Where we are:

- Chap 2 Configuration Space
- Chap 3 Rigid-Body Motions
- Chap 4 Forward Kinematics
- Chap 5 Velocity Kinematics and Statics
- Chap 6 Inverse Kinematics
- Chap 8 Dynamics of Open Chains 8.1 Lagrangian Formulation
- Chap 9 Trajectory Generation
- Chap 11 Robot Control
- Chap 13 Wheeled Mobile Robots

Important concepts, symbols, and equations

 $\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta)$ $\ddot{ heta}_2$. $M^{-1}(\theta) = \begin{bmatrix} 0.5 & -0.5\\ -0.5 & 1.5 \end{bmatrix}$ kinetic energy of a robot: $\theta_1 = 0^\circ$ $\theta_2 = 90^{\circ}$ $\mathcal{K}(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^{\mathrm{T}} M(\theta) \dot{\theta}$ $M(\theta) = \begin{bmatrix} 3 & 1\\ 1 & 1 \end{bmatrix}$ $\ddot{\theta}_1$ When $\dot{\theta} = 0$ and g = 0, $M(\theta)$ maps $\ddot{\theta}$ to τ and $\ddot{ heta}_2$ $M^{-1}(\theta)$ maps τ to $\ddot{\theta}$ au_2 $M^{-1}(\theta) = \begin{bmatrix} 0.8 & -0.11 \\ -0.11 & 1.01 \end{bmatrix}$ $\ddot{\theta}_1$ au_1 $M(\theta) = \begin{bmatrix} 1.27 & 0.13\\ 0.13 & 1 \end{bmatrix}$ $\theta_1 = 0^\circ$ $\theta_2 = 150^{\circ}$

Important concepts, symbols, and equations (cont.)

If $V = J(\theta) \dot{\theta}$ is the e-e velocity and J is invertible (there exists a unique joint velocity for each e-e velocity):

$$\frac{1}{2} V^{T} \Lambda(\theta) V = \frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}$$
$$\dot{\theta}^{T} J^{T}(\theta) \Lambda(\theta) J(\theta) \dot{\theta} = \dot{\theta}^{T} M(\theta) \dot{\theta}$$
$$\Lambda(\theta) = J^{-T}(\theta) M(\theta) J^{-1}(\theta)$$
end-effector mass matrix

What if *J* is tall? wide?

Important concepts, symbols, and equations (cont.)

 \ddot{y}

 $\Lambda^{-1}(\theta) = \begin{vmatrix} 1 & 0 \\ 0 & 0.5 \end{vmatrix}$

 $\Lambda(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

 f_y

 \mathbf{x}

 \ddot{x}

RP robot

 $\tau = M(\theta) \ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta)$

$$M(\theta) = \begin{bmatrix} \mathcal{I}_1 + \mathcal{I}_2 + \mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 \theta_2^2 & 0\\ 0 & \mathfrak{m}_2 \end{bmatrix}$$

What are the e-vals and e-vecs of *M*? Draw the ellipse of τ corresponding to a unit circle of $\ddot{\theta}$ as θ_2 increases from zero and $I_1 = I_2 = m_1 = m_2 = L_1 = 1$. **RP** robot

At $\theta_1 = 0$, the e-e mass matrix is $\Lambda(\theta) = \begin{bmatrix} \mathfrak{m}_2 & 0 \\ 0 & (\mathcal{I}_1 + \mathcal{I}_2 + \mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 \theta_2^2)/\theta_2^2 \end{bmatrix}$

Draw the ellipse of *F* corresponding to a unit circle of \dot{V} as θ_2 increases from zero and $I_1 = I_2 = \mathfrak{m}_1 = \mathfrak{m}_2 = L_1 = 1$. How does it change as θ_1 changes?