Difference between revisions of "ME 449 Robotic Manipulation"

From Mech
Jump to navigationJump to search
 
(351 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Fall Quarter 2018'''
'''Fall Quarter 2023'''
<!-- [[image:ME449-instructors-2022.jpg|1000px]] -->


* Instructor: Prof. Kevin Lynch
* Instructor: Prof. Kevin Lynch
* Course assistants: Rohan Kota, rohankota2026@u.northwestern.edu, and Tom Trzpit, TomaszTrzpit2025@u.northwestern.edu
* Meeting: 2:00-2:50, MWF, Frances Searle Building 1-441
* Office hours: Monday 3-4 A211 or AB atrium if A211 is not available (Kota); Tuesday 2-3 zoom, see Canvas (Lynch). '''Lynch's office hours Tues Dec 5 are canceled.'''
* TAs: Huan Weng, Tito Fernandez, and Zack Woodruff
<!--4-5 PM Tuesday (TAs) and 2-3 PM Thursday (Lynch) by Zoom invitation in Canvas. '''Finals week only:''' TA office hours will be 4-5 PM Tuesday, as usual, and Lynch's office hours will be 1:30-2:30 Wednesday Dec 8 (office hours Thursday canceled)
* Office hours: Mon 3:00-4:00, Tech B222, Prof. Lynch; Tues 3:30-4:30, Tech B241 (through the ME office by the freight elevator), TAs
-->
* Meeting: 2:00-2:50, MWF, '''Tech LR5''' (first meeting: Sept 20)
* Course website: [http://hades.mech.northwestern.edu/index.php/ME_449_Robotic_Manipulation http://hades.mech.northwestern.edu/index.php/ME_449_Robotic_Manipulation]
* Course website: [http://hades.mech.northwestern.edu/index.php/ME_449_Robotic_Manipulation http://hades.mech.northwestern.edu/index.php/ME_449_Robotic_Manipulation]
* Book website: [http://modernrobotics.org http://modernrobotics.org]
* Book website: [http://modernrobotics.org http://modernrobotics.org]
* '''[https://docs.google.com/forms/d/e/1FAIpQLSej7E9AaYomOEi5ToiNVum-_H7XdaJZ95Va__AIBPnB0xXZyg/viewform?usp=sf_link Click here to enter any questions you have on the lectures or reading that you would like to discuss in class.]'''

'''Supportive Class Environment'''

All members of this class (instructors, TAs, students) are expected to contribute to a respectful, inclusive, and supportive environment for every other member of the class.

We are ''partners'' in your education; help us help you get the most out of this class. Please engage as much as possible during our class meetings!

'''Honor Code'''

You are encouraged to discuss the material with the instructor, course assistants, and your classmates, but you are not allowed to share your answers or code with others. '''Anyone asking for answers or code, or providing answers or code, or becoming aware of others doing so without reporting to the instructor, is in violation of the honor code.'''

<!--

'''Other Syllabus Statements'''

[https://www.registrar.northwestern.edu/faculty-staff/syllabi.html Here you can find other syllabus statements] regarding academic integrity (do not submit work that is not your own), accessibility, COVID-19 classroom expectations (wear a mask), COVID-19 testing for unvaccinated students, class modality, class recordings, prohibition of recordings of class sessions by students, and wellness and mental health.

Other information:
* [https://www.northwestern.edu/coronavirus-covid-19-updates/index.html NU's COVID-19 update page]
* [https://www.northwestern.edu/coronavirus-covid-19-updates/university-status/summary.html COVID-19 Fall protocol page]
* [https://www.northwestern.edu/coronavirus-covid-19-updates/resources/frequently-asked-questions/academics.html Instructor FAQs]
-->

'''Getting Started'''

Do the following things as soon as possible:

* [[Modern Robotics#Book|Buy the book "Modern Robotics" or download the electronic preprint version]]. (Though the Cambridge-published version is the "official" version, the differences are mostly layout and either will work for this course.)
* [[Getting Started with the Modern Robotics Code Library|Download the Modern Robotics software]]. You can program in Python, MATLAB, or Mathematica. Most students use Python or MATLAB, but any of these is fine.
* [[Getting Started with the CoppeliaSim Simulator|Download, install, and test the CoppeliaSim robot simulation software.]]
* Accept your invitation to the Coursera course.


==Course Summary==
==Course Summary==


Representations of the configuration and spatial motion of rigid bodies and robots based on modern screw theory. Forward, inverse, and differential kinematics. Robot dynamics, trajectory planning, and motion control. Wheeled mobile robots and mobile manipulation.
Mechanics of robotic manipulation, computer representations and algorithms for manipulation planning, and applications to industrial automation, parts feeding, grasping, fixturing, and assembly.


==Prerequisites==
==Prerequisites==
Line 17: Line 52:


==Grading==
==Grading==
<!--
* 50% quizzes (quizzes will be open book, open notes, any cheat sheets you would like, but no electronics)
* 50% quizzes (quizzes will be open book, open notes, any cheat sheets you would like, but no electronics)
* 20% assignments (lowest grade will be dropped)
* 20% assignments (lowest grade will be dropped)
* 15% final project (due Wed Dec 12, during finals week)
* 15% final project (due Wed Dec 11, during finals week)
* 10% practice exercise for other students
* 10% practice exercise for other students
* 5% engagement: answering questions in class, participation in in-class exercises, and helping other students in class
* 5% engagement: introducing yourself during office hours, answering questions in class, participation in in-class exercises, helping other students in class, participation in Coursera forums
-->

50% of your final grade will be from your Coursera grades (which I expect will be close to perfect) and 50% from the midterm and assignments outside of Coursera, including 15% midterm, 5% for asst 1, 5% for asst 2, 10% for asst 3, and 15% for asst 4 (the capstone project).


==Course Text and Software==
==Course Text and Software==


This course uses the textbook ''Modern Robotics: Mechanics, Planning, and Control'', Kevin M. Lynch and Frank C. Park, Cambridge University Press 2017.
This course uses the textbook ''Modern Robotics: Mechanics, Planning, and Control'', Kevin M. Lynch and Frank C. Park, Cambridge University Press 2017. If you find an error or typo in the book, please '''[http://hades.mech.northwestern.edu/index.php/Modern_Robotics_Errata report it here].'''


[[Coursera_Resources#Things_you_should_complete_before_taking_any_course|Get the book, install and test the Modern Robotics code library, and install and test the V-REP simulator.]] You will program in Python, Mathematica, or MATLAB in this course.
[[Coursera_Resources#Things_you_should_complete_before_taking_any_course|Get the book, install and test the Modern Robotics code library, and install and test the CoppeliaSim robot simulator.]] You will program in Python, Mathematica, or MATLAB in this course.


'''[[Modern Robotics Linear Algebra Review|Here is a linear algebra refresher appendix to accompany the book.]]'''
'''[[Modern Robotics Linear Algebra Review|Here is a linear algebra refresher appendix to accompany the book.]]'''


==Approximate Syllabus and Schedule==
==Video Lectures and the Flipped Classroom==


Here is a summary of the structure of the course. '''All items are due 30 minutes before the associated class time (1:30 PM Central). The deadlines are controlled by Coursera, so do not be late!''' You may work ahead if you wish, but then you won't get as much out of the classes.
This course will take advantage of video lectures and lecture comprehension quizzes on Coursera. (You can also see the video lectures, but not the lecture comprehension quizzes, outside Coursera at the video browser [http://modernrobotics.northwestern.edu '''http://modernrobotics.northwestern.edu'''] or using [[Modern_Robotics_Videos|'''direct links to the videos on YouTube''']].)
* Coursera refers to "weeks," but ignore this; our course modules are not a week long.
* Before some classes, you should complete a quiz on earlier material.
* Before most classes, you will watch the associated videos on Coursera and answer the "lecture comprehension" (LC) questions. (Designed to be relatively quick, to solidify your understanding.)
* You are encouraged to read the corresponding portions of the textbook after watching the videos. I suggest you watch first, then read, then possibly re-watch, but you can determine what works best for your learning style.
* During the class period '''after''' you watch those videos, I will typically summarize what we learned, work a problem, take any questions you have about the material, and possibly assign you a problem to work on.
* There are two kinds of assessments on Coursera (Coursera refers to both of them as "quizzes"): "lecture comprehension" questions (LCs), which are short and immediately follow lectures, and summative quizzes, which are usually longer assessments/assignments occurring at the middle or end of a chapter.
* Within Coursera there are also "discussion prompts," open-ended group questions that you should reply to (responses can be simple) and forums where you can post questions and reply to other students' questions.
* Assignments outside Coursera will be submitted through Canvas.


Below is the approximate syllabus and schedule. Next to each date is the Coursera material that should have been covered '''at least 30 minutes before''' that class. "LC" refers to brief lecture comprehension questions that should be completed before that class, and "quiz" is a longer summative quiz on earlier material.
You should sign up to audit the following courses on Coursera in advance of our study of them in class. Don't pay; you should start by choosing the 7-day free trial, but then click "audit the course." Auditing the course gives you access to everything except graded assignments and peer-reviewed projects.


'''Chapter 2, Configuration Space'''
* [https://www.coursera.org/learn/modernrobotics-course1 Course 1: Foundations of Robot Motion (Chapters 2 and 3)]
* Wed Sept 20: welcome to the course and syllabus review; intro to Coursera. '''The schedule for completing Coursera items is set by this wiki!'''
* [https://www.coursera.org/learn/modernrobotics-course2 Course 2: Robot Kinematics (Chapters 4, 5, 6, and 7)]
* Fri Sept 22: office hours; check for working CoppeliaSim implementation and summarize installation process for each OS; make sure Coursera invitation is accepted; material through Chapter 2.2 (3 videos and 2 LCs on dof of a robot) '''[[Media:MRslides-ch02a.pdf|CLASS SLIDES]]'''
* [https://www.coursera.org/learn/modernrobotics-course3 Course 3: Robot Dynamics (Chapters 8 and 9)]
* Mon Sept 25: course staff and office hours; meet the class; and material through Chapter 2.3 (quiz, Chapter 2 through 2.2; 2 videos and 2 LCs on C-space topology and representation) '''[[Media:MRslides-ch02b.pdf|CLASS SLIDES]]'''
* [https://www.coursera.org/learn/modernrobotics-course4 Course 4: Robot Motion Planning and Control (Chapters 10 and 11)]
* Wed Sept 27: finish Chapter 2 (2 videos and 2 LCs on configuration and velocity constraints, task space and workspace) '''[[Media:MRslides-ch02c.pdf|CLASS SLIDES]]'''
* [https://www.coursera.org/learn/modernrobotics-course5 Course 5: Robot Manipulation and Wheeled Mobile Robots (Chapters 12 and 13)]
'''Chapter 3, Rigid-Body Motions'''
* [https://www.coursera.org/learn/modernrobotics-course6 Course 6: Capstone Project, Mobile Manipulation]
* Fri Sept 29: through Chapter 3.2.1 (quiz, Chapter 2.3 through 2.5; 3 videos and 3 LCs on rotation matrices SO(3)) '''[[Media:MRslides-ch03a.pdf|CLASS SLIDES]]'''
* Mon Oct 2: finish Chapter 3.2 (3 videos and 3 LCs on angular velocities, so(3), exponential coordinates) '''[[Media:MRslides-ch03b.pdf|CLASS SLIDES]]'''
* Wed Oct 4: Asst 1 assigned, due Wed Oct 11. New material: through Chapter 3.3.2 (quiz, Chapter 3 through 3.2; 3 videos and 3 LCs on transform matrices SE(3) and twists) '''[[Media:MRslides-ch03c.pdf|CLASS SLIDES]]'''
* Fri Oct 6: finish Chapter 3 (2 videos and 2 LCs on se(3), exponential coordinates, and wrenches) '''[[Media:MRslides-ch03d.pdf|CLASS SLIDES]]'''
'''Chapter 4, Forward Kinematics (skip section 4.2 on URDF)'''
* Mon Oct 9: finish Chapter 4 (quiz, Chapters 3.3 and 3.4; 3 videos and 3 LCs on product of exponentials formula, space and e-e frame) '''[[Media:MRslides-ch04a.pdf|CLASS SLIDES]]'''
'''Chapter 5, Velocity Kinematics and Statics'''
* Wed Oct 11: '''ASST 1, DUE 1:30 PM'''. New material: through Chapter 5.1 (quiz, Chapter 4; 3 videos and 3 LCs on space Jacobian, body Jacobian) '''[[Media:MRslides-ch05a.pdf|CLASS SLIDES]]'''
* Fri Oct 13: through Chapter 5.2 1 video and 1 LC on statics of open chains) '''[[Media:MRslides-ch05b.pdf|CLASS SLIDES]]'''
* Mon Oct 16: through Chapter 5.4 (2 videos and 2 LCs on singularity analysis, manipulability) '''[[Media:MRslides-ch05c.pdf|CLASS SLIDES]]'''
'''Chapter 6, Inverse Kinematics (focus on section 6.2)'''
* Wed Oct 18: Chapter 6 (quiz, Chapter 5; 3 videos and 3 LCs on numerical inverse kinematics) '''[[Media:MRslides-ch06a.pdf|CLASS SLIDES]]'''
'''Chapter 8, Dynamics of Open Chains (skip sections 8.4, 8.7, 8.8, and 8.9)'''
* Fri Oct 20: through Chapter 8.1.2 (quiz, Chapter 6; 2 videos and 2 LCs on Lagrangian dynamics) '''[[Media:MRslides-ch08a.pdf|CLASS SLIDES]]'''
* Mon Oct 23: New material: Chapter 8.1.3 (1 video and 1 LC on understanding the mass matrix) '''[[Media:MRslides-ch08b.pdf|CLASS SLIDES]]'''
* Wed Oct 25: '''MIDTERM''', chapters 2-5 (no electronic devices allowed [calculator, laptop, tablet, etc.]; study sheets and book allowed) '''[[Media:ME449-midterm-2022.pdf|2022 midterm]]''' and '''[[Media:ME449-midterm-solutions-2022.pdf|solutions]]''' (average score 22.9/32); '''[[Media:ME449-midterm-2023.pdf|2023 midterm]]''' and '''[[Media:ME449-midterm-solutions-2023.pdf|solutions]]'''
* Fri Oct 27: Chapter 8.2 (2 videos and 2 LCs on dynamics of a single rigid body) '''[[Media:MRslides-ch08c.pdf|CLASS SLIDES]]'''
* Mon Oct 30: Chapter 8.3 and 8.5 (2 videos and 2 LCs on Newton-Euler inverse dynamics, forward dynamics; quiz, Chapter 8 through 8.3) '''[[Media:MRslides-ch08d.pdf|CLASS SLIDES]]'''
'''Chapter 9, Trajectory Generation'''
* Wed Nov 1: '''ASST 2, DUE 1:30 PM'''. New material: through Chapter 9.3 (3 videos and 3 LCs on point-to-point trajectories, polynomial via point trajectories) '''[[Media:MRslides-ch09a.pdf|CLASS SLIDES]]'''
* Fri Nov 3: CLASS CANCELED. Chapter 9.4 (quiz, Chapter 9 through 9.3; 3 videos and 3 LCs on time-optimal time scaling) '''[[Media:MRslides-ch09b.pdf|CLASS SLIDES]]'''
* Mon Nov 6: Chapter 9.4 recap.
* Wed Nov 8: '''ASST 3, DUE 1:30 PM'''; final project discussion
'''Chapter 11, Robot Control (focus on sections 11.1 through 11.4)'''
* Fri Nov 10: up to (not including) Chapter 11.2.2.1 (quiz, Chapter 9.4; 3 videos and 3 LCs on linear error dynamics) '''[[Media:MRslides-ch11a.pdf|CLASS SLIDES]]'''
* Mon Nov 13: finish Chapter 11.2.2 (2 videos and 2 LCs on first- and second-order error dynamics) '''[[Media:MRslides-ch11b.pdf|CLASS SLIDES]]'''
* Wed Nov 15: through Chapter 11.3 (3 videos and 3 LCs on motion control with velocity inputs) '''[[Media:MRslides-ch11c.pdf|CLASS SLIDES]]'''
* Fri Nov 17: Chapter 11.4 (quiz, Chapter 11 through 11.3; 3 videos and 3 LCs on motion control with torque or force inputs) '''[[Media:MRslides-ch11d.pdf|CLASS SLIDES]]'''
'''Chapter 13, Wheeled Mobile Robots (skip section 13.3)'''
* Mon Nov 20: '''FINAL PROJECT MILESTONE 2, DUE 1:30 PM'''; new material through Chapter 13.2 (quiz, Chapter 11.4; 3 videos and 3 LCs on omnidirectional wheeled mobile robots) '''[[Media:MRslides-ch13a.pdf|CLASS SLIDES]]'''
* Wed Nov 22: CLASS CANCELED
* Mon Nov 27: Chapter 13.4 (quiz, Chapter 13 through 13.2; 1 video and 1 LC on odometry) '''[[Media:MRslides-ch13b.pdf|CLASS SLIDES]]'''
* Wed Nov 29: Chapter 13.5 (1 video and 1 LC on mobile manipulation) '''[[Media:MRslides-ch13c.pdf|CLASS SLIDES]]'''
* Fri Dec 1: wrap-up
* Thurs Dec 7, noon: final project due


==Practice Exercises==
'''[[Coursera Resources|This page collects together useful supplemental material to the Coursera courses]]'''.
[[Modern_Robotics#Useful_Supplemental_Documents|Sample exercises and their solutions, useful for practicing your understanding of the material.]]


== Practice Tests ==
The general flow of the class will be the following:
* [[Media:ME449-midterm-2022.pdf|2022 midterm]] and [[Media:ME449-midterm-2022-solutions.pdf|2022 midterm solutions]]
* [[Media:ME449-quiz1-solutions-2019.pdf|Quiz 1, 2019]]
* Quiz 2, 2018: Exercises 4.2, 5.3, 6.1, 8.6, and 8.7 from [[Modern_Robotics#Useful_Supplemental_Documents|the practice exercises document]].
* [[Media:ME449-quiz1-2018.pdf|Quiz 1, 2018]]
<!--
==Student-Created Exercises==
-->
<!-- [https://docs.google.com/spreadsheets/d/1cIX4_U8lkWAL6LqQBgDrE5WX1TAmJaD6-ykG7GNACkI/edit?usp=sharing '''Click here for student exercise assignments.''']


'''Bring two printed copies to class Monday Nov 18, for feedback. Turn in the final version online on Wednesday Nov 20 at 1:30 PM, as two files: FamilyName_GivenName.pdf, with the pdf of the exercise and its solution, and FamilyName_GivenName.zip, with all the source files for your exercise taken from Overleaf. Also bring a printout to class on Wed Nov 20. If it is more than one page, staple it.'''
* Before class, watch the videos, do the lecture comprehension quizzes associated with each video, do the associated reading, and participate in any "discussion prompts" on Coursera. You should plan to bring any questions or confusion to class. In general, I recommend that you first watch the videos to get a quick understanding of the material of the chapter, then follow up by reading the appropriate sections of the book. The videos are short and dense, so don't expect to get by only watching the videos. You will need to read the book, then do the exercises, to gain mastery of the material.
-->
* In class, I will briefly review the lecture comprehension quizzes and the material that was covered, get a little discussion going and take any questions, and then ask you to work on a practice exercise either individually or in small groups. If time remains, you may work on homework together. I will be available to help.
<!--
* On days when a homework is turned in, I will leave time for any questions about it. On days before a quiz, I will spend as much time reviewing the material covered by the quiz as you would like.
All students will be responsible for creating a practice exercise, consisting of the exercise and the solution. A good exercise should test an important concept in the context of a real robotics application (e.g., motion planning for a quadrotor, robot localization, computer vision, grasping, etc.), require the learner to understand and apply equations in the book or use the book's software, and require a bit of thought (i.e., not just "plug and chug" questions). For many exercises, a good figure or two is helpful. You could use a figure of a real robot and add your own annotations to it (e.g., frames or objects in its environment), or you could hand-draw something, or you could use CoppeliaSim or other software to help create the figure. You should not confine your question to an application discussed in the textbook. Make your exercise interesting and motivating! Exercises that require synthesizing two or more concepts or equations are more interesting and useful. Think about what kind of exercise would have helped you to really understand the material. Your questions should be very clearly worded, so anyone can understand it without you having to be there to interpret it for them.

==Student-Created Exercises==


You should look at the practice exercise document and end-of-chapter exercises for inspiration, but obviously your exercises should not be copies.
All students will be responsible for creating a practice exercise, consisting of the exercise and the solution. A good exercise should test an important concept in the context of a real robotics application (e.g., motion planning for a quadrotor, robot localization, computer vision, grasping, etc.), require the learner to understand and apply equations in the book or use the book's software, and require a bit of thought (i.e., not just "plug and chug" questions). For many exercises, a good figure or two is helpful. You could use a figure of a real robot and add your own annotations to it (e.g., frames or objects in its environment), or you could hand-draw something, or you could use V-REP or other software to help create the figure. You should not confine your question to an application discussed in the textbook. Make your exercise interesting and motivating! Exercises that require synthesizing two or more concepts or equations are more interesting and useful.


You will create your exercise using [https://en.wikipedia.org/wiki/LaTeX LaTeX] (pronounced "lay teck" or "lah teck"), the standard for scientific document preparation. [https://www.overleaf.com/ Overleaf] is a free online implementation of LaTeX. To get started on your exercise,
You will create your exercise using [https://en.wikipedia.org/wiki/LaTeX LaTeX] (pronounced "lay teck" or "lah teck"), the standard for scientific document preparation. [https://www.overleaf.com/ Overleaf] is a free online implementation of LaTeX. To get started on your exercise,


# Download [[Media:ME449-exercise.zip|'''this .zip file''']] and uncompress it. There are four files: main.tex, prelims.tex, screw.pdf, and happy-face.jpg.
# Download [[Media:ME449-exercise.zip|'''this .zip file''']] and uncompress it. There are five files: main.tex, prelims.tex, twist-wrench.pdf, table-lamp.PNG, and LampSolution.PNG.
# Create an account on [https://www.overleaf.com/ Overleaf].
# Create an account on [https://www.overleaf.com/ Overleaf].
# Create a new (blank) project on Overleaf called "exercise."
# Create a new (blank) project on Overleaf called "exercise."
# Upload the four files main.tex, prelims.tex, screw.pdf, and happy-face.jpg to this project. (You may get a warning that your default main.tex file is being overwritten; don't worry about it.)
# Upload the five files to this project. (You may get a warning that your default main.tex file is being overwritten; don't worry about it.)
# Click on main.tex to see your main LaTeX document.
# Click on main.tex to see your main LaTeX document.
# Press the "Recompile" button to see the pdf document that is compiled from the four files. You can download the pdf file, or all the "source" files, by clicking on "Menu" and choosing which to download. '''[[Media:ME449-exercise-output.pdf|This is the .pdf file you should have created.]]'''
# Press the "Recompile" button to see the pdf document that is compiled from the five files. You can download the pdf file, or all the "source" files, by clicking on "Menu" and choosing which to download. '''[[Media:ME449-exercise-output.pdf|This is the .pdf file you should have created.]]'''


main.tex is the main file of the project, and the only one that you will edit, so you should understand what is going on in that file. prelims.tex tells LaTeX what packages to use and defines some macros, e.g., \twist creates <math>\mathcal{V}</math> and \wrench creates <math>\mathcal{F}</math>. screw.pdf and happy-face.jpg are image files that get included in the document. You will create different image files depending on your exercise.
main.tex is the main file of the project, and the only one that you will edit, so you should understand what is going on in that file. prelims.tex tells LaTeX what packages to use and defines some macros, e.g., \twist creates <math>\mathcal{V}</math> and \wrench creates <math>\mathcal{F}</math>. The other three files are image files that get included in the document. You will create different image files depending on your exercise. For example, you can make a nice hand drawing and then scan it.


To learn more about typesetting in LaTeX, google is your friend! Try googling "latex math" or "latex math symbols," for example.
To learn more about typesetting in LaTeX, google is your friend! Try googling "latex math" or "latex math symbols," for example.


You will turn in the source for your exercise as well as the final pdf file.
You will turn in the source for your exercise as a zip file, as well as the final pdf file.
-->
<!--
The final student assignments to topics is given below:


[[File:StudentExercises2019.jpg|x400px]]
==Approximate Syllabus and Reading==
-->

* Chapter 2, Configuration Space (weeks 1-2)
* Chapter 3, Rigid-Body Motions (weeks 2-3)
* Chapter 4, Forward Kinematics (week 4); section 4.2 is optional
* Chapter 5, Velocity Kinematics and Statics (week 5)
* Chapter 6, Inverse Kinematics (week 6); focus on section 6.2
* Chapter 8, Dynamics of Open Chains (weeks 6-7); skip sections 8.4, 8.8, and 8.9
* Chapter 9, Trajectory Generation (week 8); focus on sections 9.1 and 9.4
* Chapter 11, Robot Control (week 9); focus on sections 11.1 through 11.4
* Chapter 13, Wheeled Mobile Robots (week 10); skip section 13.3


==Assignments==
==Assignments==


'''As mentioned above, in the Honor Code:''' You are encouraged to discuss the material with the instructor, course assistants, and your classmates, but you are not allowed to share your answers or code with others. Anyone asking for answers or code, or providing answers or code, or becoming aware of others doing so without reporting to the instructor, is considered in violation of the honor code.
Assignments are graded based on correctness, how well you organize your homework (it should be easy to understand your thinking and easy to find your responses), and how well you follow the submission instructions below. You will lose points if you don't follow these instructions.

Assignments are graded based on correctness, how well you organize your homework (it should be easy to understand your thinking and easy to find your responses), and how well you follow the submission instructions below. You will lose points if you don't follow these instructions. If more detailed submission instructions are given with a particular assignment, make sure to follow those, too.

'''You will not receive credit if you just give an answer. Your solution must demonstrate how you got the answer. It must be easy to follow.'''


If you ever think a problem is stated incorrectly, not enough information is given, or it is impossible to solve, don't panic! Simply make a reasonable assumption that will allow you to solve the problem (but clearly state what this assumption is), or indicate why it is not possible to solve the problem.
If you ever think a problem is stated incorrectly, not enough information is given, or it is impossible to solve, don't panic! Simply make a reasonable assumption that will allow you to solve the problem (but clearly state what this assumption is), or indicate why it is not possible to solve the problem.
Line 91: Line 179:
'''Instructions for uploading assignments to Canvas:'''
'''Instructions for uploading assignments to Canvas:'''


0. '''Upload on time! Late submissions are not accepted.''' The cutoff time is 30 minutes before class the day the assignment is due.
* '''Upload on time! Late submissions are not accepted.'''
* For every assignment, you should upload exactly one pdf file, named FamilyName_GivenName_asst#.pdf. This pdf file should have answers to all the questions, including screen shots, text logs of code running, etc. Always include output of your code running on the exercises, so the grader can see what you got when you ran your code. You may scan handwritten solutions (provided they are neat!), but in any case, all answers should be in a single pdf file. DO NOT UPLOAD SCANS AS JPGS! THEY MUST ALL BE COMPILED INTO A SINGLE PDF FILE.
* If required by the assignment, in addition you may be asked to provide a zip file including all source code in their original forms, such as .m, .py, or .nb. This zip file should be named FamilyName_GivenName_asst#.zip. Always create a script that the grader can easily invoke to run your code for a particular exercise. Don't expect the grader to search through your code to find sample code to cut-and-paste. Make it as easy as possible for the grader (you can include a "README.txt" file in your zip file, for example, to tell the grader how everything works). Your code should be commented well enough that it is easy for someone else to pick it up and understand more or less how it works. All student-written code must be submitted; do not submit any standard MR code.
* If you record a movie, keep it short and clear. It should only be a few MB in size. For example, you don't need super high resolution, 60 fps, etc.
* All plots should be labeled (axes, legends, titles) with appropriate units.


'''[http://hades.mech.northwestern.edu/index.php/ME_449_Assignment_1 Assignment 1]''', due 1:30 PM CT Wednesday October 11 on Canvas.
1. Only upload one zip file or rar file for each assignment;


'''[[Media:ME449-asst2-2023.pdf|Assignment 2]]''', due 1:30 PM CT <s>Monday October 30</s> '''Wednesday November 1''' on Canvas.
2. In your zip file or rar file, include all source codes in their original form, such as .cpp, .m, .py, .nb.


'''[[Media:ME449-asst3-2023.pdf|Assignment 3]]''', due 1:30 PM CT Wednesday November 8 on Canvas.
3. If there is a demo, combine the screen shots into one SEPARATE pdf file, OR, show the results in one SEPARATE .txt file (DON'T show them in your source code file format, e.g. .nb file), and include it in the zip file (or rar file).


4. Always include output of your code running on the exercises, particularly in case the grader has problems running your code. Also, always create a script (for example, titled ex6-9 or something) that the grader can easily invoke for each exercise. Don't expect the grader to search through your code to find sample code to cut-and-paste. Make it as easy as possible for the grader (you can include a "README" file in your solutions, for example).


<!--
5. Please name the upload file in the following format: LastName_FirstName.zip.
'''[[Media:ME449-asst3-2022.pdf|Assignment 3]]''', due 1:30 PM CT Wednesday November 10 on Canvas.

-->
* '''Assignment 1, due 30 minutes before class on Canvas, Wed Oct 10.''' Exercises 2.1, 2.4, 2.9 for mechanisms (a) and (b) from Fig 2.18, 2.22, 2.29, and 3.1.
* '''Assignment 2, due 30 minutes before class on Canvas, Wed Oct 17.''' Exercises 3.16, 3.17, 3.27, 3.30, 3.31, 3.49.


==Detailed Syllabus==
[https://docs.google.com/spreadsheets/d/1UrBFai-1Z98Ry48bW50OMqxvvqZ3Jo8pHgZmljOgPpo/edit?usp=sharing '''The course calendar'''], including video lecture and reading assignments due before each class.
<!--
<!--
'''[[Media:ME449-asst3-2020.pdf|Assignment 3]]''', due 1 PM CST Thursday November 5 on Canvas. (With the automatic one-day extension, it is now due at 1 PM CST Friday November 6 on Canvas. No assignment will be accepted after that time.)
[https://docs.google.com/spreadsheets/d/1jWd_POLlQYxQLv1Igv-eVmORdtEcLi0mU_rVLkNguYI/edit?usp=sharing '''Click here for a graphical view of the class schedule, including student lectures.''']
-->
<!--
* '''Assignment 1, due 30 minutes before class on Canvas, Wed Oct 9.''' Exercises 2.1, 2.4, 2.5, 2.9(c) (mechanism (c) from Fig 2.18), 2.20, 2.31, 3.1, and 3.5.
* '''Assignment 2, due 30 minutes before class on Canvas, Wed Oct 16.''' Exercises 3.16, 3.26, 3.31, 4.2, 4.5, and 4.6.
* '''Assignment 3, due 30 minutes before class on Canvas, Wed Oct 23.''' Exercises 5.3(a,c,d,e) and 5.26.
* '''Assignment 4, due 30 minutes before class on Canvas, Wed Oct 30.''' [[Media:ME449-asst4-2019.pdf|The programming assignment described here]].
* '''Assignment 5, due 30 minutes before class on Canvas, Wed Nov 6.''' [[Media:ME449-asst5-2019.pdf|This assignment]] makes use of (approximate) [[Modern_Robotics#Supplemental_Information|dynamic parameters for the UR5 robot, given in MATLAB, Mathematica, and Python form]].


* '''Assignment 3, due 30 minutes before class on Canvas, Wed Oct 24.''' Exercises 4.2, 4.5, 4.14, 5.7, and 5.11(a).
Homeworks are due at the beginning of class every Wednesday, unless otherwise noted. You will watch the videos and do the reading in advance of class using the material, as noted in the syllabus below. A typical weekly schedule will consist of:
* '''Assignment 4, due 30 minutes before class on Canvas, Wed Oct 31.''' Exercises 5.2, 5.25, 6.7, 6.8, and [[Media:IKexercise.pdf|this programming project]]. You should submit a zip file containing your answers to the four exercises plus the directory structure described in the programming project.
: M: Video/reading comprehension quick quiz and help with homework.
* '''Assignment 5, due 30 minutes before class on Canvas, Wed Nov 7.''' Book exercises 8.2 and 8.3, and [[Media:ME449-practice-81.pdf|practice exercise 8.1]].
: W: Video/reading comprehension quick quiz, homework solutions, plus '''EITHER''' student lecture '''OR''' quiz preparation.
* '''Assignment 6, due 30 minutes before class on Canvas, Wed Nov 14.''' Book exercise 8.14 (turn in your code), book exercise 8.15 (make a video of the motion using V-REP), and practice exercise 9.1(a), trajectory planning for the WAM robot. For each trajectory in 9.1(a), plot the (x,y,z) components of the trajectory and the three exponential coordinates of rotation of the trajectory (each taken from the transformation matrices) as a function of time. Make sure your plots are labeled so we can tell which curve is which.
: F: Video/reading comprehension quick quiz plus '''EITHER''' student lecture '''OR''' quiz.
* [http://hades.mech.northwestern.edu/index.php/Mobile_Manipulation_Capstone '''CAPSTONE PROJECT''']. We will do milestone 2 first, then 1, 3, 4 to complete it.
-->


==Final Project: Mobile Manipulation==
'''Class 1''' (W 9/20)
<!--
: Welcome to the course and course website. Structure of the course (HW due Wed, student-generated lectures and learning materials, in-class assignments, feedback on student lectures, occasional Friday quizzes). Book, software, (lack of) D-H parameters, syllabus, V-REP simulator, office hours.
'''Office hours for capstone:''' We will have office hours at the normal times (Tues 9 AM, Wed 7:30 PM) on Dec 1 and 2 during finals week, and one bonus office hour at 9 AM CDT Friday Dec 4. The Dec 4 office hour will be in our class Zoom room.
-->


The final project is described [http://hades.mech.northwestern.edu/index.php/Mobile_Manipulation_Capstone_2023 '''on this page''']. It is due in Canvas on Thursday December 7 at noon.
At home:
: Videos: first 3 videos of Chapter 2, through Chapter 2.2
: Reading: Chapters 2.1 and 2.2
: Software: download github software with book, install V-REP and verify that you can use Scenes 1 and 2 (the UR5)
: '''HW1, due 1:30 PM 9/27''': Exercises 2.3, 2.9, 2.20, 2.29. Also, create your own example system with closed loops, something not in the book, and solve for the degrees of freedom using Grubler's formula. Make it something that exists or occurs in common experience, not necessarily a robot. Imagine using it to teach someone about Grubler's formula.


* '''Due Monday November 20 at 1:30 PM on Canvas''': Milestone 2. ''(You will do milestone 2 first! Milestone 1 will come next.)'' You will turn in a single zip file named FamilyName_GivenName_milestone2.zip with your solution to milestone 2. The zip file should include a README.pdf file with a brief summary of your solution and how to use it, and if your code is not working properly, it should correctly point out the problems. The zip file should also include a directory with the commented code you wrote, including a cut-and-pastable comment at the beginning showing how to execute the code to generate the csv file included in the submission; a CoppeliaSim video showing your reference trajectory of the end-effector (similar to [https://www.youtube.com/watch?v=8d_cYwV58lI&feature=youtu.be this video]); and the csv file that your code generated to create the video.
'''Class 2''' (F 9/22)
* ''' Due Thursday December 7 at 12:00 PM (noon) on Canvas''': The entire final writeup, as described [https://hades.mech.northwestern.edu/index.php/Mobile_Manipulation_Capstone_2023#Final_Step:_Completing_the_Project_and_Your_Submission '''at this page'''], in a single zip file named FamilyName_GivenName_capstone.zip. '''You may earn up to 10% extra credit on the capstone project by implementing singularity and self-collision avoidance.''' See the description of the final project writeup.
: Quick quiz
: Sample student lecture

At home:
: Videos: 2 videos on Chapter 2.3
: Reading: Chapter 2.3

'''Class 3''' (M 9/25)
: Quick quiz
: Bring your laptop, demo V-REP UR5 scenes
: Help with HW

At home:
: Videos: 2 videos, Chapter 2.4 and 2.5
: Reading: Chapters 2.4 and 2.5
: Turn in HW1

'''Class 4''' (W 9/27)
: Quick quiz
: Solutions to HW1; student examples of Grubler's formula

At home:
: Videos: first 3 videos of Chapter 3, through Chapter 3.2.1
: Reading: through Chapter 3.2.1
: '''HW2, due 1:30 PM 10/4''':
:: 1) Exercise 3.1, except the y_a axis points in the direction (1,0,0).
:: 2) Exercise 3.2, except p = (1,2,3).
:: 3) Exercise 3.5.
:: 4) Exercise 3.9.
:: 5) In Figure 1.1(a) of the book is an image of a UR5 robot, with a frame at its base and a frame at its end-effector. Eyeballing the end-effector frame, approximately write the rotation matrix that represents the end-effector frame orientation relative to the base frame. Your rotation matrix should satisfy the properties of a rotation matrix (R^T R = I, det(R) = 1). The x-axes are in red, the y-axes are in green, and the z-axes are in blue.
:: 6) Write a program that takes a set of exponential coordinates for rotation from the user as input. It then prints out the following: (a) the corresponding unit rotation axis and the angle of rotation about that axis; (b) the so(3) 3x3 matrix representation of the exponential coordinates; (c) the 3x3 SO(3) rotation matrix corresponding to the exponential coordinates; (d) the inverse of the rotation matrix from (c); (e) the 3x3 so(3) matrix log of the matrix from (d); and (f) the corresponding exponential coordinates for the so(3) matrix (e). Use the code from the book and write your program in Mathematica, MATLAB, or Python. Turn in your code and the output of an example run using (0.5, 1, 0) as the input to part (a).
:: 7) Write a function that returns "true" if a given 3x3 matrix is with a distance epsilon of being a rotation matrix and "false" otherwise. It is up to you to define the "distance" between a random 3x3 real matrix and members of SO(3). Test the function on two matrices, neither of which is exactly in SO(3), but one of which is close (so the result is "true") and one of which is not. Turn in your code and provide the test run output, which also outputs the distance to SO(3) that you defined.
:: 8) Following up on the previous exercise: describe (don't implement, unless you want to) a function that takes a "close by" 3x3 matrix and returns the closest rotation matrix. How would you use the fact that R^T R - I must be equal to zero to modify the initial 3x3 matrix to make it a "close by" rotation matrix? Would the function be iterative? You are free to do some research online, but as always, '''cite your sources'''!

'''Class 5''' (F 9/29)
: Quick quiz
: Lecture

At home:
: Videos: videos 4-6 of Chapter 3, through Chapter 3.2.3
: Reading: through Chapter 3.2.3

'''Class 6''' (M 10/2)
: Quick quiz
: Help with HW

At home:
: Videos: videos 7-9 of Chapter 3, Chapters 3.3.1 and 3.3.2
: Reading: same sections
'''Class 7''' (W 10/4)
: Quick quiz
: Exam prep

At home:
: Videos: videos 10-11, Chapter 3.3.3 and 3.4
: Reading: same sections
: '''HW3, due 1:30 PM 10/11''': Exercises 3.16, 3.17, 3.27, 3.31, and 3.48 (as always, for programming assignments, turn in your code and sample output demonstrating it).

'''Class 8''' (F 10/6)
: EXAM 1

At home:
: Videos: video 1 of Chapter 4, through Chapter 4.1.2
: Reading: same sections

'''Class 9''' (M 10/9)
: Quick quiz
: Help with HW

At home:
: Videos: videos 2-3 of Chapter 4, Chapter 4.1.3
: Reading: same sections
'''Class 10''' (W 10/11)
: Quick quiz
: Student lecture 1 (Pawar, Subramanian, Goyal, Cai)

At home:
: Videos: video 1 of Chapter 5, up to (not including) Chapter 5.1
: Reading: same sections
: '''HW4, due 1:30 PM 10/18''': Exercises 4.2, 4.8, 4.14, and 5.7(a). Question 5: In Chapter 3.5 (Summary), there is a list of analogies between rotations and rigid-body motions. Read it carefully and report anything that is either unclear or incorrect.

'''Class 11''' (F 10/13)
: Quick quiz
: Student lecture 2 (Wang, Wu, Xia, Zheng)

At home:
: Videos: video 2 of Chapter 5, Chapter 5.1.1
: Reading: same sections

'''Class 12''' (M 10/16)
: Quick quiz
: Help with HW

At home:
: Videos: videos 3 and 4 of Chapter 5, Chapter 5.1.2 through 5.2
: Reading: same sections
'''Class 13''' (W 10/18)
: Quick quiz
: Student lecture 3 (Wiznitzers, Hutson, Spies)

At home:
: Videos: videos 5 and 6 of Chapter 5, Chapter 5.3 and 5.4
: Reading: same sections
: '''HW5, due 1:30 PM 10/25''': Exercises 5.2, 5.3, 5.23, 5.25, 6.7, and 6.8.

'''Class 14''' (F 10/20)
: Quick quiz
: Student lecture 4 (Don, Chien, Husain, Sulaiman)

At home:
: Videos: videos 1 and 2 of Chapter 6,
: Reading: intro of Chapter 6 and Chapter 6.2

'''Class 15''' (M 10/23)
: Quick quiz
: Help with HW

At home:
: Videos: video 3 of Chapter 6
: Reading: Chapter 6.2
'''Class 16''' (W 10/25)
: Quick quiz
: Exam prep

At home:
: Videos: video 1 of Chapter 8, through 8.1.1
: Reading: same sections
: [[Media:ME449-HW6-2017.pdf|HW6, due 1:30 PM 11/1]]

'''Class 17 ''' (F 10/27)
: EXAM 2

At home:
: Videos: video 2 of Chapter 8, through 8.1.2
: Reading: same sections

'''Class 18''' (M 10/30)
: Quick quiz
: Help with HW

At home:
: Videos: video 3 of Chapter 8, through 8.1.3
: Reading: same sections
'''Class 19''' (W 11/1)
: Quick quiz
: Student lecture 5 (Zhang, Zhu, Meng, Luo)

At home:
: Videos: videos 4-5 of Chapter 8, through 8.2
: Reading: same sections
: '''HW7, due 1:30 PM 11/8''': Exercises 8.2, 8.3, 8.11 (you should build on the MR code), and 8.15(a).

'''Class 20''' (F 11/3)
: Quick quiz
: Student lecture 6 (Lyu, Yi, Wang, Swissler)

At home:
: Videos: video 6 of Chapter 8, up to (not including) 8.4
: Reading: same sections

'''Class 21''' (M 11/6)
: Quick quiz
: Help with HW

At home:
: Videos: video 7 of Chapter 8, Chapter 8.5 (skip 8.4)
: Reading: same sections
'''Class 22''' (W 11/8)
: Quick quiz
: Student lecture 7 (Warren, Kilaru, Wang, Mandana)

At home:
: Videos: videos 1-2 of Chapter 9, through Chapter 9.2
: Reading: same sections
: '''HW8, due 1:30 PM 11/15''': Exercises 8.15(b) (use your previous results from 8.15(a), and turn in any code you write as well as a V-REP movie of your simulation), 8.14 (turn in your testable code and evidence your code returns similar results), 9.14, and 9.26.

'''Class 23''' (F 11/10)
: Quick quiz
: Student lecture 8 (Wang, Dai, Ma, Peng)

At home:
: Videos: video 4 of Chapter 9, Chapter 9.4 - 9.4.1 (skip 9.3)
: Reading: same sections

'''Class 24''' (M 11/13)
: Quick quiz
: Help with HW

At home:
: Videos: videos 5-6 of Chapter 9, up to (not including) Chapter 9.5
: Reading: same sections
'''Class 25''' (W 11/15)
: Quick quiz
: Exam prep

At home:
: Videos: videos 1-3 of Chapter 11, up to (not including) Chapter 11.2.2.1
: Reading: same sections
: '''Final project. This project is part of the assignment grade, cannot be dropped, and has the weight of 2 normal assignments.''' The assignment is split into two parts: a relatively simple Part I, due after 1 week, followed by the programming-heavy Part II, due during finals week. You will receive a single grade for the entire assignment, after Part II has been submitted.
:: '''Part I, due 1:30 PM 11/22''': Exercise 13.33 (a) and (b). Turn in your solutions (handwritten or typed) and any code you wrote.
:: '''Part II, due 11:59 PM 12/6''': Exercise 13.33 (c), (d), and (e). Turn in 1) any solutions (handwritten or typed), 2) your code, 3) any plots you created with your code, 4) your short V-REP videos (made using the youbot csv animation scene), and 5) the .csv files corresponding to the videos.

'''Class 26''' (F 11/17)
: EXAM 3

At home:
: Videos: videos 4-5 of Chapter 11, Chapter 11.2.2.1 and 11.2.2.2
: Reading: same sections

'''Class 27''' (M 11/20)
: Quick quiz
: Help with HW

At home:
: Videos: videos 6-8 of Chapter 11, Chapter 11.3
: Reading: same sections
: '''Turn in Part I of your final project on Canvas.'''
'''Class 28''' (W 11/22)
: Quick quiz
: Student lecture 9 (Abiney, Aubrun, Anthony, Alston)

At home:
: Videos: videos 1-3 of Chapter 13, through Chapter 13.2
: Reading: same sections

'''Class 29''' (M 11/27)
: Quick quiz
: Help with HW

At home:
: Reading: odometry and mobile manipulation, Chapter 13.4 and 13.5
'''Class 30''' (W 11/29)
: Quick quiz
: Student lecture 10 (Miller, Berrueta, Davis, Tobia)

At home:
: Final assignment work

'''Class 31''' (F 12/1)
: Student lecture 11 (Fernandez, Lutzen, SaLoutos, Iwankiw)

At home:
: '''Your final project is due on Canvas by 11:59 PM on Wednesday Dec 6.'''


<!--
Reminders:
# Read and follow closely the instructions on what to submit! If you are missing requested files, or if you use a different directory structure, you will lose points. Make sure your top-level README file is clear on what you've done and what you've submitted.
# If your code does not work well, please describe the remaining issues in your README file. Don't gloss over them or only provide examples where the code works well if the code does not work well for other example problems. Otherwise, if the graders find problems with your software, you will not receive credit for having identified them yourself.
# You can get up to 10 pts of extra credit for correctly implementing joint-limit avoidance (so the robot links and chassis do not self-intersect) and singularity avoidance (e.g., using joint limits that keep the arm in a portion of its workspace where it does not encounter any singularities). If you implement these, you should submit examples of your code solving the same problem two ways---not using joint-limit avoidance and using it---so the usefulness of the joint-limit avoidance is apparent. '''Also, your README file should clearly describe your approach to solving joint-limit and singularity avoidance.'''
# Make sure to keep your problem inputs separate from the code. The exact same code should solve all your problem instances; you shouldn't have different copies of your code for different problem inputs. You could have an input file for each of your examples (e.g., bestScript, overshootScript, newTaskScript) which defines the inputs (e.g., block configurations, controller gains, initial robot configuration) and invokes your code. Then a grader just needs to invoke those scripts to verify your results. (If you implemented joint-limit avoidance, this could just be one of your inputs, e.g., a variable called "avoidJointLimits" which is 0 if you don't care about avoiding joint limits and 1 if you do.)
# Make sure your videos are good quality. They shouldn't be too fast (at least 5 seconds long) or low resolution. The motion should be smooth.
# If your code is written in Python, indicate which version of Python should be used.
# '''Only submit the code that you wrote.''' DO NOT submit MR library functions. The TAs will test your code using the MR library functions imported into MATLAB or Python as appropriate.
-->
-->


Line 390: Line 243:
* [[ME 449 Robotic Manipulation (Archive Fall 2016)|ME 449 Fall 2016]]
* [[ME 449 Robotic Manipulation (Archive Fall 2016)|ME 449 Fall 2016]]
* [[ME 449 Robotic Manipulation (Archive Fall 2017)|ME 449 Fall 2017]]
* [[ME 449 Robotic Manipulation (Archive Fall 2017)|ME 449 Fall 2017]]
* [[ME 449 Robotic Manipulation (Archive Fall 2018)|ME 449 Fall 2018]]
* [[ME 449 Robotic Manipulation (Archive Fall 2019)|ME 449 Fall 2019]]
* [[ME 449 Robotic Manipulation (Archive Fall 2020)|ME 449 Fall 2020]]
* [[ME 449 Robotic Manipulation (Archive Fall 2021)|ME 449 Fall 2021]]
* [[ME 449 Robotic Manipulation (Archive Fall 2021)|ME 449 Fall 2021]]
* [[ME 449 Robotic Manipulation (Archive Fall 2022)|ME 449 Fall 2022]]
-->
-->

Latest revision as of 14:53, 27 November 2023

Fall Quarter 2023

Supportive Class Environment

All members of this class (instructors, TAs, students) are expected to contribute to a respectful, inclusive, and supportive environment for every other member of the class.

We are partners in your education; help us help you get the most out of this class. Please engage as much as possible during our class meetings!

Honor Code

You are encouraged to discuss the material with the instructor, course assistants, and your classmates, but you are not allowed to share your answers or code with others. Anyone asking for answers or code, or providing answers or code, or becoming aware of others doing so without reporting to the instructor, is in violation of the honor code.


Getting Started

Do the following things as soon as possible:

Course Summary

Representations of the configuration and spatial motion of rigid bodies and robots based on modern screw theory. Forward, inverse, and differential kinematics. Robot dynamics, trajectory planning, and motion control. Wheeled mobile robots and mobile manipulation.

Prerequisites

Linear algebra, first-order linear ODEs, freshman-level physics/mechanics, a bit of programming background.

Grading

50% of your final grade will be from your Coursera grades (which I expect will be close to perfect) and 50% from the midterm and assignments outside of Coursera, including 15% midterm, 5% for asst 1, 5% for asst 2, 10% for asst 3, and 15% for asst 4 (the capstone project).

Course Text and Software

This course uses the textbook Modern Robotics: Mechanics, Planning, and Control, Kevin M. Lynch and Frank C. Park, Cambridge University Press 2017. If you find an error or typo in the book, please report it here.

Get the book, install and test the Modern Robotics code library, and install and test the CoppeliaSim robot simulator. You will program in Python, Mathematica, or MATLAB in this course.

Here is a linear algebra refresher appendix to accompany the book.

Approximate Syllabus and Schedule

Here is a summary of the structure of the course. All items are due 30 minutes before the associated class time (1:30 PM Central). The deadlines are controlled by Coursera, so do not be late! You may work ahead if you wish, but then you won't get as much out of the classes.

  • Coursera refers to "weeks," but ignore this; our course modules are not a week long.
  • Before some classes, you should complete a quiz on earlier material.
  • Before most classes, you will watch the associated videos on Coursera and answer the "lecture comprehension" (LC) questions. (Designed to be relatively quick, to solidify your understanding.)
  • You are encouraged to read the corresponding portions of the textbook after watching the videos. I suggest you watch first, then read, then possibly re-watch, but you can determine what works best for your learning style.
  • During the class period after you watch those videos, I will typically summarize what we learned, work a problem, take any questions you have about the material, and possibly assign you a problem to work on.
  • There are two kinds of assessments on Coursera (Coursera refers to both of them as "quizzes"): "lecture comprehension" questions (LCs), which are short and immediately follow lectures, and summative quizzes, which are usually longer assessments/assignments occurring at the middle or end of a chapter.
  • Within Coursera there are also "discussion prompts," open-ended group questions that you should reply to (responses can be simple) and forums where you can post questions and reply to other students' questions.
  • Assignments outside Coursera will be submitted through Canvas.

Below is the approximate syllabus and schedule. Next to each date is the Coursera material that should have been covered at least 30 minutes before that class. "LC" refers to brief lecture comprehension questions that should be completed before that class, and "quiz" is a longer summative quiz on earlier material.

Chapter 2, Configuration Space

  • Wed Sept 20: welcome to the course and syllabus review; intro to Coursera. The schedule for completing Coursera items is set by this wiki!
  • Fri Sept 22: office hours; check for working CoppeliaSim implementation and summarize installation process for each OS; make sure Coursera invitation is accepted; material through Chapter 2.2 (3 videos and 2 LCs on dof of a robot) CLASS SLIDES
  • Mon Sept 25: course staff and office hours; meet the class; and material through Chapter 2.3 (quiz, Chapter 2 through 2.2; 2 videos and 2 LCs on C-space topology and representation) CLASS SLIDES
  • Wed Sept 27: finish Chapter 2 (2 videos and 2 LCs on configuration and velocity constraints, task space and workspace) CLASS SLIDES

Chapter 3, Rigid-Body Motions

  • Fri Sept 29: through Chapter 3.2.1 (quiz, Chapter 2.3 through 2.5; 3 videos and 3 LCs on rotation matrices SO(3)) CLASS SLIDES
  • Mon Oct 2: finish Chapter 3.2 (3 videos and 3 LCs on angular velocities, so(3), exponential coordinates) CLASS SLIDES
  • Wed Oct 4: Asst 1 assigned, due Wed Oct 11. New material: through Chapter 3.3.2 (quiz, Chapter 3 through 3.2; 3 videos and 3 LCs on transform matrices SE(3) and twists) CLASS SLIDES
  • Fri Oct 6: finish Chapter 3 (2 videos and 2 LCs on se(3), exponential coordinates, and wrenches) CLASS SLIDES

Chapter 4, Forward Kinematics (skip section 4.2 on URDF)

  • Mon Oct 9: finish Chapter 4 (quiz, Chapters 3.3 and 3.4; 3 videos and 3 LCs on product of exponentials formula, space and e-e frame) CLASS SLIDES

Chapter 5, Velocity Kinematics and Statics

  • Wed Oct 11: ASST 1, DUE 1:30 PM. New material: through Chapter 5.1 (quiz, Chapter 4; 3 videos and 3 LCs on space Jacobian, body Jacobian) CLASS SLIDES
  • Fri Oct 13: through Chapter 5.2 1 video and 1 LC on statics of open chains) CLASS SLIDES
  • Mon Oct 16: through Chapter 5.4 (2 videos and 2 LCs on singularity analysis, manipulability) CLASS SLIDES

Chapter 6, Inverse Kinematics (focus on section 6.2)

  • Wed Oct 18: Chapter 6 (quiz, Chapter 5; 3 videos and 3 LCs on numerical inverse kinematics) CLASS SLIDES

Chapter 8, Dynamics of Open Chains (skip sections 8.4, 8.7, 8.8, and 8.9)

  • Fri Oct 20: through Chapter 8.1.2 (quiz, Chapter 6; 2 videos and 2 LCs on Lagrangian dynamics) CLASS SLIDES
  • Mon Oct 23: New material: Chapter 8.1.3 (1 video and 1 LC on understanding the mass matrix) CLASS SLIDES
  • Wed Oct 25: MIDTERM, chapters 2-5 (no electronic devices allowed [calculator, laptop, tablet, etc.]; study sheets and book allowed) 2022 midterm and solutions (average score 22.9/32); 2023 midterm and solutions
  • Fri Oct 27: Chapter 8.2 (2 videos and 2 LCs on dynamics of a single rigid body) CLASS SLIDES
  • Mon Oct 30: Chapter 8.3 and 8.5 (2 videos and 2 LCs on Newton-Euler inverse dynamics, forward dynamics; quiz, Chapter 8 through 8.3) CLASS SLIDES

Chapter 9, Trajectory Generation

  • Wed Nov 1: ASST 2, DUE 1:30 PM. New material: through Chapter 9.3 (3 videos and 3 LCs on point-to-point trajectories, polynomial via point trajectories) CLASS SLIDES
  • Fri Nov 3: CLASS CANCELED. Chapter 9.4 (quiz, Chapter 9 through 9.3; 3 videos and 3 LCs on time-optimal time scaling) CLASS SLIDES
  • Mon Nov 6: Chapter 9.4 recap.
  • Wed Nov 8: ASST 3, DUE 1:30 PM; final project discussion

Chapter 11, Robot Control (focus on sections 11.1 through 11.4)

  • Fri Nov 10: up to (not including) Chapter 11.2.2.1 (quiz, Chapter 9.4; 3 videos and 3 LCs on linear error dynamics) CLASS SLIDES
  • Mon Nov 13: finish Chapter 11.2.2 (2 videos and 2 LCs on first- and second-order error dynamics) CLASS SLIDES
  • Wed Nov 15: through Chapter 11.3 (3 videos and 3 LCs on motion control with velocity inputs) CLASS SLIDES
  • Fri Nov 17: Chapter 11.4 (quiz, Chapter 11 through 11.3; 3 videos and 3 LCs on motion control with torque or force inputs) CLASS SLIDES

Chapter 13, Wheeled Mobile Robots (skip section 13.3)

  • Mon Nov 20: FINAL PROJECT MILESTONE 2, DUE 1:30 PM; new material through Chapter 13.2 (quiz, Chapter 11.4; 3 videos and 3 LCs on omnidirectional wheeled mobile robots) CLASS SLIDES
  • Wed Nov 22: CLASS CANCELED
  • Mon Nov 27: Chapter 13.4 (quiz, Chapter 13 through 13.2; 1 video and 1 LC on odometry) CLASS SLIDES
  • Wed Nov 29: Chapter 13.5 (1 video and 1 LC on mobile manipulation) CLASS SLIDES
  • Fri Dec 1: wrap-up
  • Thurs Dec 7, noon: final project due

Practice Exercises

Sample exercises and their solutions, useful for practicing your understanding of the material.

Practice Tests

Assignments

As mentioned above, in the Honor Code: You are encouraged to discuss the material with the instructor, course assistants, and your classmates, but you are not allowed to share your answers or code with others. Anyone asking for answers or code, or providing answers or code, or becoming aware of others doing so without reporting to the instructor, is considered in violation of the honor code.

Assignments are graded based on correctness, how well you organize your homework (it should be easy to understand your thinking and easy to find your responses), and how well you follow the submission instructions below. You will lose points if you don't follow these instructions. If more detailed submission instructions are given with a particular assignment, make sure to follow those, too.

You will not receive credit if you just give an answer. Your solution must demonstrate how you got the answer. It must be easy to follow.

If you ever think a problem is stated incorrectly, not enough information is given, or it is impossible to solve, don't panic! Simply make a reasonable assumption that will allow you to solve the problem (but clearly state what this assumption is), or indicate why it is not possible to solve the problem.

Instructions for uploading assignments to Canvas:

  • Upload on time! Late submissions are not accepted.
  • For every assignment, you should upload exactly one pdf file, named FamilyName_GivenName_asst#.pdf. This pdf file should have answers to all the questions, including screen shots, text logs of code running, etc. Always include output of your code running on the exercises, so the grader can see what you got when you ran your code. You may scan handwritten solutions (provided they are neat!), but in any case, all answers should be in a single pdf file. DO NOT UPLOAD SCANS AS JPGS! THEY MUST ALL BE COMPILED INTO A SINGLE PDF FILE.
  • If required by the assignment, in addition you may be asked to provide a zip file including all source code in their original forms, such as .m, .py, or .nb. This zip file should be named FamilyName_GivenName_asst#.zip. Always create a script that the grader can easily invoke to run your code for a particular exercise. Don't expect the grader to search through your code to find sample code to cut-and-paste. Make it as easy as possible for the grader (you can include a "README.txt" file in your zip file, for example, to tell the grader how everything works). Your code should be commented well enough that it is easy for someone else to pick it up and understand more or less how it works. All student-written code must be submitted; do not submit any standard MR code.
  • If you record a movie, keep it short and clear. It should only be a few MB in size. For example, you don't need super high resolution, 60 fps, etc.
  • All plots should be labeled (axes, legends, titles) with appropriate units.

Assignment 1, due 1:30 PM CT Wednesday October 11 on Canvas.

Assignment 2, due 1:30 PM CT Monday October 30 Wednesday November 1 on Canvas.

Assignment 3, due 1:30 PM CT Wednesday November 8 on Canvas.



Final Project: Mobile Manipulation

The final project is described on this page. It is due in Canvas on Thursday December 7 at noon.

  • Due Monday November 20 at 1:30 PM on Canvas: Milestone 2. (You will do milestone 2 first! Milestone 1 will come next.) You will turn in a single zip file named FamilyName_GivenName_milestone2.zip with your solution to milestone 2. The zip file should include a README.pdf file with a brief summary of your solution and how to use it, and if your code is not working properly, it should correctly point out the problems. The zip file should also include a directory with the commented code you wrote, including a cut-and-pastable comment at the beginning showing how to execute the code to generate the csv file included in the submission; a CoppeliaSim video showing your reference trajectory of the end-effector (similar to this video); and the csv file that your code generated to create the video.
  • Due Thursday December 7 at 12:00 PM (noon) on Canvas: The entire final writeup, as described at this page, in a single zip file named FamilyName_GivenName_capstone.zip. You may earn up to 10% extra credit on the capstone project by implementing singularity and self-collision avoidance. See the description of the final project writeup.