Where we are:

- Chap 2 Configuration Space
- Chap 3 Rigid-Body Motions
 - 3.2 Rotations and Angular Velocities
 - 3.3.1 Homogeneous Transformation Matrices
 - 3.3.2 Twists
 - 3.3.3 Exponential Coords of Rigid-Body Motions
 - 3.4 Wrenches
- Chap 4 Forward Kinematics
- Chap 5 Velocity Kinematics and Statics
- Chap 6 Inverse Kinematics
- Chap 8 Dynamics of Open Chains
- Chap 9 Trajectory Generation
- Chap 11 Robot Control
- Chap 13 Wheeled Mobile Robots

Important concepts, symbols, and equations

- A configuration can be represented by exponential coordinates Sθ ∈ ℝ⁶: a screw axis S multiplied by the distance θ it is followed. (Equivalently, Vt: a twist V and a time t it is followed.)
- As with rotations, we can define a matrix exponential and its inverse, the matrix log. The exponential "integrates a twist" for time 1, and the log finds the constant twist needed to achieve the displacement in time 1.

$$\begin{aligned} \exp : & [\mathcal{S}]\theta \in se(3) & \to & T \in SE(3) \\ \log : & T \in SE(3) & \to & [\mathcal{S}]\theta \in se(3) & \theta \in [0,\pi] \end{aligned}$$

Important concepts, symbols, and equations

For $S = (\omega, v)$, either

• $||\omega|| = 1$:

.

$$e^{[\mathcal{S}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & (I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2) v \\ 0 & 1 \end{bmatrix}$$

• or $\omega = 0$ and ||v|| = 1:

$$e^{[\mathcal{S}] heta} = \left[egin{array}{cc} I & v heta \ 0 & 1 \end{array}
ight]$$

Important concepts, symbols, and equations (cont.)

- A wrench is $\mathcal{F} = (m, f) \in \mathbb{R}^6$. A linear force $f \in \mathbb{R}^3$ at *r* creates a moment $m = r \times f$.
- The dot product of a wrench and a twist is power: $P = \mathcal{V}^T \mathcal{F}$.
- The same wrench can be expressed in $\{a\}$ and $\{b\}$ as \mathcal{F}_a and \mathcal{F}_b .
- Changing the frame of representation (power better be independent of the frame we use to represent twists and wrenches!):

$$\mathcal{V}_b^{\mathrm{T}} \mathcal{F}_b = \mathcal{V}_a^{\mathrm{T}} \mathcal{F}_a$$

 $\mathcal{V}_b^{\mathrm{T}} \mathcal{F}_b = ([\mathrm{Ad}_{T_{ab}}] \mathcal{V}_b)^{\mathrm{T}} \mathcal{F}_a$
 $= \mathcal{V}_b^{\mathrm{T}} [\mathrm{Ad}_{T_{ab}}]^{\mathrm{T}} \mathcal{F}_a.$

$$\mathcal{F}_b = [\mathrm{Ad}_{T_{ab}}]^{\mathrm{T}} \mathcal{F}_a$$

Rotations	Rigid-Body Motions
$R \in SO(3): 3 \times 3$ matrices	$T \in SE(3): 4 \times 4$ matrices
$R^{\rm T}R=I, \det R=1$	$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix},$ where $R \in SO(3), p \in \mathbb{R}^3$
	where $R \in SO(3), p \in \mathbb{R}^3$
$R^{-1} = R^{\mathrm{T}}$	$T^{-1} = \left[\begin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{array} \right]$
change of coordinate frame:	change of coordinate frame:
$R_{ab}R_{bc} = R_{ac}, R_{ab}p_b = p_a$	$T_{ab}T_{bc} = T_{ac}, \ T_{ab}p_b = p_a$

rotating a frame $\{b\}$:	displacing a frame $\{b\}$:
$R = \operatorname{Rot}(\hat{\omega}, \theta)$	$T = \left[\begin{array}{cc} \operatorname{Rot}(\hat{\omega}, \theta) & p \\ 0 & 1 \end{array} \right]$
$R_{sb'} = RR_{sb}$:	$T_{sb'} = TT_{sb}$: rotate θ about $\hat{\omega}_s = \hat{\omega}$
rotate $ heta$ about $\hat{\omega}_s = \hat{\omega}$	(moves $\{b\}$ origin), translate p in $\{s\}$
$R_{sb^{\prime\prime}} = R_{sb}R$:	$T_{sb''} = T_{sb}T$: translate p in {b},
rotate θ about $\hat{\omega}_b = \hat{\omega}$	rotate θ about $\hat{\omega}$ in new body frame
unit rotation axis is $\hat{\omega} \in \mathbb{R}^3$,	"unit" screw axis is $\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6,$
where $\ \hat{\omega}\ = 1$	where either (i) $\ \omega\ = 1$ or
	(ii) $\omega = 0$ and $ v = 1$
	for a screw axis $\{q, \hat{s}, h\}$ with finite h ,
	$\mathcal{S} = \left[\begin{array}{c} \omega \\ v \end{array} \right] = \left[\begin{array}{c} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{array} \right]$
angular velocity is $\omega = \hat{\omega} \dot{\theta}$	twist is $\mathcal{V} = \mathcal{S}\dot{ heta}$

$$\begin{aligned} & \text{for any 3-vector, e.g., } \omega \in \mathbb{R}^3, & \text{for } \mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6, \\ & [\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3) & [\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in se(3) \\ & \text{identities, } \omega, x \in \mathbb{R}^3, R \in SO(3): \\ & [\omega] = -[\omega]^{\mathrm{T}}, [\omega]x = -[x]\omega, & \text{or a "unit" screw axis } \mathcal{S}, \\ & [\omega][x] = ([x][\omega])^{\mathrm{T}}, R[\omega]R^{\mathrm{T}} = [R\omega] & \text{depending on the context}) \\ & \hline \dot{R}R^{-1} = [\omega_s], \ R^{-1}\dot{R} = [\omega_b] & \dot{T}T^{-1} = [\mathcal{V}_s], \ T^{-1}\dot{T} = [\mathcal{V}_b] \\ & & [\mathrm{Ad}_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6\times 6} \\ & \text{identities: } [\mathrm{Ad}_T]^{-1} = [\mathrm{Ad}_{T^{-1}}], \\ & [\mathrm{Ad}_{T_1}][\mathrm{Ad}_{T_2}] = [\mathrm{Ad}_{T_1T_2}] \end{aligned}$$

change of coordinate frame: $\hat{\omega}_a = R_{ab}\hat{\omega}_b, \ \omega_a = R_{ab}\omega_b$	change of coordinate frame: $\mathcal{S}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{S}_b, \ \mathcal{V}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{V}_b$
exp coords for $R \in SO(3)$: $\hat{\omega}\theta \in \mathbb{R}^3$	exp coords for $T \in SE(3)$: $S\theta \in \mathbb{R}^6$
$\exp: [\hat{\omega}]\theta \in so(3) \to R \in SO(3)$	$\exp: [\mathcal{S}]\theta \in se(3) \to T \in SE(3)$
$R = \operatorname{Rot}(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} =$	$T = e^{[\mathcal{S}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & * \\ 0 & 1 \end{bmatrix}$
$I + \sin heta [\hat{\omega}] + (1 - \cos heta) [\hat{\omega}]^2$	where $* =$
	$(I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)v$
$\begin{array}{c} \log: R \in SO(3) \rightarrow [\hat{\omega}] \theta \in so(3) \\ \text{algorithm in Section 3.2.3.3} \end{array}$	$\log: T \in SE(3) \to [S]\theta \in se(3)$ algorithm in Section 3.3.3.2
moment change of coord frame: $m_a = R_{ab}m_b$	wrench change of coord frame: $\mathcal{F}_a = (m_a, f_a) = [\mathrm{Ad}_{T_{ba}}]^{\mathrm{T}} \mathcal{F}_b$

What is the screw S_a ? S_b ?

If {b} follows the screw a distance θ , what is the mathematical expression for the final configuration T_{ab} ?

A screw axis is defined by the screw image (positive motion drives the screw upward), and the pitch is 5 mm/rad. The origin of $\{b\}$ is at (0,4,-2) mm in $\{a\}$.

What is T_{ab} ?

If $\theta = \pi$, give the numerical entries of T_{ab} .

Given frames {a}, {b}, and {c}, and their representations relative to each other T_{ab} and T_{ac} , write the twist needed to move {b} to {c} in *t* seconds in the *se*(3) form [V_a].

Car {b} frame origin is initially at (4,1,0) in {s} and it drives at a constant steering angle with a turning radius of 2. What is the screw axis (q, \hat{s}, h) expressed in {b}? {s}?

What is the screw S_b ? S_s ?

If the car's forward speed is 4, what is V_b ? V_s ?

If the car completes a quarter of a rotation, what are the exponential coordinates $S_b\theta$? $S_s\theta$?

Where does the car end up? Draw a picture.

Express this final configuration mathematically, in terms of T_{sb} (as shown in the figure) and (1) the matrix exponential of $[S_b\theta]$ or (2) the matrix exponential of $[S_s\theta]$.

Draw the {b'} frame if $T_{sb'} = T_{sb} \exp([S_s\theta])$.

Draw the {b'} frame if $T_{sb'} = \exp([S_b\theta]) T_{sb}$.

If gravity acting on the apple causes a downward force of 3 N, what is the wrench \mathcal{F}_f felt at the force-torque sensor due to the apple?