Where we are:

Chap 2 Configuration Space
Chap 3 Rigid-Body Motions
Chap 4
Chap 5
Chap 6
Chap 8
Chap 9
Chap 11
Chap 13

Velocity Kinematics and Statics
Inverse Kinematics
Dynamics of Open Chains
8.1 Lagrangian Formulation

Trajectory Generation
Robot Control
Wheeled Mobile Robots

Important concepts, symbols, and equations

$$
\tau=M(\theta) \ddot{\theta}+c(\theta, \dot{\theta})+g(\theta)
$$

kinetic energy of a robot:

$$
\mathcal{K}(\theta, \dot{\theta})=\frac{1}{2} \dot{\theta}^{\mathrm{T}} M(\theta) \dot{\theta}
$$

When $\dot{\theta}=0$ and $g=0$,

$M(\theta)$ maps $\ddot{\theta}$ to τ and $M^{-1}(\theta)$ maps τ to $\ddot{\theta}$

Important concepts, symbols, and equations (cont.)

If $V=J(\theta) \dot{\theta}$ is the e-e velocity and J is invertible (there exists a unique joint velocity for each e-e velocity):

What if J is tall? wide?
end-effector mass matrix

Important concepts, symbols, and equations (cont.)

When $\dot{\theta}=0$ and $g=0$, $\Lambda(\theta)$ maps \dot{V} to F and $\Lambda^{-1}(\theta)$ maps F to \dot{V}

Force and acceleration are only parallel along principal axes.

$$
\tau=M(\theta) \ddot{\theta}+c(\theta, \dot{\theta})+g(\theta)
$$

RP robot

$\dot{\theta}=0$ and $g=0$

$$
M(\theta)=\left[\begin{array}{cc}
\mathcal{I}_{1}+\mathcal{I}_{2}+\mathfrak{m}_{1} L_{1}^{2}+\mathfrak{m}_{2} \theta_{2}^{2} & 0 \\
0 & \mathfrak{m}_{2}
\end{array}\right]
$$

What are the e-vals and e-vecs of M ?
Draw the ellipse of τ corresponding to a unit circle of $\ddot{\theta}$ as θ_{2} increases from zero and $I_{1}=I_{2}=\mathfrak{m}_{1}=\mathfrak{m}_{2}=L_{1}=1$.

At $\theta_{1}=0$, the e-e mass matrix is

$$
\Lambda(\theta)=\left[\begin{array}{cc}
\mathfrak{m}_{2} & 0 \\
0 & \left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathfrak{m}_{1} L_{1}^{2}+\mathfrak{m}_{2} \theta_{2}^{2}\right) / \theta_{2}^{2}
\end{array}\right]
$$

Draw the ellipse of F corresponding to a unit circle of \dot{V} as θ_{2} increases from zero and $I_{1}=I_{2}=\mathfrak{m}_{1}=\mathfrak{m}_{2}=L_{1}=1$. How does it change as θ_{1} changes?

$$
\dot{\theta}=0 \text { and } g=0
$$

