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Abstract— This paper addresses the planning and control
of dynamic contact manipulation. In an earlier paper [13],
we derived a constraint on the robot joint accelerations that
needed to be satisfied to obtain a desired contact mode and
a desired dynamic motion of the object. We proposed a
technique for trajectory planning which involved planning
a path in the system configuration space followed by time-
scaling the path to satisfy dynamic constraints. This paper
tackles a problem where only a small set of paths can be time-
scaled to satisfy the constraints. We note that the dynamic
constraints depend only on a subspace of the system state
space. Projecting the dynamics and the constraints onto the
subspace allows us to compute an analytical solution for
the trajectory generation problem. We generate controllable
simulations by allowing the user to control the system in the
space orthogonal to the projection. We also demonstrate the
construction of feedback controllers using dynamic program-
ming.

I. INTRODUCTION

Manipulation is the art of moving things. At the core
of the manipulation problem, an object needs to be moved
from a start to a desired goal by a robot that manipulates the
object. As the system evolves, contacts occur both between
the object and the robot, and between the object and the
environment. Contacts are important because they act as the
coupling between the various subsystems — they transmit
forces and impose motion constraints on the object and the
robot. For example, when a waiter manipulates a glass on
a tray, he exerts a force on the glass through the tray. He
also imposes a motion constraint that prevents the glass
from sliding, tipping or losing contact.

A solution to the manipulation problem is a set of
controls that can be applied by the robot on the object
that will cause the desired motion of the object and satisfy
the desired motion constraints.

By dynamic manipulation we mean “acting on the object
during its dynamic phase”. There are many reasons for
using dynamics in manipulation. We refer the reader to
[13] for a detailed list. The motivating reason in this paper
is that there is no quasi-static solution for the problem
described.

The problem we will be focusing on in this paper is
shown in Fig.1(i). A block rests on a flat palm. The goal is
to make the block stand up. If we denote the angle made
by the block with the palm by θ, the goal is to manipulate
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the block from θ = 0 to θ = π
2 . The palm cannot rotate.

We control the horizontal and vertical acceleration of the
palm (q̈1,q̈2). Furthermore, we need to maintain a rolling
contact between the block and the palm. As per the laws of
Coulomb friction this means that the contact friction force
f must lie within the friction cone at the contact F . As
a practical consideration, we also bound the magnitude of
the horizontal and vertical acceleration of the palm.

This problem, henceforth identified as the tipping prob-
lem, was first proposed by Erdmann[7]. There is a so-
lution to the problem in Erdmann’s paper, but one that
was derived by hand-tuning the controller and the system
parameters. One of our goals in this paper is to automate
the trajectory planning. Furthermore, we would also like to
answer questions like:

What is the set of all feasible palm motions that
move the block from θ = 0 to θ = π

2 in, say, 2.5
seconds, and have the exact same angular motion
θ(t) of the block?

The answer to the question is illustrated in Fig.1(iii).
The problem solved in this paper is also closely related

to the work of Lynch and Mason [10]. Using a robot arm
with a single revolute degree of freedom, they demonstrated
dynamic tasks such as snatching, rolling, throwing and
catching an object.

In [13], we derived a constraint on the feasible joint
accelerations for a given system state, a desired motion
of the object and a desired set of contact conditions. A
feasible trajectory is one that satisfies the joint acceleration
constraint at every point. In [13], to obtain a feasible
trajectory, we decoupled the problem into a path planning
problem in the system configuration space followed by a
time-scaling of the candidate path to satisfy the acceleration
constraints. Note that a path has no notion of time. When
we time-scale, we are in effect coming up with a time
parametrization of the candidate path; we are deciding how
fast or slow we wish to travel along the path. We deem
a time-scaling successful if it is possible to find a time
parametrization of the path that does not violate the accel-
eration constraints. Decoupling reduces the dimensionality
of the problem from 2nq to (nq + 2), where nq is the
dimension of the configuration space.

There is a drawback to the decoupling approach. It is
possible that only a small subset of all feasible paths in
the system configuration space can be successfully time-
scaled. Applying the decoupling technique then amounts
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Fig. 1. (i) : The tipping problem — a block rests on a flat palm. The goal is to tip the block i.e. go from θ = 0 to θ = π
2 while maintaining rolling

contact, (ii) : projecting the dynamics and the constraints onto the space of task freedoms, (iii) : a sampling of the set of all feasible palm motions that
move the block from θ = 0 to θ = π

2 in 2.5 seconds and have the exact same angular motion θ(t) of the block

to repeatedly trying candidate paths until one that could
be successfully time-scaled is found. Searching for a small
sliver in an infinite dimensional function space of config-
uration space paths can be very hard.

We propose a new technique for solving the trajectory
generation problem. We first derive the contact acceleration
constraint for the tipping problem using a result from
[13]. We identify the subset of the state variables that the
constraint depends on. We call these state variables the
task freedoms of the system. For the block tipping, the task
freedom is the rotation of the block relative to the palm, the
angle θ. We then project the dynamics and the constraints
onto the space of task freedoms. For the block tipping,
the state space comprises of the configuration of the block
and its velocity, a 6 dimensional space. We project the
dynamics and the constraints onto the 2 dimensional space
of (θ, θ̇), as shown in Fig.1(ii). We plan a feasible trajectory
in the lower dimensional task freedom space and control the
nullspace of the projection to control the reminder of the
state variables. A feasible trajectory for the block tipping
is shown in Fig.1(ii). The trajectory takes the block from
θ = 0 to θ = π

2 in 2.5 seconds while maintaining a rolling
contact between the block and the palm. By varying the
control in the nullspace, we are able to produce various
palm motions that do not affect the task freedom trajectory.
The family of trajectories generated is shown in Fig.1(iii).

We are also interested in developing feedback controllers
for dynamic contact manipulation. For a given cost func-
tion, a feedback controller outputs the optimal control that
needs to be applied at each system state which will result in
a trajectory that minimizes the cost function. In this paper,
we develop a feedback controller for the task freedoms
using backward dynamic programming. We discuss the
implementation of the controller in §V.

The rest of the paper is arranged as follows. In §II, we

introduce the terminology used in the rest of the paper and
give a clear definition of the problem we are interested
in solving. §III describes relevant background work on
manipulation and dynamic programming. §IV describes
the solution of the planning problem. §V describes the
feedback controller. In §VI, we discuss our contributions
and describe future work.

II. PROBLEM STATEMENT

We describe the configuration of the block by its pose
qo = (x, y, θ)T and the configuration of the robot by its
joint variables qr = (q1, q2)T . We denote the configuration
of the system by q = (qo, qr)T .

A rolling contact constrains the relative velocity between
the object and the palm at the contact point:

G(qo)Tq̇o = J(qr)q̇r (1)

where G(qo) ∈ R3×2 is the grasp map which relates
contact forces to wrenches on the object and J(qr) ∈ R2×2

is the Jacobian of the robot.
Coulomb friction imposes a constraint on the contact

force f :
f ∈ F(µ) (2)

where F(µ) is a convex cone and µ is the coefficient
of friction between the palm and the object, a material
property.

The motion of the object is governed by its dynamics:

Mq̈o = Gf + no (3)

where M is the inertia matrix of the object and no is the
wrench on the object due to gravity.

The manipulation problem can be stated as:
Given a start qs and a goal qg configuration
for the system, find the robot joint acceleration



q̈r(t) that will move the system from the start
to the goal without violating the contact velocity
constraint (Eqn.1) or the contact force constraint
(Eqn.2).

An industrial robot typically accepts desired joint torque
as an input. The mapping from robot joint acceleration to
joint torque involves the dynamics of the robot and is a
well studied problem [6].

III. BACKGROUND WORK

Early work on dynamic manipulation focused on dex-
terous manipulation where a robot hand manipulated an
object with multiple frictional fingers. In Cole et al. [4],
[5], some fingers were designated to slide on the object’s
surface while others were designated to roll. The authors
provided a control law that achieved simultaneous tracking
of a pre-planned object trajectory together with the desired
motion at the fingertips using the location of the contacts
and the relative velocity at the contacts as feedback.

Brook et al. [3] studied the manipulation of objects in
equilibrium grasps. They showed that most equilibrium
grasps were locally controllable, and stabilizable under
suitable feedback control. They showed that manipulation
from one equilibrium grasp to another was possible if there
was a continuity of equilibrium grasps between them.

Trinkle and Hunter [14] provided a framework for ma-
nipulation planning. They defined a contact formation (CF)
as a qualitative description of a grasp based on contacts
between the vertices, edges and surfaces of the robot and
the object. To plan a motion, they constructed CF-trees with
the start and goal CFs as the parent nodes, the child nodes
being the CFs the parents could transition to, and the arcs
being controls that caused the transitions. A plan existed if
the the start and goal CF-trees had a common node.

Erdmann [7] explored the nonprehensile manipulation of
planar convex objects using two flat palms. He restricted
the actions that could be performed by the palms to four
primitives which caused the object to tilt, rotate, slide, or
be released. Based on a static analysis, he decomposed the
configuration space of the object into regions of invariant
dynamics, and searched for plans in this simplified space.

Sarkar et al. [11] studied the control of a robot in
a cooperative manipulation task ordered to compliantly
follow the motion of an object. They designed a nonlinear
feedback controller that maintained rolling contact.

Yashima, Shiina and Yamaguchi [15] studied the dy-
namic manipulation of an object by a hand where the
contacts underwent both rolling and sliding. They used
a rapidly exploring random tree (RRT) to search for a
feasible path for the object.

The optimal control problem deals with the generation of
trajectories and controls for a system that minimize a given
cost function. The work of Bellman [1] pioneered the use of
dynamic programming to solve optimal control problems.
Bellman proposed a numerical technique for finding the
optimal cost from any point in a state space to a goal.
The gradient of the optimal cost function can be used

to generate the corresponding optimal feedback controller.
One drawback of dynamic programming is that the running
time grows exponentially with the number of dimensions.
Lavalle and Konkimalla [8] proposed several techniques for
improving the speed of dynamic programming.

IV. PLANNING
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Fig. 2. Constraints in contact acceleration space: the dark polygon
denotes the set of feasible contact accelerations. The friction cone F
is mapped to the acceleration cone A.

In this section, we map the constraints given by Eqn.1
and Eqn.2 to a common space and describe an analytical
solution to our problem.

A. The contact acceleration constraint

In [13], we derived a constraint that the robot joint
acceleration has to satisfy in order to obtain both a desired
motion of the object and a desired contact condition. We
state the theorem in the following paragraph and refer the
reader to [13] for a detailed proof.

Theorem 1. For a given configuration q = [qo, qr]T and
velocity q̇ = [q̇o, q̇r]T , the allowable joint acceleration of
the robot q̈r that satisfies both the velocity and the force
constraint is constrained to lie within the cone:

Jq̈r + V(q̇o, q̇r,no) ∈ A (4)

V(q̇o, q̇r,no) = J̇q̇r − ĠTq̇o − GTM−1no

and
A = GTM−1G(F)

is the contact acceleration cone.

The theorem gives us a series of mappings that can
be used to combine the contact force constraint and the
contact velocity constraint in a common space. The contact
friction cone F is mapped to a contact acceleration cone A
and the contact velocity constraint is mapped to a contact
acceleration constraint.

When we apply Thm.1 to the tipping problem, we
obtain the following constraints on the allowable joint
acceleration:

(
q̈1

q̈2

)
− d

(
cos(θ + β)
sin(θ + β)

)
θ̇2 +

(
0
g

)
∈ A(θ) (5)



where β = arctan(w/l), w and l are the width and length
of the block respectively, d is the distance from the center
of mass of the block to the contact and g is the acceleration
due to gravity.

Note that Eqn.5 only depends on θ and θ̇, and not on
(x, y) or (ẋ, ẏ). This suggests that, for the purpose of
satisfying the contact velocity and contact force constraints,
it is sufficient to analyze the evolution of the dynamics in
the (θ, θ̇) subspace. We denote this subspace as the space
of task freedoms.

For the tipping problem, the following map takes us
from the space of contact forces to the space of contact
accelerations:

(
ax

ay

)
= (GTM−1G)f (6)

where (ax, ay)T is the contact acceleration.
For a given state of the system, an illustration of Eqn.5

in the contact acceleration space is shown in Fig.2. The
rays with solid arrows represent the friction cone at the
contact and the rays with outlined arrows represent the
acceleration cone at the contact. The bounds that we have
imposed on the joint accelerations of the robot appear
as a rectangle in the contact acceleration space. Feasible
contact accelerations lie in the intersection of the contact
acceleration cone and the joint acceleration limits.

It can be shown that:

N (G) = {0} =⇒ N (GTM−1G) = {0} (7)

This means that in the absence of internal forces the map
from contact forces to contact accelerations is invertible.
This makes intuitive sense since an internal force is a
contact force that produces no contact acceleration and by
definition lies in the nullspace of the map from contact
forces to contact accelerations. If no internal forces exist,
the map has no nullspace and is invertible.

We invert the map to obtain:

f = (GTM−1G)−1

(
ax

ay

)
(8)

We can write the dynamics of the block as:

q̈o = M−1(Gfc + no) (9)

We can combine Eqn.8 and Eqn.9 as:

q̈o = A

(
ax

ay

)
+ b (10)

Hence the evolution of the system is given by Eqn.10
subject to the constraint given by Eqn.5.

B. Projection onto the space of task freedoms
In this subsection we will project the contact acceleration

constraint onto the space of task freedoms. The projection
is illustrated in Fig.3. As mentioned in the previous sub-
section, the dark polygon in Fig.3 corresponds to set the
feasible contact accelerations. Each point in this set can be
mapped to a feasible θ̈ using Eqn.10. In Fig.3, this mapping
is illustrated by a projection onto the unit vector aθ. Limits
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Fig. 3. Projecting the contact acceleration constraint onto and orthogonal
to the space of task freedoms

on the feasible θ̈ can be easily computed by projecting the
vertices of the feasible polygon onto aθ, as shown in the
figure.

To obtain aθ, we rewrite Eqn.10 as:
⎛

⎝
ẍ
ÿ
θ̈

⎞

⎠ =
[
Axy

Aθ

] (
ax

ay

)
+

[
bxy

bθ

]
(11)

We then perform a transformation of the input by rotating
it along and orthogonal to aθ:

(
ax

ay

)
= aθα + a⊥

θ β (12)

We compute the orthogonal unit vectors aθ and a⊥
θ using

the additional relation Aθa⊥
θ = 0.

We can now decouple the evolution of the task freedoms
and the rest of the state variables as:

θ̈ = Aθa
T
θ α + bθ (13)

(
ẍ
ÿ

)
= A1α + A2β + bxy (14)

We compute limits on α by projecting the vertices of
the feasible polygon onto aθ. We use the limits on α to
compute limits on θ̈ using Eqn.13.

We now focus our attention on the evolution of the
task freedoms given by Eqn.13. Limits on θ̈ constrain
the tangent space of the task freedom (θ, θ̇), as shown in
Fig.1(ii). At every point of a feasible trajectory in the task
freedom space, the tangent must lie within the cone of
allowable tangents at that point.

There is substantial literature on computing analytical
solutions for trajectory generation in 2 dimensions [2],
[12]. We choose a simple technique for finding feasible
trajectories. We pick a feasible vector field and follow it
from the start (here, θ = 0). We pick another feasible vector
field and back project it from the goal (here, θ = π

2 ). At
the point where the two trajectories intersect, we switch
vector fields.

Once a feasible trajectory is computed, we can compute
the control α(t) that is required to move the system along
that trajectory. We can then use the computed α(t) in
Eqn.14 and vary β(t) to move the palm wherever we



wished. Note that varying β(t) does not affect the motion
of the task freedoms in Eqn.13 because β(t) lies in an
orthogonal space to the task freedoms, by construction (as
shown in Eqn.12).

A few of the trajectories generated by varying the β(t)
are shown in Fig.1(iii). Following any of these trajectories
gives us the same rotational motion of the block. Further-
more, we can also transition from one trajectory to another
without changing the motion of the block.

The decomposition provides us a controllable simulation.
For example, in the tipping problem, if a user were handed
two joysticks, one for each degree of freedom of the palm
and told to tip the block, he would invariably fail — the
block would very easily slide, or lose contact with the
palm. Instead, we can give the user control of β(t) with
the assurance that any value of β(t) will satisfy the contact
constraints. We have solved the hard problem (tipping the
block) and given the control of the freedoms of secondary
importance (the motion of the palm) to the user.

C. Sliding
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Fig. 4. A trajectory that involves both sliding and rolling at the contact.
The block slides in the sliding region and reverts back to rolling out of
the region.

Until now we have looked at plans that only involve
rolling at the contact between the block and the palm. For
the tipping problem, it is relatively easy to incorporate the
sliding of the palm as well. This is predominantly because
the contact between the block and the palm is of Type A
(a contact between a vertex of the block and a side of the
palm [9]). As a result, the moment applied by any contact
force on the block by the palm remains the same regardless
of the position of the block relative to the palm. This is
illustrated in Fig.5. Hence sliding the palm relative to the
block does not affect the motion of the task freedoms.

An instance of a plan involving sliding and rolling
is shown in Fig.4. The dotted line denotes the extremal
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Fig. 5. An illustration of a Type A contact and a palm motion that results
in both sliding (shown by the dark palms) and rolling at the contact

trajectory — one where sliding of the palm must occur.
The extremal is computed by following the limits of the
allowable tangents at each point of of the state space.
The solid line denotes a trajectory where both rolling
and sliding occur. When the solid line coincides with the
extremal, we are allowed to slide the palm relative to the
block (the allowable region is colored in the plot). However
we need to ensure that by the time the trajectory reaches
the end of the allowable region, the sliding must cease
— the relative velocity of the palm with respect to the
block must be brought to zero. At the end of the allowable
region, the solid line leaves the extremal and rolling contact
is initiated. The block then maintains rolling contact until
it reaches the goal.

The motion of the palm for the trajectory given in Fig.4
is shown in Fig.5. The times where the palm is dark
denote sliding. For this problem, we used a simple constant
acceleration followed by a constant deceleration for the
motion of the palm relative to the block during the sliding
phase.

V. FEEDBACK CONTROL

A feedback controller provides the optimal control to
be applied at any state of the system that will result in a
trajectory that minimizes a given cost function. We used
backward dynamic programming to construct a feedback
controller for the block tipping problem. The cost function
we optimized was time-optimality, i.e. the feedback con-
troller gave us paths that took the least amount of time to
get to the goal.



The numerical technique we used is described in [1].
We discretize the (θ, θ̇) space with a uniform grid and
discretize the controls, as shown in Fig.6. The output of
the dynamic program is an optimal cost function that gives
the optimal cost (here, minimum time) to get from any
point in the state space to the goal. The optimal control is
one that moves the trajectory in a direction that is closest
to the gradient of the optimal cost function. The level sets
of the optimal cost function and a time-optimal trajectory
from θ = 0 to θ = π

2 are shown in Fig.7.

Fig. 6. Discretization for dynamic programming: the circles denote the
discrete states. At each discrete state there are 10 discrete feasible controls.
The curves denote the orbits of each control for the given time-step. The
goal region is denoted by the dark rectangle.
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Fig. 7. Feedback control: isocontours of the time-optimal cost-to-go
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VI. CONCLUSIONS

In this paper, we have demonstrated a new technique
for solving the trajectory generation problem for dynamic
contact manipulation. We have shown how the projected
dynamics can be used to generate controllable simulations
— where the user can control a set of the freedoms of
the system without violating the dynamic constraints. We

have also presented the construction of feedback controllers
for manipulation systems using dynamic programming. In
the future, we will work on exploring the reachability
and controllability of manipulation systems. We are also
working on an implementation of the block tipping problem
using an Adept 550 industrial arm.
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