⇥ f2S) + (r3 ⇥ f3S) = �mext,S , (12.23)

f1N + f2N + f3N = �fext,N , (12.24)

(r1 ⇥ f1N ) + (r2 ⇥ f2N ) + (r3 ⇥ f3N ) = �mext,N . (12.25)

In what follows we shall use S to refer both to the slice of the rigid body cor-
responding to the x̂–ŷ-plane and to the x̂–ŷ-plane itself; we will always identify
N with the ẑ-axis.

Proceeding with the proof of su�ciency, we now show that if S is in pla-
nar force closure then the body is in spatial force closure. In terms of Equa-
tions (12.24) and (12.25) we wish to show that, for any arbitrary forces fext,S 2
S, fext,N 2 N and arbitrary moments mext,S 2 S, mext,N 2 N , there exist
contact forces fiS 2 S, fiN 2 N , i = 1, 2, 3, that satisfy (12.24) and(12.25) such
that, for each i = 1, 2, 3, the contact force fi = fiS + fiN lies in friction cone i.

First consider the force-closure equations (12.24) and (12.25) in the nor-
mal direction N . Given an arbitrary external force fext,N 2 N and external
moment mext,S 2 S, Equations (12.24) and (12.25) constitute a set of three lin-
ear equations in three unknowns. From our assumption that the three contact
points are never collinear, these equations will always have a unique solution
set {f⇤

1N , f⇤
2N , f⇤

3N} in N .
Since S is assumed to be in planar force closure, for any arbitrary fext,S 2 S

and mext,N 2 N there will exist planar contact forces fiS 2 S, i = 1, 2, 3, that
lie inside their respective planar friction cones and also satisfy Equations (12.22)
and (12.23). This solution set is not unique: one can always find a set of internal
forces ⌘i 2 S, i = 1, 2, 3, each lying inside its respective friction cone, satisfying

⌘1 + ⌘2 + ⌘3 = 0, (12.26)

(r1 ⇥ ⌘1) + (r2 ⇥ ⌘2) + (r3 ⇥ ⌘3) = 0. (12.27)

(To see why such ⌘i exist, recall that since S is assumed to be in planar force
closure, solutions to (12.22) and (12.23) must exist for fext,S = µext,N = 0; these
solutions are precisely the internal forces ⌘i). Note that these two equations
constitute three linear equality constraints involving six variables, so that there
exists a three-dimensional linear subspace of solutions for {⌘1, ⌘2, ⌘3}.

Now, if {f1S , f2S , f3S} satisfy (12.22) and (12.23) then so will {f1S+⌘1, f2S+
⌘2, f3S + ⌘3}. The internal forces {⌘1, ⌘2, ⌘3} can, in turn, be chosen to have
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su�ciently large magnitudes that the contact forces

f1 = f⇤
1N + f1S + ⌘1, (12.28)

f2 = f⇤
2N + f2S + ⌘2, (12.29)

f3 = f⇤
3N + f3S + ⌘3 (12.30)

all lie inside their respective friction cones. This completes the proof of the
su�ciency condition.

12.2.3.2 Measuring the Quality of a Force-Closure Grasp

Friction forces are not always repeatable. For example, try putting a coin on a
book and tilting the book. The coin should begin to slide when the book is at
an angle ↵ = tan�1 µ with respect to the horizontal. If you do the experiment
several times then you may find a range of measured values of µ, owing to e↵ects
that are di�cult to model. For that reason, when choosing between grasps it
is reasonable to choose finger locations that minimize the friction coe�cient
needed to achieve force closure.

12.2.4 Duality of Force and Motion Freedoms

Our discussion of kinematic constraints and friction should have made it ap-
parent that, for any point contact and contact label, the number of equality
constraints on a body’s motion caused by that contact is equal to the number of
wrench freedoms it provides. For example, a breaking contact B provides zero
equality constraints on the body’s motion and also allows no contact force. A
fixed contact R provides three motion constraints (the motion of a point on the
body is specified) and three freedoms in the contact force: any wrench in the
interior of the contact wrench cone is consistent with the contact mode. Finally,
a slipping contact S provides one equality motion constraint (one equation on
the body’s motion must be satisfied to maintain the contact) and, for a given
motion satisfying the constraint, the contact wrench has only one freedom: the
magnitude of the contact wrench on the edge of the friction cone and opposing
the slipping direction. In the planar case, the motion constraints and wrench
freedoms for B, S, and R contacts are 0, 1, and 2, respectively.

12.3 Manipulation

So far we have studied the feasible twists and contact forces due to a set of
contacts. We have also considered two types of manipulation: form-closure and
force-closure grasping.
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Manipulation consists of much more than just grasping, however. It in-
cludes almost anything where manipulators impose motions or forces with the
purpose of achieving the motion or restraint of objects. Examples include car-
rying glasses on a tray without toppling them, pivoting a refrigerator about one
of its feet, pushing a sofa along the floor, throwing and catching a ball, trans-
porting parts on a vibratory conveyor, etc. Endowing a robot with methods
of manipulation beyond grasp-and-carry allows it to manipulate several parts
simultaneously, manipulate parts that are too large to be grasped or too heavy
to be lifted, or even to send parts outside the workspace of the end-e↵ector by
throwing them.

To plan such manipulation tasks, we use the contact kinematic constraints
of Section 12.1, the Coulomb friction law of Section 12.2, and the dynamics of
rigid bodies. Restricting ourselves to a single rigid body and using the notation
of Chapter 8, the body’s dynamics are written as

Fext +
X

kiFi = GV̇ � [adV ]TGV, ki � 0, Fi 2WCi, (12.31)

where V is the body’s twist, G is its spatial inertia matrix, Fext is the external
wrench acting on the body due to gravity, etc., WCi is the set of possible
wrenches acting on the body due to contact i, and

P
kiFi is the wrench due to

the contacts. All wrenches are written in the body’s center-of-mass frame. Now,
given a set of motion- or force-controlled contacts acting on the body, and the
initial state of the system, one method for solving for the motion of the body is
the following.

(a) Enumerate the set of possible contact modes considering the current state
of the system (e.g., a contact that is currently sticking can transition to
sliding or breaking). The contact modes consist of the contact labels R, S,
and B at each contact.

(b) For each contact mode, determine whether there exists a contact wrenchP
kiFi that is consistent with the contact mode and Coulomb’s law, and

an acceleration V̇ consistent with the kinematic constraints of the contact
mode, such that Equation (12.31) is satisfied. If so, this contact mode,
contact wrench, and body acceleration comprises a consistent solution to
the rigid-body dynamics.

This kind of “case analysis” may sound unusual; we are not simply solving a
set of equations. It also leaves open the possibility that we could find more than
one consistent solution, or perhaps no consistent solution. This is, in fact, the
case: we can define problems with multiple solutions (ambiguous problems)
and problems with no solutions (inconsistent problems). This state of a↵airs
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is a bit unsettling; surely there is exactly one solution to any real mechanics
problem! But this is the price we pay for using the assumptions of perfectly
rigid bodies and Coulomb friction. Despite the possibility of zero or multiple
solutions, for many problems the method described above will yield a unique
contact mode and motion.

Some of the manipulation tasks below are quasistatic, where the velocities
and accelerations of the bodies are small enough that inertial forces may be
ignored. Contact wrenches and external wrenches are always in force balance,
and Equation (12.31) reduces to

Fext +
X

kiFi = 0, ki � 0, Fi 2WCi. (12.32)

Below we illustrate the methods of this chapter with four examples.

Example 12.9 (A block carried by two fingers). Consider a planar block in
gravity supported by two fingers, as in Figure 12.25(a). The friction coe�-
cient between one finger and the block is µ = 1, and the other contact is
frictionless. Thus the cone of wrenches that can be applied by the fingers is
pos({F1, F2, F3}), as shown using moment labeling in Figure 12.25(b).

Our first question is whether the stationary fingers can keep the block at
rest. To do so, the fingers must provide a wrench F = (mz, fx, fy) = (0, 0,mg)
to balance the wrench Fext = (0, 0,�mg) due to gravity, where g > 0. As shown
in Figure 12.25(b), this wrench is not in the composite cone of possible contact
wrenches. Therefore the contact mode RR is not feasible, and the block will
move relative to the fingers.

Now consider the case where the fingers each accelerate to the left at 2g. In
this case the contact mode RR requires that the block also accelerate to the left at
2g. The wrench needed to cause this acceleration is (0,�2mg, 0). Therefore the
total wrench that the fingers must apply to the block is (0,�2mg, 0) � Fext =
(0,�2mg,mg). As shown in Figures 12.25(c), (d), this wrench lies inside the
composite wrench cone. Thus RR (the block stays stationary relative to the
fingers) is a solution as the fingers accelerate to the left at 2g.

This is called a dynamic grasp – inertial forces are used to keep the block
pressed against the fingers while the fingers move. If we plan to manipulate
the block using a dynamic grasp then we should make certain that no contact
modes other than RR are feasible, for completeness.

Moment labels are convenient for understanding this problem graphically,
but we can also solve it algebraically. The lower finger contacts the block at
(x, y) = (�3,�1) and the upper finger contacts the block at (1, 1). This gives
the basis contact wrenches

F1 =
1p
2
(�4,�1, 1), F2 =

1p
2
(�2, 1, 1), F3 = (1,�1, 0).
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(d)(c)

(b)(a)

F1 F2

F3

�mg

x̂
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k1F1 + k2F2

k3F3mg

acceleration
force

+ +
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� �

�

Figure 12.25: (a) A planar block in gravity supported by two robot fingers, the lower
with a friction cone with µ = 1 and the upper with µ = 0. (b) The composite wrench
cone that can be applied by the fingers represented using moment labels. To balance
the block against gravity, the fingers must apply the line of force shown. This line
has a positive moment with respect to points labeled ‘�’, and therefore it cannot be
generated by the two fingers. (c) For the block to match the fingers’ acceleration to
the left, the contacts must apply the vector sum of the wrench to balance gravity and
the wrench needed to accelerate the block to the left. This total wrench lies inside
the composite wrench cone, as the line of force has a positive moment with respect
to points labeled ‘+’ and a negative moment with respect to points labeled ‘�’. (d)
The total wrench applied by the fingers in (c) can be translated along the line of
action without changing the wrench. This allows us to visualize easily the components
k1F1 + k2F2 and k3F3 provided by the fingers.

Let the fingers’ acceleration in the x̂-direction be written ax. Then, under the
assumption that the block stays fixed with respect to the fingers (RR contact
mode), Equation (12.31) can be written

k1F1 + k2F2 + k3F3 + (0, 0,�mg) = (0,max, 0). (12.33)
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This yields three equations in the three unknowns, k1, k2, k3. Solving, we get

k1 = � 1

2
p

2
(ax + g)m, k2 =

1

2
p

2
(ax + 5g)m, k3 = �1

2
(ax � 3g)m.

For the ki to be nonnegative, we need �5g  ax  �g. For x̂-direction finger
accelerations in this range, a dynamic grasp is a consistent solution.

Example 12.10 (The meter-stick trick). Try this experiment. Get a meter
stick (or any similar long smooth stick) and balance it horizontally on your two
index fingers. Place your left finger near the 10 cm mark and your right finger
near the 60 cm mark. The center of mass is closer to your right finger but
still between your fingers, so that the stick is supported. Now, keeping your
left finger stationary, slowly move your right finger towards your left until they
touch. What happens to the stick?

If you didn’t try the experiment, you might guess that your right finger
passes under the center of mass of the stick, at which point the stick falls. If
you did try the experiment, you saw something di↵erent. Let’s see why.

Figure 12.26 shows the stick supported by two frictional fingers. Since all
motions are slow, we use the quasistatic approximation that the stick’s accel-
eration is zero and so the net contact wrench must balance the gravitational
wrench. As the two fingers move together, the stick must slip on one or both
fingers to accommodate the fact that the fingers are getting closer to each other.
Figure 12.26 shows the moment-labeling representation of the composite wrench
cone for three di↵erent contact modes: RSr, where the stick remains stationary
relative to the left finger and slips to the right relative to the right finger; SlR,
where the stick slips to the left relative to the left finger and remains stationary
relative to the right finger; and SlSr, where the stick slips on both fingers. It
is clear from the figure that only the SlR contact mode can provide a wrench
that balances the gravitational wrench. In other words, the right finger, which
supports more of the stick’s weight, remains fixed relative to the stick while the
left finger slides under the stick. Since the right finger is moving to the left in
the world frame, this means that the center of mass is moving to the left at
the same speed. This continues until the center of mass is halfway between the
fingers, at which point the stick transitions to the SlSr contact mode, and the
center of mass stays centered between the fingers until they meet. The stick
never falls.

Note that this analysis relies on the quasistatic assumption. It is easy to
make the stick fall if you move your right finger quickly; the friction force at the
right finger is not large enough to create the large stick acceleration needed to
maintain a sticking contact. Also, in your experiment, you might notice that,
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Figure 12.26: Top left: Two frictional fingers supporting a meter stick in gravity.
The other three panels show the moment labels for the RSr, SlR, and SlSr contact
modes. Only the SlR contact mode yields force balance.

when the center of mass is nearly centered, the stick does not actually achieve
the idealized SlSr contact mode, but instead switches rapidly between the SlR
and RSr contact modes. This occurs because the static friction coe�cient is
larger than the kinetic friction coe�cient.

Example 12.11 (Stability of an assembly). Consider the arch in Figure 12.27.
Is it stable under gravity?

For a problem like this, graphical planar methods are di�cult to use, since
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Figure 12.27: (Left) An arch under gravity. (Right) The friction cones at the contacts
of stone 1 and the contacts of stone 2.

there are potentially multiple moving bodies. Instead we test algebraically for
consistency of the contact mode with all contacts labeled R. The friction cones
are shown in Figure 12.27. With these labelings of the friction cone edges, the
arch can remain standing if there exist ki � 0 for i = 1, . . . , 16 satisfying the
following nine wrench-balance equations, three for each body:

8X

i=1

kiFi + Fext1 = 0,

16X

i=9

kiFi + Fext2 = 0,

�
12X

i=5

kiFi + Fext3 = 0,

where Fexti is the gravitational wrench on body i. The last set of equations
comes from the fact that the wrenches that body 1 applies to body 3 are equal
and opposite those that body 3 applies to body 1, and similarly for bodies 2
and 3.

This linear constraint satisfaction problem can be solved by a variety of
methods, including linear programming.

Example 12.12 (Peg insertion). Figure 12.28 shows a force-controlled planar
peg in two-point contact with a hole during insertion. Also shown are the contact
friction cones acting on the peg and the corresponding composite wrench cone,
illustrated using moment labels. If the force controller applies the wrench F1

to the peg, it may jam – the hole may generate contact forces that balance F1.
Therefore the peg may get stuck in this position. If the force controller applies
the wrench F2, however, the contacts cannot balance the wrench and insertion
proceeds.

If the friction coe�cients at the two contacts are large enough that the
two friction cones “see” each other’s base (Figure 12.22(b)), the peg is in force
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F1

F2

�

Figure 12.28: (Left) A peg in two-point contact with a hole. (Right) The wrench
F1 may cause the peg to jam, while the wrench F2 continues to push the peg into the
hole.

closure and the contacts may be able to resist any wrench (depending on the
internal force between the two contacts). The peg is said to be wedged.

12.4 Summary

• Three ingredients are needed to solve rigid-body contact problems with
friction: (1) the contact kinematics, which describes the feasible motions
of rigid bodies in contact; (2) a contact force model, which describes the
forces that can be transmitted through frictional contacts; and (3) rigid-
body dynamics, as described in Chapter 8.

• Let two rigid bodies, A and B, be in point contact at pA in a space frame.
Let n̂ 2 R3 be the unit contact normal, pointing into body A. Then the
spatial contact wrench F associated with a unit force along the contact
normal is F = [([pA]n̂)T n̂T]T. The impenetrability constraint is

FT(VA � VB) � 0,

where VA and VB are the spatial twists of A and B.

• A contact that is sticking or rolling is assigned the contact label R, a con-
tact that is sliding is assigned the contact label S, and a contact that is
breaking free is assigned the contact label B. For a body with multiple con-
tacts, the contact mode is the concatenation of the labels of the individual
contacts.
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• A single rigid body subjected to multiple stationary point contacts has a
homogeneous (rooted-at-the-origin) polyhedral convex cone of twists that
satisfy all the impenetrability constraints.

• A homogeneous polyhedral convex cone of planar twists in R3 can be equi-
valently represented by a convex region of signed rotation centers in the
plane.

• If a set of stationary contacts prevents a body from moving, purely by a
kinematic analysis considering only the contact normals, the body is said
to be in first-order form closure. The contact wrenches Fi for contacts
i = 1, . . . , j positively span Rn, where n = 3 for the planar case and n = 6
for the spatial case.

• At least four point contacts are required for first-order form closure of a
planar body, and at least seven point contacts are required for first-order
form closure of a spatial body.

• The Coulomb friction law states that the tangential frictional force mag-
nitude ft at a contact satisfies ft  µfn, where µ is the friction coe�cient
and fn is the normal force. When the contact is sticking, the frictional
force can be anything satisfying this constraint. When the contact is slid-
ing, ft = µfn and the direction of the friction force opposes the direction
of sliding.

• Given a set of frictional contacts acting on a body, the wrenches that can
be transmitted through these contacts is the positive span of the wrenches
that can be transmitted through the individual contacts. These wrenches
form a homogeneous convex cone. If the body is planar, or if the body
is spatial but the contact friction cones are approximated by polyhedral
cones, the wrench cone is also polyhedral.

• A homogeneous convex cone of planar wrenches in R3 can be represented
as a convex region of moment labels in the plane.

• A body is in force closure if the homogeneous convex cone of contact
wrenches from the stationary contacts is the entire wrench space (R3 or
R6). If the contacts are frictionless, force closure is equivalent to first-order
form closure.
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12.5 Notes and References

The kinematics of contact draw heavily from concepts in linear algebra (see, for
example, the texts [179, 118]) and, more specifically, screw theory [6, 127, 18, 2,
113]. Graphical methods for analysis of planar constraints were introduced by
Reuleaux [147], and Mason introduced graphical construction of contact labels
for planar kinematics and moment labels for representation of homogeneous
wrench cones [108, 109]. Polyhedral convex cones, and their application in
representing feasible twist cones and contact wrench cones, are discussed in [109,
66, 44, 55]. The formalization of the friction law used in this chapter was given by
Coulomb in 1781 [31]. Surprising consequences of Coulomb friction are problems
of ambiguity and inconsistency [94, 109, 112] and that infinite friction does not
necessarily prevent slipping at an active contact [102].

Form closure and force closure are discussed in detail in the Handbook of
Robotics [142]. In particular, that reference uses the term “frictional form
closure” to mean the same thing that “force closure” means in this chapter.
According to [142], force closure additionally requires that the hand doing the
grasping be su�ciently capable of controlling the internal “squeezing” forces.
Similar distinctions are made in [11] and the reviews [13, 12]. In this chapter
we do not consider the details of the robot hand and adopt a definition of force
closure based solely on the geometry and friction of the contacts.

The numbers of contacts needed for planar and spatial form closure were
established by Reuleaux [147] and Somo↵ [174], respectively. Other foundational
results in form and force closure are developed in [79, 120, 105] and are reviewed
in [12, 142]. An overview of grasp quality metrics is given in [142]. The result
that two friction cones that can “see” each other’s base are su�cient for planar
force closure was first reported in [125], and the result reviewed in this chapter
on three-finger force-closure grasps in 3D appeared in [89]. Salisbury applied
Grübler’s formula to calculate the mobility of a grasped object using kinematic
models of contact [111].

Second-order models of contact constraints were introduced by Rimon and
Burdick [149, 148, 150, 151] and used to show that curvature e↵ects allow form
closure by fewer contacts.

Jamming and wedging in robotic insertion were described in [172, 124, 192],
and the notion of a dynamic grasp was first introduced in [110].

An important class of methods for simulating systems of rigid bodies in
frictional contact, not covered in this chapter, are based on solving linear and
nonlinear complementarity problems [178, 130, 185]. These complementarity
formulations directly encode the fact that if a contact is breaking, then no force
is applied; if a contact is sticking, then the force can be anywhere inside the
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friction cone; and if a contact is sliding, the force is on the edge of the friction
cone.

General references on contact modeling and manipulation include Handbook
of Robotics chapters [66, 142] and the texts by Mason [109] and Murray et
al. [122].

12.6 Exercises

Exercise 12.1 Prove that the impenetrability constraint (12.4) is equivalent
to the constraint (12.7).

Exercise 12.2 Representing planar twists as centers of rotation.
(a) Consider the two planar twists V1 = (!z1, vx1, vy1) = (1, 2, 0) and V2 =

(!z2, vx2, vy2) = (1, 0,�1). Draw the corresponding CoRs in a planar
coordinate frame, and illustrate pos({V1, V2}) as CoRs.

(b) Draw the positive span of V1 = (!z1, vx1, vy1) = (1, 2, 0) and V2 =
(!z2, vx2, vy2) = (�1, 0,�1) as CoRs.

Exercise 12.3 A rigid body is contacted at p = (1, 2, 3) with a contact normal
into the body n̂ = (0, 1, 0). Write the constraint on the body’s twist V due to
this contact.

Exercise 12.4 A space frame {s} is defined at a contact between a stationary
constraint and a body. The contact normal, into the body, is along the ẑ-axis
of the {s} frame.

(a) Write down the constraint on the body’s twist V if the contact is a fric-
tionless point contact.

(b) Write down the constraints on V if the contact is a point contact with
friction.

(c) Write down the constraints on V if the contact is a soft contact.

Exercise 12.5 Figure 12.29 shows five stationary “fingers” contacting an ob-
ject. The object is in first-order form closure and therefore force closure. If
we take away one finger, the object may still be in form closure. For which
subsets of four fingers is the object still in form closure? Prove your answers
using graphical methods.
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1 3

4

2 5

Figure 12.29: A triangle in contact with five stationary fingers, yielding first-order
form closure and therefore force closure. Analyze the contact when one or more fingers
are removed. The hypotenuse of the triangle is 45� from the vertical on the page, and
contact normal 5 is 22.5� from the vertical.

Exercise 12.6 Draw the set of feasible twists as CoRs when the triangle of
Figure 12.29 is contacted only by finger 1. Label the feasible CoRs with their
contact labels.

Exercise 12.7 Draw the set of feasible twists as CoRs when the triangle of
Figure 12.29 is contacted only by fingers 1 and 2. Label the feasible CoRs with
their contact labels.

Exercise 12.8 Draw the set of feasible twists as CoRs when the triangle of
Figure 12.29 is contacted only by fingers 2 and 3. Label the feasible CoRs with
their contact labels.

Exercise 12.9 Draw the set of feasible twists as CoRs when the triangle of
Figure 12.29 is contacted only by fingers 1 and 5. Label the feasible CoRs with
their contact labels.

Exercise 12.10 Draw the set of feasible twists as CoRs when the triangle of
Figure 12.29 is contacted only by fingers 1, 2, and 3.

Exercise 12.11 Draw the set of feasible twists as CoRs when the triangle of
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Figure 12.30: A 4⇥ 4 planar square restrained by five frictionless point contacts.

Figure 12.29 is contacted only by fingers 1, 2, and 4.

Exercise 12.12 Draw the set of feasible twists as CoRs when the triangle of
Figure 12.29 is contacted only by fingers 1, 3, and 5.

Exercise 12.13 Refer again to the triangle of Figure 12.29.
(a) Draw the wrench cone from contact 5, assuming a friction angle ↵ = 22.5�

(a friction coe�cient µ = 0.41), using moment labeling.
(b) Add contact 2 to the moment-labeling drawing. The friction coe�cient at

contact 2 is µ = 1.

Exercise 12.14 Refer again to the triangle of Figure 12.29. Draw the moment-
labeling region corresponding to contact 1 with µ = 1 and contact 4 with µ = 0.

Exercise 12.15 The planar grasp of Figure 12.30 consists of five frictionless
point contacts. The square’s size is 4⇥ 4.

(a) Show that this grasp does not yield force closure.
(b) The grasp of part (a) can be modified to yield force closure by adding one

frictionless point contact. Draw all the possible locations for this contact.

Exercise 12.16 Assume the contacts shown in Figure 12.31 are frictionless
point contacts. Determine whether the grasp yields force closure. If it does not,
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45�45�

Figure 12.31: A planar disk restrained by three frictionless point contacts.

L L

L

L1 2

x

Figure 12.32: An L-shaped planar object restrained by two point contacts with
friction.

how many additional frictionless point contacts are needed to construct a force
closure grasp?

Exercise 12.17 Consider the L-shaped planar object of Figure 12.32.
(a) Suppose that both contacts are point contacts with friction coe�cient

µ = 1. Determine whether this grasp yields force closure.
(b) Now suppose that point contact 1 has friction coe�cient µ = 1, while

point contact 2 is frictionless. Determine whether this grasp yields force
closure.

(c) The vertical position of contact 1 is allowed to vary; denote its height by
x. Find all positions x such that the grasp is force closure with µ = 1 for
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contact 1 and µ = 0 for contact 2.

0.5

0.5
f1

f2

f3

x̂

ŷ
↵

h

c

1

Figure 12.33: A square restrained by three point contacts.

Exercise 12.18 A square is restrained by three point contacts as shown in
Figure 12.33: f1 is a point contact with friction coe�cient µ, while f2 and f3
are frictionless point contacts. If c = 1

4 and h = 1
2 , find the range of values of µ

such that grasp yields force closure.

1
1

A B

C

(a) Grasp for Exercise 12.19(a).

1

1

A B

C

�

(b) Grasp for Exercise 12.19(b).

Figure 12.34: Planar grasps.
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mg

Figure 12.35: A zero-thickness rod supported by a single contact.

Exercise 12.19
(a) For the planar grasp of Figure 12.34(a), assume contact C is frictionless,

while the friction coe�cient at contacts A and B is µ = 1. Determine
whether this grasp is force closure.

(b) For the planar grasp of Figure 12.34(b), assume contacts A and B are
frictionless, while contact C has a friction cone of half-angle �. Find the
range of values of � that makes this grasp force closure.

Exercise 12.20 Find a formula for the minimum friction coe�cient, as a
function of n, needed for a two-fingered planar force-closure grasp of an n-sided
regular polygon, where n is odd. Assume that the fingers can make contact only
with the edges, not the vertices. If the fingers could also contact the vertices,
how does your answer change? You can assume that the fingers are circular.

Exercise 12.21 Consider a table at rest, supported by four legs in frictional
contact with the floor. The normal forces provided by each leg are not unique;
there is an infinite set of solutions to the normal forces yielding a force balance
with gravity. What is the dimension of the space of normal-force solutions?
(Since there are four legs, the space of normal forces is four dimensional, and
the space of solutions must be a subspace of this four-dimensional space.) What
is the dimension of the space of contact-force solutions if we include tangential
frictional forces?

Exercise 12.22 A thin rod in gravity is supported from below by a single
stationary contact with friction, shown in Figure 12.35. One more frictionless
contact can be placed anywhere else on the top or the bottom of the rod. Indi-
cate all the places where this contact can be put so that the gravitational force
is balanced. Use moment labeling to justify your answer. Prove the same us-
ing algebraic force balance, and comment on how the magnitude of the normal
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Figure 12.36: A frictionless finger pushes a box to the right. Gravity acts downward.
Does the box slide flat against the table, does it tip over the lower right corner, or
does it slide and tip over that corner?

forces depends on the location of the second contact.

Exercise 12.23 A frictionless finger begins pushing a box over a table (Fig-
ure 12.36). There is friction between the box and the table, as indicated in the
figure. There are three possible contact modes between the box and the table:
either the box slides to the right flat against the table, or it tips over at the
right lower corner, or it tips over that corner while the corner also slides to the
right. Which actually occurs? Assume a quasistatic force balance and answer
the following questions.

(a) For each of the three contact modes, draw the moment-labeling regions
corresponding to the table’s friction cone edges active in that contact
mode.

(b) For each moment-labeling drawing, determine whether the pushing force
plus the gravitational force can be quasistatically balanced by the support
forces. From this, determine which contact mode actually occurs.

(c) Graphically show a di↵erent support-friction cone for which the contact
mode is di↵erent from your solution above.

Exercise 12.24 In Figure 12.37 body 1, of mass m1 with center of mass at
(x1, y1), leans on body 2, of mass m2 with center of mass at (x2, y2). Both
are supported by a horizontal plane, and gravity acts downward. The friction
coe�cient at all four contacts (at (0, 0), at (xL, y), at (xL, 0), and at (xR, 0)) is
µ > 0. We want to know whether it is possible for the assembly to stay standing
by some choice of contact forces within the friction cones. Write down the six
equations of force balance for the two bodies in terms of the gravitational forces
and the contact forces, and express the conditions that must be satisfied for this
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g

x̂

ŷ

(xL, 0) (xR, 0)

(x1, y1)
(x2, y2)

(xL, y)

body 1 body 2

Figure 12.37: One body leaning on another (Exercise 12.24).

assembly to stay standing. How many equations and unknowns are there?

Exercise 12.25 Write a program that accepts a set of contacts acting on a
planar body and determines whether the body is in first-order form closure.

Exercise 12.26 Write a program that accepts a set of contacts acting on a
spatial body and determines whether the body is in first-order form closure.

Exercise 12.27 Write a program that accepts a friction coe�cient and a set
of contacts acting on a planar body and determines whether the body is in force
closure.

Exercise 12.28 Write a program that accepts a friction coe�cient and a set
of contacts acting on a spatial body and determines whether the body is in force
closure. Use a polyhedral approximation to the friction cone at each contact
point that underestimates the friction cone and that has four facets.

Exercise 12.29 Write a program to simulate the quasistatic meter-stick trick
of Example 12.10. The program takes as input: the initial x-position of the
left finger, the right finger, and the stick’s center of mass; the constant speed
ẋ of the right finger (toward the left finger); and the static and kinetic friction
coe�cients, where µs � µk. The program should continue the simulation until
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the two fingers touch or until the stick falls. It should plot the position of the
left finger (which is constant), the right finger, and the center of mass as a
function of time. Include an example where µs = µk, an example where µs is
only slightly larger than µk, and an example where µs is much larger than µk.

Exercise 12.30 Write a program that determines whether a given assembly
of planar bodies can remain standing in gravity. Gravity g acts in the �ŷ-
direction. The assembly is described by m bodies, n contacts, and the friction
coe�cient µ, all entered by the user. Each of the m bodies is described by its
mass mi and the (xi, yi) location of its center of mass. Each contact is described
by the index i of each of the two bodies involved in the contact and the unit
normal direction (defined as into the first body). If the contact has only one
body involved, the second body is assumed to be stationary (e.g., ground). The
program should look for a set of coe�cients kj � 0 multiplying the friction-cone
edges at the contacts (if there are n contacts then there are 2n friction-cone edges
and coe�cients) such that each of the m bodies is in force balance, considering
gravity. Except in degenerate cases, if there are more force-balance equations
(3m) than unknowns (2n) then there is no solution. In the usual case, where
2n > 3m, there is a family of solutions, meaning that the force at each contact
cannot be known with certainty.

One approach is to have your program generate an appropriate linear pro-
gram and use the programming language’s built-in linear-programming solver.

Exercise 12.31 This is a generalization of the previous exercise. Now, instead
of simply deciding whether the assembly stays standing for a stationary base,
the base moves according to a trajectory specified by the user, and the program
determines whether the assembly can stay together during the trajectory (i.e.,
whether sticking contact at all contacts allows each body to follow the specified
trajectory). The three-dimensional trajectory of the base can be specified as a
polynomial in (x(t), y(t), ✓(t)), for a base reference frame defined at a particu-
lar position. For this problem, you also need to specify the scalar moment of
inertia about the center of mass for each body in the assembly. You may find
it convenient to express the motion and forces (gravitational, contact, inertial)
in the frame of each body and solve for the dynamics in the body frames. Your
program should check for stability (all contact normal forces are nonnegative
while satisfying the dynamics) at finely spaced discrete points along the trajec-
tory. It should return a binary result: the assembly can be maintained at all
points along the trajectory, or not.
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Chapter 13

Wheeled Mobile Robots

A kinematic model of a mobile robot governs how wheel speeds map to robot
velocities, while a dynamic model governs how wheel torques map to robot accel-
erations. In this chapter, we ignore the dynamics and focus on the kinematics.
We also assume that the robots roll on hard, flat, horizontal ground without
skidding (i.e., tanks and skid-steered vehicles are excluded). The mobile robot
is assumed to have a single rigid-body chassis (not articulated like a tractor-
trailer) with a configuration Tsb 2 SE(2) representing a chassis-fixed frame {b}
relative to a fixed space frame {s} in the horizontal plane. We represent Tsb

by the three coordinates q = (�, x, y). We also usually represent the velocity of
the chassis as the time derivative of the coordinates, q̇ = (�̇, ẋ, ẏ). Occasionally
it will be convenient to refer to the chassis’ planar twist Vb = (!bz, vbx, vby)
expressed in {b}, where

Vb =

2

4
!bz

vbx
vby

3

5 =

2

4
1 0 0
0 cos� sin�
0 � sin� cos�

3

5

2

4
�̇
ẋ
ẏ

3

5 , (13.1)

q̇ =

2

4
�̇
ẋ
ẏ

3

5 =

2

4
1 0 0
0 cos� � sin�
0 sin� cos�

3

5

2

4
!bz

vbx
vby

3

5 . (13.2)

This chapter covers kinematic modeling, motion planning, and feedback con-
trol for wheeled mobile robots, and concludes with a brief introduction to mobile
manipulation, which is the problem of controlling the end-e↵ector motion of a
robot arm mounted on a mobile platform.
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Figure 13.1: (Left) A typical wheel that rolls without sideways slip – here a unicycle
wheel. (Middle) An omniwheel. (Right) A mecanum wheel. Omniwheel and mecanum
wheel images from VEX Robotics, Inc., used with permission.

13.1 Types of Wheeled Mobile Robots

Wheeled mobile robots may be classified in two major categories, omnidirec-
tional and nonholonomic. Omnidirectional mobile robots have no equality
constraints on the chassis velocity q̇ = (�̇, ẋ, ẏ), while nonholonomic robots are
subject to a single Pfa�an velocity constraint A(q)q̇ = 0 (see Section 2.4 for an
introduction to Pfa�an constraints). For a car-like robot, this constraint pre-
vents the car from moving directly sideways. Despite this velocity constraint,
the car can reach any (�, x, y) configuration in an obstacle-free plane. In other
words, the velocity constraint cannot be integrated to an equivalent configura-
tion constraint, and therefore it is a nonholonomic constraint.

Whether a wheeled mobile robot is omnidirectional or nonholonomic depends
in part on the type of wheels it employs (Figure 13.1). Nonholonomic mobile
robots employ conventional wheels, such as you might find on your car: the
wheel rotates about an axle perpendicular to the plane of the wheel at the
wheel’s center, and optionally it can be steered by spinning the wheel about an
axis perpendicular to the ground at the contact point. The wheel rolls without
sideways slip, which is the source of the nonholonomic constraint on the robot’s
chassis.

Omnidirectional wheeled mobile robots typically employ either omniwheels
or mecanum wheels.1 An omniwheel is a typical wheel augmented with rollers
on its outer circumference. These rollers spin freely about axes in the plane of

1
These types of wheels are often called “Swedish wheels,” as they were invented by Bengt

Ilon working at the Swedish company Mecanum AB. The usage of, and the di↵erentiation

between, the terms “omniwheel,” “mecanum wheel,” and “Swedish wheel” is not completely

standard, but here we use one popular choice.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 13. Wheeled Mobile Robots 517

the wheel and tangential to the wheel’s outer circumference, and they allow
sideways sliding while the wheel drives forward or backward without slip in
that direction. Mecanum wheels are similar, except that the spin axes of the
circumferential rollers are not in the plane of the wheel (see Figure 13.1). The
sideways sliding allowed by omniwheels and mecanum wheels ensures that there
are no velocity constraints on the robot’s chassis.

Omniwheels and mecanum wheels are not steered, only driven forward or
backward. Because of their small diameter rollers, omniwheels and mecanum
wheels work best on hard, flat ground.

The issues in the modeling, motion planning, and control of wheeled mobile
robots depend intimately on whether the robot is omnidirectional or nonholo-
nomic, so we treat these two cases separately in the following sections.

13.2 Omnidirectional Wheeled Mobile Robots

13.2.1 Modeling

An omnidirectional mobile robot must have at least three wheels to achieve an
arbitrary three-dimensional chassis velocity q̇ = (�̇, ẋ, ẏ), since each wheel has
only one motor (controlling its forward–backward velocity). Figure 13.2 shows
two omnidirectional mobile robots, one with three omniwheels and one with
four mecanum wheels. Also shown are the wheel motions obtained by driving
the wheel motors as well as the free sliding motions allowed by the rollers.

Two important questions in kinematic modeling are the following.

(a) Given a desired chassis velocity q̇, at what speeds must the wheels be
driven?

(b) Given limits on the individual wheel driving speeds, what are the limits
on the chassis velocity q̇?

To answer these questions, we need to understand the wheel kinematics
illustrated in Figure 13.3. In a frame x̂w–ŷw at the center of the wheel, the
linear velocity of the center of the wheel is written v = (vx, vy), which satisfies


vx
vy

�
= vdrive


1
0

�
+ vslide


� sin �
cos �

�
, (13.3)

where � denotes the angle at which free “sliding” occurs (allowed by the passive
rollers on the circumference of the wheel), vdrive is the driving speed, and vslide is
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driving

free
“sliding”

driving

free 
“sliding”

Figure 13.2: (Left) A mobile robot with three omniwheels. Also shown for one
omniwheel is the direction in which the wheel can freely slide due to the rollers, as
well as the direction in which the wheel rolls without slipping when driven by the wheel
motor. (The upper image is from www.superdroidrobots.com, used with permission.)
(Right) The KUKA youBot mobile manipulator system, which uses four mecanum
wheels for its mobile base. (The upper image is from KUKA Roboter GmbH, used
with permission.)

the sliding speed. For an omniwheel � = 0 and, for a mecanum wheel, typically
� = ±45�. Solving Equation (13.3), we get

vdrive = vx + vy tan �,

vslide = vy/ cos �.

Letting r be the radius of the wheel and u be the driving angular speed of the
wheel,

u =
vdrive

r
=

1

r
(vx + vy tan �). (13.4)

To derive the full transformation from the chassis velocity q̇ = (�̇, ẋ, ẏ) to
the driving angular speed ui for wheel i, refer to the notation illustrated in

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Chapter 13. Wheeled Mobile Robots 519

v = (vx, vy)

vx + vy tan �

vy/ cos �

driving direction

free
component =

free “sliding” direction

driven component =

�

ŷw

x̂w

Figure 13.3: (Left) The driving direction and the direction in which the rollers
allow the wheel to slide freely. For an omniwheel � = 0 and, for a mecanum wheel,
typically � = ±45�. (Right) The driven and free sliding speeds for the wheel velocity
v = (vx, vy) expressed in the wheel frame x̂w–ŷw, where the x̂w-axis is aligned with
the forward driving direction.

Figure 13.4. The chassis frame {b} is at q = (�, x, y) in the fixed space frame
{s}. The center of the wheel and its driving direction are given by (�i, xi, yi)
expressed in {b}, the wheel’s radius is ri, and the wheel’s sliding direction is
given by �i. Then ui is related to q̇ by

ui = hi(�)q̇ =


1

ri

tan �i
ri

� 
cos�i sin�i
� sin�i cos�i

� 
�yi 1 0
xi 0 1

�2

4
1 0 0
0 cos� sin�
0 � sin� cos�

3

5

2

4
�̇
ẋ
ẏ

3

5 .

(13.5)

Reading from right to left: the first transformation expresses q̇ as Vb; the second
transformation produces the linear velocity at the wheel in {b}; the third trans-
formation expresses this linear velocity in the wheel frame x̂w–ŷw; and the final
transformation calculates the driving angular velocity using Equation (13.4).

Evaluating Equation (13.5) for hi(�), we get

hi(�) =
1

ri cos �i

2

4
xi sin(�i + �i)� yi cos(�i + �i)

cos(�i + �i + �)
sin(�i + �i + �)

3

5
T

. (13.6)

For an omnidirectional robot with m � 3 wheels, the matrix H(�) 2 Rm⇥3

mapping a desired chassis velocity q̇ 2 R3 to the vector of wheel driving speeds
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(xi, yi)

wheel i

(x, y)

ŷb

ŷ

x̂

b}{

{s}

driving direction

free “sliding”
 direction

�

x̂b

�i

�i

Figure 13.4: The fixed space frame {s}, a chassis frame {b} at (�, x, y) in {s},
and wheel i at (xi, yi) with driving direction �i, both expressed in {b}. The sliding
direction of wheel i is defined by �i.

u 2 Rm is constructed by stacking the m rows hi(�):

u = H(�)q̇ =

2

6664

h1(�)
h2(�)

...
hm(�)

3

7775

2

4
�̇
ẋ
ẏ

3

5 . (13.7)

We can also express the relationship between u and the body twist Vb. This
mapping does not depend on the chassis orientation �:

u = H(0)Vb =

2

6664

h1(0)
h2(0)

...
hm(0)

3

7775

2

4
!bz

vbx
vby

3

5 . (13.8)

The wheel positions and headings (�i, xi, yi) in {b}, and their free slid-
ing directions �i, must be chosen so that H(0) is rank 3. For example, if we
constructed a mobile robot of omniwheels whose driving directions and sliding
directions were all aligned, the rank of H(0) would be 2, and there would be no
way to controllably generate translational motion in the sliding direction.
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wheel 2
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wheel 2wheel 3 wheel 3
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ŷb
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�4 = ⇡/4 �1 = �⇡/4
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Figure 13.5: Kinematic models for mobile robots with three omniwheels and four
mecanum wheels. The radius of all wheels is r and the driving direction for each of
the mecanum wheels is �i = 0.

In the case m > 3, as for the four-wheeled youBot of Figure 13.2, choosing
u such that Equation (13.8) is not satisfied for any Vb 2 R3 implies that the
wheels must skid in their driving directions.

Using the notation in Figure 13.5, the kinematic model of the mobile robot
with three omniwheels is

u =

2

4
u1

u2

u3

3

5 = H(0)Vb =
1

r

2

4
�d 1 0
�d �1/2 � sin(⇡/3)
�d �1/2 sin(⇡/3)

3

5

2

4
!bz

vbx
vby

3

5 (13.9)

and the kinematic model of the mobile robot with four mecanum wheels is

u =

2

664

u1

u2

u3

u4

3

775 = H(0)Vb =
1

r

2

664

�`� w 1 �1
`+ w 1 1
`+ w 1 �1
�`� w 1 1

3

775

2

4
!bz

vbx
vby

3

5 . (13.10)

For the mecanum robot, to move in the direction +x̂b, all wheels drive forward
at the same speed; to move in the direction +ŷb, wheels 1 and 3 drive backward
and wheels 2 and 4 drive forward at the same speed; and to rotate in the
counterclockwise direction, wheels 1 and 4 drive backward and wheels 2 and 3
drive forward at the same speed. Note that the robot chassis is capable of the
same speeds in the forward and sideways directions.
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If the driving angular velocity of wheel i is subject to the bound |ui|  ui,max,
i.e.,

�ui,max  ui = hi(0)Vb  ui,max,

then two parallel constraint planes defined by �ui,max = hi(0)Vb and ui,max =
hi(0)Vb are generated in the three-dimensional space of body twists. Any Vb

between these two planes does not violate the maximum driving speed of wheel
i, while any Vb outside this slice is too fast for wheel i. The normal direction to
the constraint planes is hT

i (0), and the points on the planes closest to the origin
are �ui,maxhT

i (0)/khi(0)k2 and ui,maxhT
i (0)/khi(0)k2.

If the robot has m wheels then the region of feasible body twists V is bounded
by the m pairs of parallel constraint planes. The region V is therefore a convex
three-dimensional polyhedron. The polyhedron has 2m faces and the origin
(corresponding to zero twist) is in the center. Visualizations of the six-sided
and eight-sided regions V for the three-wheeled and four-wheeled models in
Figure 13.5 are shown in Figure 13.6.

13.2.2 Motion Planning

Since omnidirectional mobile robots are free to move in any direction, any of
the trajectory planning methods for kinematic systems in Chapter 9, and most
of the motion planning methods of Chapter 10, can be adapted.

13.2.3 Feedback Control

Given a desired trajectory qd(t), we can adopt the feedforward plus PI feedback
controller (11.15) to track the trajectory:

q̇(t) = q̇d(t) + Kp(qd(t)� q(t)) + Ki

Z t

0
(qd(t)� q(t)) dt, (13.11)

where Kp = kpI 2 R3⇥3 and Ki = kiI 2 R3⇥3 have positive values along
the diagonal and q(t) is an estimate of the actual configuration derived from
sensors. Then q̇(t) can be converted to the commanded wheel driving velocities
u(t) using Equation (13.7).

13.3 Nonholonomic Wheeled Mobile Robots

In Section 2.4, the k Pfa�an velocity constraints acting on a system with con-
figuration q 2 Rn were written as A(q)q̇ = 0, where A(q) 2 Rk⇥n. Instead of
specifying the k directions in which velocities are not allowed, we can write the
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!bz
!bz

vbxvbx

vbx
vbx

vbyvby

vbyvby

Figure 13.6: (Top row) Regions of feasible body twists V for the three-wheeled (left)
and four-wheeled (right) robots of Figure 13.5. Also shown for the three-wheeled robot
is the intersection with the !bz = 0 plane. (Bottom row) The bounds in the !bz = 0
plane (translational motions only).

allowable velocities of a kinematic system as a linear combination of n�k veloc-
ity directions. This representation is equivalent, and it has the advantage that
the coe�cients of the linear combinations are precisely the controls available to
us. We will see this representation in the kinematic models below.

The title of this section implies that the velocity constraints are not inte-
grable to equivalent configuration constraints. We will establish this formally
in Section 13.3.2.

13.3.1 Modeling

13.3.1.1 The Unicycle

The simplest wheeled mobile robot is a single upright rolling wheel, or unicycle.
Let r be the radius of the wheel. We write the configuration of the wheel as
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x̂

ŷ

ẑ

(x, y)
�

✓

Figure 13.7: A wheel rolling on a plane without slipping.

q = (�, x, y, ✓), where (x, y) is the contact point, � is the heading direction,
and ✓ is the rolling angle of the wheel (Figure 13.7). The configuration of the
“chassis” (e.g., the seat of the unicycle) is (�, x, y). The kinematic equations of
motion are

q̇ =

2

664

�̇
ẋ
ẏ
✓̇

3

775 =

2

664

0 1
r cos� 0
r sin� 0

1 0

3

775


u1

u2

�
= G(q)u = g1(q)u1 + g2(q)u2. (13.12)

The control inputs are u = (u1, u2), with u1 the wheel’s forward–backward
driving speed and u2 the heading direction turning speed. The controls are
subject to the constraints �u1,max  u1  u1,max and �u2,max  u2  u2,max.

The vector-valued functions gi(q) 2 R4 are the columns of the matrix G(q),
and they are called the tangent vector fields (also called the control vector
fields or simply the velocity vector fields) over q associated with the controls
ui = 1. Evaluated at a specific configuration q, gi(q) is a tangent vector (or
velocity vector) of the tangent vector field.

An example of a vector field on R2 is illustrated in Figure 13.8.
All our kinematic models of nonholonomic mobile robots will have the form

q̇ = G(q)u, as in Equation (13.12). Three things to notice about these models
are: (1) there is no drift – zero controls mean zero velocity; (2) the vector fields
gi(q) are generally functions of the configuration q; and (3) q̇ is linear in the
controls.

Since we are not usually concerned with the rolling angle of the wheel, we
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x̂

ŷ

Figure 13.8: The vector field (ẋ, ẏ) = (�y, x).

can drop the fourth row from (13.12) to get the simplified control system

q̇ =

2

4
�̇
ẋ
ẏ

3

5 =

2

4
0 1

r cos� 0
r sin� 0

3

5


u1

u2

�
. (13.13)

13.3.1.2 The Di↵erential-Drive Robot

The di↵erential-drive robot, or di↵-drive, is perhaps the simplest wheeled
mobile robot architecture. A di↵-drive robot consists of two independently
driven wheels of radius r that rotate about the same axis, as well as one or more
caster wheels, ball casters, or low-friction sliders that keep the robot horizontal.
Let the distance between the driven wheels be 2d and choose the (x, y) reference
point halfway between the wheels (Figure 13.9). Writing the configuration as
q = (�, x, y, ✓L, ✓R), where ✓L and ✓R are the rolling angles of the left and right
wheels, respectively, the kinematic equations are

q̇ =

2

66664

�̇
ẋ
ẏ
✓̇L
✓̇R

3

77775
=

2

66664

�r/2d r/2d
r
2 cos� r

2 cos�
r
2 sin� r

2 sin�
1 0
0 1

3

77775


uL

uR

�
, (13.14)
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x̂

ŷ (x, y)

d �

Figure 13.9: A di↵-drive robot consisting of two typical wheels and one ball caster
wheel, shaded gray.

where uL is the angular speed of the left wheel and uR that of the right. A
positive angular speed of each wheel corresponds to forward motion at that
wheel. The control value at each wheel is taken from the interval [�umax, umax].

Since we are not usually concerned with the rolling angles of the two wheels,
we can drop the last two rows to get the simplified control system

q̇ =

2

4
�̇
ẋ
ẏ

3

5 =

2

4
�r/2d r/2d
r
2 cos� r

2 cos�
r
2 sin� r

2 sin�

3

5


uL

uR

�
. (13.15)

Two advantages of a di↵-drive robot are its simplicity (typically the motor
is attached directly to the axle of each wheel) and high maneuverability (the
robot can spin in place by rotating the wheels in opposite directions). Casters
are often not appropriate for outdoor use, however.

13.3.1.3 The Car-Like Robot

The most familiar wheeled vehicle is a car, with two steered front wheels and
two fixed-heading rear wheels. To prevent slipping of the front wheels, they are
steered using Ackermann steering, as illustrated in Figure 13.10. The center
of rotation of the car’s chassis lies on the line passing through the rear wheels
at the intersection with the perpendicular bisectors of the front wheels.

To define the configuration of the car, we ignore the rolling angles of the four
wheels and write q = (�, x, y, ), where (x, y) is the location of the midpoint
between the rear wheels, � is the car’s heading direction, and  is the steering
angle of the car, defined at a virtual wheel at the midpoint between the front
wheels. The controls are the forward speed v of the car at its reference point
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CoR

(x, y)

rmin

 

�
ŷ

x̂{s}

Figure 13.10: The two front wheels of a car are steered at di↵erent angles using
Ackermann steering such that all wheels roll without slipping (i.e., the wheel heading
direction is perpendicular to the line connecting the wheel to the CoR). The car is
shown executing a turn at its minimum turning radius rmin.

and the angular speed w of the steering angle. The car’s kinematics are

q̇ =

2

664

�̇
ẋ
ẏ
 ̇

3

775 =

2

664

(tan )/` 0
cos� 0
sin� 0

0 1

3

775


v
w

�
, (13.16)

where ` is the wheelbase between the front and rear wheels. The control v is
limited to a closed interval [vmin, vmax] where vmin < 0 < vmax, the steering rate
is limited to [�wmax, wmax] with wmax > 0, and the steering angle  is limited
to [� max, max] with  max > 0.

The kinematics (13.16) can be simplified if the steering control is actually
just the steering angle  and not its rate w. This assumption is justified if the
steering rate limit wmax is high enough that the steering angle can be changed
nearly instantaneously by a lower-level controller. In this case,  is eliminated
as a state variable, and the car’s configuration is simply q = (�, x, y). We use
the control inputs (v,!), where v is still the car’s forward speed and ! is now its
rate of rotation. These can be converted to the controls (v, ) by the relations

v = v,  = tan�1

✓
`!

v

◆
. (13.17)

The constraints on the controls (v,!) due to the constraints on (v, ) take a
somewhat complicated form, as we will see shortly.
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The simplified car kinematics can now be written

q̇ =

2

4
�̇
ẋ
ẏ

3

5 = G(q)u =

2

4
0 1

cos� 0
sin� 0

3

5


v
!

�
. (13.18)

The nonholonomic constraint implied by (13.18) can be derived using one of the
equations from (13.18),

ẋ = v cos�,

ẏ = v sin�,

to solve for v, then substituting the result into the other equation to get

A(q)q̇ = [0 sin� � cos�]q̇ = ẋ sin�� ẏ cos� = 0.

13.3.1.4 Canonical Simplified Model for Nonholonomic Mobile Robots

The kinematics (13.18) gives a canonical simplified model for nonholonomic mo-
bile robots. Using control transformations such as (13.17), the simplified uni-
cycle kinematics (13.13) and the simplified di↵erential-drive kinematics (13.15)
can also be expressed in this form. The control transformation for the simplified
unicycle kinematics (13.13) is

u1 =
v

r
, u2 = !

and the transformation for the simplified di↵-drive kinematics (13.15) is

uL =
v � !d

r
, uR =

v + !d

r
.

With these input transformations, the only di↵erence between the simplified
unicycle, di↵-drive robot, and car kinematics is the control limits on (v,!).
These are illustrated in Figure 13.11.

We can use the two control inputs (v,!) in the canonical model (13.18) to
directly control the two components of the linear velocity of a reference point
P fixed to the robot chassis. This is useful when a sensor is located at P , for
example. Let (xP , yP ) be the coordinates of P in the world frame, and (xr, yr)
be its (constant) coordinates in the chassis frame {b} (Figure 13.12). To find
the controls (v,!) needed to achieve a desired world-frame motion (ẋP , ẏP ), we
first write 

xP

yP

�
=


x
y

�
+


cos� � sin�
sin� cos�

� 
xr

yr

�
. (13.19)
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unicycle diff-drive robot car forward-only car

! ! ! !

v v v v

Figure 13.11: The (v,!) control sets for the simplified unicycle, di↵-drive robot,
and car kinematics. For the car with a reverse gear, control set illustrates that it is
incapable of turning in place. The angle of the sloped lines in its bowtie control set
is determined by its minimum turning radius. If a car has no reverse gear, only the
right-hand half of the bowtie is available.

(x, y)

ŷb
x̂b

�

(xr, yr)P

Figure 13.12: The point P is located at (xr, yr) in the chassis-fixed frame {b}.

Di↵erentiating, we obtain


ẋP

ẏP

�
=


ẋ
ẏ

�
+ �̇


� sin� � cos�

cos� � sin�

� 
xr

yr

�
. (13.20)

Substituting ! for �̇ and (v cos�, v sin�) for (ẋ, ẏ) and solving, we get


v
!

�
=

1

xr


xr cos�� yr sin� xr sin�+ yr cos�

� sin� cos�

� 
ẋP

ẏP

�
. (13.21)

This equation may be read as [v !]T = J�1(q)[ẋP ẏP ]T, where J(q) is the
Jacobian relating (v,!) to the world-frame motion of P . Note that the Jacobian
J(q) is singular when P is chosen on the line xr = 0. Points on this line, such as
the midway point between the wheels of a di↵-drive robot or between the rear
wheels of a car, can only move in the heading direction of the vehicle.
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13.3.2 Controllability

The feedback control for an omnidirectional robot is simple, as there is a set
of wheel driving speeds for any desired chassis velocity q̇ (Equation (13.7)). In
fact, if the goal of the feedback controller is simply to stabilize the robot to the
origin q = (0, 0, 0), rather than trajectory tracking as in the control law (13.11),
we could use the even simpler feedback controller

q̇(t) = �Kq(t) (13.22)

for any positive-definite K. The feedback gain matrix �K acts like a spring to
pull q to the origin, and Equation (13.7) is used to transform q̇(t) to u(t). The
same type of “linear spring” controller could be used to stabilize the point P on
the canonical nonholonomic robot (Figure 13.12) to (xP , yP ) = (0, 0) since, by
Equation (13.21), any desired (ẋP , ẏP ) can be achieved by the controls (v,!).2

In short, the kinematics of the omnidirectional robot, as well as the kine-
matics of the point P for the nonholonomic robot, can be rewritten in the
single-integrator form

ẋ = ⌫, (13.23)

where x is the configuration we are trying to control and ⌫ is a “virtual control”
that is actually implemented using the transformations in Equation (13.7) for
an omnidirectional robot or Equation (13.21) for the control of P by a nonholo-
nomic robot. Equation (13.23) is a simple example of the more general class of
linear control systems

ẋ = Ax + B⌫, (13.24)

which are known to be linearly controllable if the Kalman rank condition
is satisfied:

rank [B AB A2B · · · An�1B] = dim(x) = n,

where x 2 Rn, ⌫ 2 Rm, A 2 Rn⇥n, and B 2 Rn⇥m. In Equation (13.23), A = 0
and B is the identity matrix, trivially satisfying the rank condition for linear
controllability since m = n. Linear controllability implies the existence of the
simple linear control law

⌫ = �Kx,

as in Equation (13.22), to stabilize the origin.
There is no linear controller that can stabilize the full chassis configuration

to q = 0 for a nonholonomic robot, however; the nonholonomic robot is not
linearly controllable. In fact, there is no controller that is a continuous function

2
For the moment we ignore the di↵erent constraints on (v,!) for the unicycle, di↵-drive

robot, and car-like robot, as they do not change the main result.
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of q which can stabilize q = 0. This fact is embedded in the following well-known
result, which we state without proof.

Theorem 13.1. A system q̇ = G(q)u with rank G(0) < dim(q) cannot be
stabilized to q = 0 by a continuous time-invariant feedback control law.

This theorem applies to our canonical nonholonomic robot model, since the
rank of G(q) is 2 everywhere (there are only two control vector fields), while the
chassis configuration is three dimensional.

For nonlinear systems of the form q̇ = G(q)u, there are other notions of
controllability. We consider a few of these next and show that, even though the
canonical nonholonomic robot is not linearly controllable, it still satisfies other
important notions of controllability. In particular, the velocity constraint does
not integrate to a configuration constraint – the set of reachable configurations
is not reduced because of the velocity constraint.

13.3.2.1 Definitions of Controllability

Our definitions of nonlinear controllability rely on the notion of the time- and
space-limited reachable sets of the nonholonomic robot from a configuration q.

Definition 13.2. Given a time T > 0 and a neighborhood3 W of an initial
configuration q, the reachable set of configurations from q at time T by feasible
trajectories remaining inside W is written RW (q, T ). We further define the
union of reachable sets at times t 2 [0, T ]:

RW (q, T ) =
[

0tT

RW (q, t).

We now provide some standard definitions of nonlinear controllability.

Definition 13.3. A robot is controllable from q if, for any qgoal, there exists
a control trajectory u(t) that drives the robot from q to qgoal in finite time
T . The robot is small-time locally accessible (STLA) from q if, for any
time T > 0 and any neighborhood W , the reachable set RW (q, T ) is a full-
dimensional subset of the configuration space. The robot is small-time locally
controllable (STLC) from q if, for any time T > 0 and any neighborhood W ,
the reachable set RW (q, T ) is a neighborhood of q.

3
A neighborhood W of a configuration q is any full-dimensional subset of configuration

space containing q in its interior. For example, the set of configurations in a ball of radius

r > 0 centered at q (i.e., all qb satisfying kqb � qk < r) is a neighborhood of q.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

532 13.3. Nonholonomic Wheeled Mobile Robots

W

qq

STLA STLC

Figure 13.13: Illustrations of small-time local accessibility (STLA) and small-time
local controllability (STLC) in a two-dimensional space. The shaded regions are the
reachable sets without leaving the neighborhood W .

Small-time local accessibility and small-time local controllability are illus-
trated in Figure 13.13 for a two-dimensional configuration space. Clearly STLC
at q is a stronger condition than STLA at q. If a system is STLC at all q, then
it is controllable from any q by the patching together of paths in neighborhoods
from q to qgoal.

For all the examples in this chapter, if a controllability property holds for
any q then it holds for all q, since the maneuverability of the robot does not
change with its configuration.

Consider the examples of a car and of a forward-only car with no reverse
gear. A forward-only car is STLA, as we will see shortly, but it is not STLC:
if it is confined to a tight space (a small neighborhood W ), it cannot reach
configurations directly behind its initial configuration. A car with a reverse
gear is STLC, however. Both cars are controllable in an obstacle-free plane,
because even a forward-only car can drive anywhere.

If there are obstacles in the plane, there may be some free-space configura-
tions that the forward-only car cannot reach but that the STLC car can reach.
(Consider an obstacle directly in front of the car, for example.) If the obstacles
are all defined as closed subsets of the plane containing their boundaries, the
STLC car can reach any configuration in its connected component of the free
space, despite its velocity constraint.

It is worth thinking about this last statement for a moment. All free configu-
rations have collision-free neighborhoods, since the free space is defined as open
and the obstacles are defined as closed (containing their boundaries). Therefore
it is always possible to maneuver in any direction from any free configuration.
If your car is shorter than the available parking space, you can parallel park
into it, even if it takes a long time!

If any controllability property holds (controllability, STLA, or STLC) then
the reachable configuration space is full dimensional, and therefore any velocity
constraints on the system are nonholonomic.
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13.3.2.2 Controllability Tests

Consider a driftless linear-in-the-control (control-a�ne) system

q̇ = G(q)u =
mX

i=1

gi(q)ui, q 2 Rn, u 2 U ⇢ Rm, m < n, (13.25)

generalizing the canonical nonholonomic model where n = 3 and m = 2. The set
of feasible controls is U ⇢ Rm. For example, the control sets U for the unicycle,
di↵-drive, car-like, and forward-only car-like robots were shown in Figure 13.11.
In this chapter we consider two types of control sets U : those whose positive
linear span is Rm, i.e., pos(U) = Rm, such as the control sets for the unicycle,
di↵-drive robot, and car in Figure 13.11, and those whose positive linear span
does not cover Rm but whose linear span does, i.e., span(U) = Rm, such as the
control set for the forward-only car in Figure 13.11.

The local controllability properties (STLA or STLC) of (13.25) depend on
the noncommutativity of motions along the vector fields gi. Let F gi

✏ (q) be the
configuration reached by following the vector field gi for time ✏ starting from q.
Then two vector fields gi(q) and gj(q) commute if F

gj
✏ (F gi

✏ (q)) = F gi
✏ (F

gj
✏ (q)),

i.e., the order of following the vector fields does not matter. If they do not
commute, i.e., F

gj
✏ (F gi

✏ (q)) � F gi
✏ (F

gj
✏ (q)) 6= 0 then the order of application

of the vector fields a↵ects the final configuration. In addition, defining the
noncommutativity as

�q = F gj
✏ (F gi

✏ (q))� F gi
✏ (F gj

✏ (q)) for small ✏,

if �q is in a direction that cannot be achieved directly by any other vector
field gk then switching between gi and gj can create motion in a direction not
present in the original set of vector fields. A familiar example is parallel parking
a car: there is no vector field corresponding to direct sideways translation but,
by alternating forward and backward motion along two di↵erent vector fields,
it is possible to create a net motion to the side.

To calculate q(2✏) = F
gj
✏ (F gi

✏ (q(0))) for small ✏ approximately, we use a
Taylor expansion and truncate the expansion at O(✏3). We start by following gi
for a time ✏ and use the fact that q̇ = gi(q) and q̈ = (@gi/@q)q̇ = (@gi/@q)gi(q):

q(✏) = q(0) + ✏q̇(0) +
1

2
✏2q̈(0) + O(✏3)

= q(0) + ✏gi(q(0)) +
1

2
✏2
@gi
@q

gi(q(0)) + O(✏3).
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Now, after following gj for a time ✏:

q(2✏) = q(✏) + ✏gj(q(✏)) +
1

2
✏2
@gj
@q

gj(q(✏)) + O(✏3)

= q(0) + ✏gi(q(0)) +
1

2
✏2
@gi
@q

gi(q(0))

+ ✏gj
�
q(0) + ✏gi(q(0))

�
+

1

2
✏2
@gj
@q

gj(q(0)) + O(✏3)

= q(0) + ✏gi(q(0)) +
1

2
✏2
@gi
@q

gi(q(0))

+ ✏gj(q(0)) + ✏2
@gj
@q

gi(q(0)) +
1

2
✏2
@gj
@q

gj(q(0)) + O(✏3). (13.26)

Note the presence of ✏2(@gj/@q)gi, the only term that depends on the order of
the vector fields. Using the expression (13.26), we can calculate the noncom-
mutativity:

�q = F gj
✏ (F gi

✏ (q))�F gi
✏ (F gj

✏ (q)) = ✏2
✓
@gj
@q

gi �
@gi
@q

gj

◆
(q(0))+O(✏3). (13.27)

In addition to measuring the noncommutativity, �q is also equal to the net
motion (to order ✏2) obtained by following gi for time ✏, then gj for time ✏, then
�gi for time ✏, and then �gj for time ✏.

The term (@gj/@q)gi � (@gi/@q)gj in Equation (13.27) is important enough
for us to give it its own name:

Definition 13.4. The Lie bracket of the vector fields gi(q) and gj(q) is

[gi, gj ](q) =

✓
@gj
@q

gi �
@gi
@q

gj

◆
(q). (13.28)

This Lie bracket is the same as that for twists, introduced in Section 8.2.2.
The only di↵erence is that the Lie bracket in Section 8.2.2 was thought of as the
noncommutativity of two twists Vi, Vj defined at a given instant, rather than
of two velocity vector fields defined over all configurations q. The Lie bracket
from Section 8.2.2 would be identical to the expression in Equation (13.28) if the
constant twists were represented as vector fields gi(q), gj(q) in local coordinates
q. See Exercise 13.20, for example.

The Lie bracket of two vector fields gi(q) and gj(q) should itself be thought
of as a vector field [gi, gj ](q), where approximate motion along the Lie bracket
vector field can be obtained by switching between the original two vector fields.
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As we saw in our Taylor expansion, motion along the Lie bracket vector field is
slow relative to the motions along the original vector fields; for small times ✏,
motion of order ✏ can be obtained in the directions of the original vector fields,
while motion in the Lie bracket direction is only of order ✏2. This agrees with
our common experience that moving a car sideways by parallel parking motions
is slow relative to forward and backward or turning motions, as discussed in the
next example.

Example 13.5. Consider the canonical nonholonomic robot with vector fields
g1(q) = (0, cos�, sin�) and g2(q) = (1, 0, 0). Writing g1(q) and g2(q) as column
vectors, the Lie bracket vector field g3(q) = [g1, g2](q) is given by

g3(q) = [g1, g2](q) =

✓
@g2
@q

g1 �
@g1
@q

g2

◆
(q)

=

2

4
0 0 0
0 0 0
0 0 0

3

5

2

4
0

cos�
sin�

3

5�

2

4
0 0 0

� sin� 0 0
cos� 0 0

3

5

2

4
1
0
0

3

5

=

2

4
0

sin�
� cos�

3

5 .

The Lie bracket direction is a sideways “parallel parking” motion, as illustrated
in Figure 13.14. The net motion obtained by following g1 for ✏, g2 for ✏, �g1
for ✏, and �g2 for ✏ is a motion of order ✏2 in this Lie bracket direction, plus a
term of order ✏3.

From the result of Example 13.5, no matter how small the maneuvering
space is for a car with a reverse gear, it can generate sideways motion. Thus
we have shown that the Pfa�an velocity constraint implicit in the kinematics
q̇ = G(q)u for the canonical nonholonomic mobile robot is not integrable to a
configuration constraint.

A Lie bracket [gi, gj ] is called a Lie product of degree 2, because the original
vector fields appear twice in the bracket. For the canonical nonholonomic model,
it is only necessary to consider the degree-2 Lie product to show that there are no
configuration constraints. To test whether there are configuration constraints for
more general systems of the form (13.25), it may be necessary to consider nested
Lie brackets, such as [gi, [gj , gk]] or [gi, [gi, [gi, gj ]]], which are Lie products of
degree 3 and 4, respectively. Just as it is possible to generate motions in Lie
bracket directions by switching between the original vector fields, it is possible to
generate motion in Lie product directions of degree greater than 2. Generating
motions in these directions is even slower than for degree-2 Lie products.
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Top View of Unicycle

g1
g2

� g1

O( 3)

x̂

ŷ

✓̂

ŷ

x̂

2[g1, g2]� g2

Figure 13.14: The Lie bracket, [g1, g2](q), of the forward–backward vector field g1(q)
and the spin-in-place vector field g2(q) is a sideways vector field.

The Lie algebra of a set of vector fields is defined by all Lie products of all
degrees, including Lie products of degree 1 (the original vector fields themselves):

Definition 13.6. The Lie algebra of a set of vector fields G = {g1, . . . , gm},
written Lie(G), is the linear span of all Lie products of degree 1, . . . ,1 of the
vector fields G.

For example, for G = {g1, g2}, Lie(G) is given by the linear combinations of
the following Lie products:

degree 1: g1, g2
degree 2: [g1, g2]
degree 3: [g1, [g1, g2]]; [g2, [g1, g2]]
degree 4: [g1, [g1, [g1, g2]]]; [g1, [g2, [g1, g2]]]; [g2, [g1, [g1, g2]]]; [g2, [g2, [g1, g2]]]

...
...

Since Lie products obey the following identities,

• [gi, gi] = 0,

• [gi, gj ] = �[gj , gi],
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• [gi, [gj , gk]] + [gk, [gi, gj ]] + [gj , [gk, gi]] = 0 (the Jacobi identity),

not all bracket combinations need to be considered at each degree level.
In practice there will be a finite degree k beyond which higher-degree Lie

products yield no more information about the Lie algebra. This happens, for
example, when the dimension of the Lie products generated so far is n at all q,
i.e., dim(Lie(G)(q)) = dim(q) = n for all q; no further Lie brackets can yield new
motion directions, as all motion directions have already been obtained. If the
dimension of the Lie products generated so far is less than n, however, in general
there is no way to know when to stop trying higher-degree Lie products.4

With all this as background, we are finally ready to state our main theorem
on controllability.

Theorem 13.7. The control system (13.25), with G = {g1(q), . . . , gm(q)},
is small-time locally accessible from q if dim(Lie(G)(q)) = dim(q) = n and
span(U) = Rm. If additionally pos(U) = Rm then the system is small-time
locally controllable from q.

We omit a formal proof, but intuitively we can argue as follows. If the Lie
algebra is full rank then the vector fields (followed both forward and backward)
locally permit motion in any direction. If pos(U) = Rm (as for a car with a
reverse gear) then it is possible to directly follow all vector fields forward or
backward, or to switch between feasible controls in order to follow any vector
field forward and backward arbitrarily closely, and therefore the Lie algebra
rank condition implies STLC. If the controls satisfy only span(U) = Rm (like
a forward-only car), then some vector fields may be followed only forward or
backward. Nevertheless, the Lie algebra rank condition ensures that there are
no equality constraints on the reachable set, so the system is STLA.

For any system of the form (13.25), the question whether the velocity con-
straints are integrable is finally answered by Theorem 13.7. If the system is
STLA at any q, the constraints are not integrable.

Let’s apply Theorem 13.7 to a few examples.

Example 13.8 (Controllability of the canonical nonholonomic mobile robot).
In Example 13.5 we computed the Lie bracket g3 = [g1, g2] = (0, sin�,� cos�)
for the canonical nonholonomic robot. Putting the column vectors g1(q), g2(q),

4
When the system (13.25) is known to be regular, however, if there is a degree k that

yields no new motion directions not included at lower degrees then there is no need to look

at higher-degree Lie products.
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and g3(q) side by side to form a matrix and calculating its determinant, we find

det[ g1(q) g2(q) g3(q) ] = det

2

4
0 1 0

cos� 0 sin�
sin� 0 � cos�

3

5 = cos2 �+ sin2 � = 1,

i.e., the three vector fields are linearly independent at all q, and therefore the
dimension of the Lie algebra is 3 at all q. By Theorem 13.7 and the control sets
illustrated in Figure 13.11, the unicycle, di↵-drive, and car with a reverse gear
are STLC at all q, while the forward-only car is only STLA at all q. Each of the
unicycle, di↵-drive, car, and forward-only car is controllable in an obstacle-free
plane.

Example 13.9 (Controllability of the full configuration of the unicycle). We al-
ready know from the previous example that the unicycle is STLC on its (�, x, y)
subspace; what if we include the rolling angle ✓ in the description of the con-
figuration? According to Equation (13.12), for q = (�, x, y, ✓), the two vector
fields are g1(q) = (0, r cos�, r sin�, 1) and g2(q) = (1, 0, 0, 0). Calculating the
degree-2 and degree-3 Lie brackets

g3(q) = [g1, g2](q) = (0, r sin�,�r cos�, 0),

g4(q) = [g2, g3](q) = (0, r cos�, r sin�, 0),

we see that these directions correspond to sideways translation and to forward–
backward motion without a change in the wheel rolling angle ✓, respectively.
These directions are clearly linearly independent of g1(q) and g2(q), but we can
confirm this by again writing the gi(q) as column vectors and evaluating

det[ g1(q) g2(q) g3(q) g4(q) ] = �r2,

i.e., dim(Lie(G)(q)) = 4 for all q. Since pos(U) = R2 for the unicycle, by Fig-
ure 13.11, the unicycle is STLC at all points in its four-dimensional configuration
space.

You can come to this same conclusion by constructing a short “parallel
parking” type maneuver which results in a net change in the rolling angle ✓
with zero net change in the other configuration variables.

Example 13.10 (Controllability of the full configuration of the di↵-drive). The
full configuration of the di↵-drive is q = (�, x, y, ✓L, ✓R), including the angles of
both wheels. The two control vector fields are given in Equation (13.14). Taking
the Lie brackets of these vector fields, we find that we can never create more
than four linearly independent vector fields, i.e.,

dim(Lie(G)(q)) = 4
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at all q. This is because there is a fixed relationship between the two wheel
angles (✓L, ✓R) and the angle of the robot chassis �. Therefore the three velocity
constraints (dim(q) = 5, dim(u) = 2) implicit in the kinematics (13.14) can be
viewed as two nonholonomic constraints and one holonomic constraint. In the
full five-dimensional configuration space, the di↵-drive is nowhere STLA.

Since usually we worry only about the configuration of the chassis, this
negative result is not of much concern.

13.3.3 Motion Planning

13.3.3.1 Obstacle-Free Plane

It is easy to find feasible motions between any two chassis configurations q0 and
qgoal in an obstacle-free plane for any of the four nonholonomic robot models (a
unicycle, a di↵-drive, a car with a reverse gear, and a forward-only car). The
problem gets more interesting when we try to optimize an objective function.
Below, we consider shortest paths for the forward-only car, shortest paths for
the car with a reverse gear, and fastest paths for the di↵-drive. The solutions to
these problems depend on optimal control theory, and the proofs can be found
in the original references (see Section 13.7).

Shortest Paths for the Forward-Only Car The shortest-path problem in-
volves finding a path from q0 to qgoal that minimizes the length of the path that is
followed by the robot’s reference point. This is not an interesting question for the
unicycle or the di↵-drive; a shortest path for each of them comprises a rotation
to point toward the goal position (xgoal, ygoal), a translation, and then a rotation
to the goal orientation. The total path length is

p
(x0 � xgoal)2 + (y0 � ygoal)2.

The problem is more interesting for the forward-only car, sometimes called
the Dubins car in honor of the mathematician who first studied the structure of
the shortest planar curves with bounded curvature between two oriented points.

Theorem 13.11. For a forward-only car with the control set shown in Fig-
ure 13.11, the shortest paths consist only of arcs at the minimum turning radius
and straight-line segments. Denoting a circular arc segment as C and a straight-
line segment as S, the shortest path between any two configurations follows either
(a) the sequence CSC or (b) the sequence CC↵C, where C↵ indicates a circular
arc of angle ↵ > ⇡. Any of the C or S segments can be of length zero.

The two optimal path classes for a forward-only car are illustrated in Fig-
ure 13.15. We can calculate the shortest path by enumerating the possible CSC
and CC↵C paths. First, construct two minimum-turning-radius circles for the
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CSC CC↵C

Figure 13.15: The two classes of shortest paths for a forward-only car. The CSC
path could be written RSL, and the CC↵C path could be written LR↵L.

vehicle at both q0 and qgoal and then solve for (a) the points where lines (with
the correct heading direction) are tangent to one of the circles at q0 and one of
the circles at qgoal, and (b) the points where a minimum-turning-radius circle
(with the correct heading direction) is tangent to one of the circles at q0 and one
of the circles at qgoal. The solutions to (a) correspond to CSC paths and the
solutions to (b) correspond to CC↵C paths. The shortest of all the solutions is
the optimal path. The shortest path may not be unique.

If we break the C segments into two categories, L (when the steering wheel
is pegged to the left) and R (when the steering wheel is pegged to the right),
we see that there are four types of CSC paths (LSL, LSR, RSL, and RSR)
and two types of CC↵C paths (RL↵R and LR↵L).

Shortest Paths for the Car with a Reverse Gear The shortest paths for
a car with a reverse gear, sometimes called the Reeds–Shepp car in honor
of the mathematicians who first studied the problem, again use only straight-
line segments and minimum-turning-radius arcs. Using the notation C for a
minimum-turning-radius arc, Ca for an arc of angle a, S for a straight-line
segment, and | for a cusp (a reversal of the linear velocity), Theorem 13.12
enumerates the possible shortest path sequences.

Theorem 13.12. For a car with a reverse gear with the control set shown in
Figure 13.11, the shortest path between any two configurations is in one of the
following nine classes:

C|C|C CC|C C|CC CCa|CaC C|CaCa|C
C|C⇡/2SC CSC⇡/2|C C|C⇡/2SC⇡/2|C CSC

Any of the C or S segments can be of length zero.
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C|C|CCC|CCSC

Figure 13.16: Three of the nine classes of shortest paths for a car with a reverse
gear.

Three of the nine shortest path classes are illustrated in Figure 13.16. Again,
the actual shortest path may be found by enumerating the finite set of possible
solutions in the path classes in Theorem 13.12. The shortest path may not be
unique.

If we break the C segments into four categories, L+, L�, R+, and R�, where
L and R mean that the steering wheel is turned all the way to the left or right
and the superscripts ‘+’ and ‘�’ indicate the gear shift (forward or reverse), then
the nine path classes of Theorem 13.12 can be expressed as (6⇥4)+(3⇥8) = 48
di↵erent types:

6 path classes, each C|C|C, CC|C, C|CC, CCa|CaC, C|CaCa|C,
with 4 path types: C|C⇡/2SC⇡/2|C

3 path classes, each
with 8 path types: C|C⇡/2SC, CSC⇡/2|C, CSC

The four types for six path classes are determined by the four di↵erent initial
motion directions, L+, L�, R+, and R�. The eight types for three path classes
are determined by the four initial motion directions and whether the turn is to
the left or the right after the straight-line segment. There are only four types
in the C|C⇡/2SC⇡/2|C class because the turn after the S segment is always
opposite to the turn before the S segment.

If it takes zero time to reverse the linear velocity, a shortest path is also a
minimum-time path for the control set for the car with a reverse gear illustrated
in Figure 13.11, where the only controls (v,!) ever used are the two controls
(±vmax, 0), an S segment, or the four controls (±vmax, ±!max), a C segment.
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motion number
segments of types motion sequences

1 4 F , B, R, L
2 8 FR, FL, BR, BL, RF , RB, LF , LB
3 16 FRB, FLB, FR⇡B, FL⇡B,

BRF , BLF , BR⇡F , BL⇡F ,
RFR, RFL, RBR, RBL,
LFR, LFL, LBR, LBL

4 8 FRBL, FLBR, BRFL, BLFR,
RFLB, RBLF , LFRB, LBRF

5 4 FRBLF , FLBRF , BRFLB, BLFRB

Table 13.1: The 40 time-optimal trajectory types for the di↵-drive. The notation
R⇡ and L⇡ indicate spins of angle ⇡.

Minimum-Time Motions for the Di↵-Drive For a di↵-drive robot with
the diamond-shaped control set in Figure 13.11, any minimum-time motion
consists of only translational motions and spins in place.

Theorem 13.13. For a di↵-drive robot with the control set illustrated in Fig-
ure 13.11, minimum-time motions consist of forward and backward translations
(F and B) at maximum speed ±vmax and spins in place (R and L for right
turns and left turns) at maximum angular speed ±!max. There are 40 types
of time-optimal motions, which are categorized in Table 13.1 by the number of
motion segments. The notations R⇡ and L⇡ indicate spins of angle ⇡.

Note that Table 13.1 includes both FR⇡B and FL⇡B, which are equivalent,
as well as BR⇡F and BL⇡F . Each trajectory type is time optimal for some pair
{q0, qgoal}, and the time-optimal trajectory may not be unique. Notably absent
are three-segment sequences where the first and last motions are translations in
the same direction (i.e., FRF , FLF , BRB, and BLB).

While any reconfiguration of the di↵-drive can be achieved by spinning,
translating, and spinning, in some cases other three-segment sequences have a
shorter travel time. For example consider a di↵-drive with vmax = !max = 1,
q0 = 0, and qgoal = (�7⇡/8, 1.924, 0.383), as shown in Figure 13.17. The time
needed for a spin of angle ↵ is |↵|/!max = |↵| and the time for a translation of
d is |d|/vmax = |d|. Therefore, the time needed for the LFR sequence is

⇡

16
+ 1.962 +

15⇡

16
= 5.103,
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FRBLFR

q0

qgoal1

(1.924, 0.383)

�7⇡/8

⇡/16

�15⇡/16
�7⇡/8

1
1

1

1.962

Figure 13.17: (Top) A motion planning problem specified as a motion from q0 =
(0, 0, 0) to qgoal = (�7⇡/8, 1.924, 0.383). (Bottom left) A non-optimal LFR solution
taking time 5.103. (Bottom right) The time-optimal FRB solution, through a “via
point,” taking time 4.749.

while the time needed for the FRB sequence through a “via point” is

1 +
7⇡

8
+ 1 = 4.749.

13.3.3.2 With Obstacles

If there are obstacles in the plane, the grid-based motion planning methods
of Section 10.4.2 can be applied to the unicycle, di↵-drive, car with a reverse
gear, or forward-only car using discretized versions of the control sets in Fig-
ure 13.11. See, for example, the discretizations in Figure 10.14, which use the
extremal controls from Figure 13.11. Using extremal controls takes advantage
of our observation that shortest paths for reverse-gear cars and the di↵-drive
consist of minimum-turning-radius turns and straight-line segments. Also, be-
cause the C-space is only three dimensional, the grid size should be manageable
for reasonable resolutions along each dimension.

We can also apply the sampling methods of Section 10.5. For RRTs, we can
again use a discretization of the control set, as mentioned above or, for both
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q(0)

q(1)

q(1/4)

q(1/2)

q(0)

q(1)

Figure 13.18: (Left) The original path from q(0) to q(1) found by a motion planner
that does not respect the reverse-gear car’s motion constraints. (Right) The path
found by the recursive subdivision has via points at q(1/4) and q(1/2).

PRMs and RRTs, a local planner that attempts to connect two configurations
could use the shortest paths from Theorems 13.11, 13.12, or 13.13.

Another option for a reverse-gear car is to use any e�cient obstacle-avoiding
path planner, even if it ignores the motion constraints of the vehicle. Since
such a car is STLC and since the free configuration space is defined to be open
(obstacles are closed, containing their boundaries), the car can follow the path
found by the planner arbitrarily closely. To follow the path closely, however,
the motion may have to be slow – imagine using parallel parking to travel a
kilometer down the road.

Alternatively, an initial constraint-free path can be quickly transformed into
a fast, feasible, path that respects the car’s motion constraints. To do this,
represent the initial path as q(s), s 2 [0, 1]. Then try to connect q(0) to q(1)
using a shortest path from Theorem 13.12. If this path is in collision, then
divide the original path in half and try to connect q(0) to q(1/2) and q(1/2) to
q(1) using shortest paths. If either of these paths are in collision, divide that
path, and so on. Because the car is STLC and the initial path lies in open free
space, the process will eventually terminate; the new path consists of a sequence
of subpaths from Theorem 13.12. The process is illustrated in Figure 13.18.

13.3.4 Feedback Control

We can consider three types of feedback control problems for the canonical
nonholonomic mobile robot (13.18) with controls (v,!):

(a) Stabilization of a configuration. Given a desired configuration qd,
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drive the error qd � q(t) to zero as time goes to infinity. As we saw in
Theorem 13.1, no time-invariant feedback law that is continuous in the
state variables can stabilize a configuration for a nonholonomic mobile
robot. There do exist time-varying and discontinuous feedback laws that
accomplish the task, but we do not consider this problem further here.

(b) Trajectory tracking. Given a desired trajectory qd(t), drive the error
qd(t)� q(t) to zero as time goes to infinity.

(c) Path tracking. Given a path q(s), follow the geometric path without
regard to the time of the motion. This provides more control freedom
than the trajectory tracking problem; essentially, we can choose the speed
of the reference configuration along the path so as to help reduce the
tracking error, in addition to choosing (v,!).

Path tracking and trajectory tracking are “easier” than stabilizing a config-
uration, in the sense that there exist continuous time-invariant feedback laws
to stabilize the desired motions. In this section we consider the problem of
trajectory tracking.

Assume that the reference trajectory is specified as qd(t) = (�d(t), xd(t), yd(t))
for t 2 [0, T ], with a corresponding nominal control (vd(t),!d(t)) 2 int(U) for
t 2 [0, T ]. The requirement that the nominal control be in the interior of the
feasible control set U ensures that some control e↵ort is “left over” to correct
small errors. This implies that the reference trajectory is neither a shortest path
nor a time-optimal trajectory, since optimal motions saturate the controls. The
reference trajectory could be planned using not-quite-extremal controls.

A simple first controller idea is to choose a reference point P on the chassis
of the robot (but not on the axis of the two driving wheels), as in Figure 13.12.
The desired trajectory qd(t) is then represented by the desired trajectory of the
reference point (xPd(t), yPd(t)). To track this reference point trajectory, we can
use a proportional feedback controller


ẋP

ẏP

�
=


kp(xPd � xP )
kp(yPd � yP )

�
, (13.29)

where kp > 0. This simple linear control law is guaranteed to pull the ac-
tual position p along with the moving desired position. The velocity (ẋP , ẏP )
calculated by the control law (13.29) is converted to (v,!) by Equation (13.21).

The idea is that, as long as the reference point is moving, over time the
entire robot chassis will line up with the desired orientation of the chassis. The
problem is that the controller may choose the opposite orientation of what is
intended; there is nothing in the control law to prevent this. Figure 13.19 shows
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qd(0)

q(0)qd(T )

q(T )q(T ) qd(T )
q(0)

qd(0)

Figure 13.19: (Left) A nonholonomic mobile robot with a reference point. (Middle)
A scenario where the linear control law (13.29) tracking a desired reference point
trajectory yields the desired trajectory tracking behavior for the entire chassis. (Right)
A scenario where the point-tracking control law causes an unintended cusp in the robot
motion. The reference point converges to the desired path but the robot’s orientation
is opposite to the intended orientation.

two simulations, one where the control law (13.29) produces the desired chassis
motion and one where the control law causes an unintended reversal in the sign
of the driving velocity v. In both simulations the controller succeeds in causing
the reference point to track the desired motion.

To fix this, let us explicitly incorporate chassis angle error in the control law.
The fixed space frame is {s}, the chassis frame {b} is at the point between the
two wheels of the di↵-drive (or the two rear wheels for a reverse-gear car) with
the forward driving direction along the x̂b-axis, and the frame corresponding to
qd(t) is {d}. We define the error coordinates

qe =

2

4
�e
xe

ye

3

5 =

2

4
1 0 0
0 cos�d sin�d
0 � sin�d cos�d

3

5

2

4
�� �d
x� xd

y � yd

3

5 , (13.30)

as illustrated in Figure 13.20. The vector (xe, ye) is the {s}-coordinate error
vector (x� xd, y � yd) expressed in the reference frame {d}.

Consider the nonlinear feedforward plus feedback control law


v
!

�
=


(vd � k1|vd|(xe + ye tan�e))/ cos�e
!d � (k2vdye + k3|vd| tan�e) cos2 �e

�
, (13.31)

where k1, k2, k3 > 0. Note two things about this control law: (1) if the error
is zero, the control is simply the nominal control (vd,!d); and (2) the controls
grow without bound as �e approaches ⇡/2 or �⇡/2. In practice, we assume
that |�e| is less than ⇡/2 during trajectory tracking.

In the controller for v, the second term, �k1|vd|xe/ cos�e, attempts to reduce
xe by driving the robot so as to catch up with or slow down to the reference
frame. The third term, �k1|vd|ye tan�e/ cos�e, attempts to reduce ye using the
component of the forward or backward velocity that impacts ye.
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{s}

(x, y)

{b}
�

(xe, ye)

{d} �d
planned path

Figure 13.20: The space frame {s}, the robot frame {b}, and the desired config-
uration {d} driving forward along the planned path. The heading-direction error is
�e = �� �d.

qd(0)

q(0)

qd(T )

desired
path

actual
path

Figure 13.21: A mobile robot implementing the nonlinear control law (13.31).

In the controller for the turning velocity !, the second term, �k2vdye cos2 �e,
attempts to reduce ye in the future by turning the heading direction of the
robot toward the reference-frame origin. The third term, �k3|vd| tan�e cos2 �e,
attempts to reduce the heading error �e.

A simulation of the control law (13.31) is shown in Figure 13.21.
The control law requires vd 6= 0, so it is not appropriate for stabilizing “spin-

in-place” motions for a di↵-drive. The proof of the stability of the control law
requires methods beyond the scope of this book. In practice, the gains should
be chosen large enough to provide significant corrective action but not so large
that the controls chatter at the boundary of the feasible control set U .
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13.4 Odometry

Odometry is the process of estimating the chassis configuration q from the wheel
motions, essentially integrating the e↵ect of the wheel velocities. Since wheel-
rotation sensing is available on all mobile robots, odometry is cheap and con-
venient. Estimation errors tend to accumulate over time, though, due to unex-
pected slipping and skidding of the wheels and to numerical integration error.
Therefore, it is common to supplement odometry with other position sensors,
such as GPS, the visual recognition of landmarks, ultrasonic beacons, laser or
ultrasonic range sensing, etc. Those sensing modalities have their own measure-
ment uncertainty but errors do not accumulate over time. As a result, odometry
generally gives superior results on short time scales, but odometric estimates
should either (1) be periodically corrected by other sensing modalities or, prefer-
ably, (2) integrated with other sensing modalities in an estimation framework
based on a Kalman filter, particle filter, or similar.

In this section we focus on odometry. We assume that each wheel of an
omnidirectional robot, and each rear wheel of a di↵-drive or car, has an encoder
that senses how far the wheel has rotated in its driving direction. If the wheels
are driven by stepper motors then we know the driving rotation of each wheel
from the steps we have commanded to it.

The goal is to estimate the new chassis configuration qk+1 as a function of
the previous chassis configuration qk, given the change in wheel angles from the
instant k to the instant k + 1.

Let �✓i be the change in wheel i’s driving angle since the wheel angle was
last queried a time �t ago. Since we know only the net change in the wheel
driving angle, not the time history of how the wheel angle evolved during the
time interval, the simplest assumption is that the wheel’s angular velocity was
constant during the time interval, ✓̇i = �✓i/�t. The choice of units used to
measure the time interval is not relevant (since we will eventually integrate
the chassis body twist Vb over the same time interval), so we set �t = 1, i.e.,
✓̇i = �✓.

For omnidirectional mobile robots, the vector of wheel speeds ✓̇, and there-
fore �✓, is related to the body twist Vb = (!bz, vbx, vby) of the chassis by Equa-
tion (13.8):

�✓ = H(0)Vb,

where H(0) for the three-omniwheel robot is given by Equation (13.9) and for
the four-mecanum-wheel robot is given by Equation (13.10). Therefore, the
body twist Vb corresponding to �✓ is

Vb = H†(0)�✓ = F�✓,
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right
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x̂b
ŷb

Figure 13.22: The left and right wheels of a di↵-drive or the left and right rear
wheels of a car.

where F = H†(0) is the pseudoinverse of H(0). For the three-omniwheel robot,

Vb = F�✓ = r

2

4
�1/(3d) �1/(3d) �1/(3d)

2/3 �1/3 �1/3
0 �1/(2 sin(⇡/3)) 1/(2 sin(⇡/3))

3

5�✓ (13.32)

and for the four-mecanum-wheel robot,

Vb = F�✓ =
r

4

2

4
�1/(`+ w) 1/(`+ w) 1/(`+ w) �1/(`+ w)

1 1 1 1
�1 1 �1 1

3

5�✓.

(13.33)
The relationship Vb = F ✓̇ = F�✓ also holds for the di↵-drive robot and the

car (Figure 13.22), where �✓ = (�✓L, �✓R) (the increments for the left and
right wheels) and

Vb = F�✓ = r

2

4
�1/(2d) 1/(2d)

1/2 1/2
0 0

3

5


�✓L
�✓R

�
. (13.34)

Since the wheel speeds are assumed constant during the time interval, so
is the body twist Vb. Calling Vb6 the six-dimensional version of the planar
twist Vb (i.e., Vb6 = (0, 0,!bz, vbx, vby, 0)), Vb6 can be integrated to generate the
displacement created by the wheel-angle increment vector �✓:

Tbb0 = e[Vb6].

From Tbb0 2 SE(3), which expresses the new chassis frame {b0} relative to the
initial frame {b}, we can extract the change in coordinates relative to the body
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frame {b}, �qb = (��b, �xb, �yb), in terms of (!bz, vbx, vby):

if !bz = 0, �qb =

2

4
��b
�xb

�yb

3

5 =

2

4
0

vbx
vby

3

5 ; (13.35)

if !bz 6= 0, �qb =

2

4
��b
�xb

�yb

3

5 =

2

4
!bz

(vbx sin!bz + vby(cos!bz � 1))/!bz

(vby sin!bz + vbx(1� cos!bz))/!bz

3

5 .

Transforming �qb in {b} to �q in the fixed frame {s} using the chassis angle
�k,

�q =

2

4
1 0 0
0 cos�k � sin�k
0 sin�k cos�k

3

5�qb, (13.36)

the updated odometry estimate of the chassis configuration is finally

qk+1 = qk + �q.

In summary, �q is calculated using Equations (13.35) and (13.36) as a func-
tion of Vb and the previous chassis angle �k, and Equation (13.32), (13.33), or
(13.34) is used to calculate Vb as a function of the wheel-angle changes �✓ for
the three-omniwheel robot, the four-mecanum-wheel robot, or a nonholonomic
robot (the di↵-drive or the car), respectively.

13.5 Mobile Manipulation

For a robot arm mounted on a mobile base, mobile manipulation describes
the coordination of the motion of the base and the robot joints to achieve a
desired motion at the end-e↵ector. Typically the motion of the arm can be
controlled more precisely than the motion of the base, so the most popular type
of mobile manipulation involves driving the base, parking it, letting the arm
perform the precise motion task, then driving away.

In some cases, however, it is advantageous, or even necessary, for the end-
e↵ector motion to be achieved by a combination of motion of the base and
motion of the arm. Defining the fixed space frame {s}, the chassis frame {b}, a
frame at the base of the arm {0}, and an end-e↵ector frame {e}, the configura-
tion of {e} in {s} is

X(q, ✓) = Tse(q, ✓) = Tsb(q) Tb0 T0e(✓) 2 SE(3),
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{s}

{b}

{0}

{e}

Figure 13.23: The space frame {s} and the frames {b}, {0}, and {e} attached to the
mobile manipulator.

where ✓ 2 Rn is the set of arm joint positions for the n-joint robot, T0e(✓)
is the forward kinematics of the arm, Tb0 is the fixed o↵set of {0} from {b},
q = (�, x, y) is the planar configuration of the mobile base, and

Tsb(q) =

2

664

cos� � sin� 0 x
sin� cos� 0 y

0 0 1 z
0 0 0 1

3

775 ,

where z is a constant indicating the height of the {b} frame above the floor.
See Figure 13.23.

Let X(t) be the path of the end-e↵ector as a function of time. Then
[Ve(t)] = X�1(t)Ẋ(t) is the se(3) representation of the end-e↵ector twist ex-
pressed in {e}. Further, let the vector of wheel velocities, whether the robot is
omnidirectional or nonholonomic, be written u 2 Rm. For kinematic control of
the end-e↵ector frame using the wheel and joint velocities, we need the Jacobian
Je(✓) 2 R6⇥(m+n) satisfying

Ve = Je(✓)


u
✓̇

�
= [Jbase(✓) Jarm(✓)]


u
✓̇

�
.

Note that the Jacobian Je(✓) does not depend on q: the end-e↵ector velocity
expressed in {e} is independent of the configuration of the mobile base. Also,
we can partition Je(✓) into Jbase(✓) 2 R6⇥m and Jarm(✓) 2 R6⇥n. The term
Jbase(✓)u expresses the contribution of the wheel velocities u to the end-e↵ector’s
velocity, and the term Jarm(✓)✓̇ expresses the contribution of the joint velocities
to the end-e↵ector’s velocity.
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In Chapter 5 we developed a method to derive Jarm(✓), which is called the
body Jacobian Jb(✓) in that chapter. All that remains is to find Jbase(✓). As
we saw in Section 13.4, for any type of mobile base there exists an F satisfying

Vb = Fu.

To create a six-dimensional twist Vb6 corresponding to the planar twist Vb, we
can define the 6⇥m matrix

F6 =

2

664

0m
0m
F
0m

3

775 ,

where two rows of m zeros are stacked above F and one row is situated below
it. Now we have

Vb6 = F6u.

This chassis twist can be expressed in the end-e↵ector frame as

[AdTeb(✓)]Vb6 = [AdT�1
0e (✓)T�1

b0
]Vb6 = [AdT�1

0e (✓)T�1
b0

]F6u = Jbase(✓)u.

Therefore
Jbase(✓) = [AdT�1

0e (✓)T�1
b0

]F6.

Now that we have the complete Jacobian Je(✓) = [ Jbase(✓) Jarm(✓) ], we
can perform numerical inverse kinematics (Section 6.2) or implement kinematic
feedback control laws to track a desired end-e↵ector trajectory. For example,
given a desired end-e↵ector trajectory Xd(t), we can choose the kinematic task-
space feedforward plus feedback control law (11.16),

V(t) = [AdX�1Xd
]Vd(t) + KpXerr(t) + Ki

Z t

0
Xerr(t) dt, (13.37)

where [Vd(t)] = X�1
d (t)Ẋd(t), the transform [AdX�1Xd

] changes the frame of
representation of the feedforward twist Vd from the frame at Xd to the ac-
tual end-e↵ector frame at X, and [Xerr] = log(X�1Xd). The commanded end-
e↵ector-frame twist V(t) is implemented as


u
✓̇

�
= J†

e (✓)V.

As discussed in Section 6.3, it is possible to use a weighted pseudoinverse to
penalize certain wheel or joint velocities.
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{b}

{e}

xr

2d

✓1 L1
Xd(0) {s} Xd(1)

Figure 13.24: A di↵-drive with a 1R planar arm with end-e↵ector frame {e}. (Top)
The initial configuration of the robot and the desired end-e↵ector trajectory Xd(t).
(Bottom) Trajectory tracking using the control law (13.37). The end-e↵ector shoots
past the desired path before settling into accurate trajectory tracking.

An example is shown in Figure 13.24. The mobile base is a di↵-drive and the
arm moves in the plane with only one revolute joint. The desired motion of the
end-e↵ector Xd(t), t 2 [0, 1], is parametrized by ↵ = �⇡t, xd(t) = �3 cos(⇡t),
and yd(t) = 3 sin(⇡t), where ↵ indicates the planar angle from the x̂s-axis to
the x̂e-axis (see Figure 13.24). The performance in Figure 13.24 demonstrates a
bit of overshoot, indicating that the diagonal gain matrix Ki = kiI should use
somewhat lower gains. Alternatively, the gain matrix Kp = kpI could use larger
gains, provided that there are no practical problems with these larger gains (see
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the discussion in Section 11.3.1.2).
Note that, for an arbitrary Xd(t) to be feasible for the mobile manipulator,

the Jacobian Je(✓) should be full rank everywhere; see Exercise 13.30.

13.6 Summary

• The chassis configuration of a wheeled mobile robot moving in the plane is
q = (�, x, y). The velocity can be represented either as q̇ or as the planar
twist Vb = (!bz, vbx, vby) expressed in the chassis-fixed frame {b}, where

Vb =

2

4
!bz

vbx
vby

3

5 =

2

4
1 0 0
0 cos� sin�
0 � sin� cos�

3

5

2

4
�̇
ẋ
ẏ

3

5 .

• The chassis of a nonholonomic mobile robot is subject to a single noninte-
grable Pfa�an velocity constraint A(q)q̇ = [0 sin� � cos�]q̇ = ẋ sin� �
ẏ cos� = 0. An omnidirectional robot, employing omniwheels or mecanum
wheels, has no such constraint.

• For a properly constructed omnidirectional robot with m � 3 wheels, there
exists a rank 3 matrix H(�) 2 Rm⇥3 that maps the chassis velocity q̇ to
the wheel driving velocities u:

u = H(�)q̇.

In terms of the body twist Vb,

u = H(0)Vb.

The driving speed limits of each wheel place two parallel planar constraints
on the feasible body twists, creating a polyhedron V of feasible body
twists.

• Motion planning and feedback control for omnidirectional robots is sim-
plified by the fact that there are no chassis velocity equality constraints.

• Nonholonomic mobile robots are described as driftless linear-in-the-control
systems

q̇ = G(q)u, u 2 U ⇢ Rm,

where G(q) 2 Rn⇥m, n > m. The m columns gi(q) of G(q) are called the
control vector fields.
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• The canonical simplified nonholonomic mobile robot model is

q̇ =

2

4
�̇
ẋ
ẏ

3

5 = G(q)u =

2

4
0 1

cos� 0
sin� 0

3

5


v
!

�
.

The control sets U di↵er for the unicycle, di↵-drive, reverse-gear car, and
forward-only car.

• A control system is small-time locally accessible (STLA) from q if, for any
time T > 0 and any neighborhood W , the reachable set in time less than T
without leaving W is a full-dimensional subset of the configuration space.
A control system is small-time locally controllable (STLC) from q if, for
any time T > 0 and any neighborhood W , the reachable set in time less
than T without leaving W is a neighborhood of q. If the system is STLC
from a given q, it can maneuver locally in any direction.

• The Lie bracket of two vector fields g1 and g2 is the vector field

[g1, g2] =

✓
@g2
@q

g1 �
@g1
@q

g2

◆
.

• A Lie product of degree k is a Lie bracket term where the original vector
fields appear a total of k times. A Lie product of degree 1 is just one of
the original vector fields.

• The Lie algebra of a set of vector fields G = {g1, . . . , gm}, written Lie(G),
is the linear span of all Lie products of degree 1, . . . ,1 of the vector fields
G.

• A driftless control-a�ne system is small-time locally accessible from q
if dim(Lie(G)(q)) = dim(q) = n and span(U) = Rm. If additionally
pos(U) = Rm then the system is small-time locally controllable from q.

• For a forward-only car in an obstacle-free plane, shortest paths always
follow a turn at the tightest turning radius (C) or straight-line motions
(S). There are two classes of shortest paths: CSC and CC↵C, where C↵
is a turn of angle |↵| > ⇡. Any C or S segment can be of length zero.

• For a car with a reverse gear, shortest paths always consist of a sequence
of straight-line segments or turns at the tightest turning radius. Shortest
paths always belong to one of nine classes.
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• For the di↵-drive, minimum-time motions always consist of turn-in-place
motions and straight-line motions.

• For the canonical nonholonomic robot, there is no time-invariant control
law which is continuous in the configuration and which will stabilize the
origin configuration. Continuous time-invariant control laws exist that
will stabilize a trajectory, however.

• Odometry is the process of estimating the chassis configuration on the
basis of how far the robot’s wheels have rotated in their driving direction,
assuming no skidding in the driving direction and, for typical wheels (not
omniwheels or mecanum wheels), no slip in the orthogonal direction.

• For a mobile manipulator with m wheels and n joints in the robot arm,
the end-e↵ector twist Ve in the end-e↵ector frame {e} is written

Ve = Je(✓)


u
✓̇

�
= [Jbase(✓) Jarm(✓)]


u
✓̇

�
.

The 6 ⇥ m Jacobian Jbase(✓) maps the wheel velocities u to a velocity
at the end-e↵ector, and the 6 ⇥ n Jacobian Jarm(✓) is the body Jacobian
derived in Chapter 5. The Jacobian Jbase(✓) is given by

Jbase(✓) = [AdT�1
0e (✓)T�1

b0
]F6

where F6 is the transformation from the wheel velocities to the chassis
twist, Vb6 = Fu.

13.7 Notes and References

Excellent references on modeling, motion planning, and control of mobile robots
include the books [33, 81], the chapters in the textbook [171] and the Handbook
of Robotics [121, 157], and the encyclopedia chapter [128].

General references on nonholonomic systems, underactuated systems, and
notions of nonlinear controllability include [14, 21, 27, 63, 64, 122, 126, 158],
the Control Handbook chapter [101], and the encyclopedia chapter [100]. The-
orem 13.1 is a strengthening of a result originally reported by Brockett in [19].
Theorem 13.7 is an application of Chow’s theorem [28] considering di↵erent
possible control sets. A more general condition describing the conditions under
which Chow’s theorem can be used to determine local controllability was given
by Sussmann [182].
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The original results for the shortest paths for a forward-only car and for a car
with a reverse gear were given by Dubins [41] and Reeds and Shepp [146], respec-
tively. These results were extended and applied to motion planning problems
in [16, 175] and independently derived using principles of di↵erential geometry
in [183]. The minimum-time motions for a di↵-drive were derived by Balkcom
and Mason in [5]. The motion planner for a car-like mobile robot based on
replacing segments of an arbitrary path with shortest feasible paths for a car,
described in Section 13.3.3.2, was described in [82].

The nonlinear control law (13.31) for tracking a reference trajectory for a
nonholonomic mobile robot is taken from [121, 157].

13.8 Exercises

Exercise 13.1 In the omnidirectional mobile robot kinematic modeling of
Section 13.2.1, we derived the relationship between wheel velocities and chassis
velocity in what seemed to be an unusual way. First, we specified the chassis ve-
locity, then we calculated how the wheels must be driving (and sliding). At first
glance, this approach does not seem to make sense causally; we should specify
the velocities of the wheels, then calculate the chassis velocity. Explain mathe-
matically why this modeling approach makes sense, and under what condition
the method cannot be used.

Exercise 13.2 According to the kinematic modeling of Section 13.2.1, each
wheel of an omnidirectional robot adds two more velocity constraints on the
chassis twist Vb. This might seem counterintuitive, since more wheels means
more motors and we might think that having more motors should result in
more motion capability, not more constraints. Explain clearly why having extra
wheels implies extra velocity constraints, in our kinematic modeling, and which
assumptions in the kinematic modeling may be unrealistic.

Exercise 13.3 For the three-omniwheel robot of Figure 13.5, is it possible to
drive the wheels so that they skid? (In other words, so that the wheels slip in
the driving direction.) If so, give an example set of wheel velocities.

Exercise 13.4 For the four-mecanum-wheel robot of Figure 13.5, is it possible
to drive the wheels so that they skid? (In other words, the wheels slip in the
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driving direction.) If so, give an example set of wheel velocities.

Exercise 13.5 Replace the wheels of the four-mecanum-wheel robot of Fig-
ure 13.5 by wheels with � = ±60�. Derive the matrix H(0) in the relationship
u = H(0)Vb. Is it rank 3? If necessary, you can assume values for ` and w.

Exercise 13.6 Consider the three-omniwheel robot of Figure 13.5. If we
replace the omniwheels by mecanum wheels with � = 45�, is it still a properly
constructed omnidirectional mobile robot? In other words, in the relationship
u = H(0)Vb, is H(0) rank 3?

Exercise 13.7 Consider a mobile robot with three mecanum wheels for which
� = ±45� at the points of an equilateral triangle. The chassis frame {b} is at
the center of the triangle. The driving directions of all three wheels are the
same (e.g., along the body x̂b-axis) and the free sliding directions are � = 45�

for two wheels and � = �45� for the other wheel. Is this a properly constructed
omnidirectional mobile robot? In other words, in the relationship u = H(0)Vb,
is H(0) rank 3?

Exercise 13.8 Using your favorite graphics software (e.g., MATLAB), plot
the two planes bounding the set of feasible body twists Vb for wheel 2 of the
three-omniwheel robot of Figure 13.5.

Exercise 13.9 Using your favorite graphics software (e.g., MATLAB), plot
the two planes bounding the set of feasible body twists Vb for wheel 1 of the
four-mecanum-wheel robot of Figure 13.5.

Exercise 13.10 Consider a four-omniwheel mobile robot with wheels at the
points of a square. The chassis frame {b} is at the center of the square, and the
driving direction of each wheel is in the direction 90� counterclockwise from the
vector from the the origin of {b} to the wheel. You may assume that the sides
of the squares have length 2. Find the matrix H(0). Is it rank 3?

Exercise 13.11 Implement a collision-free grid-based planner for an omni-
directional robot. You may assume that the robot has a circular chassis, so
for collision-detection purposes, you need to consider only the (x, y) location of
the robot. The obstacles are circles with random center locations and random
radii. You can use Dijkstra’s algorithm or A⇤ to find a shortest path that avoids
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obstacles.

Exercise 13.12 Implement an RRT planner for an omnidirectional robot. As
above, you may assume a circular chassis and circular obstacles.

Exercise 13.13 Implement a feedforward plus proportional feedback con-
troller to track a desired trajectory for an omnidirectional mobile robot. Test
it on the desired trajectory (�d(t), xd(t), yd(t)) = (t, 0, t) for t 2 [0,⇡]. The
initial configuration of the robot is q(0) = (�⇡/4, 0.5,�0.5). Plot the configu-
ration error as a function of time. You can also show an animation of the robot
converging to the trajectory.

Exercise 13.14 Write down the Pfa�an constraints A(q)q̇ = 0 corresponding
to the unicycle model in Equation (13.12).

Exercise 13.15 Write down the Pfa�an constraints corresponding to the di↵-
drive model in Equation (13.14).

Exercise 13.16 Write down the Pfa�an constraints corresponding to the car-
like model in Equation (13.16).

Exercise 13.17 Give examples of two systems that are STLA but not STLC.
The systems should not be wheeled mobile robots.

Exercise 13.18 Continue the Taylor expansion in Equation (13.26) to find
the net motion (to order ✏2) obtained by following gi for time ✏, then gj for time
✏, then �gi for time ✏, then �gj for time ✏. Show that it is equivalent to the
expression (13.27).

Exercise 13.19 Write down the canonical nonholonomic mobile robot model
(13.18) in the chassis-fixed form

Vb = B


v
!

�
,

where B is a 3⇥ 2 matrix whose columns correspond to the chassis twist assoc-
iated with the controls v and !.

Exercise 13.20 Throughout this book, we have been using the configuration
spaces SE(3) and SO(3), and their planar subsets SE(2) and SO(2). These are
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known as matrix Lie groups. Body and spatial twists are represented in matrix
form as elements of se(3) (or se(2) in the plane) and body and spatial angular
velocities are represented in matrix form as elements of so(3) (or so(2) in the
plane). The spaces se(3) and so(3) correspond to all possible Ṫ and Ṙ when
T or R is the identity matrix. Since these spaces correspond to all possible
velocities, each is called the Lie algebra of its respective matrix Lie group. Let
us call G a matrix Lie group and g its Lie algebra, and let X be an element of
G, and A and B be elements of g. In other words, A and B can be thought of
as possible values of Ẋ when X = I.

Any “velocity” A in g can be “translated” to a velocity Ẋ at any X 2 G
by pre-multiplying or post-multiplying by X, i.e., Ẋ = XA or Ẋ = AX. If we
choose Ẋ = XA, i.e., A = X�1Ẋ then we can think of A as a “body velocity”
(e.g., the matrix form of a body twist if G = SE(3)) and if we choose Ẋ = AX,
i.e., A = ẊX�1, we can think of A as a “spatial velocity” (e.g., the matrix form
of a spatial twist if G = SE(3)). In this way, A can be extended to an entire
vector field over G. If the extension is obtained by multiplying by X on the left
then the vector field is called left-invariant (constant in the body frame), and if
the extension is by multiplying by X on the right then the vector field is called
right-invariant (constant in the space frame). Velocities that are constant in the
body frame, like the vector fields for the canonical nonholonomic mobile robot,
correspond to left-invariant vector fields.

Just as we can define a Lie bracket of two vector fields, as in Equation (13.28),
we can define the Lie bracket of A, B 2 g as

[A, B] = AB �BA, (13.38)

as described in Section 8.2.2 for g = se(3). Confirm that this formula describes
the same Lie bracket vector field as Equation (13.28) for the canonical non-
holonomic vector fields g1(q) = (0, cos�, sin�) and g2(q) = (1, 0, 0). To do
this, first express the two vector fields as A1, A2 2 se(2), considered to be the
generators of the left-invariant vector fields g1(q) and g2(q) (since the vector
fields correspond to constant velocities in the chassis frame). Then take the
Lie bracket A3 = [A1, A2] and extend A3 to a left-invariant vector field de-
fined at all X 2 SE(2). Show that this is the same result obtained using the
formula (13.28).

The Lie bracket formula in Equation (13.28) is general for any vector fields
expressed as a function of coordinates q, while the formula (13.38) is particularly
for left- and right-invariant vector fields defined by elements of the Lie algebra
of a matrix Lie group.

Exercise 13.21 Using your favorite symbolic math software (e.g., Mathe-
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matica), write or experiment with software that symbolically calculates the Lie
bracket of two vector fields. Show that it correctly calculates Lie brackets for
vector fields of any dimension.

Exercise 13.22 For the full five-dimensional di↵-drive model described by
Equation (13.14), calculate Lie products that generate two motion directions not
present in the original two vector fields. Write down the holonomic constraint
corresponding to the direction in which it is not possible to generate motions.

Exercise 13.23 Implement a collision-free grid-based motion planner for a
car-like robot among obstacles using techniques from Section 10.4.2. Decide
how to specify the obstacles.

Exercise 13.24 Implement a collision-free RRT-based motion planner for a
car-like robot among obstacles using techniques from Section 10.5. Decide how
to specify obstacles.

Exercise 13.25 Implement the reference point trajectory-tracking control law
(13.29) for a di↵-drive robot. Show in a simulation that it succeeds in tracking
a desired trajectory for the point.

Exercise 13.26 Implement the nonlinear feedforward plus feedback control
law (13.31). Demonstrate its performance in tracking a reference trajectory with
di↵erent sets of control gains, including one set that yields “good” performance.

Exercise 13.27 Write a program that accepts a time history of wheel encoder
values for the two rear wheels of a car and estimates the chassis configuration
as a function of time using odometry. Prove that it yields correct results for a
chassis motion that involves rotations and translations.

Exercise 13.28 Write a program that accepts a time history of wheel encoder
values for the three wheels of a three-omniwheel robot and estimates the chassis
configuration as a function of time using odometry. Prove that it yields correct
results for a chassis motion that involves rotations and translations.

Exercise 13.29 Write a program that accepts a time history of wheel encoder
values for the four wheels of a four-mecanum-wheel robot and estimates the
chassis configuration as a function of time using odometry. Prove that it yields
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correct results for a chassis motion that involves rotations and translations.

Exercise 13.30 Consider the mobile manipulator in Figure 13.24. Write
down the Jacobian Je(✓) as a 3 ⇥ 3 matrix function of d, xr, L1, and ✓1. Is
the Jacobian rank 3 for all choices of d, xr, L1, and ✓1? If not, under what
conditions is it not full rank?

Exercise 13.31 Write a simulation for a mobile manipulation controller sim-
ilar to that demonstrated in Figure 13.24. For this simulation you need to
include a simulation of odometry to keep track of the mobile base’s configura-
tion. Demonstrate your controller on the same example trajectory and initial
conditions shown in Figure 13.24 for good and bad choices of control gains.

Exercise 13.32 Wheel-based odometry can be supplemented by odometry
based on an inertial measurement unit (IMU). A typical IMU includes a three-
axis gyro, for sensing angular velocities of the chassis, and a three-axis ac-
celerometer, for sensing linear accelerations of the chassis. From a known initial
state of the mobile robot (e.g., at rest at a known position), the sensor data
from the IMU can be integrated over time to yield a position estimate of the
robot. Since the data are numerically integrated once in the case of angular
velocities, and twice in the case of linear accelerations, the estimate will drift
from the actual value over time, just as the wheel-based odometry estimate will.

In a paragraph describe operating conditions for the mobile robot, including
properties of the wheels’ interactions with the ground, where IMU-based odom-
etry might be expected to yield better configuration estimates, and conditions
where wheel-based odometry might be expected to yield better estimates. In
another paragraph describe how the two methods can be used simultaneously,
to improve the performance beyond that of either method alone. You should
feel free to do an internet search and comment on specific data-fusion tools or
filtering techniques that might be useful.

Exercise 13.33 The KUKA youBot (Figure 13.25) is a mobile manipulator
consisting of a 5R arm mounted on an omnidirectional mobile base with four
mecanum wheels. The chassis frame {b} is centered between the four wheels
at a height z = 0.0963 m above the floor, and the configuration of the chassis
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{b}
{0}

{e}
x̂e

ẑe

ŷe

33 mm

147.0 mm

155.0 mm

135.0 mm

217.6 mm

joint 2

joint 3

joint 4

{s}

x̂s

ẑs
ŷs

Figure 13.25: (Left) The KUKA youBot mobile manipulator and the fixed space
frame {s}, the chassis frame {b}, the arm base frame {0}, and the end-e↵ector frame
{e}. The arm is at its zero configuration. (Right) A close-up of the arm at its zero
configuration. Joint axes 1 and 5 (not shown) point upward and joint axes 2, 3, and
4 are out of the page.

relative to a fixed space frame {s} is

Tsb(q) =

2

664

cos� � sin� 0 x
sin� cos� 0 y

0 0 1 0.0963
0 0 0 1

3

775 ,

where q = (�, x, y). The kinematics of the four-wheeled mobile base is described
in Figure 13.5 and the surrounding text, where the front–back distance between
the wheels is 2` = 0.47 m, the side-to-side distance between the wheels is 2w =
0.3 m, and the radius of each wheel is r = 0.0475 m.

The fixed o↵set from the chassis frame {b} to the base frame of the arm {0}
is

Tb0 =

2

664

1 0 0 0.1662
0 1 0 0
0 0 1 0.0026
0 0 0 1

3

775 ,
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i.e., the arm base frame {0} is aligned with the chassis frame {b} and is displaced
by 166.2 mm in x̂b and 2.6 mm in ẑb. The end-e↵ector frame {e} at the zero
configuration of the arm (as shown in Figure 13.25) relative to the base frame
{0} is

M0e =

2

664

1 0 0 0.0330
0 1 0 0
0 0 1 0.6546
0 0 0 1

3

775 .

You can ignore the arm joint limits in this exercise.
(a) Examining the right-hand side of Figure 13.25 – and keeping in mind that

(i) joint axes 1 and 5 point up on the page and joint axes 2, 3, and 4
point out of the page, and (ii) positive rotation about an axis is by the
right-hand rule – either confirm that the screw axes in the end-e↵ector
frame Bi are as shown in the following table:

i !i vi

1 (0, 0, 1) (0, 0.0330, 0)
2 (0,�1, 0) (�0.5076, 0, 0)
3 (0,�1, 0) (�0.3526, 0, 0)
4 (0,�1, 0) (�0.2176, 0, 0)
5 (0, 0, 1) (0, 0, 0)

or provide the correct Bi.
(b) The robot arm has only five joints, so it is incapable of generating an

arbitrary end-e↵ector twist Ve 2 R6 when the mobile base is parked. If we
are able to move the mobile base and the arm joints simultaneously, are
there configurations ✓ of the arm at which arbitrary twists are not possible?
If so, indicate these configurations. Also explain why the configuration
q = (�, x, y) of the mobile base is irrelevant to this question.

(c) Use numerical inverse kinematics to find a chassis and arm configuration
(q, ✓) that places the end-e↵ector at

X(q, ✓) =

2

664

1 0 0 0
0 0 1 1.0
0 �1 0 0.4
0 0 0 1

3

775 .

You can try q0 = (�0, x0, y0) = (0, 0, 0) and ✓0 = (0, 0,�⇡/2, 0, 0) as your
initial guess.

(d) You will write a robot simulator to test the kinematic task-space feedfor-
ward plus feedback control law (13.37) tracking the end-e↵ector trajectory
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defined by the path

Xd(s) =

2

664

sin(s⇡/2) 0 cos(s⇡/2) s
0 1 0 0

� cos(s⇡/2) 0 sin(s⇡/2) 0.491
0 0 0 1

3

775 , s 2 [0, 1],

and the time scaling

s(t) =
3

25
t2 � 2

125
t3, t 2 [0, 5].

In other words, the total time of the motion is 5 s.
Your program should take the trajectory and initial configuration of the
robot as input, in addition to the control gains and any other parameters
you see fit. In this exercise, due to initial error, the initial configuration
of the robot is not on the path: q0 = (�0, x0, y0) = (�⇡/8,�0.5, 0.5) and
✓0 = (0,�⇡/4,⇡/4,�⇡/2, 0).
Your main program loop should run 100 times per simulated second, i.e.,
each time step is �t = 0.01 s, for a total of 500 time steps for the simula-
tion. Each time through the loop, your program should:

• Calculate the desired configuration Xd and twist Vd at the current
time.

• Calculate the current configuration error Xerr = (!err, verr) and save
Xerr in an array for later plotting.

• Evaluate the control law (13.37) to find the commanded wheel speeds
and joint velocities (u, ✓̇).

• Step the simulation of the robot’s motion forward in time by �t to
find the new configuration of the robot. You may use a simple first-
order Euler integration for the arm: the new joint angle is just the
old angle plus the commanded joint velocity multiplied by �t. To
calculate the new configuration of the chassis, use odometry from
Section 13.4, remembering that the change in wheel angles during
one simulation step is u�t.

You are encouraged to test the feedforward portion of your controller first.
A starting configuration on the path is approximately q0 = (�0, x0, y0) =
(0,�0.526, 0) and ✓0 = (0,�⇡/4,⇡/4,�⇡/2, 0). Once you have confirmed
that your feedforward controller works as expected, add a nonzero pro-
portional gain to get good performance from the configuration with initial
error. Finally, you can add a nonzero integral gain to see transient e↵ects
such as overshoot.
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After the simulation completes, plot the six components of Xerr as a func-
tion of time. If possible, choose gains Kp and Ki such that it is possible
to see typical features of a PI velocity controller: a little bit of overshoot
and oscillation and eventually nearly zero error. You should choose control
gains such that the 2% settling time is one or two seconds, so the transient
response is clearly visible. If you have the visualization tools available,
create a movie of the robot’s motion corresponding to your plots.

(e) While retaining stability, choose a set of di↵erent control gains that gives
a visibly di↵erent behavior of the robot. Provide the plots and movie and
comment on why the di↵erent behavior agrees, or does not agree, with
what you know about PI velocity control.

Exercise 13.34 One type of wheeled mobile robot, not considered in this
chapter, has three or more conventional wheels which are all individually steer-
able. Steerable conventional wheels allow the robot chassis to follow arbitrary
paths without relying on the passive sideways rolling of mecanum wheels or
omniwheels.

In this exercise you will model a mobile robot with four steerable wheels.
Assume that each wheel has two actuators, one to steer it and one to drive
it. The wheel locations relative to the chassis frame {b} mimic the case of the
four-wheeled robot in Figure 13.5: they are located at the four points (±`, ±w)
in {b}. The steering angle ✓i of wheel i is zero when it rolls in the +x̂b-direction
for a positive driving speed ui > 0, and a positive rotation of the steering angle
is defined as counterclockwise on the page. The linear speed at wheel i is rui,
where r is the radius of the wheel.

(a) Given a desired chassis twist Vb, derive equations for the four wheel steer-
ing angles ✓i and the four wheel driving speeds ui. (Note that the pair
(✓i, ui) yields the same linear motion at wheel i as (�✓i,�ui).)

(b) The “controls” for wheel i are the steering angle ✓i and the driving speed
ui. In practice, however, there are bounds on how quickly the wheel
steering angle can be changed. Comment on the implications for the
modeling, path planning, and control of a steerable-wheel mobile robot.
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Appendix A

Summary of Useful
Formulas

Chapter 2

• dof = (sum of freedoms of bodies) � (number of independent configuration
constraints)

• Grübler’s formula is an expression of the previous formula for mechanisms
with N links (including ground) and J joints, where joint i has fi de-
grees of freedom and m = 3 for planar mechanisms or m = 6 for spatial
mechanisms:

dof = m(N � 1� J) +
JX

i=1

fi.

• Pfa�an velocity constraints take the form A(✓)✓̇ = 0.

567

568

Chapter 3

Rotations Rigid-Body Motions

R 2 SO(3) : 3⇥ 3 matrices T 2 SE(3) : 4⇥ 4 matrices

RTR = I, det R = 1 T =


R p
0 1

�
,

where R 2 SO(3), p 2 R3

R�1 = RT T�1 =


RT �RTp
0 1

�

change of coordinate frame: change of coordinate frame:
RabRbc = Rac, Rabpb = pa TabTbc = Tac, Tabpb = pa

rotating a frame {b}: displacing a frame {b}:

R = Rot(!̂, ✓) T =


Rot(!̂, ✓) p

0 1

�

Rsb0 = RRsb: Tsb0 = TTsb: rotate ✓ about !̂s = !̂
rotate ✓ about !̂s = !̂ (moves {b} origin), translate p in {s}

Rsb00 = RsbR: Tsb00 = TsbT : translate p in {b},
rotate ✓ about !̂b = !̂ rotate ✓ about !̂ in new body frame

unit rotation axis is !̂ 2 R3, “unit” screw axis is S =


!
v

�
2 R6,

where k!̂k = 1 where either (i) k!k = 1 or
(ii) ! = 0 and kvk = 1

for a screw axis {q, ŝ, h} with finite h,

S =


!
v

�
=


ŝ

�ŝ⇥ q + hŝ

�

angular velocity is ! = !̂✓̇ twist is V = S ✓̇

for any 3-vector, e.g., ! 2 R3, for V =


!
v

�
2 R6,

[!]=

2

4
0 �!3 !2

!3 0 �!1

�!2 !1 0

3

52so(3) [V] =


[!] v
0 0

�
2 se(3)

identities, !, x 2 R3, R 2 SO(3): (the pair (!, v) can be a twist V
[!] = �[!]T, [!]x = �[x]!, or a “unit” screw axis S,

[!][x] = ([x][!])T, R[!]RT = [R!] depending on the context)

continued...
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Rotations (cont.) Rigid-Body Motions (cont.)

ṘR�1 = [!s], R�1Ṙ = [!b] Ṫ T�1 = [Vs], T�1Ṫ = [Vb]

[AdT ] =


R 0

[p]R R

�
2 R6⇥6

identities: [AdT ]�1 = [AdT�1 ],
[AdT1 ][AdT2 ] = [AdT1T2 ]

change of coordinate frame: change of coordinate frame:
!̂a = Rab!̂b, !a = Rab!b Sa = [AdTab ]Sb, Va = [AdTab ]Vb

exp coords for R 2 SO(3): !̂✓ 2 R3 exp coords for T 2 SE(3): S✓ 2 R6

exp : [!̂]✓ 2 so(3)! R 2 SO(3) exp : [S]✓ 2 se(3)! T 2 SE(3)

R = Rot(!̂, ✓) = e[!̂]✓ = T = e[S]✓ =


e[!]✓ ⇤

0 1

�

I + sin ✓[!̂] + (1� cos ✓)[!̂]2 where ⇤ =
(I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2)v

log : R 2 SO(3)! [!̂]✓ 2 so(3) log : T 2 SE(3)! [S]✓ 2 se(3)
algorithm in Section 3.2.3.3 algorithm in Section 3.3.3.2

moment change of coord frame: wrench change of coord frame:
ma = Rabmb Fa = (ma, fa) = [AdTba ]TFb

Chapter 4

• The product of exponentials formula for an open-chain manipulator is

space frame: T = e[S1]✓1 . . . e[Sn]✓nM,

body frame: T = Me[B1]✓1 . . . e[Bn]✓n

where M is the frame of the end-e↵ector in the space frame when the
manipulator is at its home position, Si is the spatial twist when joint i
rotates (or translates) at unit speed while all other joints are at their zero
position, and Bi is the body twist of the end-e↵ector frame when joint i
moves at unit speed and all other joints are at their zero position.

Chapter 5

• For a manipulator end-e↵ector configuration written in coordinates x, the
forward kinematics is x = f(✓), and the di↵erential kinematics is given by
ẋ = @f

@✓ ✓̇ = J(✓)✓̇, where J(✓) is the manipulator Jacobian.
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• Written using twists, the relation is V⇤ = J⇤(✓)✓̇, where ⇤ is either s (space
Jacobian) or b (body Jacobian). The columns Jsi, i = 2 . . . n, of the space
Jacobian are

Jsi(✓) = [Ade[S1]✓1 ...e[Si�1]✓i�1 ]Si,

with Js1 = S1, and the columns Jbi, i = 1 . . . n� 1, of the body Jacobian
are

Jbi(✓) = [Ade�[Bn]✓n ...e�[Bi+1]✓i+1 ]Bi,

with Jbn = Bn. The spatial twist caused by joint i is only altered by the
configurations of joints inboard from joint i (between the joint and the
space frame), while the body twist caused by joint i is only altered by the
configurations of joints outboard from joint i (between the joint and the
body frame).

The two Jacobians are related by

Jb(✓) = [AdTbs(✓)]Js(✓), Js(✓) = [AdTsb(✓)]Jb(✓).

• Generalized forces at the joints ⌧ are related to wrenches expressed in the
space or end-e↵ector body frame by

⌧ = JT
⇤ (✓)F⇤,

where ⇤ is s (space frame) or b (body frame).

• The manipulability ellipsoid is defined by

VT(JJT)�1V = 1,

where V may be a set of task-space coordinate velocities q̇, a spatial or
body twist, or the angular or linear components of a twist, and J is the
appropriate Jacobian satisfying V = J(✓)✓̇. The principal axes of the
manipulability ellipsoid are aligned with the eigenvectors of JJT, and the
semi-axis lengths are the square roots of the corresponding eigenvalues.

• The force ellipsoid is defined by

FTJJTF = 1,

where J is a Jacobian (possibly in terms of a minimum set of task-space
coordinates or in terms of the spatial or body wrench) and F is an end-
e↵ector force or wrench satisfying ⌧ = JTF . The principal axes of the
manipulability ellipsoid are aligned with the eigenvectors of (JJT)�1, and
the semi-axis lengths are the square roots of the corresponding eigenvalues.
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Chapter 6

• The law of cosines states that c2 = a2+b2�2ab cos �, where a, b, and c are
the lengths of the sides of a triangle and � is the interior angle opposite
side c. This formula is often useful to solve inverse kinematics problems.

• Numerical methods are used to solve the inverse kinematics for systems
for which closed-form solutions do not exist. A Newton–Raphson method
using the Jacobian pseudoinverse J†(✓) is outlined below.

(a) Initialization: Given Tsd and an initial guess ✓0 2 Rn. Set i = 0.

(b) Set [Vb] = log
�
T�1
sb (✓i)Tsd

�
. While k!bk > ✏! or kvbk > ✏v for small

✏!, ✏v:

– Set ✓i+1 = ✓i + J†
b (✓i)Vb.

– Increment i.

If J is square and full rank, then J† = J�1. If J 2 Rm⇥n is full rank
(rank m for n > m or rank n for n < m), that is, the robot is not at a
singularity, the pseudoinverse can be calculated as follows:

J† = JT(JJT)�1 if n > m (called a right inverse since JJ† = I)

J† = (JTJ)�1JT if n < m (called a left inverse since J†J = I).

Chapter 8

• The Lagrangian is the kinetic minus the potential energy, L(✓, ✓̇) = K(✓, ✓̇)�
P(✓).

• The Euler-Lagrange equations are

⌧ =
d

dt

@L
@✓̇
� @L
@✓

.

• The equations of motion of a robot can be written in the following equiv-
alent forms:

⌧ = M(✓)✓̈ + h(✓, ✓̇)

= M(✓)✓̈ + c(✓, ✓̇) + g(✓)

= M(✓)✓̈ + ✓̇T�(✓)✓̇ + g(✓)

= M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓),
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where M(✓) is the n⇥n symmetric positive-definite mass matrix, h(✓, ✓̇) is
the sum of generalized forces due to gravity and quadratic velocity terms,
c(✓, ✓̇) are quadratic velocity forces, g(✓) are gravitational forces, �(✓) is
an n⇥ n⇥ n matrix of Christo↵el symbols of the first kind obtained from
partial derivatives of M(✓) with respect to ✓, and C(✓, ✓̇) is the n ⇥ n
Coriolis matrix whose (i, j)th entry is given by

cij(✓, ✓̇) =
nX

k=1

�ijk(✓)✓̇k.

If the end-e↵ector of the robot is applying a wrench Ftip to the environ-
ment, the term JT(✓)Ftip should be added to the right-hand side of the
robot’s dynamic equations.

• The symmetric positive-definite rotational inertia matrix of a rigid body
is

Ib =

2

4
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

3

5 ,

where

Ixx =
R
B(y2 + z2)⇢(x, y, z)dV, Iyy =

R
B(x2 + z2)⇢(x, y, z)dV,

Izz =
R
B(x2 + y2)⇢(x, y, z)dV, Ixy = �

R
B xy⇢(x, y, z)dV,

Ixz = �
R
B xz⇢(x, y, z)dV, Iyz = �

R
B yz⇢(x, y, z)dV,

B is the body, dV is a di↵erential volume element, and ⇢(x, y, z) is the
density function.

• If Ib is defined in a frame {b} at the center of mass then Iq, the inertia
in a frame {q} aligned with {b}, but displaced from the origin of {b} by
q 2 R3 in {b} coordinates, is

Iq = Ib + m(qTqI � qqT)

by Steiner’s theorem.

• The spatial inertia matrix Gb expressed in a frame {b} at the center of
mass is defined as the 6⇥ 6 matrix

Gb =


Ib 0
0 mI

�
.

In a frame {a} at a configuration Tba relative to {b}, the spatial inertia
matrix is

Ga = [AdTba ]TGb[AdTba ].
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• The Lie bracket of two twists V1 and V2 is

adV1(V2) = [adV1 ]V2,

where

[adV ] =


[!] 0
[v] [!]

�
2 R6⇥6.

• The twist-wrench formulation of the rigid-body dynamics of a single rigid
body is

Fb = GbV̇b � [adVb ]
TGbVb.

The equations have the same form if F , V, and G are expressed in the
same frame, regardless of the frame.

• The kinetic energy of a rigid body is 1
2VT

b GbVb, and the kinetic energy of

an open-chain robot is 1
2 ✓̇

TM(✓)✓̇.

• The forward-backward Newton-Euler inverse dynamics algorithm is the
following:

Initialization: Attach a frame {0} to the base, frames {1} to {n} to the
centers of mass of links {1} to {n}, and a frame {n+1} at the end-e↵ector,
fixed in the frame {n}. Define Mi,i�1 to be the configuration of {i � 1}
in {i} when ✓i = 0. Let Ai be the screw axis of joint i expressed in {i},
and Gi be the 6 ⇥ 6 spatial inertia matrix of link i. Define V0 to be the
twist of the base frame {0} expressed in base-frame coordinates. (This
quantity is typically zero.) Let g 2 R3 be the gravity vector expressed in
base-frame-{0} coordinates, and define V̇0 = (0,�g). (Gravity is treated
as an acceleration of the base in the opposite direction.) Define Fn+1 =
Ftip = (mtip, ftip) to be the wrench applied to the environment by the
end-e↵ector expressed in the end-e↵ector frame {n + 1}.

Forward iterations: Given ✓, ✓̇, ✓̈, for i = 1 to n do

Ti,i�1 = e�[Ai]✓iMi,i�1,

Vi = AdTi,i�1(Vi�1) + Ai✓̇i,

V̇i = AdTi,i�1(V̇i�1) + adVi(Ai)✓̇i + Ai✓̈i.

Backward iterations: For i = n to 1 do

Fi = AdT
Ti+1,i

(Fi+1) + GiV̇i � adT
Vi

(GiVi),

⌧i = FT
i Ai.
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• Let Jib(✓) to be the Jacobian relating ✓̇ to the body twist Vi in link i’s
center-of-mass frame {i}. Then the mass matrix M(✓) of the manipulator
can be expressed as

M(✓) =
nX

i=1

JT
ib(✓)GiJib(✓).

• The robot’s dynamics M(✓)✓̈ + h(✓, ✓̇) can be expressed in the task space
as

F = ⇤(✓)V̇ + ⌘(✓, V),

where F is the wrench applied to the end-e↵ector, V is the twist of the end-
e↵ector, and F , V, and the Jacobian J(✓) are all defined in the same frame.
The task-space mass matrix ⇤(✓) and gravity and quadratic velocity forces
⌘(✓, V) are

⇤(✓) = J�TM(✓)J�1,

⌘(✓, V) = J�Th(✓, J�1V)� ⇤(✓)J̇J�1V,

where J�T = (J�1)T.

• Define two n⇥ n projection matrices of rank n� k

P (✓) = I �AT(AM�1AT)�1AM�1,

P✓̈(✓) = M�1PM = I �M�1AT(AM�1AT)�1A

corresponding to the k Pfa�an constraints acting on the robot, A(✓)✓̇ = 0,
A 2 Rk⇥n. Then the n + k constrained equations of motion

⌧ = M(✓)✓̈ + h(✓, ✓̇) + AT(✓)�,

A(✓)✓̇ = 0

can be reduced to the following equivalent forms by eliminating the La-
grange multipliers �:

P ⌧ = P (M ✓̈ + h),

P✓̈ ✓̈ = P✓̈M
�1(⌧ � h).

The matrix P projects away joint force–torque components that act on the
constraints without doing work on the robot, and the matrix P✓̈ projects
away acceleration components that do not satisfy the constraints.
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Chapter 9

• A straight-line path in joint space is given by ✓(s) = ✓start+s(✓end�✓start)
as s goes from 0 to 1.

• A constant-screw-axis motion of the end-e↵ector from Xstart 2 SE(3) to
Xend is X(s) = Xstart exp(log(X�1

startXend)s) as s goes from 0 to 1.

• The path-constrained dynamics of a robot can be written

m(s)s̈ + c(s)ṡ2 + g(s) = ⌧ 2 Rn

as s goes from 0 to 1.

Chapter 13

• The Lie bracket of two vector fields g1 and g2 is the vector field

[g1, g2] =

✓
@g2
@q

g1 �
@g1
@q

g2

◆
.
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Appendix B

Other Representations of
Rotations

B.1 Euler Angles

As we established earlier, the orientation of a rigid body can be parametrized by
three independent coordinates. For example, consider a rigid body with a body
frame {b} attached to it, initially aligned with the space frame {s}. Now rotate
the body by ↵ about the body ẑb-axis, then by � about the body ŷb-axis, and
finally by � about the body x̂b-axis. Then (↵,�, �) are the ZYX Euler angles
representing the final orientation of the body (see Figure B.1). If the successive
rotations are made with respect to the body frame, the result corresponds to
the final rotation matrix

R(↵,�, �) = I Rot(ẑ,↵) Rot(ŷ,�) Rot(x̂, �),

where

Rot(ẑ,↵) =

2

4
cos↵ � sin↵ 0
sin↵ cos↵ 0

0 0 1

3

5 , Rot(ŷ,�) =

2

4
cos� 0 sin�

0 1 0
� sin� 0 cos�

3

5 ,

Rot(x̂, �) =

2

4
1 0 0
0 cos � � sin �
0 sin � cos �

3

5 .
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Figure B.1: To understand the ZYX Euler angles, use the corner of a box or a book
as the body frame. The ZYX Euler angles correspond to successive rotations of the
body about the ẑb-axis by ↵, the ŷb-axis by �, and the x̂b-axis by �.

Writing out the entries explicitly, we get

R(↵,�, �) =

2

4
c↵c� c↵s�s� � s↵c� c↵s�c� + s↵s�
s↵c� s↵s�s� + c↵c� s↵s�c� � c↵s�
�s� c�s� c�c�

3

5 , (B.1)

where s↵ is shorthand for sin↵, c↵ for cos↵, etc.
We now ask the following question: given an arbitrary rotation matrix R,

does there exist (↵,�, �) satisfying Equation (B.1)? In other words, can the
ZYX Euler angles represent all orientations? The answer is yes, and we prove
this fact constructively as follows. Let rij be the (i, j)th element of R. Then,
from Equation (B.1), we know that r211 + r221 = cos2 �; as long as cos� 6= 0, or
equivalently � 6= ±90�, we have two possible solutions for �:

� = atan2

✓
�r31,

q
r211 + r221

◆

and

� = atan2

✓
�r31,�

q
r211 + r221

◆
.

(The atan2 two-argument arctangent is described at the beginning of Chapter 6.)
In the first case � lies in the range [�90�, 90�], while in the second case it lies in
the range [90�, 270�]. Assuming that the � obtained above is not ±90�, ↵ and
� can then be determined from the following relations:

↵ = atan2(r21, r11),

� = atan2(r32, r33).
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In the event that � = ±90�, there exists a one-parameter family of solutions
for ↵ and �. This is most easily seen from Figure B.3. If � = 90� then ↵ and
� represent rotations (in the opposite direction) about the same vertical axis.
Hence, if (↵,�, �) = (↵̄, 90�, �̄) is a solution for a given rotation R then any
triple (↵̄0, 90�, �̄0), where ↵̄0 � �̄0 = ↵̄� �̄, is also a solution.

B.1.1 Algorithm for Computing the ZYX Euler Angles

Given R 2 SO(3), we wish to find angles ↵, � 2 (�⇡,⇡] and � 2 [�⇡/2,⇡/2)
that satisfy

R =

2

4
c↵c� c↵s�s� � s↵c� c↵s�c� + s↵s�
s↵c� s↵s�s� + c↵c� s↵s�c� � c↵s�
�s� c�s� c�c�

3

5 . (B.2)

Denote by rij the (i, j)th entry of R.

(a) If r31 6= ±1, set

� = atan2

✓
�r31,

q
r211 + r221

◆
, (B.3)

↵ = atan2(r21, r11), (B.4)

� = atan2(r32, r33), (B.5)

where the square root is taken to be positive.

(b) If r31 = �1 then � = ⇡/2, and a one-parameter family of solutions for ↵
and � exists. One possible solution is ↵ = 0 and � = atan2(r12, r22).

(c) If r31 = 1 then � = �⇡/2, and a one-parameter family of solutions for ↵
and � exists. One possible solution is ↵ = 0 and � = �atan2(r12, r22).

B.1.2 Other Euler Angle Representations

The ZYX Euler angles can be visualized using the wrist mechanism shown in
Figure B.2. The ZYX Euler angles (↵,�, �) refer to the angle of rotation about
the three joint axes of this mechanism. In the figure the wrist mechanism is
shown in its zero position, i.e., when all three joints are set to zero.

Four reference frames are defined as follows: frame {0} is the fixed frame,
while frames {1}, {2}, and {3} are attached to the three links of the wrist
mechanism as shown. When the wrist is in the zero position, all four refer-
ence frames have the same orientation. At the joint angles (↵,�, �), frame {1}
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↵

�
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ẑ0

x̂1

ŷ1

ẑ1

x̂2

ŷ2

ŷ3

ẑ3

�

ẑ2
x̂3

Figure B.2: Wrist mechanism illustrating the ZYX Euler angles.

relative to {0} is R01(↵) = Rot(ẑ,↵), and similarly R12(�) = Rot(ŷ,�) and
R23(�) = Rot(x̂, �). Therefore R03(↵,�, �) = Rot(ẑ,↵) Rot(ŷ,�) Rot(x̂, �) as in
Equation (B.1).

It should be evident that the choice of zero position for � is, in some sense,
arbitrary. That is, we could just as easily have defined the home position of the
wrist mechanism to be as in Figure B.3; this would then lead to another three-
parameter representation (↵,�, �) for SO(3). In fact, Figure B.3 illustrates the
ZYZ Euler angles. The resulting rotation matrix can be obtained via the
following sequence of rotations, equivalent to rotating the body in Figure B.1
first about the body’s ẑb-axis, then about the ŷb-axis, then about the ẑb-axis:

R(↵,�, �) = Rot(ẑ,↵)Rot(ŷ,�)Rot(ẑ, �)

=

2

4
c↵ �s↵ 0
s↵ c↵ 0
0 0 1

3

5

2

4
c� 0 s�
0 1 0
�s� 0 c�

3

5

2

4
c� �s� 0
s� c� 0
0 0 1

3

5

=

2

4
c↵c�c� � s↵s� �c↵c�s� � s↵c� c↵s�
s↵c�c� + c↵s� �s↵c�s� + c↵c� s↵s�
�s�c� s�s� c�

3

5 . (B.6)

Just as before, we can show that for every rotation R 2 SO(3), there exists
a triple (↵,�, �) that satisfies R = R(↵,�, �) for R(↵,�, �) as given in Equa-
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↵

� = 90�

�

Figure B.3: Configuration corresponding to � = 90� for ZYX Euler angles.

tion (B.6). (Of course, the resulting formulas will di↵er from those for the ZYX
Euler angles.)

From the wrist mechanism interpretation of the ZYX and ZYZ Euler angles,
it should be evident that, for Euler-angle parametrizations of SO(3), what really
matters is that rotation axis 1 is orthogonal to rotation axis 2, and that rotation
axis 2 is orthogonal to rotation axis 3 (axes 1 and 3 need not necessarily be
orthogonal to each other). Specifically, any sequence of rotations of the form

Rot(axis 1,↵)Rot(axis 2,�)Rot(axis 3, �), (B.7)

where axis 1 is orthogonal to axis 2, and axis 2 is orthogonal to axis 3, can serve
as a valid three-parameter representation for SO(3). The angle of rotation for
the first and third rotations ranges in value over a 2⇡ interval, while that of the
second rotation ranges in value over an interval of length ⇡.
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ẑ

x̂

ŷ
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Figure B.4: Illustration of XYZ roll–pitch–yaw angles.

B.2 Roll–Pitch–Yaw Angles

While Euler angles refer to the angles in a sequence of rotations in a body-fixed
frame, the roll–pitch–yaw angles refer to the angles in a sequence of rotations
about axes fixed in the space frame. Referring to Figure B.4, given a frame in
the identity configuration (that is, R = I), we first rotate this frame by an angle
� about the x̂-axis of the fixed frame, then by an angle � about the ŷ-axis of
the fixed frame, and finally by an angle ↵ about the ẑ-axis of the fixed frame.

Since the three rotations are in the fixed frame, the final orientation is

R(↵,�, �) = Rot(ẑ,↵)Rot(ŷ,�)Rot(x̂, �)I

=

2

4
c↵ �s↵ 0
s↵ c↵ 0
0 0 1

3

5

2

4
c� 0 s�
0 1 0
�s� 0 c�

3

5

2

4
1 0 0
0 c� �s�
0 s� c�

3

5 I

=

2

4
c↵c� c↵s�s� � s↵c� c↵s�c� + s↵s�
s↵c� s↵s�s� + c↵c� s↵s�c� � c↵s�
�s� c�s� c�c�

3

5 . (B.8)

This product of three rotations is exactly the same as that for the ZYX Euler
angles given in (B.2). We see that the same product of three rotations admits
two di↵erent physical interpretations: as a sequence of rotations with respect to
the body frame (ZYX Euler angles) or, reversing the order of the rotations, as a
sequence of rotations with respect to the fixed frame (the XYZ roll–pitch–yaw
angles).

The terms roll, pitch, and yaw are often used to describe the rotational mo-
tion of a ship or aircraft. In the case of a typical fixed-wing aircraft, for example,
suppose a body frame is attached such that the x̂-axis is in the direction of for-
ward motion, the ẑ-axis is the vertical axis pointing downward toward ground
(assuming the aircraft is flying level with respect to ground), and the ŷ-axis
extends in the direction of the wing. The roll, pitch, and yaw motions are then
defined according to the XYZ roll–pitch–yaw angles (↵,�, �) of Equation (B.8).
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B.3 Unit Quaternions

One disadvantage of the exponential coordinates on SO(3) is that, because of
the division by sin ✓ in the logarithm formula, the logarithm can be numerically
sensitive to small rotation angles ✓. The necessary singularity of the three-
parameter representation occurs at R = I. The unit quaternions are an
alternative representation of rotations that alleviates this singularity, but at the
cost of having a fourth variable in the representation. We now illustrate the
definition and use of these coordinates.

Let R 2 SO(3) have the exponential coordinate representation !̂✓, i.e., R =
e[!̂]✓, where as usual k!̂k = 1 and ✓ 2 [0,⇡]. The unit quaternion representation
of R is constructed as follows. Define q 2 R4 according to

q =

2

664

q0
q1
q2
q3

3

775 =


cos(✓/2)
!̂ sin(✓/2)

�
2 R4. (B.9)

As defined, q clearly satisfies kqk = 1. Geometrically, q is a point lying on the
three-dimensional unit sphere in R4, and for this reason the unit quaternions
are also identified with the 3-sphere, denoted S3. Naturally, among the four
coordinates of q, only three can be chosen independently. Recalling that 1 +
2 cos ✓ = tr R, and using the cosine double-angle formula cos 2� = 2 cos2 �� 1,
the elements of q can be obtained directly from the entries of R as follows:

q0 =
1

2

p
1 + r11 + r22 + r33, (B.10)

2

4
q1
q2
q3

3

5 =
1

4q0

2

4
r32 � r23
r13 � r31
r21 � 212

3

5 . (B.11)

Going the other way, given a unit quaternion (q0, q1, q2, q3) the corresponding
rotation matrix R is obtained as a rotation about the unit axis, in the direction
of (q1, q2, q3), by an angle 2 cos�1 q0. Explicitly,

R =

2

4
q20 + q21 � q22 � q23 2(q1q2 � q0q3) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q20 � q21 + q22 � q23 2(q2q3 � q0q1)
2(q1q3 � q0q2) 2(q0q1 + q2q3) q20 � q21 � q22 + q23

3

5 . (B.12)

From the above explicit formula it should be apparent that both q 2 S3 and its
antipodal point �q 2 S3 produce the same rotation matrix R: for every rotation
matrix there exists two unit-quaternion representations that are antipodal to
each other.
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The final property of the unit quaternions concerns the product of two rota-
tions. Let Rq, Rp 2 SO(3) denote two rotation matrices, with unit-quaternion
representations ±q, ±p 2 S3, respectively. The unit-quaternion representation
for the product RqRp can then be obtained by first arranging the elements of q
and p in the form of the following 2⇥ 2 complex matrices:

Q =


q0 + iq1 q2 + ip3
�q2 + iq3 q0 � iq1

�
, P =


p0 + ip1 p2 + ip3
�p2 + ip3 p0 � ip1

�
, (B.13)

where i denotes the imaginary unit. Now take the product N = QP , where the
entries of N are given by

N =


n0 + in1 n2 + in3

�n2 + in3 n0 � in1

�
. (B.14)

The unit quaternion for the product RqRp is then ±(n0, n1, n2, n3), obtained
from the entries of N :

2

664

n0

n1

n2

n3

3

775 =

2

664

q0p0 � q1p1 � q2p2 � q3p3
q0p1 + p0q1 + q2p3 � q3p2
q0p2 + p0q2 � q1p3 + q3p1
q0p3 + p0q3 + q1p2 � q2p1

3

775 . (B.15)

B.4 Cayley–Rodrigues Parameters

The Cayley–Rodrigues parameters form another set of widely used local co-
ordinates for SO(3). These parameters can be obtained from the exponential
representation on SO(3) as follows: given R = e[!̂]✓ for some unit vector !̂ and
angle ✓, the Cayley–Rodrigues parameters r 2 R3 are obtained by setting

r = !̂ tan
✓

2
. (B.16)

Referring again to the radius-⇡ solid-ball picture of SO(3) (Figure 3.13), the
above parametrization has the e↵ect of infinitely “stretching” the radius of this
ball via the tangent half-angle function. These parameters can be derived from
a general formula attributed to Cayley that is also valid for rotation matrices of
arbitrary dimension: if R 2 SO(3) such that tr R 6= �1 then (I�R)(I +R)�1 is
skew symmetric. Denoting this skew-symmetric matrix by [r], it is known that
R and [r] are related as follows:

R = (I � [r])(I + [r])�1, (B.17)

[r] = (I �R)(I + R)�1. (B.18)
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The above two formulas establish a one-to-one correspondence between so(3)
and those elements of SO(3) with trace not equal to �1. In the event that
tr R = �1, the following alternative formulas can be used to relate SO(3) (this
time excluding those with unit trace) and so(3) in a one-to-one fashion:

R = �(I � [r])(I + [r])�1, (B.19)

[r] = (I + R)(I �R)�1 (B.20)

Furthermore, Equation (B.18) can be explicitly computed as

R =
(1� rTr)I + 2rrT + 2[r]

1 + rTr
(B.21)

with its inverse mapping given by

[r] =
R�RT

1 + tr R
. (B.22)

(This formula is valid when tr R 6= �1). The vector r = 0 therefore corre-
sponds to the identity matrix, and �r represents the inverse of the rotation
corresponding to r.

The following two identities also follow from the above formulas:

1 + tr R =
4

1 + rTr
, (B.23)

R�RT =
4 [r]

1 + rTr
. (B.24)

An attractive feature of the Cayley–Rodrigues parameters is the particularly
simple form for the composition of two rotation matrices. If r1 and r2 denote the
Cayley–Rodrigues parameters for two rotations R1 and R2, respectively, then
the Cayley–Rodrigues parameters for R3 = R1R2, denoted r3, are given by

r3 =
r1 + r2 + (r1 ⇥ r2)

1� rT1 r2
(B.25)

In the event that rT1 r2 = 1, or equivalently tr(R1R2) = �1, the following
alternative composition formula can be used. Define

s =
rp

1 + rTr
(B.26)

so that the rotation corresponding to r can be written

R = I + 2
p

1� sTs [s] + 2[s]2. (B.27)
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The direction of s coincides with that of r, and ksk = sin(✓/2). The composition
law now becomes

s3 = s1

q
1� sT2 s2 + s2

q
1� sT1 s1 + (s1 ⇥ s2) (B.28)

Angular velocities and accelerations also admit a simple form in terms of the
Cayley–Rodrigues parameters. If r(t) denotes the Cayley–Rodrigues represen-
tation of the orientation trajectory R(t) then, in vector form,

!s =
2

1 + krk2 (r ⇥ ṙ + ṙ), (B.29)

!b =
2

1 + krk2 (�r ⇥ ṙ + ṙ). (B.30)

The angular acceleration with respect to the space and body frames can now
be obtained by time-di↵erentiating the above expressions:

!̇s =
2

1 + krk2 (r ⇥ r̈ + r̈ � rTṙ !s), (B.31)

!̇b =
2

1 + krk2 (�r ⇥ r̈ + r̈ � rTṙ !b). (B.32)

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Appendix C

Denavit–Hartenberg
Parameters

The basic idea underlying the Denavit–Hartenberg approach to forward kine-
matics is to attach reference frames to each link of the open chain and then to
derive the forward kinematics from the knowledge of the relative displacements
between adjacent link frames. Assume that a fixed reference frame has been es-
tablished and that a reference frame (the end-e↵ector frame) has been attached
to some point on the last link of the open chain. For a chain consisting of n
one-degree-of-freedom joints, the links are numbered sequentially from 0 to n:
the ground link is labeled 0, and the end-e↵ector frame is attached to link n.
Reference frames attached to the links are also correspondingly labeled from
{0} (the fixed frame) to {n} (the end-e↵ector frame). The joint variable corre-
sponding to the ith joint is denoted ✓i. The forward kinematics of the n-link
open chain can then be expressed as

T0n(✓1, . . . , ✓n) = T01(✓1)T12(✓2) · · · Tn�1,n(✓n), (C.1)

where Ti,i�1 2 SE(3) denotes the relative displacement between link frames
{i� 1} and {i}. Depending on how the link reference frames have been chosen,
each Ti�1,i can be obtained in a straightforward fashion.

C.1 Assigning Link Frames

Rather than attaching reference frames to each link in an arbitrary fashion,
in the Denavit–Hartenberg convention a set of rules for assigning link frames
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588 C.1. Assigning Link Frames

axis i � 1
axis i

ŷi�1
ẑi�1

x̂i�1

ai�1

dix̂iŷi

ẑi
↵i�1

i�

Figure C.1: Illustration of the Denavit–Hartenberg parameters.

is observed. Figure C.1 illustrates the frame-assignment convention for two
adjacent revolute joints i� 1 and i that are connected by link i� 1.

The first rule is that the ẑi-axis coincides with joint axis i and the ẑi�1-axis
coincides with joint axis i � 1. The direction of positive rotation about each
link’s ẑ-axis is determined by the right-hand rule.

Once the ẑ-axis direction has been assigned, the next rule determines the
origin of the link reference frame. First, find the line segment that orthogonally
intersects both the joint axes ẑi�1 and ẑi. For now let us assume that this line
segment is unique; the case where it is not unique (i.e., when the two joint
axes are parallel), or fails to exist (i.e., when the two joint axes intersect), is
addressed later. Connecting joint axes i� 1 and i by a mutually perpendicular
line, the origin of frame {i � 1} is then located at the point where this line
intersects joint axis i� 1.

Determining the remaining x̂- and ŷ-axes of each link reference frame is now
straightforward: the x̂-axis is chosen to be in the direction of the mutually
perpendicular line pointing from the (i � 1)-axis to the i-axis. The ŷ-axis is
then uniquely determined from the cross product x̂⇥ ŷ = ẑ. Figure C.1 depicts
the link frames {i} and {i� 1} chosen according to this convention.

Having assigned reference frames in this fashion for links i and i�1, we now
define four parameters that exactly specify Ti�1,i:
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• The length of the mutually perpendicular line, denoted by the scalar ai�1,
is called the link length of link i� 1. Despite its name, this link length
does not necessarily correspond to the actual length of the physical link.

• The link twist ↵i�1 is the angle from ẑi�1 to ẑi, measured about x̂i�1.

• The link o↵set di is the distance from the intersection of x̂i�1 and ẑi to
the origin of the link-i frame (the positive direction is defined to be along
the ẑi-axis).

• The joint angle �i is the angle from x̂i�1 to x̂i, measured about the
ẑi-axis.

These parameters constitute the Denavit–Hartenberg (D–H) parameters.
For an open chain with n one-degree-of-freedom joints, the 4n D–H parame-
ters are su�cient to completely describe the forward kinematics. In the case of
an open chain with all joints revolute, the link lengths ai�1, twists ↵i�1, and
o↵set parameters di are all constant, while the joint angle parameters �i act as
the joint variables.

We now consider the cases where the mutually perpendicular line is unde-
fined or fails to be unique, or where some of the joints are prismatic; finally, we
consider how to choose the ground and end-e↵ector frames.

When Adjacent Revolute Joint Axes Intersect

If two adjacent revolute joint axes intersect each other then a mutually perpen-
dicular line between the joint axes fails to exist. In this case the link length is
set to zero, and we choose x̂i�1 to be perpendicular to the plane spanned by
ẑi�1 and ẑi. There are two possibilities, both of which are acceptable: one leads
to a positive value of the twist angle ↵i�1 while the other leads to a negative
value.

When Adjacent Revolute Joint Axes Are Parallel

The second special case occurs when two adjacent revolute joint axes are par-
allel. In this case there exist many possibilities for a mutually perpendicular
line, all of which are valid (more precisely, a one-dimensional family of mutual
perpendicular lines is said to exist). A useful guide is to try to choose the mu-
tually perpendicular line that is the most physically intuitive and that results
in as many zero parameters as possible.
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axis i � 1
axis i

ŷi�1

ẑi�1

x̂i�1

ai�1

↵i�1

di

�i

x̂i

ŷi

ẑi

Figure C.2: Link frame assignment convention for prismatic joints. Joint i � 1 is a
revolute joint, while joint i is a prismatic joint.

Prismatic Joints

For prismatic joints, the ẑ-direction of the link reference frame is chosen to be
along the positive direction of translation. This convention is consistent with
that for revolute joints, in which the ẑ-axis indicates the positive axis of rotation.
With this choice the link o↵set di is the joint variable and the joint angle �i is
constant (see Figure C.2). The procedure for choosing the link-frame origin, as
well as the remaining x̂- and ŷ-axes, remains the same as for revolute joints.

Assigning the Ground and End-E↵ector Frames

Our frame-assignment procedure described thus far does not specify how to
choose the ground and final link frames. Here, as before, a useful guideline
is to choose initial and final frames that are the most physically intuitive and
that simplify as many D–H parameters as possible. This usually implies that
the ground frame is chosen to coincide with the link-1 frame in its zero (rest)
position; in the event that the joint is revolute this choice forces a0 = ↵0 = d1 =
0, while for a prismatic joint we have a0 = ↵0 = �1 = 0. The end-e↵ector frame
is attached to some reference point on the end-e↵ector, usually at a location
that makes the description of the task intuitive and natural and also simplifies
as many of the D–H parameters as possible (e.g., their values become zero).

It is important to realize that arbitrary choices of the ground and end-e↵ector
frames may not always be possible, since there may not exist a valid set of D–H
parameters to describe the relative transformation. We elaborate on this point
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{a} {b}
x̂a

ẑa
ẑc

x̂b

ŷb

ẑb

x̂c

ŷa = ŷc

{c}

Figure C.3: An example of three frames {a}, {b}, and {c}, for which the transfor-
mations Tab and Tac cannot be described by any set of D–H parameters.

below.

C.2 Why Four Parameters are Su�cient

In our earlier study of spatial displacements we argued that a minimum of
six independent parameters were required to describe the relative displacement
between two frames in space, three for the orientation and three for the position.
On the basis of this result, it would seem that, for an n-link arm, a total of 6n
parameters would be required to completely describe the forward kinematics
(each Ti�1,i in the above equation would require six parameters). Surprisingly,
in the D–H parameter representation only four parameters are required for each
transformation Ti�1,i. Although this may at first appear to contradict our
earlier results, the reduction in the number of parameters is accomplished by
the carefully stipulated rules for assigning link reference frames. If the link
reference frames are assigned in arbitrary fashion, then more parameters are
required.

Consider, for example, the link frames shown in Figure C.3. The transforma-
tion from frame {a} to frame {b} is a pure translation along the ŷ-axis of frame
{a}. If one were to try to express the transformation Tab in terms of the D–H
parameters (↵, a, d, ✓) as prescribed above, it should become apparent that no
such set of parameter values exists. Similarly, the transformation Tac also does
not admit a description in terms of D–H parameters, as only rotations about
the x̂- and ẑ-axes are permissible. Under our D–H convention, only rotations
and translations along the x̂- and ẑ-axes are allowed, and no combination of
such motions can achieve the transformation shown in Figure C.3.

Given that the D–H convention uses exactly four parameters to describe the
transformation between link frames, one might naturally wonder whether the
number of parameters can be reduced even further, by an even more clever set
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of link-frame assignment rules. Denavit and Hartenberg showed that this is not
possible and that four is the minimum number of parameters [34].

We end this section with a reminder that there are alternative conventions
for assigning link frames. Whereas we chose the ẑ-axis to coincide with the joint
axis, some authors choose the x̂-axis and reserve the ẑ-axis to be the direction
of the mutually perpendicular line. To avoid ambiguities in the interpretation
of the D–H parameters, it is essential to include a concise description of the link
frames together with the parameter values.

C.3 Manipulator Forward Kinematics

Once all the transformations Ti�1,i between adjacent link frames are known in
terms of their D–H parameters, the forward kinematics is obtained by sequen-
tially multiplying these link transformations. Each link frame transformation is
of the form

Ti�1,i = Rot(x̂,↵i�1)Trans(x̂, ai�1)Trans(ẑ, di)Rot(ẑ,�i)

=

2

664

cos�i � sin�i 0 ai�1

sin�i cos↵i�1 cos�i cos↵i�1 � sin↵i�1 �di sin↵i�1

sin�i sin↵i�1 cos�i sin↵i�1 cos↵i�1 di cos↵i�1

0 0 0 1

3

775 ,

where

Rot(x̂,↵i�1) =

2

664

1 0 0 0
0 cos↵i�1 � sin↵i�1 0
0 sin↵i�1 cos↵i�1 0
0 0 0 1

3

775 , (C.2)

Trans(x̂, ai�1) =

2

664

1 0 0 ai�1

0 1 0 0
0 0 1 0
0 0 0 1

3

775 , (C.3)

Trans(ẑ, di) =

2

664

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

3

775 , (C.4)

Rot(ẑ,�i) =

2

664

cos�i � sin�i 0 0
sin�i cos�i 0 0

0 0 1 0
0 0 0 1

3

775 . (C.5)
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A useful way to visualize Ti,i�1 is that it transports frame {i� 1} to frame {i}
via the following sequence of four transformations:

(a) A rotation of frame {i� 1} about its x̂-axis by an angle ↵i�1.

(b) A translation of this new frame along its x̂-axis by a distance ai�1.

(c) A translation of the new frame formed by (b) along its ẑ-axis by a distance
di.

(d) A rotation of the new frame formed by (c) about its ẑ-axis by an angle �i.

Note that switching the order of the first and second steps will not change the
final form of Ti�1,i. Similarly, the order of the third and fourth steps can also
be switched without a↵ecting Ti�1,i.

C.4 Examples

We now derive the D–H parameters for some common spatial open chain struc-
tures.

Example C.1 (A 3R spatial open chain). Consider the 3R spatial open chain
of Figure 4.3, shown in its zero position (i.e., with all its joint variables set
to zero). The assigned link reference frames are shown in the figure, and the
corresponding D–H parameters are listed in the following table:

i ↵i�1 ai�1 di �i

1 0 0 0 ✓1
2 90� L1 0 ✓2 � 90�

3 �90� L2 0 ✓3

Note that frames {1} and {2} are uniquely specified from our frame assign-
ment convention, but that we have some latitude in choosing frames {0} and
{3}. Here we choose the ground frame {0} to coincide with frame {1} (resulting
in ↵0 = a0 = d1 = 0) and frame {3} to be such that x̂3 = x̂2 (resulting in no
o↵set to the joint angle ✓3).

Example C.2 (A spatial RRRP open chain). The next example we consider
is the four-dof RRRP spatial open chain of Figure C.4, here shown in its zero
position. The link frame assignments are as shown, and the corresponding D–H
parameters are listed in the figure.

The four joint variables are (✓1, ✓2, ✓3, ✓4), where ✓4 is the displacement of
the prismatic joint. As in the previous example, the ground frame {0} and final
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x̂0

ŷ0ẑ0

x̂1

ŷ1
ẑ1

x̂2

ŷ2
x̂3

ŷ3

ẑ3
x̂4

ŷ4

ẑ4
✓1✓2

✓3

✓4

L2

ẑ2

i ↵i�1 ai�1 di �i

1 0 0 0 ✓1
2 90� 0 0 ✓2
3 0 L2 0 ✓3 + 90�

4 90� 0 ✓4 0

Figure C.4: An RRRP spatial open chain.

link frame {4} have been chosen to make as many of the D–H parameters zero
as possible.

Example C.3 (A spatial 6R open chain). The final example we consider is
the widely used 6R robot arm (Figure C.5). This open chain has six rotational
joints: the first three joints function as a Cartesian positioning device, while
the last three joints act as a ZYZ Euler angle-type wrist. The link frames are
shown in the figure, and the corresponding D–H parameters are listed in the
table accompanying the figure.
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x̂0

ŷ0
ẑ0

x̂1

ŷ1
ẑ1

x̂2

ŷ2

ẑ2

x̂3
ŷ3

ẑ3

x̂4

ŷ4

ẑ4

x̂5

ŷ5

ẑ5

x̂6

ŷ6

ẑ6

✓1

✓2

✓3
✓4

✓5
✓6

L1 L2

i ↵i�1 ai�1 di �i

1 0 0 0 ✓1
2 90� 0 0 ✓2
3 0 L1 0 ✓3 + 90�

4 90� 0 L2 ✓4 + 180�

5 90� 0 0 ✓5 + 180�

6 90� 0 0 ✓6

Figure C.5: A 6R spatial open chain.

C.5 Relation Between the PoE and D–H Represen-
tations

The product of exponentials formula can be derived directly from the D–H
parameter-based representation of the forward kinematics. As before, denote
the relative displacement between adjacent link frames by

Ti�1,i = Rot(x̂,↵i�1)Trans(x̂, ai�1)Trans(ẑ, di)Rot(ẑ,�i).

If joint i is revolute, the first three matrices can be regarded as constant and �i
becomes the revolute joint variable. Define ✓i = �i and

Mi = Rot(x̂,↵i�1)Trans(x̂, ai�1)Trans(ẑ, di), (C.6)
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and write Rot(ẑ, ✓i) as the following matrix exponential:

Rot(ẑ, ✓i) = e[Ai]✓i , [Ai] =

2

664

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3

775 . (C.7)

With the above definitions we can write Ti�1,i = Mie[Ai]✓i .
If joint i is prismatic then di becomes the joint variable, �i is a constant

parameter, and the order of Trans(ẑ, di) and Rot(ẑ,�i) in Ti�1,i can be reversed
(recall that reversing translations and rotations taken along the same axis still
results in the same motion). In this case we can still write Ti�1,i = Mie[Ai]✓i ,
where ✓i = di and

Mi = Rot(x̂,↵i�1)Trans(x̂, ai�1)Rot(ẑ,�i), (C.8)

[Ai] =

2

664

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3

775 . (C.9)

From the above, for an n-link open chain containing both revolute and pris-
matic joints, the forward kinematics can be written as

T0,n = M1e
[A1]✓1M2e

[A2]✓2 · · · Mne[An]✓n (C.10)

where ✓i denotes joint variable i, and [Ai] is either of the form (C.7) or of the
form (C.9), depending on whether joint i is revolute or prismatic.

We now make use of the matrix identity MePM�1 = eMPM�1

, which holds
for any nonsingular M 2 Rn⇥n and arbitrary P 2 Rn⇥n. This identity can
also be rearranged as MeP = eMPM�1

M . Beginning from the left of Equa-
tion (C.10), if we repeatedly apply the identity, after n iterations we obtain the
product of exponentials formula as originally derived:

T0n = eM1[A1]M
�1
1 ✓1(M1M2)e

[A2]✓2 · · · e[An]✓n

= eM1[A1]M
�1
1 ✓1e(M1M2)[A2](M1M2)

�1✓2(M1M2M3)e
[A3]✓3 · · · e[An]✓n

= e[S1]✓1 · · · e[Sn]✓nM, (C.11)

where

[Si] = (M1 · · · Mi)[Ai](M1 · · · Mi)
�1, i = 1, . . . , n, (C.12)

M = M1M2 · · · Mn. (C.13)
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We now re-examine the physical meaning of the Si by recalling how a screw
twist transforms under a change of reference frames. If Sa represents the screw
twist for a given screw motion with respect to frame {a}, and Sb represents the
screw twist for the same physical screw motion but this time with respect to
frame {b}, then recall that Sa and Sb are related by

[Sb] = Tba[Sa]T
�1
ba (C.14)

or, using the adjoint notation AdTba ,

Sb = AdTba(Sa). (C.15)

Seen from the perspective of this transformation rule, Equation (C.12) suggests
that Ai is the screw twist for joint axis i as seen from link frame {i}, while Si

is the screw twist for joint axis i as seen from the fixed frame {0}.

C.6 A Final Comparison

We now summarize the relative advantages and disadvantages of the PoE for-
mula as compared with the D–H representation. Recall that the D–H parame-
ters constitute a minimal parameter set, i.e., only four parameters are needed
to describe the transformation between adjacent link frames. However, it is
necessary to assign link frames in a way such that valid D–H parameters exist;
they cannot be chosen arbitrarily. The same applies when choosing the base and
end-e↵ector frames. Moreover, there is more than one convention for assigning
link frames; in some conventions the link frame is attached so that the joint axis
is aligned in the x̂ rather than the ẑ-direction as we have done. Further note
that for revolute joints, the joint variable is taken to be ✓ whereas for prismatic
joints the joint variable is d.

Another disadvantage of the D–H parameters is that they can become ill-
conditioned. For example, when adjacent joint axes are nearly parallel, the
common normal between the joint axes can vary wildly with small changes in the
axes’ orientation. This ill-conditioned behavior of the D–H parameters makes
their accurate measurement and identification di�cult, since robots typically
have manufacturing and other errors so that, e.g., a collection of joint axes
may indeed deviate from being exactly parallel or from intersecting at a single
common point.

The requirements for identifying the D–H parameters of a robot can be
contrasted with those for the PoE formula. Once a zero position for the robot
has been specified, and a base frame and end-e↵ector frame established (recall
that, unlike the case with D–H parameters, the base and end-e↵ector frames
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can be chosen arbitrarily with no restrictions), then the product of exponentials
formula is completely defined. No link reference frames are necessary and no
additional bookkeeping is needed to distinguish between revolute and prismatic
joints. The interpretation of the parameters in the PoE formula, as the screws
representing the joint axes, is natural and intuitive. Moreover the columns of
the Jacobian can also be interpreted as the (configuration-dependent) screws of
the joint axes.

The only disadvantage – that the PoE representation of the joint axes uses
more parameters than the D–H representation – is more than o↵set by the many
advantages. In short, there is little practical or other reason to use the D–H
parameters in modeling the forward kinematics of open chains.
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Appendix D

Optimization and Lagrange
Multipliers

Suppose that x⇤ 2 R is a local minimum of a twice-di↵erentiable objective
function f(x), f : R ! R, in the sense that for all x near x⇤, we have f(x) �
f(x⇤). We can then expect that the slope of f(x) at x⇤ is zero, i.e.,

@f

@x
(x⇤) = 0,

and also that
@2f

@x2
(x⇤) � 0.

If f is multi-dimensional, i.e., f : Rn ! R, and all partial derivatives of f
exist up to second-order, then a necessary condition for x⇤ 2 Rn to be a local
minimum is that its gradient be zero:

rf(x⇤) =


@f

@x1
(x⇤) · · · @f

@xn
(x⇤)

�T
= 0.

For example, consider the linear equation Ax = b, where A 2 Rm⇥n and b 2 Rm

(m > n) are given. Because there are more constraints (m) than variables (n),
in general a solution to Ax = b will not exist. Suppose we seek the x that best
approximates a solution, in the sense of satisfying

min
x2Rn

f(x) =
1

2
kAx� bk2 =

1

2
(Ax� b)T(Ax� b) =

1

2
xTATAx� 2bTAx + bTb.

599

600

The first-order necessary condition is given by

ATAx�ATb = 0. (D.1)

If rank A = n then ATA 2 Rn⇥n is invertible, and the solution to (D.1) is

x⇤ = (ATA)�1ATb.

Now suppose that we wish to find, among all x 2 Rn that satisfy g(x) = 0 for
some di↵erentiable g : Rn ! Rm (typically m  n to ensure that there exists an
infinity of solutions to g(x) = 0), the x⇤ that minimizes the objective function
f(x). Suppose that x⇤ is a local minimum of f that is also a regular point of
the surface parametrized implicitly by g(x) = 0, i.e., x⇤ satisfies g(x⇤) = 0 and

rank
@g

@x
(x⇤) = m.

Then, from the fundamental theorem of linear algebra, it can be shown that
there exists some �⇤ 2 Rm (called the Lagrange multiplier) that satisfies

rf(x⇤) +
@g

@x

T

(x⇤)�⇤ = 0 (D.2)

Equation (D.2) together with g(x⇤) = 0 constitute the first-order necessary
conditions for x⇤ to be a feasible local mininum of f(x). Note that these two
equations represent n + m equations in the n + m unknowns x and �.

As an example, consider the quadratic objective function f(x) such that

min
x2Rn

f(x) =
1

2
xTQx + cTx,

subject to the linear constraint Ax = b, where Q 2 Rn is symmetric positive-
definite (that is, xTQx > 0 for all x 2 Rn) and the matrix A 2 Rm⇥n, m  n,
is of maximal rank m. The first-order necessary conditions for this equality-
constrained optimization problem are

Qx + AT� = �c,

Ax = b.

Since A is of maximal rank and Q is invertible, the solutions to the first-order
necessary conditions can be obtained, after some manipulation, as

x = Gb + (I �GA)Q�1c,

� = Bb + BAQ�1c,

where G 2 Rn⇥m and B 2 Rm⇥m are defined as

G = Q�1ATB, B = (AQ�1AT)�1.
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[4] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[5] D. J. Balkcom and M. T. Mason. Time optimal trajectories for di↵erential
drive vehicles. International Journal of Robotics Research, 21(3):199–217,
March 2002.

[6] R. S. Ball. A Treatise on the Theory of Screws (1998 reprint). Cambridge
University Press, 1900.

[7] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential field
techniques for robot path planning. IEEE Transactions on Systems, Man,
and Cybernetics, 22(2):224–241, 1992.

[8] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obstacles.
Algorithmica, 10:121–155, 1993.

[9] A. K. Bejczy. Robot arm dynamics and control. Technical memo 33-669,
Jet Propulsion Lab, February 1974.

[10] R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

601

602 Bibliography

[11] A. Bicchi. On the closure properties of robotic grasping. International
Journal of Robotics Research, 14(4):319–334, August 1995.

[12] A. Bicchi. Hands for dexterous manipulation and robust grasping: a
di�cult road toward simplicity. IEEE Transactions on Robotics and Au-
tomation, 16(6):652–662, December 2000.

[13] A. Bicchi and V. Kumar. Robotic grasping and contact: a review. In
IEEE International Conference on Robotics and Automation, 2000.

[14] A. M. Bloch. Nonholonomic Mechanics and Control. Springer, New York,
2003.

[15] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control
of robotic manipulators along specified paths. International Journal of
Robotics Research, 4(3):3–17, Fall 1985.

[16] J.-D. Boissonnat, A. Cérézo, and J. Leblond. Shortest paths of bounded
curvature in the plane. Journal of Intelligent Robotic Systems, 11:5–20,
1994.

[17] W. M. Boothby. An Introduction to Di↵erentiable Manifolds and Rieman-
nian Geometry. Academic Press, 2002.

[18] O. Bottema and B. Roth. Theoretical Kinematics. Dover Publications,
1990.

[19] R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W.
Brockett, R. S. Millman, and H. J. Sussmann, editors, Di↵erential Geo-
metric Control Theory. Birkhauser, 1983.

[20] R. W. Brockett. Robotic manipulators and the product of exponentials
formula. In International Symposium on the Mathematical Theory of Net-
works and Systems, Beer Sheva, Israel, 1983.

[21] F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems.
Springer, 2004.

[22] F. Bullo and R. M. Murray. Tracking for fully actuated mechanical sys-
tems: a geometric framework. Automatica, 35:17–34, 1999.

[23] J. Canny. The Complexity of Robot Motion Planning. MIT Press, Cam-
bridge, MA, 1988.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org



Bibliography 603

[24] J. Canny, J. Reif, B. Donald, and P. Xavier. On the complexity of kino-
dynamic planning. In IEEE Symposium on the Foundations of Computer
Science, pages 306–316, White Plains, NY, 1988.

[25] M. Ceccarelli. Screw axis defined by Giulio Mozzi in 1763 and early studies
on helicoidal motion. Mechanism and Machine Theory, 35:761–770, 2000.

[26] S. Chiaverini, G. Oriolo, and A. A. Maciejewski. Redundant robots. In
B. Siciliano and O. Khatib, editors, Handbook of Robotics, Second Edition,
pages 221–242. Springer-Verlag, 2016.

[27] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Cambridge, MA, 2005.

[28] W.-L. Chow. Uber systemen von linearen partiellen di↵erentialgleichungen
erster ordnung. Math. Ann., 117:98–105, 1940.
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Sn, 24
Rn, 24

acceleration ellipsoid, 278
Ackermann steering, 526
actuator, 11, 305
Ad, 98
adjoint map, 98
admittance, 444
ambiguity, 497
angular velocity, 74

body, 76
spatial, 75

apparent inertia, 312
associativity, 68
atan2, 217
atlas, 27
axis-angle representation, 77

back-emf, 309
backlash, 2, 448
bang-bang trajectory, 342
Barrett Technology’s WAM, 148
bifurcation point, 255
body frame, 59

C-space, 12
free, 355
obstacle, 360
representation, 25
topologically equivalent, 23
topology, 23

Cartesian product, 24
Cartesian robot, 433
Cayley–Rodrigues parameters, 66, 584
center of mass, 281
center of rotation (CoR), 475
centripetal force, 274
Chasles–Mozzi theorem, 103
chassis, 515
Christo↵el symbols of the first kind,

276
closed-chain mechanism, 18, 243
collision–detection routine, 364

sphere approximation, 365
commutation, 307
commutativity, 69
condition number, 197
configuration, 12
configuration space, see C-space
connected component, 360
connectivity, 370
constrained dynamics, 299
constraint

active, 468
artificial, 441
holonomic, 30
homogeneous, 471
impenetrability, 467
integrable, 31
natural, 440
nonholonomic, 32
Pfa�an, 31, 441
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rolling, 468
contact

frictionless point, 474
kinematics, 465
point with friction, 474
roll–slide, 467, 468
rolling, 468
sliding, 468
soft, 474

contact label, 468
contact mode, 471
contact normal, 466
control

proportional (P), 416
adaptive, 450
admittance-controlled robot, 445
centralized, 434
compliance, 444
computed torque, 431
decentralized, 433
feedback, 416
feedforward, 416
feedforward–feedback, 420
force, 405, 436
gain, 416
hybrid motion–force, 405, 439
impedance, 405, 443
impedance-controlled robot, 445
inverse dynamics, 431
iterative learning, 450
linear, 416
motion, 405
motion, with torque or force in-

puts, 422
motion, with velocity inputs, 415
open-loop, 416
proportional-derivative (PD), 425
proportional-integral (PI), 417
proportional-integral-derivative (PID),

424

robust, 450
setpoint, 416
sti↵ness, 444
task-space motion control, 435

control vector field, 524
control-a�ne system, 533
controllable robot, 531
coordinate chart, 27
coordinate free, 58
Coriolis force, 274
Coriolis matrix, 277

D–H parameters, 138, 587
D–H parameters and product of expo-

nentials
comparison, 597

da Vinci S Surgical System, 236
damped natural frequency, 413
damping

critical, 413
overdamped solution, 413
underdamped solution, 413

damping ratio, 412
DC motor, 307

brushed, 307
brushless, 307

degrees of freedom (dof), 12
Delta robot, 21, 243
Denavit–Hartenberg parameters, see D–

H parameters
di↵-drive robot, 525
di↵erential equation

homogeneous, 409
nonhomogeneous, 409

direct-drive robot, 315
distance-measurement algorithm, 364
dof, 12
Dubins car, 539
dynamic grasp, 498
dynamics of a rigid body, 281
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classical formulation, 281
twist–wrench formulation, 286

dynamics of open chains, 269
Lagrangian formulation, 270
Newton–Euler recursive formula-

tion, 289
Newton–Euler recursive formula-

tion with gearing, 313

Eclipse mechanism, 265
elbow-down (righty) solution, 217
elbow-up (lefty) solution, 217
electrical constant, 309
end-e↵ector, 11
equations of motion, 269
error dynamics, 408
error response, 408
Euclidean space, 24
Euler angles, 66, 577
Euler’s equation for a rotating body,

282
Euler–Lagrange equations, 271
exceptional objects, 481
exponential coordinates

for rigid-body motion, 102
for rotation, 77, 80

five-bar linkage, 20
fixed frame, 59
force closure, 491
force ellipsoid, 174, 197
form closure, 471, 480
forward dynamics, 269
forward kinematics, 135

parallel mechanisms, 245
four-bar linkage, 18
free vector, 58
friction, 486

Coulomb, 486
static, 315
viscous, 315

friction angle, 486
friction coe�cient, 486
friction cone, 486

gantry robot, 433
gearing, 311

harmonic drive, 316
generalized coordinates, 270
generalized forces, 270
GJK algorithm, 364
Grübler’s formula, 17
graph, 366

directed, 366
undirected, 366
unweighted, 366
visibility, 370
weighted, 366

graph edge, 366
graph node, 366
grasp metric, 484
group closure, 68

homogeneous coordinates, 88
homogeneous transformation matrix, 87
homotopic path, 400

impedance, 443
inadmissible state, 341
inconsistent problem, 497
inertia matching, 325
inertia matrix

rotational, 282
spatial, 286

inertial measurement unit (IMU), 562
integrator anti-windup, 427
inverse dynamics, 269
inverse kinematics, 217

analytic, 219
numerical, 224
parallel mechanisms, 245

inverse velocity kinematics, 230
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isotropic manipulability ellipsoid, 196

Jacobi identity, 324
Jacobian, 169

analytic, 186
body, 176, 183
constraint, 250
geometric, 186
space, 176, 178

jamming, 502
joint, 11

cylindrical, 16
helical, 16
prismatic, 16
revolute, 16
screw, 16
spherical, 16
universal, 16

Kalman rank condition, 530
kinetic energy, 270
Krasovskii–LaSalle invariance principle,

460

Lagrange multiplier, 232, 300, 442, 600
Lagrangian function, 270
law of cosines, 218
lefty solution, 217
Lie algebra, 75, 96

of vector fields, 536
Lie bracket

of twists, 287
of vector fields, 534

Lie product, 535
linear program, 482
linear system, 408
linearly controllable, 530
link, 11
loop-closure equation, 28, 29

Manhattan distance, 372

manipulability ellipsoid, 171, 195
mass ellipsoid, 278
mass matrix, 269, 273, 275, 277
matrix

rotation, 28
matrix exponential, 78

for rigid-body motion, 103
for rotations, 82

matrix Lie group, 68
matrix logarithm

for rigid-body motion, 104
for rotation, 83

mecanum wheel, 516
meter-stick trick, 500
mobile manipulation, 550
moment, 106

pure, 107
moment labeling, 490
motion planning, 355

anytime, 358
approximate, 357
complete, 358
complete planners, 370
computational complexity, 358
exact, 357
grid methods, 371
multiple query, 358
nonlinear optimization, 394
o✏ine, 357
online, 357
optimal, 357
path planning, 357
piano mover’s problem, 357
PRM algorithm, 386
probabilistically complete, 358
RDT algorithm, 382
resolution complete, 358
RRT algorithm, 381

bidirectional, 384
RRT⇤ algorithm, 385
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sampling methods, 380
satisficing, 357
single query, 358
smoothing, 396
virtual potential fields, 388
wavefront planner, 372
wheeled mobile robot, 376

MoveIt, 355
multi-resolution grid, 374

natural frequency, 412
navigation function, 391
neighborhood, 531
neighbors

4-connected, 371
8-connected, 371

Newton–Raphson root finding, 225
no-load speed, 310

octree, 375
odometry, 548
omniwheel, 516
Open Motion Planning Library, 400
open-chain mechanism, 18
overshoot, 408

parallel mechanisms, 243
parallel-axis theorem, 285
parametrization

explicit, 27
passivity property, 277
path, 327
peg insertion, 502
phase plane, 341
polyhedral convex cone, 471
polyhedral convex set, 471
polytope, 471
potential energy, 270
principal axes of inertia, 283
principal moments of inertia, 283
product of exponentials, 138

body form, 147
space form, 140

product of exponentials and D–H pa-
rameters

comparison, 597
pseudoinverse, 227

left, 227
right, 227

PUMA-type arm, 219

quadtree, 375
quasistatic, 498
quaternion, unit, 583

reachability, 370
reachable set, 531
reciprocal wrench and twist, 468
redundant actuation, 244
redundant constraint, 14
redundant robot, 188, 232
Reeds–Shepp car, 540
reflected inertia, 312
repelling wrench and twist, 468
representation

implicit, 27
right-handed reference frame, 60
righty solution, 217
rigid body

planar, 15
spatial, 15

rigid-body motion, 87
roadmap, 370
Robot Operating System (ROS), 150,

356
Rodrigues’ formula, 82
roll–pitch–yaw angles, 66, 582
root locus, 418
rotation, 66
rotation matrix, 66
rotor, 307
rviz, 356
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SCARA, 34
screw axis, 100

body-frame, 147
space-frame, 140

screw pitch, 101
SE(3), 87
se(3), 96
search

A⇤, 367
breadth-first, 369
Dijkstra’s algorithm, 369
suboptimal A⇤, 369

serial mechanism, 18
series elastic actuator, 448, 461
settling time, 408
shortest paths, car with reverse gear,

540
shortest paths, forward-only car, 539
singularity, 27, 170

actuator, 254
actuator, degenerate, 257
actuator, nondegenerate, 257
C-space, 254, 256
end-e↵ector, 254, 259
kinematic, 189

skew-symmetric matrix, 75
slider–crank mechanism, 18
small-time locally accessible (STLA),

531
small-time locally controllable (STLC),

531
so(3), 75
SO(2), 68
SO(3), 68
space frame, 59
span

conical, 464
convex, 464
linear, 464
positive, 464

spatial force, 107
spatial momentum, 287
spatial velocity

in body frame, 95
in space frame, 97

special Euclidean group (SE(3)), 87
special orthogonal group (SO(3)), 68
speed–torque curve, 310
stability of an assembly, 501
stable dynamics, 410
stall torque, 310
standard second-order form, 412
Stanford-type arm, 223
state, 356
stator, 307
steady-state error, 408
steady-state response, 408
Steiner’s theorem, 285
Stephenson six-bar linkage, 20
Stewart–Gough platform, 22, 243
strain gauge, 407, 437, 448
Stribeck e↵ect, 316
Swedish wheel, 516

Tn, 25
tangent vector, 524
tangent vector field, 524
task space, 32
task-space dynamics, 298
Taylor expansion, 225, 533
time constant, 411
time scaling, 328

cubic, 331
quintic, 332
S-curve, 335
time-optimal, 338
trapezoidal, 332

time-optimal trajectories, di↵-drive, 542
torque, 106
torque constant, 308
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trajectory, 328
point-to-point, 328
through via points, 336

trajectory tracking, nonholonomic mo-
bile robot, 545

transformation matrix, 87
transient response, 408
tree, 366

child node, 366
leaf node, 366
parent node, 366
root node, 366

twist, 95
body, 96
spatial, 97

unit quaternions, 66
Universal Robot Description Format (URDF),

150, 305
Universal Robots’ UR5, 145
unstable dynamics, 410

variable-impedance actuator, 451
variable-sti↵ness actuator, 451
vector field, 524
velocity limit curve, 341

Watt six-bar linkage, 20
wedging, 503
wheeled mobile robot, 515

canonical, 528
car-like, 526
di↵-drive, 525
nonholonomic, 516
omnidirectional, 516
unicycle, 523

workspace, 32
wrench, 106

body, 108
spatial, 108

zero-inertia point, 340, 346
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