Difference between revisions of "Control with TrackCam Vision Feedback and MATLAB"

From Mech
Jump to navigationJump to search
Line 54: Line 54:
To see if using Windows instead of a real-time operating system would be a viable option, we had to test how fast the sampling rate could be set to without losing samples. We tried two methods: the first was to output data on one computer and collect it on the same computer, and the second was to output data on one computer and collect it on another computer.
To see if using Windows instead of a real-time operating system would be a viable option, we had to test how fast the sampling rate could be set to without losing samples. We tried two methods: the first was to output data on one computer and collect it on the same computer, and the second was to output data on one computer and collect it on another computer.


===Single computer tests===
===Single Computer Tests===
To run these tests, we used Measurement Computing Cards (mcc). Both were installed in the same computer. The MATLAB code that is at the end of this document was then run (testInputOutput.m). It creates an output wave that is a wave of alternating pulses. These were output at a predetermined rate. The input card kept on taking input all the time. Then, the duration of the input pulses was measured to see how long each pulse actually was as opposed to how long we wanted it to be. Plots of this were made, along with the standard deviation and the extra duration of each pulse. Using this method, we were able to see how fast we could feasibly run the alternate pulses without losing accuracy. Figure 1 shows that this test started to break down around 2000 Hz when the computer was not stripped down as described above. When it was stripped down, the test still ran fine at 10000 Hz, as can be seen in Figure 2.
To run these tests, we used Measurement Computing Cards (mcc).

===Two Computers===





Revision as of 15:40, 11 September 2009

Stripping Down Windows

To make the new computer that runs the control system run as efficiently as possible, all extraneous functionalities were turned off. There is not anti-virus software, no firewall, no https for the internet, and so on. Only the bare minimum is left. Below is a list of the remaining functions and what they do. Another thing to do to make MATLAB run faster is to set it to go to the Task Manager, go to Processes, right-click on MATLAB.exe and set it to Realtime priority.

Explorer.exe

This is the user shell, which we see as the familiar taskbar, desktop, and other user interface features. This process isn't as vital to the running of Windows as you might expect, and can be stopped (and restarted) from Task Manager, usually with no negative side effects on other applications.

nvsvc32.exe

Part of the NVIDIA graphics card drivers (Detonator). It should be left running on any system using Nvidia graphics hardware to ensure proper function.

MATLAB.exe

MATLAB

svchost.exe

an integral part of Windows OS. It cannot be stopped or restarted manually. This process manages 32-bit DLLs and other services. At startup, Svchost.exe checks the services portion of the registry and constructs a list of services that it needs to load. Under normal conditions, multiple instances of Svchost.exe will be running simultaneously. Each Svchost.exe session can contain a grouping of services, so that many services can be run depending on how and where Svchost.exe is started. This allows for better control and debugging.

lsass.exe

the Local Security Authentication Server. It verifies the validity of user logons to your PC or server. Lsass generates the process responsible for authenticating users for the Winlogon service. This is performed by using authentication packages such as the default, Msgina.dll. If authentication is successful, Lsass generates the user's access token, which is used to launch the initial shell. Other processes that the user initiates then inherit this token.

services.exe

This is the Services Control Manager, which is responsible for running, ending, and interacting with system services. Use this program to start services, stop them, or change their default from automatic to manual startup.

winlogon.exe

runs in the background. Winlogon is a part of the Windows Login subsystem, and is necessary for user authorization and Windows XP activation checks.

csrss.exe

This is the user-mode portion of the Win32 subsystem; Win32.sys is the kernel-mode portion. Csrss stands for Client/Server Run-Time Subsystem, and is an essential subsystem that must be running at all times. Csrss is responsible for console windows, creating and/or deleting threads, and implementing some portions of the 16-bit virtual MS-DOS environment.

smss.exe

This is the session manager subsystem, which is responsible for starting the user session. This process is initiated by the main system thread and is responsible for various activities, including launching the Winlogon and Win32 (Csrss.exe) processes, and setting system variables. After it has launched these processes, it waits for either Winlogon or Csrss to end. If this happens normally, the system shuts down; if it happens unexpectedly, Smss.exe causes the system to stop responding (hang).

ctfmon.exe

When you run a Microsoft Office XP program, the file Ctfmon.exe (Ctfmon) runs in the background, even after you quit all Office programs. Ctfmon.exe monitors active windows and provides text input service support for speech recognition, handwriting recognition, keyboard translation, and other alternate user input forms.

rundll32.exe

This program is part of Windows, and is used to run program code in DLL files as if they were within the actual program.

RTHDCPL.EXE

a process belonging to the Realtek HD Audio Control Panel and is bundled alongside Realtek sound cards and audio hardware. This program is a non-essential process, but should not be terminated unless suspected to be causing problems.

ipoint.exe

a process installed alongside a Microsoft IntelliMouse and provides additional configuration options for these devices. "This program is a non-essential process, but should not be terminated unless suspected to be causing problems.

System

a process which shows up on the tasks on mainly Windows XP, Windows 2003 server and later version of Windows. This is a default system counter and cannot be removed.


Shared Memory

One of the methods explored to make the system run as quickly as possible was to have MATLAB and the camera running on separate cores of the computer, so both could run in parallel. This would require for them to communicate through shared memory. At the bottom of this page is a .cpp program that communicates through shared memory. We ultimately did not take this approach because Windows appears to be quick enough for now. Eventually, a real-time operating system such as Linux RTAI would be preferred, but for the time being, Windows suffices. I will therefore not explain further how the shared memory option works. However, if it is ever needed, everything to communicate through shared memory is in that file.


Test of Sample Rates

Overview

To see if using Windows instead of a real-time operating system would be a viable option, we had to test how fast the sampling rate could be set to without losing samples. We tried two methods: the first was to output data on one computer and collect it on the same computer, and the second was to output data on one computer and collect it on another computer.

Single Computer Tests

To run these tests, we used Measurement Computing Cards (mcc). Both were installed in the same computer. The MATLAB code that is at the end of this document was then run (testInputOutput.m). It creates an output wave that is a wave of alternating pulses. These were output at a predetermined rate. The input card kept on taking input all the time. Then, the duration of the input pulses was measured to see how long each pulse actually was as opposed to how long we wanted it to be. Plots of this were made, along with the standard deviation and the extra duration of each pulse. Using this method, we were able to see how fast we could feasibly run the alternate pulses without losing accuracy. Figure 1 shows that this test started to break down around 2000 Hz when the computer was not stripped down as described above. When it was stripped down, the test still ran fine at 10000 Hz, as can be seen in Figure 2.

Two Computers

Code

Shared Memory

#include <windows.h> #include <stdio.h> #include <conio.h> #include <tchar.h> #define BUF_SIZE 256 TCHAR szName[]=TEXT("Global\\MyFileMappingObject"); //TCHAR szMsg[]=TEXT("What's up (from the first process)?"); int szMsg; int _tmain() { HANDLE hMapFile; LPCTSTR pBuf; int ch,image; int coordinates[3]; hMapFile = CreateFileMapping( INVALID_HANDLE_VALUE, // use paging file NULL, // default security PAGE_READWRITE, // read/write access 0, // max. object size BUF_SIZE, // buffer size szName); // name of mapping object if (hMapFile == NULL) { _tprintf(TEXT("Could not create file mapping object (%d).\n"), GetLastError()); return 1; } pBuf = (LPTSTR) MapViewOfFile(hMapFile, // handle to map object FILE_MAP_ALL_ACCESS, // read/write permission 0, 0, BUF_SIZE); if (pBuf == NULL) { _tprintf(TEXT("Could not map view of file (%d).\n"), GetLastError()); CloseHandle(hMapFile); return 1; } for (szMsg=0;szMsg<5;szMsg++) { image = szMsg*2; coordinates[0] = image * 2; coordinates[1] = image * 3; coordinates[2] = image * 4; CopyMemory((PVOID)pBuf, coordinates, (3*sizeof(int))); _cputs( "Type 'Y' to increment counter: " ); do { ch = _getch(); ch = toupper( ch ); } while( ch != 'Y' ); _putch( ch ); _putch( '\r' ); // Carriage return _putch( '\n' ); // Line feed } UnmapViewOfFile(pBuf); CloseHandle(hMapFile); return 0; }

#include <windows.h> #include <stdio.h> #include <conio.h> #include <tchar.h> #pragma comment(lib, "user32.lib") #define BUF_SIZE 256 TCHAR szName[]=TEXT("Global\\MyFileMappingObject"); int _tmain() { HANDLE hMapFile; LPCTSTR pBuf; int i; double coordinates[3]; int temp; const char *tempChar; hMapFile = OpenFileMapping( FILE_MAP_ALL_ACCESS, // read/write access FALSE, // do not inherit the name szName); // name of mapping object if (hMapFile == NULL) { _tprintf(TEXT("Could not open file mapping object (%d).\n"), GetLastError()); return 1; } pBuf = (LPTSTR) MapViewOfFile(hMapFile, // handle to map object FILE_MAP_ALL_ACCESS, // read/write permission 0, 0, BUF_SIZE); if (pBuf == NULL) { _tprintf(TEXT("Could not map view of file (%d).\n"), GetLastError()); CloseHandle(hMapFile); return 1; } tempChar = (const char *) pBuf; temp = atoi(tempChar); do { for (i=0; i<3; i++){ *(coordinates+i) = (double) (atoi((const char *) (&(*(pBuf+i))))); } } while (1); UnmapViewOfFile(pBuf); CloseHandle(hMapFile); return 0; }