ME 449 Robotic Manipulation

Fall 2015

Problem Set 5

Due Friday December 11 by 9 AM (turn in on Canvas).

1. You will add the following functions to your robotics library. Some are implementations of the dynamic
equations ) )
M(0)0 + c(6,0) + g(0) + JT () Fup = 7.

e InverseDynamics: This function computes the inverse dynamics of an n-joint serial chain. The output
is a vector of joint forces/torques 7. The input is:

— A vector 6 of joint variables.
— A vector 8 of joint velocities.
— A vector 6 of joint accelerations.

— A three-vector g indicating the direction and magnitude of gravitational acceleration. (The ac-
celeration of the base link of the robot is considered to be the negative of this.)

— A spatial force six-vector that indicates the wrench Fii, applied by the robot’s end-effector ex-
pressed in its frame {n + 1}, which is fixed relative to frame {n}, where frame {0} is the base
frame and frames {1} to {n} are at the centers of mass of the n robot links.

— A description of the robot, including:

* M;_1, € SE(3) for i =1,...,n+ 1, indicating the configuration of the center-of-mass frame
of link 7 relative to the center-of-mass frame of link ¢ — 1 when joint ¢ is at its zero (home)
position. (Note there is no center of mass for the (n + 1)th frame; this frame is only used to
express end-effector forces in a frame other than the last link’s center of mass.)

* The 6x6 spatial inertia G; for each link ¢ = 1,... n, expressed in the links’ center-of-mass
frames.

* The n screw axes S; expressed in the fixed base frame.

This function will make use of the Newton-Euler inverse dynamics algorithm. You might find it
convenient to define a helper function or two, like the Lie bracket or the calculation of the spatial force
applied to a rigid body given its spatial inertia matrix, spatial velocity, and rate of change of spatial
velocity.

e InertiaMatrix: This function computes the numerical inertia matrix M () of an n-joint serial chain
at a given configuration §. There is more than one way to do this, but we will use a simple method
that makes use of the function InverseDynamics. You will call InverseDynamics n times, each time
getting one column of the inertia matrix, and assemble those n columns into M (#). To get the ith
column of M, call InverseDynamics with 6 = 0,9 =0, Fiip =0, and 0 equal to zero except for the ith
component, which is set equal to 1. Now when Inverse Dynamics calculates 7 = M (0)6+c(0,0)+g(6),
clearly ¢ will be equal to zero (no Coriolis or centripetal terms since 6 = 0), g(9) will be equal to zero,
and our choice of § will pick out the ith column of M. So the input to the function InertiaMatrix is

— A vector 6 of joint variables.
— A description of the robot, including:
* M1, € SE@3)fori=1,...,n+ 1.
x The 6x6 spatial inertia G; for each link ¢ = 1,...,n, expressed in the links’ center-of-mass
frames.
x The n screw axes S; expressed in the fixed base frame.

e CoriolisForces: This function computes the vector ¢(6,6) of Coriolis and centripetal terms for a
given 6 and 6. It also uses InverseDynamics, calling it once with g = 0, Fiip, = 0, and 6 = 0. The
inputs to CoriolisForces are 6, 6, and a description of the robot.



e GravityForces: This function computes the vector g(¢) using InverseDynamics, calling it once with
0 =60 =0 and Fijp = 0. The inputs to GravityForces are ¢, g, and a description of the robot.

e EndEffectorForces: This function computes J7 (6)Fp. It is your choice how to compute it. As input
it needs (at a minimum) Fip,, 0, and a description of your robot’s kinematics from which the Jacobian
can be derived. Alternatively, you can use InverseDynamics again.

e ForwardDynamics: This function computes 0 given 0, 0, 7, g, Fiip, and a description of the robot. It
does this by solving ) )
M(0)0 =1 —c(0,0) — g(0) — I (0) Feip
for 6. You can use your programming language’s method for solving equations like Ax = b for known
A and b.

e EulerStep: This function takes the current state (6(t),0(t)), the current acceleration 6(t), and the
timestep At, and returns the state after At according to a simple first-order Euler integration step:

O(t + At) = 0(t) + Atd(t)
j ot

0(t + At) = O(t) + Atd(t).

e InverseDynamicsTrajectory: This function takes a robot trajectory specified as a set of NV +1 points
(0(kAt), §(kAt), B(kAt), where k € {0,1,..., N} and At is the timestep between points. The total
time of the trajectory is T'= NAt. The function also takes as input a set of N + 1 values of the form
Frip(kAt), allowing the specification of a time-varying set of endpoint forces. (By default these can
be zero.) Other inputs are the gravity vector g and the description of the robot. The output of the
function is a matrix with n columns and N + 1 rows, where the kth row of the matrix is 7(kAt) as
computed by InverseDynamics.

e ForwardDynamicsTrajectory: This function takes an initial robot state (6(0),#(0)) and a joint force/torque
history 7(kAt), where k € {0,1,..., N} and At is the timestep between points. It uses EulerStep to

compute and return the robot state as a function of time, (8(kAt), 0(kAt)). It takes whatever else is
needed as input.

2. For the URb robot, described by its URDF file (and note the changed base frame), write the description
of the robot given by the M;_;,; € SE(3) for i =1,...,n+ 1; the G;; and the S;.

3. For the URS robot in gravity, choose a timestep At = 0.001 s and create a 1001-point discretized quintic
trajectory from rest at (0) = 0 to 6(T' = 1 s) when all joint angles are 7/2. Plot 6(t), 6(t), and 6(t) for
one of the joints (it will be the same for all joints), and use InverseDynamicsTrajectory to generate the
necessary robot torques as a function of time. Plot all six torques on the same vertical scale. Assume gravity
is 9.81 m/s?, downward in the base frame’s Z-axis direction.

4. For the UR5 robot in gravity as in the previous problem, and given the initial state of the previous
problem, assume that the joint torques at each joint are constant at 2 Nm. Simulate the motion of the robot
for one second (at 1 ms resolution) using ForwardDynamicsTrajectory. Plot the six joint positions as a
function of time. Make a movie of the motion, post it on Youtube, and provide the link.

5. Extra credit (worth up to an extra 25% of this assignment’s grade): Robot control. Write
two more functions for your library:

e FF_FB_Control: Takes the robot model; desired position, velocity, and acceleration at the current time;
actual position and velocity at the current time; and feedback gains Kp, Ki, and Kd; and calculates
the commanded joint forces/torques 7.

e SimulateControl: Given



the actual model of the robot

the robot’s estimate of the model

the gain matrices

the initial state of the robot

— a desired trajectory of the robot (including the timestep)

simulate the robot controller FF_FB_Control attempting to follow the trajectory and output the joint
torques and the actual joint angles as a function of time. This function can also plot the actual versus
desired joint angles as a function of time.

Use the UR5 and the quintic trajectory above as your test motion. The controller should use the URDF
model, and the simulator should use the same, except with a 1 kg point mass added at the end-effector
frame. Indicate the new effective inertia for the last link, simulate your controller, provide plots of the joint
torques and joint angles as a function of time, and put a movie of the motion on Youtube.



