## Where we are:

| Chap 2 | Configuration Space |
| :---: | :---: |
| Chap 3 | Rigid-Body Motions |
|  | 3.2 Rotations and Angular Velocities |
|  | 3.3.1 Homogeneous Transformation Matrices |
|  | 3.3.2 Twists |
|  | 3.3.3 Exponential Coords of Rigid-Body Motions |
|  | 3.4 Wrenches |
| Chap 4 | Forward Kinematics |
| Chap 5 | Velocity Kinematics and Statics |
| Chap 6 | Inverse Kinematics |
| Chap 8 | Dynamics of Open Chains |
| Chap 9 | Trajectory Generation |
| Chap 11 | Robot Control |
| Chap 13 | Wheeled Mobile Robots |

## Important concepts, symbols, and equations

- A configuration can be represented by exponential coordinates $S \theta \in \mathbb{R}^{6}$ : a screw axis $S$ multiplied by the distance $\theta$ it is followed. (Equivalently, $\mathcal{V} t$ : a twist $\mathcal{V}$ and a time $t$ it is followed.)
- As with rotations, we can define a matrix exponential and its inverse, the matrix log. The exponential "integrates a twist" for time 1, and the log finds the constant twist needed to achieve the displacement in time 1.

$$
\begin{array}{cll}
\exp : & {[\mathcal{S}] \theta \in \operatorname{se}(3)} & \rightarrow T \in S E(3) \\
\log : & T \in S E(3) & \rightarrow[\mathcal{S}] \theta \in \operatorname{se}(3) \quad \theta \in[0, \pi]
\end{array}
$$

## Important concepts, symbols, and equations

For $S=(\omega, v)$, either

- $\|\omega\|=1$ :

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}\right) v \\
0 & 1
\end{array}\right]
$$

- or $\omega=0$ and $\|v\|=1$ :

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
I & v \theta \\
0 & 1
\end{array}\right]
$$

## Important concepts, symbols, and equations (cont.)

- A wrench is $\mathcal{F}=(m, f) \in \mathbb{R}^{6}$. A linear force $f \in \mathbb{R}^{3}$ at $r$ creates a moment $m=r \times f$.
- The dot product of a wrench and a twist is power: $P=\mathcal{V}^{T} \mathcal{F}$.
- The same wrench can be expressed in $\{\mathrm{a}\}$ and $\{\mathrm{b}\}$ as $\mathcal{F}_{a}$ and $\mathcal{F}_{b}$.
- Changing the frame of representation (power better be independent of the frame we use to represent twists and wrenches!):

$$
\begin{array}{rlr}
\mathcal{V}_{b}^{\mathrm{T}} \mathcal{F}_{b} & =\mathcal{V}_{a}^{\mathrm{T}} \mathcal{F}_{a} \\
\mathcal{V}_{b}^{\mathrm{T}} \mathcal{F}_{b} & =\left(\left[\mathrm{Ad}_{T_{a b}}\right] \mathcal{V}_{b}\right)^{\mathrm{T}} \mathcal{F}_{a} & \\
& =\mathcal{V}_{b}^{\mathrm{T}}\left[\mathrm{Ad}_{T_{a b}}\right]^{\mathrm{T}} \mathcal{F}_{a} & \mathcal{F}_{b}=\left[\mathrm{Ad}_{T_{a b}}\right]^{\mathrm{T}} \mathcal{F}_{a} \\
\end{array}
$$

## Rotations

## Rigid-Body Motions

$$
R \in S O(3): 3 \times 3 \text { matrices } \quad T \in S E(3): 4 \times 4 \text { matrices }
$$

$$
R^{\mathrm{T}} R=I, \operatorname{det} R=1
$$

$$
T=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]
$$

$$
\text { where } R \in S O(3), p \in \mathbb{R}^{3}
$$

$$
R^{-1}=R^{\mathrm{T}}
$$

$$
T^{-1}=\left[\begin{array}{cc}
R^{\mathrm{T}} & -R^{\mathrm{T}} p \\
0 & 1
\end{array}\right]
$$

change of coordinate frame:
change of coordinate frame:

$$
R_{a b} R_{b c}=R_{a c}, \quad R_{a b} p_{b}=p_{a}
$$

$$
T_{a b} T_{b c}=T_{a c}, T_{a b} p_{b}=p_{a}
$$

rotating a frame $\{b\}$ :

$$
R=\operatorname{Rot}(\hat{\omega}, \theta)
$$

$$
R_{s b^{\prime}}=R R_{s b}:
$$

rotate $\theta$ about $\hat{\omega}_{s}=\hat{\omega}$

$$
R_{s b^{\prime \prime}}=R_{s b} R
$$

rotate $\theta$ about $\hat{\omega}_{b}=\hat{\omega}$
displacing a frame $\{b\}$ :

$$
T=\left[\begin{array}{cc}
\operatorname{Rot}(\hat{\omega}, \theta) & p \\
0 & 1
\end{array}\right]
$$

$$
T_{s b^{\prime}}=T T_{s b}: \text { rotate } \theta \text { about } \hat{\omega}_{s}=\hat{\omega}
$$ (moves $\{\mathrm{b}\}$ origin), translate $p$ in $\{\mathrm{s}\}$

$T_{s b^{\prime \prime}}=T_{s b} T$ : translate $p$ in $\{\mathrm{b}\}$, rotate $\theta$ about $\hat{\omega}$ in new body frame "unit" screw axis is $\mathcal{S}=\left[\begin{array}{l}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$, where either (i) $\|\omega\|=1$ or

$$
\text { (ii) } \omega=0 \text { and }\|v\|=1
$$

for a screw axis $\{q, \hat{s}, h\}$ with finite $h$,

$$
\mathcal{S}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right]=\left[\begin{array}{c}
\hat{s} \\
-\hat{s} \times q+h \hat{s}
\end{array}\right]
$$

angular velocity is $\omega=\hat{\omega} \dot{\theta}$ twist is $\mathcal{V}=\mathcal{S} \dot{\theta}$
for any 3 -vector, e.g., $\omega \in \mathbb{R}^{3}$,

$$
\text { for } \mathcal{V}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

$$
[\omega]=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in s o(3)
$$

$$
[\mathcal{V}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in s e(3)
$$

identities, $\omega, x \in \mathbb{R}^{3}, R \in S O(3)$ :

$$
[\omega]=-[\omega]^{\mathrm{T}},[\omega] x=-[x] \omega,
$$

(the pair $(\omega, v)$ can be a twist $\mathcal{V}$ or a "unit" screw axis $\mathcal{S}$,

$$
[\omega][x]=([x][\omega])^{\mathrm{T}}, R[\omega] R^{\mathrm{T}}=[R \omega]
$$ depending on the context)

$$
\dot{R} R^{-1}=\left[\omega_{s}\right], \quad R^{-1} \dot{R}=\left[\omega_{b}\right]
$$

$$
\begin{gathered}
\dot{T} T^{-1}=\left[\mathcal{V}_{s}\right], \quad T^{-1} \dot{T}=\left[\mathcal{V}_{b}\right] \\
{\left[\operatorname{Ad}_{T}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}} \\
\text { identities: }\left[\operatorname{Ad}_{T}\right]^{-1}=\left[\operatorname{Ad}_{T^{-1}}\right] \\
{\left[\operatorname{Ad}_{T_{1}}\right]\left[\operatorname{Ad}_{T_{2}}\right]=\left[\operatorname{Ad}_{T_{1} T_{2}}\right]}
\end{gathered}
$$

change of coordinate frame: change of coordinate frame:

$$
\hat{\omega}_{a}=R_{a b} \hat{\omega}_{b}, \omega_{a}=R_{a b} \omega_{b} \quad \mathcal{S}_{a}=\left[\operatorname{Ad}_{T_{a b}}\right] \mathcal{S}_{b}, \quad \mathcal{V}_{a}=\left[\operatorname{Ad}_{T_{a b}}\right] \mathcal{V}_{b}
$$

$\exp$ coords for $R \in S O(3): \hat{\omega} \theta \in \mathbb{R}^{3} \quad \exp$ coords for $T \in S E(3): \mathcal{S} \theta \in \mathbb{R}^{6}$

$$
\begin{array}{cc}
\exp :[\hat{\omega}] \theta \in \operatorname{so}(3) \rightarrow R \in S O(3) & \exp :[\mathcal{S}] \theta \in \operatorname{se}(3) \rightarrow T \in S E(3) \\
R=\operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}= & T=e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & * \\
0 & 1
\end{array}\right] \\
I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} & \text { where } *= \\
& \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}\right) v \\
\hline \log : R \in S O(3) \rightarrow[\hat{\omega}] \theta \in \operatorname{so}(3) & \log : T \in S E(3) \rightarrow[\mathcal{S}] \theta \in \operatorname{se}(3) \\
\text { algorithm in Section 3.2.3.3 } & \text { algorithm in Section 3.3.3.2 } \\
\hline \text { moment change of coord frame: } & \text { wrench change of coord frame: } \\
m_{a}=R_{a b} m_{b} & \mathcal{F}_{a}=\left(m_{a}, f_{a}\right)=\left[\operatorname{Ad}_{T_{b a}}\right]^{\mathrm{T} \mathcal{F}_{b}} \\
\hline
\end{array}
$$



A screw axis is defined by the screw image (positive motion drives the screw upward), and the pitch is $5 \mathrm{~mm} / \mathrm{rad}$. The origin of $\{\mathrm{b}\}$ is at $(0,4,-2) \mathrm{mm}$ in $\{\mathrm{a}\}$.

What is $T_{a b}$ ?

What is the screw $S_{a}$ ? $S_{b}$ ?

If $\{b\}$ follows the screw a distance $\theta$, what is the mathematical expression for the final configuration $T_{a b}$ ?

If $\theta=\pi$, give the numerical entries of $T_{a b}$.

Given frames $\{\mathrm{a}\},\{\mathrm{b}\}$, and $\{\mathrm{c}\}$, and their representations relative to each other $T_{a b}$ and $T_{a c}$, write the twist needed to move $\{\mathrm{b}\}$ to $\{\mathrm{c}\}$ in $t$ seconds in the $s e(3)$ form $\left[\mathcal{V}_{a}\right]$.

Car $\{b\}$ frame origin is initially at $(4,1,0)$ in $\{s\}$ and it drives at a constant steering angle with a turning radius of 2 . What is the screw axis ( $q, \hat{s}, h$ ) expressed in $\{b\}$ ? $\{\mathrm{s}\}$ ?


What is the screw $S_{b}$ ? $S_{s}$ ?

If the car's forward speed is 4 , what is $\nu_{b}$ ? $\nu_{s}$ ?

If the car completes a quarter of a rotation, what are the exponential coordinates $S_{b} \theta$ ? $S_{s} \theta$ ?


Where does the car end up? Draw a picture.
Express this final configuration mathematically, in terms of $T_{s b}$ (as shown in the figure) and (1) the matrix exponential of $\left[S_{b} \theta\right]$ or (2) the matrix exponential of $\left[S_{s} \theta\right]$.

> Draw the $\left\{\mathrm{b}^{\prime}\right\}$ frame if $T_{s b^{\prime}}=T_{s b} \exp \left(\left[S_{s} \theta\right]\right)$.


Draw the $\{b\}$ frame if $T_{s b^{\prime}}=\exp \left(\left[S_{b} \theta\right]\right) T_{s b}$.


If gravity acting on the apple causes a downward force of 3 N , what is the wrench $\mathcal{F}_{f}$ felt at the force-torque sensor due to the apple?

