The C Book - Table of Contents Pagina 1 de 4

The C Book — Table of Contents

<gbdirect>

This is a PDF version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/.

This is the PDF version of The C Book, second edition by Mike Banahan, Declan Brady anc
Doran, originally published by Addison Wesley in 1991. This version is made freely availabl
[http://publications.gbdirect.co.uk/c_book/copyright.html).

While this book is no longer in print, it's content is still very relevant today. The C language i
popular, particularly for open source software [http://ebusiness.gbdirect.co.uk/OpenSourcel
and embedded programming [http://training.gbdirect.co.uk/courses/c/embedded_c_training.
hope this book will be useful, or at least interesting, to people who use C.

If you have any comments about this book, or if you find any bugs in its presentation, please
message to consulting@gbdirect.co.uk.

This PDF version made by Carlos José de Almeida Pereira - carlao2005(at)gmail(dot)com,
Bahia, Brasil, to all happy C programmers over the world!

WARNING! The links inside this document will jump to the original page on the Web, not to
specific place on the book. So, don't use them to offline reading. Sorry!

o Preface [http://publications.gbdirect.co.uk/c_book/preface/|

o About This Book [http://publications.gbdirect.co.uk/c_book/preface/about. html]

o The Success of C
[http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html]

o Standards [http://publications.gbdirect.co.uk/c_book/preface/standards.html]

o Hosted and Free-Standing Environments
[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.htr

o Typographical conventions
[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.htr

o Order of topics [http://publications.gbdirect.co.uk/c_book/preface/order_of _topic:

o Example programs
[http://publications.gbdirect.co.uk/c_book/preface/example_programs.htmi|

o Deference to Higher Authority
[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html]

o Address for the Standard
[http://publications.gbdirect.co.uk/c_book/preface/c_standard. html]

o Chapter 1. An Introduction to C [http.//publications.gbdirect.co.uk/c_book/chapteri/]

o 1.1. The form of a C program
[http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html]

o 1.2. Functions [http.://publications.gbdirect.co.uk/c_book/chapter1/functions.html

o 1.3. A description of Example 1.1
[http://publications.gbdirect.co.uk/c_book/chapteri1/description_of_example.html

o 1.4. Some more programs
[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html]

o 1.5. Terminology [http:/publications.gbdirect.co.uk/c_book/chapter1/terminology

o 1.6. Summary [http://publications.gbdirect.co.uk/c_book/chapter1/summary.html

file://C:\CARLAO\The C Book - Table of Contents.htm 21/2/2007

The C Book - Table of Contents Pagina 2 de 4

o 1.7. Exercises [http.//publications.gbdirect.co.uk/c_book/chapter1/exercises.htm,
o Chapter 2. Variables and Arithmetic [http://publications.gbdirect.co.uk/c_book/chapter.
o 2.1. Some fundamentals
[http://publications.gbdirect.co.uk/c_book/chapter2/fundamentals.html)]
o 2.2. The alphabet of C
[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet_of _c.html]
o 2.3. The Textual Structure of Programs
[http://publications.gbdirect.co.uk/c_book/chapter2/textual_program_structure.ht
o 2.4. Keywords and identifiers
[http://publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.htr
o 2.5. Declaration of variables
[http://publications.gbdirect.co.uk/c_book/chapter2/variable_declaration.html]
o 2.6. Real types [http://publications.gbdirect.co.uk/c_book/chapter2/real_types.hti
o 2.7. Integral types [http.//publications.gbdirect.co.uk/c_book/chapter2/integral_ty
o 2.8. Expressions and arithmetic
[http://publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic..
o 2.9. Constants [http://publications.gbdirect.co.uk/c_book/chapter2/constants. htm
o 2.10. Summary [http://publications.gbdirect.co.uk/c_book/chapter2/summary.htn
o 2.11. Exercises [http://publications.gbdirect.co.uk/c_book/chapter2/exercises.htr.
o Chapter 3. Control of Flow and Logical Expressions
[http://publications.gbdirect.co.uk/c_book/chapter3/]
o 3.1. The Task ahead [http.//publications.gbdirect.co.uk/c_book/chapter3/task_at
o 3.2. Control of flow [http.//publications.gbdirect.co.uk/c_book/chapter3/flow_cont
o 3.3. More logical expressions
[http://publications.gbdirect.co.uk/c_book/chapter3/logical_expressions.html]
o 3.4. Strange operators
[http://publications.gbdirect.co.uk/c_book/chapter3/strange_operators.html]
o 3.5. Summary [http://publications.gbdirect.co.uk/c_book/chapter3/summary.html
o 3.6. Exercises [http.//publications.gbdirect.co.uk/c_book/chapter3/exercises. htm,
o Chapter 4. Functions [http://publications.gbdirect.co.uk/c_book/chapterd/]
o 4.1. Changes [http://publications.gbdirect.co.uk/c_book/chapterd/changes.html]
o 4.2. The type of functions
[http://publications.gbdirect.co.uk/c_book/chapterd/function_types.html]
o 4.3. Recursion and argument passing
[http://publications.gbdirect.co.uk/c_book/chapterd/recursion_and_argument_pa
o 4.4. Linkage [http.//publications.gbdirect.co.uk/c_book/chapterd/linkage.html]
o 4.5. Summary [http://publications.gbdirect.co.uk/c_book/chapterd/summary.html
o 4.6. Exercises [http.//publications.gbdirect.co.uk/c_book/chapterd/exercises. htm,
o Chapter 5. Arrays and Pointers [http://publications.gbdirect.co.uk/c_book/chapter5/|
o 5.1. Opening shots
[http://publications.gbdirect.co.uk/c_book/chapter5/opening_shots. html)
o 5.2. Arrays [http://publications.gbdirect.co.uk/c_book/chapter5/arrays. html]
o 5.3. Pointers [http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html]
o 5.4. Character handling
[http://publications.gbdirect.co.uk/c_book/chapter5/character_handling.htmi]
o 5.5. sizeof and storage allocation
[http://publications.gbdirect.co.uk/c_book/chapter5/sizeof_and_malloc.html]
o 5.6. Pointers to functions
[http://publications.gbdirect.co.uk/c_book/chapter5/function_pointers.html
o 5.7. Expressions involving pointers
[http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html]
o 5.8. Arrays, the & operator and function declarations
[http://publications.gbdirect.co.uk/c_book/chapter5/arrays_and_address_of.html)
o 5.9. Summary [http://publications.gbdirect.co.uk/c_book/chapter5/summary.html|

file://C:\CARLAO\The C Book - Table of Contents.htm 21/2/2007

The C Book - Table of Contents Pagina 3 de 4

o 5.10. Exercises [http.://publications.gbdirect.co.uk/c_book/chapter5/exercises.htr
o Chapter 6. Structured Data Types [http:/publications.gbdirect.co.uk/c_book/chapter6/
6.1. History [http://publications.gbdirect.co.uk/c_book/chapter6/history.html]
6.2. Structures [http://publications.gbdirect.co.uk/c_book/chapter6/structures.htn
6.3. Unions [http://publications.gbdirect.co.uk/c_book/chapter6/unions.html]
6.4. Bitfields [http://publications.gbdirect.co.uk/c_book/chapter6/bitfields.html]
6.5. Enums [http://publications.gbdirect.co.uk/c_book/chapter6/enums. html)
6.6. Qualifiers and derived types
[http://publications.gbdirect.co.uk/c_book/chapter6/qualifiers_and_derived_types
o 6.7. Initialization [http://publications.gbdirect.co.uk/c_book/chapter6/initialization.
o 6.8. Summary [http://publications.gbdirect.co.uk/c_book/chapter6/summary.html|
o 6.9. Exercises [http://publications.gbdirect.co.uk/c_book/chapter6/exercises.htm,
o Chapter 7. The Preprocessor [http.//publications.gbdirect.co.uk/c_book/chapter7/]
o 7.1. Effect of the Standard
[http://publications.gbdirect.co.uk/c_book/chapter7/effect_of_the_standard.htmi]
o 7.2. How the preprocessor works
[http://publications.gbdirect.co.uk/c_book/chapter7/how_the_preprocessor_work
o 7.3. Directives [http:/publications.gbdirect.co.uk/c_book/chapter7/directives.htm
o 7.4. Summary [http://publications.gbdirect.co.uk/c_book/chapter7/summary.html|
o 7.5. Exercises [http://publications.gbdirect.co.uk/c_book/chapter7/exercises.htm,
o Chapter 8. Specialized Areas of C [http.//publications.gbdirect.co.uk/c_book/chapter8/
o 8.1. Government Health Warning
[http://publications.gbdirect.co.uk/c_book/chapter8/health_warning.htmi)
o 8.2. Declarations, Definitions and Accessibility
[http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.
o 8.3. Typedef [http.//publications.gbdirect.co.uk/c_book/chapter8/typedef.html]
o 8.4. const and volatile
[http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html)
o 8.5. Sequence points
[http://publications.gbdirect.co.uk/c_book/chapter8/sequence_points.html]
o 8.6. Summary [http://publications.gbdirect.co.uk/c_book/chapter8/summary.html|
o Chapter 9. Libraries [http:/publications.gbdirect.co.uk/c_book/chapter9/]
o 9.1. Introduction [http:/publications.gbdirect.co.uk/c_book/chapter9/introduction.
o 9.2. Diagnostics [http.//publications.gbdirect.co.uk/c_book/chapter9/diagnostics.i
o 9.3. Character handling
[http://publications.gbdirect.co.uk/c_book/chapter9/character_handling.html]
o 9.4. Localization [http.//publications.gbdirect.co.uk/c_book/chapter9/localization.
o 9.5. Limits [http.//publications.gbdirect.co.uk/c_book/chapter9/limits.html|
o 9.6. Mathematical functions
[http://publications.gbdirect.co.uk/c_book/chapter9/maths_functions.html]
o 9.7. Non-local jumps
[http://publications.gbdirect.co.uk/c_book/chapter9/nonlocal_jumps. html]
o 9.8. Signal handling
[http://publications.gbdirect.co.uk/c_book/chapter9/signal_handling.html]
o 9.9. Variable numbers of arguments
[http://publications.gbdirect.co.uk/c_book/chapter9/stdarg. html]
o 9.10. Input and output
[http://publications.gbdirect.co.uk/c_book/chapter9/input_and_output.html]
o 9.11. Formatted /O [http://publications.gbdirect.co.uk/c_book/chapter9/formattec
o 9.12. Character I/O [http://publications.gbdirect.co.uk/c_book/chapter9/charactel
o 9.13. Unformatted I/O
[http://publications.gbdirect.co.uk/c_book/chapter9/unformatted_io.html|
o 9.14. Random access functions
[http://publications.gbdirect.co.uk/c_book/chapter9/random_access_io.html]

O O O O O O

file://C:\CARLAO\The C Book - Table of Contents.htm 21/2/2007

The C Book - Table of Contents Pagina 4 de 4

o 9.15. General Utilities
[http://publications.gbdirect.co.uk/c_book/chapter9/general_utilities.html]
o 9.16. String handling
[http://publications.gbdirect.co.uk/c_book/chapter9/string_handling.html|
o 9.17. Date and time
[http://publications.gbdirect.co.uk/c_book/chapter9/date_and_time.html]
o 9.18. Summary [http://publications.gbdirect.co.uk/c_book/chapter9/summary.htn
e Chapter 10. Complete Programs in C [http.//publications.gbdirect.co.uk/c_book/chapte
o 10.1. Putting it all together
[http://publications.gbdirect.co.uk/c_book/chapter10/putting_it_together.html]
o 10.2. Arguments to main
[http://publications.gbdirect.co.uk/c_book/chapter10/arguments_to_main.html]
o 10.3. Interpreting program arguments
[http://publications.gbdirect.co.uk/c_book/chapter10/interpreting_program_argur
o 10.4. A pattern matching program
[http://publications.gbdirect.co.uk/c_book/chapter10/pattern_matching_example.
o 10.5. A more ambitious example
[http://publications.gbdirect.co.uk/c_book/chapter10/ambitious_example.html]
o 10.6. Afterword [http://publications.gbdirect.co.uk/c_book/chapter10/afterword.hi
o Answers to Exercises [http.//publications.gbdirect.co.uk/c_book/answers/]
o Chapter 1 [http://publications.gbdirect.co.uk/c_book/answers/chapter_1.html]
o Chapter 2 [http://publications.gbdirect.co.uk/c_book/answers/chapter_2.html
o Chapter 3 [http://publications.gbdirect.co.uk/c_book/answers/chapter_3.html]
O
O
O

Chapter 4 [http://publications.gbdirect.co.uk/c_book/answers/chapter_4.html|
Chapter 5 [http://publications.gbdirect.co.uk/c_book/answers/chapter_5.html|
Chapter 6 [http://publications.gbdirect.co.uk/c_book/answers/chapter_6.html|

o Chapter 7 [http://publications.gbdirect.co.uk/c_book/answers/chapter_7.html|

o Copyright and disclaimer [http:/publications.gbdirect.co.uk/c_book/copyright.html]

file://C:\CARLAO\The C Book - Table of Contents.htm 21/2/2007

The C Book — Preface Pagina 1 de 1

Preface

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/preface/.

o About This Book [http:/publications.gbdirect.co.uk/c_book/preface/about.html]

e The Success of C
[http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html)

o Standards [http:/publications.gbdirect.co.uk/c_book/preface/standards.html]

o Hosted and Free-Standing Environments
[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html]

o Typographical conventions
[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html]

¢ Order of topics
[http://publications.gbdirect.co.uk/c_book/preface/order_of_topics.html]

e« Example programs
[http://publications.gbdirect.co.uk/c_book/preface/example_programs.html

o Deference to Higher Authority
[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html]

o Address for the Standard
[http://publications.gbdirect.co.uk/c_book/preface/c_standard.html)

Next chapter [http.//publications.gbdirect.co.uk/c_book/chapteri/]

http://publications.gbdirect.co.uk/c_book/preface/?format=pf 21/2/2007

The C Book — About This Book Pagina 1 de 1

About This Book

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/about.html.

This book was written with two groups of readers in mind. Whether you are new to
C and want to learn it, or already know the older version of the language but want to
find out more about the new standard, we hope that you will find what follows both
instructive and at times entertaining too.

This is not a tutorial introduction to programming. The book is designed for
programmers who already have some experience of using a modern high-level
procedural programming language. As we explain later, C isn't really appropriate for
complete beginners—though many have managed to use it—so the book will
assume that its readers have already done battle with the notions of statements,
variables, conditional execution, arrays, procedures (or subroutines) and so on.
Instead of wasting your time by ploughing through tedious descriptions of how to
add two numbers together and explaining that the symbol for multiplication is *, the
book concentrates on the things that are special to C. In particular, it's the way that
C is used which is emphasized.

Those who already know C will be interested in the new Standard and how it affects
existing C programs. The effect on existing programs might not at first seem to be
important to newcomers, but in fact the ‘old’ and new versions of the language are
an issue for the beginner too. For some years after the approval of the Standard,
programmers will have to live in a world where they can easily encounter a mixture
of both the new and the old language, depending on the age of the programs that
they are working with. For that reason, the book highlights where the old and new
features differ significantly. Some of the old features are no ornament to the
language and are well worth avoiding; the Standard goes so far as to consider them
obsolescent and recommends that they should not be used. For that reason they
are not described in detail, but only far enough to allow a reader to understand what
they mean. Anybody who intends to write programs using these old-style features
should be reading a different book.

This is the second edition of the book, which has been revised to refer to the final,
approved version of the Standard. The first edition of the book was based on a draft
of the Standard which did contain some differences from the draft that was
eventually approved. During the revision we have taken the opportunity to include
more summary material and an extra chapter illustrating the use of C and the
Standard Library to solve a number of small problems.

Chapter contents [http:/publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/the_success_of _c.html]

http://publications.gbdirect.co.uk/c_book/preface/about.html?format=pf 21/2/2007

The C Book — The Success of C Pagina 1 de 2

The Success of C

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/the success of c.html.

C is a remarkable language. Designed originally by one man, Dennis Ritchie,
working at AT&T Bell Laboratories in New Jersey, it has increased in use until now
it may well be one of the most widely-written computer languages in the world. The
success of C is due to a number of factors, none of them key, but all of them
important. Perhaps the most significant of all is that C was developed by real
practioners of programming and was designed for practical day-to-day use, not for
show or for demonstration. Like any well-designed tool, it falls easily to the hand
and feels good to use. Instead of providing constraints, checks and rigorous
boundaries, it concentrates on providing you with power and on not getting in your
way.

Because of this, it's better for professionals than beginners. In the early stages of
learning to program you need a protective environment that gives feedback on
mistakes and helps you to get results quickly—programs that run, even if they don't
do what you meant. C is not like that! A professional forester would use a chain-saw
to cut down trees quickly, aware of the dangers of touching the blade when the
machine is running; C programmers work in a similar way. Although modern C
compilers do provide a limited amount of feedback when they notice something that
is out of the ordinary, you almost always have the option of forcing the compiler to
do what you said you wanted and to stop it from complaining. Provided that what
you said you wanted was what you really did want, then you'll get the result you
expected. Programming in C is like eating red meat and drinking strong rum except
your arteries and liver are more likely to survive it.

Not only is C popular and a powerful asset in the armoury of the serious day-to-day
programmer, there are other reasons for the success of this language. It has always
been associated with the UNIX operating system and has benefited from the
increasing popularity of that system. Although it is not the obvious first choice for
writing large commercial data processing applications, C has the great advantage
of always being available on commercial UNIX implementations. UNIX is written

in C, so whenever UNIX is implemented on a new type of hardware, gettinga C
compiler to work for that system is the first task. As a result it is almost impossible
to find a UNIX system without support for C, so the software vendors who want to
target the UNIX marketplace find that C is the best bet if they want to get wide
coverage of the systems available. Realistically, C is the first choice for portability of
software in the UNIX environment.

C has also gained substantially in use and availability from the explosive expansion
of the Personal Computer market. C could almost have been designed specifically
for the development of software for the PC—developers get not only the readability
and productivity of a high-level language, but also the power to get the most out of
the PC architecture without having to resort to the use of assembly code. C is
practically unique in its ability to span two levels of programming; as well as
providing high-level control of flow, data structures and procedures—all of the stuff
expected in a modern high-level language—it also allows systems programmers to

http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html?format=pf 21/2/2007

The C Book — The Success of C Pagina 2 de 2

address machine words, manipulate bits and get close to the underlying hardware if
they want to. That combination of features is very desirable in the competitive PC
software markeplace and an increasing number of software developers have made
C their primary language as a result.

Finally, the extensibility of C has contributed in no small way to its popularity. Many
other languages have failed to provide the file access and general input-output
features that are needed for industrial-strength applications. Traditionally, in these
languages |I/O is built-in and is actually understood by the compiler. A master-stroke
in the design of C (and interestingly, one of the strengths of the UNIX system too)
has been to take the view that if you don't know how to provide a complete solution
to a generic requirement, instead of providing half a solution (which invariably
pleases nobody), you should allow the users to build their own. Software designers
the world over have something to learn from this! It's the approach that has been
taken by C, and not only for I/0O. Through the use of library functions you can
extend the language in many ways to provide features that the designers didn't
think of. There's proof of this in the so-called Standard I/O Library (stdio), which
matured more slowly than the language, but had become a sort of standard all of its
own before the Standard Committee give it official blessing. It proved that it is
possible to develop a model of file I/O and associated features that is portable to
many more systems than UNIX, which is where it was first wrought. Despite the
ability of C to provide access to low-level hardware features, judicious style and the
use of the stdio package results in highly portable programs; many of which are to
be found running on top of operating systems that look very different from one
another. The nice thing about this library is that if you don't like what it does, but you
have the appropriate technical skills, you can usually extend it to do what you do
want, or bypass it altogether.

Previous section [http://publications.gbdirect.co.uk/c_book/preface/about.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/standards.html]

http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html?format=pf 21/2/2007

The C Book — Standards Pagina 1 de 2

Standards

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/standards.html.

Remarkably, C achieved its success in the absence of a formal standard. Even
more remarkable is that during this period of increasingly widespread use, there
has never been any serious divergence of C into the number of dialects that has
been the bane of, for example, BASIC. In fact, this is not so surprising. There has
always been a “language reference manual”, the widely-known book written by
Brian Kernighan and Dennis Ritchie, usually referred to as simply “K&R”.

The C Programming Language,
B.W. Kernighan and D. M. Ritchie,
Prentice-Hall

Englewood Cliffs,

New Jersey,

1978

Further acting as a rigorous check on the expansion into numerous dialects, on
UNIX systems there was only ever really one compiler for C; the so-called “Portable
C Compiler”, originally written by Steve Johnson. This acted as a reference
implementation for C—if the K&R reference was a bit obscure then the behaviour of
the UNIX compiler was taken as the definition of the language.

Despite this almost ideal situation (a reference manual and a reference
implementation are extremely good ways of achieving stability at a very low cost),
the increasing number of alternative implementations of C to be found in the PC
world did begin to threaten the stability of the language.

The X3J11 committee of the American National Standards Institute started work in
the early 1980's to produce a formal standard for C. The committee took as its
reference the K&R definition and began its lengthy and painstaking work. The job
was to try to eliminate ambiguities, to define the undefined, to fix the most annoying
deficiencies of the language and to preserve the spirit of C—all this as well as
providing as much compatibility with existing practice as was possible. Fortunately,
nearly all of the developers of the competing versions of C were represented on the
committee, which in itself acted as a strong force for convergence right from the
beginning.

Development of the Standard took a long time, as standards often do. Much of the
work is not just technical, although that is a very time-consuming part of the job, but
also procedural. It's easy to underrate the procedural aspects of standards work, as
if it somehow dilutes the purity of the technical work, but in fact it is equally
important. A standard that has no agreement or consensus in the industry is
unlikely to be widely adopted and could be useless or even damaging. The
painstaking work of obtaining consensus among committee members is critical to
the success of a practical standard, even if at times it means compromising on
technical “perfection”, whatever that might be. It is a democratic process, open to

http://publications.gbdirect.co.uk/c_book/preface/standards.html?format=pf 21/2/2007

The C Book — Standards Pagina 2 de 2

all, which occasionally results in aberrations just as much as can excessive
indulgence by technical purists, and unfortunately the delivery date of the Standard
was affected at the last moment by procedural, rather than technical issues. The
technical work was completed by December 1988, but it took a further year to
resolve procedural objections. Finally, approval to release the document as a formal
American National Standard was given on December 7th, 1989.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/the_success_of_c.html] | Chapter
contents [http:/publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html]

http://publications.gbdirect.co.uk/c_book/preface/standards.html?format=pf 21/2/2007

The C Book — Hosted and Free-Standing Environments Pagina 1 de 2

Hosted and Free-Standing
Environments

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/hosted _and_free_standing.html.

The dependency on the use of libraries to extend the language has an important
effect on the practical use of C. Not only are the Standard /O Library functions
important to applications programmers, but there are a number of other functions
that are widely taken almost for granted as being part of the language. String
handling, sorting and comparison, character manipulation and similar services are
invariably expected in all but the most specialized of applications areas.

Because of this unusually heavy dependency on libraries to do real work, it was
most important that the Standard provided comprehensive definitions for the
supporting functions too. The situation with the library functions was much more
complicated than the relatively simple job of providing a tight definition for the
language itself, because the library can be extended or modified by a
knowledgeable user and was only partially defined in K&R. In practice, this led to
numerous similar but different implementations of supporting libraries in common
use. By far the hardest part of the work of the Committee was to reach a good
definition of the library support that should be provided. In terms of benefit to the
final user of C, it is this work that will prove to be by far and away the most valuable
part of the Standard.

However, not all C programs are used for the same type of applications. The
Standard Library is useful for ‘data processing’ types of applications, where file /0
and numeric and string oriented data are widely used. There is an equally important
application area for C—the ‘embedded system’ area—which includes such things
as process control, real-time and similar applications.

The Standard knows this and provides for it. A large part of the Standard is the
definition of the library functions that must be supplied for hosted environments. A
hosted environment is one that provides the standard libraries. The standard
permits both hosted and freestanding environments. and goes to some length to
differentiate between them. Who would want to go without libraries? Well, anybody
writing ‘stand alone’ programs. Operating systems, embedded systems like
machine controllers and firmware for instrumentation are all examples of the case
where a hosted environment might be inappropriate. Programs written for a hosted
environment have to be aware of the fact that the names of all the library functions
are reserved for use by the implementation. There is no such restriction on the
programmer working in a freestanding environment, although it isn't a good idea to
go using names that are used in the standard library, simply because it will mislead
readers of the program. Chapter 9
[http://publications.gbdirect.co.uk/c_book/chapter9/] describes the names and uses
of the library functions.

Previous section [http.//publications.gbdirect.co.uk/c_book/preface/standards.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/preface/] | Next section

http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html?form... 21/2/2007

The C Book — Hosted and Free-Standing Environments Pagina 2 de 2

[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html]

http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html?form... 21/2/2007

The C Book — Typographical conventions Pagina 1 de 1

Typographical conventions

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html.

The book tries to keep a consistent style in its use of special or technical terms.
Words with a special meaning to C, such as reserved words or the names of library
functions, are printed in a different typeface. Examples are int and printf. Terms
used by the book that have a meaning not to C but in the Standard or the text of the
book, are bold if they have not been introduced recently. They are not bold
everywhere, because that rapidly annoys the reader. As you have noticed, italics
are also used for emphasis from time to time, and to introduce loosely defined
terms. Whether or not the name of a function, keyword or so on starts with a capital
letter, it is nonetheless capitalized when it appears at the start of a sentence; this is
one problem where either solution (capitalize or not) is unsatisfactory. Occasionally
quote marks are used around ‘special terms’ if there is a danger of them being
understood in their normal English meaning because of surrounding context.
Anything else is at the whim of the authors, or simply by accident.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/hosted_and_free_standing.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/order_of _topics.html]

http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html?for... 21/2/2007

The C Book — Order of topics Pagina 1 de 1

Order of topics

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/order_of topics.html.

The order of presentation of topics in this book loosely follows the order that is
taught in The Instruction Set's introductory course. It starts with an overview of the
essential parts of the language that will let you start to write useful programs quite
quickly. The introduction is followed by a detailed coverage of the material that was
ignored before, then it goes on to discuss the standard libraries in depth. This
means that in principle, if you felt so inclined, you could read the book as far as you
like and stop, yet still have learnt a reasonably coherent subset of the language.
Previous experience of C will render Chapter 1
[http://publications.gbdirect.co.uk/c_book/chapter1/] a bit slow, but it is still worth
persevering with it, if only once.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/typographical_conventions.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/example_programs.htmi]

http://publications.gbdirect.co.uk/c_book/preface/order_of topics.html?format=pf 21/2/2007

The C Book — Example programs Pagina 1 de 1

Example programs

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/example_programs.html.

All but the smallest of the examples shown in the text have been tested using a
compiler that claims to conform to the Standard. As a result, most of them stand a
good chance of being correct, unless our interpretation of the Standard was wrong
and the compiler developer made the same mistake. None the less, experience
warns that despite careful checking, some errors are bound to creep in. Please be
understanding with any errors that you may find.

Previous section

[http://publications.gbdirect.co.uk/c_book/preface/order_of _topics.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html]

http://publications.gbdirect.co.uk/c_book/preface/example_programs.html?format=pf 21/2/2007

The C Book — Deference to Higher Authority Pagina 1 de 1

Deference to Higher Authority

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html.

This book is an attempt to produce a readable and enlightening description of the
language defined by the Standard. It sets out to to make interpretations of what the
Standard actually means but to express them in ‘simpler’ English. We've done our
best to get it right, but you must never forget that the only place that the language is
fully defined is in the Standard itself. It is entirely possible that what we interpret the
Standard to mean is at times not what the Standard Committee sought to specify,
or that the way we explain it is looser and less precise than it is in the Standard. If
you are in any doubt: READ THE STANDARD! It's not meant to be read for
pleasure, but it is meant to be accurate and unambiguous; look nowhere else for
the authoritative last word.

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/example_programs.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/preface/] | Next section
[http://publications.gbdirect.co.uk/c_book/preface/c_standard.html]

http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html?format=pf 21/2/2007

The C Book — Address for the Standard Pagina 1 de 1

Address for the Standard

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/preface/c_standard.html.

Copies of the Standard can be obtained from:

X3 Secretariat,

CBEMA,
311 First Street, NW,
Suite 500,
Washington DC 20001-2178,
USA.
Phone (+1) (202) 737 8888
Mike Banahan
Declan Brady
Mark Doran

January 1991

Previous section
[http://publications.gbdirect.co.uk/c_book/preface/higher_authority.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/preface/]

http://publications.gbdirect.co.uk/c_book/preface/c_standard.html?format=pf 21/2/2007

The C Book — An Introduction to C Pagina 1 de 1

Chapter 1

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter1/.

An Introduction to C

e 1.1. The form of a C program

[http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html]

1.2. Functions [http://publications.gbdirect.co.uk/c_book/chapteri/functions.html)]

1.3. A description of Example 1.1

[http://publications.gbdirect.co.uk/c_book/chapteri/description_of_example.html]

e 1.4. Some more programs
[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.htmi)

e 1.5. Terminology
[http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html]

e 1.6. Summary
[http://publications.gbdirect.co.uk/c_book/chapter1/summary.html]

o 1.7. Exercises
[http://publications.gbdirect.co.uk/c_book/chapteri/exercises.html]

Previous chapter [http.//publications.gbdirect.co.uk/c_book/preface/] | Next chapter
[http://publications.gbdirect.co.uk/c_book/chapter2/]

http://publications.gbdirect.co.uk/c_book/chapterl/?format=pf 21/2/2007

The C Book — The form of a C program Pagina 1 de 2

1.1. The form of a C program

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/form_of a_c_program.html.

If you're used to the block-structured form of, say, Pascal, then at the outer level the
layout of a C program may surprise you. If your experience lies in the FORTRAN
camp you will find it closer to what you already know, but the inner level will look
quite different. C has borrowed shamelessly from both kinds of language, and from
a lot of other places too. The input from so many varied sources has spawned a
language a bit like a cross-bred terrier: inelegant in places, but a tenacious brute
that the family is fond of. Biologists refer to this phenomenon as ‘hybrid vigour’'.
They might also draw your attention to the ‘chimera’, an artificial crossbreed of
creatures such as a sheep and a goat. If it gives wool and milk, fine, but it might
equally well just bleat and stink!

At the coarsest level, an obvious feature is the multi-file structure of a program. The
language permits separate compilation, where the parts of a complete program can
be kept in one or more source files and compiled independently of each other. The
idea is that the compilation process will produce files which can then be linked
together using whatever link editor or loader that your system provides. The block
structure of the Algol-like languages makes this harder by insisting that the whole
program comes in one chunk, although there are usually ways of getting around it.

The reason for C's approach is historical and rather interesting. It is supposed to
speed things up: the idea is that compiling a program into relocatable object code is
slow and expensive in terms of resources; compiling is hard work. Using the loader
to bind together a number of object code modules should simply be a matter of
sorting out the absolute addresses of each item in the modules when combined into
a complete program. This should be relatively inexpensive. The expansion of the
idea to arrange for the loader to scan libraries of object modules, and select the
ones that are needed, is an obvious one. The benefit is that if you change one small
part of a program then the expense of recompiling all of it may be avoided; only the
module that was affected has to be recompiled.

All, the same, it's true that the more work put on to the loader, the slower it
becomes, in fact sometimes it can be the slowest and most resource consuming
part of the whole procedure. It is possible that, for some systems, it would be
quicker to recompile everything in one go than to have to use the loader: Ada has
sometimes been quoted as an example of this effect occurring. For C, the work that
has to be done by the loader is not large and the approach is a sensible one.
Figure 1.1 shows the way that this works.

souCe = compile + objaect file b library
- ;
" . L]
soumCe * compile = object file | E lcader | = program
p -
-~
soume + compile = object file v

http://publications.gbdirect.co.uk/c_book/chapterl/form_of a_c_program.html?format... 21/2/2007

The C Book — The form of a C program Pagina 2 de 2

Figure 1.1. Separate compilation

This technique is important in C, where it is common to find all but the smallest of
programs constructed from a number of separate source files. Furthermore, the
extensive use that C makes of libraries means that even trivial programs pass
through the loader, although that might not be obvious at the first glance or to the
newcomer.

Chapter contents [http:/publications.gbdirect.co.uk/c_book/chapteri/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/functions.html]

http://publications.gbdirect.co.uk/c_book/chapterl/form_of a_c_program.html?format... 21/2/2007

The C Book — Functions Pagina 1 de 2

1.2. Functions

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/functions.html.

A C program is built up from a collection of items such as functions and what we
could loosely call global variables. All of these things are given names at the point
where they are defined in the program; the way that the names are used to access
those items from a given place in the program is governed by rules. The rules are
described in the Standard using the term linkage. For the moment we only need to
concern ourselves with external linkage and no linkage. Items with external linkage
are those that are accessible throughout the program (library functions are a good
example); items with no linkage are also widely used but their accessibility is much
more restricted. Variables used inside functions are usually ‘local’ to the function;
they have no linkage. Although this book avoids the use of complicated terms like
those where it can, sometimes there isn't a plainer way of saying things. Linkage is
a term that you are going to become familiar with later. The only external linkage
that we will see for a while will be when we are using functions.

Functions are C's equivalents of the functions and subroutines in FORTRAN,
functions and procedures in Pascal and ALGOL. Neither BASIC in most of its
simple mutations, nor COBOL has much like C's functions.

The idea of a function is, of course, to allow you to encapsulate one idea or
operation, give it a name, then to call that operation from various parts of the rest of
your program simply by using the name. The detail of what is going on is not
immediately visible at the point of use, nor should it be. In well designed, properly
structured programs, it should be possible to change the way that a function does
its job (as long as the job itself doesn't change) with no effect on the rest of the
program.

In a hosted environment there is one function whose name is special; it's the one
called main. This function is the first one entered when your program starts running.
In a freestanding environment the way that a program starts up is implementation
defined; a term which means that although the Standard doesn't specify what must
happen, the actual behaviour must be consistent and documented. When the
program leaves the main function, the whole program comes to an end. Here's a
simple program containing two functions:

#include <stdio.h>

*

Tell the compiler that we intend

to use a function called show message.
It has no arguments and returns no value
This is the "declaration".

* ¥ ¥ 3k F

*/
void show message(void);

/*
* Another function, but this includes the body of

http://publications.gbdirect.co.uk/c_book/chapterl/functions.html?format=pf 21/2/2007

The C Book — Functions Pagina 2 de 2

* the function. This is a "definition".

*/
main(){
int count;
count = 0;
while(count < 10){
show_message();
count = count + 1;
}
exit(0);
}
/*

* The body of the simple function.

* This is now a "definition".

*/

void show message(void){
printf("hello\n");

}
Example 1.1

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/form_of_a_c_program.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html]

http://publications.gbdirect.co.uk/c_book/chapterl/functions.html?format=pf 21/2/2007

The C Book — A description of Example 1.1 Pagina 1 de 8

1.3. A description of Example 1.1

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/description_of example.html.

1.3.1. What was in it

Even such a small example has introduced a lot of C. Among other things, it
contained two functions, a #include ‘statement’, and some comment. Since
comment is the easiest bit to handle, let's look at that first.

1.3.2. Layout and comment

The layout of a C program is not very important to the compiler, although for
readability it is important to use this freedom to carry extra information for the
human reader. C allows you to put space, tab or newline characters practically
anywhere in the program without any special effect on the meaning of the program.
All of those three characters are the same as far as the compiler is concerned and
are called collectively white space, because they just move the printing position
without causing any ‘visible’ printing on an output device. White space can occur
practically anywhere in a program except in the middle of identifiers, strings, or
character constants. An identifier is simply the name of a function or some other
object; strings and character constants will be discussed later—don't worry about
them for the moment.

Apart from the special cases, the only place that white space must be used is to
separate things that would otherwise run together and become confused. In the
example above, the fragment void show_message needs space to separate the two
words, whereas show_message(could have space in front of the (or not, it would be
purely a matter of taste.

Comment is introduced to a C program by the pair of characters /*, which must not
have a space between them. From then on, everything found up to and including
the pair of characters */ is gobbled up and the whole lot is replaced by a single
space. In Old C, this was not the case. The rule used to be that comment could
occur anywhere that space could occur: the rule is now that comment is space. The
significance of the change is minor and eventually becomes apparent in Chapter 7
[http://publications.gbdirect.co.uk/c_book/chapter7/] where we discuss the
preprocessor. A consequence of the rule for the end of comment is that you can't
put a piece of comment inside another piece, because the first =/ pair will finish all
of it. This is a minor nuisance, but you learn to live with it.

It is common practice to make a comment stand out by making each line of multi-
line comment always start with a *, as the example illustrates.

1.3.3. Preprocessor statements

The first statement in the example is a preprocessor directive. In days gone by, the

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — A description of Example 1.1 Pagina 2 de 8

C compiler used to have two phases: the preprocessor, followed by the real
compiler. The preprocessor was a macro processor, whose job was to perform
simple textual manipulation of the program before passing the modified text on to
be compiled. The preprocessor rapidly became seen as an essential aspect of the
compiler and so has now been defined as part of the language and cannot be
bypassed.

The preprocessor only knows about /ines of text; unlike the rest of the language it is
sensitive to the end of a line and though it is possible to write multi-line
preprocessor directives, they are uncommon and a source of some wonder when
they are found. Any line whose first visible character is a # is a preprocessor
directive.

In Example 1.1 the preprocessor directive #include causes the line containing it to
be replaced completely by the contents of another file. In this case the filename is
found between the < and > brackets. This is a widely used technique to incorporate
the text of standard header files into your program without having to go through the
effort of typing it all yourself. The <stdio.h> file is an important one, containing the
necessary information that allows you to use the standard library for input and
output. If you want to use the I/O library you must include <stdio.h>. Old C was
more relaxed on this point.

1.3.3.1. Define statements

Another of the preprocessor's talents which is widely exploited is the #define
statement. It is used like this:

#define IDENTIFIER replacement

which says that the name represented by 1pENTIFIER Will be replaced by the text of
replacement whenever IDENTIFIER Ooccurs in the program text. Invariably, the
identifier is a name in upper-case; this is a stylistic convention that helps the reader
to understand what is going on. The replacement part can be any text at all—
remember the preprocessor doesn't know C, it just works on text. The most
common use of the statement is to declare names for constant numbers:

#define PI 3.141592
#define SECS PER MIN 60
#define MINS PER HOUR 60
#define HOURS PER DAY 24

and to use them like this

circumf = 2*PI*radius;
if(timer >= SECS_PER MIN){
mins = mins+1;
timer = timer - SECS_PER MIN;
}

the output from the preprocessor will be as if you had written this:

circumf = 2*3.141592*radius;
if(timer >= 60){

mins = mins+1;

timer timer - 60;

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — A description of Example 1.1 Pagina 3 de 8

}
Summary
Preprocessor statements work on a line-by-line basis, the rest of C does not.

#include statements are used to read the contents of a specified file, typically to
facilitate the use of library functions.

#define statements are typically used to give names for constants. By convention,
the names are in upper case (capitalized).

1.3.4. Function declaration and definition

1.3.4.1. Declaration

After the <stdio.h> file is included comes a function declaration; it tells the compiler
that show_message is a function which takes no arguments and returns no values.
This demonstrates one of the changes made by the Standard: it is an example of a
function prototype, a subject which Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/] discusses in detail. It isn't
always necessary to declare functions in advance—C will use some (old) default
rules in such cases—but it is now strongly recommended that you do declare them
in advance. The distinction between a declaration and a definition is that the former
simply describes the type of the function and any arguments that it might take, the
latter is where the body of a function is provided. These terms become more
important later.

By declaring show_message before it is used, the compiler is able to check that it is
used correctly. The declaration describes three important things about the function:
its name, its type, and the number and type of its arguments. The void
show_message (part indicates that it is a function and that it returns a value of type
void, which is discussed in a moment. The second use of void is in the declaration
of the function's argument list, (void), which indicates that there are no arguments
to this function.

1.3.4.2. Definition

Right at the end of the program is the function definition itself; although it is only
three lines long, it usefully illustrates a complete function.

In C, functions perform the tasks that some other languages split into two parts.
Most languages use a function to return a value of some sort, typical examples
being perhaps trigonometric functions like sin, cos, or maybe a square root function;
C is the same in this respect. Other similar jobs are done by what look very much
like functions but which don't return a value: FORTRAN uses subroutines, Pascal
and Algol call them procedures. C simply uses functions for all of those jobs, with
the type of the function's return value specified when the function is defined. In the
example, the function show_message doesn't return a value so we specify that its
type is void.

The use of void in that way is either crashingly obvious or enormously subtle,

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — A description of Example 1.1 Pagina 4 de 8

depending on your viewpoint. We could easily get involved here in an entertaining
(though fruitless) philosophical side-track on whether void really is a value or not,
but we won't. Whichever side of the question you favour, it's clear that you can't do
anything with a void and that's what it means here—"| don't want to do anything
with any value this function might or might not return”.

The type of the function is void, its name is show_message. The parentheses ()
following the function name are needed to let the compiler know that at this point
we are talking about a function and not something else. If the function did take any
arguments, then their names would be put between the parentheses. This one
doesn't take any, which is made explicit by putting void between the parentheses.

For something whose essence is emptiness, abnegation and rejection, void turns
out to be pretty useful.

The body of the function is a compound statement, which is a sequence of other
statements surrounded by curly brackets {}. There is only one statement in there,
but the brackets are still needed. In general, C allows you to put a compound
statement anywhere that the language allows the use of a single simple statement;
the job of the brackets being to turn several statements in a row into what is
effectively a single statement.

It is reasonable to ask whether or not the brackets are strictly needed, if their only
job is to bind multiple statements into one, yet all that we have in the example is a
single statement. Oddly, the answer is yes—they are strictly needed. The only
place in C where you can't put a single statement but must have a compound
statement is when you are defining a function. The simplest function of all is
therefore the empty function, which does nothing at all:

void do_nothing(void){}

The statement inside show_message is a call of the library function printf. printf
is used to format and print things, this example being one of the simplest of its
uses. printf takes one or more arguments, whose values are passed forward from
the point of the call into the function itself. In this case the argument is a string. The
contents of the string are interpreted by printf and used to control the way the
values of the other arguments are printed. It bears a little resemblance to the
FORMAT statement in FORTRAN; but not enough to predict how to use it.

Summary

Declarations are used to introduce the name of a function, its return type and the
type (if any) of its arguments.

A function definition is a declaration with the body of the function given too.

A function returning no value should have its type declared as void. For example,
void func(/* list of arguments */);

A function taking no arguments should be declared with void as its argument list.
For example, void func(void);

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — A description of Example 1.1 Pagina 5 de 8

1.3.5. Strings

In C, strings are a sequence of characters surrounded by quote marks:

"like this"

Because a string is a single element, a bit like an identifier, it is not allowed to
continue across a line—although space or tab characters are permitted inside a
string.

"This is a valid string"
"This has a newline in it
and is NOT a valid string"

To get a very long string there are two things that you can do. You could take
advantage of the fact that absolutely everywhere in a C program, the sequence
‘backslash end-of-line’ disappears totally.

"This would not be valid but doesn't have \
a newline in it as far as the compiler is concerned’

The other thing you could do is to to use the string joining feature, which says that
two adjacent strings are considered to be just one.

"All this " "comes out as "
"just one string"

Back to the example. The sequence ‘\n’ in the string is an example of an escape
sequence which in this case represents ‘newline’. printf simply prints the contents
of the string on the program's output file, so the output will read ‘hello’, followed by a
new line.

To support people working in environments that use character sets which are
‘wider’ than U.S. ASCII, such as the shift-JIS representation used in Japan, the
Standard now allows multibyte characters to be present in strings and comments.
The Standard defines the 96 characters that are the alphabet of C (see Chapter 2
[http://publications.gbdirect.co.uk/c_book/chapter2/]). If your system supports an
extended character set, the only place that you may use these extended characters
is in strings, character constants, comment and the names of header files. Support
for extended character sets is an implementation defined feature, so you will have
to look it up in your system's documentation.

1.3.6. The main function

In Example 1.1 there are actually two functions, show_message and main. Although
main is a bit longer than show_message it is obviously built in the same shape: it has
a name, the parentheses () are there, followed by the opening bracket { of the
compound statement that must follow in a function definition. True, there's a lot
more stuff too, but right at the end of the example you'll find the matching closing
bracket } that goes with the first one to balance the numbers.

This is a much more realistic function now, because there are several statements
inside the function body, not just one. You might also have noticed that the function

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — A description of Example 1.1 Pagina 6 de 8

is not declared to be void. There is a good reason for this: it returns a proper value.
Don't worry about its arguments yet; they are discussed in Chapter 10
[http://publications.gbdirect.co.uk/c_book/chapter10/).

The most important thing about main is that it is the first function to be called. In a
hosted environment your C language system arranges, magically, for a call on the
main function (hence its name) when the program is first started. When the function
is over, so is the program. It's obviously an important function. Equally important is
the stuff inside main's compound statement. As mentioned before, there can be
several statements inside a compound statement, so let's look at them in turn.

1.3.7. Declarations

The first statement is this:

int count;

which is not an instruction to do anything, but simply introduces a variable to the
program. It declares something whose name is count, and whose type is ‘integer’;
in C the keyword that declares integers is unaccountably shortened to int. C has
an idiosyncratic approach to these keywords with some having their names spelled
in full and some being shortened like int. At least int has a meaning that is more
or less intuitive; just wait until we get on to static.

As a result of that declaration the compiler now knows that there is something that
will be used to store integral quantities, and that its name is count. In C, all
variables must be declared before they are used; there is none of FORTRAN's
implicit declarations. In a compound statement, all the declarations must come first;
they must precede any ‘ordinary’ statements and are therefore somewhat special.

(Note for pedants: unless you specifically ask, the declaration of a variable like
count is also a definition. The distinction will later be seen to matter.)

1.3.8. Assignment statement

Moving down the example we find a familiar thing, an assignment statement. This is
where the first value is assigned to the variable count, in this case the value
assigned is a constant whose value is zero. Prior to the assignment, the value of
count was undefined and unsafe to use. You might be a little surprised to find that
the assignment symbol (strictly speaking an assignment operator) is a single = sign.
This is not fashionable in modern languages, but hardly a major blemish.

So far then, we have declared a variable and assigned the value of zero to it. What
next?

1.3.9. The while statement

Next is one of C's loop control statements, the while statement. Look carefully at its
form. The formal description of the while statement is this:

while(expression)
statement

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — A description of Example 1.1 Pagina 7 de 8

Is that what we have got? Yes it is. The bit that reads

count < 10

is a relational expression, which is an example of a valid expression, and the
expression is followed by a compound statement, which is a form of valid
statement. As a result, it fits the rules for a properly constructed while statement.

What it does must be obvious to anyone who has written programs before. For as
long as the relationship count < 10 holds true, the body of the loop is executed and
the comparison repeated. If the program is ever to end, then the body of the loop
must do something that will eventually cause the comparison to be false: of course
it does.

There are just two statements in the body of the loop. The first one is a function call,
where the function show_message is invoked. A function call is indicated by the name
of the function followed by the parentheses () which contain its argument list—if it
takes no arguments, then you provide none. If there were any arguments, they
would be put between the parentheses like this:

/* call a function with several arguments */
function name(first _arg, second_arg, third arg);

and so on. The call of printf is another example. More is explained in Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/).

The last statement in the loop is another assignment statement. It adds one to the
variable count, so that the requirement for program to stop will eventually be met.

1.3.10. The return statement

The last statement that is left to discuss is the return statement. As it is written, it
looks like another function call, but in fact the rule is that the statement is written

return expression;

where the expression is optional. The example uses a common stylistic convention
and puts the expression into parentheses, which has no effect whatsoever.

The return causes a value to be returned from the current function to its caller. If the
expression is missing, then an unknown value is passed back to the caller—this is
almost certainly a mistake unless the function returns void. Main wasn't declared
with any type at all, unlike show_message, so what type of value does it return? The
answer is int. There are a number of places where the language allows you to
declare things by default: the default type of functions is int, so it is common to see
them used in this way. An equivalent declaration for main would have been

int main(){
and exactly the same results would have occurred.

You can't use the same feature to get a default type for variables because their
types must be provided explicitly.

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — A description of Example 1.1 Pagina 8 de 8

What does the value returned from main mean, and where does it go? In Old C, the
value was passed back to the operating system or whatever else was used to start
the program running. In a UNIX-like environment, the value of 0 meant ‘success’ in
some way, any other value (often -1) meant ‘failure’. The Standard has enshrined
this, stating that o stands for correct termination of the program. This does not
mean that O is to be passed back to the host environment, but whatever is the
appropriate ‘success’ value for that system. Because there is sometimes confusion
around this, you may prefer to use the defined values ExIT_success and

EXIT_ FAILURE instead, which are defined in the header file <stdlib.h>. Returning
from the main function is the same as calling the library function exit with the return
value as an argument. The difference is that exit may be called from anywhere in
the program, and terminates it at that point, after doing some tidying up activities. If
you intend to use exit, you mustinclude the header file <stdlib.h>. From now on,
we shall use exit rather than returning from main.

Summary
The main function returns an int value.

Returning from main is the same as calling the exit function, but exit can be called
from anywhere in a program.

Returning 0 or Ex1T_succkss is the way of indicating success, anything else
indicates failure.

1.3.11. Progress so far

This example program, although short, has allowed us to introduce several
important language features, amongst them:

Program structure
Comment

File inclusion

Function definition
Compound statements
Function calling
Variable declaration
Arithmetic

Looping

although of course none of this has been covered rigorously.

Previous section [http://publications.gbdirect.co.uk/c_book/chapter1/functions.html |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html

http://publications.gbdirect.co.uk/c_book/chapterl/description_of example.html?forma... 21/2/2007

The C Book — Some more programs Pagina 1 de 5

1.4. Some more programs

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/some_more programs.html.

While we're still in the informal phase, let's look at two more examples. You will
have to work out for yourself what some of the code does, but as new or interesting
features appear, they will be explained.

1.4.1. A program to find prime numbers

/*

*

* Dumb program that generates prime numbers.
*/

#include <stdio.h>

#include <stdlib.h>

main(){
int this number, divisor, not prime;

this number = 3;

while(this number < 10000) {
divisor = this number / 2;
not prime = 0;
while(divisor > 1){

if (this_number % divisor == 0){
not_prime = 1;
divisor = 0;

}

else

divisor = divisor-1;

}

if(not _prime == 0)
printf("%d is a prime number\n", this number);
this_number = this_ number + 1;

}
exit (EXIT SUCCESS);

}
Example 1.2

What was interesting in there? A few new points, perhaps. The program works in a
really stupid way: to see if a number is prime, it divides that number by all the
numbers between half its value and two—if any divide without remainder, then the
number isn't prime. The two operators that you haven't seen before are the
remainder operator %, and the equality operator, which is a double equal sign ==.
That last one is without doubt the cause of more bugs in C programs than any other
single factor.

The problem with the equality test is that wherever it can appear it is also legal to
put the single = sign. The first, ==, compares two things to see if they are equal, and

http://publications.gbdirect.co.uk/c_book/chapterl/some_more_programs.html?format... 21/2/2007

The C Book — Some more programs Pagina 2 de 5

is generally what you need in fragments like these:

if(a == b)
while (c == d)

The assignment operator = is, perhaps surprisingly, also legal in places like those,
but of course it assigns the value of the right-hand expression to whatever is on the
left. The problem is particularly bad if you are used to the languages where
comparison for equality is done with what C uses for assignment. There's nothing
that you can do to help, so start getting used to it now. (Modern compilers do tend
to produce warnings when they think they have detected ‘questionable’ uses of
assignment operators, but that is a mixed blessing when your choice was
deliberate.)

There is also the introduction for the first time of the if statement. Like the while
statement, it tests an expression to see if the expression is true. You might have
noticed that also like the while statement, the expression that controls the if
statement is in parentheses. That is always the case: all of the conditional control of
flow statements require a parenthesized expression after the keyword that
introduces them. The formal description of the if statement goes like this:

if (expression)
statement

if (expression)
statement
else
statement

showing that it comes in two forms. Of course, the effect is that if the expression
part is evaluated to be true, then the following statement is executed. If the
evaluation is false, then the following statement is not executed. When there is an
else part, the statement associated with it is executed only if the evaluation gives a
false result.

1£ statements have a famous problem. In the following piece of code, is the
statement-2 executed or not?

if(l1 > 0)
if(l < 0)
statement-1
else
statement-2

The answer is that it is. Ignore the indentation (which is misleading). The else could
belong to either the first or second if, according to the description of the if
statement that has just been given, so an extra rule is needed to make it
unambiguous. The rule is simply that an else is associated with the nearest else-
less if above it. To make the example work the way that the indentation implied,
we have to invoke a compound statement:

if(1 > 0){
if(1 < 0)

statement-1

else

http://publications.gbdirect.co.uk/c_book/chapterl/some_more_programs.html?format... 21/2/2007

The C Book — Some more programs Pagina 3 de 5

statement-2

Here, at least, C adheres to the practice used by most other languages. In fact a lot
of programmers who are used to languages where the problem exists have never
even realized that it is there—they just thought that the disambiguating rule was
‘obvious’. Let's hope that everyone feels that way.

1.4.2. The division operators

The division operators are the division operator /, and the remainder operator %.
Division does what you would expect, except that when it is applied to integer
operands it gives a result that is truncated towards zero. For example, 5/2 gives 2,
5/3 gives 1. The remainder operator is the way to get the truncated remainder. 5%2
gives 1, 533 gives 2. The signs of the remainder and quotient depend on the divisor
and dividend in a way that is defined in the Standard and shown in Chapter 2
[http://publications.gbdirect.co.uk/c_book/chapter2/].

1.4.3. An example performing input

It's useful to be able to perform input as well as to write programs that print out
more or less interesting lists and tables. The simplest of the library routines (and the
only one that we'll look at just now) is called getchar. It reads single characters from
the program's input and returns an integer value. The value returned is a coded
representation for that character and can be used to print the same character on
the program output. It can also be compared against character constants or other
characters that have been read, although the only test that makes sense is to see if
both characters are the same. Comparing for greater or less than each other is not
portable in general; there is no guarantee that 'a' is less than 'b', although on
most common systems that would be the case. The only guarantee that the
Standard makes is that the codes for '0' through to '9' will always be consecutive.
Here is one example.

#include <stdio>
#include <stdlib.h>
main(){

int ch;

ch = getchar();
while(ch != 'a'){
if(ch != '"\n')
printf("ch was %c, value %d\n", ch, ch);
ch = getchar();

}
exit (EXIT SUCCESS);

}
Example 1.3

There are two interesting points in there. The first is to notice that at the end of each
line of input read, the character represented by

l\nl

(a character constant) will be seen. This just like the way that the same symbol

http://publications.gbdirect.co.uk/c_book/chapterl/some_more_programs.html?format... 21/2/2007

The C Book — Some more programs Pagina 4 de 5

results in a new line when printf£ prints it. The model of I/O used by C is not based
on a line by line view of the world, but character by character instead; if you choose
to think in a line-oriented way, then '\n' allows you to mark the end of each ‘line’.
Second is the way that 2c is used to output a character by print£f, when it appears
on the output as a character. Printing it with 24 prints the same variable, but
displays the integer value used by your program to represent the character.

If you try that program out, you may find that some systems do not pass characters
one by one to a program, but make you type a whole line of input first. Then the
whole line is made available as input, one character at a time. Beginners have been
known to be confused: the program is started, they type some input, and nothing
comes back. This behaviour is nothing to do with C; it depends on the computer
and operating system in use.

1.4.4. Simple arrays

The use of arrays in C is often a problem for the beginner. The declaration of arrays
isn't too difficult, especially the one-dimensional ones, but a constant source of
confusion is the fact that their indices always count from 0. To declare an array of 5
ints, the declaration would look like this:

int something[5];

In array declarations C uses square brackets, as you can see. There is no support
for arrays with indices whose ranges do not start at 0 and go up; in the example,
the valid array elements are something[0] tO something[4]. Notice very carefully
that something[5] is not a valid array element.

This program reads some characters from its input, sorts them into the order
suggested by their representation, then writes them back out. Work out what it does
for yourself; the algorithm won't be given much attention in the explanation which
follows.

#include <stdio>

#include <stdlib.h>

#define ARSIZE 10

main(){
int ch_arr[ARSIZE],countl;
int count2, stop, lastchar;

lastchar = 0;
stop = 0;
/*
* Read characters into array.
* Stop if end of line, or array full.
*/
while(stop != 1){
ch arr[lastchar] = getchar();
if(ch_arr[lastchar] == '\n')
stop = 1;
else
lastchar = lastchar + 1;
if(lastchar == ARSIZE)
stop = 1;
}

lastchar = lastchar-1;

http://publications.gbdirect.co.uk/c_book/chapterl/some_more_programs.html?format... 21/2/2007

The C Book — Some more programs Pagina 5 de 5

/*
* Now the traditional bubble sort.
*/
countl = 0;
while(countl < lastchar){
count2 = countl + 1;
while(count2 <= lastchar){
if(ch_arr[countl] > ch arr[count2]){
/* swap */
int temp;
temp = ch_arr[countl];
ch_arr[countl] ch _arr[count2];
ch arr[count2] temp;

}

count2 = count2 + 1;

}

countl = countl + 1;

}

countl = 0;

while(countl <= lastchar){
printf("%c\n", ch arr[countl]);
countl = countl + 1;

}
exit (EXIT_SUCCESS);

}
Example 1.4

You might note that the defined constant ars1zE is used everywhere instead of the
actual array size. Because of that, to change the maximum number of characters
that can be sorted by this program simply involves a change to one line and then
re-compiling. Not so obvious but critical to the safety of the program is the detection
of the array becoming full. Look carefully; you'll find that the program stops when
element ars1zE-1 has been filled. That is because in an § element array, only
elements o through to n-1 are available (giving x in total).

Unlike some other languages it is unlikely that you will be told if you ‘run off’ the end
of an array in C. It results in what is known as undefined behaviour on the part of
your program, this generally being to produce obscure errors in the future. Most
skilled programmers avoid this happening by rigorous testing to make sure either
that it can't happen given the particular algorithm in use, or by putting in an explicit
test before accessing a particular member of an array. This is a common source of
run-time errors in C; you have been warned.

Summary
Arrays always number from 0; you have no choice.

A n-element array has members which number from o0 to n-1 only. Element n does
not exist and to access it is a big mistake.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/description_of_example.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html]

http://publications.gbdirect.co.uk/c_book/chapterl/some_more_programs.html?format... 21/2/2007

The C Book — Terminology Pagina 1 de 1

1.5. Terminology

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html.

In C programs there are two distinct types of things: things used to hold values and
things that are functions. Instead of having to refer to them jointly with a clumsy
phrase that maintains the distinction, we think that it's useful to call them both
loosely ‘objects’. We do quite a lot of that later, because it's often the case that they
follow more or less the same rules. Beware though, that this isn't quite what the
Standard uses the term to mean. In the Standard, an ‘object’ is explicitly a region of
allocated storage that is used to represent a value and a function is something
different; this leads to the Standard often having to say ‘... functions and objects
.... Because we don't think that it leads to too much confusion and does improve
the readability of the text in most cases, we will continue to use our looser
interpretation of object to include functions and we will explicitly use the terms ‘data
objects’ and ‘functions’ when the distinction is appropriate.

Be prepared to find this slight difference in meaning if you do read the Standard.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/some_more_programs.html] |
Chapter contents [http:/publications.gbdirect.co.uk/c_book/chapteri/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/summary.html]

http://publications.gbdirect.co.uk/c_book/chapterl/terminology.html?format=pf 21/2/2007

The C Book — Summary Pagina 1 de 1

1.6. Summary

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapter1/summary.html.

This chapter has introduced many of the basics of the language although informally.
Functions, in particular, form the basic building block for C. Chapter 4
[http://publications.gbdirect.co.uk/c_book/chapter4/] provides a full description of
these fundamental objects, but you should by now understand enough about them
to follow their informal use in the intervening material.

Although the idea of library functions has been introduced, it has not been possible
to illustrate the extent of their importance to the C application programmer. The
Standard Library, described in Chapter 9
[http://publications.gbdirect.co.uk/c_book/chapter9/], is extremely important, both in
the way that it helps to improve the portability of programs intended for general use
and also in the aid to productivity that these useful functions can provide.

The use of variables, expressions and arithmetic are soon to be described in great
detail. As this chapter has shown, at a simple level, C differs little from most other
modern programming languages.

Only the use of structured data types still remains to be introduced, although arrays
have had a very brief airing.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter1/terminology.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter1/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter1/exercises. html]

http://publications.gbdirect.co.uk/c_book/chapter1/summary.html?format=pf 21/2/2007

The C Book — Exercises Pagina 1 de 1

1.7. Exercises

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c_book/chapteri/exercises.html.

Exercise 1.1. Type in and test Example 1.1 on your system.

Exercise 1.2. Using Example 1.2 as a pattern, write a program that prints prime
pairs — a pair of prime numbers that differ by 2, for example 11 and 13, 29 and 31.
(If you can detect a pattern between such pairs, congratulations! You are either a
genius or just wrong.)

Exercise 1.3. Write a function that returns an integer: the decimal value of a string
of digits that it reads using getchar. For example, if it reads 1 followed by 4 followed
by 6, it will return the number 146. You may make the assumption that the digits 0—
9 are consecutive in the computer's representation (the Standard says so) and that
the function will only have to deal with valid digits and newline, so error checking is
not needed.

Exercise 1.4. Use the function that you just wrote to read a sequence of numbers.
Put them into an array declared in main, by repeatedly calling the function. Sort
them into ascending numerical order, then print the sorted list.

Exercise 1.5. Again using the function from Exercise 1.3, write a program that will
read numbers from its input, then print them out in binary, decimal and hexadecimal
form. You should not use any features of print£ apart from those mentioned in this
chapter (especially the hexadecimal output format!). You are expected to work out
what digits to print by calculating each one in turn and making sure that they are
printed in the right order. This is not particularly difficult, but it is not trivial either.

Previous section [http.//publications.gbdirect.co.uk/c_book/chapter1/summary.html)
| Chapter contents [http://publications.gbdirect.co.uk/c_book/chapteri/]

http://publications.gbdirect.co.uk/c_book/chapterl/exercises.html?format=pf 21/2/2007

The C Book — Variables and Arithmetic http://publications.gbdirect.co.uk/c book/chapter2/?f...

Chapter 2

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c _book/chapter2/.

Variables and Arithmetic

e 2.1. Some fundamentals
[http://publications.gbdirect.co.uk/c_book/chapter2/fundamentals.html]

® 2.2. The alphabet of C
[http.//publications.gbdirect.co.uk/c_book/chapter2/alphabet of c.html]

e 2.3. The Textual Structure of Programs
[http.//publications.gbdirect.co.uk/c_book/chapter2/textual _program_structure.html]

e 2.4. Keywords and identifiers
[http.//publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.html]

e 2.5. Declaration of variables
[http.//publications.gbdirect.co.uk/c_book/chapter2/variable _declaration.html]

* 2.6. Real types [http://publications.gbdirect.co.uk/c_book/chapter2/real types.html]

e 2.7. Integral types
[http.//publications.gbdirect.co.uk/c_book/chapter2/integral _types.html]

e 2.8. Expressions and arithmetic

[http.//publications.gbdirect.co.uk/c_book/chapter2/expressions_and_arithmetic.html]

2.9. Constants [http:/publications.gbdirect.co.uk/c_book/chapter2/constants.html]

2.10. Summary [http://publications.gbdirect.co.uk/c_book/chapter2/summary.html]

2.11. Exercises [http.//publications.gbdirect.co.uk/c_book/chapter2/exercises.html]

Previous chapter [http:/publications.gbdirect.co.uk/c_book/chapteri/] | Next chapter
[http.//publications.gbdirect.co.uk/c_book/chapter3/]

1ofl 21-02-2007 12:31

The C Book — Some fundamentals http://publications.gbdirect.co.uk/c book/chapter2/fu...

2.1. Some fundamentals

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c _book/chapter2/fundamentals.html.

Here is where we start to look in detail at the bits that the last chapter chose to
sweep under the carpet while it did its ‘Instant C’ introduction. The problem is, of
course, the usual one of trying to introduce enough of the language to let you get a
feel for what it's all about, without drowning beginners in a froth of detail that isn't
essential at the time.

Because this is a lengthy chapter, and because it deliberately chooses to cover
some subtle problems that are often missed out in introductory texts, you should
make sure that you are in the right mood and proper frame of mind to read it.

The weary brain may find that the breaks for exercises are useful. We strongly
recommend that you do actually attempt the exercises on the way through. They
help to balance the weight of information, which otherwise turns into an indigestible
lump.

It's time to introduce some of the fundamentals.

Chapter contents [http.//publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet _of c.html]

1ofl 21-02-2007 12:31

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

2.2. The alphabet of C

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c book/chapter2/alphabet of c.html.

This is an interesting area; alphabets are important. All the same, this is the one part
of this chapter that you can read superficially first time round without missing too
much. Read it to make sure that you've seen the contents once, and make a mental
note to come back to it later on.

2.2.1. Basic Alphabet

Few computer languages bother to define their alphabet rigorously. There's usually
an assumption that the English alphabet augmented by a sprinkling of more or less
arbitrary punctuation symbols will be available in every environment that is trying to
support the language. The assumption is not always borne out by experience. Older
languages suffer less from this sort of problem, but try sending C programs by Telex
or restrictive e-mail links and you'll understand the difficulty.

The Standard talks about two different character sets: the one that programs are
written in and the one that programs execute with. This is basically to allow for
different systems for compiling and execution, which might use different ways of
encoding their characters. It doesn't actually matter a lot except when you are using
character constants in the preprocessor, where they may not have the same value as
they do at execution time. This behaviour is implementation-defined, so it must be
documented. Don't worry about it yet.

The Standard requires that an alphabet of 96 symbols is available for C as follows:

abcdefghijklmnopgrstuvwixXxyz
ABCDEFGHIJKLMNOPQRSTUVWIXY Z
0123456 72829

P #E S E T (), - /

;o <=>2 [N 1 ~_ (|1~

space, horizontal and vertical tab

form feed, newline
Table 2.1. The Alphabet of C

It turns out that most of the commonly used computer alphabets contain all the
symbols that are needed for C with a few notorious exceptions. The C alphabetic
characters shown below are missing from the International Standards Organization
ISO 646 standard 7-bit character set, which is as a subset of all the widely used
computer alphabets.

LN A~ {1}~
To cater for systems that can't provide the full 96 characters needed by C, the

Standard specifies a method of using the ISO 646 characters to represent the
missing few; the technique is the use of trigraphs.

2.2.2. Trigraphs

1of4 21-02-2007 19:08

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

Trigraphs are a sequence of three ISO 646 characters that get treated as if they were
one character in the C alphabet; all of the trigraphs start with two question marks ? 2
which helps to indicate that ‘'something funny’ is going on. Table 2.1 below shows the
trigraphs defined in the Standard.

C character Trigraph
??=
[272 (
??)
??<
22>
22/

271

T

??-
A e

Table 2.2. Trigraphs

As an example, let's assume that your terminal doesn't have the # symbol. To write
the preprocessor line

#define MAX 32767
isn't possible; you must use trigraph notation instead:
??=define MAX 32767

Of course trigraphs will work even if you do have a # symbol; they are there to help in
difficult circumstances more than to be used for routine programming.

The ? ‘binds to the right’, so in any sequence of repeated ?s, only the two at the right
could possibly be part of a trigraph, depending on what comes next—this disposes of
any ambiguity.

It would be a mistake to assume that programs written to be highly portable would
use trigraphs ‘in case they had to be moved to systems that only support ISO 646’. If
your system can handle all 96 characters in the C alphabet, then that is what you
should be using. Trigraphs will only be seen in restricted environments, and it is
extremely simple to write a character-by-character translator between the two
representations. However, all compilers that conform to the Standard will recognize
trigraphs when they are seen.

Trigraph substitution is the very first operation that a compiler performs on its input
text.

2.2.3. Multibyte Characters

Support for multibyte characters is new in the Standard. Why?

A very large proportion of day-to-day computing involves data that represents text of
one form or another. Until recently, the rather chauvinist computing idustry has
assumed that it is adequate to provide support for about a hundred or so printable
characters (hence the 96 character alphabet of C), based on the requirements of the
English language—not suprising, since the bulk of the development of commercial
computing has been in the US market. This alphabet (technically called the
repertoire) fits conveniently into 7 or 8 bits of storage, which is why the US-ASCI|I
character set standard and the architecture of mini and microcomputers both give
very heavy emphasis to the use of 8-bit bytes as the basic unit of storage.

20f4 21-02-2007 19:08

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

C also has a byte-oriented approach to data storage. The smallest individual item of
storage that can be directly used in C is the byte, which is defined to be at least 8 bits
in size. Older systems or architectures that are not designed explicitly to support this
may incur a performance penalty when running C as a result, although there are not
many that find this a big problem.

Perhaps there was a time when the English alphabet was acceptable for data
processing applications worldwide—when computers were used in environments
where the users could be expected to adapt—but those days are gone. Nowadays it
is absolutely essential to provide for the storage and processing of textual material in
the native alphabet of whoever wants to use the system. Most of the US and Western
European language requirements can be squeezed together into a character set that
still fits in 8 bits per character, but Asian and other languages simply cannot.

There are two general ways of extending character sets. One is to use a fixed
number of bytes (often two) for every character. This is what the wide character
support in C is designed to do. The other method is to use a shift-in shift-out coding
scheme; this is popular over 8-bit communication links. Imagine a stream of
characters that looks like:

a b c <8I> a b g <SO> x vy

where <sI> and <SO> mean ‘switch to Greek’ and ‘switch back to English’
respectively. A display device that agreed to use that method might well then display
a, b, ¢, alpha, beta, gamma, x and y. This is roughly the scheme used by the shift-JIS
Japanese standard, except that once the shift-in has been seen, pairs of characters
together are used as the code for a single Japanese character. Alternative schemes
exist which use more than one shift-in character, but they are less common.

The Standard now allows explicitly for the use of extended character sets. Only the
96 characters defined earlier are used for the C part of a program, but in comments,
strings, character constants and header names (these are really data, not part of the
program as such) extended characters are permitted if your environment supports
them. The Standard lays down a number of pretty obvious rules about how you are
allowed to use them which we will not repeat here. The most significant one is that a
byte whose value is zero is interpreted as a null character irrespective of any shift
state. That is important, because C uses a null character to indicate the end of
strings and many library functions rely on it. An additional requirement is that
multibyte sequences must start and end in the initial shift state.

The char type is specified by the Standard as suitable to hold the value of all of the
characters in the ‘execution character set’, which will be defined in your system's
documentation. This means that (in the example above) it could hold the value of ‘a’
or ‘b’ or even the "switch to Greek" character itself. Because of the shift-in shift-out
mechanism, there would be no difference between the value stored in a char that
was intended to represent ‘a’ or the Greek ‘alpha’ character. To do that would mean
using a different representation - probably needing more than 8 bits, which on many
systems would be too big for a char. That is why the Standard introduces the
wchar_ ttype. To use this, you must include the <stddef.h> header, because
wchar_t is simply defined as an alternative name for one of C's other types. We
discuss it further in Section 2.8

[http://publications.gbdirect.co.uk/c _book/chapter2/expressions_and_arithmetic.html].

Summary

* C requires at least 96 characters in the source program character set.
* Not all character sets in common use can stretch to 96 characters, trigraphs
allow the basic ISO 646 character set to be used (at a pinch).
* Multibyte character support has been added by the Standard, with support for
© Shift-encoded multibyte characters, which can be squeezed into ‘ordinary’

3of4 21-02-2007 19:08

The C Book — The alphabet of C http://publications.gbdirect.co.uk/c_book/chapter2/al...

character arrays, so still have char type.
© Wide characters, each of which may use more storage than a regular

character. These usually have a different type from char.

Previous section
[http://publications.gbdirect.co.uk/c_book/chapter2/fundamentals.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http://publications.gbdirect.co.uk/c_book/chapter2/textual_program_structure.html]

4 of4 21-02-2007 19:08

The C Book — The Textual Structure of Programs http://publications.gbdirect.co.uk/c_book/chapter2/te...

2.3. The Textual Structure of Programs

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c _book/chapter2/textual program _structure.html.

2.3.1. Program Layout

The examples so far have used the sort of indentation and line layout that is
common in languages belonging to the same family as C. They are ‘free format’
languages and you are expected to use that freedom to lay the program out in a
way that enhances its readability and highlights its logical structure. Space
(including horizontal tab) characters can be used for indentation anywhere except in
identifiers or keywords without any effect on the meaning of the program. New lines
work in the same way as space and tab except on preprocessor command lines,
which have a line-by-line structure.

If a line is getting too long for comfort there are two things you can do. Generally it
will be possible to replace one of the spaces by a newline and use simply two lines
instead, as this example shows.

/* a long line */
a = fred + bill * ((this / that) * sqgrt(3.14159));
/* the same line */
a = fred + bill *
((this / that) =*
sgrt(3.14159)) ;

If you're unlucky it may not be possible to break the lines like that. The preprocessor
suffers most from the problem, because of its reliance on single-line ‘statements’.
To help, it's useful to know that the sequence ‘backslash newline’ becomes invisible
to the C translation system. As a result, the sequence is valid even in unusual
places such as the middle of identifiers, keywords, strings and so on. Only trigraphs
are processed before this step.

/ *
* Example of the use of line joining
*/
#define IMPORTANT BUT LONG PREPROCESSOR_TEXT \
printf ("this is effectively all ");\
printf ("on a single line ");\
printf ("because of line-joining\n");

The only time that you might want to use this way of breaking lines (outside of
preprocessor control lines) is to prevent long strings from disappearing off the
right-hand side of a program listing. New lines are not permitted inside strings and
character constants, so you might think that the following is a good idea.

/* not a good way of folding a string */
printf ("This is a very very very\
long string\n") ;

That will certainly work, but for strings it is preferable to make use of the
string-joining feature introduced by the Standard:

1of2 21-02-2007 19:09

The C Book — The Textual Structure of Programs http://publications.gbdirect.co.uk/c_book/chapter2/te...

/* This string joining will not work in 014 C */
printf ("This is a very very very"
"long string\n");

The second example allows you to indent the continuation portion of the string
without changing its meaning; adding indentation in the first example would have
put the indentation into the string.

Incidentally, both examples contain what is probably a mistake. There is no space in
front of the ‘long’ in the continuation string, which will contain the sequence
‘verylong’ as a result. Did you notice?

2.3.2. Comment

Comment, as has been said already, is introduced by the character pair /* and
terminated by * /. It is translated into a single space wherever it occurs and so it
follows exactly the same rules that spaces do. It's important to realize that it doesn't
simply disappear, which it used to do in Old C, and that it is not possible to put
comment into strings or character constants. Comment in such a place becomes
part of the string or constant:

/*"This is comment"*/
"/*The quotes mean that this is a string*/"

Old C was a bit hazy about what the deletion of comment implied. You could argue
that

int/**/egral () ;

should have the comment deleted and so be taken by the compiler to be a call of a
function named integral. The Standard C rule is that comment is to be read as if
were a space, so the example must be equivalent to

int egral();

which declares a function egral that returns type int.

2.3.3. Translation phases

The various character translation, line joining, comment recognition and other early
phases of translation must be specified to occur in a certain order. The Standard
says that the translation is to proceed as if the phases occurred in this order (there
are more phases, but these are the important ones):

1. Trigraph translation.

2. Line joining.

3. Translate comment to space (but not in strings or character constants). At this
stage, multiple white spaces may optionally be condensed into one.

4. Translate the program.

Each stage is completed before the next is started.

Previous section

[http://publications.gbdirect.co.uk/c_book/chapter2/alphabet _of c.html] | Chapter
contents [http://publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http.//publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.html]

2 0of 2 21-02-2007 19:09

The C Book — Keywords and identifiers http://publications.gbdirect.co.uk/c _book/chapter2/k...

2.4. Keywords and identifiers

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found
at http://publications.gbdirect.co.uk/c _book/chapter2/keywords and identifiers.html.

After covering the underlying alphabet, we can look at more interesting elements
of C. The most obvious of the language elements are keywords and identifiers; their
forms are identical (although their meanings are different).

2.4.1. Keywords

C keeps a small set of keywords for its own use. These keywords cannot be used
as identifiers in the program — a common restriction with modern languages.
Where users of Old C may be surprised is in the introduction of some new
keywords; if those names were used as identifiers in previous programs, then the
programs will have to be changed. It will be easy to spot, because it will provoke
your compiler into telling you about invalid names for things. Here is the list of
keywords used in Standard C; you will notice that none of them use upper-case

letters.

auto double int struct
break else 1long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void

default goto sizeof volatile

do if static while
Table 2.3. Keywords

The new keywords that are likely to surprise old programmers are: const, signed,
void and volatile (although void has been around for a while). Eagle eyed
readers may have noticed that some implementations of C used to use the
keywords entry, asm, and fortran. These are not part of the Standard, and few
will mourn them.

2.4.2. Identifiers

Identifier is the fancy term used to mean ‘name’. In C, identifiers are used to refer to
a number of things: we've already seen them used to name variables and functions.
They are also used to give names to some things we haven't seen yet, amongst
which are labels and the ‘tags’ of structures, unions, and enums.

The rules for the construction of identifiers are simple: you may use the 52 upper
and lower case alphabetic characters, the 10 digits and finally the underscore *_’,
which is considered to be an alphabetic character for this purpose. The only

restriction is the usual one; identifiers must start with an alphabetic character.
Although there is no restriction on the length of identifiers in the Standard, this is a

point that needs a bit of explanation. In Old C, as in Standard C, there has never
been any restriction on the length of identifiers. The problem is that there was never

1of2 21-02-2007 19:09

The C Book — Keywords and identifiers http://publications.gbdirect.co.uk/c _book/chapter2/k...

any guarantee that more than a certain number of characters would be checked
when names were compared for equality—in Old C this was eight characters, in
Standard C this has changed to 31.

So, practically speaking, the new limit is 31 characters—although identifiers may be
longer, they must differ in the first 31 characters if you want to be sure that your
programs are portable. The Standard allows for implementations to support longer
names if they wish to, so if you do use longer names, make sure that you don't rely
on the checking stopping at 31.

One of the most controversial parts of the Standard is the length of external
identifiers. External identifiers are the ones that have to be visible outside the
current source code file. Typical examples of these would be library routines or
functions which have to be called from several different source files.

The Standard chose to stay with the old restrictions on these external names: they
are not guaranteed to be different unless they differ from each other in the first six
characters. Worse than that, upper and lower case letters may be treated the same!

The reason for this is a pragmatic one: the way that most C compilation systems
work is to use operating system specific tools to bind library functions into a

C program. These tools are outside the control of the C compiler writer, so the
Standard has to impose realistic limits that are likely to be possible to meet. There is
nothing to prevent any specific implementation from giving better limits than these,
but for maximum portability the six monocase characters must be all that you
expect. The Standard warns that it views both the use of only one case and any
restriction on the length of external names to less than 31 characters as
obsolescent features. A later standard may insist that the restrictions are lifted; let's
hope that it is soon.

Previous section

[http://publications.gbdirect.co.uk/c_book/chapter2/textual _program_structure.html]
| Chapter contents [http:/publications.gbdirect.co.uk/c_book/chapter2/] | Next
section

[http://publications.gbdirect.co.uk/c_book/chapter2/variable declaration.html)

2 0of 2 21-02-2007 19:09

The C Book — Declaration of variables http://publications.gbdirect.co.uk/c _book/chapter2/va...

2.5. Declaration of variables

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c_book/chapter2/variable declaration.html.

You may remember that in Chapter 1 [http:/publications.gbdirect.co.uk/c_book/chapter1/] we said that
you have to declare the names of things before you can use them (the only exceptions to this rule are
the names of functions returning int, because they are declared by default, and the names of labels).
You can do it either by using a declaration, which introduces just the name and type of something but
allocates no storage, or go further by using a definition, which also allocates the space used by the
thing being declared.

The distinction between declaration and definition is an important one, and it is a shame that the two
words sound alike enough to cause confusion. From now on they will have to be used for their formal
meaning, so if you are in doubt about the differences between them, refer back to this point.

The rules about what makes a declaration into a definition are rather complicated, so they will be
deferred for a while. In the meantime, here are some examples and rule-of-thumb guidelines which will
work for the examples that we have seen so far, and will do for a while to come.

/*
* A function is only defined if its body is given
* go this is a declaration but not a definition

*/
int func_dec (void) ;

/*

* Because this function has a body, it is also

* a definition.
* Any variables declared inside will be definitions,
* unless the keyword 'extern' is used.
* Don't use 'extern' until you understand it!
*/
int def func (void) {
float f_var; /* a definition */
int counter; /* another definition */
int rand num(void) ; /* declare (but not define) another function */

return(0) ;

}

Exercise 2.1. Why are trigraphs used?

Exercise 2.2. When would you expect to find them in use, and when not?
Exercise 2.3. When is a newline not equivalent to a space or tab?

Exercise 2.4. When would you see the sequence of ‘backslash newline’ in use?
Exercise 2.5. What happens when two strings are put side by side?

Exercise 2.6. Why can't you put one piece of comment inside another one? (This prevents the
technique of ‘commenting out’ unused bits of program, unless you are careful.)

Exercise 2.7. What are the longest names that may safely be used for variables?

Exercise 2.8. What is a declaration?

1of2 21-02-2007 19:10

The C Book — Declaration of variables http://publications.gbdirect.co.uk/c _book/chapter2/va...

Exercise 2.9. What is a definition?
Now we go on to look at the type of variables and expressions.
Previous section [http:/publications.gbdirect.co.uk/c_book/chapter2/keywords_and_identifiers.html] |

Chapter contents [http:/publications.gbdirect.co.uk/c_book/chapter2/] | Next section
[http.//publications.gbdirect.co.uk/c_book/chapter2/real_types.html]

2 0of 2 21-02-2007 19:10

The C Book — Real types http://publications.gbdirect.co.uk/c_book/chapter2/rea...

2.6. Real types

<gbdirect>

This is a printer-friendly version of a page on the GBdirect web site. The original page may be found at
http://publications.gbdirect.co.uk/c book/chapter2/real types.html.

It's easier to deal with the real types first because there's less to say about them and
they don't get as complicated as the integer types. The Standard breaks new ground
by laying down some basic guarantees on the precision and range of the real
numbers; these are found in the header file float.h which is discussed in detail in
Chapter 9 [http.//publications.gbdirect.co.uk/c_book/chapter9/]. For some users this
is extremely important information, but it is of a highly technical nature and is likely
only to be fully understood by numerical analysts.

The varieties of real numbers are these:

float
double
long double

Each of the types gives access to a particular way of representing real numbers in
the target computer. If it only has one way of doing things, they might all turn out to
be the same; if it has more than three, then C has no way of specifying the extra
ones. The type float is intended to be the small, fast representation corresponding
to what FORTRAN would call REAL. You would use double for extra precision, and
long double for even more.

The main points of interest are that in the increasing ‘lengths’ of f1oat, double and
long double, each type must give at least the same range and precision as the
previous type. For example, taking the value in a double and putting it into a 1ong
double must result in the same value.

There is no requirement for the three types of ‘real’ variables to differ in their
properties, so if a machine only has one type of real arithmetic, all of C's three types
could be implemented in the same way. None