
ME 333: Introduction to Mechatronics

Assignment 5: Simple real-time control with the PIC32

Electronic submission due before 12:30 p.m. on February 15th

1 The PIC32 ADC Peripheral

Conceptually, the ADC peripheral is very simple: sample an analog pin for a specified amount
of time and then hold the voltage level for a number of cycles so the circuitry can convert the
analog signal into a 10-bit number. However, with its plethora of options, the ADC peripheral is
the most complicated peripheral we will work with in ME 333. Ironically, the functions provided
by the peripheral library can make it harder to program the ADC for general purpose usage.
Instead, we will directly program a few of the SFRs corresponding to the ADC peripheral, so
that we can manually sample an analog pin. This isn’t as hard as it sounds. Many of the options
that we want are enabled by default whenever the PIC is reset, like the manual sampling mode.
If you are interested in what the default values are for the ADC refer to Section 17. 10-Bit A/D
Converter of the Reference Manual, keep in mind that after a PIC reset all ADC registers are
zero by default. The options that we need to explicitly enable are:

• Setting the output buffer, ADC1BUF0, to return the sample in a 32-bit number that ranges
from 0–1023. The Reference Manual refers to the name of this option as FORM, which is
located in AD1CON1,

• Connecting an analog pin, other than the default, AN0, to MUXA for sampling (CH0SA in
AD1CHS),

• Increasing the period of a conversion clock cycle (ADCS in AD1CON3), and

• Turning the ADC peripheral on (ON in AD1CON1).

Questions

(a) For this question refer to Algorithm 1. In line 15 of the algorithm, assume SAMPLE TIME
is set to 8. How long are we theoretically sampling AN15 for? You should find that it exceeds
the minimum sampling time of 132ns mentioned on the NU32v2: Analog Input wiki page.
This code also shows two examples of polling, specifically lines 15 and 17, where the CPU
continuously checks a register until an event happens. For the case of the timer in line 15, we
are waiting for an elapsed amount of time and for line 17 we are waiting for the conversion
from analog to digital to finish.

(b) Calibrating your sensor is an important step in control applications. For this assignment we
are interested in the relationship between the PWM duty cycle at 100kHz1 and the brightness
of the LED as measured by the phototransistor. Wire up the LED and phototransistor as in

1100kHz can be achieved with a 1:1 prescaler and 800 counts.

1

http://ww1.microchip.com/downloads/en/DeviceDoc/61104D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61104D.pdf
http://hades.mech.northwestern.edu/index.php/NU32v2:_Analog_Input


Algorithm 1 Example Code: ADC Manual Conversion of Samples with SFRs. Important
Microchip-defined ADC constants are in color

1: int sample;
2:

3: // set up ADC to read from AN15 and store the sample, so that we can read it using an int
4: AD1CON1bits.FORM = 4; // set output format to range from 0–1023
5: AD1CHSbits.CH0SA = 15; // connect pin AN15 to MUXA for sampling
6: AD1CON3bits.ADCS = 3; // set conversion period = 2(ADCS+1)*PBCLK
7: AD1CON1bits.ADON = 1; // turn on A/D converter
8:

9: // use TMR3 to ensure that we sample the input for at least 132ns
10: OpenTimer3(T3 ON | T3 PS 1 2, 65535);
11:

12: while(1) {
13: AD1CON1bits.SAMP = 1; // start sampling
14: WriteTimer3(1); // reset the timer
15: while(ReadTimer3() <= SAMPLE TIME) {}; // sample for >= 132ns
16: AD1CON1bits.SAMP = 0; // stop sampling and start conversion to a 10-bit number
17: while(!AD1CON1bits.DONE) {}; // wait for the conversion process to finish
18: sample = ADC1BUF0; // read the buffer location where the result is stored
19:

20: // send result over serial
21: sprintf(RS232 Out Buffer, ”%f (%u)\r\n”, (VOLTS PER SAMPLE*sample), sample);
22: WriteString(UART3, RS232 Out Buffer);
23: }

2



R1

R2 C

+ 3.3 V

PWM OC1

Vsensor, AN0

Figure 1: Circuit diagram for LED/Phototransistor, R1 = 100Ohms, C = 10nF, see Question
1(b) for R2

Figure 1 with R1 = 100Ω and C = 10nF. You will treat R2 as a design parameter in tuning
the circuit. Ideally, your choice of R2 would allow for the use of the full PWM duty cycle
range without saturating the transistor under normal and dark lighting conditions. Instead,
under normal lighting conditions, find a value for R2 in the range of 100Ω–10kΩ (use your
potentiometer) that allows you to use at least 80% of your duty cycle before saturating the
transistor. What value of R2 did you use? With this value of R2, turn in a representative
plot of phototransistor output voltage vs. PWM duty cycle (you can either use NU32v2 plot
or print a small set of representative points to a terminal on your PC and plot those values).
Clearly show at what voltage level, if any, you are saturating at. This voltage level also
represents the max voltage that you can expect to track as a reference signal. You should
also test that your value for R2 works in a darkly lit room (to simulate this situation, just
put your hand over the LED).

1.1 Polling Hazard

This section has no questions and can be safely skipped.
Polling can be a useful alternative to using interrupts. Its biggest virtue is that it is simple

to use. However, you should be aware that if you don’t poll the event your waiting for frequently
enough, you’ll miss it. As an extreme example of this pitfall, imagine that we’ve set TMR3 to
increment every clock cycle and rollover after 1 count. We’d see the timer do the following: ...0 1 0
1 0 1 0 1 0 1... and so on. Now imagine that we write our while loop as: while(ReadTimer3()){};
and that it takes two cycles to execute. We’d be reading every other value from the timer and
can get into the unlucky situation of always reading the value 1. Clearly, the time we wanted to
wait for has elapsed, but we’re not polling fast enough to detect the event. What’s worse is that
we’re stuck in an infinite loop.

3



2 Real-time control with (of course) blinking lights

2.1 Overview

For this programming assignment, you will set the brightness of an LED based on a square
wave reference signal. Instead of reading a reference signal from an external source, you will
create an array that stores the voltage levels of the reference signal at equally spaced intervals
in time. As you try to track the reference signal with your actual signal, the output from the
phototransistor, there will be some error between the two readings. In order to drive the error
to zero you will write a control loop that will implement a Proportional-Integral controller, more
commonly known as a PI controller. A discretized version of a PI control law can be expressed
as:

u[n] = Kp × error[n] + Ki ×
n∑

i=0

error[i]

where Kp and Ki are your gain values (these are parameters that you get to tune), error[n]
is the difference between the reference and actual signal at time step n, and u[n] is your control
law at time step n. As you can see the PI controller is aptly named. It has a term that is
proportional to the error and a second term that is proportional to the integral of the error.
Refer to Algorithm 2 for one way to implement a PI controller in code. Note that the algorithm
is in pseudocode (a mixture of real code and English). It is up to you to fill in the details.

2.2 Programming assignment

For this assignment you can assume that you will always receive well-formatted inputs (i.e., the
user is perfect and will not give your program invalid inputs). You should use AN0 to read the
output signal of the phototransistor and OC1 to generate a 100kHz PWM signal. If you haven’t
already, wire up your components as in Figure 1. In the circuit use R1 = 100Ω, C = 10nF, and
use your value from Question 1(b) for R2. Here are the basics of the program:

• Generate a 100kHz PWM signal. For the timer that you pair with OC1 use a 1:1 prescaler
and 800 counts.

• Create and initialize an array that stores the reference signal values. You should be able
to fill the array with a square wave profile that runs at REF FREQ, has voltage levels V LO

or V HI, and a duty cycle specified by REF DUTY.

• Write a control loop that executes at 1kHz, reads in a sample from AN0, computes the new
duty cycle of OC1 based on the PI control law, and stores the sample in an array for later
display (see Algorithm 2).

• Approximately every second send the samples of the actual signal generated, reference
voltage, and their index over serial, so that NU32v plot can display the results.

• Write a UART3 interrupt routine that responds to commands from NU32v2 plot. For an
example of what to do see the template file, NU32v2 phototrans template.txt.

There is also a template provided with this assignment in the Assignment 5 zip folder. You
are free to modify the entire file. Finally, for the demo on Tuesday, you will show us how well
you can track a 2Hz square wave, between 1V and 2V, and with a 50% duty cycle.

4



Questions

(a) With a reference signal at 2Hz, alternating between 1V and 2V, at 50% duty cycle, what
gain values Kp and Ki did you use for your control law? Include a snapshot of how well your
control law performed at tracking the reference signal.

Algorithm 2 Implementing a PI controller inside an interrupt routine

... code that reads the analog signal on AN0 ...

... store the current value, ADCVal, into an array ...
error = refVal - ADCVal;
dutyCycleProp = Kp * error; // this is the proportional controller
errorInt = errorInt + error;
... we can’t integrate forever, so cap errorInt at reasonable values to prevent overflow issues ...

dutyCycleInt = Ki * errorint; // this is the integral controller
dutyCycleOutput = dutyCycleProp + dutyCycleInt;
... update OC1 duty cycle ...

2.3 Extra Credit

In order to receive extra credit, the original assignment must still meet the stated specifications
under Section 2.2 Programming Assignment.

• Generate the reference signal using OC3 and read it in using ANx (where x 6= 0). You will
need to refer to the Reference Manual (section 17) in order to connect ANx to MUXB and
to enable alternating between MUXA and MUXB.

• Display the current error on the Nokia LCD. Animations or text that enhance the infor-
mation content of what is going on inside the program will generate more points.

3 What to turn in

For the questions in Section 1, you must submit typed responses. Place your responses and your
.c file from the programming assignment in a zip file and submit the zip file through Blackboard
before class on the date the assignment is due. The name of the zip file you submit will be
lastname a5.zip.

In addition to submitting your assignment via Blackboard, you will also demonstrate your
program to the teaching staff at the beginning of class on the date the assignment is due. For
this assignment you will demo your ability to track a 2Hz square wave, alternating between 1V
and 2V, at 50% duty cycle. You will display your results using NU32v2 plot.

For full credit, you must follow these instructions.

5


	The PIC32 ADC Peripheral
	Polling Hazard

	Real-time control with (of course) blinking lights
	Overview
	Programming assignment
	Extra Credit

	What to turn in

