
M2794.002700 Introduction to Robotics
Midterm Examination 1

April 12, 2018
CLOSED BOOK, CLOSED NOTES

Problem 1 (50 points)
(a) Determine the degrees of freedom for the three mechanisms shown below. Try to use an
appropriate version of Grübler’s formula to justify each of your answers; in cases where this is not
possible, carefully explain your answer based on physical reasoning and intuition.

1. The 3× PRPS mechanism of Figure 1(a).

2. The 3× RRRRRSR mechanism of Figure 1(b).

3. The golfer of Figure 1(c): Assume that both feet are always firmly planted to the ground,
and that the two “hands” are rigidly attached to the golf club.

(b) Figure 1(d) shows a rigid ball inside a spherical bowl. The ball is always in contact with the
bowl. Assuming there is no slip between the bowl and the ball, what is the configuration space of
the ball? What if the contact between the ball and the bowl is frictionless?
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Figure 1: Mechanisms for Problem 1.
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Problem 2 (50 points)
(a) The planar rigid object of Figure 2(a) is grasped by four frictionless point contacts A,B,C,D
as shown. Is this grasp force closure?
(b) Now suppose point contact D can be moved to anywhere on the object. Draw all possible
locations for D such that the grasp is force closure. You must explain your answer to receive full
credit.
(c) A planar disk of radius R=1 is grasped by two point contacts A,B as shown in Figure 2(b).
Point contact A has friction coefficient µ = 1, while point contact B is frictionless. Suppose an
arbitrary external force F = (Fx, Fy) is applied to the disk at the point shown in the figure. Find
the complete range of all forces F that can be resisted by the two point contacts A,B. Try to
express your answer as an inequality involving Fx and Fy.
(d) A three-dimensional rigid sphere of radius R=1 is grasped by three point contacts A,B,C as
shown in Figure 2(c). Assume that all contact points have the same friction coefficient µ = 1.
Determine the range of the angle φ so that the grasp remains force closure.
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(a) A planar rigid object.
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(b) A planar disk.
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(c) A three-dimensional rigid sphere.
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(d) Top view of the sphere.

Figure 2: Object grasps for Problem 2.
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Problem 3 (50 points)

(a) Find R ∈ SO(3) corresponding to the ZXZ roll-pitch-roll angles α = 90◦, β = 180◦, γ = 45◦

(that is, given a moving frame originally at the identity configuration, rotate this frame about
the fixed frame Z-axis by angle α, then rotate about the fixed frame X-axis by angle β, then
rotate about the fixed frame Z-axis by angle γ, and find the R ∈ SO(3) corresponding to this final
configuration).
(b) Find R ∈ SO(3) corresponding to the ZXZ Euler angles α = 90◦, β = 180◦, γ = 45◦ (that is,
given a moving frame originally at the identity configuration, rotate this frame about its Z-axis by
angle α, then rotate about its displaced X-axis by angle β, then rotate about its displaced Z-axis
by angle γ, and find the R ∈ SO(3) corresponding to this final configuration).
(c) Suppose an object is at initial orientation

R0 =

 1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2

 .
We wish to rotate this object about some rotation axis ω̂ ∈ R3, ‖ω̂‖ = 1, by some angle θ ∈ [0, π],
to the new orientation

R1 =

 1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1

 .
Find ω̂ and θ that achieves this displacement.
(d) Two space stations, the Tiangong-1 (TG-1) and the International Space Station (ISS), are
orbiting the earth as shown in Figure 3. Take the radius of the earth to be R, and assume an
inertial frame {0} is attached to the earth center, with angle θ measured counterclockwise about
the inertial frame Z-axis as shown. The TG-1 rotates in a longitudinal circular orbit (i.e., in the
Y -Z plane of the inertial frame) with constant speed v1 (refer to the left figure). The ISS rotates

in another circular orbit, parallel to the X-Y plane, of radius R2 =
√
R2

1 − R2

2 and at a distance

R/
√

2 from the earth center (refer to the right figure). The locations of the two frames at time
t = 0 are as indicated in the figures. Moving reference frames {1} and {2} are respectively attached
to the TG-1 and the ISS in the following manner:

• The z-axis of frame {1} always points toward the earth center, while the x-axis always points
in the direction of the TG-1’s velocity vector;

• The y-axis of frame {2} always points toward the center of the ISS orbit, while the x-axis
points in the direction of the ISS’s velocity vector.

Denote by Tij ∈ SE(3) the 4 × 4 rigid body transformation matrix describing the position and
orientation of frame {j} as seen from frame {i}. Find T01 and T02 as a function of time t.
(e) The TG-1 is expected to crash to earth on April 1, 2018, and by an inexplicable twist of fate,
Matt Damon is aboard the TG-1 and must again be rescued. A rescue spacecraft is launched into
a longitudinal circular orbit at θ = 0◦, moving at the same speed as the TG-1. The plan is for
Matt Damon to extricate himself from the TG-1, and to use his jet pack to maneuver himself to
rendezvous point P, where he will be rescued by the spacecraft. Assume frame {3} is attached to
the rescue spacecraft such that its z-axis always points in the outward radial direction and its x-axis
points in the direction of its velocity vector. The position and orientation of the rescue spacecraft
at time t = 0 is as shown in Figure 4. Derive T03 as a function of t.
(f) Matt Damon’s position can only be measured from the ISS; his coordinates with respect to
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frame {2} are p2 =
(

0, R2, R1 − R√
2

)
. Find p3 ∈ R3, his coordinates with respect to frame {3}, and

also the time T it will take for the rescue spacecraft to reach Matt Damon.
(g) After rescuing Matt Damon, the spacecraft must now rendezvous with the ISS at time t = 3T/2
to drop Matt off. The velocity vector of the ISS at t = 3T/2, expressed in the inertial frame {0}
coordinates, is given by (0,−v2, 0). What is the corresponding ISS velocity vector expressed in
frame {3} coordinates?
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Figure 3: Problem 3(a)
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Figure 4: Figures for Problem 3(e)-(g)
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Problem 4 (50 points)
(a) Two parallel revolute joints of a robot are connected by a link as shown in Figure 5(a). For the
link frames {0} and {1} assigned as shown and assuming the robot is in its zero position, find the
corresponding Denavit-Hartenberg parameters for T01.
(b) Due to imprecisions in the manufacturing process, joint axis 0 is not quite parallel to joint axis
1; instead, it is rotated by a small angle ψ about the y0-axis as shown in Figure 5(b). Assign a new
link frame {0} and find the corresponding Denavit-Hartenberg parameter d1. Draw a graph of d1
versus ψ over the range ψ ∈ [− π

100 ,
π
100 ].
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ŷ1

(a) Two parallel revolute joints for Problem 4(a).
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ŷ1

(b) Two slightly misaligned revolute joints for Problem
4(b).

Figure 5: Two revolute joints for Problem 4(a) and 4(b).

(c) Now consider the RRPRRR spatial open chain of Figure 6, shown in its zero position. Frames
{0}, {6}, and some Denavit-Hartenberg parameter values are given as shown in Figure 6(a) and
Table 6(b). Draw appropriate link frames and fill in the rest of Table 6(b) with the corresponding
Denavit-Hartenberg parameter values.
(d) For the same RRPRRR open chain shown in its zero position, denote by M15 ∈ SE(3) the
displacement of frame {5} with respect to frame {1}. Find the end-effector pose T06 ∈ SE(3) when
θ1 = π, θ2 = θ3 = θ4 = θ5 = 0, θ6 = π

2 . You may express your answer in terms of Rot() and Trans()
operations.
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Figure 6: RRPRRR open chain for Problem 4(c)-(d).
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M2794.0027 Introduction to Robotics
Midterm Examination 1 Solutions

April 12, 2018

Problem 1
(a) For each of the mechanisms we’ll first try to apply an appropriate version of Grübler’s formula,
and see if the result agrees with our physical intuition:

1. Applying the spatial version of Grübler’s formula leads to the following:
N = 7 (links) +1 (ground) = 8
J = 3 (S joints) + 3 (P joints) + 3 (PR joints) = 9
Σfi = 3× 3 (S joints) +1× 3 (P joints) +2× 3 (PR joints) = 18
dof = 6(N − 1− J) + Σfi = 6(8− 1− 9) + 18 = 6
Observe that if the three prismatic joints and three revolute joints at the base are locked,
then unless if the legs are all parallel, it is impossible for the legs to extend in length, implying
that the mechanism becomes a structure in this case. Therefore this mechanism has six dof.

2. The first thing to note is that this mechanism is a hybrid planar-spatial mechanism: the
spatial portion of the mechanism is a 3×RS platform, while the three planar RRRR five-bar
linkages essentially act as two-dof XY positioning devices for the base locations of the three
legs. Unfortunately the figure did not make clear how the spherical joints are attached to the
planar five-bar linkages; below we describe solutions for two possible interpretations of this
connection. In the first case, if the socket of each spherical joint is assumed rigidly attached
to one of the coupler links (i.e., one of the two middle links of the five-bar), then naively
applying the spatial version of Grübler’s formula leads to
N = 16 (links) +1 (ground) = 17
J = 3 (S joints) + 18 (R joints) = 21
Σfi = 3× 3 (S joints) +1× 18 (R joints) = 27
dof = 6(N − 1− J) + Σfi = 6(17− 1− 21) + 27 = −3
Grübler’s formula would thus seem to imply that the mechanism is overconstrained. However,
each planar five-bar linkage can be regarded as a two-dof XY Cartesian positioning device, or
XY joint. Applying the spatial version of the Grübler’s formula to this interpretation yields
N = 7 (links) +1 (ground) = 8
J = 3 (S joints) + 3 (R joints) + 3 (XY joints) = 9
Σfi = 3× 3 (S joints) +1× 3 (R joints) +2× 3 (XY joints)= 18
dof = 6(N − 1− J) + Σfi = 6(8− 1− 9) + 18 = 6

A second interpretation of the spherical joint connection is that the socket is attached to
the five-bar linkage in a way such that the socket can also rotate about its fixed axis (tor-
sional rotation). In this case the socket lies above two overlapping R joints, with the socket
regarded as link connected to one of these R joints. Applying the spatial version of Grübler’s
formula with this interpretation leads to
N = 10 (links) +1 (ground) = 11
J = 3 (S joints) + 6 (R joints) + 3 (XY joints) = 12
Σfi = 3× 3 (S joints) +1× 6 (R joints) +2× 3 (XY joints)= 21
dof = 6(N − 1− J) + Σfi = 6(11− 1− 12) + 21 = 9
Since the torsional rotation about each socket has no effect on the motion of moving platform,
it is customary to regard the degrees of freedom of this mechanism as six (9− 3).
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3. Applying the spatial version of Grübler’s formula leads to the following:
N = 12 (links) +1 (ground) = 13
J = 10 (S joints) + 4 (R joints) = 14
Σfi = 3× 10 (S joints) +1× 4 (R joints) = 34
dof = 6(N − 1− J) + Σfi = 6(13− 1− 14) + 34 = 22
To determine if this agrees with our intuition, observe that the lower closed chain consisting
of two legs and the lower torso has, from a straightforward application of the spatial version
of Grübler’s formula, eight degrees of freedom (N = 6, J = 6 (four S-joints and two R-joints),∑
fi = 14). The closed chain formed by the upper body (assume for the moment that

the upper body is stationary) and two arms grasping the golf club also has eight degrees of
freedom. The neck and waist, both modeled as S-joints, each have three degrees of freedom,
leading to a total of 8+8+3+3=22 degrees of freedom, consistent with our earlier calculation.

(b) Assuming no friction between the ball and spherical bowl, the ball can then assume any position
and orientation inside the bowl (while maintaining contact with the bowl as stipulated by the
problem). The configuration space of the ball is then S2 × SO(3), where S2 denotes the two-
dimensional sphere (or more precisely in this case, the bowl is represented by a half-sphere). If on
the other hand the contact between the ball and bowl was no-slip, then one can legitimately ask
whether the ball can in fact reach any arbitrary configuration in S2 × SO(3) purely from rolling
motions. The answer is yes: showing this is far from trivial, but to illustrate how this is possible
with an example from everyday life, imagine how a car can, through a combination of steering and
moving forward and backward, can reach arbitrary positions and orientations. (The ball rolling
without slip is an example of a nonholonomic system, a subject addressed in the textbook but
which we have not yet covered in this class.)
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Problem 2
(a) Express the static equilibrium force closure conditions in the standard linear form Ax = b,
where A ∈ R3×4 is given, and the objective is to determine whether a nonnegative solution x ≥ 0
exists for any arbitrary b ∈ R3. Setting up the problem in this way leads to the Gauss-Jordan
elimination of the following matrix: 0 1 0 −1

−1 0 1 0

−L/4 −3L/8 −L/8 L/8

 =⇒

1 0 0 2/3

0 1 0 −1

0 0 1 2/3

 .
Force closure requires that all entries of the fourth column be negative; since this is not the case,
the grasp is not force closure. (Note: Another popular method of solution (apparently covered
in the discussion sessions but not in lecture) was to effectively transform the problem into a form
that is amenable to Nguyen’s Theorem: the point contacts at B and C are merged into a single
frictional point contact with friction cone whose edges are collinear with the normal contact forces
at B and C (see Figure 1); point contacts A and D can be similarly merged as illustrated. Now,
viewing this grasp as a two-finger point contact grasp with friction at the two internal points of
the grasped object as indicated, Nguyen’s Theorem implies that this grasp cannot be force closure,
since the line connecting the two point contacts (indicated in red) lies outside both friction cones.
While technically this analysis is correct, invoking Nguyen’s theorem in this manner does require
further justification of its correctness.)

45◦

L

L/8

3L/8

L/4

L/8

A

B

C

D

Figure 1: Planar rigid object for Problem 2(a).

(b) We’ll solve this problem in a number of steps:

• Step 1: In order to resist a positive x-directional force, point contact D cannot be placed
on the red line in Figure 2(a). Similarly, in order to resist a negative moment, the contact
cannot be placed on the blue line of the same figure.
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(a) Planar rigid object
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(b) Planar rigid object

Figure 2: Solution to Problem 2(b)
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(a) The planar rigid object
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(b) The planar rigid object

Figure 3: Solution to Problem 2(b).

• Step 2: Now specify the contact locations among the three remaining regions. For contacts
placed on the green line in Figure 2(b), the grasp cannot be force closure by the same reasoning
given in (a).

• Step 3: Use Gauss-Jordan elimination for the two remaining blade-like edges:

1. Determine the range of l1 in Figure 3(a): 0 1 0 −1

−1 0 1 −1

−L/4 −3L/8 −L/8 2l1

 =⇒

1 0 0 −1

0 1 0 −1 + 4L−16l1
3L

0 0 1 4L−16l1
3L .


If 4L−16l1

3L < 0, then the grasp is fore closure. Thus, l1 >
L
4 must be satisfied to be force

closure.

2. Determine the range of l2 in Figure 3(b): 0 1 0 −1

−1 0 1 1

−L/4 −3L/8 −L/8 2l2

 =⇒

1 0 0 −1

0 1 0 1 + 2L−16l2
3L

0 0 1 2L−16l2
3L .


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If 1 + 2L−16l2
3L < 0, then the grasp is fore closure. Thus, l2 >

5L
16 must be satisfied for the

grasp to be force closure.

All possible locations for contact D are indicated by the two purple lines in Figure 4.

5L/16

Figure 4: Planar rigid object for Problem 2(b).
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(a) The planar disk
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1
1

1
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(b) The vector subspace

Figure 5: Solution to Problem 2(c)

(c) Suppose an arbitrary force F is applied to the point as shown in Fig 5-(a). Assume that the
object is in static equilibrium, then express the force and moment equilibrium equations in the
usual matrix form Ax = b and perform Gauss-Jordan elimination:∣∣∣∣∣∣

−1 −1 0
−1 1 −1
−R R 0

∣∣∣∣∣∣
∣∣∣∣∣∣
−Fx
−Fy
R× Fy

∣∣∣∣∣∣ =⇒

∣∣∣∣∣∣
1 1 0
−2 2 −1
−1 1 0

∣∣∣∣∣∣
∣∣∣∣∣∣
Fx
0
Fy

∣∣∣∣∣∣ .
The forces that can be resisted by the two point contacts A,B are therefore characterized by the
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a, b, c ≥ 0 that satisfy  1
−2
−1

 a+

 1
2
1

 b+

 0
−1

0

 c =

 Fx
0
Fy

 .
From the middle equation we obtain b− a = c/2 ≥ 0, or b ≥ a. The first and third equations lead
to [

1
−1

]
a+

[
1
1

]
b =

[
Fx
FY

]
.

The above conditions on (Fx, Fy) simplify to Fy ≥ 0 and Fy ≤ Fx, or a positive cone in the first
quadrant of the Fx-Fy plane, bounded by the Fx-axis and the line Fy = Fx.
(d) Given a three-dimensional rigid sphere of radius R = 1 grasped by three point contacts A, B,
C as shown in Figure 6, with uniform friction coefficient µ = 1, the problem asks for the range of
angle φ such that the grasp remains force closure. We recount two facts about spatial force closure:

• Given a spatial rigid body restrained by three point contacts with friction, assume that the
three contact points lie on a unique plane S, and the friction cone at each of the contacts
intersects S in a cone. The body is in force closure if and only if the the plane S is in a planar
force closure grasp.

• If the intersected friction cone lies in the plane S, it always satisfies the conditions for Nguyen’s
Theorem in S as shown in Figure 6.

For the given problem, since µ = 1, α = 45◦. When φ > 45◦, the intersected cone lies in S. From
symmetry considerations the requirement for the grasp to be force closure is 45◦ < φ < 135◦.

φ

A

B

C

A

α

Figure 6: Three-dimensional sphere for Problem 2(d).
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Problem 3
(a) The rotation R ∈ SO(3) corresponding to the given ZXZ roll-pitch-yaw angles α = 90◦, β =
180◦, γ = 45◦ is given by R = Rot(ẑ, 45◦)Rot(x̂, 180◦)Rot(ẑ, 90◦), or

R =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


 1 0 0

0 −1 0
0 0 −1

 0 −1 0
1 0 0
0 0 1

 =


1√
2
− 1√

2
0

− 1√
2
− 1√

2
0

0 0 −1

 .
(b) The rotation R ∈ SO(3) corresponding to the given ZXZ Euler angles α = 90◦, β = 180◦,
γ = 45◦ is given by R = Rot(ẑ, 90◦)Rot(x̂, 180◦)Rot(ẑ, 45◦), or

R =

 0 −1 0
1 0 0
0 0 1

 1 0 0
0 −1 0
0 0 −1




1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 =


1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 −1

 .
(c) Find the unit vector ω̂ and angle θ ∈ [0, 2π] such that R1 = e[ω̂]θR0. Denoting e[ω̂]θ by R, we
have

R = R1R
T
0 =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


 1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

 =


1√
2
−1

2 −1
2

1√
2

1
2

1
2

0 − 1√
2

1√
2

 .
The rotation angle θ must satisfy 1 + 2 cos θ = tr(R), or for our problem, cos θ =

√
2
2 − 1

4 :

θ = cos−1
(√

2

2
− 1

4

)
. (1)

Say α ∈ [0, π] is one solution to (1); then 2π − α is another solution. The rotation axis ω̂ is given
by

[ω̂] =
1

2 sin θ

(
R−RT

)
=

1

2 sin θ

 0 − 1√
2
− 1

2
1
2

1√
2

+ 1
2 0 1√

2
+ 1

2

−1
2 − 1√

2
− 1

2 0

 .
We thus have two solutions:

θ = α, ω̂ =
2√

7 + 4
√

2

 −
1√
2
− 1

2
1
2

1√
2

+ 1
2


and

θ = 2π − α, ω̂ = − 2√
7 + 4

√
2

 −
1√
2
− 1

2
1
2

1√
2

+ 1
2



(d) For convenience let ω1 = v1/R1 and ω2 = v2/
√
R2

2 − R2

2 . Place the frame {a} as shown in

Figure 7; the origin is at the center of the earth and the orientation is Rot(Y,−90◦)Rot(X, 90◦)
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with respect to the {0} frame. We can also place the moving frame {a′} such that the origin is
at the center of the earth and the orientation is Rot (ya,−ω1t). With these frame assignments we
have

R0a =

 0 0 −1
0 1 0
1 0 0

 1 0 0
0 0 −1
0 1 0

 =

 0 −1 0
0 0 −1
1 0 0


Raa′ =

 cosω1t 0 − sinω1t
0 1 0

sinω1t 0 cosω1t

 .
Therefore we have

R01 = R0a′ = R0aRaa′ =

 0 −1 0
− sinω1t 0 − cosω1t
cosω1t 0 − sinω1t

 .
Because the TG-1 rotates in a longitudinal circular orbit in the Y-Z plane of the inertial frame with
constant speed v1,

p01 =

 0
R1 cosω1t
R1 sinω1t

 .
We thus obtain the solution

T01 =


0 −1 0 0

− sinω1t 0 − cosω1t R1 cosω1t
cosω1t 0 − sinω1t R1 sinω1t

0 0 0 1

 .
Similarly, we can place frame {b} as shown in Figure 7, with the origin at the center of the circle
parallel to the XY plane, and orientation Rot (Z, ω2t):

T0b =


cosω2t − sinω2t 0 0
sinω2t cosω2t 0 0

0 0 1 R√
2

0 0 0 1

 , Tb2 =


1 0 0 0
0 1 0 −R2

0 0 1 0
0 0 0 1

 .
Multiplying T0b and Tb2, we get

T02 =


cosω2t − sinω2t 0 R2 sinω2t
sinω2t cosω2t 0 −R2 cosω2t

0 0 1 R√
2

0 0 0 1

 .

(e) Let ω3 = v3/R1, so that ω3 = ω1. Let the frame {c} be the initial frame of the spaceship. Since
R0c = Rot (y, 90◦) Rot (z, 180◦) and Rc3 = Rot (y, ω3t),

R0c =

 0 0 1
0 1 0
−1 0 0

 −1 0 0
0 −1 0
0 0 1

 =

 0 0 1
0 −1 0
1 0 0


8



Figure 7: Solution to Problem 3(d)

and

Rc3 =

 cosω3t 0 sinω3t
0 1 0

− sinω3t 0 cosω3t

 .
Multiplying R0c and Rc3, we get

R03 =

 − sinω3t 0 cosω3t
0 −1 0

cosω3t 0 sinω3t

 .
Because the spacecraft rotates in a longitudinal circular orbit in the X-Z plane of the inertial frame
with constant speed v1,

p01 =

R1 cosω3t
0

R1 sinω3t

 ,
where ω1 = ω3. We therefore get

T03 =


− sinω3t 0 cosω3t R1 cosω3t

0 −1 0 0
cosω3t 0 sinω3t R1 sinω3t

0 0 0 1

 .

(f) We present two possible solutions to this problem:
Solution 1: Let pi (t) be Matt Damon’s coordinates with respect to frame {i} at time t. p2 (t) is
constant, since Matt Damon is at the north pole P. From Figure 8, p3 (t) can be calculated as

p3 (t) =

 R1 cosω1t
0

R1 (sinω1t− 1)

 .
Observe that p3(t) is zero at t = π/2ω1.

Solution 2: Using the T03 obtained in problem 3(e),

T03 =


− sinω3t 0 cosω3t R1 cosω3t

0 −1 0 0
cosω3t 0 sinω3t R1 sinω3t

0 0 0 1

 ,
9



{3}t

�x�z

R1

Figure 8: Solution to Problem 3(f)

T30 = T−103 =


− sinω3t 0 cosω3t 0

0 −1 0 0
cosω3t 0 sinω3t −R1

0 0 0 1

 .
Since Matt Damon is at the north pole P, p0 = (0, 0, R1)

T . p3 (t) is therefore

p3 (t) = T30p0 =


− sinω3t 0 cosω3t 0

0 −1 0 0
cosω3t 0 sinω3t −R1

0 0 0 1




0
0
R1

1

 =


R1 cosω1t

0
R1 (sinω1t− 1)

1

 .

(g) The spacecraft and the ISS rendezvous at t = 3
2T (the orientation of the ISS and the spacecraft

at t = 3
2T are shown in Figure 9.) Let vISS (t) be the velocity vector of the ISS. Then vISS (t) in

frame {2} can be expressed as (v2, 0, 0), since the x-axis points in the direction of the ISS velocity
vector. As shown in Figure 9, vISS(3T/2) in frame {3} can be expressed as (0, v2, 0).
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{0}
{0}

�x

�x
�x

�x
�y
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�y

�z

�z
�z

�z

{2}t=  T
{3}t=  T

45º

45º

R1 R1

R2
R2

Figure 9: Solution to Problem 3(g)

Problem 4
(a) α0 = 0, a0 = L, d1 = 0, φ1 = θ1.
(b) One possible new link frame {0} is shown in Figure 10, while a second solution is to set x̂0 in
the opposite direction. In both cases the parameter d1 = −L cotψ for ψ 6= 0, and d1 = 0 for ψ = 0.
Note that d1 is discontinuous at ψ = 0.

L

d

θ0

θ1

ψ

ẑ1 x̂1

ŷ1

ẑ0

ŷ0

x̂0

1

(a) Attached link frame {0}.

ψ

d1

(b) Graph of d1 vs ψ.

Figure 10: Solution to Problem 4(b).

(c) An appropriate set of link frames are assigned as shown in Figure 11(a). The corresponding
Denavit-Hartenberg parameter values are listed in the Table shown in 11(b).
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(d) Using the Denavit-Hartenberg parameter values obtained in (c), we get

T01 = Rot(x,
3π

2
)Trans(x, L)Rot(z,

3π

4
)

T15 = M15

T56 = Rot(x,
3π

2
)Trans(z, L)Rot(z,

π

2
).

from which it follows that

T06 = T01T15T56

= Rot(x,
3π

2
)Trans(x, L)Rot(z,

3π

4
)M15Rot(x,

3π

2
)Trans(z, L)Rot(z,

π

2
).
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L

L L L L L L

L

L

L

L

θ1

θ2

θ3

θ4

θ5

θ6

ẑ0

ẑ2

ẑ1

x̂0

x̂2

ẑ3

ẑ5

ẑ ,4

x̂3

x̂5

x̂4

x̂1

ẑ6

x̂6

(a)

1 0

2

3 0 0

4 0 -2

5 0 0

6 0

(b)

Figure 11: Attached link frames and their corresponding Denavit-Hartenberg parameters.
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M2794.002700 Introduction to Robotics
Midterm Examination 2

May 24, 2018
CLOSED BOOK, CLOSED NOTES

Problem 1 (50 points)
While the Dark Lord Thanos is admiring his just-acquired Infinity Gauntlet, Groot seizes this
opportunity to snatch it away from Thanos’s hand. Modeling Groot’s left arm as a spatial RRPRPR
open chain as shown in Figure 1 (shown in its zero position), with fixed frame {s}, end-effector
frame {b}, and gauntlet frame {g}, answer the following questions.
(a) Express Groot’s arm forward kinematics in the form

Tsb = e[S1]θ1e[S2]θ2 · · · e[S6]θ6M,

where M ∈ SE(3) and S1, . . . ,S6 ∈ se(3).
(b) Assume Groot’s left arm is in the configuration θ = (π3 , 0, 0,−2π

3 , L, 0). Find the end-effector

spatial velocity Vs when the input joint velocity vector is θ̇ = (1, 1, 1, 1, 1, 1). Also, express the
linear velocity of the {b}-frame origin in {s}-frame coordinates.
(c) With θ2 fixed to θ2 = 0, Groot now attempts to grab the gauntlet, which is located at

Tsg =

[
Rsg psg
0 1

]
, Rsg = Rot(x̂, α)Rot(ŷ, β), psg =

 px
py
pz

 .
Derive an analytic procedure for solving the inverse kinematics; that is, find all possible solutions
θi in the range −π < θi ≤ π, i = 1, 3, 4, 5, 6, in terms of the given parameters α, β, px, py, pz
(−π < α, β ≤ π). How many inverse kinematics solutions are there?

x̂

ẑ

θ1

θ2

θ3 θ4

θ5

θ6

ŷ{s}

{b}

L L L

x̂

ŷ

ẑ

{g}
ŷ

x̂

ẑ

θ1

L

I am Groot!

Figure 1: Groot’s left arm shown in its zero position.
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Problem 2 (50 points)
Given a six-dof open chain manipulator with forward kinematics

T = e[S1]θ1e[S2]θ2e[S3]θ3Me[B4]θ4e[B5]θ5e[B6]θ6 ,

where

S1 =



1
0
0
0
1
0

 , S2 =



0
1
0
−1

1
0

 , S3 =



0
0
1
2
0
0

 , B4 =



0
−1

0
−2

0
0

 , B5 =



0
0
0
0
0
1

 , B6 =



0
0
−1

0
0
0

 ,

and

M =


1 0 0 −1
0 −1 0 2
0 0 −1 −1
0 0 0 1

 .
(a) Sketch the manipulator as accurately as you can.
(b) Determine the last three columns of the body Jacobian Jb(θ).
(c) Determine if the zero position is a kinematic singularity.
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Problem 3 (50 points)
Figure 2 shows a planar manipulator with a cam attached to joint θ1. As θ1 rotates, the link in
contact with the cam translates linearly along the y-axis. The shape of the cam is described in
Figure 2, with r(θ) = 3R+R cos θ.
(a) Derive the Jacobian relating the joint rates (θ̇1, θ̇2) to the tip velocity (ẋ, ẏ).
(b) For your Jacobian derived in (a), find all kinematic singularities and the corresponding directions
in which the tip loses mobility.
(c) Assume R = L = 1 and draw the corresponding manipulability ellipsoids for the following two
configurations:

1. θ1 = π
2 , θ2 = π

2 ;

2. θ1 = 0, θ2 = π
4 .

(d) One scalar measure of a robot’s manipulability is given by

µ1 =

√
λmax(JJT )√
λmin(JJT )

,

which is the ratio of the lengths of the longest and shortest principal axes of the manipulability
ellipsoid; when µ1 is one, then the manipulability ellipsoid becomes a circle. For the given manip-
ulator, find the ratio of R and L that minimizes µ1 at the configuration θ1 = π

4 , θ2 = π
4 .

(e) Another scalar measure of a robot’s manipulability is the volume of the manipulability ellipsoid:

µ2 =
√

det(JJT ).

A configuration with a larger value of µ2 is considered to have better manipulability. Assuming
L = R = 1 for the given manipulator, find the configuration (θ1, θ2) that maximizes µ2.
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θ1

θ2

L
θ

r(θ)

4R

(x, y)

r(θ) = 3R+R cos θ

Figure 2: Planar manipulator for Problem 3.

.
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Problem 4 (50 points)
(a) Recall that the transformation rules for spatial velocities and spatial forces are given respectively
by the adjoint and its transpose, i.e.,

Vb = [AdTba ]Va, Fb = [AdTab ]
TFa.

where V and F are of the form V = (ω, v), F = (m, f). Instead of writing spatial forces as above,
Roy likes to reverse the order of m and f as follows:

F ′ =
[
f
m

]
.

By defining spatial forces in this way, Roy claims that the transformation rule for F ′ is given by
F ′b = [AdTba ]F ′a. Is Roy correct?
(b) Let {b} be a reference frame attached to the center of mass of a rigid body, and let Ib be the 3×3
inertia matrix of this rigid body with respect to frame {b}. The mass of the body is m. Suppose
another reference frame {a} is attached to another point on the rigid body, and Tab ∈ SE(3) is
known. What is the inertia matrix Ia ∈ R3×3 of the rigid body with respect to this new frame {a}?
(c) Given an n-link open chain, suppose reference frame {i} is attached to the center of mass of
link i, and

T0i = e[S1]θ1 · · · e[Si]θiMi,

be the forward kinematics to frame {i}. Let Vi be the spatial velocity of frame {i} expressed in
the fixed frame {s}, i.e., [Vi] = Ṫ0iT

−1
0i . Find a recursive formula for Vi in terms of Vi−1, Si, θ̇i, and

any link frame transformations as needed.

5



M2794.0027 Introduction to Robotics
Midterm Examination 2 Solutions

May 24, 2018

Problem 1
(a) The forward kinematics is expressed in the space form of the product-of-exponentials formula,
where M ∈ SE(3) is the end-effector configuration at the zero position and S1, . . . ,S6 ∈ se(3) are
the twists corresponding to the joint axes when the robot is at its zero position. As seen from the
figure, M ∈ SE(3) is given by

M =


1 0 0 L
0 1 0 3L
0 0 1 0
0 0 0 1

 .
Values of Si = (ωi, vi), i = 1, . . . , 6 are listed below:

Axis i wi qi vi

1 (−1, 0, 0) (0, 0, 0) (0, 0, 0)

2 (0, 0, 1) (0, L, 0) (L, 0, 0)

3 (0, 0, 0) - (0, 1, 0)

4 (−1, 0, 0) (0, 2L, 0) (0, 0, 2L)

5 (0, 0, 0) - (1, 0, 0)

6 (0, 1, 0) (L, 0, 0) (0, 0, L)

(b) To determine the spatial velocity Vs, we first need to find the space Jacobian Js. Recall that
the ith column of Js is the twist for joint axis i expressed in the fixed frame, assuming the robot
is at an arbitrary configuration θ rather than the zero position. Figure 1 shows the left arm at
the given configuration θ = (π3 , 0, 0,−2π

3 , L, 0). Denote the ith column of the space Jacobian by
Vsi(θ) = (wsi, vsi), where vsi = −wsi × qsi. The corresponding Jacobian values are listed below:

Column i wsi qsi vsi

1 (−1, 0, 0) (0, 0, 0) (0, 0, 0)

2 (0,
√
3
2 ,

1
2) (0, 0,− 2√

3
L) (L, 0, 0)

3 (0, 0, 0) - (0, 12 ,−
√
3
2 )

4 (−1, 0, 0) (0, L,−
√

3L) (0,
√

3L,L)

5 (0, 0, 0) - (1, 0, 0)

6 (0, 12 ,
√
3
2 ) (2L,L,−

√
3L) (

√
3L,−

√
3L,L)

Given θ̇ = (1, 1, 1, 1, 1, 1)T , we get

Vs = Js(θ)θ̇ =



−2√
3+1
2√
3+1
2

(1 +
√

3)L+ 1
1
2

2L−
√
3
2


.

The linear velocity of the {b}-frame origin expressed in {s}-frame coordinates, ṗsb, can be obtained
from the translational velocity component vs of the spatial velocity Vs = (ωs, vs) as follows:

vs = ṗsb + ωs × (−psb),

1



where psb = (2L, 32L,−
√
3
2 L)T , from which it follows that

ṗsb = vs + ωs × psb = (1− 1

2
L,

1

2
+ L, −

√
3

2
− (2 +

√
3)L)T .

L

L

2L

x̂

ŷẑ

x̂
ŷ

ẑ
θ1

θ2

θ4

θ6
{b}

{s}

Figure 1: Groot’s left arm at the given configuration.

(c) When θ2 is fixed to θ2 = 0, observe that only θ5 changes the x̂-component of the {b}-frame
location, i.e., θ5 = px−L. Now considering the orientation, since only θ1, θ4, θ6 affect the orientation
of the end-effector, Rsb can be expressed as follows:

Rsb = Rot(ω1, θ1) · Rot(ω4, θ4) · Rot(ω6, θ6)

= Rot(−x̂, θ1) · Rot(−x̂, θ4) · Rot(ŷ, θ6)

= Rot(x̂,−θ1 − θ4) · Rot(ŷ, θ6).

Since Rsg = Rot(x̂, α) · Rot(ŷ, β) is given, it follows that

θ1 + θ4 = −α± 2π and θ6 = β.

The remaining joint angles can be determined by examining the front view of the arm view (see

2



Figure 2):

γ = −θ1 − θ4 = α∓ 2π → cos γ = cosα, sin γ = sinα

py = (2L+ θ3) cos(−θ1) + L cosα

pz = (2L+ θ3) sin(−θ1) + L sinα

θ1 = atan2(L sinα− pz, py − L cosα)

θ3 =

{
L sinα−pz

sin θ1
− 2L if θ1 = ±π/2

py−L cosα
cos θ1

− 2L otherwise

θ4 =


−α− θ1 + 2π if −α− θ1 6 −π
−α− θ1 − 2π else if −α− θ1 > π

−α− θ1 otherwise.

At first glance the mechanism may appear to have both an elbow-up and elbow-down solution, but
since the angle between the last link and the ŷ-axis is determined by α, only one of these solutions
is valid and it depends on the values of α and atan2(py, px).

(py, pz)

−θ1

−θ4

−θ1

γ

ŷ

ẑ

{s}

Figure 2: Front view.

Problem 2
(a) Observe that joints 1, 3, 4, and 6 are revolute, joint 5 is prismatic, and joint 2 is a helical
(screw) joint. The respective joint twists are as follows:

ω1 = (1, 0, 0)T , q1 = (0, 0, 1)T , h1 = 0
ω2 = (0, 1, 0)T , q2 = (0, q2y, 1)T , h2 = 1
ω3 = (0, 0, 1)T , q3 = (0, 2, q3z)

T , h3 = 0
ω4 = (0,−1, 0)T , q4 = (0, q4y,−2)T , h4 = 0
ω5 = (0, 0, 0)T , v5 = (0, 0, 1)T , h5 =∞
ω6 = (0, 0,−1)T , q6 = (0, 0,−1)T , h6 = 0,

with q2y, q3z, q4y arbitrary. Therefore, exact y coordinate of joint 2 and joint 4, and z coordinate
of joint 3 cannot be determined by using only screw information. According to the given matrix
M , the end-effector is assumed to rotate about the x̂-axis of the fixed frame by 180◦. An example
of a manipulator with the above kinematic parameters is shown in Figure 3.
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y

z

x

{S}
y

zx{T}

θ1

θ2

θ3

θ4

θ5
θ6

screw joint (h=1)

1
2

2

1

Figure 3: Manipulator for Problem 3

(b) The last three columns of the body Jacobian Jb are as follows:

Jb(θ) =



sin θ6 0 0
− cos θ6 0 0

· · · 0 0 −1
−(2 + θ5) cos θ6 0 0
−(2 + θ5) sin θ6 0 0

0 1 0

 .

(c) For this problem one can use either the space Jacobian Js or the body Jacobian Jb. Evaluating
Js in the zero position,

Js(0) =



1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 1
0 −1 2 −1 0 2
1 1 0 0 0 1
0 0 0 −1 −1 0


Observe that columns 2, 3, 4, 5, and 6 are linearly dependent, since column 2 + column 3 − column
4 + column 5 = column 6. The zero position is therefore a kinematic singularity. Alternatively,
evaluating Jb in the zero position,

Jb(0) =



1 0 0 0 0 0
0 −1 0 −1 0 0
0 0 −1 0 0 −1
0 −2 0 −2 0 0
−2 −1 1 0 0 0
−2 −1 0 0 1 0

 .
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Observe that columns 2, 3, 4, 5, and 6 are linearly dependent, since column 2 + column 3 − column
4 + column 5 = column 6. Therefore the zero position is a kinematic singularity.

Problem 3
(a) Calculate the Jacobian by differentiating the forward kinematics

x = L cos θ2 + x0

y = 3R+R cos θ1 + L sin θ2 + y0,

where x0 and y0 are constants depending on the choice of origin. Differentiating both sides leads
to the following 2× 2 Jacobian:

J(θ) =

[
0 −L sin θ2

−R sin θ1 L cos θ2

]
.

(b) Kinematic singularities occur when the Jacobian fails to be full rank; this happens when (i)
sin θ1 = 0, and (ii) sin θ2 = 0. In the first case when sin θ1 = 0, the Jacobian becomes

J =

[
0 −L sin θ2
0 L cos θ2

]
,

i.e., the manipulability ellipsoid in the end-effector velocity space collapses to the line in the direction
(− sin θ2, cos θ2). The end-effector therefore loses mobility in the direction orthogonal to this line,
i.e., (cos θ2, sin θ2). For the second case when sin θ2 = 0, here the Jacobian becomes

J =

[
0 0

−R sin θ1 L cos θ2

]
,

from which it follows by inspection that the end-effector loses mobility along the line in the (1, 0)
direction.
(c) For convenience let v = [ẋ ẏ]T , so that v = J(θ)θ̇. Then assuming J(θ) is not singular, the
constraint 1 = θ̇T θ̇ = vT (J(θ)J(θ)T )−1v is the equation for an ellipse in the space of velocities
v ∈ R2. At θ1 = θ2 = π

2 , J(θ) becomes

J =

[
0 −1
−1 0

]
,

from which it can be easily verified that JJT is the 2 × 2 identity matrix, and the corresponding
manipulability ellipsoid is a unit circle. In the second case when θ1 = 0, θ2 = π

4 , the Jacobian
becomes

J =

[
0 −1/

√
2

0 1/
√

2

]
,

which is singular; the end-effector can only move along the line ẋ+ ẏ = 0.
(d) The optimal design is obtained by minimizing µ1 with respect to the design parameters R, L
at the given configuration. The Jacobian J at this configuration is

J =

[
0 −L√

2
−R√
2

L√
2

]
, JJT =

[
L2

2 −L2

2

−L2

2
L2+R2

2

]
.

We now recall some basic properties of matrics and their eigenvalues: given a matrix A ∈ Rn×n
with eigenvalues λ1, . . . , λn, recall that tr(A) = λ1 + . . . + λn and det(A) = λ1 · · ·λn. Moreover
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ẋ

ẏ

1

(a)

ẋ

ẏ

- 1√
2

1√
2

(b)

if A is symmetric all its eigenvalues are real; if A is additionally positive-semidefinite, then all its
eigenvalues are non-negative. Since JJT is symmetric positive-semidefinite, both its eigenvalues
are real and non-negative; we label these two eigenvalues as λmax and λmin. Then from the above
matrix eigenvalue properties we have

λmaxλmin =
L2R2

4

λmax + λmin =
2L2 +R2

2
.

Noting that λmax ≥ λmin ≥ 0, the above can be solved to obtain

λmax

λmin
=

2 + (R/L)2 +
√

4 + (R/L)4

2 + (R/L)2 −
√

4 + (R/L)4
.

(Here’s a quick calculation: setting c = L2R2/4 and b = (2L2 +R2)/2, one can write λmaxλmin = c
and λmax+λmin = b. Then λmax = c/λmin, λmin = c/λmax, and λmax+(c/λmax) = λmin+(c/λmin) =
b, from which it follows that λmax and λmin are roots of the same quadratic λ2 − bλ+ c = 0. Since
λmax ≥ λmin, it follows that

λmax

λmin
=
b+
√
b2 − 4c

b−
√
b2 − 4c

as claimed.) Setting r = R/L and x = r2, the ensuing optimization simplifies to

min
x

2
√

4 + x2

2 + x−
√

4 + x2
.

Setting the derivative of the above objective function to zero and solving for x should, after some
calculation, lead to the solution x∗ = 2. Alternatively, the following substitutions simplify matters
somewhat: set t =

√
4 + x2 and dt

dx = t′, so that the minimization becomes

min
x

2t

2 + x− t
subject to x = tt′. Let x∗ be the minimizer and t∗ =

√
4 + x∗2. Then

d

dx

2t

(2 + x− t)2 =
1

(2 + x− t)2 (2t′(2 + x− t)− 2t(1− t′)) = 0 at x = x∗,
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or equivalently, 4t′∗ + 2t′∗x∗ − 2t∗ = 0. Multiplyiing both sides by t∗,

4x∗ + 2x∗2 − 2(4 + x∗2) = 0,

so that x∗ = 2 and r∗ =
√

2. The optimal design is therefore achieved when R
L =

√
2.

(e) Here we maximize µ2 with respect to the joint angles. From the general expression for J
obtained in (a),

JJT =

[
L2 sin2 θ2 −L2 sin θ2 cos θ2

−L2 sin θ2 cos θ2 R2 sin2 θ1 + L2 cos2 θ2

]
.

Setting L = R = 1, we have det(JJT ) = sin2 θ1 sin2 θ2, which is maximized when sin2 θ1 sin2 θ2 = 1.
Therefore, θ1 = π

2 + nπ, θ2 = π
2 +mπ, where n,m are integers.

Problem 4
(a) Writing out Fb = [AdTab ]

TFa,

mb = Rbama −Rba[pab]fa
fb = Rabfa.

Repackaging these into Roy’s form, we get

F ′b =

[
Rba 0

−Rba[pab] Rba

]
F ′a

=

[
Rba 0

Rba[R
T
bapba] Rba

]
F ′a

=

[
Rba 0

[pba]Rba Rba

]
F ′a

= [AdTba ]F ′a,

so Roy is correct.
(b) Using the transformation rule for 6× 6 spatial mass matrices,

Ga = [AdTba ]TGb[AdTba ] =

[
RTbaIbRba +RTba[pba]

Tm[pba]Rba RTba[pba]
TmRba

RTba[pba]
TmRba RTbamRba

]
.

From the top-left entry of the above equality,

Ia = RTbaIbRba +RTba[pba]
Tm[pba]Rba = RabIbRTab + [pab]

Tm[pab].

(c) Calculating [Vi] = Ṫ0iT
−1
0i ,

[Vi] = Ṫ0iT
−1
0i

= [S1]θ̇1 + e[S1]θ1 [S2]e−[S1]θ1 θ̇2 + . . .+ e[S1]θ1 . . . e[Si−1]θi−1 [Si]e−[Si−1]θi−1 . . . e−[S1]θ1 θ̇i

= [Vi−1] + e[S1]θ1 . . . e[Si−1]θi−1 [Si]e−[Si−1]θi−1 . . . e−[S1]θ1 θ̇i,

from which it follows that

Vi = Vi−1 + Ad
e[S1]θ1 ...e[Si−1]θi−1 (Si)θ̇i.

7



M2794.002700 Introduction to Robotics
Final Examination

6:30-9:30 PM, June 14, 2018
CLOSED BOOK, CLOSED NOTES

Problem 1 (30 points)
(a) Spot the robot dog is grasping a door handle as show in Figure 1. Modeling each of Spot’s feet
as spherical joints connected to ground, use Grübler’s formula to determine Spot’s overall degrees
of freedom.

R
R

R

R

R

R R

R

R

S

Figure 1: Problem 1(a): Spot grasping a door handle.

(b) The steel magnetic marbles shown in Figure 2(a) are all of the same size and only attract each
other (no repelling forces). Two marbles in contact can be modelled as a “magnetic joint”—the
marbles can slide and rotate without friction while maintaining contact with each other. Determine
the degrees of freedom of a magnetic joint, and use Grübler’s formula to find the degrees of freedom
of the connected marbles in Figure 2(a). (Note that the bottom marble is rigidly attached to
ground.)
(c) The marbles can be connected in many different ways; for example, Figure 2(b) shows two
possible arrangements using six marbles. Using exactly six marbles, find the arrangements that
result in the minimum and maximum degrees of freedom (note that one of the marbles must be
rigidly attached to ground). Draw the minimum and maximum dof arrangements and explain your
answer.

(a) (b)

Figure 2: Magnetic marble arrangements for Problems 1(b)-(c).
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Problem 2 (30 points)
For trees like Figure 3(a) that are unstable, adding support structures can make them more stable.
(a) Modeling the tree as a planar rigid object as shown in Figure 3(b), suppose we add supports
at four points A, B, C, D as shown. Modeling each of the supports as frictionless point contacts,
determine the range of values of d for point contact D so that the tree is form closure.
(b) Suppose a very heavy fruit is attached to the tree at point Q as shown in Figure 3(c). Are
three supports A, B, C (again modelled as frictionless point contacts) enough to keep the tree from
falling over?

(a)

A

B

C

D

x
y

(b)

A

Q

B

C

x
y

(c)

Figure 3: Figures for Problem 2.
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Problem 3 (60 points)
(a) For the 3R robot of Figure 4(a) shown in its zero position, assign appropriate link frames and
derive the Denavit-Hartenberg parameters. You may ignore the frames shown in the figure and
draw your own fixed and link frames.
(b) For the 3R robot of Figure 4(a) shown in its zero position, derive the forward kinematics in the
following product-of-exponentials form:

T04 = Me[B1]θ1e[B2]θ2e[B3]θ3 ,

where M ∈ SE(3) and Bi ∈ se(3), i = 1, 2, 3.
(c) Calculate the volume of all points in R3 reachable by the robot tip (take the frame {4} origin
to be the robot tip).
(d) Now suppose the robot is grasping a laser pointer mounted on a gimbal, so that the laser pointer
always remains vertical (that is, normal to the x-y plane of the fixed frame). Derive the forward
kinematic mapping from (θ1, θ2, θ3) to the point (x, y) on the plane indicated by the laser pointer.
(e) Derive the Jacobian J(θ) ∈ R2×3 relating the joint rates θ̇ = (θ̇1, θ̇2, θ̇3)

T to the velocity
v = (ẋ, ẏ)T of the laser pointer. Show that θ̇ = JT (JJT )−1v is a valid inverse velocity kinematics
solution as long as the inverse exists.
(f) Suppose the robot is in its initial position, and we wish to move the laser pointer along a linear
path from some initial point P0 ∈ R2 to final point P1 ∈ R2. Using the solution θ̇ = JT (JJT )−1v,
derive an iterative numerical procedure for solving this inverse kinematics problem.
(g) More generally, show that, assuming JJT is invertible,

θ̇ = JT (JJT )−1v +
(
I − JT (JJT )−1J

)
λ,

is a solution to v = J(θ)θ̇ for any λ ∈ R3. Can you attach any special physical or other meaning
to the particular solution θ̇ = JT (JJT )−1v?

θ1

θ2
θ3

x̂0 ŷ0

x̂4 ŷ4

ẑ4

1

2

3

(a) 3-dof arm for Problem 3(a)-(c).

θ1

θ2
θ3

x̂0 ŷ0

1

2

3laser
pointer
mounted
on gimbal

(x, y)

(b) 3-dof arm holding laser pointer for Problem 3(d)-(f).

Figure 4: Figures for Problem 3.
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Problem 4 (30 points)
(a) A six-dof spatial open chain has two of its prismatic joint axes coplanar, and two of its revolute
joints axes normal to the plane spanned by the two prismatic joint axes (see Figure 5(a)). Is this
configuration singular? You must explain your answer to receive full credit.
(b) A six-dof spatial open chain has five of its revolute joint axes intersecting a common line, and
a prismatic joint axis perpendicular to the common line (see Figure 5(b)). Is this configuration
singular? You must explain your answer to receive full credit.
(c) The spatial RRRRRP open chain of Figure 6 is shown in its zero position. Find at least three
different singular configurations for this robot, and explain why these configurations are singular
in terms of the joint axis screws.
(d) At its zero position, can the robot resist arbitrary wrenches applied to the tip? If yes, can the
robot generate any arbitrary wrench at the tip as well? Explain your answer.

Prismatic joint axes

Revolute joint axes

(a)

Revolute joint axes

Prismatic joint axis

(b)

Figure 5: Two six-dof spatial chains for Problem 4(a)-(b).

x̂

ẑ θ2 θ3 θ4
θ5

θ6

ŷ{s}

{b}

L L L

ŷ
x̂

ẑ

θ1
L

L

Figure 6: Spatial RRRRRP open chain for Problem 4(c)-(d).
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Problem 5 (30 points)
(a) Consider a one-dof mass-spring-damper system with dynamics

ẍ+ 2ẋ+ x = f,

Given arbitrary initial conditions x(0) and ẋ(0), find all PD controls f of the form f = −kpx− kdẋ
that will drive the system to rest as fast as possible.
(b) Recall that the dynamics of an n-dof open chain robot can be written in the form

τ = M(θ)θ̈ + b(θ, θ̇).

Assume there is no gravity, let n = 2, and suppose we wish to experimentally estimate the mass
matrix M(0) ∈ R2×2 at the zero position θ = 0. We perform the following steps: (i) set the
robot at rest (zero velocities and accelerations) in its zero position; (ii) apply an input joint torque
τ ∈ R2 to the robot; (iii) measure the corresponding joint acceleration vector θ̈ ∈ R2. Which of
the measurement pairs τ 7→ θ̈ listed below are valid, and which are invalid? Determine M(0) for
all valid pairs. You must explain all your answers to receive full credit.

1.

{[
1
0

]
7→

[
2
1

]
,

[
0
1

]
7→

[
1
−2

]}
.

2.

{[
1
0

]
7→

[
2
0

]
,

[
0
1

]
7→

[
1
1

]}
.

3.

{[
1
0

]
7→

[
8
2

]
,

[
0
1

]
7→

[
2
1

]}
.

(c) After repeating the above experiment twice, because of noisy measurements, two valid estimates
for M(0), M̃1 and M̃2, are obtained:

M̃1 =

[
4 1
1 2

]
, M̃2 =

[
3
√

2√
2 3

]
.

Suggest a sensible way to calculate the average of these two matrices (Hint: it may be useful to
think about eigenvalues).
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Problem 6 (30 points)
(a) Given two rotations R0, R1 ∈ SO(3), the shortest path R(s) connecting R0 to R1 is given by

R(s) = R0e
[r]s, [r] = log(R−10 R1),

where [r] ∈ so(3) is chosen so that ‖r‖ ≤ π, and R(0) = R0, R(1) = R1. The length of this shortest
path can then be calculated to be ‖r‖. Under the reference frame transformation R0 7→ R′0 = R0P ,
R1 7→ R′1 = R1P for some constant P ∈ SO(3), show that the distance between R′0 and R′1 does
not change.
(b) Let R(s), s ∈ [0, 1], be the Bézier curve in SO(3) generated by the three “control points”
R0 = I, R1 = Rot(x̂, π/2), R2 = Rot(ẑ, π/2), such that R(0) = R0 and R(1) = R2. Derive the
algorithm for computing R(s), and calculate R(0.5).
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M2794.0027 Introduction to Robotics
Final Examination Solutions

June 14, 2018
CLOSED BOOK, CLOSED NOTES

Problem 1 (30 points)
(a) Applying the spatial version of Grübler’s formula,

• N = 18 (links) +1 (ground) = 19;

• J = 4 (S joints) + 18 (R joints) = 22;

• Σfi = 3× 4 (S joints) +1× 18 (R joints) = 30;

• dof = 6(N − 1− J) + Σfi = 6(19− 1− 22) + 30 = 6.

(b) A magnetic joint allows two marbles to slide and rotate while maintaining a fixed distance
between their centers. Since this is a single equality constraint between two rigid bodies, a magnetic
joint has 6 − 1 = 5 degrees of freedom. Applying the spatial version of Grübler’s formula to the
marble arrangement then leads to

• N = 3 (links) +1 (ground) = 4;

• J = 4 (magnetic joints);

• Σfi = 5× 4 (magnetic joints) = 20;

• dof = 6(N − 1− J) + Σfi = 6(4− 1− 4) + 20 = 14.

(c) Observing that the number of links is fixed, the degrees of freedom only depends on the number
of joints (or equivalently, the number of contacts between marbles); the more the contacts, the
lower the overall mobility. It thus seems reasonable to find the arrangements with the minimum
and the maximum number of contacts. Quite clearly the serially connected marbles as shown in
Figure 1(a) will have maximum dof:

• N = 5 (links) +1 (ground) = 6;

• J = 5 (magnetic joints);

• Σfi = 5× 5 (magnetic joints) = 25;

• dof = 6(N − 1− J) + Σfi = 6(6− 1− 5) + 25 = 25.

The minimum dof case occurs when the six marbles (or more specifically, their centers) form an
octahedron as shown in Figure 1(b):

• N = 5 (links) +1 (ground) = 6;

• J = 12 (magnetic joints);

• Σfi = 5× 12 (magnetic joints) = 60;

• dof = 6(N − 1− J) + Σfi = 6(6− 1− 12) + 60 = 18.

1



(a) (b)

Figure 1: Maximum and minimum dof marble arrangements for Problem 1(c).

Problem 2 (30 points)
(a) Express the static equilibrium force closure conditions in the standard linear form Ax = b,
where A ∈ R3×4 is specified, and the objective is to determine whether a nonnegative solution
x ≥ 0 exists for any arbitrary b ∈ R3. Deriving A and performing Gauss-Jordan elimination leads
to the following matrix: 1 0 1 −1

0 1 1 −1

a/8 −a/4 −a
√

2d

 =⇒


1 0 0 8

√
2

7
d
a − 8

7

0 1 0 8
√
2

7
d
a − 8

7

0 0 1 1
7 − 8

√
2

7
d
a

 .
The grasp is force closure if and only if the fourth column has all elements negative, which leads
to the following two inequalities:

8
√

2

7

d

a
− 8

7
< 0

1

7
− 8
√

2

7

d

a
< 0.

Thus, a
8
√
2
< d < a

2
√
2

must be satisfied for the contacts to be force closure.

(b) To keep the tree stationary, the sum of all the forces and moments exerted on the tree must be
zero: ∑

i

fi = 0 and
∑
i

τi = 0.

Let fa, fb, fc respectively be the forces at contact points A, B, and C, and let FQ be the force
at Q. The problem can then be reformulated as follows: Does there exist ai ≥ 0(i = 1, 2, 3) such
that  1

0
a
8

 a1 +

 1
1
−a

 a2 +

 −1
0

5
4a

 a3 +

 0
−1
−x

 bQ = 0,

where a
2 ≤ x ≤ 3a. From the middle equation we obtain a2 = bQ, while from the first we have

a1 = a3 − bQ. The third equation lead to

a

8
a1 − aa2 +

5a

4
a3 − xbQ = 0, for all bQ ≥ 0.

2



A

Q

B

C

x
y

Figure 2: Three point contacts to resist the external force.

Rearranging the above leads to the following solution:

a1 =

(
8

11

x

a
− 2

11

)
bQ ≥ 0

a2 = bQ ≥ 0

a3 =

(
9

11
+

8

11

x

a

)
bQ ≥ 0.

This grasp is therefore able to resist the given external force.

Problem 3 (60 points)
(a) Link reference frames for finding the Denavit-Hartenberg parameters can be attached as shown
in Figure 3 (Other choices are of course possible). The corresponding D-H parameters are as follows:

i αi ai di φi

1 0 0 3 θ1
2 −90◦ 0 0 θ2
3 90◦ 2 0 θ3
4 0 1 0 0

(b) Writing the forward kinematics in the form

T04 = Me[B1]θ1e[B2]θ2e[B3]θ3 ,

then M ∈ SE(3) is the end-effector frame at the zero position, which by inspection is

M =


1 0 0 3
0 1 0 0
0 0 1 3
0 0 0 1

 .
3



θ1
θ2

θ3

x̂0 ŷ0

x̂4 ŷ4

ẑ4

1

2

3

x̂2
ẑ2

x̂1

ẑ1

x̂3

ẑ3

ẑ0

Figure 3: Reference frames for Denavit-Hartenberg parameters

The Bi = (ωi, vi), i = 1, 2, 3 are the joint axis screws expressed in terms of the end-effector frame
{4} at the zero position; by inspection they are

ω1 = (0, 0, 1) v1 = (0, 3, 0)
ω2 = (0, 1, 0) v2 = (0, 0,−3)
ω3 = (0, 0, 1) v3 = (0, 1, 0)

.

(c) The problem is asking for the Cartesian workspace volume of the end-effector frame; that is the
volume of the set of all points reachable by the origin of the end-effector frame {4}. The Cartesian
positioning workspace is a spherical shell with inner radius 1 and outer radius 3; the corresponding
volume is

Volume =
4

3
π(33 − 13) =

104

3
π.

(d) The method requiring the least calculation is probably to attach a moving frame {2} to link 2:
place its origin at the intersection of joint axes 1 and 2, with its ŷ2-axis aligned with joint axis 2
and x̂2-axis aligned with the link of length 2. Then abbreviating sin θ1 = s1, cos θ2 = c2, etc.,

R02 = Rot(ẑ, θ1) · Rot(ŷ, θ2) =

 c1c2 −s1 c1s2
s1c2 c1 s1s2
−s2 0 c2

 ,
and since the end-effector Cartesian position p is given by

p = 3ẑ0 + (2 + c3)x̂2 + s3ŷ2,

with

x̂2 = c1c2x̂0 + s1c2ŷ0 − s2ẑ0
ŷ2 = −s1x̂0 + c1ŷ0

ẑ2 = c1s2x̂0 + s1s2ŷ0 + c2ẑ0,

4



it follows that

x = 2c1c2 + c1c2c3 − s1s3
y = 2s1c2 + s1c2c3 + c1s3.

(e) Differentiating x and y with respect to time t, the Jacobian J(θ) can be obtained as

J(θ) =

[
−s1c2(2 + s3) + c1s3 −c1s2(2 + c3) −c1c2s3 − s1c3
c1c2(2 + c3)− s1s3 −s1s2(2 + c3) −s1c2s3 + c1c3

]
.

Verifying that θ̇ = JT (JJT )−1v is a valid inverse velocity kinematics solution is trivial: just sub-
stitute the above expression for θ̇ into v = J(θ)θ̇ to get the identity v = v.
(f) Parametrizing the linear path from P0 to P1 as P (s) = sP1+(1−s)P0, the simplest time-scaling
function s(t) is to just take s = t (although such a trajectory would result in non-zero initial and
final velocities, which for practical reasons is undesirable). Then v = Ṗ = P1−P0, and the simplest
iterative joint-space inverse kinematics solution is given by the usual

θ(t+ ∆t) = θ(t) + ∆tJT (θ(t))
(
J(θ(t))JT (θ(t))

)−1
(P1 − P0).

(g) As was the case with part (e), substituting

θ̇ = JT (JJT )−1v +
(
I − JT (JJT )−1J

)
λ,

into v = J(θ)θ̇ should trivially verify that the above θ̇ is a valid solution for all λ. As to what
physical meaning can be associated to the solution corresponding to λ = 0, let’s examine ‖θ̇‖2 more
closely: following a simple calculation, it can be observed that

‖θ̇‖2 = ‖JT (JJT )−1v‖2 + ‖
(
I − JT (JJT )−1J

)
λ‖2.

What this means is that θ̇ = JT (JJT )−1v is the minimum-norm solution, i.e., among the many
possible solutions θ̇ (represented by different choices of λ), this is the one that minimizes ‖θ̇‖2.

Problem 4 (30 points)
(a) Without loss of generality, label the two prismatic joint axes as 1 and 2, and the two revolute
joint axes as 3 and 4. Choose a fixed frame such that the prismatic joint axes all lie on the x-y
plane. Then

Js1 =



0
0
0
0
v1y
v1z

 , Js2 =



0
0
0
0
v2y
v2z

 , Js3 =



0
0
1
0
v3y
v3z

 , Js4 =



0
0
1
0
v4y
v4z

 .

These four columns cannot be linearly independent since they only have three nonzero components.
Thus, this configuration is singular.
(b) Without loss of generality, label the revolute joint axes from 1 to 5, and the prismatic joint axis
as 6. Choose a fixed frame such that the common line is along its z-axis, and select the intersection
between this common line and joint axis i as the reference point qi ∈ R3, i = 1, · · · , 5. Each qi
is thus of the form qi = (0, 0, qiz), and vi = −wi × qi = (wiyqiz,−wizqiz, 0) = (vix, viy, 0). Since

5



the prismatic joint axis is perpendicular to the common line, the z-component of v6 is zero, i.e.,
v6 = (v6x, v6y, 0), w6 = (0, 0, 0). The space Jacobian Js(θ) thus becomes

w1x w2x w3x w4x w5x 0
w1y w2y w3y w4y w5y 0
w1z w2z w3z w4z w5z 0
v1x v2x v3x v4x v5x v6x
v1y v2y v3y v4y v5y v6y
0 0 0 0 0 0

 ,

which is clearly singular.

Prismatic joint axes

Revolute joint axes

1

2

3
4

ŷ
x̂

ẑ

{s}

(a)

Revolute joint axes

Prismatic joint axis1
2

3 4

5

6

ŷ

x̂
ẑ{s}

(b)

Figure 4: Two six-dof spatial chains for Problem 4(a)-(b).

(c) The three kinematic singularities are

• θ3 = 0: Three coplanar and parallel revolute joint axes.

•
{

θ2 = 0, θ3 = −π
2 , θ4 = −π

2

θ2 = π, θ3 = π
2 , θ4 = π

2

: Two colinear revolute joint axes.

• θ3 = 0, θ4 6= ±π
2 , θ5 = 0 or π: the case described in Problem 4(b).

(d) From (c), the zero position is clearly singular, so the robot cannot generate wrenches Fb that
are in the null space of JTb via the static relation τ = JTb Fb. However, these wrenches are resisted
by structural constraints of the mechanism. As an analogy, consider a door attached to the wall
via a hinge (or revolute) joint: only forces in the direction of motion of the door can be actively
generated, but the door itself can still resist external wrenches in the five-dimensional orthogonal
wrench space.
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Problem 5 (30 points)
(a) Substituting the PD control law into the dynamics,

ẍ+ (2 + kd)ẋ+ (1 + kp)x = 0.

Writing the above in the standard second-order form

ẍ+ 2ζωnẋ+ ω2
nx = 0,

where ωn is the natural frequency and ζ is the damping ratio. For critical damping ζ should be 1,
or

(2 + kd)
2

4(1 + kp)
= 1.

(b) The mass matrix must be symmetric and positive-definite for all values of θ; equivalently, all
eigenvalues must be positive (incidentally, all symmetric matrices have real eigenvalues). Also,
when the velocity θ̇ is set to zero, the dynamics reduces to τ = M(θ)θ̈. Going through the data
measurement pairs,

1.

{[
1
0

]
7→
[

2
1

]
,

[
0
1

]
7→
[

1
−2

]}
violates the positive-definiteness condition.

2.

{[
1
0

]
7→
[

2
0

]
,

[
0
1

]
7→
[

1
1

]}
violates the symmetricity condition.

3.

{[
1
0

]
7→
[

8
2

]
,

[
0
1

]
7→
[

2
1

]}
is the only valid measurement pair.

(c) Both M̃1 and M̃2 have the same characteristic polynomial s2 − 6s + 7, so at a minimum, the
average should also have the same characteristic polynomial as well. Naturally the average, which
we’ll denote M̄ , should also be symmetric positive-definite. Putting all these together, we have

M̄ =

[
a b
b c

]
,

whose characteristic polynomial is s2 − (a + b)s + (ac − b2), meaning a + b = 6 and ac − b2 = 7.
Since there are three variables and only two equations, a degree of freedom remains. If you got
this far, you received full credit for this problem, but going further, the orthogonal diagonaliation
of M̃1 and M̃2 are, after a bit of calculation,[

4 1
1 2

]
=

[
µ1 −ν1
ν1 µ1

] [
3 +
√

2 0

0 3−
√

2

] [
µ1 ν1
−ν1 µ1

]
[

3
√

2√
2 3

]
=

[
µ2 −ν2
ν2 µ2

] [
3 +
√

2 0

0 3−
√

2

] [
µ2 ν2
−ν2 µ2

]
where

µ1 =
1√

4−
√

2
, ν1 =

√
2−1√

4−2
√
2

µ2 =
1√
2
, ν2 = 1√

2
.

Any real-symmetric matrix A with distinct eigenvalues can be orthogonally diagonalized into the
form A = RTDR, where R is orthogonal and D is diagonal. For our problem, R ∈ SO(2) with (µ, ν)
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satisfying µ2 + ν2 = 1, or equivalently, µ = cosφ and ν = sinφ for some angle φ. To calculate the
average of M̃1 and M̃2, therefore, one possibility is to first calculate φ1 and φ2 from the relations
µi = cosφi and νi = sinφi, i = 1, 2. Once φ1 and φ2 are found in this fashion, one can then take
the average φ̄ = (φ1 + φ2)/2, and to set µ̄ = sin φ̄, ν̄ = cos φ̄, and set

M̄ =

[
µ̄ −ν̄
ν̄ µ̄

] [
3 +
√

2 0

0 3−
√

2

] [
µ̄ ν̄
−ν̄ µ̄

]
.

Problem 6 (30 points)
(a) First, observe that logPRP T = P · logR · P T for any R,P ∈ SO(3). (Proof: let [r] = logR,

or e[r] = R. Then Pe[r]P T = PRP T for any P ∈ SO(3). But Pe[r]P T = eP [r]PT
, so PRP T =

eP [r]PT
. Taking the log of both sides, logPRP T = P [r]P T = P · logR · P T as claimed.) Then

straightforwardly, the shortest path between R′0 = R0P and R′1 = R1P is R′(s) = R′0e
[r′]s, where

[r′] = log(R′T0 R
′
1) = log(P TRT0R1P ) = P T log(RT0R1)P

using our earlier result. Since P ∈ SO(3) we can write r′ = P T r, from which it follows straightfor-
wardly that ‖r′‖ = ‖r‖.
(b) To calculate R(s), first find the shortest path between R0 and R1, which we’ll call R01(s); using
the previous results,

R01(s) = R0e
[r01]s, [r01] = log(RT0R1).

Similarly, the shortest path between R1 and R2 is

R12(s) = R1e
[r12]s, [r12] = log(RT1R2).

R(s) is then found from shortest path between R01(s) and R12(s) as follows:

R(s) = R01(s)e
[r]s, [r] = log(R01(s)

TR12(s)).
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