
M2794.002700 Introduction to Robotics
Midterm Examination 1

April 6, 2017
CLOSED BOOK, CLOSED NOTES

Problem 1
(a) Use Grübler’s formula to find the degrees of freedom of the mechanism shown in Figure 1-(a).
(b) Use Grübler’s formula to find the degrees of freedom of the 3-PPSR mechanism of Figure 1-(b)
(note that the three boxes can only slide in the direction of the arrows; they cannot rotate).
(c) The Delta robot of Figure 1-(c) consists of two platforms—the lower one is mobile, the upper
one is fixed to the ceiling—connected by three leg identical legs: each leg is an RR serial chain
connected to a close-loop parallelogram linkage (each of the joint types are labelled in the figure).
This Delta robot has 3 degrees of freedom. Use Grübler’s formula to find the degrees of freedom
of this robot. Is your answer 3? If not, explain why Grübler’s formula fails.
(d) Figure 1-(d) shows another version of the Delta robot in which the S joints are now replaced by
R joints. Use Grübler’s formula to find the degrees of freedom of this robot. Can this robot move?
Explain your answer, including all assumptions made.
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(a) Mechanism for Problem 1-(a). (b) 3-PPSR mechanism for Problem 1-(b).

(c) Delta robot ver.1 for Problem 1-(c). (d) Delta robot ver.2 for Problem 1-(d).

Figure 1: Various mechanisms for Problem 1.
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Problem 2
The planar rigid object shown in Figure 2 has corners A, B, · · · , F, and O. The fixed frame is
attached at O as shown, and each grid is of size 1× 1. Points P1, P2, P3, and P4 are point contacts
(P1 and P3 lie at the center of BC and QE, respectively).
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Figure 2: Planar rigid object for Problem 2.

(a) In Figure 2-(a), the point contacts P1, P2, and P3 are frictionless. (For this problem, you ignore
the external forces drawn at R and Q.) Is this grasp force closure? Explain your answer.
(b) Now assume that arbitrary external normal forces R and Q are being applied to the object as
shown in Figure 2-(a). Point contacts P1, P2, and P3 are frictionless as before. Are these three
point contacts sufficient to resist the external forces R and Q?
(c) In Figure 2-(b), assume that point contacts P1, P2, P3, and P4 are frictionless. Determine the
range of x that makes the grasp force closure.
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Problem 3
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Figure 3: Game arcade claw machine for Problem 3.

Figure 3 shows a game arcade claw machine (only two dolls are remaining). Reference frames {0},
{1}, {2}, {3},and {4} are attached to the base, ceiling, the claw, and each doll as shown. The
following vectors and matrices are defined:

• pij ∈ R3 is the vector from frame {i} to frame {j}, expressed in frame {i} coordinates.

• Rij ∈ SO(3) is the 3× 3 rotation matrix describing the orientation of frame {j} as seen from
frame {i}.

• Tij ∈ SE(3) is the 4× 4 rigid body transformation matrix describing the position and orien-
tation of frame {j} as seen from frame {i}.

In what follows, T03 is given as

T03 =


−

√
3
2

1
2 0 −0.6

1
2

√
3
2 0 0.5

0 0 −1 0.7
0 0 0 1

 .
(a) Find p13.
(b) Suppose R34 = e[ω̂]θ, where ω̂ ∈ R3 is a unit vector in the direction of (−2, 5, 1)T expressed in
frame {3}, and θ = π

2 . Write down an explicit expression for R34.
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(c) Now you are trying to pick up the doll at frame {3}. At the instant the button is pressed, the
claw moves downward in the z-direction while also rotating about the z-axis and swinging about
y-axis. The claw’s movement can be described as the following matrix in terms of time t:

T12(t) =


p13,x

Rot(ẑ, wt) · Rot(ŷ, π6 sin t) p13,y
vt+ 0.1

0 0 0 1

 ,
where w = 1

8(rad/s) and v =
0.4

π
(m/s). Suppose the claw stops when the origins of frames {2} and

{3} meet. Find T23 at the instant the claw stops.
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Problem 4
The RRRRRRP spatial open chain of Figure 4-(a) is shown in its zero position. Frames {0}, {5},
and some Denavit-Hartenberg parameters are given. Attach appropriate link frames and find the
remaining Denavit-Hartenberg parameters.
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M2794.002700 Introduction to Robotics
2017 Midterm Examination 1 Solution

Problem 1 (50 Points)
(a) The movement of this mechanism is constrained to the plane. Applying Grübler’s for-
mula for planar mechanism yields:
N = 9 (links) +1 (ground) = 10
J = 8 (R joints) + 4 (P joints)
Σfi = 12
dof = 3(N − 1− J) + Σfi = 3(10− 1− 12) + 12 = 3

(b) Each box can be regarded as a link connected to ground by a 2-dof PP joint. Ap-
plying Grübler’s formula for spatial mechanism yields:
N = 7 (links) +1 (ground) = 8
J = 3 (R joints) + 3 (S joints) + 3 (2-dof joints) = 9
Σfi = 3× 1 (R joints) +3× 3 (S joints) +2× 3 (2-dof joints) = 18
dof = 6(N − 1− J) + Σfi = 6(8− 1− 9) + 18 = 6

(c) Applying the spatial version of Grübler’s formula leads to the following:
N = 16 (links) +1 (ground) = 17
J = 9 (R joints) + 12 (S joints) = 21
Σfi = 9× 1 (R joints) +3× 12 (S joints) = 45
dof = 6(N − 1− J) + Σfi = 6(17− 1− 21) + 45 = 15

The twelve additional dof obtained from Grubler’s formula can be attributed to the tor-
sional rotation of the links (links 1,2,3,4) about their respective axes, which has no effect on
the movement of the robot’s moving platform.

Figure 1: rotation of the links (link 1,2,3,4)
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(d) Applying the spatial version of Grübler’s formula leads to the following.
N = 16 (links) +1 (ground) = 17
J = 9 (R joints) + 12 (R joints) = 21
Σfi = 21× 1 (R joints) = 21
dof = 6(N − 1− J) + Σfi = 6(17− 1− 21) + 21 = −9

Grubler’s formula would thus seem to imply that the mechanism is overconstrained. How-
ever, each parallelogram linkage has one degree of freedom of motion, so that each leg of
the Delta robot is kinematically equivalent to an RUU chain (see Modern Robotics, p. 22).
Replacing each parallelogram linkage by an RUU chain and applying the spatial version of
Grübler’s formula:
N = 7 (links) +1 (ground) = 8
J = 3 (R joints) + 6 (U joints) = 9
Σfi = 3× 1 (R joints) +6× 2 (U joints) = 15
dof = 6(N − 1− J) + Σfi = 6(8− 1− 9) + 15 = 3
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Problem 2 (50 Points)

(a) Planar force closure requires a minimum of four frictionless point contacts (provided that
none are placed at corners). Geometrically, each frictionless point contact maps to the vertex
of a tetrahedron that must enclose an open ball centered at the origin. For the problem as
stated, only three frictionless point contacts are given, making force closure impossible to
achieve.

(b) The sum of all the forces and moments exerted on the block must be zero to keep it
stationary: ∑

i

fi = 0 and
∑
i

τi = 0.
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Figure 2: Three point contacts to resist the external forces.

Let fi be the force at each point contact Pi, and FR, FQ be the forces exerted at points
R and Q, respectively. The problem can then be reformulated as follows:

There exists ai ≥ 0(i = 1, 2, 3) such that
3∑

i=1

aifi + bRFR + bQFQ, for all bR, bQ ≥ 0(1)

~τ2 + ~τ3 = 0 (2)

where ~τi is the moment generated by fi about O and ai, bR, bQ are the linear coefficients
of the corresponding forces. Note that f1, FR and FQ do not exert any moments on the
block since their moment arms are all zero. If there exists any non-negative solution (ai,
bR, bQ) to (1)-(2), the block can be kept stationary. However, both a2 and a3 must be zero
to satisfy (2) since both of their torques are directed in the negative z-direction. Since
a1f1 +bRFR +bQFQ = 0 can’t be true for all bR, bQ ≥ 0 ∈ R, this grasp cannot resist external
forces, that is, the given point contacts are not enough.

(c) It is possible to translate the forces along their lines of action as shown in Figure 3,
because translations do not affect resultant forces or moments exerted on the block (think
about the moment arm of forces.) Translating the forces along their lines of action and
applying Nguyen’s theorem, it can be determined that the position of contact P4 must
satisfy 0 < x < 1.
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Problem 3 (50 points)
(a) From the relation p13 = p10 +R10p03,

p13 =

 0
1

1.6

 +

 0 1 0
1 0 0
0 0 −1

 −0.6
0.5
0.7

 =

 0.5
0.4
0.9

 .
(b) Since ω̂ is a unit vector, ω̂ = 1√

30
(−2, 5, 1)T . From the Rodrigues formula,

R34 = I + sin θ[ω̂] + (1− cos θ)[ω̂]2

= I +
1√
30

 0 −1 5
1 0 2
−5 −2 0

 +
1

30

 −26 −10 −2
−10 −5 5
−2 5 −29


=

1√
30

 0 −1 5
1 0 2
−5 −2 0

 +
1

30

 4 −10 −2
−10 25 5
−2 5 1

 .

(c) From the relation vt + 0.1 = p13,z = 0.9, it takes 2π seconds for the claw to come
to a stop. At time t = 2π, T12 becomes

T12 =


√
2
2
−
√
2
2

0 0.5√
2
2

√
2
2

0 0.4
0 0 1 0.9
0 0 0 1

 .
Since the claw stops when the origins of frames {2} and {3} meet, p23 = (0, 0, 0)T ; there-
fore we only need to consider the rotation matrices. From the relation R23 = R20R03 =
(R01R12)

TR03,

R01R12 =

 0 1 0
1 0 0
0 0 −1


√
2
2
−
√
2
2

0√
2
2

√
2
2

0
0 0 1

 =


√
2
2

√
2
2

0√
2
2
−
√
2
2

0
0 0 −1

 ,

R23 = (R01R12)
TR03 =


√
2
2

√
2
2

0√
2
2
−
√
2
2

0
0 0 −1

 −
√
3
2

1
2

0
1
2

√
3
2

0
0 0 −1

 =


√
2−
√
6

4

√
2+
√
6

4
0

−
√
2+
√
6

4

√
2−
√
6

4
0

0 0 1

 .
T23 therefore becomes

T23 =


√
2−
√
6

4

√
2+
√
6

4
0 0

−
√
2+
√
6

4

√
2−
√
6

4
0 0

0 0 1 0
0 0 0 1

 .
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Problem 4 (50 Points)
One possible set of link frames is shown in Figure 4-(a). The corresponding Denavit-
Hartenberg parameters are shown in Figure 4-(b).
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Figure 4: One possible set of link frames and its corresponding Denavit-Hartenberg param-
eters

Another possible set of link frames is shown in Figure 5-(a). The corresponding Denavit-
Hartenberg parameters are shown in Figure 5-(b). Other solutions may exist.
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M2794.002700 Introduction to Robotics
Exam II

May 11, 2017
CLOSED BOOK, CLOSED NOTES

Problem 1
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Figure 1: UR5 6R robot arm in its zero position.

Figure 1 shows a UR5 6R robot arm in its zero position, with space and end-effector frames chosen
as shown.
(a) Suppose θ5 = θ6 = 0. For the desired end-effector position and orientation

Tsb =


0 0 1 1

2

−1 0 0
√
3
2

0 −1 0
√
3
2

0 0 0 1

 ,
find all inverse kinematics solution (θ1, θ2, θ3, θ4). How many inverse kinematics solutions can you
find?
(b) Show that [AdT ] for any T ∈ SE(3) is always nonsingular. Use this fact to argue that the space
Jacobian and body Jacobian always have the same rank.
(c) Consider the following minimization problem that arises in computer vision:

minL(ω, v) = ‖b(v)−A(v)ω‖2,

where ω, v ∈ R3, b(v) ∈ R3n, A(v) ∈ R3n×3, and v ∈ R3 must satisfy vT v = 1. Find an expression
for the optimal ω as a function of v.
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Problem 2
The spatial RRRRRP open chain of Figure 2 is shown in its zero position, with space and end-
effector frames chosen as shown.
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Figure 2: RRRRRP open chain

(a) Derive its forward kinematics in the form

Tsb = e[S1]θ1e[S2]θ2e[S3]θ3Me[S4]θ4e[S5]θ5e[S6]θ6 ,

where M ∈ SE(3).
(b) Is the zero position a kinematic singularity? Explain your answer.
(c) At the zero position, let θ̇ = (1, 1, 1, 1, 1, 1)T . Find the linear velocity of the end-effector in {s}
frame coordinates.
(d) At the zero position, two external forces, fext1 and fext2 , are applied to the open chain. fext1 =
(−f1,−f2,−f3)T is applied to the end-effector, while fext2 = (−f4,−f5,−f6)T is applied to point A
shown in the figure. Both are expressed in {s} frame coordinates. Define f = (f1, f2, f3, f4, f5, f6)

T ,
and let τ = (τ1, τ2, τ3, τ4, τ5, τ6)

T be the input joint torques required to maintain static equilibrium.
Then τ and f satisfy the following equation:

τ = Kf.

Find matrix K.
(e) Suppose the input joint torques are τ = (7, 3, 7, 3, 0, 4)T . Find the minimum norm f that
satisfies the static equilibrium condition.
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Problem 3
(a) A six-dof spatial open chain has three of its revolute joint axes coplanar, and a prismatic joint
axis normal to the plane spanned by the three coplanar revolute joint axes (see Figure 3(a)-(i)). Is
this configuration a singularity? Explain your answer.
(b) A six-dof spatial open chain has three of its revolute joint axes intersecting at a common point;
this comon point lies on the plane spanned by two other revolute joint axes (see Figure 3(a)-(ii)).
Is this configuration a singularity? Explain your answer.
(c) Try to find as many singularities of the 6R PUMA-type arm shown in Figure 3(b). For each
singularity, explain the type using the screw conditions.

(a) Kinematic singularity involving prismatic and revolute joints.

(b) 6R PUMA-type arm.

Figure 3: Figures for Problem 3.
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M2794.002700 Introduction to Robotics
2017 Midterm Examination 2 Solution

Problem 1 (50 Points)

(a) The desired end-effector position and orientation is represented as

Tsb =


0 0 1 1

2

−1 0 0
√
3
2

0 −1 0
√
3
2

0 0 0 1

 .
Since θ5 = 0, it is only θ1 that can affect the z-axis orientation of the end-effector. The
desired z-axis orientation of the end-effector is (1, 0, 0)T , which is the same as that of zero
position. θ1 must therefore be zero.

x̂

ŷ
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1

1

ŷ
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(b) Projected view (elbow-up)

Figure 1: UR5 6R robot arm for Problem 1

As shown in Figure 1, since θ6 = 0, axis of joint 5 must be parallel to y-axis of space frame
{s} to yield the desired x-axis and y-axis orientation of the end-effector. From the desired
position of the end-effector and given link lengths, we can derive the projected view as Figure
1-(b). We can easily find out 4ADC is an isosceles right triangle. Hence, we can obtain
∠ACD,∠CAD, and AC as follows:

∠CAD = ∠ACD =
1

4
π,

AC =
√

2 ·
√

3− 1

2
=

√
6−
√

2

2
.
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Then, from the law of cosines and the property of an isosceles triangle, ∠ABC, ∠BAC, and
∠BCA can be determined:

∠ABC = cos−1
(

12 + 12 − (
√
6−
√
2

2
)2

2 · 1 · 1

)
= cos−1

(√
3

2

)
=

1

6
π,

∠BAC = ∠BCA =
1

2
(π − ∠ABC) =

5

12
π.

For elbow-up case as shown in Figure 1-(b),

θ2 = ∠CAD + ∠BAC =
2

3
π,

θ3 = −π + ∠ABC = −5

6
π,

θ4 = ∠BCA+ ∠ACD =
2

3
π.

For elbow-down case,

θ2 = ∠CAD − ∠BAC = −1

6
π,

θ3 = π − ∠ABC =
5

6
π,

θ4 = −∠BCA+ ∠ACD = −1

6
π.

We therefore have two inverse kinematics solutions:

(θ1, θ2, θ3, θ4) = (0,
2

3
π,−5

6
π,

2

3
π),

(θ1, θ2, θ3, θ4) = (0,−1

6
π,

5

6
π,−1

6
π).

(b)
(i) Let T ∈ SE(3) be

T =

[
R p
0 1

]
⇒ [AdT ] =

[
R 0

[p]R R

]
For any R ∈ SO(3) and p ∈ R3, [AdT ] always has an inverse.

[AdT ]−1 =

[
RT 0

−[RTp]RT RT

]
Since [AdT ] is invertible, it is nonsingular.

(ii) Js(θ) = [AdT ]Jb(θ).
⇒ rank(Js(θ)) = rank([AdT ]Jb(θ)) = rank(Jb(θ)).
Reason : For A ∈ Rn×m, P ∈ Rn×n, if P is nonsingular, rank(A) = rank(PA)
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(c) For a given v, this is an unconstrained minimization problem for a function L(w)

min
w∈R3
‖b(v)− A(v)w‖2

FONC : ∂L
∂w

(w∗) = 0
∂L
∂w

(w∗) = −2bTA+ 2w∗TATA = 0
⇒ ATAw∗ = AT b

⇒If ATA is nonsingular, w∗ = (ATA)−1AT b.
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Problem 2 (80 Points)

(a) Tweak the standard POE formula using transformation of twist as follows,

Tsb = e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4e[S5]θ5e[S6]θ6M

= e[S1]θ1e[S2]θ2e[S3]θ3Me[S
′
4]θ4e[S

′
5]θ5e[S

′
6]θ6 ,

where [Si] =

[
[wi] vi
0 0

]
, [S ′i] = [AdM−1(Si)] = M−1[Si]M.

Geometrical interpretation of S ′i is simply changing the coordinates from {s} frame to {b}
frame. At zero-position, the end-effector is located at p = (0, 0,−2)T and its orientation is

R =

1 0 0
0 0 −1
0 1 0

 .
Thus, rigid body transformation matrix of the end-effector at zero-position is

M =

[
R p
0 1

]
=


1 0 0 0
0 0 −1 0
0 1 0 −2
0 0 0 1

 .
To compute screw Si = (wi, vi)

T of each revolute joint, get wi as its joint axis and set
vi = −qi × wi where qi is an arbitrary point on its joint axis.

i wi qi vi
1 (0, 0, 1) (0, 1, 0) (1, 0, 0)
2 (1, 0, 0) (0, 1,−1) (0,−1,−1)
3 (0, 1, 0) (0, 0,−1) (1, 0, 0)

i w′i q′i v′i
4 (1, 0, 0) (0, 1,−1) (0,−1,−1)
5 (0, 0,−1) (0, 0, 0) (0, 0, 0)
6 (0, 0, 0) × (0, 0, 1)

(b) Kinematic singularity occurs when there exists:

1. Two colinear revolute joints

2. Three coplanar and parallel revolute joints

3. Four revolute joints intersecting at a common point

4. Four coplanar revolute joints

5. Six revolute joints intersecting a common line

The manipulator of the problem falls under the first and the third condition: the axes 2 and
4 are colinear revolute joints and the axes 1, 2, 3, and 4 are intersecting at a common point.
Thus, the manipulator at zero position is obviously kinematic singularity.

On the other hand, kinematic singularity can be also determined by rank of Jacobian ma-
trix. If any Jacobian matrix expressed in any frame is not full rank, then it loses at least
one degree of freedom, that is, kinematic singularity. From (a), it is straightfoward to show
that the space Jacobian has rank of 5.
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(c) There are mainly three ways to compute the linear velocity of the end-effector:

1. Compute the body Jacobian Jb and Vb = Jbθ̇. Then, pre-multiply Rsb to express it in
{s} frame: v = Rsbvb.

2. Use the transformation of velocity: Vb = [AdTbs ]Vs = [AdTbs ]Jsθ̇. Then, pre-multiply
Rsb to express it in {s} frame: v = Rsbvb.

3. By the definition of spatial linear velocity vs = ṗ − ws × p, the end-effector velocity
expressed in {s} frame is v = ṗ = vs + ws × p.

Using the third method, space Jacobian at zero position is:

Js =


0 1 0 1 0 0
0 0 1 0 1 0
1 0 0 0 0 0
1 0 1 0 2 0
0 −1 0 −1 0 −1
0 −1 0 −1 0 0

 .

Therfore,

Vs = Jsθ̇ =


2
2
1
4
−3
−2

 .

Thus, the spatial linear velocity vs = (4,−3,−2)T , angular velocity ws = (2, 2, 1)T , and
p = psb = (0, 0,−2)T . Then, it is straightfoward to compute the velocity of the end-effector
ṗ as follows,

ṗ = vs + ws × p =

 4
−3
−2

+

 0 −1 2
1 0 −2
−2 2 0

 0
0
−2

 =

 0
1
−2

 .
(d) Since static equilibrium is maintained, the forces that the robot is generating are −fext1 =
(f1, f2, f3)

T and −fext2 = (f4, f5, f6)
T respectively. Vectors from the origin of frame {s} to

the origin of frame {b} and to point A expressed in {s} frame coordinates are

rs =

 0
0
−2

 , ra =

−1
1
−2

 .
Therefore, the spatial forces that the robot is generating are

Fs =

[
rs × (−fext1)
−fext1

]
=


2f2
−2f1

0
f1
f2
f3

 , Fa =

[
ra × (−fext2)
−fext2

]
=


2f5 + f6
−2f4 + f6
−f4 − f5

f4
f5
f6

 .
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Denote i-th column of Js as Ji (i = 1, 2, 3, 4, 5, 6). Joint torques τ5 and τ6 are affected only
by Fs:

τ5 = JT5 Fs = 0,

τ6 = JT6 Fs = −f2.

Joint torques τ1, τ2, τ3 and τ4 are affected by Fs and Fa:

τ1 = JT1 (Fs + Fa) = f1 − f5,
τ2 = JT2 (Fs + Fa) = f2 − f3 + f5,

τ3 = JT3 (Fs + Fa) = −f1 − f4 + f6,

τ4 = JT4 (Fs + Fa) = f2 − f3 + f5.

Putting together,

τ =


τ1
τ2
τ3
τ4
τ5
τ6

 =


1 0 0 0 −1 0
0 1 −1 0 1 0
−1 0 0 −1 0 1
0 1 −1 0 1 0
0 0 0 0 0 0
0 −1 0 0 0 0




f1
f2
f3
f4
f5
f6

 = Kf.

Therefore,

K =


1 0 0 0 −1 0
0 1 −1 0 1 0
−1 0 0 −1 0 1
0 1 −1 0 1 0
0 0 0 0 0 0
0 −1 0 0 0 0

 .

(e) Substituting the input joint torques τ = (τ1, τ2, τ3, τ4, τ5, τ6)
T = (7, 3, 7, 3, 0, 4)T to the

static equilibrium condition,

7 = f1 − f5,
3 = f2 − f3 + f5,

7 = −f1 − f4 + f6,

3 = f2 − f3 + f5,

0 = 0,

4 = −f2.

The equations can be simplified as

f2 = −4,

f1 − f5 = 7,

−f1 − f4 + f6 = 7,

−f3 + f5 = 7.

6



Let x = (f1, f3, f4, f5, f6)
T and b = (7, 7, 7)T . Then,

 1 0 0 −1 0
−1 0 −1 0 1
0 −1 0 1 0



f1
f3
f4
f5
f6

 = Ax = b.

Since f2 is constant, the optimization problem can be formulated as:

minimize f(x) = 1
2
xTx

subject to g(x) = Ax− b = 0.

From the first-order necessary condition for optimality,

∂f(x)

∂x
+ λT

∂g(x)

∂x
= xT + λTA = 0,

where λ ∈ R3. Then,

x = −ATλ.

Multiplying A to both sides,

Ax = −AATλ.

Since rank of A is 3, rank of AAT ∈ R3×3 is also 3 and therefore invertible. Thus,

λ = −(AAT )−1Ax.

From the equality constraint g(x) = 0, Ax = b. Substituting to the equation above,

λ = −(AAT )−1b.

Therefore, the x that minimizes the objective function is

x = −ATλ
= AT (AAT )−1b

=


1 −1 0
0 0 −1
0 −1 0
−1 0 1
0 1 0


 2 −1 −1
−1 3 0
−1 0 2

−1  7
7
7



=


5
−9
−6
−2
6

 .
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Therefore, the minimum norm f that satisfies the static equilibrium condition is

f =


5
−4
−9
−6
−2
6

 .
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Problem 3 (50 Points)

(a) Suppose that the the prismatic joint axis is coincident with the z-axis of the fixed frame
and the three revolute joint axes are on the xy-plane of the fixed frame as shown in Figure 2-
(i).

Figure 2: Figure for Problem 3.

Vs1(θ) : ωs1 =

w1x

w1y

0

 , vs1 =

 0
0
v1z


Vs2(θ) : ωs2 =

w2x

w2y

0

 , vs2 =

 0
0
v2z


Vs3(θ) : ωs3 =

w3x

w3y

0

 , vs3 =

 0
0
v3z


Vs4(θ) : ωs4 =

 0
0
0

 , vs4 =

 0
0
1



∴ Js(θ) =


w1x w2x w3x 0
w1y w2y w3y 0
0 0 0 0
0 0 0 0
0 0 0 0
v1z v2z v3z 1


There is singularity because the rank of Js(θ) is less than 4.
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(b) Suppose that the the common point is coincident with the origin of the fixed frame and
two other revolute joint axes are on the xy-plane of the fixed frame as shown in Figure 2-(ii).

Vs1(θ) : ωs1 =

w1x

w1y

w1z

 , vs1 =

 0
0
0


Vs2(θ) : ωs2 =

w2x

w2y

w2z

 , vs2 =

 0
0
0


Vs3(θ) : ωs3 =

w3x

w3y

w3z

 , vs3 =

 0
0
0


Vs4(θ) : ωs4 =

w4x

w4y

0

 , vs4 =

 0
0
v4z


Vs5(θ) : ωs5 =

w5x

w5y

0

 , vs5 =

 0
0
v5z



∴ Js(θ) =


w1x w2x w3x w4x w5x

w1y w2y w3y w4y w5y

w1z w2z w3z 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 v4z v4z


There is singularity because the rank of Js(θ) is less than 5.

(c) There are only three types of singularity in the 6R PUMA-type arm.

(i) θ5 = π/2 or 3π/2
- axes 4 and 6 are colinear.
(ii) θ3 = 0 or π
- axes 1,2,3,4,5, and 6 are intersecting a common line.
(iii) m cos θ2 + n cos(θ2 + θ3) = 0
- axes 4,5, and 6 are intersecting at a common point and this common point lies on the plane
spanned by axes 1 and 2. (the case of Problem 3(b))

You can check the screw condition easily in each case.
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In reference, we can check that there is no more type of singularity from Jacobian :

J(θ) =


0 1 1 0 sin θ4 cos θ4 cos θ5

sin(θ2 + θ3) 0 0 1 0 sin θ5
cos(θ2 + θ3) 0 0 0 cos θ4 − sin θ4 cos θ5
−m cos θ2 0 0 0 n cos θ4 −n sin θ4cosθ5

−l cos(θ2 + θ3) m sin θ3 0 0 0 0
l sin(θ2 + θ3) m cos θ3 0 0 −n sin θ4 −n cos θ4 cos θ5


detJ(θ) = mn(m cos θ2 + n cos(θ2 + θ3)) sin θ3 cos θ5

∴ detJ(θ) = 0 ⇐⇒ θ5 = π/2 or 3π/2, θ3 = 0 or π, m cos θ2 + n cos(θ2 + θ3) = 0

11



M2794.002700 Introduction to Robotics
Final Examination

7-10 PM, June 13, 2017
CLOSED BOOK, CLOSED NOTES

Problem 1

S

S

S

S

(a) A single tetrahedron

S

P

P

P

S

S

S

(b) A single tetrahedron with
three struts actuated

(c) Four tetrahedral modules are connected to-
gether with twelve struts actuated

Figure 1: Three types of structures assembled using tetrahedral modules

Figure 1 shows three types of structures made using tetrahedral modules. All of the legs (struts)
are connected with spherical (S) joints at the nodes. Three base struts are always fixed to the
ground (shown shaded).
(a) Use Grübler’s formula to find the degrees of freedom of the single tetrahedron structure of
Figure 1(a) (the struts are of fixed length). Does the result match your intuition? Explain.
(b) Suppose three struts of the single tetrahedron are linearly actuated by prismatic joints as in
Figure 1(b). Determine the degrees of freedom of the mechanism using Grübler’s formula, and
explain if it agrees with your intuition.
(c) Suppose four tetrahedral modules are attached together to form the complex mechanism shown
in Figure 1(c). Determine the degrees of freedom of this mechanism using Grübler’s formula and
explain if it agrees with your intuition. (Hint : Think of how the degrees of freedom changes whenver
a tetrahedral is added).
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Problem 2
A small robotic gripper is designed to pick up polygonal parts as shown in Figure 2. The parts are
regular polygons: all interior angles have the same value β and the edges are of equal length `.
Assume there are four types of polygonal parts: triangles, squares, pentagons, and hexagons.

B C

A

F E

D
A

A A

B
B B

C

C

CDDE

Gripper

Figure 2: Picking up polygonal parts with a robotic gripper.

The gripper picks up a part using two contact points P1, P2 on adjacent edges (Figure 3): P1 lies
on edge AB, while P2 lies on edge BC. Angles α and β are defined as shown in the figure. Assume
frictional point contacts with friction coefficient µ; the friction cone angle θ as shown in the figure
is then given by θ = tan−1(µ).

A

B C

Figure 3: Gripper grasping a part at point contacts P1 and P2.

(a) Referring to Figure 3, derive a lower bound on θ for the grasp to be force closure. Express your
lower bound in terms of the angles α and β.
(b) Observe α lies in the range 0 < α < π − β. What is the value of α such that the force closure
can be achieved with the smallest friction coefficient µ? Express this optimal value for α in terms
of the angle β.
(c) Assume that µ = tan 58◦. Which of the four polygonal parts—the triangle, square, pentagon,
and hexagon—can be picked up with the gripper?
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Problem 3

Figure 4: 5R robot for Problem 3.

The gripper of Problem 2 is now attached to the 5R robot of Figure 4. The zero position of the 5R
robot is shown in Figure 5; {s} denotes the fixed frame, while {b} denotes the end-effector frame.

{b}

{s}

LLL
L

x

z

y
x

z

y

Figure 5: Zero position of the 5R robot.

(a) Express the forward kinematics as T = e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4e[S5]θ5M , and derive M and Si,
i = 1, · · · , 5.
(b) A polygonal part must be picked up in the configuration

T =


1
2 0

√
3
2 (

√
3 + 1

2)L√
3
2 0 −1

2

√
3
2 L

0 1 0 0
0 0 0 1

 .
Assume θ3 is fixed to θ3 = π

2 . How many inverse kinematics solutions does there exist? Derive all
possible solutions θi in the range −π < θi ≤ π, i = 1, 2, 4, 5.
(c) Suppose a polygonal part must be pulled carefully from the wall in the configuration T given
in (b). To do so, the robot must pull the part in the −x̂ direction of the end-effector frame {b}
while keeping the same orientation. Suppose the robot’s maximum joint velocity is bounded by
‖θ̇‖2 ≤ 1. What is the maximum possible linear velocity of the end-effector? (If you cannot solve
this problem for the T given in part (b), then to receive partial credit, you may choose another
more convenient T ).
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Problem 4
Recall the transformation between link frames using the Denavit-Hartenberg parameters:

• Revolute joints: Ti−1,i = Rot(x̂, αi−1) · Trans(x̂, ai−1) · Trans(ẑ, di) · Rot(ẑ, φi + θi).

• Prismatic joints: Ti−1,i = Rot(x̂, αi−1) · Trans(x̂, ai−1) · Trans(ẑ, di + θi) · Rot(ẑ, φi).

(a) Show that Ti−1,i can be expressed as Ti−1,i(θi) = Mie
[S]θi for both prismatic joints and revolute

joints, and find S ∈ R6 for each case.
(b) Given the D-H parameters and Tnh for an n-dof open chain robot, express the forward kinematics
in the POE form T0h = e[S1]θ1e[S2]θ2 . . . e[Sn]θnM .
(c) Assume T0h = e[S1]θ1e[S2]θ2M0h, where S1 = (0,−1

2 ,
√
3
2 , 0, 0, 0)T , S2 = (0, 0, 0, 0, 1, 0)T , and

M0h ∈ SE(3) is

M0h =


0 1 0 0
0 0 1 L

1 0 0
√
3
2 L

0 0 0 1

 .
Find, if they exist, the D-H parameters corresponding to the given S1 and S2, with T2h = I, d1 = L,
and φ1 = 0. Otherwise, prove analytically that there are no feasible D-H parameters corresponding
to the given POE parameters.

(d) Assume T0h = e[S1]θ1e[S2]θ2M0h, where S1 = (0,−1
2 ,
√
3
2 , 0, 0, 0)T , S2 = (0, 0, 0, 1, 0, 0)T , and M0h

is

M0h =


0 1 0 0
0 0 1 L

1 0 0
√
3
2 L

0 0 0 1

 .
Find, if they exist, the D-H parameters corresponding to the given S1 and S2, with T2h = I, d1 = L,
and φ1 = 0. Otherwise, prove analytically that there are no feasible D-H parameters correspoding
to the given POE parameters.
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Problem 5
The spatial six-dof open chain of Figure 6 is shown in its zero position, with space and end-effector
frames chosen as shown. The pitch of the screw joint is h = 1/2π (m/rad).

θ1

θ2

θ3
θ4

θ5

θ6

2

1

22

z

x y
{s}

z

x y

{b}

h= 1
2π

Figure 6: 6-DOF open chain for Problem 5

(a) When θ1 = 2π, θ3 = −π/2, θ4 = 1, θ2 = θ5 = θ6 = 0, derive the space Jacobian Js(θ).
(b) Is the configuration in part (a) a singularity? If yes, explain which degrees of freedom of motion
are lost by the end-effector.
(c) Assume the robot is in the same configuration as part (a). A force fb = (2, 1, 1)T , expressed
in frame {b} coordinates, needs to be generated at the end-effector. What joint torques should be
applied to generate this desired force?
(d) Now suppose θ2 is fixed permanently to θ2 = 0. At the zero position, the robot’s end-effector
should generate some desired spatial velocity Vd ∈ R6 expressed in frame {b} coordinates. However,
a solution θ̇ ∈ R5 to Vd = Jb(0)θ̇ does not exist for the given Vd. Find the θ̇ that minimizes

f(θ̇) =
1

2

∥∥∥Vd − Jb(0)θ̇
∥∥∥2 .

Express the optimal θ̇ in terms of Jb(0) and Vd.

5



Problem 6
Figure 7 shows a 3R robot arm in its zero position. All lengths and angles are as shown in the figure.
The three links all have the same shape and mass m = 1, and their center-of-mass frames {c1},
{c2}, and {c3} are attached at the respective link centers of mass. The 3 × 3 link inertia matrix
with respect to the its center-of-mass frame is

Ic =

 4 0 0
0 4 0
0 0 2

 .
The link reference frames {1}, {2}, and {3} are attached at each joint as shown in the figure.
Assume that there is no gravity.
(a) Let Gi be the 6 × 6 spatial inertia matrix for link i with respect to link frame {i}, i = 1, 2, 3.
Find G1, G2, and G3.
(b) Let Vi be the body twist of link frame {i} expressed in link frame {i} coordinates, and V̇i its
derivative, i = 1, 2, 3. The forward iteration equation for Vi is given by

Vi = [AdTi,i−1 ]Vi−1 +Aiθ̇i,

where Ai is the screw axis for joint i, expressed in the link frame {i}. Derive this equation.
(c) Also recall that

V̇i = [AdTi,i−1 ]V̇i−1 + [adVi ]Aiθ̇i +Aiθ̈i,
and

Fi = [AdTi+1,i ]
TFi+1 + GiV̇i − [adVi ]

TGiVi,
and τi = FTi Ai, where Fi is the wrench transmitted through joint i, expressed in frame {i}. Using
the recursive inverse dynamics algorithm, find m22(0) and m32(0), the (2,2) and (3,2) entries of the
mass matrix M(0) when the robot is in its zero position.

θ1

θ2

θ3

z

x

y

z

x

y

z

x y

z

x

y

1

1

1

2

2

2

z

x

y

3

3

3

z

x

y

3

4
{c }2

{c }3

{c }1

{1}

{2}

{3}

z

x

y

0

0

0

{0}

Figure 7: 3R robotic arm for Problem 5 shown in its zero position
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Problem 7
Figure 8(a) shows a telescope operated by the European Southern Observatory in Chile. It can be
modelled as an RP open chain as shown in Figure 8(b). The chain moves in the x̂-ŷ plane, with
gravity g=10 acting in the -ŷ direction. The two links are modelled as point masses m1 = m2 = 1
concentrated at the end of each link. The link length L = 1.

(a) Telescope for Problem 7.

x̂

ŷ
θ1

c

c2

1

θ2

L

L

(b) RP open chain model of telescope.

Figure 8: Figures for Problem 7

(a) Using the Lagrangian method, derive the dynamic equations for the telescope.
(b) For the constant input τ1 = 0, τ2 = mg, the telescope dynamics has the constant solution θ1 =
π/2, θ2 = L. Linearize the dynamics about this solution and express it in the form ż = Az +Bw,
where z ∈ R4, w ∈ R2, with z1 = δθ1, z2 = δθ2, z3 = ż1, z4 = ż2, w1 = δτ1, w2 = δτ2. If you are
unable to obtain the dynamic equations for part (a), then explain the linearization process in as
much detail as you can.
(c) Since earthquakes strike Chile frequently, a feedback controller must keep the telescope in stable
equilibrium against small disturbances. For the linearized system obtained in part (b), design a PD
control law of the form δτ1 = kpe+ kdė, where e = θd − θ1, θd = π/2, and kp = 35, such that θ1 is
critically damped (that is, the telescope returns to the vertical position as fast as possible). If you
are unable to obtain the linearized dynamics, then explain in as much detail as you can the critically
damped PD control law for a standard mass-spring-damper system of the form mẍ+ bẋ+ kx = u,
where x = δθ1, u = δτ1.
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M2794.002700 Introduction to Robotics
2017 Final Examination Solution

Problem 1 (50 Points)
(a) Since three base struts are fixed to the ground, the three base struts can be replaced
with a ground. Using Grübler’s formula for spatial mechanism yields:
N = 3 (links) + 1 (ground) = 4,
J = 5 (S joints),∑
fi = 5× 3 = 15,

dof = 6(N − 1− J) +
∑
fi = 6(4− 1− 5) + 15 = 3.

However, since it is clear that a tetrahedron structure has a rigidity, the expected dof must
be zero. The three additional degrees of freedom from Grübler’s formula can be explained
by the torsional rotations of the links about their respective axis.

(b) Considering the three prismatic joints, using Grübler’s formula for spatial mechanism
yields:
N = 6 (links) + 1 (ground) = 7,
J = 5 (S joints) + 3 (P joints),∑
fi = 5× 3 + 3× 1 = 18,

dof = 6(N − 1− J) +
∑
fi = 6(7− 1− 8) + 18 = 6.

Intuitively, in three-dimensional space, the mechanism has three visible degrees of freedom
at the end-effector. Grübler’s formula overestimates the degrees of freedom also in this case
due to the torsional rotations of the links.

(c) Suppose we have a result of Grübler’s formula, dof = 6(N − 1 − J) +
∑
fi, before

adding a tetrahedral module. When one more tetrahedral module is attached, we have five
more S joints, three more P joints, and six more links. After adding one more module, using
Grübler’s formula for spatial mechanism yields:

dof = 6{(N + 6)− 1− (J + 8)}+ (
∑

fi + 5× 3 + 3× 1)

= 6(N − 1− J) +
∑

fi − 12 + 18

= 6(N − 1− J) +
∑

fi + 6.

The degrees of freedom, according to Grübler’s formula, increase by six each time a tetrahe-
dral module is added. Since three more tetrahedral modules are added to a single tetrahedron
serially (i.e., without making a closed loop of modules), we can expect Grübler’s formula
yields overall 24 degrees of freedom for the given mechanism. There must be, however, 12 in-
ternal degrees of freedom from torsional rotations of the links, the actual degrees of freedom
is 24− 12 = 12.
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Problem 2 (50 Points)
Figure 1 shows a gripper grasping a polygon with angle β. Angle α is defined as shown in
the figure and the friction cone angle is θ = tan−1(µ), where µ is the friction coefficient of
the point contacts.

β − π
2

β

β

α

P1

P2

f1

f2

f3 f4θ
α

Figure 1: Gripper grasping a polygon with angle β

(a) According to Ngyuen’s theorem, the line connecting the point contacts should lie inside
both friction cones to achieve force closure. By geometry, the conditions for the line to lie
inside both friction cones are:

• f2 is above P1P2 =⇒ θ > α + (β − π
2
),

• f3 is above P1P2 =⇒ θ > π
2
− α.

Therefore, the lower bound on θ for the grasp to be force closure is

θ > max
(
α + (β − π

2
),
π

2
− α

)
.

(b) Figure 2 shows the force closure conditions of θ plotted in θ−α space, where the shaded
area is the region of θ for force closure given α and β. The smallest friction coefficient
corresponds to the smallest friction cone angle θ∗, which is achieved when

θ∗ = α∗ + β − π

2
=
π

2
− α∗,

where α∗ is the optimal value for α. Therefore, the optimal value for α is

α∗ =
π − β

2
.

(c) The smallest friction cone angle θ∗ that corresponds to the optimal α∗ is

θ∗ =
β

2
.

Given β for each polygon, force closure will be achieved if θ > θ∗ = β
2
:

2



θ

θ∗

αα∗

θ=α+ (β− π
2 )

θ= π
2−α

Figure 2: Force closure conditions of θ plotted

• Triangle: β = 60◦, θ = 58◦ > β
2

= 30◦ =⇒ Force closure,

• Square: β = 90◦, θ = 58◦ > β
2

= 45◦ =⇒ Force closure,

• Pentagon: β = 108◦, θ = 58◦ > β
2

= 54◦ =⇒ Force closure,

• Hexagon: β = 120◦, θ = 58◦ < β
2

= 60◦ =⇒ Not force closure.

Therefore, triangle, square, and pentagon can be picked up and hexagon cannot be picked
up.
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Problem 3 (60 Points)
(a) Revolute joint screw Si = [wi, vi]

T where wi is axis of revolute joint, vi is linear velocity of
the origin of fixed frame, vi = −wi× qi, and qi can be any point lying on its joint axis. Each
of the joint screw Si and the end-effector configuration at zero-position M can be derived as
follows:

i wi qi vi
1 (0, 1, 0) (0, 0, 0) (0, 0, 0)
2 (0, 0, 1) (0, 0, 0) (0, 0, 0)
3 (1, 0, 0) (0, 0, 0) (0, 0, 0)
4 (0, 1, 0) (L, 0, 0) (0, 0, L)
5 (0, 1, 0) (2L, 0, 0) (0, 0, 2L)

M =


1 0 0 3L
0 1 0 0
0 0 1 0
0 0 0 1

 ,
since the orientation of the end-effector is the same as fixed frame and the position is lying
on the x-axis of fixed frame.

{b}

{s}

LLL
L

x

z

y
x

z

y

Figure 3: Zero position of the mining 5R manipulator.

(b) Since θ3 = π
2
, θ2, θ4, θ5 cannot change the z-component of the position of {b} frame, pz,

but only θ1 determines. Thus, given pz = 0 means that θ1 = 0, π. Given fixed θ3 = π
2
, there

are 4 solutions generally. There are two pairs for each combination of (θ1, θ2) and (θ4, θ5),
which leads to the total number of combinations, (θ1, θ2, θ4, θ5), is 2× 2 = 4.

Basically, (θ4, θ5) combinations are elbow-up and elbow-down as Fig 4. Imagine θ1 = π
and θ2 = π, then you can easily figure out that the manipulator pose is perfectly the same
as the home position except the direction of joint axes θ2, θ4, θ5 (Later, it will be shown that
θ1 6= π because of the orientation of the end-effector.). It is easy to start with position of

4



joint 5, J5. The position can be derived by translating end-effector towards −x̂ axis of {b}
frame:

x̂b =

 1
2√
3
2

0

 , p5 = p− Lx̂b =

√3L
0
0

 ,
where p5 is the position of J5 in Fig 4. Then we can compute θ4 with cosine law and all
other θi’s can be determined by geometrical calculation.

θ1 θ2 θ4 θ5
1 0 1

6
π −1

3
π 1

2
π

2 0 −1
6
π 1

3
π 1

6
π

3 π −5
6
π −1

3
π −1

6
π

4 π 5
6
π 1

3
π −1

2
π

However, y-axis and z-axis of the body frame, ŷb and ẑb, are not consistent with given
end-effector configuration, T , when θ1 = π. Thus, the answer should eliminate the cases of
θ1 = π as follows:

θ1 θ2 θ4 θ5
1 0 1

6
π −1

3
π 1

2
π

2 0 −1
6
π 1

3
π 1

6
π

L

L

L(Elbow-up)

(Elbow-down)

J4

J2 J5

L3

Figure 4: Elbow-up and elbow-down for inverse kinematics.

(c) Using the solution of (b) such that 0 ≤ θ2 ≤ π
2
, we can derive the body jacobian as

follows:

i wi

1 (
√
3
2
, 0,−1

2
)

2 (0, 1, 0)

3 (1
2
, 0,

√
3
2

)
4 (0, 1, 0)
5 (0, 1, 0)
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To minimize scratching, desired velocity of the end-effector is wb = 0, vb = [−v, 0, 0]T , pulling
in −x̂b direction without rotation. Since wb =

∑
iwiθ̇i = 0,

θ̇1 = θ̇3 = 0,

θ̇2 + θ̇4 + θ̇5 = 0.

To deal with vb = [−v, 0, 0]T , it is recommended to solve the problem in b frame. The
velocity components vi of the body jacobian of joint 2, 4, 5 can be derived as follows:

i wi qi vi

2 (0, 1, 0) (−(1 +
√
3
2

)L, 0,−3
2
L) (3

2
L, 0,−(1 +

√
3
2

)L)
4 (0, 1, 0) (−L, 0,−L) (L, 0,−L)
5 (0, 1, 0) (−L, 0, 0) (0, 0,−L)

Note that (vb)z = 0 = −Lθ̇4 − Lθ̇5 − (1 +
√
3
2

)Lθ̇2. Substituting θ̇2 + θ̇4 + θ̇5 = 0 from∑
iwiθ̇i = 0 leads to θ̇2 = 0 and θ̇4 = −θ̇5. The problem is to maximize (vb)x = −Lθ̇4− 3

2
Lθ̇2

under the constraint ‖θ̇‖2 ≤ 1. The answer should be,

max
‖θ̇‖2≤1

‖(vb)x‖ = max
θ̇24≤ 1

2

‖ − Lθ̇4‖ =
L√
2
.
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Problem 4 (70 Points)
(a) For a revolute joint,

Ti−1,i = Rot (x̂, αi−1) · Trans (x̂, ai−1) · Trans (ẑ, di) · Rot (ẑ, φi + θi)

= Rot (x̂, αi−1) · Trans (x̂, ai−1) · Trans (ẑ, di) · Rot (ẑ, φi) · Rot (ẑ, θi)

= Mie
[S]θi .

Therefore,

Mi = Rot (x̂, αi−1) · Trans (x̂, ai−1) · Trans (ẑ, di) · Rot (ẑ, φi)

S =
[

0 0 1 0 0 0
]T
.

For a prismatic joint,

Ti−1,i = Rot (x̂, αi−1) · Trans (x̂, ai−1) · Trans (ẑ, di + θi) · Rot (ẑ, φi)

= Rot (x̂, αi−1) · Trans (x̂, ai−1) · Rot (ẑ, φi) · Trans (ẑ, di + θi)

= Rot (x̂, αi−1) · Trans (x̂, ai−1) · Rot (ẑ, φi) · Trans (ẑ, di) · Trans (ẑ, θi)

= Mie
[S]θi .

Therefore,

Mi = Rot (x̂, αi−1) · Trans (x̂, ai−1) · Rot (ẑ, φi) · Trans (ẑ, di)

S =
[

0 0 0 0 0 1
]T
.

(b) From the result of (a),

T0h = T01T12 · · ·Tn−1,nTnh
= M1e

[A1]θ1M2e
[A2]θ2 · · ·Mne

[An]θnTnh

=
(
M1e

[A1]θ1M−1
1

) (
M1M2e

[A2]θ2M−1
2 M−1

1

)
· · ·
(
M1 · · ·Mne

[An]θnM−1
n · · ·M−1

1

)
M1 · · ·MnTnh

= eM1[A1]M
−1
1 θ1e(M1M2)[A2](M1M2)

−1θ2 · · · e(M1···Mn)[An](M1···Mn)
−1θnM1 · · ·MnTnh

= e[S1]θ1e[S2]θ2 · · · e[Sn]θnM.

Therefore,

S1 = AdM1 (A1)

S2 = AdM1M2 (A2)
...

Sn = AdM1···Mn (An)

M = M1 · · ·MnTnh.
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(c) Suppose that there exists M1 ∈ SE(3) satisfying S1 = AdM1(S),
where M1 = Rx(α0)Tx(a0)Tz(d1)Rz(φ1), S = (0, 0, 1, 0, 0, 0)T .

(Since S1 = (0,−1
2
,
√
3
2
, 0, 0, 0)T , we know that the joint 1 is a revolute joint.)

M1 =


Cφ1 −Sφ1 0 a0

Sφ1Cα0 Cφ1Cα0 −Sα0 −d1Sα0
Sφ1Sα0 Cφ1Sα0 Cα0 d1Cα0

0 0 0 1

 =

[
R p
0 1

]
.

S1 =

[
R 0

[p]R R

]
S, where S = (0, 0, 1, 0, 0, 0)T .

→ (0,−1
2
,
√
3
2

)T= the 3rd column of R, (0, 0, 0)T=the 3rd column of [p]R. 0
−1

2√
3
2

 = R

 0
0
1

 =

 0
−Sα0
Cα0

 → α0 = π/6.

 0
0
0

 = [p]R

 0
0
1

 =

 0
a0Cα0
a0Sα0

 → a0 = 0.

→ α0 = π/6, a0 = 0, d1 = L, φ1 = 0.

Suppose that there exists M2 ∈ SE(3) satisfying S2 = AdM1M2(S),
where M2 = Rx(α1)Tx(a1)Tz(d2)Rz(φ2), S = (0, 0, 0, 0, 0, 1)T .
(Since S2 = (0, 0, 0, 0, 1, 0)T , we know that the joint 2 is a prismatic joint.)

T0h = e[S1]θ1e[S2]θ2M0h = M1e
[S]θ1M1

−1M1M2e
[S]θ2(M1M2)

−1M0h

→ (M1M2)
−1M0h = T2h = I.

→M1M2 = M0h.

Let’s check S2 = AdM1M2(S), where S = (0, 0, 0, 0, 0, 1)T .

S2 = AdM1M2(S) = AdM0h
(S) =

[
R 0

[p]R R

]
S, where M0h =

[
R p
0 1

]
.

→ S2 = the 6th column of

[
R 0

[p]R R

]
= (0, 0, 0, 0, 1, 0)T → Checked!
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M1M2 = M0h

M2 = M1
−1M0h

= Tz(−d1)Rx(−α0)M0h

=


1 0 0 0

0
√
3
2
−1

2
−L

2

0 1
2

√
3
2

√
3
2
L

0 0 0 1




0 1 0 0
0 0 1 L

1 0 0
√
3
2
L

0 0 0 1



=


0 1 0 0
1
2

0
√
3
2

3
√
3

4
L√

3
2

0 −1
2
−3

4
L

0 0 0 1



=


Cφ2 −Sφ2 0 a1

Sφ2Cα1 Cφ2Cα1 −Sα1 −d2Sα1
Sφ2Sα1 Cφ2Sα1 Cα1 d2Cα1

0 0 0 1


→ α1 = 4π/3, a1 = 0, d2 = 3L/2, φ2 = −π/2.

* You can solve it by visualizing the given system.

(d) You can easily show the existence of M1 from (c).
Let’s check the existence of M2.
S2 should be equivalent to AdM1M2(S), where S = (0, 0, 0, 0, 0, 1)T .

AdM1M2(S)= the 6th column of

[
R 0

[p]R R

]
= (0, 0, 0, 0, 1, 0)T 6= S2

→ The D-H parameters correspoding to the given system does not exist.
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Problem 5 (50 Points)
Figure 5 shows the open chain when θ1 = 2π, θ3 = −π/2, θ4 = 1, θ2 = θ5 = θ6 = 0.

θ1

θ2

θ3
θ4

θ5

3

12

z

x y
{s}

z
x

y
{b}

h= 1
2π

3

2

1

θ6

Figure 5: Open chain when θ1 = 2π, θ3 = −π/2, θ4 = 1, θ2 = θ5 = θ6 = 0

(a) For joints 2 to 6, set wi as its joint axis and set vi = −wi × qi, where qi is an arbitrary
point on its joint axis. For joint 1, set w1 as its joint axis and set v1 = −w1 × q1 + hw1,
where h is the pitch of the joint.

i wi qi vi

1 (0, 0, 1) (0, 0, 0) (0, 0, 1/2π)
2 (0, 1, 0) (0, 0, 3) (−3, 0, 0)
3 (0, 1, 0) (0, 0, 4) (−4, 0, 0)
4 (0, 0, 0) × (0, 1, 0)
5 (0, 0, 0) × (1, 0, 0)
6 (0, 0, 1) (3, 5, 0) (5,−3, 0)

Then, the space Jacobian Js(θ) is

Js(θ) =

[
w1 w2 w3 w4 w5 w6

v1 v2 v3 v4 v5 v6

]

=


0 0 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 1
0 −3 −4 0 1 5
0 0 0 1 0 −3

1/2π 0 0 0 0 0

 .
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(b) Since the first row of Js(θ) is all zero, rank of Js(θ) is smaller than 6. Therefore, the
configuration in part (a) is a singularity. For arbitrary θ̇, it can be seen that

Vs =

[
ws
vs

]
= Js(θ)θ̇ =


0
wy
wz
vx
vy
vz

 ,

where wy, wz, vx, vy, and vz are arbitrary values. Therefore, the end-effector cannot rotate
about x-axis with respect to frame {s}. Note that the rank of Js(θ) is 5.
(c) From Figure 5, the rotation matrix from frame {s} to frame {b} is

Rsb =

 0 0 −1
0 1 0
1 0 0

 .
Therefore, desired force fb can be expressed in frame {s} coordinates as

fs = Rsbfb =

 0 0 −1
0 1 0
1 0 0

 2
1
1

 =

 −1
1
2

 .
Then, the end-effector will generate moment of

ms = rs × fs =

 3
3
4

×
 −1

1
2

 =

 2
−10

6

 ,
where rs is the position of the end-effector expressed in frame {s} coordinates. Then the
spatial force expressed in frame {s} coordinates is Fs = (2,−10, 6,−1, 1, 2)T . Therefore, the
joint torques that should be applied are

τ = Js(θ)
TFs =


0 0 1 0 0 1/2π
0 1 0 −3 0 0
0 1 0 −4 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 5 −3 0




2
−10

6
−1
1
2

 =


6 + 1

π

−7
−6
1
−1
−2

 .

(d) Since θ2 is fixed permanently to θ2 = 0, joint 2 can be seen as a part of link between
joint 1 and joint 3. At the zero position, the body Jacobian Jb(0) is

Jb(0) =


0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
−2 −3 0 0 0
0 0 1 0 0

1/2π 0 0 −1 −2

 ∈ R6×5.
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The rank of Jb(0) is 5, which is full rank. f(θ̇) can be expanded to

f(θ̇) =
1

2

∥∥∥Vd − Jb(0)θ̇
∥∥∥2

=
1

2

(
Vd − Jb(0)θ̇

)T (
Vd − Jb(0)θ̇

)
=

1

2

(
V T
d Vd − 2V T

d Jb(0)θ̇ + θ̇TJb(0)TJb(0)θ̇
)
.

Now we apply first order necessary condition to f(θ̇) to find the optimal θ̇∗:

∂f(θ̇)

∂θ̇

∣∣∣∣
θ̇=θ̇∗

=
1

2

(
2Jb(0)TJb(0)θ̇∗ − 2Jb(0)TVd

)
= Jb(0)TJb(0)θ̇∗ − Jb(0)TVd

= 0.

Since the rank of Jb(0) is 5, rank of Jb(0)TJb(0) ∈ R5×5 is 5 and thus invertible. Therefore,
the optimal θ̇∗ is

θ̇∗ =
(
Jb(0)TJb(0)

)−1
Jb(0)TVd.
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Problem 6 (60 Points)

(a) We can find G1 from G1 = [AdTc11 ]
TGc1 [AdTc11 ], where Gc1 =

[
Ic 0
0 mI

]
.

We can also derive [AdTc11 ] =

[
I 0

[pc11] I

]
by Rc11 = I, pc11 = (0, 0,−3). Therefore,

G1 = [AdTc11 ]
TGc1 [AdTc11 ]

=

[
Ic −m[pc11]

2 −m[pc11]
m[pc11] mI

]

=


13 0 0 0 −3 0
0 13 0 3 0 0
0 0 2 0 0 0
0 3 0 1 0 0
−3 0 0 0 1 0
0 0 0 0 0 1

 .

and G1 = G2 = G3.

(b)

[Vi] = T−10i Ṫ0i

= (T0,i−1Ti−1,i)
−1 ˙(T0,i−1Ti−1,i)

= T−1i−1,iT
−1
0,i−1( ˙T0,i−1Ti−1,i + T0,i−1 ˙Ti−1,i)

= T−1i−1,iT
−1
0,i−1 ˙T0,i−1Ti−1,i + T−1i−1,iT

−1
0,i−1T0,i−1 ˙Ti−1,i

= T−1i−1,iT
−1
0,i−1 ˙T0,i−1Ti−1,i + T−1i−1,i ˙Ti−1,i

= [AdTi,i−1
(Vi−1)] + [Aiθ̇i]

∴ Vi = [AdTi,i−1
]Vi +Aiθ̇i
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(c)

Link 1: ω1 =

 0
0
1

 θ̇1(t). Frame {1} cannot move linearly, v1 = v̇1 = 0.

V1 =


0
0

θ̇1
0
0
0

 , V̇1 =


0
0

θ̈1
0
0
0

 .

Link 2:

R12 =

 1 0 0
0 c2 −s2
0 s2 c2

 0 1 0
0 0 1
1 0 0

 =

 0 1 0
−s2 0 c2
c2 0 s2

 .
Then, we can find T12 and T21.

T12 =


0 1 0 0
−s2 0 c2 0
c2 0 s2 7
0 0 0 1

→ T21 =


0 −s2 c2 −7c2
1 0 0 0
0 c2 s2 −7s2
0 0 0 1



[AdT21 ] =

[
R21 0

[p21]R21 R21

]

Therefore,

V2 = [AdT21 ]V1 +A2θ̇2 =


c2θ̇1

0

s2θ̇1
0
0
0

+


0

θ̇2
0
0
0
0

 =


c2θ̇1
θ̇2
s2θ̇1

0
0
0

 .

V̇2 =


c2θ̈1 − s2θ̇1θ̇2

θ̈2
s2θ̈1 + c2θ̇1θ̇2

0
0
0


where, s2 = sin θ2, c2 = cos θ2.
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Link 3:

R23 =

 c3 0 s3
0 1 0
−s3 0 c3


Then, we can find T23 and T32.

T23 =


c3 0 s3 0
0 1 0 0
−s3 0 c3 7

0 0 0 1

→ T32 =


c3 0 −s3 7s3
0 1 0 0
s3 0 c3 −7c3
0 0 0 1



[AdT32 ] =

[
R32 0

[p32]R32 R32

]

Therefore,

V3 = [AdT32 ]V2 +A3θ̇3 =



c23θ̇1
θ̇2
s23θ̇1
7c3θ̇2
−7c2θ̇1
7s3θ̇2


+


0

θ̇3
0
0
0
0

 =



c23θ̇1
θ̇2 + θ̇3
s23θ̇1
7c3θ̇2
−7c2θ̇1
7s3θ̇2


.

V̇3 =



c23θ̈1 − s23θ̇1θ̇2 − s23θ̇1θ̇3
θ̈2 + θ̈3

s23θ̈1 + c23θ̇1θ̇2 + c23θ̇1θ̇3
7c3θ̈2 − 7s3θ̇2θ̇3
−7c2θ̈1 + 7s2θ̇1θ̇2
7s3θ̈2 + 7c3θ̇2θ̇3


where, s3 = sin θ3, c3 = cos θ3, s23 = sin(θ2 + θ3), c23 = cos(θ2 + θ3).
From the result, we can derive dynamic equation of the robot by backward iteration.
We assume that the robot is in zero position. (i.e. θ = 0)
We only need to calculate components of mass matrix, so we can set θ̇ = 0

V1 = V2 = V3 =


0
0
0
0
0
0

 , V̇1 =


0
0

θ̈1
0
0
0

 , V̇2 =


θ̈1
θ̈2
0
0
0
0

 , V̇3 =



θ̈1
θ̈2 + θ̈3

0

7θ̈2
−7θ̈1

0

 .
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Link 3: There is no other external force-moment on the link 3 except applied by link 2.

F3 = G3V̇3 − [adV3 ]
TG3V3

F3 =


13 0 0 0 −3 0
0 13 0 3 0 0
0 0 2 0 0 0
0 3 0 1 0 0
−3 0 0 0 1 0
0 0 0 0 0 1





θ̈1
θ̈2 + θ̈3

0

7θ̈2
−7θ̈1

0

 =



34θ̈1
34θ̈2 + 13θ̈3

0

10θ̈2 + 3θ̈3
−10θ̈1

0


Link 2:

F2 = G2V̇2 − [adV2 ]
TG2V2 + [AdT32 ]

TF3

F2 =


13 0 0 0 −3 0
0 13 0 3 0 0
0 0 2 0 0 0
0 3 0 1 0 0
−3 0 0 0 1 0
0 0 0 0 0 1




θ̈1
θ̈2
0
0
0
0

+ [AdT32 ]
T



34θ̈1
34θ̈2 + 13θ̈3

0

10θ̈2 + 3θ̈3
−10θ̈1

0



=


?

117θ̈2 + 34θ̈3
?
?
?
?


τ2 = FT2 A2 where A2 =

[
0 1 0 0 0 0

]T
, so we only need to calculate the second

component of F2

τ2 = 117θ̈2 + 34θ̈3

Therefore, m22(0) = 117,m32(0) = 34
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Problem 7 (60 Points)
(a) The position and velocity of link 1 are given by

p1 =

[
x1
y1

]
=

[
Lcosθ1
Lsinθ1

]
, v1 =

[
−Lsinθ1
Lcosθ1

]
θ̇1,

while those of link 2 are given by

p2 =

[
x2
y2

]
=

[
(L+ θ2)cosθ1
(L+ θ2)sinθ1

]
, v2 =

[
−(L+ θ2)sinθ1 cosθ1
(L+ θ2)cosθ1 sinθ1

] [
θ̇1
θ̇2

]
.

The link kinetic engergy terms K1 and K2 are

K1 =
1

2
m(ẋ1

2 + ẏ1
2) =

1

2
mL2θ̇1

2

K2 =
1

2
m(ẋ2

2 + ẏ2
2) =

1

2
m((L+ θ2)

2θ̇1
2

+ θ̇2
2
)

K = K1 +K2 =
1

2
Iθ̇1

2
+

1

2
mθ̇2

2
, where I = mL2 +m(L+ θ2)

2,

and the system potential energy terms P are

P = mgLs1 +mg(L+ θ2)s1 = mgs1(2L+ θ2).

The Euler-Lagrange equations for this system are of the form

τi =
d

dt

∂L
∂θ̇i
− ∂L
∂θi

, i = 1, 2.

Then, we have

τ1 = Iθ̈1 + 2m(L+ θ2)θ̇1θ̇2 +mg(2L+ θ2)c1

τ2 = mθ̈2 −m(L+ θ2)θ̇1
2

+mgs1, where I = mL2 +m(L+ θ2)
2.

(b) Let x1 = θ1, x2 = θ2, x3 = ẋ1, x3 = ẋ2.
The constant solution is given by

x̄1 = π/2, x̄2 = L, x̄3 = 0, x̄4 = 0, τ̄1 = 0, τ̄2 = mg.

Let’s linearize the dynamics about this solution.

˙δx1 = δx3
˙δx2 = δx4

˙δx3 =
3g

5L
δx1 +

1

5mL2
δτ1

˙δx4 =
1

m
δτ2.
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The matrix form of the linearized dynamics is expressed by

ż =


0 0 1 0
0 0 0 1
3g
5L

0 0 0
0 0 0 0

 z +


0 0
0 0
1

5mL2 0
0 1

m

w.
(c) We need to use the dynamics related to θ1. Since δx3 = ˙δx1, the equation

˙δx3 =
3g

5L
δx1 +

1

5mL2
δτ1

is the independent dynamics about δx1 which is operated by δτ1.

e = θd − θ1 = θd − (θd + δθ1) = −δθ1
δτ1 = kpe+ kdė = −kpδθ1 − kd ˙δθ1

¨δθ1 −
3g

5L
δθ1 =

1

5mL2
δτ1 =

1

5mL2
(−kpδθ1 − kd ˙δθ1)

¨δθ1 +
kd

5mL2
˙δθ1 + (

kp
5mL2

− 3g

5L
)δθ1 = 0.

For critical damping, ( kd
5mL2 )2 − 4( kp

5mL2 − 3g
5L

) should be zero.
Thus, kd = 10.
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